TW499731B - Method for forming gap isolation between bit-line contact and capacitor-under-bitline DRAM cell - Google Patents
Method for forming gap isolation between bit-line contact and capacitor-under-bitline DRAM cell Download PDFInfo
- Publication number
- TW499731B TW499731B TW90119551A TW90119551A TW499731B TW 499731 B TW499731 B TW 499731B TW 90119551 A TW90119551 A TW 90119551A TW 90119551 A TW90119551 A TW 90119551A TW 499731 B TW499731 B TW 499731B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- dielectric layer
- forming
- patent application
- conformal
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
499731 五、發明說明α) 發明領域: 本發明與一種位元線下電容器(Capacitor under b i t 1 i n e)之動態隨機存取記憶胞(D R A M C e 1 1)有關, 特別是一種於位元線下電容器之動態隨機存取記憶胞與位 元線接觸間形成空隙隔離的方法,以及於位元線下電容器 之動態隨機存取記憶胞中製造自我對準頂部電極的方法。 ❿ 發明背景: 動態隨機存取記憶胞(DRAM Cel 1)係由電晶體與電 容器所組成,其中電容器之一端與電晶體之摻雜區連接, 而電容器另一端則與參考電位連接,透過電容器與源極區 之電性接觸,以將數位資訊儲存在電容器中,並透過金氧 半場效電晶體(Μ 0 S F E T)、字元線(w 〇 r d 1 i n e )與位元線 (b i t 1 i ne )陣列來取得電容器中的數位資料。 由於DRAM的積集度不斷隨著半導體工業的進步而提 昇,DRAM中電容器的高度必須要增加,然而增加電容器高 度的結果,將使得位元線下電容器之動態隨機存取記憶胞 結構中的位元線接觸難以形成(由於深寬比(a s p e c t rat i 〇)很高)。此外,位元線下電容器記憶胞結構中之 位元線接觸與電容器頂部電極間的隔離也降低了 (例如:499731 V. Description of invention α) Field of invention: The present invention relates to a dynamic random access memory cell (DRAMC e 1 1) of a capacitor under bit 1 ine, especially a capacitor under bit line A method for forming a gap isolation between a dynamic random access memory cell and a bit line contact, and a method for manufacturing a self-aligned top electrode in a dynamic random access memory cell of a capacitor below a bit line.背景 Background of the invention: Dynamic random access memory cell (DRAM Cel 1) is composed of a transistor and a capacitor. One end of the capacitor is connected to the doped region of the transistor, and the other end of the capacitor is connected to a reference potential. Electrical contact of the source region to store digital information in the capacitor, and pass the metal-oxide-semiconductor field-effect transistor (M 0 SFET), word line (w 〇rd 1 ine) and bit line (bit 1 i ne ) Array to get the digital data in the capacitor. As the accumulation of DRAM continues to increase with the progress of the semiconductor industry, the height of the capacitor in the DRAM must be increased. However, as a result of increasing the height of the capacitor, the dynamic random access memory bit structure of the capacitor below the bit line will Element line contact is difficult to form (due to the high aspect ratio i). In addition, the isolation between the bit line contact and the top electrode of the capacitor in the capacitor memory cell structure of the bit line is also reduced (for example:
第6頁 499731 五、發明說明(2) 由於沒對準。) 通常解決位元線下電容器因為高度增加,所產生之動 悲隨機存取記彳思胞結構中的位元線接觸難以形成之問題的 方法為··讓電容器外部側壁也暴露出來,以當作底部電 極。如此一來,電谷器高度得以降低,且單位記憶胞電容 (cel 1 capacitance)之大小仍然約可維持在25fF以上。 然而利用上述方法所形成的每一個位元線下電容器之 動態隨機存取記憶胞’由於位元線到底部電極間以及位元 線到頂部電極間的電容增加,因此總位元線電容 (bit-line capacitance)(亦即所謂的寄生電容)(每 列)也明顯地增加’而此總位元線電容的增加,將降低記 憶胞訊號之強度並使得增加記憶胞電容的努力部份失效。 — 此外,另一種降低總位元線電容的方法為:使用低介 ~ 電材質。然而,此舉將使得後續用於諸如T i S i X結構的接 觸阻障上之快速加熱製私(Rapid Thermal Processing, RTP)的溫度需要很高,故通常避免使用低介電材質。 « 位元線下電容器的動態隨機存取記憶體之製作,可參 考美國專利第5 8 9 3 7 3 4號所揭露之n Method for fabricating capacitor-under-bit 1i ne ( CUB) dynamic random access memory ( DRAM) using tungesten 499731 五、發明說明(3) landing plug contacts1’。今以圖一 A至圖一 D,簡略說明 傳統形成位元線下皇冠型(crown shape)電容器的動態 隨機存取記憶體之方法如下:Page 6 499731 V. Description of the invention (2) Due to misalignment. ) Generally, the method to solve the problem of bit-line capacitors due to the increase in height of bit-line capacitors is that the bit-line contact in the cell structure is difficult to form. The outer sidewall of the capacitor is also exposed, so that As the bottom electrode. In this way, the height of the valley device can be reduced, and the size of the unit memory cell capacitance (cel 1 capacitance) can still be maintained above 25fF. However, the dynamic random access memory cells of the capacitors under each bit line formed by the above method are increased due to the increased capacitance between the bit line to the bottom electrode and the bit line to the top electrode, so the total bit line capacitance (bit -line capacitance) (also known as parasitic capacitance) (per column) is also significantly increased, and the increase in the total bit line capacitance will reduce the strength of the memory cell signal and make part of the effort to increase the memory cell capacitance ineffective. — In addition, another way to reduce the total bit line capacitance is to use a low dielectric ~ electrical material. However, this will make the rapid thermal processing (RTP) used in contact barriers such as TiSiX structures need to be very hot, so low-dielectric materials are usually avoided. «For the production of dynamic random access memory for bit-line capacitors, please refer to the n Method for fabricating capacitor-under-bit 1i ne (CUB) dynamic random access memory disclosed in US Patent No. 5 8 9 3 7 3 4 (DRAM) using tungesten 499731 V. Description of the invention (3) Landing plug contacts 1 '. Now using Figure 1A to Figure 1D, the traditional method of forming the dynamic random access memory of the crown shape capacitor under the bit line is briefly described as follows:
請參閱圖一 A,首先在已形成有淺溝渠式隔離區域 (shallow trench is〇lati〇n)102、電晶體閘極結構 104、 汲極/源極1 06、第一内多晶介電層(inter-poly dielectric layer) 108、複晶矽栓(p〇ly piUg)ii〇的半 導體基底1 0 0上,利用習知技術形成第二内多晶介電層 1 1 2。然後將部份第二内多晶介電層1 1 2除去,以形成接觸 孔洞(c ο n t a c t h ο 1 e ) 1 1 3,以便後續形成之電容器可以與 電晶體做電性接觸。 隨後請參閱圖一 B,依序形成電容器之底部電極、極 板間介電層以及頂部電極,以完成電容器之製作。在此係 以可有效增加儲存電極之表面積的半球狀石夕晶粒 (Hemi-Spherical Grain; HSG)來製作電容器之底部電 極。首先形成半球形晶粒之矽層(h e in i s p h e r i c a 1 g r a i n s silicon; HSG-Si)ll 4於第二内多晶介電層u 2之上並填充 於接觸孔洞1 1 3中’然後塗佈光阻(未圖示出來)於接觸 孔洞113中以保護所需要之HSG-Si 114,接下來對JJSG-Si 11 4進行回蝕刻或化學機械研磨,以除去位於第二内多晶 介電層11 2上的HSG-Si 114,最後再除去光阻。Please refer to FIG. 1A. First, a shallow trench isolation region 102 is formed, a transistor gate structure 104, a drain / source 106, and a first inner polycrystalline dielectric layer. (Inter-poly dielectric layer) 108. A second inner polycrystalline dielectric layer 1 12 is formed on a semiconductor substrate 100 of a polycrystalline silicon plug (polysilicon) ii using a conventional technique. Then, a part of the second inner polycrystalline dielectric layer 1 1 2 is removed to form a contact hole (c ο n t a c t h ο 1 e) 1 1 3 so that a capacitor formed later can make electrical contact with the transistor. Then refer to FIG. 1B to sequentially form the bottom electrode, the inter-electrode dielectric layer and the top electrode of the capacitor in order to complete the fabrication of the capacitor. Here, the bottom electrode of the capacitor is made of Hemi-Spherical Grain (HSG) which can effectively increase the surface area of the storage electrode. First, a he in ispherica 1 grains silicon (HSG-Si) layer 4 is formed on the second inner polycrystalline dielectric layer u 2 and filled in the contact holes 1 1 3 ′, and then coated with light Resist (not shown) in the contact hole 113 to protect the required HSG-Si 114, and then etch back or chemical mechanical polishing the JJSG-Si 11 4 to remove the polycrystalline dielectric layer 11 located in the second inner layer. HSG-Si 114 on 2 and finally remove the photoresist.
第8頁 499731 五、發明說明(4) 然後延著HSG-Si 1 14結構之表面沈積一介電薄膜 1 1 6,以做為電容器之介電層,其中介電薄膜1 1 6可為氧化 物層、氮化物層所組成的氮化物/氧化物(N / 0)之複合 層、或者為氧化物層、氮化物層.、氧化物層所組成的氧化 物/氮化物/氧化物之複合層(0/N/0)。接著沈積一導電 層1 1 8於第二内多晶介電層11 2之上,並將整個介電薄膜 1 1 6覆蓋住,以做為電容器之頂部電極。然後除去第二内 多晶介電層1 1 2正上方的部分導電層1 1 8,以暴露出部份第 二内多晶介電層112,因而完成皇冠型(crown shape)電 容器之製作。 請參閱圖一 C,先形成内層介電層(inter-layer dielectric) 12 0於導電層11 8及第二内多晶介電層112 上,然後除去部份内層介電層1 2 0與部份第二内多晶介電 層1 1 2,直至暴露出部份複晶矽栓1 1 0之上表面為止,以形 成位元線接觸孔洞1 2 1。 請參閱圖一 D,之後再利用諸如濺鍍之方法,形成導 電栓1 2 2於位元線接觸孔洞1 2 1中作為導電連線(亦即當作 位元線)。其中上述導電栓1 2 2可包含鈦(T i)層、氮化 鈦(TiN)層以及鎢(W)層所組成的W/TiN/Ti複合層。 由圖一 D中可發現,當位元線下之皇冠型電容器的高 度增加,且位元線到晶胞電容器間的距離縮短時,總位元Page 8 499731 V. Description of the invention (4) A dielectric thin film 1 1 6 is then deposited on the surface of the HSG-Si 1 14 structure as the dielectric layer of the capacitor. The dielectric thin film 1 1 6 can be oxidized Compound layer, nitride / oxide (N / 0) composite layer composed of material layer, nitride layer, or oxide layer, nitride layer., Oxide / nitride / oxide composite composed of oxide layer Layer (0 / N / 0). Next, a conductive layer 1 1 8 is deposited on the second inner polycrystalline dielectric layer 11 2, and the entire dielectric film 1 1 6 is covered as the top electrode of the capacitor. Then, a portion of the conductive layer 1 18 directly above the second inner polycrystalline dielectric layer 1 12 is removed to expose a portion of the second inner polycrystalline dielectric layer 112, thereby completing the production of a crown shape capacitor. Referring to FIG. 1C, an inter-layer dielectric layer 120 is first formed on the conductive layer 118 and the second inner polycrystalline dielectric layer 112, and then a part of the inner layer dielectric layer 120 is removed. A portion of the second inner polycrystalline dielectric layer 1 12 is formed until a portion of the upper surface of the polycrystalline silicon plug 1 10 is exposed to form a bit line contact hole 1 2 1. Please refer to FIG. 1D, and then use a method such as sputtering to form a conductive plug 12 as a conductive connection in the bit line contact hole 1 21 (ie, as a bit line). The conductive plug 1 2 2 may include a W / TiN / Ti composite layer composed of a titanium (Ti) layer, a titanium nitride (TiN) layer, and a tungsten (W) layer. From Figure 1D, it can be found that when the height of the crown capacitor under the bit line increases and the distance from the bit line to the cell capacitor decreases, the total bit
第9頁 499731 五、發明說明(5) 線電容將會增加,而通常總位元線電容為每一個晶胞中之 晶胞電容的1 0 0倍左右,因此將降低從位元線中讀取出來 的記憶胞訊號之強度(此可由下式得知··位元線中記憶胞 訊號讀取前與讀取後強度之變化量=位元線中讀取出來的 記憶胞訊號之強度X (母一個晶胞中之晶胞電容/總位元線 電容))。此外,當位元線下之皇冠型電容器的高度增加 且臨界尺寸(Critical Dimension,CD)很小時,頂部電 極的形成將是一個困難且緊要的步驟。 因此,如何避免製作位元線下電容器DRAM時發生上述 問題,將非常重要。 發明目的及概述: 本發明之一目的係在位元線下電容器之動態隨機存取 記憶胞與位元線接觸間形成空隙隔離,以提供位元線接觸 與電容器頂部電極間的最小介電隔離,因而達成降低位元 線下電容器之動態隨機存取記憶胞中寄生電容之目的。 本發明之另一目的係在位元線下電容器之動態隨機存 取記憶胞中製造自我對準頂部電極,以節省製程成本。 本發明之又一目的係在位元線下電容器之動態隨機存Page 9 499731 V. Description of the invention (5) The line capacitance will increase, and usually the total bit line capacitance is about 100 times the cell capacitance in each cell, so reading from the bit line will be reduced. The strength of the retrieved memory cell signal (this can be known from the following formula ... The change in the intensity of the memory cell signal in the bit line before and after reading = the intensity of the memory cell signal read in the bit line X (Cell capacitance / total bit line capacitance in a mother cell)). In addition, when the height of the crown capacitor below the bit line increases and the critical dimension (CD) is small, the formation of the top electrode will be a difficult and critical step. Therefore, it is very important to avoid the problems mentioned above when manufacturing bit-line capacitor DRAM. Object and Summary of the Invention: One object of the present invention is to form a gap isolation between a dynamic random access memory cell of a capacitor below a bit line and a bit line contact, so as to provide a minimum dielectric isolation between a bit line contact and a capacitor top electrode. Therefore, the purpose of reducing the parasitic capacitance in the dynamic random access memory cell of the bit line capacitor is achieved. Another object of the present invention is to manufacture a self-aligned top electrode in a dynamic random access memory cell of a capacitor below a bit line to save process costs. Another object of the present invention is to dynamically store capacitors under bit lines.
第10頁Page 10
499731 五、發明說明(6) 取記憶胞中製造自我對準頂部電極,以使位元線接觸與電 容器頂部電極間之隔離距離變成可控制,並藉由加大位元 線接觸窗尺寸,以解決因為不正確的位元線接觸之圖案轉 移(P a 11 e r η T r a n s f e r),所造成的位元線接觸與電容器 頂部電極間短路的現象。 依據本發明之一實施例,所提出的於位元線下電容器 (Capacitor under bit line)之動態隨機存取記憶胞 (DR A M C e 1 1)與位元線接觸間形成空隙(a i r ga p)隔離 的方法,其包括了下列步驟:499731 V. Description of the invention (6) Take the self-aligned top electrode from the memory cell, so that the isolation distance between the bit line contact and the top electrode of the capacitor can be controlled, and by increasing the size of the bit line contact window, Solve the phenomenon of short circuit between the bit line contact and the top electrode of the capacitor caused by incorrect pattern line contact (P a 11 er η T ransfer). According to an embodiment of the present invention, an air gap is formed between the dynamic random access memory cell (DR AMC e 1 1) of the proposed capacitor under bit line and the bit line. A method of isolation, which includes the following steps:
第11頁 499731 五、發明說明(7) 13 介電層,以形成位元線接觸孔洞於第一介電層之中。( )形成第一導電栓於位元線接觸孔洞之中。 其中在形成第一介電層於半導體基底上之前,更包括 下列步驟:(1)形成複數個電晶體於半導體基底之上。 (2)形成第四介電層於複數個電晶體之上。及(3)形成 第二導電栓於第四介電層之中,其中孔洞對應於第二導電 栓。 又,其中上述第一介電層之材質包含氧化物或以四氧 乙基石夕(Tetraethyl-orthosilicate,TEOS)形成之二氧 化矽。矽材質包含半球形晶粒矽、電容器介電層包含下列 其中之一:氮化物/氧化物(N/0)之複合層、氧化物/氮 化物/氧化物之複合層(0 / N / 0) 、T a 20 5、T i 0 2。至於導電 層之材質包含摻雜複晶石夕(d 〇 p e d ρ ο 1 y s i 1 i c ο η )。 此外,間隙壁結構之材質包含硼磷矽玻璃(BPSG)或 氮化矽(例如:利用低壓化學氣相沈積法(LPCVD)形成 的氮化矽),其除去之方法包含濕式回蝕刻法。又,第二 介電層之材質包含利用高密度電漿(high density plasma,HDP)所形成的氧化層,或於03-TE0S氣體環境中 所形成的未摻雜矽玻璃(USG)、第三介電層包含PE-TE0S (plasma enhanced TE0S)或 PE-SiH 4、第一導電性栓包 含複晶矽栓。Page 11 499731 V. Description of the invention (7) 13 Dielectric layer to form bit line contact holes in the first dielectric layer. () Forming a first conductive plug in the bit line contact hole. Before forming the first dielectric layer on the semiconductor substrate, the method further includes the following steps: (1) forming a plurality of transistors on the semiconductor substrate. (2) forming a fourth dielectric layer on the plurality of transistors. And (3) forming a second conductive plug in the fourth dielectric layer, wherein the hole corresponds to the second conductive plug. In addition, the material of the first dielectric layer includes an oxide or silicon dioxide formed from Tetraethyl-orthosilicate (TEOS). The silicon material contains hemispherical grain silicon, and the capacitor dielectric layer includes one of the following: a nitride / oxide (N / 0) composite layer, an oxide / nitride / oxide composite layer (0 / N / 0 ), T a 20 5, T i 0 2. As for the material of the conductive layer, doped polycrystalite (d 0 p e d ρ ο 1 y s i 1 i c ο η). In addition, the material of the spacer structure includes borophosphosilicate glass (BPSG) or silicon nitride (for example, silicon nitride formed by low-pressure chemical vapor deposition (LPCVD)), and the removal method includes wet etch-back. In addition, the material of the second dielectric layer includes an oxide layer formed using a high density plasma (HDP), or undoped silica glass (USG) formed in a 03-TE0S gas environment, and a third The dielectric layer includes PE-TE0S (plasma enhanced TEOS) or PE-SiH 4. The first conductive plug includes a polycrystalline silicon plug.
第12頁 499731 五、發明說明(8) 其中間隙壁結構之材質若為硼磷矽玻璃(BPSG)或氮 化矽,則其形成方法包含:(1)形成硼磷矽玻璃(BPSG )層或氮化矽層於第一介電層與導電層上。(2)利用乾 性電漿回蝕刻法,除去部分硼磷矽玻璃(BPSG)層或氮化 矽層,以形成間隙壁結構於導電層的側壁上。 此外,其中第二介電層的材質與間隙壁結構的材質若 分別為未摻雜矽玻璃(USG)及硼磷矽玻璃(BPSG)時, 則濕式回蝕刻法所使用的蝕刻劑可包含HF氣體。又,第二 介電層的材質與間隙壁結構的材質若分別為未摻雜石夕玻璃 (USG)及低壓化學氣相沈積法(Low Pressure Chemical V a ρ o r D e p o s i t i ο η ; L P C V D )所形成的氮化石夕時,則濕式回 蝕刻法所使用的蝕刻劑可包含熱磷酸。 又依據本發明之另一實施例,所提出的於位元線下電 容器之動態隨機存取記憶胞中製造自我對準頂部電極的方 法,包括下列步驟:Page 12 499731 V. Description of the invention (8) Where the material of the spacer structure is borophosphosilicate glass (BPSG) or silicon nitride, the formation method includes: (1) forming a borophosphosilicate glass (BPSG) layer or A silicon nitride layer is formed on the first dielectric layer and the conductive layer. (2) Use a dry plasma etch-back method to remove part of the borophosphosilicate glass (BPSG) layer or silicon nitride layer to form a spacer structure on the side wall of the conductive layer. In addition, if the material of the second dielectric layer and the material of the spacer structure are respectively undoped silica glass (USG) and borophosphosilicate glass (BPSG), the etchant used in the wet etchback method may include HF gas. In addition, if the material of the second dielectric layer and the material of the spacer structure are made of undoped stone glass (USG) and low pressure chemical vapor deposition (Low Pressure Chemical V a ρ or Depositi ο η; LPCVD), respectively When the nitride is formed, the etchant used in the wet etch-back method may include hot phosphoric acid. According to another embodiment of the present invention, a method for manufacturing a self-aligned top electrode in a dynamic random access memory cell of a bit-line capacitor is provided, including the following steps:
第13頁 499731 五、發明說明(9) 矽材質之表面上。(6)形成導電層以覆蓋電容器介電 層。(7)形成非保角(non - conformal)結構層於導電層 之上。(8)除去部份非保角結構層,以暴露出部份導電 層之上表面。(9)以剩餘的非保角結構層為罩幕,除去 部份導電層,以形成自對準的電容器頂部電極。(1 0)除 去非保角結構層。 其中在除去非保角結構層之後,更包括下列步驟: (1) 形成第二介電層於導電層與第一介電層之上。(2) 除去部份第二介電層與部份第一介電層,以形成位元線接 觸孔洞於第一介電層及第二介電層之中。(3)形成第一 導電栓於位元線接觸孔洞之中。 其中在形成第一介電層於半導體基底上之前,更包括 下列步驟:(1)形成複數個電晶體於半導體基底之上。 (2) 形成第三介電層於複數個電晶體之上。(3)形成第 二導電栓於第三介電層之中,其中孔洞對應於第二導電 栓。 又,其中上述第一介電層之材質包含氧化物或以四氧 乙基石夕(Tetraethyl - ortho silicate,TE0S)形成之二氛 化矽。矽材質包含半球形晶粒矽、電容器介電層包含下列 其中之一:氣化物/氧化物(N/0)之複合層、氧化物/氮 化物/氧化物之複合層(0 / N/ 0) 、Ta 20 5、T i 0 2。至於導電Page 13 499731 V. Description of the invention (9) On the surface of silicon material. (6) A conductive layer is formed to cover the capacitor dielectric layer. (7) A non-conformal structural layer is formed on the conductive layer. (8) Remove part of the non-conformal structural layer to expose part of the upper surface of the conductive layer. (9) Using the remaining non-conformal structural layer as a mask, remove part of the conductive layer to form a self-aligned capacitor top electrode. (1 0) Remove the non-conformal structural layer. After removing the non-conformal structure layer, the method further includes the following steps: (1) forming a second dielectric layer on the conductive layer and the first dielectric layer. (2) Remove part of the second dielectric layer and part of the first dielectric layer to form bit line contact holes in the first dielectric layer and the second dielectric layer. (3) A first conductive plug is formed in the bit line contact hole. Before forming the first dielectric layer on the semiconductor substrate, the method further includes the following steps: (1) forming a plurality of transistors on the semiconductor substrate. (2) forming a third dielectric layer on the plurality of transistors. (3) A second conductive plug is formed in the third dielectric layer, and the hole corresponds to the second conductive plug. In addition, the material of the first dielectric layer includes an oxide or two atmosphere silicon formed of Tetraethyl-ortho silicate (TEOS). The silicon material includes hemispherical grain silicon, and the capacitor dielectric layer includes one of the following: a composite layer of a vapor / oxide (N / 0), a composite layer of an oxide / nitride / oxide (0 / N / 0 ), Ta 20 5, T i 0 2. As for conductivity
第14頁 499731 五、發明說明(ίο) 層之材質包含摻雜複晶石夕(doped polysilicon)。 上述非保角結構層之材質包含聚合物(po 1 ymer), 而此聚合物之形成方法包含利用6-8seem的C4F8、 360-480sccm的C0及400-800 W的功率來形成。第二介電層 之材質包含氧化物、第一導電性栓包含複晶石夕栓。此外, 上述除去非保角結構層之方法包含濕刻法、上述除去部 份導電層之方法包含電漿#刻法。而上述濕餘刻法包含利 用稀氫氟酸或SP Μ來達成。 此外,依據本發明之又一實施例,所提出的於位元線 下電容器之動態隨機存取記憶胞中製造自我對準頂部電極 的方法,包括下列步驟: (0形成第一介電層於一半導體基底上。(2) I虫刻 部份第一介電層以形成孔洞於第一介電層之中。(3)形 成矽材質於第一介電層之上並填充於孔洞之中。(4)除 去位於第一介電層上的部份矽材質,其中剩餘的部份矽材 質係當作電容器之底部電極。(5)形成電容器介電層於 矽材質之表面上。(6)形成導電層以覆蓋電容器介電 層。(7)形成第一保角(conformal)結構層於導電層之 上。(8)形成非保角(non-conf〇rmal)結構層於第一保 角(c ο n f 〇 r m a 1)結構層之上。(9)除去部份非保角結構 層,以暴露出部份第一保角結構層之上表面。(1 0)以剩Page 14 499731 V. Description of the Invention The material of the layer includes doped polysilicon. The material of the non-conformal structure layer includes a polymer (po 1 ymer), and the forming method of the polymer includes using 6-8seem C4F8, 360-480sccm CO, and 400-800 W power to form. The material of the second dielectric layer includes an oxide, and the first conductive plug includes a polycrystalline stone plug. In addition, the method for removing the non-conformal structural layer includes a wet etching method, and the method for removing a part of the conductive layer includes a plasma #etching method. The wet-etching method mentioned above involves the use of dilute hydrofluoric acid or SPM. In addition, according to another embodiment of the present invention, a method for manufacturing a self-aligned top electrode in a dynamic random access memory cell of a bit line capacitor includes the following steps: (0) forming a first dielectric layer on the On a semiconductor substrate. (2) I etch a part of the first dielectric layer to form holes in the first dielectric layer. (3) form a silicon material on the first dielectric layer and fill the holes. (4) Remove part of the silicon material on the first dielectric layer, and the remaining part of the silicon material is used as the bottom electrode of the capacitor. (5) Form the capacitor dielectric layer on the surface of the silicon material. (6) ) Forming a conductive layer to cover the capacitor dielectric layer. (7) forming a first conformal structural layer on the conductive layer. (8) forming a non-confomal structural layer on the first conformal layer (C ο nf 〇rma 1) on the structural layer. (9) Remove part of the non-conformal structural layer to expose part of the upper surface of the first conformal structural layer. (1 0)
第15頁 499731 五、發明說明(11) 餘的非保角結構層為罩幕,除去部份第一保角結構層與部 份導電層,以形成自對準的電容器頂部電極。(1 1)除去 非保角結構層。 彳空 的 t : 成 .間 驟„形 層 步:間 電 列 層 T ^ t一 括介 第 包I 與 更第 層 ,構與 後吉層 之纟構 角 層呆結 構ί角 結一保 第Μ 角、一 於 保U第 tr /1T## 去 以 》回 除性, 在W層 「°丨^¾ 中選電 其 導 1)份 C部 鄰 2)相 C大。加 隙以 角保1 第份 β— 的方上正 隙 空於位去除 的 第 個 結 角保 距 的Page 15 499731 V. Description of the invention (11) The remaining non-conformal structural layer is a mask, and a part of the first conformal structural layer and a part of the conductive layer are removed to form a self-aligned capacitor top electrode. (1 1) Remove the non-conformal structural layer. The empty t: into the step. The step: the interlayer row T ^ t includes the first and second layers, the structure and the post-layer structure. Angular, one-in-one, U, tr, / 1T ##, and removability. In the W-layer "° 丨 ^ ¾, select its conductivity 1) copies of the adjacent part of C 2) phase C is large. The positive gap on the square of the fraction β—
,成 層形構} 3 士 P 接4)線 (元 。位 上成 之形 層以 電, 介層 一 電 第介 與一 層第 構份 結部 角與 保層 一 電 第介 於二 層第 電份 介部 二去 第除 中之 層 電 〇 介中二之 第洞 及孔 層觸 電接 介線 一 元 第位 於於 洞栓 孔電 觸導 第成形 \)/ 5, Layered structure} 3 ± P connected to 4) lines (elements. The shape of the layer is electrically, the junction angle of the dielectric layer and the first layer of the first component is between the second layer and the second layer of the second layer. The second part of the intermediary part is the second part of the dielectric layer. The first part of the second part of the middle part of the middle part and the hole layer of the electrical contacting dielectric line is located in the hole of the hole and the second part of the electrical contact formation.) / 5
外1) 此C 步 列下括 包 以可 亦後之 層構結 角保 bp去除在 層 \)/ 電 2 導C 份。 {部隙 :的空 驟間成 層 電介一 第與 層構結 角保一 第於位 0 回性擇選 結 角保- 第於 以 第與 層 電介 形 第成形 結 角保 第於 結 角保 與 層 並 Λ—/ , 3 上C之。 層中 電隙 介空 一的 第間 第於 充填 結 角保 層 電介1 第與 第份 β— 立口去除 構結 角保 第份 部Outside 1) This C step is included in the following steps: The structure can be followed by the protection of bp to remove the layer C) / E2. {部 圈: The space between the layered dielectric layer and the layer structure angle is maintained at the first position 0. The recursive selection of the node angle is provided-the first layer of the dielectric shape is formed at the node angle. Guarantee the layer and Λ— /, 3 on C. The gap in the layer, the dielectric space, the first space, the first space, and the filling junction, the corner protection layer, the dielectric space, the first and the first, β—removal of the structure, the corner protection, and the first part
結介 \)/ 角 一 4 保第C 於 同 〇 孔中 觸之 接層 線構 元結 位角 成保 形二 以第 ,及 層層 電構 介結 一角 第保 份一 部第 與、 Μ Μ 構電 中之 同 :/孔 觸接線元位於栓 電 導- 第成形Conjunction \) / Angle 1 4 Guaranteed C The contact angle of the connection layer structure element in the same hole is formed into a conformal shape 2 and 3D, and the layered electrical structure is connected to a corner. The same in construction: / hole contact wiring element is located in the plug conductance
第16頁 499731 五、發明說明(12) 其中在形成第一介電層於半導體基底上之前,更包括 下列步驟:(1)形成複數個電晶體於半導體基底之上。 (2)形成第三介電層於複數個電晶體之上。(3)形成第 二導電栓於第三介電層之中,其中孔洞對應於第二導電 栓。 又,其中上述第一介電層之材質包含氧化物或以四氧 乙基石夕(Tetraethyl-orthosilicate,TEOS)形成之二氧 化矽。矽材質包含半球形晶粒矽、電容器介電層包含下列 其中之一 ··氮化物/氧化物(N/0)之複合層、氧化物/氮 化物/氧化物之複合層(0/N/0) 、Ta 20 5、Ti02。至於導電 層之材質包含掺雜複晶石夕(doped polysilicon)。 第二介電層之材質包含氧化物、第一導電性栓包含複 晶矽栓、第二保角結構層之材質包含LP-TE0S。此外,上 述除去非保角結構層之方法包含濕蝕刻法、上述除去部份 導電層與部份第一保角結構層之方法包含電漿蝕刻法。而 上述濕蝕刻法包含利用稀氫氟酸或SPM來達成。其中上述 保角結構層之材質可選擇相較於導電層具有高度濕蝕選擇 性的材質,其厚度約為3 0 0 - 5 0 0埃,至於其形成方法包含 LPCVD。 又,導電層之材質若為複晶矽,則保角結構層之材質 可包含LP-Si N或氧化物。上述非保角結構層之材質包含聚Page 16 499731 V. Description of the invention (12) Before forming the first dielectric layer on the semiconductor substrate, the method further includes the following steps: (1) forming a plurality of transistors on the semiconductor substrate. (2) forming a third dielectric layer on the plurality of transistors. (3) A second conductive plug is formed in the third dielectric layer, and the hole corresponds to the second conductive plug. In addition, the material of the first dielectric layer includes an oxide or silicon dioxide formed from Tetraethyl-orthosilicate (TEOS). The silicon material contains hemispherical grain silicon, the capacitor dielectric layer includes one of the following: a nitride / oxide (N / 0) composite layer, an oxide / nitride / oxide composite layer (0 / N / 0), Ta 20 5, Ti02. The material of the conductive layer includes doped polysilicon. The material of the second dielectric layer includes an oxide, the first conductive plug includes a polycrystalline silicon plug, and the material of the second conformal structure layer includes LP-TEOS. In addition, the method for removing the non-conformal structure layer includes a wet etching method, and the method for removing a part of the conductive layer and part of the first conformal structure layer includes a plasma etching method. The wet etching method includes the use of dilute hydrofluoric acid or SPM. Among them, the material of the conformal structure layer can be selected from those having a high wet etching selectivity compared to the conductive layer, and the thickness thereof is about 300-500 angstroms. As for the formation method thereof, LPCVD is included. In addition, if the material of the conductive layer is polycrystalline silicon, the material of the conformal structure layer may include LP-Si N or an oxide. The material of the above non-conformal structural layer includes poly
第17頁 499731 五、發明說明(13) 合物(ρο 1 ym e r),而此聚合物之形成方法包含利用 6-8sccm的 C4F8、360-480sccm的 C0及 400-800W的功率來妒Page 17 499731 V. Description of the invention (13) Compound (ρο 1 ym e r), and the formation method of this polymer includes using 6-8sccm C4F8, 360-480sccm C0, and 400-800W power to envy
成。其中上述選擇性回餘部份導電層的方法包含APM (Ammonia peroxide mixture) ( APΜ係一種包含氨水與 過氧化氫的水溶液。之濕蝕刻法)。 發明詳細說明: 本發明之一目的係在位元線下電容器之動態隨機存取 記憶胞與位元線接觸間形成空隙隔離,以提供位元線接觸 與電谷為頂部電極間的敢小介電隔離,因而達成降低位元 線下電谷器之動悲卩远機存取記憶胞中寄生電容之目的。 本發明之另一目的係在位元線下電容器之動態隨機存 取記憶胞中製造自我對準頂部電極,以節省製程成本。 本發明之又一目的係在位元線下電容器、之動態隨機 存取記憶胞中製造自我對準頂部電極,以使位元線接觸與 電谷頂部電極間之隔離距離變成可控制,並藉由加大位 元線接觸窗尺寸’以解決因為不正確的位元線接觸之圖案 轉移(Pattern Transfer),所造成的位元線接觸與電容 器頂部電極間短路的現象。 'to make. The method for selectively restoring a part of the conductive layer includes APM (Ammonia peroxide mixture) (APM is an aqueous solution containing ammonia and hydrogen peroxide. Wet etching method). Detailed description of the invention: One object of the present invention is to form a gap isolation between the dynamic random access memory cell of the bit line capacitor and the bit line contact, so as to provide a small medium between the bit line contact and the valley as the top electrode. Electrical isolation, so as to achieve the purpose of reducing the power trough off-line device to access the parasitic capacitance in the memory cell. Another object of the present invention is to manufacture a self-aligned top electrode in a dynamic random access memory cell of a capacitor below a bit line to save process costs. Another object of the present invention is to make self-aligned top electrodes in bit line capacitors and dynamic random access memory cells, so that the isolation distance between the bit line contacts and the top electrode of the valley can be controlled, and The size of the bit line contact window is increased to solve the phenomenon of short circuit between the bit line contact and the top electrode of the capacitor caused by the incorrect pattern line contact pattern transfer. '
499731499731
本發明提供一種於位元線下電容器之動態隨機存取“ 憶胞與位元線接觸間形成空隙隔離的方法。今以白 c 谷态製作之一較佳實施例,詳述本發明如下: 、 請參閱圖二A,首先提供一半導體基底200,其中半、耸 體基底2 0 0可為一 < 1 〇 〇 >或< 11 1 >晶向之單晶矽或其它種類^ 之半導體材料,如砷化鎵(GaAs)、鍺(Ge)或是位於絕緣層 上之石夕基底(silicon on insulator)等。 9 接著利用已知技術形成隔離區域如淺溝渠式隔離巴、 (shallow trench iso lation)20 2於半導體基底 2〇〇 中,: 產生絕緣作用。然後在半導體基底2 0 〇上,依序形成複數、 個電晶體閘極結構2 0 4以及沒極/源極2 0 6,其中電晶體門 極結構2 0 4用以當作字元線,而其外層為絕緣材質。此處 之電晶體閘極結構2 0 4可以包含二氧化矽層、複晶矽層、 矽化鎢層、氮化矽護層等。而上述汲極/源極2 〇 6係利用離 子植入方式形成,由於上述製程為利用昔知之技術製作而 非本發明之重點,故不加以詳述。 然後在半導體基底2 0 0、淺溝渠式隔離區域2 0 2、閘極 結構2 0 4與没極/源極2 0 6上,形成一用以絕緣的内多晶介 電層(inter〜p〇ly dielectric layer) 208。之後,利用 #刻與/尤積技術形成自對準接觸(self-aligned contact) 之第一導電性栓2 1 0於内多晶介電層2 0 8之中,其中第一導The present invention provides a method for dynamic random access of a capacitor below a bit line to form a gap isolation between the contact between the memory cell and the bit line. A preferred embodiment is now made in the white c valley state, and the invention is described in detail as follows: Please refer to FIG. 2A. First, a semiconductor substrate 200 is provided, in which a half or tower substrate 200 can be a < 1 00 > or < 11 1 > single crystal silicon or other types of crystal orientation ^ Semiconductor materials, such as gallium arsenide (GaAs), germanium (Ge), or silicon on insulator, etc. 9 Then use known techniques to form isolation areas such as shallow trench isolation bars, ( Shallow trench isolation) 20 2 in the semiconductor substrate 200 :: Insulation effect is then formed on the semiconductor substrate 200, in order to form a complex number, a transistor gate structure 204, and an electrode / source 2 The transistor gate structure 204 is used as a word line, and the outer layer is an insulating material. The transistor gate structure 204 here may include a silicon dioxide layer, a polycrystalline silicon layer, Tungsten silicide layer, silicon nitride protective layer, etc., and the above drain / source 2 〇 The 6 series is formed by ion implantation. Since the above-mentioned process is made by the technology known in the past and is not the focus of the present invention, it will not be described in detail. Then on the semiconductor substrate 200, the shallow trench isolation area 2 2, and the gate An internal polycrystalline dielectric layer (inter ~ p0ly dielectric layer) 208 is formed on the structure 204 and the non-source / source 206. After that, a self-etching technique is used to form The first conductive plug 2 1 0 of the self-aligned contact is in the inner polycrystalline dielectric layer 2 0 8.
第19頁 499731 五、發明說明(15) 電性栓21 〇可以為複晶矽栓(p 〇 1 y p 1 u g),在此較佳實施例 中,可以利用化學氣相沈積法(Chemical Vapor Deposition; CVD)沈積複晶矽並回填進入接觸孔洞之中’ 再利用諸如回#刻或化學機械研磨以形成上述之複晶石夕 检。以較佳實施例而言,本發明之複晶石夕為同步換雜之複 晶石夕(i η - s i t u d 〇 p e d p 〇 1 y s i 1 i c 〇 η )或是摻雜之複晶石夕 (doped polysilicon)。 隨後於内多晶介電層2 0 8與第一導電性栓2 1 0之上表 面,形成一用以絕緣的第一介電層212(此處之第一介電 層2 1 2係用以當作内多晶介電層)。之後,將部份第一介 電層2 1 2除去,以形成接觸孔洞(c ο n t a c t h ο 1 e ) 2 1 3,以便 後續形成之電容器可以與電晶體做電性接觸。其中,内多 晶介電層2 0 8、第一介電層2 1 2可為氧化物或以四氧乙基石夕 (Tetraethyl-orthosilicate,TE0S)形成之二氧化石夕。 隨後請參閱圖二B ’依序形成電容器之底部電極、極 板間介電層以及頂部電極,以完成電容器之製作。其中製 作電容器之底部電極的材質包含摻雜複晶矽,其製作在 係以習知的可有效增加儲存電極之表面積的半球狀石夕晶$ (Hemi-Spherical Grain; HSG)製程為例,做一說明。日曰攻 先形成半球形晶粒之矽層(hem i spherical gH ins ^ silicon; HSG-Si)214於第一介電層212之上並填充於 孔洞2 1 3中’然後塗佈光阻(未圖示出來)於接觸孔洞Page 19 499731 V. Description of the invention (15) Electrical plug 21 〇 may be a polycrystalline silicon plug (p 〇1 yp 1 ug), in this preferred embodiment, chemical vapor deposition (Chemical Vapor Deposition) CVD) deposits polycrystalline silicon and backfills into the contact holes. The polycrystalline silicon is then re-used, such as back engraving or chemical mechanical polishing, to form the polycrystalline silicon inspection described above. In a preferred embodiment, the polycrystalline stone of the present invention is a compound polycrystalline stone (i η-situd 〇pedp 〇1 ysi 1 ic η) or doped polycrystalline stone (doped) polysilicon). Subsequently, a first dielectric layer 212 for insulating is formed on the upper surface of the inner polycrystalline dielectric layer 208 and the first conductive plug 2 10 (the first dielectric layer 2 1 2 is used here). As the inner polycrystalline dielectric layer). After that, a portion of the first dielectric layer 2 1 2 is removed to form a contact hole (c ο n t a c t h ο 1 e) 2 1 3 so that a capacitor formed later can make electrical contact with the transistor. Among them, the inner polycrystalline dielectric layer 208 and the first dielectric layer 2 12 may be oxides or dioxides formed from Tetraethyl-orthosilicate (TEOS). Subsequently, referring to FIG. 2B ′, the bottom electrode, the inter-electrode dielectric layer and the top electrode of the capacitor are sequentially formed to complete the fabrication of the capacitor. The material of the bottom electrode of the capacitor includes doped polycrystalline silicon. The manufacturing process is based on the conventional hemi-Spherical Grain (HSG) process, which can effectively increase the surface area of the storage electrode. One note. On the first day, a silicon layer (hem i spherical gH ins ^ silicon; HSG-Si) 214 is formed on the first dielectric layer 212 and filled in the holes 2 1 3 ′, and then coated with a photoresist ( Not shown) at the contact hole
499731 五、發明說明(16) 中以保護所需要之H S G - S i 2 1 4,用以做為電容器之底部電 極,接下來利用回蝕刻或化學機械研磨,以除去位於第一 介電層21 2上的HSG-Si 214,最後再除去光阻。 其中H S G - S i 2 1 4形成步驟為:首先依次沉積矽薄膜、 矽晶種(nuc 1 e i ),例如可應用含矽的氣體如S i Η减S i 2H淳 來形成,其中製程溫度約為攝氏4 5 0度至6 Ο 0度之間、壓力 約為1Ε(-310 - 3至1 Ε ( - 5 )托耳之間,接著於高度真空的環 境之下進行熱回火程序以形成半球狀矽晶粒。其製程溫度 約為攝氏4 5 0度至6 0 0度、且壓力約為1 Ε ( - 7 )至1 Ε ( - 9 )托 耳。 隨後延著HSG-Si 2 14結構之表面沈積一介電薄膜 2 1 6,以做為電容器之介電層,一般而言此介電薄膜2 1 6可 為氧化物層、氮化物層所組成的氮化物/氧化物(N/0)之 複合層。或者為氧化物層、氮化物層、氧化物層所組成的 氧化物/氮化物/氧化物之複合層(0/N/0)。或是利用高 介電之薄膜如Ta 20 5、T i 0薄。接著沈積一導電層2 1 8於第 一介電層2 1 2之上,並將整個介電薄膜2 1 6覆蓋住,以做為 電容器之頂部電極。然後除去第一介電層2 1 2正上方的部 分導電層218,以暴露出部份第一介電層212,因而完成皇 冠型(crown shape)電容器之製作。在此較佳實施例 中,導電層2 1 8之沈積方法可以為低壓化學氣相沈積法 (Low Pressure Chemical Vapor Deposition; LPCVD),499731 5. In the description of the invention (16), the HSG-S i 2 1 4 required for protection is used as the bottom electrode of the capacitor, and then etch back or chemical mechanical polishing is used to remove the first dielectric layer 21 HSG-Si 214 on 2 and finally remove the photoresist. The HSG-S i 2 1 4 formation step is as follows: firstly deposit a silicon thin film and a silicon seed (nuc 1 ei) in sequence, for example, a silicon-containing gas such as Si can be used to reduce Si 2H to form, and the process temperature is about The temperature is between 450 ° and 600 ° C, the pressure is about 1E (-310-3 to 1 Ε (-5) Torr, and then a thermal tempering process is performed in a high vacuum environment to form Hemispherical silicon grains. The process temperature is about 450 to 600 degrees Celsius, and the pressure is about 1 Ε (-7) to 1 Ε (-9) Torr. HSG-Si 2 14 is then extended. A dielectric film 2 1 6 is deposited on the surface of the structure as a dielectric layer of the capacitor. Generally, the dielectric film 2 1 6 can be a nitride / oxide (N / 0) composite layer. Or oxide / nitride / oxide composite layer (0 / N / 0) composed of an oxide layer, a nitride layer, or an oxide layer. Or a high dielectric film For example, Ta 20 5 and Ti 0 are thin. Next, a conductive layer 2 1 8 is deposited on the first dielectric layer 2 1 2 and the entire dielectric thin film 2 1 6 is covered as the top electrode of the capacitor. Then, a portion of the conductive layer 218 directly above the first dielectric layer 2 1 2 is exposed to expose a portion of the first dielectric layer 212, thereby completing the production of a crown shape capacitor. In this preferred embodiment, The deposition method of the conductive layer 2 1 8 may be a Low Pressure Chemical Vapor Deposition (LPCVD) method.
第21頁 499731 五、發明說明(17) 其較佳厚度約為5 0 0 - 1 0 0 0埃,而導電層2 1 8可以利用摻雜 複晶矽(d 〇 p e d ρ ο 1 y s i 1 i c ο η )、同步摻雜複晶矽(i η - s i t u doped polysilicon)形成。 請參閱圖二C,在完成電容器之製作後,接著於導電 層2 1 8的側壁上,形成間隙壁結構2 1 9,其中間隙壁結構 2 1 9之材質包含硼磷矽玻璃(BPSG)或氮化矽(其形成方 法包含低壓化學氣相沈積法(LPCVD))。若間隙壁結構 2 1 9之材質為硼磷矽玻璃(BPSG)或氮化矽,則其較佳形 成步驟為:首先於第一介電層21 2與導電層21 8上沈積厚度 約為4 0 0 - 6 0 0埃的硼磷矽玻璃(BPSG)層或氮化矽層,再 利用諸如乾性電漿回蝕刻法,除去部分之硼磷矽玻璃 (BPSG)層或氮化矽層,以形成間隙壁結構21 9於導電層 2 1 8的側壁上。 然後形成第二介電層22 0於第一介電層21 2與導電層 2 1 8上,以當作内層介電層。並利用諸如乾性電漿來回蝕 刻第二介電層2 2 0,直到暴露出部份間隙壁結構2 1 9之上表 面為止。其中第二介電層220包含利用高密度電聚(high density plasma,HDP)所形成的氧化層,或於03-TE0 S氣 體環境中所形成的未摻雜矽玻璃(USG)。 接著請參閱圖二D,利用諸如濕式回蝕刻技術,除去 間隙壁結構2 1 9,以在間隙壁結構2 1 9的位置上形成空隙 499731 五、發明說明(18) 2 2 4,其中由於此空隙2 2 4中係充滿了空氣,故其可提供後 續形成之位元線接觸與導電層2 1 8間的最小介電隔離。而 第二介電層2 2 0的材質若為USG,且間隙壁結構21 9的材質 若為硼磷矽玻璃(BPSG)時,則濕式回蝕刻技術所使用的 蝕刻劑可包含HF氣體,其中HF氣體對硼磷矽玻璃與USG的 蝕刻速率比約為1 0 0 0 : 1,故HF氣體可非等向性地除去材質 為硼磷矽玻璃的間隙壁結構2 1 9,而在間隙壁結構2 1 9的位 置上形成空隙2 2 4 (此乃因為除去間隙壁結構2 1 9的同時, USG被除去的量非常非常少所致。)。又,第二介電層220 的材質若為USG,且間隙壁結構2 1 9的材質若為以低壓化學 p 氣相沈積法所形成的氮化矽(LP-S i N),則濕式回蝕刻技 術所使用的蝕刻劑可包含熱磷酸,其中熱磷酸對LP-S i N與 USG的蝕刻速率比約為1 0 0 : 1,故熱磷酸可非等向性地除去 材質為LP-SiN的間隙壁結構219,而在間隙壁結構21 9的位 一 置上形成空隙2 2 4 (此乃因為除去間隙壁結構2 1 9的同時, _ USG被除去的量非常非常少所致。)。 請參閱圖二E,隨後於第二介電層220、導電層21 8與 空隙22 4上沈積第三介電層226,以當作内層介電層。其中 第三介電層2 2 6具有較差之空隙填充能力,其可於空隙2 2 4 # 的頂部邊緣處快速形成突出部份,以及快速地將頂部孔洞 密封起來(亦即空隙2 2 4可安全地被封裝於第三介電層2 2 6 内部中)。至於第三介電層22 6則包含?£-了丑08(?1&31118 enhanced TEOS)或PE-SiH4。然後除去部份第三介電層Page 21 499731 V. Description of the invention (17) Its preferred thickness is about 5 0-1 0 0 0 angstroms, and the conductive layer 2 1 8 can use doped polycrystalline silicon (d 〇ped ρ ο 1 ysi 1 ic ο η), i η-situ doped polysilicon. Please refer to FIG. 2C. After the capacitor is manufactured, a spacer structure 2 1 9 is formed on the side wall of the conductive layer 2 18. The material of the spacer structure 2 1 9 includes borophosphosilicate glass (BPSG) or Silicon nitride (the formation method includes low pressure chemical vapor deposition (LPCVD)). If the material of the spacer structure 2 1 9 is borophosphosilicate glass (BPSG) or silicon nitride, the preferred formation step is: firstly deposit a thickness of about 4 on the first dielectric layer 21 2 and the conductive layer 21 8. 0 0-6 0 0 angstrom borophosphosilicate glass (BPSG) layer or silicon nitride layer, and then use a dry plasma etch-back method to remove part of the borophosphosilicate glass (BPSG) layer or silicon nitride layer to A spacer structure 219 is formed on a sidewall of the conductive layer 2 1 8. A second dielectric layer 22 0 is then formed on the first dielectric layer 21 2 and the conductive layer 2 18 as an inner layer dielectric layer. The second dielectric layer 2 2 0 is etched back and forth with, for example, a dry plasma, until a portion of the surface of the spacer structure 2 1 9 is exposed. The second dielectric layer 220 includes an oxide layer formed using high density plasma (HDP), or undoped silica glass (USG) formed in a 03-TE0 S gas environment. Then referring to FIG. 2D, using a wet etch-back technique to remove the spacer structure 2 1 9 to form a gap at the location of the spacer structure 2 1 9 499731 V. Description of the invention (18) 2 2 4 The space 2 2 4 is filled with air, so it can provide the minimum dielectric isolation between the bit line contacts formed later and the conductive layer 2 1 8. If the material of the second dielectric layer 220 is USG and the material of the spacer structure 219 is borophosphosilicate glass (BPSG), the etchant used in the wet etch-back technology may include HF gas. Among them, the etching rate ratio of HF gas to borophosphosilicate glass and USG is about 100 0: 1, so the HF gas can anisotropically remove the spacer structure 2 1 9 made of borophosphosilicate glass, and in the gap A gap 2 2 4 is formed at the position of the wall structure 2 1 9 (this is because the amount of the USG that is removed at the same time as the space wall structure 2 1 9 is removed). In addition, if the material of the second dielectric layer 220 is USG, and if the material of the spacer structure 2 1 9 is silicon nitride (LP-S i N) formed by a low-pressure chemical p vapor deposition method, the wet type The etchant used in the etch-back technology may include thermal phosphoric acid, where the etching rate ratio of thermal phosphoric acid to LP-S i N and USG is about 100: 1, so the thermal phosphoric acid can be anisotropically removed as LP- The spacer structure 219 of SiN, and a gap 2 2 4 is formed at the position of the spacer structure 219 (this is because the amount of _USG removed is very, very small while the spacer structure 2 1 9 is removed. ). Referring to FIG. 2E, a third dielectric layer 226 is then deposited on the second dielectric layer 220, the conductive layer 21 8 and the gap 22 4 as an inner dielectric layer. The third dielectric layer 2 2 6 has poor gap filling ability, which can quickly form a protruding portion at the top edge of the gap 2 2 4 # and quickly seal the top hole (ie, the gap 2 2 4 can Securely encapsulated inside the third dielectric layer 2 2 6). What about the third dielectric layer 22 6? £ -ugly 08 (? 1 & 31118 enhanced TEOS) or PE-SiH4. Then remove part of the third dielectric layer
第23頁 499731 五、發明說明(19) 觸 226、部伤第一介電層22 0與部份第一介電層212,古 露出部份複晶石夕检2 1 0之上表面為止,以形成位元線 孔洞2 2 7 ° 之後請參閱圖二F,再利用諸如濺鍍之方法,形 二導電性栓2 2 8於位元線接觸孔洞2 2 7中作為導電連\線。兑 中上述第二導電性栓228包含鈦(Ti)層、氮化鈦f 層以及鎢(W)層所組成的W/TiN/Ty|合層。 ΜίΠϊ供一種於位元線下電$器之動態隨機存取1 憶胞中I k自我對準頂部電極的方 。己 製作之-較佳實施例,料本發明如下電:器 半導體基底3°°上,形成“渠 3 0 2、複數個電a辦ρ弓托4士德0 阳雕域 八雷展^體閘極結構3〇4、汲極/源極3 0 6、内多曰 ”電層3 0 8、自對準接觸之第一 =夕曰曰 312,然後除去部分之/技3丨0、第一介電層 contact h〇le)313, 體做電性接觸。 、^成之電谷裔可以與電晶 通4製作電容器底部電極的材 此處係以習知的有 、匕S払雜稷日日矽,而 晶粒(Hemi-sphenw ;加儲存電極之表面積料球狀矽 容器之底部電極,铁$ 7 1 ^,、HSG)製程為例,來製作電 及頂部電極’以—忐^二形成電容器之極板間介電層以 以元成電容器之製作。首先形成用以當作電Page 23 499731 V. Description of the invention (19) Touch 226, partly damage the first dielectric layer 22 0 and part of the first dielectric layer 212, and partially expose the top surface of the polycrystalline stone 2 1 0, After forming the bit line hole 2 2 7 °, please refer to FIG. 2F, and then use a method such as sputtering to form a second conductive plug 2 2 8 as a conductive connection line in the bit line contact hole 2 2 7. The second conductive plug 228 includes a W / TiN / Ty | combined layer composed of a titanium (Ti) layer, a titanium nitride f layer, and a tungsten (W) layer. ΜίΠϊ Provides a kind of dynamic random access to the bit line power-down device. I k self-aligns the top electrode in the memory cell. A preferred embodiment has been prepared, and the present invention is expected to be as follows: the semiconductor substrate is formed at 3 ° to form a "channel 3 0 2, a plurality of electricity a, a bow holder, 4 shide 0, and an eight-leaf exhibition in the engraving field of the sun." Gate structure 304, drain / source 306, inner multi-layer "electrical layer 308", first self-aligned contact = 312, and then remove part of the A dielectric layer contact 313) is used to make electrical contact. The materials that can be used to make the bottom electrode of the capacitor with Dingtong 4 are the conventional materials, such as silicon and silicon, and the grain (Hemi-sphenw; plus the surface area of the storage electrode). The bottom electrode of the spherical silicon container is made of iron ($ 7.11, HSG) as an example to make electrical and top electrodes. . First formed to be used as electricity
第24頁 499731 五、發明說明(20) 谷器之底部電極的半球形晶粒之石夕層(h e m丨s p h e r i c a 1 grains silicon; HSG-Si)3l4、然後依序形成電容器之極 板間介電層的介電薄膜3 1 6、電容器之頂部電極的導電層 3 1 8 ’以完成電容器之製作。其中圖三A〜圖三b之製程與圖 二A〜圖二B之製程相較,除了圖三b中所示之導電層3 1 8在 形成於第一介電層3 1 2之上,並將整個介電薄膜3 1 6覆蓋住 之後,並不馬上將其位於第一介電層3丨2正上方的部分除 去,以暴露出部份第一介電層3 1 2之外(圖二B中所示之導 電層2 1 8則在形成於第一介電層3 1 2之上,並將整個介電薄 膜2 1 6覆蓋住之後,馬上將其位於第一介電層2 1 2正上方的 部分除去,以暴露出部份第一介電層212。),其他製程 均與圖二A〜圖二B中所述相同,故細節不再重述。 然後請參閱圖三C,於導電層3 1 8上形成非保角 (η〇η - c〇n f〇r m a 1)結構層3 1 9,其中非保角結構層3 1 9之 保角性(c ο n f 〇 r m a 1)不佳,其所具有的較差之階梯覆蓋 特性與電楽:增強化學氣相沈積(ρ 1 a s m a e n h a n c e d chemical vapor deposition,PECVD)薄膜類似,故在此 將形成頂層較底層厚的非保角(non-conformal)結構層 319〇Page 24 499731 V. Description of the invention (20) Hemispheric 1 grains silicon (HSG-Si) 3114 of the bottom electrode of the trough, and then sequentially forming the dielectric between the plates of the capacitor Layer of dielectric film 3 1 6 and the conductive layer 3 1 8 ′ of the top electrode of the capacitor to complete the fabrication of the capacitor. The process of FIGS. 3A to 3b is compared with the process of FIGS. 2A to 2B, except that the conductive layer 3 1 8 shown in FIG. 3b is formed on the first dielectric layer 3 1 2. After covering the entire dielectric film 3 1 6, the portion directly above the first dielectric layer 3 丨 2 is not removed immediately to expose part of the first dielectric layer 3 1 2 (Figure The conductive layer 2 1 8 shown in the second B is formed on the first dielectric layer 3 1 2 and covers the entire dielectric film 2 1 6, and then it is positioned on the first dielectric layer 2 1 The part directly above 2 is removed to expose part of the first dielectric layer 212.), other processes are the same as described in FIG. 2A to FIG. 2B, so the details will not be repeated. Then referring to FIG. 3C, a non-conformal (η〇η-connfoma 1) structure layer 3 1 9 is formed on the conductive layer 3 1 8, wherein the non-conformal structure layer 3 1 9 has a conformal property ( c ο nf 〇rma 1) Poor, its poor step coverage characteristics are similar to electric 楽: enhanced chemical vapor deposition (ρ 1 asmaenhanced chemical vapor deposition (PECVD) thin film, so the top layer is thicker than the bottom layer. Non-conformal structural layer 319.
第25頁 499731 五、發明說明(21) 6-8sccm的 C4F8、3 6 0 -4 8 0 sccm的 C0以及 4 0 0 -8 0 0W的功率, 來形成厚度約1000-200 0埃的聚合物層。然後除去部份非 保角結構層3 1 9,以暴露出部份導電層3 1 8之上表面,其中 除去部份非保角結構層3 1 9的方法可利用類似除去有機 BARC的方法。由於非保角結構層3 1 9具有較差之階梯覆蓋 特性,故此處所形成的非保角結構層3 1 9之底部與側壁的 厚度將較其頂部為薄(大約只有頂部厚度的2 5 % - 3 0 %), 因此在除去部份非保角結構層3 1 9,以暴露出部份導電層 3 1 8之上表面後,非保角結構層3 1 9的頂部只消耗掉一部份 (大約為35%-50%)。 ⑩Page 25 499731 V. Description of the invention (21) 6-8sccm C4F8, 3 6 0 -4 8 0 sccm C0 and 4 0 0 -8 0 0W power to form a polymer with a thickness of about 1000-200 0 Angstroms Floor. Then, a part of the non-conformal structural layer 3 1 9 is removed to expose a part of the upper surface of the conductive layer 3 1 8. The method for removing the part of the non-conformal structural layer 3 1 9 can be similar to the method of removing the organic BARC. Since the non-conformal structural layer 3 1 9 has poor step coverage characteristics, the thickness of the bottom and side walls of the non-conformal structural layer 3 1 9 formed here will be thinner than the top (about 25% of the top thickness- 30%), so after removing part of the non-conformal structural layer 3 1 9 to expose part of the upper surface of the conductive layer 3 1 8, only a part of the top of the non-conformal structural layer 3 1 9 is consumed. (Approximately 35% -50%). ⑩
接著請參閱圖三D,以殘餘的非保角結構層3 1 9為罩 幕,除去部份導電層3 1 8,以形成自對準的電容器頂部電 極。隨後利用習知技術(例如:稀氫氟酸1 0 0 : 1以及SPM ),除去非保角結構層3 1 9。其中若非保角結構層3 1 9之材 _ 質為聚合物,則上述除去部份導電層3 1 8的方法包含電漿 蝕刻法。通常複晶矽相對於聚合物的電漿蝕刻選擇率約為 1. 5 : 1至2 : 1,故在此將足以蝕去部份導電層3 1 8而挖出一 個孔洞,以便後續位元線接觸製程的進行。在此值得注意 的是,此處所形成的電容器頂部電極具有自對準於電容器 侧壁的孔洞(用以形成位元線接觸)。而且,利用上述自 對準方法,導電層3 1 8的微影步驟將變成非臨界 (critical)步驟。Next, referring to FIG. 3D, using the remaining non-conformal structural layer 3 19 as a mask, a part of the conductive layer 3 1 8 is removed to form a self-aligned capacitor top electrode. Subsequently, conventional techniques (eg, dilute hydrofluoric acid 100: 1 and SPM) are used to remove the non-conformal structure layer 3 1 9. If the material of the non-conformal structural layer 3 1 9 is a polymer, the method for removing a part of the conductive layer 3 1 8 includes a plasma etching method. Usually, the selectivity of plasma etching of polycrystalline silicon relative to polymer is about 1.5: 1 to 2: 1, so it will be enough to etch away part of the conductive layer 3 1 8 and dig a hole for subsequent bits. The progress of the line contact process. It is worth noting here that the top electrode of the capacitor formed here has a hole (to form a bit line contact) that is self-aligned to the side wall of the capacitor. Furthermore, with the self-alignment method described above, the lithography step of the conductive layer 3 1 8 will become a non-critical step.
第26頁 499731 五、發明說明(22) 請參閱圖三E,隨後沈積第二介電層32 0於導電層318 與第一介電層3 1 2之上。然後除去部份第二介電層3 2 0與部 份第一介電層3 1 2,直至暴露出部份複晶矽栓3 1 0之上表面 為止,以形成位元線接觸孔洞3 2 1。其中第二介電層3 2 0係 用以當作内層介電層,其材質包含氧化物。 之後請參閱圖三F,再利用諸如濺鍍之方法,形成第二 導電性栓3 2 4於位元線接觸孔洞3 2 1中作為導電連線。其中 上述第二導電性栓3 2 4包含鈦(Ti)層、氮化鈦(TiN)層 以及鎢(W)層所組成的W/TiN/Ti複合層。 由於上述實施例中(圖三A至圖三F所示),所形成的 自對準的電容器頂部電極具有突出部份,而此突出部份將 造成後續位元線接觸形成時,位元線接觸與此電容器頂部 電極間發生短路的機率增加。故為了使本發明之實施能具 有更佳之功效,在此以皇冠型電容器製作之又一較佳實施 例,詳述本發明所提出的於位元線下電容器之動態隨機存 取記憶胞中製造自我對準頂部電極的方法如下:請參閱圖 四A〜圖四B,依序在一半導體基底4 0 0上,形成淺溝渠式隔 離區域4 0 2、複數個電晶體閘極結構4 0 4、汲極/源極4 0 6、 内多晶介電層4 0 8、自對準接觸之第一導電性栓4 1 0、第一 介電層4 1 2,然後除去部分之第一介電層4 1 2,以形成接觸 孔洞(c ο n t a c t h ο 1 e ) 4 1 3,以便後續形成之電容器可以與 電晶體做電性接觸。Page 26 499731 V. Description of the invention (22) Please refer to FIG. 3E, and then deposit a second dielectric layer 32 0 on the conductive layer 318 and the first dielectric layer 3 1 2. Then remove part of the second dielectric layer 3 2 0 and part of the first dielectric layer 3 1 2 until the upper surface of the polycrystalline silicon plug 3 1 0 is exposed to form a bit line contact hole 3 2 1. The second dielectric layer 3 2 0 is used as an inner dielectric layer, and its material includes an oxide. After referring to FIG. 3F, a method such as sputtering is used to form a second conductive plug 3 2 4 as a conductive connection in the bit line contact hole 3 2 1. The second conductive plug 3 2 4 includes a W / TiN / Ti composite layer composed of a titanium (Ti) layer, a titanium nitride (TiN) layer, and a tungsten (W) layer. Because in the above embodiment (shown in FIGS. 3A to 3F), the self-aligned capacitor top electrode formed has a protruding portion, and this protruding portion will cause the bit line to form when the subsequent bit line contact is formed The probability of a short circuit between the contact and the top electrode of this capacitor increases. Therefore, in order to enable the implementation of the present invention to have better effects, another preferred embodiment made of a crown-type capacitor is described in detail in the present invention for manufacturing in a dynamic random access memory cell of a bit-line capacitor. The method of self-aligning the top electrode is as follows: please refer to FIG. 4A to FIG. 4B, and sequentially form a shallow trench isolation region 4 0 on a semiconductor substrate 4 0 2, a plurality of transistor gate structures 4 0 4 Drain / source 406, inner polycrystalline dielectric layer 408, first conductive plug 4 1 0 in self-aligned contact, first dielectric layer 4 1 2 and then removing part of the first dielectric The electrical layer 4 1 2 is used to form a contact hole (c ο ntacth ο 1 e) 4 1 3 so that the capacitor formed later can make electrical contact with the transistor.
第27頁 499731 五、發明說明(23) 通常製作電容器底部電極的材質包含摻雜複晶矽,而 此處係以習知的可有效增加儲存電極之表面積的半球狀矽 晶粒(Hemi-Spherical Grain; HSG)製程為例,來製作電 容器之底部電極,然後依序形成電容器之極板間介電層以 及頂部電極,以完成電容器之製作。首先形成用以當作電 容器之底部電極的半球形晶粒之石夕層(h e m i s p h e r i c a 1 grains silicon; HSG-Si)414、然後依序形成電容器之極 板間介電層的介電薄膜4 1 6、電容器之頂部電極的導電層 418,以完成電容器之製作。其中圖四A〜圖四B之製程與圖 參 三A〜圖三B之製程完全相同,故細節不再重述。 然後請參閱圖四C,於導電層4 1 8上形成保角 (conformal)結構層419。其中保角(conformal)結構 ‘ 層4 1 9具有較佳之保角性(c ο n f 〇 r in a 1 ),故其厚度可較均 _ 勻地形成於導電層41 8上。而保角(conformal)結構層 4 1 9之較佳材質可選擇相較於導電層4 1 8具有高度濕蝕刻選 擇性材質(例如:APM( Ammonia peroxide mixture) 法,其中 APM( Ammonia peroxide mixture)係一種包含 氨水與過氧化氫的水溶液。)選擇性的材質,例如導電層 4 1 8之材質為複晶矽,則保角結構層4 1 9之材質可為LP-S i N 或氧化物等等。至於保角結構層4 1 9的較佳厚度約為 3 0 0 - 5 0 0埃,其形成方法包含1^(^0。Page 27 499731 V. Description of the invention (23) Generally, the material for the bottom electrode of the capacitor contains doped polycrystalline silicon, and here is a conventional semi-spherical silicon crystal (Hemi-Spherical) which can effectively increase the surface area of the storage electrode. Grain; HSG) process is used as an example to make the bottom electrode of the capacitor, and then sequentially form the dielectric layer between the plates of the capacitor and the top electrode to complete the production of the capacitor. Firstly, hemispherica 1 grains silicon (HSG-Si) 414 is formed as the bottom electrode of the capacitor, and then a dielectric film 4 1 6 is formed in order to form a dielectric layer between the plates of the capacitor. The conductive layer 418 of the top electrode of the capacitor is used to complete the fabrication of the capacitor. The manufacturing process of Figure 4A ~ Figure 4B is exactly the same as that of Figure 3A ~ Figure 3B, so the details will not be repeated. Referring to FIG. 4C, a conformal structure layer 419 is formed on the conductive layer 4 1 8. Among them, the conformal structure ′ layer 4 1 9 has better conformalness (c ο n f ο r in a 1), so its thickness can be formed more uniformly on the conductive layer 418. The better material of the conformal structural layer 4 1 9 can be selected to have a higher wet etching selective material than the conductive layer 4 1 8 (for example: APM (Ammonia peroxide mixture) method, in which APM (Ammonia peroxide mixture) It is an aqueous solution containing ammonia and hydrogen peroxide.) Selective materials, for example, the material of the conductive layer 4 1 8 is polycrystalline silicon, and the material of the conformal structure layer 4 1 9 can be LP-S i N or oxide and many more. As for the preferable thickness of the conformal structure layer 4 19, it is about 300-500 Angstroms, and the formation method thereof includes 1 ^ (^ 0.
第28頁 499731 五、發明說明(24) 然後於保角結構層41 9上形成非保角(non-con formal )結構層4 2 0,其中非保角結構層4 2 0之保角性 (c ο n f 〇 r m a 1)不佳,其所具有的突出特性以及較差之階 梯覆蓋特性,與電漿增強化學氣相沈積(Plasma enhanced chemical vapor deposition’ PECVD)薄膜類 似,故在此將形成頂層較底層厚的非保角結構層4 2 0。 又,非保角結構層4 2 0之材質包含聚合物(ρ ο 1 y m e r ),而若非保角結構層4 2 0之材質為聚合物(polymer), 則其形成的較佳實施例為:於傳統電漿蝕刻室内,使用 6 - 8sccm的 C4F8、360-480sccm的 C0以及 400-800W的功率, 來形成厚度約1 0 0 0 _ 2 0 0 0埃的聚合物層,至於聚合物層的 形成速率約為每分鐘4 0 0 - 8 0 0埃。 然後除去部份非保角結構層4 2 0,以暴露出部份保角 結構層4 1 9之上表面,其中除去部份非保角結構層4 2 〇的方 法可利用類似除去有機BARC的方法。由於非保負結構; 42 0具有較差之階梯覆蓋特性,故此處所形成的非保角結 構層42 0之底部與側壁的厚度將較其頂部為薄(大約只有 頂部厚度的25%-3〇%),因此在除去部份非保角結構層 42 0’以暴露出部份保角結構層419之上表面後,非保角結 構層42〇的頂部只消耗掉一部份(大約為35%_5〇%)。 接著請參閱圖四D,Page 28 499731 V. Description of the invention (24) Then a non-con formal structure layer 4 2 0 is formed on the conformal structure layer 41 9, where the non-conformal structure layer 4 2 0 is conformal (c ο nf 〇rma 1) Poor, its outstanding characteristics and poor step coverage characteristics are similar to Plasma enhanced chemical vapor deposition 'PECVD films, so a top layer and a lower layer will be formed here Thick non-conformal structural layer 4 2 0. In addition, the material of the non-conformal structural layer 4 2 0 includes a polymer (ρ ο 1 ymer), and if the material of the non-conformal structural layer 4 2 0 is a polymer, a preferred embodiment of its formation is: In a conventional plasma etching chamber, a C4F8 of 6-8sccm, a CO of 360-480sccm, and a power of 400-800W are used to form a polymer layer having a thickness of about 100 0 _ 2 0 0 0 Angstroms. The formation rate is about 400-800 Angstroms per minute. Then remove a part of the non-conformal structure layer 4 2 0 to expose a part of the upper surface of the conformal structure layer 4 1 9. The method of removing a part of the non-conformal structure layer 4 2 0 can be similar to the method of removing organic BARC. method. Because of the non-guaranteed structure; 42 0 has poor step coverage characteristics, the thickness of the bottom and side walls of the non-conformal structure layer 42 0 formed here will be thinner than the top (about 25% -30% of the top thickness). ), After removing part of the non-conformal structure layer 420 'to expose part of the upper surface of the conformal structure layer 419, only a part of the top of the non-conformal structure layer 420 is consumed (about 35%) _50%). Then refer to Figure 4D,
以殘餘的非保角結構層4 2 0為罩With the remaining non-conformal structural layer 4 2 0 as the cover
499731 五、發明說明(25) 幕,除去部份保角結構層4 1 9與部份導電層4 1 8,以形成自 對準的電容器頂部電極。在此值得注意的是,此處所形成 的電容器頂部電極具有自對準於電容器側壁的孔洞(用以 形成位元線接觸)。而且,利用上述自對準方法,導電層 3 1 8的微影步驟將變成非臨界(c r i t i c a 1)步驟。 隨後利用習知技術(例如:稀氫氟酸1 Ο Ο : 1以及SPM ),除去非保角結構層4 2 0。接著選擇性回蝕位於保角結 構層4 1 9與第一介電層4 1 2間的部份導電層4 1 8,以於保角 結構層4 1 9與第一介電層4 1 2間形成空隙。 在此較佳實施例中,選擇性回蝕部份導電層1 2 2的方 >去可為 APM ( Ammonia peroxide mixture) ( APΜ戶斤使用的 溶液為04011/11 20 2)之濕蝕刻法。其中回蝕導電層418的速 率約為每分鐘3 0 - 5 0埃,而適度地選擇ΑΡΜ施行的溫度、 題4011/11202濃度、導電層418中複晶摻雜的濃度,則導電 層4 1 8相對於保角結構層4 1 9的蝕刻選擇速率比可大於 1 0 : 1。如此一來,後續形成之位元線接觸與電容器頂部電 極間的距離可以拉大(亦即位元線接觸與電容器頂部電極 間的額外對準邊界得以達成)。 請參閱圖四Ε,接著利用諸如乾#刻技術,除去位於 空隙正上方的部份保角結構層4 1 9 (亦即圖中保角結構層 4 1 9之突出部份),以加大相鄰的二個保角結構層4 1 9間的 499731 五、發明說明(26)499731 V. Description of the invention (25) The screen, removing part of the conformal structure layer 4 1 9 and part of the conductive layer 4 1 8 to form a self-aligned capacitor top electrode. It is worth noting here that the top electrode of the capacitor formed here has a hole (to form a bit line contact) that is self-aligned to the side wall of the capacitor. Moreover, with the self-alignment method described above, the lithography step of the conductive layer 3 1 8 will become a non-critical (c r i t i c a 1) step. Subsequently, the non-conformal structure layer 4 2 0 is removed using a conventional technique (for example, dilute hydrofluoric acid 100: 1 and SPM). Then, a part of the conductive layer 4 1 8 between the conformal structure layer 4 1 9 and the first dielectric layer 4 1 2 is selectively etched back, so that the conformal structure layer 4 1 9 and the first dielectric layer 4 1 2 Formation of voids. In this preferred embodiment, the method of selectively etching back a part of the conductive layer 1 2 2 is a wet etching method that can be APM (Ammonia peroxide mixture) (the solution used by APM households is 04011/11 20 2). . The etch-back rate of the conductive layer 418 is about 30-50 Angstroms per minute, and the temperature of the APM, the concentration of the problem 4011 and 11202, and the concentration of the polycrystalline doping in the conductive layer 418 are appropriately selected, and the conductive layer 4 1 The etching selection rate ratio of 8 to the conformal structure layer 4 1 9 may be greater than 10: 1. In this way, the distance between the subsequent bit line contact and the top electrode of the capacitor can be increased (that is, an additional alignment boundary between the bit line contact and the top electrode of the capacitor can be achieved). Please refer to FIG. 4E, and then use a technique such as dry #etching to remove a portion of the conformal structure layer 4 1 9 (that is, the protruding portion of the conformal structure layer 4 1 9) directly above the gap to increase 499731 between two adjacent conformal structural layers 4 1 9 V. Description of the invention (26)
距離。然後沈積第二介電層4 2 2於保角結構層4 1 9與第一介 電層4 1 2之上。其中除去於空隙正上方的部份保角結構層 4 1 9之用意在於使得第二介電層4 2 2沈積時可將原位於保角 結構層4 1 9之突出部份正下方的空隙填滿,而第二介電層 4 2 2係用以當作内層介電層,其材質包含氧化物。當然上 述位於空隙正上方的部份保角結構層4 1 9若不除去,則可 直接使用保角性良好的氧化層(例如:LP-TEOS)來填充 此位於保角結構層4 1 9之突出部份正下方的空隙區域(此 一取代方法並未圖示出來)。如此一來,所形成的自對準 電容器頂部電極不再具有突出部份,因此可以加大後續位 元線接觸之處理窗大小,因而避免後續位元線接觸形成時 因為發生些許對準誤差,所導致的位元線接觸與此電容器 頂部電極間發生短路之現象。 隨後除去部份第二介電層4 2 2與部份第一介電層4 1 2, 直至暴露出部份複晶矽栓4 1 0之上表面為止,以形成位元 線接觸孔洞4 2 3。當然在除去部份第二介電層4 2 2與部份第 一介電層4 1 2之前,保角結構層4 1 9亦可以選擇性地先行除 去(未圖示出來)。distance. A second dielectric layer 4 2 2 is then deposited on the conformal structure layer 4 1 9 and the first dielectric layer 4 1 2. The part of the conformal structure layer 4 1 9 that is directly above the gap is intended to allow the second dielectric layer 4 2 2 to be filled to fill the void directly under the protruding portion of the conformal structure layer 4 1 9. The second dielectric layer 4 2 2 is used as an inner dielectric layer, and its material includes an oxide. Of course, if the part of the conformal structure layer 4 1 9 directly above the gap is not removed, an oxide layer with good conformalness (for example: LP-TEOS) can be directly used to fill the conformal structure layer 4 1 9 The void area directly below the protrusion (this replacement method is not shown). In this way, the top electrode of the self-aligned capacitor formed no longer has a protruding portion, so the size of the processing window for subsequent bit line contact can be increased, thereby avoiding some alignment errors during subsequent bit line contact formation. The resulting bit line contact is short-circuited with the top electrode of this capacitor. Subsequently, a part of the second dielectric layer 4 2 2 and a part of the first dielectric layer 4 1 2 are removed until the upper surface of the polycrystalline silicon plug 4 1 0 is exposed to form a bit line contact hole 4 2 3. Of course, before removing part of the second dielectric layer 4 2 2 and part of the first dielectric layer 4 12, the conformal structure layer 4 1 9 can also be selectively removed first (not shown).
請參閱圖四F,再利用諸如濺鍍之方法,形成第二導 電性栓4 2 4於位元線接觸孔洞4 2 3中作為導電連線。其中上 述第二導電性栓424包含鈦(Ti)層、氮化鈦(TiN)層以 及鎢(W)層所組成的W/TiN/T i複合層。 499731 五、發明說明(27) 此外,綜合上述三個實施例之優點,吾人可以提出其 他實施例,以同時達成於位元線下電容器之動態隨機存取 記憶胞中製造自我對準頂部電極,以及於位元線下電容器 之動態隨機存取記憶胞與位元線接觸間形成空隙隔離之目 的。其中,具有上述三個實施例之優點的本發明其他實施 例,其任一製程步驟之施行條件均可與上述三個實施例中 所描述的製程相同,唯一不同的僅是將上述三個實施例之 製程步驟予以重新排列組合而已。囿於篇幅,故在此略而 不述。 以上所述僅為本發明之較佳實施例而已,並非因此限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾者,均應視為本發明之保 護範®壽。Referring to FIG. 4F, a method such as sputtering is used to form a second conductive plug 4 2 4 as a conductive connection in the bit line contact hole 4 2 3. The second conductive plug 424 includes a W / TiN / T i composite layer composed of a titanium (Ti) layer, a titanium nitride (TiN) layer, and a tungsten (W) layer. 499731 V. Description of the invention (27) In addition, combining the advantages of the above three embodiments, we can propose other embodiments to achieve the self-aligned top electrode in the dynamic random access memory cell of the bit line capacitor at the same time. And the purpose of forming a gap between the dynamic random access memory cell of the capacitor below the bit line and the bit line contact. Among other embodiments of the present invention, which have the advantages of the above three embodiments, the execution conditions of any of the process steps may be the same as those described in the above three embodiments. The only difference is that the above three embodiments are implemented. The process steps of the examples are rearranged and combined. Due to space, it is omitted here. The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of patent application for the present invention. Any other equivalent changes or modifications made without departing from the spirit disclosed by the present invention shall be deemed to be the present invention. The protection of inventions Fan Shou.
第32頁 499731 圖式簡單說明 利用後續的說明配合下列圖式,將可以對於本發明的 内容及優點有更為清楚之了解,其中: 圖一 A為半導體晶片之截面圖,顯示根據傳統技術在 半導體基底上依序形成電晶體、皇冠型電容器之接觸孔洞 的步驟; 圖一 B為半導體晶片之截面圖,顯示根據傳統技術在 半導體基底上形成電容器之步驟; 圖一 C為半導體晶片之截面圖,顯示根據傳統技術在 半導體基底上形成位元線接觸孔洞之步驟; 圖一 D為半導體晶片之截面圖,顯示根據傳統技術形 成導電栓於位元線接觸孔洞中,以作為導電連線之步驟; 圖二A為半導體晶片之截面圖,顯示根據本發明之一 實施例在半導體基底上依序形成電晶體、皇冠型電容器之 接觸孔洞的步驟; 圖二B為半導體晶片之截面圖,顯示根據本發明之一 實施例,在半導體基底上形成電容器之步驟; 圖二C為半導體晶片之截面圖,顯示根據本發明之一 實施例,形成間隙壁結構於皇冠型電容器的側壁上,然後 沈積内層介電層並予以回蝕刻之步驟; 圖二D為半導體晶片之截面圖,顯示根據本發明之一 實施例除去間隙壁結構以在間隙壁結構的位置上形成空隙 之步驟; 圖二E為半導體晶片之截面圖,顯示根據本發明之一Page 499731 Brief Description of Drawings Using the following description with the following drawings will make the contents and advantages of the present invention clearer. Among them: Figure 1A is a cross-sectional view of a semiconductor wafer, showing Steps of sequentially forming contact holes of transistors and crown-type capacitors on a semiconductor substrate; FIG. 1B is a cross-sectional view of a semiconductor wafer showing a step of forming a capacitor on a semiconductor substrate according to a conventional technique; FIG. 1C is a cross-sectional view of a semiconductor wafer Shows the step of forming a bit line contact hole on a semiconductor substrate according to the conventional technology; FIG. 1D is a cross-sectional view of a semiconductor wafer, showing the step of forming a conductive plug in the bit line contact hole according to the conventional technology as a step of conducting a connection Figure 2A is a cross-sectional view of a semiconductor wafer, showing the steps of sequentially forming contact holes of transistors and crown capacitors on a semiconductor substrate according to an embodiment of the present invention; Figure 2B is a cross-sectional view of a semiconductor wafer, showing According to an embodiment of the present invention, a step of forming a capacitor on a semiconductor substrate; FIG. 2C is a cross-sectional view of a semiconductor wafer, showing a step of forming a spacer structure on a sidewall of a crown-type capacitor, and then depositing an inner dielectric layer and etching back according to an embodiment of the present invention; FIG. 2D is a semiconductor wafer A cross-sectional view showing a step of removing the spacer structure to form a void at the position of the spacer structure according to an embodiment of the present invention; FIG. 2E is a cross-sectional view of a semiconductor wafer showing one of the present invention
第33頁 499731 圖式簡單說明 實施例於電容器頂部電極與空隙上沈積較差空隙填充能力 的内層介電層,然後利用微影蝕刻法形成位元線接觸孔洞 的步驟; 圖二F為半導體晶片之截面圖,顯示根據本發明之一 實施例,形成導電栓於位元線接觸孔洞中,以作為導電連 線之步驟; 圖三A為半導體晶片之截面圖,顯示根據本發明之另 一實施例,在半導體基底上依序形成電晶體、皇冠型電容 器之接觸孔洞的步驟; 圖三B為半導體晶片之截面圖,顯示根據本發明之另 ¥ 一實施例,在半導體基底上形成電容器之步驟; 圖三C為半導體晶片之載面圖,顯示根據本發明之另 一實施例,形成非保角結構層於皇冠型電容器上,然後除 去部份非保角結構層,以暴露出部份導電層之步驟; k 圖三D為半導體晶片之截面圖,顯示根據本發明之另 _ 一實施例,以殘餘的非保角結構層為罩幕,除去部份導電 層,以形成自對準的電容器頂部電極,隨後除去非保角結 構層之步驟; 圖三E為半導體晶片之截面圖,顯示根據本發明之另 一實施例,沈積内層介電層於皇冠型電容器上,然後利用 p 微影蝕刻法形成位元線接觸孔洞的步驟; 圖三F為半導體晶片之截面圖,顯示根據本發明之另 一實施例,形成導電栓於位元線接觸孔洞中,以作為導電 連線之步驟;Page 499731 The diagram briefly illustrates the steps of depositing an inner dielectric layer with poor void filling ability on the top electrode and the gap of the capacitor, and then forming a bit line contact hole by a lithographic etching method. FIG. 2F is a semiconductor wafer A cross-sectional view showing a step of forming a conductive plug in a bit line contact hole as a conductive connection according to an embodiment of the present invention; FIG. 3A is a cross-sectional view of a semiconductor wafer showing another embodiment of the present invention Steps of sequentially forming contact holes of transistors and crown-type capacitors on a semiconductor substrate; FIG. 3B is a cross-sectional view of a semiconductor wafer, showing a step of forming a capacitor on a semiconductor substrate according to another embodiment of the present invention; FIG. 3C is a cross-sectional view of a semiconductor wafer, showing that according to another embodiment of the present invention, a non-conformal structure layer is formed on a crown type capacitor, and then a part of the non-conformal structure layer is removed to expose a part of the conductive layer. K; FIG. 3D is a cross-sectional view of a semiconductor wafer, showing a residual non-conformal structure according to another embodiment of the present invention. For the mask, a part of the conductive layer is removed to form a self-aligned capacitor top electrode, and then the non-conformal structure layer is removed. FIG. 3E is a cross-sectional view of a semiconductor wafer, showing another embodiment according to the present invention. Steps of depositing an inner dielectric layer on a crown type capacitor, and then forming a bit line contact hole by using a p-lithography etching method; FIG. 3F is a cross-sectional view of a semiconductor wafer, showing the formation of a conductive plug according to another embodiment of the present invention In the bit line contact hole as a step of conducting the connection;
第34頁 499731 圖式簡單說明 圖四A為半導體晶片之截面圖,顯示根據本發明之又 一實施例,在半導體基底上依序形成電晶體、皇冠型電容 器之接觸孔洞的步驟; 圖四B為半導體晶片之截面圖’顯不根據本發明之又 一實施例,在半導體基底上形成電容器之步驟; 圖四C為半導體晶片之截面圖,顯示根據本發明之又 一實施例,依序形成保角結構層、非保角結構層於皇冠型 電容器上,然後除去部份非保角結構層,以暴露出部份保 角結構層之步驟; 圖四D為半導體晶片之截面圖,顯示根據本發明之又 一實施例,以殘餘的非保角結構層為罩幕,除去部份保角 結構層與部份導電層,以形成自對準的電容器頂部電極, 隨後除去非保角結構層並選擇性回蝕部份導電層之步驟; 圖四E為半導體晶片之截面圖,顯示根據本發明之又 一實施例,沈積内層介電層於皇冠型電容器上,然後利用 微影蝕刻法形成位元線接觸孔洞的步驟; 圖四F為半導體晶片之截面圖,顯示根據本發明之又 一實施例,形成導電栓於位元線接觸孔洞中,以作為導電 連線之步驟。 圖號部分: 半導體基底 100、2 0 0、3 0 0、4 0 0; 淺溝渠式隔離區域1 0 2、2 0 2、3 0 2、4 0 2 ;Page 499731 Brief Description of Drawings Figure 4A is a cross-sectional view of a semiconductor wafer, showing the steps of sequentially forming contact holes of transistors and crown-type capacitors on a semiconductor substrate according to another embodiment of the present invention; Figure 4B A cross-sectional view of a semiconductor wafer 'shows a step of forming a capacitor on a semiconductor substrate according to another embodiment of the present invention; FIG. 4C is a cross-sectional view of a semiconductor wafer, showing a sequential formation according to another embodiment of the present invention Conformal structure layer, non-conformal structure layer on the crown type capacitor, and then removing part of the non-conformal structure layer to expose part of the conformal structure layer; Figure 4D is a cross-sectional view of a semiconductor wafer, showing the basis In another embodiment of the present invention, the remaining non-conformal structure layer is used as a mask, and a part of the conformal structure layer and a part of the conductive layer are removed to form a self-aligned capacitor top electrode, and then the non-conformal structure layer is removed. And a step of selectively etching back a part of the conductive layer; FIG. 4E is a cross-sectional view of a semiconductor wafer, showing that according to another embodiment of the present invention, an inner dielectric layer is deposited in a crown type A step of forming a bit line contact hole on the container, and then using a lithographic etching method; FIG. 4F is a cross-sectional view of a semiconductor wafer, showing a conductive plug formed in the bit line contact hole according to another embodiment of the present invention; As a step of conductive wiring. Drawing number part: semiconductor substrate 100, 2 0 0, 3 0 0, 4 0 0; shallow trench isolation area 1 0 2, 2 0 2, 3 0 2, 4 0 2;
第35頁 499731 圖式簡單說明 電晶體閘極結構1 0 4、2 0 4、3 0 4、4 0 4 ; 没極 / 源極 1 0 6、2 0 6、3 0 6、4 0 6 ; 第一内多晶介電層1 0 8 ; 内多晶介電層208、308、408; 複晶石夕栓(ρ ο 1 y p 1 u g) 11 0 ; 第一導電性栓2 1 0、3 1 0、4 1 0 ; 第二内多晶介電層1 1 2 ; 第一介電層 212、312、412; 接觸孔洞 1 1 3、2 1 3、3 1 3、4 1 3 ; 半球形晶粒之矽層1 1 4、2 1 4、3 1 4、4 1 4 ; 介電薄膜 1 1 6、2 1 6、3 1 6、4 1 6 ; 導電層 118、 218、 318、 418; 内層介電層1 2 0 ; 位元線接觸孔洞1 2 1 ; 導電栓1 2 2 ; 間隙壁結構2 1 9 ; 第二介電層2 2 0 ; 空隙2 2 4 ; 第三介電層226; 位元線接觸孔洞2 2 7 ; 第二導電性栓2 2 8 ; 非保角結構層3 1 9 ; 第二介電層3 2 0 ; 位元線接觸孔洞3 2 1 ;The 499731 diagram on page 35 briefly illustrates the transistor gate structure 1 0 4, 2 0 4, 3 0 4, 4 0 4; pole / source 1 0 6, 2 0 6, 3 0 6, 4 0 6; First inner polycrystalline dielectric layer 108; inner polycrystalline dielectric layers 208, 308, 408; polycrystalline stone plug (ρ ο 1 yp 1 ug) 11 0; first conductive plug 2 1 0, 3 10, 4 1 0; second inner polycrystalline dielectric layer 1 1 2; first dielectric layers 212, 312, 412; contact holes 1 1 3, 2 1 3, 3 1 3, 4 1 3; hemispherical Grain silicon layer 1 1 4, 2 1 4, 3 1 4, 4 1 4; Dielectric film 1 1 6, 2 1 6, 3 1 6, 4 1 6; Conductive layer 118, 218, 318, 418; Inner dielectric layer 1 2 0; bit line contact hole 1 2 1; conductive plug 12 2; spacer structure 2 1 9; second dielectric layer 2 2 0; void 2 2 4; third dielectric layer 226 Bit line contact hole 2 2 7; second conductive plug 2 2 8; non-conformal structural layer 3 1 9; second dielectric layer 3 2 0; bit line contact hole 3 2 1;
第36頁 499731 圖式簡單說明 第二導電性栓3 2 4 ; 保角結構層4 1 9 ; 非保角結構層4 2 0 ; 第二介電層4 2 2 ; 位元線接觸孔洞4 2 3 第二導電性栓4 2 4。Page 499731 The diagram briefly illustrates the second conductive plug 3 2 4; conformal structural layer 4 1 9; non-conformal structural layer 4 2 0; second dielectric layer 4 2 2; bit line contact hole 4 2 3second conductive plug 4 2 4
第37頁Page 37
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90119551A TW499731B (en) | 2001-08-09 | 2001-08-09 | Method for forming gap isolation between bit-line contact and capacitor-under-bitline DRAM cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90119551A TW499731B (en) | 2001-08-09 | 2001-08-09 | Method for forming gap isolation between bit-line contact and capacitor-under-bitline DRAM cell |
Publications (1)
Publication Number | Publication Date |
---|---|
TW499731B true TW499731B (en) | 2002-08-21 |
Family
ID=21679021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90119551A TW499731B (en) | 2001-08-09 | 2001-08-09 | Method for forming gap isolation between bit-line contact and capacitor-under-bitline DRAM cell |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW499731B (en) |
-
2001
- 2001-08-09 TW TW90119551A patent/TW499731B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6759704B2 (en) | Method for fabricating semiconductor device, and semiconductor device, having storage node contact plugs | |
JP2531473B2 (en) | Semiconductor memory device and manufacturing method thereof | |
US5907782A (en) | Method of forming a multiple fin-pillar capacitor for a high density dram cell | |
US9576963B2 (en) | Manufacturing method of vertical channel transistor array | |
US7977724B2 (en) | Capacitor and method of manufacturing the same comprising a stabilizing member | |
US7936012B2 (en) | Recessed channel transistors that include pad structures | |
US7482242B2 (en) | Capacitor, method of forming the same, semiconductor device having the capacitor and method of manufacturing the same | |
US7332392B2 (en) | Trench-capacitor DRAM device and manufacture method thereof | |
US20050263814A1 (en) | Bottom electrode of capacitor of semiconductor device and method of forming the same | |
US9230966B2 (en) | Capacitor and method of manufacturing the same | |
US6100137A (en) | Etch stop layer used for the fabrication of an overlying crown shaped storage node structure | |
KR20020067981A (en) | Semiconductor memory device for increasing access speed thereof | |
JP2001102550A (en) | Semiconductor memory having self-aligned contact and manufacturing method therefor | |
US20060263971A1 (en) | Semiconductor device and method thereof | |
US6784068B2 (en) | Capacitor fabrication method | |
JP4053226B2 (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
JP2002134715A (en) | Semiconductor integrated circuit device and method for manufacturing the same | |
US5879987A (en) | Method of fabricating dynamic random access memory having a stacked capacitor | |
US5918123A (en) | Method for fabricating capacitor of semiconductor device | |
TW499731B (en) | Method for forming gap isolation between bit-line contact and capacitor-under-bitline DRAM cell | |
JPH077088A (en) | Capacitor semiconductor device and its manufacture | |
KR100318684B1 (en) | Method of manufacturing capacitor in semiconductor device | |
JPH11307742A (en) | Manufacture for low resistance bit line structure having coupling capacitance between low bit lines | |
TW490801B (en) | Method for forming isolation gap between bit line and capacitor | |
TW408486B (en) | The manufacture method of crown shape capacitor with rough surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |