TW494565B - Reduction of topography between support regions and array regions of memory devices - Google Patents
Reduction of topography between support regions and array regions of memory devices Download PDFInfo
- Publication number
- TW494565B TW494565B TW090114976A TW90114976A TW494565B TW 494565 B TW494565 B TW 494565B TW 090114976 A TW090114976 A TW 090114976A TW 90114976 A TW90114976 A TW 90114976A TW 494565 B TW494565 B TW 494565B
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor device
- support
- region
- array
- height
- Prior art date
Links
- 230000009467 reduction Effects 0.000 title description 2
- 238000012876 topography Methods 0.000 title description 2
- 239000004065 semiconductor Substances 0.000 claims abstract description 47
- 230000015654 memory Effects 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims description 70
- 239000002184 metal Substances 0.000 claims description 70
- 239000003990 capacitor Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 17
- 238000005516 engineering process Methods 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 238000007667 floating Methods 0.000 claims description 3
- 239000003989 dielectric material Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 208000023414 familial retinal arterial macroaneurysm Diseases 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000012976 tarts Nutrition 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/31—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
Landscapes
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
1 五、發明説明( 發明背景 1.技術領域 本揭露有關半導體製造,並且更特別地,有關一裝置和 方法,包括形成於記憶體裝置支援區域内的陣列結構,以 減少其間的拓撲。 2 •相關技藝之敛述 一般而言,記憶體裝置並且特別是動態隨機存取記憶體 (fRAMs)包括一&兩個主要部份所形成的架構:^由電晶 體,電容器和最小的放大電路所構成的記憶體單元陣列, 以及2)—個大的支援區域(一般約爲該總晶片面積的2〇_ 40 /〇)供應包力、?買寫控制邏輯、重複電路和其它操作該記 憶體裝置所需之電路。在堆聲電容器的情況下,該電容器 係由一堆疊所形成,厚度一般約爲〇弘15微米,包括一較 低的電極(EL),一介電媒介和一較高的共同電極板(pL)。 此堆$通常形成於第一金屬(位元線位準)之後,但在其它 金屬化位準之前。 由於孩電容器堆疊的高度,在支援區域内無電極的事實 可導致在該陣列邊緣處產生顯著的拓撲。 參考圖1,圖示一半導體記憶體裝置1〇的部份橫斷面 圖。半導體裝置10包括形成於陣列區域14内的堆疊電容器 結構或堆疊12。堆疊12包括一較低電極16,一介電媒介或 電谷器介電18和一較高的共同電極板2〇。在裝置1〇上包括 一支援區域22,並且該區域包括操作裝置1〇的支援電路。 支援區域22顯示一部份第一金屬層24,該區域與在陣列區 494565 A7 B7 五、發明説明1. V. Description of the Invention (Background of the Invention 1. TECHNICAL FIELD The present disclosure relates to semiconductor manufacturing, and more particularly, to a device and method including an array structure formed in a memory device support area to reduce the topology therebetween. 2 • Summary of related technologies Generally speaking, memory devices and especially dynamic random access memories (fRAMs) include a structure formed by two main parts: a transistor, a capacitor, and the smallest amplifier circuit. The array of memory cells, and 2) a large support area (generally about 20-40 / 0 of the total chip area) to supply power, Buy write control logic, repetitive circuits, and other circuits needed to operate the memory device. In the case of a stacked acoustic capacitor, the capacitor is formed by a stack, and the thickness is generally about 15 microns, including a lower electrode (EL), a dielectric medium, and a higher common electrode plate (pL ). This stack is usually formed after the first metal (bit line level) but before other metallization levels. Due to the height of the capacitor stack, the fact that there are no electrodes in the support area can result in a significant topology at the edge of the array. Referring to FIG. 1, a partial cross-sectional view of a semiconductor memory device 10 is shown. The semiconductor device 10 includes a stacked capacitor structure or stack 12 formed in an array region 14. The stack 12 includes a lower electrode 16, a dielectric medium or valley dielectric 18, and a higher common electrode plate 20. A support area 22 is included on the device 10, and this area includes a support circuit for operating the device 10. The support area 22 shows a part of the first metal layer 24. This area and the array area 494565 A7 B7 V. Description of the invention
域14内的位元線26係同時形成。一介電層28形成於陣列區 域14内的堆疊12及支援區域22之上。一下探至金屬線24的 通道25係穿過介電層28而形成。形成一拓撲特色或拓撲 3〇。在後續處理水準上,拓撲3〇擾亂臨界區域特色的定義 及形成。此效果在陣列區域14的邊緣處是很顯著的,並且 可透過在下方的第一金屬層24的拓撲來增強。此效果爲陣 列區域14邊緣的記憶體單元失敗和元件信賴性問題的主要 原因。 因而,需要一種能減少半導體記憶體裝置的陣列區域和 支援區域間的拓撲的方法。尚需要一種能最小化半導體記 te體裝置的陣列區域和支援區域間的介面的改良的佈局方 法。 發明摘要 如本發明之半導體裝置,包括一基板,其主要表面包括 一陣列區域和一支援區域。該陣列區域包括記憶體單元結 構’其第一高度超過該基板主要表面。該支援區域包括形 成於其内的虛擬結構,具有超過該主要表面的第二高度。 一介電層形成於該陣列區域内的記憶體單元結構和該支援 區域的虛擬結構之上,以致該介電層的上層表面實質上爲 平坦的’能貫質上減少跨過該陣列區域和該支援辱域的介 電層的拓撲特色。 一 在替代具體實施例中,該記憶體單元可包括堆疊電容 器’並且該虛擬結構可包括用於該堆疊電容器的至少一部 份疋件。本發明較佳地將在支援區域和陣列區域間的拓撲The bit lines 26 in the field 14 are formed simultaneously. A dielectric layer 28 is formed on the stack 12 and the support region 22 in the array region 14. The channel 25 that is protruded down to the metal line 24 is formed through the dielectric layer 28. Form a topology feature or topology 30. At the level of subsequent processing, Topology 30 disturbs the definition and formation of the characteristics of critical regions. This effect is significant at the edges of the array region 14 and can be enhanced by the topology of the first metal layer 24 below. This effect is a major cause of memory cell failure and component reliability problems at the edge of the array area 14. Therefore, there is a need for a method capable of reducing the topology between an array region and a support region of a semiconductor memory device. There is still a need for an improved layout method capable of minimizing an interface between an array region and a support region of a semiconductor memory device. SUMMARY OF THE INVENTION A semiconductor device according to the present invention includes a substrate whose main surface includes an array region and a support region. The array region includes a memory cell structure 'whose first height exceeds the major surface of the substrate. The support area includes a virtual structure formed therein with a second height exceeding the main surface. A dielectric layer is formed on the memory cell structure in the array area and the virtual structure of the support area, so that the upper surface of the dielectric layer is substantially flat. The topological characteristics of the dielectric layer supporting this domain. -In an alternative embodiment, the memory cell may include a stacked capacitor ' and the virtual structure may include at least a portion of the components for the stacked capacitor. The present invention preferably uses a topology between a support area and an array area.
又動減y至小於丨0倍的最小特色大小。該虛擬結構可包括 介電材料和導電材料中之—。該虛擬結構可包括至少一較 低的堆璺電容器電極和較高的堆疊電容器電極中之一。透 過能將超過主要表面的高度逐漸降低的虛擬結構,該介電 ^ σ在陣歹J區域和支援區域間逐漸地變遷。該虛擬結構可 能以特足技術彼此間隔成約i到約2〇最小特色大小。該虛 挺,構可包括導電材料,並且該虛擬結構最好爲電浮動以 避兄接地。該虛擬結構可能被綁在共同接地或接在相對於 接地的-固^電位。第二高度可視在該支援區域内的一位 置而定。 該半導體裝置尚包括複數個第一金屬線,在該支援區域 ,排列在第一方向内;和複黪個第二金屬線,排列在與該 第一金屬線不同的層内,該第二金屬線實質上垂直於該第 二方向,並且該虛擬結構最好設計成鄰接的第一金屬線和 第一金屬線不會覆盍相同的虛擬結構。該第一高度和該第 二高度最好實質上相等。 如本發明之另一半導體記憶體裝置,包括一基板,其主 要表面包括一陣列區域和一支援區域。該陣列區域包括記 憶體單元結構,其第一高度超過該基板主要表面,並且該 支援區域包括導電結構形成於其中,具有超過該本要表面 的第二高度。該支援區域内的支援電路採用導電結構。一 介電層形成於陣列區域内的記憶體單元結構和該支援區域 内的導電結構之上,以致於該介電層的上層表面實質上係 爲平坦的,實質上減少跨過該陣列區域和該支援區域的介 -6- 本紙張尺度適财關家鮮(CNS) A4規格(21Gx297公爱) A7And then reduce y to the minimum characteristic size less than 丨 0 times. The dummy structure may include one of a dielectric material and a conductive material. The dummy structure may include at least one of a lower stacked plutonium capacitor electrode and a higher stacked capacitor electrode. Through the virtual structure capable of gradually lowering the height exceeding the main surface, the dielectric ^ σ gradually changes between the array region J and the support region. The virtual structures may be spaced from each other to a minimum characteristic size of about i to about 20 with special technology. The dummy structure may include a conductive material, and the dummy structure is preferably electrically floating to avoid grounding. The virtual structure may be tied to a common ground or to a -solid potential relative to ground. The second height depends on the position within the support area. The semiconductor device further includes a plurality of first metal lines arranged in a first direction in the supporting area; and a plurality of second metal lines arranged in a layer different from the first metal lines, and the second metal The lines are substantially perpendicular to the second direction, and the virtual structure is preferably designed such that the adjacent first metal lines and the first metal lines do not overlap the same virtual structure. The first height and the second height are preferably substantially equal. Another semiconductor memory device according to the present invention includes a substrate whose main surface includes an array region and a support region. The array region includes a memory cell structure, a first height of which exceeds the main surface of the substrate, and the support region includes a conductive structure formed therein with a second height exceeding the principal surface. The supporting circuit in the supporting area adopts a conductive structure. A dielectric layer is formed on the memory cell structure in the array region and the conductive structure in the support region, so that the upper surface of the dielectric layer is substantially flat, which substantially reduces across the array region and Introduction of this support area-6- This paper size is suitable for financial and family care (CNS) A4 specification (21Gx297 public love) A7
電層的拓撲特色。 在替代具體實施例中,該記憶體單元可包括堆叠電容 备’並且1¾導電結構可包括至少—部份該堆疊電容器所使 用的兀件。孩導電結構可包括至少一較低的堆疊電容器電 極和幸又问的堆登電容器電極。透過將主要表面上傳導及 介電結構的高度漸減,該介電層可在陣列區域和支援區域 之間逐漸地變遷。該虛擬結構可共同接地或接在相對於接 地的一固足電位。本發明較佳地將在支援區域和陣列區域 間的拓撲變動減至小於1〇倍的最小特色大小。該虛擬結構 可以特足技術彼此間隔成約1到約2〇最小特色大小。該導 電結構可浮電位以避免接地。該虛擬結構可連至共同接地Topological characteristics of the electrical layer. In alternative embodiments, the memory cell may include a stacked capacitor device and the conductive structure may include at least part of the elements used by the stacked capacitor. The conductive structure may include at least a lower stacked capacitor electrode and a stacked capacitor electrode. By gradually reducing the height of the conductive and dielectric structures on the major surface, the dielectric layer can gradually change between the array region and the support region. The virtual structure can be grounded together or connected to a fixed potential relative to ground. The present invention preferably reduces the topological variation between the support area and the array area to a minimum characteristic size less than 10 times. The virtual structure can be spaced from each other to a minimum characteristic size of about 1 to about 20 by special technology. This conductive structure can float to avoid grounding. The virtual structure can be connected to a common ground
五、發明説明(4 或接至一相對於接地的固定電位。第二高度視在該支援區 域内的某一位置而定。 該半導體裝置尚可包括複數個第一金屬線,在該支援區 域内排列在弟一方向内;和複數個第二金屬線,排列在與 該第一金屬線不同的層内,該第二金屬線排列實質上垂直 於該第一方向。該導電結構最好設計成鄰接的第一金屬線 和第二金屬線不會覆蓋相同的導電結構。 該結構的第一高度和第二高度實質上可相等。可採用該 導電結構以連接不同的金屬層。可採用該導電結構以電子 地將第一導電層與第二導電層隔離。爲了支援區域電路, 可採用該導電結構以提供實質上平彳亍於該主要表面的互 連0 一種用於維持半導體晶片上支援區域和陣列區域間介電 -7- 本紙張尺度適用中國國家標準(CNS) A4規格(210x 297公爱) 裝 玎5. Description of the invention (4 or connected to a fixed potential relative to ground. The second height depends on a certain position in the support area. The semiconductor device may further include a plurality of first metal wires in the support area And the second metal wires are arranged in a layer different from the first metal wires, and the second metal wires are arranged substantially perpendicular to the first direction. The conductive structure is preferably designed The adjacent first and second metal wires will not cover the same conductive structure. The first height and the second height of the structure may be substantially equal. The conductive structure may be used to connect different metal layers. This may be used The conductive structure electrically isolates the first conductive layer from the second conductive layer. In order to support regional circuits, the conductive structure can be used to provide interconnections that are substantially flat on the main surface. Dielectric between area and array area-7- This paper size applies to China National Standard (CNS) A4 (210x 297 public love)
層貝負上平坦變遷的方法,該方法包括提供一半導體裝 置,包括一基板,其主要表面具有一陣列區域和一支援區 2。裝置的陣列係形成於該陣列區域$,包括^己隐體單元 、、。構,其第一咼度超出該基板主要表面。虛擬記憶體單元 結構(包括至少一部份該記憶體單元結構)係形成於支援區 域内,具有超過主要表面的第二高度。一介電層形成於該 陣列區域内的記憶體單元結構和支援區域内的虛擬記憶體 單元結構之上,以致於上層表面的介電層實質上係爲平坦 的,此貫嵩上減少跨過該陣列區域和該支援區域的介電層 上的拓-撲特色。 曰 在其它方法中,該記憶體單元結構可包括堆疊電容器, 並且在支援區域内的虛擬記憶體單元結構可包括至少一部 份該堆疊電容器所採用的元件。透過在主要表面之上形k 高度逐漸降低的虛擬記憶體單元結構,該介電層可在陣列 區域和支援區域之間逐漸地變遷。該方法尚可包括在支援 區域内的虛擬1己憶體單元結構間提供一空間的步驟,其中 以特定技術,該空間係在約1和20最小特色大小之間。該 方法也可包括下列步驟,提供複數個第一金屬線,在該支 援區域内排列在第一方向内·’和複數個第二金屬線,排列 在與該第一金屬線不同的層内,該第二金屬線實質上垂直 於該第一方向,並且將在該支援區域内的虛擬記憶體單元 結構設計成鄰接的第一金屬線和第二金屬線不會覆蓋在該 支援區域内的相同記憶體單元結構。該結構的第_高度和 第二高度可實質上相等。 -8- 494565 A7A method for flat transitions on layers, the method includes providing a semiconductor device including a substrate, the main surface of which has an array region and a support region 2. The array of the device is formed in the array area $, and includes hidden cells 、, 己. Structure, the first degree of which exceeds the major surface of the substrate. The virtual memory cell structure (including at least a part of the memory cell structure) is formed in the support area and has a second height exceeding the main surface. A dielectric layer is formed on the memory cell structure in the array area and the virtual memory cell structure in the support area, so that the dielectric layer on the upper surface is substantially flat, which reduces crossover. Topology features on the dielectric region of the array region and the support region. In other methods, the memory cell structure may include a stacked capacitor, and the virtual memory cell structure in the support area may include at least a part of the components used by the stacked capacitor. The dielectric layer can gradually change between the array region and the support region through a virtual memory cell structure with a decreasing k-height above the main surface. The method may further include the step of providing a space between the virtual memory cells in the support area, wherein the space is between about 1 and 20 minimum characteristic sizes by a specific technique. The method may also include the steps of providing a plurality of first metal lines, arranged in a first direction within the support area, and a plurality of second metal lines, arranged in a layer different from the first metal line, The second metal line is substantially perpendicular to the first direction, and the virtual memory cell structure in the support area is designed so that the adjacent first metal line and the second metal line do not cover the same in the support area. Memory cell structure. The first and second heights of the structure may be substantially equal. -8- 494565 A7
本發明的這些和其它目標、 貝知*例的詳細敛述中將變得很 圖一同閱讀。 特色和優點從以下對其具體 明顯’該具體實施例需與附 之簡要敘沭 參考以下附圖, 的敛述,其中: 將詳細呈現本揭露對於較佳具體實施例 導體記憶體裝置之橫 圖1爲具有拓樸特色的先前技藝半 斷面圖; 圖2爲如本發明,在支援區域内導入結構之後拓撲減少 的半導體裝置橫斷面圖; ,圖3爲如本發明,在支援區域内導入不同高度的結構之 後拓撲逐漸減少的半導體裝置橫斷面圖; 圖4A和4B圖示形成於該結構上的介電層結構的空間的影 圖5和6如本發明,概要地敘述導電結構的門檻値,以減 少金屬線間的電容性耦合; % 圖7爲如先前技藝之半導體裝置橫斷面圖,圖示連接不 同金屬層的接觸; 圖8爲半導體裝置橫斷面圖,圖示採用如本發明支援區 域結構以連接不同金屬層的接觸; #圖9爲半導體裝置橫斷面圖,圖示用於不同·.金屬層間遮 蔽的’如本發明所形成的支援區域結辑。 圖10A到10B爲其它半導體裝置結構橫斷面圖,圖示用於 連接不同金屬層的接觸,透過採用如本發明所形成之支援These and other objects and detailed examples of the present invention will be read together in detail. The features and advantages are obvious from the following. This specific embodiment needs to be briefly described with reference to the following drawings, in which: This disclosure will present in detail a cross-sectional view of a conductive memory device of a preferred embodiment. 1 is a half-section view of the prior art with topological characteristics; FIG. 2 is a cross-sectional view of a semiconductor device having a reduced topology after a structure is introduced in a support area as in the present invention; and FIG. 3 is a view in the support area as in the present invention. Cross-sectional views of a semiconductor device with a gradually decreasing topology after introducing structures of different heights; FIGS. 4A and 4B are diagrams 5 and 6 illustrating the space of a dielectric layer structure formed on the structure, as described in the present invention, which outlines a conductive structure Threshold to reduce the capacitive coupling between metal lines;% Figure 7 is a cross-sectional view of a semiconductor device as in the prior art, showing the contact connecting different metal layers; Figure 8 is a cross-sectional view of a semiconductor device, showing Adopt the support structure of the present invention to connect the contacts of different metal layers; # FIG. 9 is a cross-sectional view of a semiconductor device, which is used for shielding between different metal layers as described in the present invention. Series junction region into the support. 10A to 10B are cross-sectional views of other semiconductor device structures, illustrating contacts used to connect different metal layers, by using the support formed by the present invention
A7 B7 區域結構以減少金屬結構阻抗。 丝A具體實施例之^細敘 小本發明包括在支援區域面積内形成陣列區域結構,以減 二拓撲特色在孩二區域間的變遷。本發明提出許多方法, 逊^ ^構的形成以減少此拓撲,例如當該記憶體陣列包括 堆$電容器結構時,在該支援區域内提供較低的電極樣板 和/或較咼的電極樣板。這些樣板可能爲虛擬外形而無進 步功flb性,亦或整合於該支援電路内並與該支援電路一 起運作。現在將參考附圖並以堆疊電容器半導體記憶體結 構的角度來説明本發明較佳具體實施例。 現在特別仔細參照附圖,在許多觀點中,相同的代號代 表類似或相同元件,並且從圖2開始,圖示一半導體裝置 100。裝置100包括一陣列區域102和一支援區域1〇4。陣列 區域102包括記憶體單元,包括存取電晶體(未顯示)和堆疊 電容器106。堆疊電容器1〇6的較低電極11〇連接至該存取 私日曰f豆。位元線1 〇5與第一金屬層i 〇8同時形成、。堆疊電容 备106包括一較低電極11〇,一介電媒介112和一較高電極 114。在堆登電容器1〇6的形成過程中,堆疊電容器1〇6之 所有或某些元件也在支援區域1〇4中被樣板化。如圖2所 不,在支援區域104内形成較低電極11〇和介電媒介n 2以 形成虛擬結構119。有利地,如本發明,在支-援區域丨〇4内 導入較低電極110和介電媒介U2的緣板之後,便於裝置 100之上形成拓撲已減少的介電層丨丨8。在一較佳具體實施 例中,拓撲減少了約比1 〇倍的最小特色大小還少。A7 B7 area structure to reduce metal structure impedance. Detailed description of the specific embodiment of the silk A. The present invention includes forming an array area structure within the area of the support area, so as to reduce the change of the topological characteristics between the second area. The present invention proposes a number of methods to reduce the topology by forming structures, for example, when the memory array includes a stack capacitor structure, a lower electrode template and / or a larger electrode template are provided in the support area. These prototypes may be virtual in shape and have no further work flb, or they may be integrated into the support circuit and operated together with the support circuit. A preferred embodiment of the present invention will now be described with reference to the drawings and from the perspective of a stacked capacitor semiconductor memory structure. With particular reference now to the drawings, the same reference numerals represent similar or identical elements in many points of view, and starting from FIG. 2, a semiconductor device 100 is illustrated. The device 100 includes an array area 102 and a support area 104. Array area 102 includes memory cells including access transistors (not shown) and stacked capacitors 106. The lower electrode 11 of the stacked capacitor 106 is connected to the access circuit. The bit line 105 is formed at the same time as the first metal layer 108. The stacked capacitor device 106 includes a lower electrode 110, a dielectric medium 112, and an upper electrode 114. During the formation of the stacked capacitor 106, all or some of the components of the stacked capacitor 106 are also modeled in the support area 104. As shown in FIG. 2, a lower electrode 11 and a dielectric medium n 2 are formed in the support region 104 to form a dummy structure 119. Advantageously, as in the present invention, after the lower electrode 110 and the edge plate of the dielectric medium U2 are introduced into the support-aid region 04, it is convenient to form a dielectric layer with reduced topology on the device 100. In a preferred embodiment, the topology is reduced by about 10 times the minimum feature size.
裝 玎Pretend
五、發明説明(8 在支援區域104内形成較低電極11〇的樣板,以致於在稍 後的步驟中將形成於通道12〇内的C1接觸不會受到較低電 極no樣板佈局的影響。介電層118的較高表面122明顯地 較圖π於圖1内的先前技藝拓撲來得平坦。若這些樣板爲 在茲電路内無任何功能性的虛擬樣板,則其尺寸和安排可 =佳化成一特定裝置設計。應了解的是,雖然使用該較低 電極樣板來減少拓撲,除了較低電極樣板之外也可形成其 i…構或者用來做爲其替代品。例如,也可單獨採用較 低電極110,介電媒介112和/或較高電極114,或者在支援 區域104的樣板中以組合的方式,或採用簡單的介電墊。 參考圖3,如本發明之另一觀點,除了以較低電極外形 %滿該整個支援區域104之外,只能透過以逐漸地減少該 特色南度的方式來填滿陣列區域1 〇 2旁邊的面積,以便在 支援區域104和陣列區域1〇2間形成一變遷區域。使用較低 電極110、介電媒介112和較高電極114結構或堆疊13〇可在 該陣列旁邊形成樣板。在堆疊130旁邊的是堆疊132,包括 較低廷極110和介電媒介112。在堆疊132旁邊的是較低電 極110(也可採用較高電極H4或任何提供偏好高度的其它 結構)。如圖3所示,然後將介電層136的拓撲平滑化,以 在陣列區域102和支援區域104間提供一逐漸變遷。當該整 個高度差實質上維持相同時,避開了在該陣列邊緣的尖銳 步驟。(參考圖1)。透過提供高度漸減的結構,在支援區域 104和陣列區域1 〇2之間建立一變遷區域。在此揭露的其餘 部份,支援區域104内所形成的結構將被視爲堆疊130、堆 -11- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 494565 A7 ------ - B7 - _ 五、發明説明(1 ) " _"" — 疊1 3 2或較低電極1 1 〇。 參考圖4A和4B,在支援區域104内所形成的結構間距 離,例如,堆疊132(也可使用其它結構)間的距離,需維持 在預定門限値之上。圖示地,對於小於該門限値的堆疊 132到堆疊132距離而言,跟隨堆疊132的介電表面138的表 面拓撲並不一致(參考圖4A)。在圖4A中,堆疊132間的間 隔距離爲旬。di低於該門限値dth。以此法,介電層Π8的表 面132係在與堆疊132幾乎一致的高度h。透過使該空間a 維持在此門限値dth之下,可定義在陣列區域1 〇2旁邊堆疊 132樣叙的密度,以致於該樣板的密度逐漸地減少,並且 最後結束於無堆疊區域内。這會在該介電層118的表面產 生平滑的拓撲。 t 如在圖4B中所示,若堆疊132間的間隔距離爲d2,而、大 於dth ’則不會形成實質上平坦的表面拓撲特色。‘可視介 電層的材料或其它因素而定,例如該特色的高度。dth可爲 、’’勺1F ’其中F爲特定技術的最小特色大小。在較佳具體實 施例中,t爲約i和約20之間特定技術的最小特色大小。 參考圖5,採用如本發明之最佳化填滿樣板幾何及裝 置’從密度陣列到該支援區域的高度來增強平滑拓撲變遷 的效果。由於增加金屬特色,該堆疊或結構填滿樣板的幾 何及裝置可最佳化該後續的拓撲以及電容影響-。 首先討論該電容影響。爲了最小化在金屬位準繞線電容 上導電填滿結構的電容影響,該結構最好爲: 1)思小愈好(例如,最好小於約5 microns); ____________ -1 2 - 適财®國緖規格(21G X 297公ϋ A7V. Description of the invention (8) The template of the lower electrode 11o is formed in the support area 104, so that the C1 contact formed in the channel 120 will not be affected by the layout of the template of the lower electrode in a later step. The higher surface 122 of the dielectric layer 118 is significantly flatter than the prior art topology of FIG. 1 in FIG. 1. If these templates are virtual templates without any functionality in the circuit, their size and arrangement can be optimized. A specific device design. It should be understood that although the lower electrode template is used to reduce the topology, in addition to the lower electrode template, its i ... structure can be formed or used as an alternative. For example, it can also be used alone The lower electrode 110, the dielectric medium 112, and / or the upper electrode 114, either in a combined manner in a template of the support area 104 or using a simple dielectric pad. Referring to FIG. 3, as another aspect of the present invention, In addition to filling the entire support area 104 with a lower electrode profile%, the area next to the array area 102 can only be filled by gradually reducing the characteristic south degree in order to fill the support area 104 and the array area. A transition area is formed between 102. Using a lower electrode 110, dielectric 112, and higher electrode 114 structure or stack 130 can form a template next to the array. Next to stack 130 is stack 132, including the lower court. 110 and the dielectric medium 112. Next to the stack 132 is the lower electrode 110 (the higher electrode H4 or any other structure providing a preferred height can also be used). As shown in Figure 3, the topology of the dielectric layer 136 is then Smooth to provide a gradual transition between the array area 102 and the support area 104. When the entire height difference remains substantially the same, a sharp step at the edge of the array is avoided (refer to Figure 1). By providing a gradual decrease in height Structure, a transition area is established between the support area 104 and the array area 102. For the rest of the disclosure here, the structure formed in the support area 104 will be considered as stack 130, stack -11-this paper size Applicable to China National Standard (CNS) A4 specification (210 X 297 mm) 494565 A7 -------B7-_ V. Description of the invention (1) " _ " " — Stack 1 3 2 or lower electrode 1 1 0. Referring to Figures 4A and 4B, in the support area The distance between structures formed in 104, for example, the distance between stacks 132 (other structures can also be used), needs to be maintained above a predetermined threshold 地. Graphically, for the distance between stack 132 and stack 132 smaller than the threshold 而, In other words, the surface topology of the dielectric surface 138 following the stack 132 is not consistent (refer to FIG. 4A). In FIG. 4A, the separation distance between the stacks 132 is ten. Di is lower than the threshold 门 dth. The surface 132 of the Π8 is at a height h almost the same as the stack 132. By maintaining the space a below this threshold 値 dth, the density of the stack 132 can be defined next to the array area 102, so that the The density gradually decreases and ends up in the unstacked area. This results in a smooth topology on the surface of the dielectric layer 118. As shown in FIG. 4B, if the separation distance between the stacks 132 is d2, and greater than dth ', a substantially flat surface topology feature will not be formed. ‘Depending on the material of the dielectric layer or other factors, such as the height of the feature. dth can be, '' spoon 1F ', where F is the smallest characteristic size of a particular technology. In a preferred embodiment, t is the smallest characteristic size of a particular technology between about i and about 20. Referring to FIG. 5, the height of the optimized fill-in template geometry and device 'from the density array to the support area is enhanced according to the present invention to enhance the effect of smooth topological changes. Due to the addition of metal features, the geometry and the device that the stack or structure fills the template can optimize the subsequent topology and capacitance effects. The effect of this capacitor is discussed first. In order to minimize the capacitance impact of conductive fill structures on metal level wound capacitors, the structure is best to: 1) Think small as possible (for example, preferably less than about 5 microns); ____________ -1 2-Shicai® Guoxu specifications (21G X 297 male A7
」、於以金屬結構覆蓋該結 2)若導電時密度相當低(例如 構的约30%); 3) 浮動或接地或接至一相對於接地的固定電位; 4) =圖5所圖示般裝置,以致於二鄰接金屬線戰 二1)馬田取少數目的鄰接結構142所,,覆蓋,,。結構⑷最好包 堆疊130,堆疊132和/或較低電極11〇。涵蓋地説,可使 用=電結構做爲結構142。在此情況下,結構142不會受到 如前述所圖示的該電子準則所限制。涵蓋地説,結構142 可包括除了長形或正方形以外的形狀。 透過在X和Y兩方向上的特定門限値定義規則地重複結構 H2,可實現鄰接結構142最小化覆蓋。在一較佳具體實施 例中,該角度在約5。到約75。之間,並且更偏好在約3〇。 到約60。之間,以致於金屬線對14〇和⑷因導電結構的關 係而在每一對之間具有最小化的電容性耦合。 參考圖6,顯π結構142(非功能性的)圖例式的裝置。爲 了最小化拓撲效果,外形或結構142最好爲:' 1) 約爲後續金屬位準一條線寬度的2 — 3倍; 2) 如在圖6所圖示般裝置,在該乂和γ兩方向上的結構142 間有一門限値,以致於金屬線不會同時皆覆蓋在一相同結 構142上(亦即,以致於單一金屬線不會整個地佈滿該相同 的鄰接結構)。這是用於導電的結構142。 - 可能以功能性的方式在支援區域内採用結構樣板。以下 將敘述數個如本發明之功能性結構應用圖例。 參考圖7,圖示一傳統裝置200,具有電容器接觸2〇2連 -13- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公爱) 494565 A7 B7 -- 五、發明説明(11 ) 接至陣列區域203内存取電晶體204的擴散區域201。存取 電晶體204包括一閘206,經由電晶體204致能導電。當導 通時,電晶體204連接一位元線208和接觸202。接觸202連 接至一較低電極210,係電容地耦合至一共同電極或較高 電極212。如圖7所示,支援區域214包括一金屬層216(最好 使用與形成位元線208相同的金屬層)。金屬層216可指定 爲層M0。金屬層216經由介電層220透過接觸219連接至較 高金屬層2 1 8,同時也被視爲C 1接觸。該較高金屬層可爲 Ml層。圖示如圖1先前技藝所敘述之拓撲特色222。 參考圖8,除了以結構302(最好是堆疊130)填滿支援區域 300以減少拓撲外,本發明包括使用結構302樣板以支援電 路。可能採用結構302供導電4帶,例如,在其它金屬位準 上橋接金屬線。在位置301(以虛線圖示),結構302在某些 點的連接超過其長度。接觸304將M0金屬線305連接至結構 302。結構302'連接至結構302和接觸306。接觸306連接至 金屬線308 (Ml),因而建立將線305連接至線308的橋接。 參考圖9,在支援區域326中可做到金屬層320和322之間 的遮蔽。可透過將較低電極324連接至一固定電位(例如, 在該陣列區域中共同板所使用的電位)而達成上述遮蔽。 參考圖10A-B,在支援區域400内金屬層間可使甩其它的 連接方法。在圖10A,可於金屬線404 (M0)上形成接觸(CC) 402。接觸(CC) 402以較低(或較高)電極406覆蓋以增加M0 線404(最好爲tungsten (W)),CC 402(最好爲多晶石夕、鎢、 鎢矽化物或摻雜的多晶矽)和較低電極406(最好是鉑或多晶 -14- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 裝 訂Cover the junction with a metal structure 2) If the density is relatively low when conducting (for example, about 30% of the structure); 3) Float or ground or connect to a fixed potential relative to ground; 4) = as shown in Figure 5 The general device, so that the two adjacent metal line war II. 1) Martin takes a small number of adjacent structures 142, covering, and so on. The structure ⑷ preferably includes a stack 130, a stack 132, and / or a lower electrode 110. In summary, as the structure 142, an electric structure can be used. In this case, the structure 142 is not limited by the electronic criteria as illustrated previously. In summary, the structure 142 may include shapes other than elongated or square. Through the specific threshold 値 in both X and Y directions, the structure H2 is regularly repeated to define the adjacent structure 142 to minimize the coverage. In a preferred embodiment, the angle is about 5. To about 75. Between, and more preferred at about 30. To about 60. So that the pair of metal wires 14 and 〇 have a minimized capacitive coupling between each pair due to the relationship of the conductive structure. Referring to FIG. 6, a schematic structure of a π structure 142 (non-functional) is shown. In order to minimize the topological effect, the shape or structure 142 is preferably: 1) about 2 to 3 times the width of a line of the subsequent metal level; 2) the device as shown in Fig. 6 There is a threshold 间 between the structures 142 in the direction, so that the metal wires are not all covered on the same structure 142 at the same time (that is, so that a single metal wire does not completely cover the same adjacent structure). This is a structure 142 for conducting electricity. -It is possible to adopt structural templates in the support area in a functional way. In the following, several examples of functional structure applications according to the present invention will be described. Referring to FIG. 7, a conventional device 200 is shown, with a capacitor contact 202--13. This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 public love) 494565 A7 B7-V. Description of the invention ( 11) Connect to the diffusion region 201 of the access transistor 204 in the array region 203. The access transistor 204 includes a gate 206 through which the transistor 204 is enabled to conduct electricity. When conducting, transistor 204 connects bit line 208 and contact 202. The contact 202 is connected to a lower electrode 210 and is capacitively coupled to a common electrode or a higher electrode 212. As shown in FIG. 7, the support region 214 includes a metal layer 216 (preferably, the same metal layer as the bit line 208 is formed). The metal layer 216 may be designated as the layer M0. The metal layer 216 is connected to the higher metal layer 2 1 8 through the contact 219 through the dielectric layer 220 and is also considered a C 1 contact. The higher metal layer may be a M1 layer. The diagram shows the topological features 222 described in the previous art of FIG. Referring to FIG. 8, in addition to filling the support area 300 with a structure 302 (preferably a stack 130) to reduce topology, the present invention includes using a structure 302 template to support the circuit. A structure 302 may be used for conducting the 4 bands, for example, bridging metal lines at other metal levels. At position 301 (illustrated in dashed lines), the structure 302 is connected at some points beyond its length. The contact 304 connects the MO metal line 305 to the structure 302. Structure 302 'is connected to structure 302 and contacts 306. The contact 306 is connected to the metal wire 308 (M1), thus establishing a bridge connecting the wire 305 to the wire 308. Referring to FIG. 9, shielding between the metal layers 320 and 322 can be achieved in the support area 326. The above shielding can be achieved by connecting the lower electrode 324 to a fixed potential (for example, a potential used by a common plate in the array region). Referring to Figs. 10A-B, other connection methods may be made between metal layers in the support area 400. In FIG. 10A, a contact (CC) 402 may be formed on the metal line 404 (M0). Contact (CC) 402 is covered with a lower (or higher) electrode 406 to increase the M0 line 404 (preferably tungsten (W)), CC 402 (preferably polycrystalline, tungsten, tungsten silicide or doped Polycrystalline silicon) and lower electrode 406 (preferably platinum or poly-14)-This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) binding
494565 A7 B7 五、發明説明(12 矽)的低導電性,並且達成足以供某些配線應用的導電 性。此線能以類似於圖8中所描敘的該改良的cc接觸的= 式形成,但也可由線形特色所組成。接觸4〇2可爲圓柱 形。然而,也可採用條狀的接觸4〇3,並且與層4〇4一起用 於水平互連。同時,較偏好使用本發明的該虛擬結構(例 如,較低或較高電極406)以及接觸和金屬層(M〇, m卜等 的組合來製造水平互連(或垂直互連)。也涵蓋了在支援區 域内其它應用和結構的使用。例如’纟圖刚中, 408透過接觸41〇(例如’ C1接觸)連接至較低(或較高)電二 406。透過㈣條狀接觸412(例如,q接觸)可實現水平互 裝 ,該水平條狀接觸4G3和412爲線形特色,而接觸彻和 10馬圓枉形接觸。也一同涵蓋其它架構和組合。 已描述過減少記憶體裝置支撻區 鲈伟且-〜5, 一 扠E域和陣列區域間拓撲的 :二圖説明且並非限制性的),應注意的 疋/於“㈣者可根據上述敎義從事改良和變化。因 解’:在所揭露的本發明特別具體實施例中從事如 所附專利申請範圍内所概述的在本發 線 變。已描述本發明細節及爲專1^奇#神内的改 利申請範圍内加以説明。 刀已在孩所附的專 本紙張尺賴财®494565 A7 B7 5. Description of the invention (12 silicon) Low conductivity and achieve sufficient conductivity for some wiring applications. This line can be formed in a manner similar to the modified cc contact = described in FIG. 8, but can also be composed of linear features. The contact 40 may be cylindrical. However, strip-shaped contacts 403 can also be used and used with layer 404 for horizontal interconnection. At the same time, it is preferred to use the virtual structure (for example, lower or higher electrode 406) and a combination of contact and metal layers (M0, mb, etc.) of the present invention to manufacture horizontal interconnections (or vertical interconnections). It also covers To support the use of other applications and structures in the support area. For example, in 纟 Tu Gang, 408 is connected to the lower (or higher) electrical 406 through contact 41 (such as' C1 contact). 412 (through bar contact 412 ( For example, q contact) can achieve horizontal inter-installation. The horizontal strip contacts 4G3 and 412 are linear features, while the contacts are in contact with a 10-horse circle. They also cover other architectures and combinations. Reduction of memory device support has been described. The topography of the tart area is -5, and the topology between the E-domain and the array area is illustrated in the two diagrams and is not restrictive). It should be noted that those who are in charge of / can be improved and changed according to the above meaning. Solution ': In the disclosed specific embodiment of the invention, engage in changes in this hairline as outlined in the scope of the attached patent application. The details of the invention have been described and are within the scope of the application for change of profit within the special 1 ^ 奇 # 神 内The knife has been attached to the child Paper Rule Lai Choi®
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US59711400A | 2000-06-20 | 2000-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW494565B true TW494565B (en) | 2002-07-11 |
Family
ID=24390138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW090114976A TW494565B (en) | 2000-06-20 | 2001-06-20 | Reduction of topography between support regions and array regions of memory devices |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1292986A2 (en) |
TW (1) | TW494565B (en) |
WO (1) | WO2001099160A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050070861A (en) * | 2003-12-31 | 2005-07-07 | 동부아남반도체 주식회사 | Dummy layer of semiconductor device and its fabricating method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR930011462B1 (en) * | 1990-11-23 | 1993-12-08 | 현대전자산업 주식회사 | Method of decreasing step coverage of multilayer wiring |
US5262353A (en) * | 1992-02-03 | 1993-11-16 | Motorola, Inc. | Process for forming a structure which electrically shields conductors |
JP2682455B2 (en) * | 1994-07-07 | 1997-11-26 | 日本電気株式会社 | Semiconductor memory device and method of manufacturing the same |
JPH1098166A (en) * | 1996-09-20 | 1998-04-14 | Nippon Steel Corp | Semiconductor memory device and manufacture thereof |
JP3110328B2 (en) * | 1996-11-19 | 2000-11-20 | 日本電気アイシーマイコンシステム株式会社 | Semiconductor storage device |
KR100268424B1 (en) * | 1998-08-07 | 2000-10-16 | 윤종용 | A method of fabricating interconnect of semiconductor device |
DE19926106C1 (en) * | 1999-06-08 | 2001-02-01 | Siemens Ag | Semiconductor memory component with memory cells, logic areas and fill structures |
-
2001
- 2001-06-20 TW TW090114976A patent/TW494565B/en not_active IP Right Cessation
- 2001-06-20 EP EP01952175A patent/EP1292986A2/en not_active Withdrawn
- 2001-06-20 WO PCT/US2001/019684 patent/WO2001099160A2/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
WO2001099160A2 (en) | 2001-12-27 |
WO2001099160A3 (en) | 2002-10-17 |
EP1292986A2 (en) | 2003-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5378906A (en) | Dynamic random access memory having improved layout | |
TW202032767A (en) | Staircase structures for electrically connecting multiple horizontal conductive layers of a 3-dimensional memory device | |
CN109979941A (en) | Semiconductor storage | |
US4853894A (en) | Static random-access memory having multilevel conductive layer | |
TW200602B (en) | ||
TWI447851B (en) | Multilayer connection structure and making method | |
CN104465496B (en) | There is the device and manufacture method of multiple vertically extending conductors for three-dimensional devices | |
TW209913B (en) | ||
CN102386190A (en) | Semiconductor device and method of double photolithography process for forming patterns of the semiconductor device | |
TW200416880A (en) | Semiconductor device and method of manufacturing the same | |
TW441040B (en) | Electrically erasable and programmable read only memory (EEPROM) having multiple overlapping metallization layers | |
US20180337140A1 (en) | 3d integrated circuit device having a buttress structure for resisting deformation | |
US6591406B2 (en) | Semiconductor apparatus including bypass capacitor having structure for making automatic design easy, and semiconductor apparatus layout method | |
TW477063B (en) | Memory-cells arrangement | |
JPH05190794A (en) | Memory-cell and manufacture thereof | |
TW508799B (en) | Methods of forming wiring layers on integrated circuits including regions of high and low topography, and integrated circuits formed thereby | |
TW544917B (en) | Semiconductor memory device and method for manufacturing the same | |
TW494565B (en) | Reduction of topography between support regions and array regions of memory devices | |
CN100505235C (en) | Metal line of semiconductor device and method of fabricating the same | |
WO2023216632A1 (en) | Low-resistance interconnected high-density three-dimensional memory device and preparation method | |
US11957062B2 (en) | Memory | |
JPS63142656A (en) | Semi-custom semiconductor integrated circuit | |
US20090146246A1 (en) | Semiconductor device and method of fabricating the same | |
JP2006059939A (en) | Mis capacitor and mis capacitor formation method | |
KR960030419A (en) | Semiconductor integrated circuit device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |