TW492087B - Gate structure and its manufacturing method - Google Patents

Gate structure and its manufacturing method Download PDF

Info

Publication number
TW492087B
TW492087B TW90114877A TW90114877A TW492087B TW 492087 B TW492087 B TW 492087B TW 90114877 A TW90114877 A TW 90114877A TW 90114877 A TW90114877 A TW 90114877A TW 492087 B TW492087 B TW 492087B
Authority
TW
Taiwan
Prior art keywords
gate
item
patent application
scope
spacer
Prior art date
Application number
TW90114877A
Other languages
Chinese (zh)
Inventor
Jyh-Chyurn Guo
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW90114877A priority Critical patent/TW492087B/en
Application granted granted Critical
Publication of TW492087B publication Critical patent/TW492087B/en

Links

Abstract

The present invention discloses a novel gate structure and its manufacturing method. The gate structure of the present invention includes: a substrate; a high-k gate dielectric layer formed on the surface of the substrate; a gate formed on the surface of the gate dielectric layer; a low-k dummy spacer formed on the gate sidewall; and a main spacer formed on the sidewall of the dummy spacer. In accordance with the present invention, the gate structure has an excellent performance and can be applied in CMOS devices with a dimension smaller than sub-micron. The present invention also includes the manufacturing method of the gate structure.

Description

492087 五 '發明說明α) 發明領域: 本發明係有關於一種半導體製程技術,且特別有關於 一種兩性能的閘極結構及其製造方法,特別適合應用在次 微米以下的CMOS元件上。 · 發明背景: 金屬氧化半導體電晶體(Metal -Oxide-Semi ccmductor Transistor, MOS)是在積體電路技術技術中相當重要的一 種基本電子元件,其由三種基本的材料,即金屬導體層、 氧化層與半導體層等組成位在半導體基底上的閘極電晶 體。此外,冑包括了兩個位在閘極電晶體兩旁,且電性纠 半導體基底相反的半導體區,稱為源極與汲極。目前製;乍 閘極電晶體時,金屬導電層多由經摻雜的複晶矽 (Polysilicon)與金屬共同組成,此 m 外,在間極的側壁多以氮化石夕作為間隔物 雖然上述的電晶體纟士槿具々 、 而隨著半導體技街斟接:由 來已被廣泛的使用,麸 而丨现者牛導體技術對積集度要求 …、 縮小’若仍使用氧化石夕為閑極氧化層斷的 隔物便會有諸多不良影響, 氮化石夕作為間 而言,當元件尺寸炝广1 件的限縮受到限制。皋你_ 而..兀仵尺寸縮小時,閘極氧化 』舉你麟 小,但是當閘極氧化層變薄時,對於草也必須變 壓,其電場強度就增加了。如此一來?電::的操作電 (tunnei ing)的方法產生漏電流或是崩潰。另一可^由隨穿 第4頁 0503-6236TWF;TSMC2001-0048;Esmond.ptd 492087 五、發明說明(2) 元件尺寸縮小時’間隔物的寬度也必 物變薄時,就會增加輕合…而-間隔 閘極之間的隔離變差。 k攻源/及極與 因此,A 了使M0S電晶體的技術可以配合 小化的發展與提高元件積集度的需寸上 ζ 問題謀求改善之道。 要針對上述 發明概述: 本發明的主要目的就是為了解決上 高性能的閘極結構。 ]喊而誕供一種 達^述i的’本發明的特徵之一在於使用高介電別 數(hlgh-k)之介電層作為閘極介電層。 ’|冤y 本發明的特徵之二在於使用一低介電常數(low_k)之 閒置間隔物(dummy sPacer),介於主間隔物(main 之間。在本發明另一實施例中,亦可將此 閒置間隔物去除,使主間隔物與間極之間形成 gap)。 t發,、的特徵之二係結合前述兩項特徵並使用預摻雜 (Pre-d〇ped)複晶石夕層或複晶石夕錯(p〇ly_, 材質’以達到元件性能的最佳化,包括直流電(較大的電的 流驅動力)與交流電(較小的閘極對源/汲 面的特性〇 令/呵万· 根據一較佳實施例,本發明的閘極結構包括:一基 底;一高介電常數之閘極介電層,形成於基底表面;一 極’形成於閘極介電層表面;_低介電常數之閒置間隔492087 V. Description of the invention α) Field of the invention: The present invention relates to a semiconductor process technology, and particularly to a two-performance gate structure and a manufacturing method thereof, and is particularly suitable for application to sub-micron CMOS devices. · Background of the Invention: Metal-Oxide-Semi ccmductor Transistor (MOS) is a kind of basic electronic component which is very important in integrated circuit technology. It consists of three basic materials, namely metal conductor layer and oxide layer. A gate transistor is formed on a semiconductor substrate with a semiconductor layer. In addition, 胄 includes two semiconductor regions located on both sides of the gate transistor and electrically opposite to the semiconductor substrate, which are called source and drain. At present; in the first gate transistor, the metal conductive layer is mostly composed of doped polysilicon and metal. In addition, the sidewalls of the interelectrode are mostly nitrided as a spacer. Transistors are available with hibiscus, and as semiconductor technology has been widely adopted, they have been widely used in the past, and the current cattle conductor technology requires accumulation .... The spacers of the oxide layer break will have a lot of adverse effects. As a matter of fact, the nitride shrinkage is limited when the size of the device is wide.皋 你 _ And ... When the size of the vulture is reduced, the gate oxidation is small, but when the gate oxide layer becomes thin, the grass must also be compressed, and its electric field strength increases. So come? Electricity: The method of operating electricity (tunnei ing) generates leakage current or crashes. Another can be worn by page 4: 0503-6236TWF; TSMC2001-0048; Esmond.ptd 492087 V. Description of the invention (2) When the size of the component is reduced, the width of the spacer will also become thinner, which will increase the light weight. … While the isolation between the gates becomes worse. k attack source and / or pole and therefore, A has made the technology of M0S transistor can be matched with the development of miniaturization and the need to increase the component accumulation degree to solve the problem of ζ in order to improve. To summarize the above invention: The main purpose of the present invention is to solve the high-performance gate structure. One of the features of the present invention is to use a dielectric layer with a high dielectric constant (hlgh-k) as the gate dielectric layer. '| 冤 y The second feature of the present invention is to use a dummy sPacer with a low dielectric constant (low_k) between the main spacers. In another embodiment of the present invention, This idle spacer is removed so that a gap is formed between the main spacer and the interelectrode). The second feature of t, is a combination of the aforementioned two features and uses a pre-doped polycrystalline stone layer or a polycrystalline stone material (p〇ly_, material) to achieve the best component performance. Optimization, including direct current (larger current driving force) and alternating current (smaller gate-to-source / drain characteristics). Order / He Wan · According to a preferred embodiment, the gate structure of the present invention includes : A substrate; a gate dielectric layer with a high dielectric constant, formed on the surface of the substrate; a pole 'formed on the surface of the gate dielectric layer;

0503 -6236TW ;TSMC2001 -0048 ;Esmond. ptd 492087 五、發明說明(3) ί側=成於閘極側壁;及-主間隔物,形成於閒置間隔物 .根據另一較佳實施例,本發明的閘極結構包括:一基 底;一閘極介電層,形成於基底表面,此閘極介電芦呈二 第一介電常數ει ; -閘極’形成於閘極介電層表面V此 閘極具有第二介電常數; 一閒置間隔物,形成於閘極 側壁,此閒置間隔物具有第三介電常數^ ;以及一主 置間隔物之側壁,此主間隔物具有第四曰介 電吊數ε4,其中g2> ^。0503-6236TW; TSMC2001-0048; Esmond. The gate structure includes: a substrate; a gate dielectric layer formed on the surface of the substrate, the gate dielectric having two first dielectric constants ει;-a gate 'formed on the surface of the gate dielectric layer V this The gate has a second dielectric constant; an idle spacer formed on a side wall of the gate, the idle spacer has a third dielectric constant ^; and a side wall of the main spacer, the main spacer has a fourth dielectric Electric crane number ε4, where g2 > ^.

ί ϋ 2 S㈣包括提供Λ述閘極結構的製造方法。Iί ϋ 2 S㈣ includes a manufacturing method for providing a gate structure. I

Ji;::上述和其他目的、特徵、和優點能更明 =如;特舉出較佳實施例,並配合所附圖式,作詳 圖式之簡單說明 第1圖係顯示本發明一較佳實施例之閘極結構剖面 圖。 用以說明本發明一較佳實 第2〜11圖為一系列剖面圖 施例製作閘極結構的流程。 符號說明 11〜隔離區; 14 、 104a 、 l〇6a〜閘極 1 8、11 8〜主間隔物; 22、122〜金屬碎化物; 108〜硬式罩幕; 10、100〜半導體基底; 12、102〜閘極介電層; 16、l〇6a〜閒置間隔物; 2 0、1 2 1〜源/沒極區; 102、104〜導電層; 0503-6236TW;TSMC2001-0048;Esmond.ptd 492087Ji; :: The above and other objects, features, and advantages can be made clearer = such as; the preferred embodiment is given, and a simple description of the detailed drawings is given in conjunction with the accompanying drawings. Figure 1 shows a comparison of the present invention. Sectional view of the gate structure of the preferred embodiment. It is used to illustrate a preferred embodiment of the present invention. Figures 2 to 11 are a series of cross-sectional views. Explanation of symbols 11 ~ Isolation area; 14, 104a, 106a ~ gates 18, 11 ~~ main spacer; 22, 122 ~ metal fragments; 108 ~ hard mask; 10, 100 ~ semiconductor substrate; 12, 102 ~ gate dielectric layer; 16, 106a ~ idle spacer; 20, 1 2 1 ~ source / inverted area; 102, 104 ~ conductive layer; 0503-6236TW; TSMC2001-0048; Esmond.ptd 492087

110〜底部抗反射層; 114、12〇〜離子佈值; 1 2 4〜空氣間隙。 11 2〜光阻層; 11 5〜淡摻雜源/汲極區; 實施例 "月參閱第1圖,其繪示本發明一較佳實施例之閘極結 構剖面圖,圖中是以形成NM0S元件為例進行說明,但熟習 此技藝者’亦可依本發明所揭示之結構形成㈣㈧元件。本 發明之閘極結構係形成在一半導體基底1 0上,如方向為 100之P型矽基底或具p井之矽基底。在基底上則形成有隔 離區11以界定出主動區。 _ 本發明之閘極結構包括一高介電常數之閘極介電層 1 2,形成於基底丨〇表面。一閘極丨4,形成於閘極介電層i 2 表面。一低介電常數之閒置間隔物丨6,形成於閘極丨4的側 壁’以及一主間隔物丨8,形成於閒置間隔物丨6之側壁。此 外,為構成一完整的電晶體,第1圖所繪示的基底上更包 括有源/汲極區2 0,以:及兩者間的通道區,以及形成在閘 極14與源/汲極2〇上的·金屬矽化物22。 依照本發明,設若閘極介電層丨2具有第一介電常數ε 閘極14具有第二介電常數ε 2 ;閒置間隔物1 6具有第三 介電常數S3 ;主間隔物18具有第四介電常數ε4,則其介_ 電常數的大小最好(但不限於)具有下列關係: εθ ε4> ε3 〇 在一較佳實施例中,閘極介電層丨2的介電常數最好大 於1 0,且閒置間隔物1 6的介電常數最好小於3。而主間隔110 to bottom anti-reflection layer; 114, 12 to ionic cloth value; 1 2 to 4 air gap. 11 2 ~ photoresist layer; 11 5 ~ lightly doped source / drain region; Embodiment " Refer to FIG. 1 for a cross-sectional view of a gate structure according to a preferred embodiment of the present invention. Forming an NMOS device is described as an example, but those skilled in the art can also form a puppet device according to the structure disclosed in the present invention. The gate structure of the present invention is formed on a semiconductor substrate 10, such as a P-type silicon substrate with a direction of 100 or a silicon substrate with a p-well. An isolation region 11 is formed on the substrate to define an active region. The gate structure of the present invention includes a gate dielectric layer 12 with a high dielectric constant, and is formed on the surface of the substrate. A gate electrode 4 is formed on the surface of the gate dielectric layer i 2. A low dielectric constant idle spacer 6 is formed on the side wall of the gate electrode 4 and a main spacer 8 is formed on the side wall of the idle spacer 6. In addition, in order to form a complete transistor, the substrate shown in FIG. 1 further includes an active / drain region 20, and a channel region therebetween, and formed between the gate 14 and the source / drain. Metal silicide 22 on pole 20. According to the present invention, if the gate dielectric layer 2 has a first dielectric constant ε, the gate 14 has a second dielectric constant ε 2, the idle spacer 16 has a third dielectric constant S3, and the main spacer 18 has a first dielectric constant S3. Four dielectric constants ε4, then the size of the dielectric constant is preferably (but not limited to) the following relationship: εθ ε4 > ε3 〇 In a preferred embodiment, the dielectric constant of the gate dielectric layer 2 is the most It is preferably greater than 10, and the dielectric constant of the idle spacer 16 is preferably less than 3. Main interval

//

物18的介電常數則介於3〜1〇之間。 4上Ϊ發明中,由於使用高介電常數的介電層12取代習 知的閉極氧化層,因此當元件 ^ 沾/5鐘.工〜A Μ 〜丁限辦日f,便可獲得較高 的反轉載子拍、度(Qinv ; inversi〇n carrie:r心““幻, 不必訴諸於將介電層厚度大幅縮小。如此一來,亦可 :介電層厚度太薄而產生漏電流(Jg)或是崩潰 為Qinv/Jg 增加了)。 另方面本發明形成一閒置間隔物1 6。此閒置間隔 物1 6可以由一介電常數小於3的材料所構成,或者為一單 純的空氣間隙(在此情況下,空氣間隙的介電常數為丨)。 由於此閒置間隔物具有低介電常數,因此可將從源/汲極 到閘極的耦合電場降到最低。 綜合上述,本發明之閘極結構使用高介電常數之閘極 介電層與低介電常數(或空氣間隙)之間隔物至少具備下列 優點:(1)在低供應電壓時仍具有高電流驅動力;(2)降低 源/汲極到閘極之間的寄生電容;(3)降低介電層漏電流以 適合低電力產品的應用(例如一些可攜式的產品)。 以下將配合第2〜11圖說明本發明之閘極結構的製作流 程。首先請參照第2圖,其顯示本發明之起始步驟,在該 圖中,基底100為一半導體材質,如方向為1〇〇之p型矽基籲 底或具P井之石夕基底(silicon),鍺(germanium),或坤化 鎵(gallium-arsenide)材料,而形成方式則有磊晶 (expitaxial)或絕緣層上有石夕(siHc〇n 〇rl insulator) 等,為方便說明,本實施例採用具p井之矽基底丨〇 〇為例。The dielectric constant of the object 18 is between 3 and 10. 4 In the above invention, since the conventional closed-electrode layer is replaced by the dielectric layer 12 with a high dielectric constant, when the device is exposed to / 5 clock. High inversion carrier beat, degree (Qinv; inversion carrie: "Heart", no need to resort to drastically reduce the thickness of the dielectric layer. In this way, you can also: the thickness of the dielectric layer is too thin to cause leakage The current (Jg) or breakdown is increased for Qinv / Jg). In another aspect, the present invention forms an idle spacer 16. The idle spacer 16 may be composed of a material having a dielectric constant less than 3, or may be a simple air gap (in this case, the dielectric constant of the air gap is 丨). Because this idle spacer has a low dielectric constant, the coupling electric field from source / drain to gate can be minimized. To sum up, the gate structure of the present invention using a high dielectric constant gate dielectric layer and a low dielectric constant (or air gap) spacer has at least the following advantages: (1) still has a high current at a low supply voltage Driving force; (2) reduce parasitic capacitance from source / drain to gate; (3) reduce dielectric layer leakage current to suit low-power applications (such as some portable products). The fabrication process of the gate structure of the present invention will be described below with reference to Figs. 2 to 11. First, please refer to FIG. 2, which shows the initial steps of the present invention. In the figure, the substrate 100 is made of a semiconductor material, such as a p-type silicon substrate with a direction of 100 or a stone evening substrate with a P well ( silicon), germanium (germanium), or gallium-arsenide materials, and the formation method is epitaxial (expitaxial) or insulating layer with siHcOn 〇rl insulator, etc., for convenience, This embodiment uses a silicon substrate with a p-well as an example.

492087 五、發明說明(6) 在基底100上以傳統的隔離方法,如區域氧化法 (LOCOS)或4溝槽隔離法(sti)定義主動區(actiVe area) 後’在基底上依序形成高介電常數的介電層1〇2,以及導 電層1 0 4、1 〇 6。在本發明中,介電層丨〇 2係用來取代習知 以熱氧化法形成的閘氧化層,其介電常數最好大於丨〇,適 當的材料例如有Zr02、Hf〇2、Ta2 05、Ti02、以及Al2〇3等。 導電層104、106係用來作為閘極,在本發明中,導電層 104較佳為擇自摻雜(d〇ped)複晶矽層或複晶矽鍺 (poly-SiGe)其中之一。導電層1〇6最好是未摻雜 (un-doped)的複晶石夕。 · 請參閱第3圖,以傳統的微影與蝕刻方式,在第1圖的 堆疊結構上形成一具有閘極圖案的罩幕,其中包括硬式罩 幕108、底部抗反射層ι1〇及光阻層112。硬式罩幕1〇8的材 質通常為氮化石夕(S卜比)或氮氧化矽(§ i 〇χ Ny)。 請參閱第4圖’去除底部抗反射層11〇及光阻層112 ^ ’以乾#刻法如電漿蝕刻或反應性離子蝕刻法(R丨E)沿 著硬式罩幕108依序蝕刻導電層1〇6、1〇4,以定義出一堆 疊閘極’其中包括下閘極1 〇 4 a與上閘極1 〇 6 a。在餘刻過程 中由於導電層1 0 4 (摻雜複晶矽層或複晶矽鍺)的蝕刻速率 大於導電層1 0 6 (未摻雜複晶矽)的蝕刻速率,因此會形成_ 如圖中所示的底切現象(un(jercut)。亦即,下閘極1〇4&會 比上閘極106a窄。 請參照第5圖,接著以硬式罩幕1〇8與閘極為罩幕,以 填為離子源,進行淡摻雜離子植入114,經過一快速熱回492087 V. Description of the invention (6) Traditional active isolation methods, such as LOCOS or 4-slot isolation method (sti), are used to define the active area (actiVe area) on the substrate 100 in order. A dielectric layer 102 having a dielectric constant, and a conductive layer 104 and 106. In the present invention, the dielectric layer 〇2 is used to replace the conventional gate oxide layer formed by the thermal oxidation method, and its dielectric constant is preferably greater than 〇〇. Suitable materials include Zr02, Hf02, Ta2 05 , Ti02, and Al203. The conductive layers 104 and 106 are used as gate electrodes. In the present invention, the conductive layer 104 is preferably one of a doped polycrystalline silicon layer or a poly-SiGe. The conductive layer 106 is preferably an un-doped polycrystalline stone. · Please refer to Figure 3, using traditional lithography and etching methods, to form a mask with a gate pattern on the stacked structure of Figure 1, including a hard mask 108, an anti-reflection layer at the bottom and photoresist Layer 112. The material of the hard cover 108 is usually nitride nitride (Sbbi) or silicon oxynitride (§ i × χ Ny). Please refer to FIG. 4 'removing the bottom anti-reflection layer 110 and the photoresist layer 112 ^' using a dry etching method such as plasma etching or reactive ion etching (R 丨 E) to sequentially etch the conductive along the hard mask 108 Layers 106 and 104 define a stacked gate, which includes a lower gate 104a and an upper gate 106a. In the rest of the process, the etching rate of the conductive layer 104 (doped polycrystalline silicon layer or polycrystalline silicon germanium) is higher than that of the conductive layer 10 6 (undoped polycrystalline silicon), so _ such as The undercut phenomenon (un (jercut)) shown in the figure. That is, the lower gate 10 & will be narrower than the upper gate 106a. Please refer to FIG. 5, and then use a hard mask 108 and the gate to cover Screen, with a fill as the ion source, lightly doped ion implantation 114, after a rapid thermal return

492087492087

火程序形成淡摻雜源極/汲極區11 5,作為防止 ·通道效膚 之用。此外,亦可視需要,對基底1〇施以暈狀離子佈植μ (halo ion implant),在淡摻雜源極/汲極區U5的下方乂 成一暈狀摻雜區(未顯示),用以避免M〇s元件的擊穿效應$ (punch-through effect) 〇 .心 請參照第6圖,將硬式罩幕1 〇 8從閘極上去除後,在美 底上沉積一層低介電常數的介電層116。依照本發明,此& 介電層116的介電常數最好小於3,適當的材料例如有·摻 氟矽玻璃(FSG)、HSQ (hydrogen silsesqui〇xane) MSQ 夕 (methyl silseSqui〇xane)、FLARE (A1Ued ^叩&1 公司 產製)、PAE-2 (Schumacher 公司產製)、以及SILK (D〇w Chemical公司產製)等。介電層116可以用旋塗法 (spin-on-coating)經烘烤後形成,或者以低溫化學氣相 沉積法(LT-CVD)形成。 凊參照第7圖,以非等向性(anis〇tr〇pic)的蝕刻法對 低介電常數介電層116進行回姓刻,以在閘極1〇4a、i〇6a 的側壁形成一低介電常數的閒置間隔物(dummy spacer)116a ° 請參照第8圖,依照沉積-回蝕刻的方式,在閒置間隔 物116a的側壁形成一主間隔物118。主間隔物118的功能如 傳統的閘極間隔物,一般為氧化矽層,其能以四乙氧基矽 甲烷(TEOS :tetra-ethyl - ortho-silicate)為主反應物, 並藉低壓化學氣相沈積(LPCVD)製程產生,此外,主間隔 物118亦可為氮化矽層或氮氧化矽層。因此,主間隔物118The fire process forms a lightly doped source / drain region 115 to prevent channel effects. In addition, if necessary, a halo ion implant μ is applied to the substrate 10 to form a halo doped region (not shown) below the lightly doped source / drain region U5. To avoid the punch-through effect of the Mos element, please refer to Figure 6, after removing the hard mask 108 from the gate, deposit a layer of low dielectric constant on the substrate. Dielectric layer 116. According to the present invention, the dielectric constant of the & dielectric layer 116 is preferably less than 3. Suitable materials include, for example, fluorine-doped silica glass (FSG), HSQ (hydrogen silsesquioxane), MSQ (methyl silseSquioxane), FLARE (made by A1Ued ^ 叩 & 1), PAE-2 (made by Schumacher), and SILK (made by Dow Chemical). The dielectric layer 116 may be formed by spin-on-coating after baking, or formed by low temperature chemical vapor deposition (LT-CVD).凊 Referring to FIG. 7, the low dielectric constant dielectric layer 116 is etched back by anisotropic (anisotropic) etching, so as to form a gate on the sidewalls of the gates 104a and 106a. Dummy spacer 116a with a low dielectric constant. Referring to FIG. 8, a main spacer 118 is formed on the sidewall of the idle spacer 116a according to the deposition-etchback method. The main spacer 118 functions like a traditional gate spacer, and is generally a silicon oxide layer. It can use tetraethoxysilane (TEOS: tetra-ethyl-ortho-silicate) as the main reactant, and uses low-pressure chemical gas. A phase deposition (LPCVD) process is performed. In addition, the main spacer 118 may be a silicon nitride layer or a silicon oxynitride layer. Therefore, the main spacer 118

0503-6236TWF;TSMC2001-0048;Esmond.ptd 第10頁0503-6236TWF; TSMC2001-0048; Esmond.ptd Page 10

492087492087

的介電常數通常介於3〜1〇之間。至此 經告^又落,但為完成整個Μ 0 S電晶體 尚包括形成源極/汲極與金屬矽化物。 閘極結構的製作已 的製作,後續步驟 請參照第9圖,隨後,以閘極結構與主間隔物" 幕,以磷或砷為離子源,對半導體基底進行高濃度且笼 較深的離子植入120,即濃摻雜,形成源極/汲極121 /又 第10圖所示,係在閘極106a與源極/汲極121的表面上 形成自對準金屬矽化物(sal icide) 1 22。通常是先利用賤 鍍沈積的方式在石夕基底上形成鈦膜,並以一道〜t 的快速熱回火製程,使鈦金屬與源極/汲極上的矽及閘極修 上的複sa碎反應’以形成電阻值約6〇〜80 # Qcin的C49相碎 化鈦(T i S込)。而未參與反應或反應後所剩餘的金屬鈦, 則以濕蝕刻的方式加以清除。之後,再以一道較高溫度的 快速熱回火,在70 0〜90 0 °C下將C49相矽化鈦轉換成電阻 值較低(1 6〜2 0 # Ω c m)的C 5 4相石夕化鈦。此外,除了石夕化鈇 之外,亦可形成其他金屬矽化物,例如矽化鈷(CoS i2)、 矽化鎳(N i S i)。 第11圖繪示本發明另一較佳實施例的閘極結構。在此 實施例中,係將第1 〇圖中的閒置間隔物11 6a去除,而在閘 極側壁與主間隔物11 8之間形成一空氣間隙間隔物 1 (air-gap spacer)124,其介電常數為空氣的介電常數1, 同樣可達到本發明之目的。閒置間隔物11 6 a可用濕触刻法 選擇性的將之去除。應注意的是,如果在本發明中最後是 形成如第11圖所示之空氣間隙間隔物1 24,那麼閒置間隔The dielectric constant is usually between 3 ~ 10. So far, it has been reported again, but in order to complete the entire M 0S transistor, it still includes forming a source / drain and a metal silicide. The gate structure has been fabricated. Please refer to Figure 9 for the next steps. Then, using the gate structure and the main spacer " curtain, using phosphorus or arsenic as the ion source, perform high concentration and deep cage semiconductor substrates. Ion implantation 120, that is, heavily doped, forms a source / drain 121 / also shown in FIG. 10, and a self-aligned metal silicide (salicide) is formed on the surface of the gate 106a and the source / drain 121. ) 1 22. Usually, a titanium film is first formed on the base of Shi Xi by means of low-level plating deposition, and a rapid thermal tempering process of ~ t is used to make the titanium metal and the silicon on the source / drain and the complex repair on the gate Reaction 'to form a C49 phase shattered titanium (TiS) with a resistance value of about 60-80 #Qcin. Whereas, the metal titanium not participating in the reaction or remaining after the reaction is removed by wet etching. After that, a rapid thermal tempering at a higher temperature was used to convert the C49 phase titanium silicide into a C 5 4-phase stone with a low resistance (1 6 to 2 0 # Ω cm) at 70 0 to 90 0 ° C. Evening titanium. In addition, in addition to plutonium, other metal silicides can be formed, such as cobalt silicide (CoS i2) and nickel silicide (N i S i). FIG. 11 illustrates a gate structure according to another preferred embodiment of the present invention. In this embodiment, the idle spacer 116a in FIG. 10 is removed, and an air-gap spacer 124 (air-gap spacer) 124 is formed between the gate sidewall and the main spacer 118. The dielectric constant is the dielectric constant 1 of air, which can also achieve the purpose of the present invention. The idle spacer 11 6 a can be selectively removed by a wet-touch method. It should be noted that if the air gap spacer 1 24 shown in FIG. 11 is finally formed in the present invention, the idle interval

0503.6236BiF;TSMC2001-0048;Esmond.ptd 第11頁 492087 五、發明說明(9) 物11 6a的材質就不一定要使用低介電常數的持料, 成閒置間隔物11 6a的材質對主間隔物11 8的枓質具’只、要構 刻選擇性,可以被選擇性的去除即可。 ”有向餘 雖然本發明已以較佳實施例揭露如上’然其並非 任何熟習此技藝者’在不脫離本發明之精神 r二,"虽可ί些許之更動與潤飾,因此本發明之保護 辄圍虽視後附之申請專利範圍所界定者為準。0503.6236BiF; TSMC2001-0048; Esmond.ptd Page 11 492087 V. Description of the invention (9) The material of the material 11 6a does not necessarily use a low dielectric constant holding material. The material of the idle spacer 11 6a is against the main space. The quality of the substance 11 8 has only one, and it must be selectively etched so that it can be selectively removed. "You Xiangyu Although the present invention has been disclosed in a preferred embodiment as above," but it is not a person skilled in this art "without departing from the spirit of the present invention," Although it can be slightly modified and retouched, so the present invention The protection of the Wai Wai shall be subject to the definition of the scope of the attached patent application.

Claims (1)

^yzu6/ 六、申請專利範圍 〜 — ---- 1 · 一種閘極結構,包括: 一基底; 一咼介電常數之閘極介電層,形成於該基底表面; 一閘極,形成於該閘極介電層表面; 一低介電常數之閒置間隔物,形成於該閘極側壁;及 一主間隔物,形成於該閒置間隔物之側壁。 2 ·如申請專利範圍第丨項所述之閘極結構,其中該閘 極介電層之介電常數大於1〇。 3 ·如申請專利範圍第2項所述之閘極結構,其中該閘 極介電層之材質係擇自下列所組成之族群:Zr%、Hf%、籲 Ta205、Ti02、以及ai2〇3。 4 ·如申請專利範圍第1項所述之閘極結構,其中該閒 置間隔物之介電常數小於3。 5 ·如申請專利範圍第4項所述之閘極結構,其中該閒 置間隔物之材質係擇自下列所組成之族群:摻氟矽玻璃 (FSG) 、HSQ (hydrogen silsesquioxane) MSQ (methyl silsesquioxane) 、FLARE (Allied Signal 公司產製)、 PAE -2 (Schumacher 公司產製)、以及SILK (Dow Chemical 公司產製)。 6 ·如申請專利範圍第1項所述之閘極結構,其中該閒_ 置間隔物之介電常數等於1。 7·如申請專利範圍第1項所述之閘極結構,其中該閒 置間隔物為空氣。 8·如申請專利範圍第1項所述之閘極結構,其中該基^ yzu6 / VI. Patent application scope ~ — ---- 1 · A gate structure includes: a substrate; a gate dielectric layer with a dielectric constant formed on the surface of the substrate; a gate formed on A surface of the gate dielectric layer; an idle spacer with a low dielectric constant formed on a side wall of the gate; and a main spacer formed on a side wall of the idle spacer. 2 · The gate structure as described in item 丨 of the patent application scope, wherein the dielectric constant of the gate dielectric layer is greater than 10. 3. The gate structure as described in item 2 of the scope of patent application, wherein the material of the gate dielectric layer is selected from the group consisting of: Zr%, Hf%, Ta205, Ti02, and ai203. 4. The gate structure as described in item 1 of the scope of patent application, wherein the dielectric constant of the idle spacer is less than 3. 5. The gate structure as described in item 4 of the scope of the patent application, wherein the material of the idle spacer is selected from the group consisting of: fluorine-doped silica glass (FSG), HSQ (hydrogen silsesquioxane) MSQ (methyl silsesquioxane) , FLARE (made by Allied Signal), PAE-2 (made by Schumacher), and SILK (made by Dow Chemical). 6. The gate structure as described in item 1 of the scope of patent application, wherein the dielectric constant of the idle spacer is equal to 1. 7. The gate structure according to item 1 of the scope of patent application, wherein the idle spacer is air. 8. The gate structure described in item 1 of the scope of patent application, wherein the base 六、申請專利範圍 -/、有源極區,一汲極區,及介於兩者之間的通道區。 is θ t如申請專利範圍第1項所述之閘極結構,其中該閘 八:一堆疊結構,依序包括一第一導電層形成於該閘極 ;丨”層上’以及一第二導電層形成於該第一導電層上。 一、10·如/申請專利範圍第7項所述之閘極結構,其中該第 導電層係擇自摻雜複晶矽層與複晶矽鍺其中之一。 一、11 ·如申請專利範圍第7項所述之閘極結構,其中該第 一導電層係未摻雜的複晶碎。 1 2 · —種閘極結構,包括: 一基底; g 閘極介電層,形成於該基底表面,該閘極介電層具 有第一介電常數ει; /、 閘極’形成於該閘極介電層表面,該閘極且有第二 介電常數ε2 ; ^ 一閒置間隔物,形成於該閘極側壁,該閒置間隔物JL 有第三介電常數^ ;以及 八 一主間隔物,形成於該閒置間隔物之側壁,該主間隔 物具有第四介電常數ε4, 其中 epepepeg。 1 3·如申請專利範圍第丨2項所述之閘極結構,其中該籲 閘極介電層之介電常數£1大於丨〇。 14·如申請專利範圍第13項所述之閘極結構,其中該 閘極介電層之材質係擇自下列所組成之族群:^ Hf〇2、Ta2 05、Ti02、以及ai2〇3。 · 2、6. Scope of patent application-/, source region, a drain region, and a channel region in between. is θ t The gate structure described in item 1 of the scope of the patent application, wherein the gate eight: a stacked structure, which sequentially includes a first conductive layer formed on the gate; 丨 "on the layer" and a second conductive A layer is formed on the first conductive layer. 10. The gate structure as described in item 7 of the scope of the application for a patent, wherein the first conductive layer is selected from a doped polycrystalline silicon layer and a polycrystalline silicon germanium. 1. The gate structure according to item 7 in the scope of the patent application, wherein the first conductive layer is an undoped polycrystalline chip. 1 2-A gate structure including: a substrate; g A gate dielectric layer is formed on the surface of the substrate, the gate dielectric layer has a first dielectric constant ει; /, a gate is formed on the surface of the gate dielectric layer, and the gate has a second dielectric Constant ε2; ^ an idle spacer formed on the side wall of the gate, the idle spacer JL has a third dielectric constant ^; and a Bayi main spacer formed on the side wall of the idle spacer, the main spacer has The fourth dielectric constant ε4, of which epepepeg. 1 3 · The gate as described in item 2 of the patent application scope Structure, wherein the dielectric constant of the gate dielectric layer is greater than £ 1. 14. The gate structure according to item 13 of the patent application scope, wherein the material of the gate dielectric layer is selected from the following Groups formed: ^ Hf〇2, Ta2 05, Ti02, and ai203. · 2, 0503 -6236TW ;TSMC2001 -0048 ;Esmond. ptd 第14頁0503 -6236TW; TSMC2001 -0048; Esmond. Ptd p. 14 90114877_了(年90114877_ (year 1 5 ·如申請專利範圍第1.2項所述之閘極結構,其中該 閒置間隔物之介電常數ε 3小於3。 1 6 ·如申請專利範圍第1 5項所述之閘極結構,其中該 閒置間隔物之材質係擇自下列所組成之族群:摻氟矽玻璃 (FSG) 、HSQ (hydrogen silsesquioxane) MSQ (methyl silsesquioxane)、FLARE (Allied Signal 公司產製)、 PAE-2 (Schumacher公司產製)、以及SILK (Dow Chemical 公司產製)。 1 7 ·如申請專利範圍第1 2項所述之閘極結構,其中該 閒置間隔物之介電常數ε i等於1。 1 8 ·如申請專利範圍第1 2項所述之閘極結構,其中該 基底具有一源極區,一沒極區,及介於兩者之間的通道 區0 1 9 ·如申請專利範圍第1 2項所述之閘極結構,其中該 閘極具有一堆疊結構,依序包括一第一導電層形成於該閘 極介電層上,以及一第二導電層形成於該第一導電層上。 2 0 ·如申請專利範圍第丨9項所述之閘極結構,其中該 第一導電層係擇自摻雜複晶矽層與複晶矽鍺其中之一。 2 1 ·如申請專利範圍第丨9項所述之閘極結構,其中該 苐一導電層係未摻雜的複晶石夕。 2 2 ·如申請專利範圍第1 2項所述之閘極結構,其中該 主間隔物之介電常數介於3〜1〇之間。 23·如申請專利範圍第22項所述之閘極結構,其中該 主間隔物之材質係擇自下列所組成之族群:氧化石夕、氮化15 · The gate structure as described in item 1.2 of the patent application scope, wherein the dielectric constant ε 3 of the idle spacer is less than 3. 16 · The gate structure described in item 15 of the scope of patent application, wherein the material of the idle spacer is selected from the group consisting of: fluorine-doped silica glass (FSG), HSQ (hydrogen silsesquioxane) MSQ (methyl silsesquioxane), FLARE (made by Allied Signal), PAE-2 (made by Schumacher), and SILK (made by Dow Chemical). 17 · The gate structure as described in item 12 of the scope of patent application, wherein the dielectric constant ε i of the idle spacer is equal to 1. 1 8 · The gate structure as described in item 12 of the patent application scope, wherein the substrate has a source region, an electrodeless region, and a channel region therebetween 0 1 9 · as the patent application scope The gate structure according to item 12, wherein the gate has a stacked structure, which sequentially includes a first conductive layer formed on the gate dielectric layer, and a second conductive layer formed on the first conductive layer. On the floor. 2 0. The gate structure according to item 9 of the patent application scope, wherein the first conductive layer is selected from one of a doped polycrystalline silicon layer and a polycrystalline silicon germanium. 2 1 · The gate structure as described in item 9 of the patent application scope, wherein the first conductive layer is an undoped polycrystalline stone. 2 2 · The gate structure as described in item 12 of the scope of patent application, wherein the dielectric constant of the main spacer is between 3 and 10. 23. The gate structure as described in item 22 of the scope of the patent application, wherein the material of the main spacer is selected from the group consisting of oxide stone, nitride 492087 六、申請專利範圍 矽、以及氮氧化矽。 2 4 · —種閘極結構的製造方法,包括下列步驟: (a) 在一半導體基底上形成/高介電常數之介電層; (b) 於該介電層上形成一導電層; (c) 疋義違導電層與該高介電常數之介電層以分別形 成一閘極與一閘極介電層; (d )於該閘極側壁形成一低介電常數之閒置間隔物; 及 (e)於該閒置間隔物之側壁形成一主間隔物。 2 5 ·如申請專利範圍第2 4項所述之方法,其中步驟(a)_ 係形成介電常數大於1〇之介電層。 2 6 ·如申請專利範圍第2 5項所述之方法,其中該介電 層之材質係擇自下列所組成之族群:Zr02、Hf〇2、Ta2〇5、 Ti02、以及Al2〇3。 27·如申請專利範圍第24項所述之方法,其中步驟(b) 包括:形成一第一導電層形成於該閘極介電層上,以及形 成一第二導電層形成於該第一導電層上。 • 28·如申請專利範圍第27項所述之方法,其中該第一 導電層係擇自摻雜複晶矽層與複晶矽鍺其中之x一。 29.如申請專利範圍第27項所述之方法之一。 導電層係未摻雜的複晶矽。 /、τ β弟一 I ,其中步驟(c) 對該半導體基 30·如申請專利範圍第24項所述之方 與步驟(d )之間更包括··以該閘極為罩 〆 底進行淡摻雜製程。 ’492087 6. Scope of patent application Silicon and silicon oxynitride. 2 4 · A method for manufacturing a gate structure, including the following steps: (a) forming / high dielectric constant dielectric layer on a semiconductor substrate; (b) forming a conductive layer on the dielectric layer; c) the meaning of the conductive layer and the high dielectric constant dielectric layer to form a gate and a gate dielectric layer respectively; (d) forming an idle spacer with a low dielectric constant on the side wall of the gate; And (e) forming a main spacer on a side wall of the idle spacer. 25. The method according to item 24 of the scope of patent application, wherein step (a) _ is to form a dielectric layer with a dielectric constant greater than 10. 26. The method as described in item 25 of the scope of patent application, wherein the material of the dielectric layer is selected from the group consisting of: Zr02, Hf02, Ta205, Ti02, and Al203. 27. The method of claim 24, wherein step (b) includes forming a first conductive layer on the gate dielectric layer, and forming a second conductive layer on the first conductive layer. On the floor. • 28. The method as described in item 27 of the patent application scope, wherein the first conductive layer is selected from x-one of a doped polycrystalline silicon layer and a polycrystalline silicon germanium. 29. One of the methods described in item 27 of the scope of patent application. The conductive layer is undoped polycrystalline silicon. /, Τ β, I, where step (c) is performed on the semiconductor substrate 30. The method described in item 24 of the scope of patent application and step (d) further include ... Doping process. ’ 3 1 ·如申請專利範圍第2 4項所述之方法’其中步驟(d) 係形成介電常數小於3之閒置間隔物。 3 2 ·如申請專利範圍第3 1項所述之方法’其中5玄閒置 間隔物之材質係擇自下列所組成之族群:摻氟石夕玻璃 (FSG) 、HSQ (hydrogen sil sesQUioxane ) MSQ (methyl s i1sesqu i oxane) 、FLARE (Allied Signal 公司產製)、 PAE-2 (Schumacher公司產製)、以及SILK (Dow Chemical 公司產製)。 33·如申請專利範圍第24項所述之方法,其中步驟(e) 之後,更包括:以該閘極與該主間隔物為罩幕,對該半導 體基底進行濃摻雜製程。 3 4 · —種閘極結構的製造方法,包括下列步驟: (a) 在一半導體基底上形成一高介電常數之介電層; (b) 於該介電層上形成一導電層; (c )定義該導電層與該高介電常數之介電層以分別形 成一閘極與一閘極介電層; (d) 於該閘極側壁形成一閒置間隔物; (e) 於該閒置間隔物之側壁形成一主間隔物;以及 (f )選擇性地去除該閒置間隔物,以在該閘極與該主 間隔物之間形成一間隙。 35·如申請專利範圍第34項所述之方法,其中該閒置 間隔物的材質對該主間隔物的材質具有高蝕刻選擇性。 3 6 · —種閘極結構的製造方法,包括下列步驟·· (a)在一半導體基底上形成一介電層,該閘極介電層3 1 · The method according to item 24 of the scope of the patent application, wherein step (d) is to form an idle spacer having a dielectric constant of less than 3. 3 2 · The method as described in item 31 of the scope of the patent application, wherein the material of the 5 xuan idle spacers is selected from the group consisting of: fluorine doped stone glass (FSG), HSQ (hydrogen sil sesQUioxane) MSQ ( methyl s i1sesqu i oxane), FLARE (made by Allied Signal), PAE-2 (made by Schumacher), and SILK (made by Dow Chemical). 33. The method according to item 24 of the patent application scope, wherein after step (e), the method further comprises: using the gate electrode and the main spacer as a mask to perform a doping process on the semiconductor substrate. 3 4 · A method for manufacturing a gate structure, including the following steps: (a) forming a high-k dielectric layer on a semiconductor substrate; (b) forming a conductive layer on the dielectric layer; c) defining the conductive layer and the high dielectric constant dielectric layer to form a gate and a gate dielectric layer respectively; (d) forming an idle spacer on the side wall of the gate; (e) at the idle A sidewall of the spacer forms a main spacer; and (f) selectively removing the idle spacer to form a gap between the gate and the main spacer. 35. The method as described in claim 34, wherein the material of the idle spacer has a high etching selectivity with respect to the material of the main spacer. 3 6-A method for manufacturing a gate structure, including the following steps: (a) forming a dielectric layer on a semiconductor substrate, the gate dielectric layer 0503 -6236TWF1;TSMC2001 -〇〇48;Esmond.p t c 第17頁 492087 六、申請專利範圍 具有第一介電常數£l ; (b) 於該介電層上形成一導電層,該導電層具有第二 介電常數; (c) 定義該導電層與該介電層以分別形成一閘極與一 閘極介電層; (d) 於該閘極側壁形成一間置間隔物,該閒置間隔物 具有第三介電常數ε3 ;以及 (e )於該閒置間隔物之側壁形成一主間隔物,該主間 隔物具有第四介電常數e4, 其中 £2〉£ι〉ε4>ε3。 I 37·如申請專利範圍第36項所述之方法,其中步驟(a) 係形成介電常數大於10之介電層。 38·如申請專利範圍第36項所述之方法,其中該介電 層之材質係擇自下列所組成之族群:Zr〇2、Hf 〇2、Ta2〇5、 Ti02、以及Al2〇3。 39·如申請專利範圍第36項所述之方法,其中步驟(b) 包括:形成一第一導電層形成於該閘極介電層上,以及形 成一第二導電層形成於該第一導電層上。 40·如申請專利範圍第39項所述之方法,其中該第一 導電層係擇自摻雜複晶矽層與複晶矽鍺其中之一。 < 41·如申請專利範圍第39項所述之方法,其中該第二 導電層係未摻雜的複晶矽。 〃 42·如申請專利範圍第36項所述之方法,其中步驟(c) 與步驟(d)之間更包括··以該閘極為罩幕,對&半導體基0503 -6236TWF1; TSMC2001 -0048; Esmond.ptc page 17 492087 6. The scope of the patent application has a first dielectric constant of £ l; (b) a conductive layer is formed on the dielectric layer, and the conductive layer has a Two dielectric constants; (c) defining the conductive layer and the dielectric layer to form a gate and a gate dielectric layer, respectively; (d) forming an intervening spacer on the side wall of the gate, the idle spacer Having a third dielectric constant ε3; and (e) forming a main spacer on a side wall of the idle spacer, the main spacer having a fourth dielectric constant e4, wherein £ 2> £ ι> ε4> ε3. I 37. The method as described in claim 36, wherein step (a) is to form a dielectric layer having a dielectric constant greater than 10. 38. The method according to item 36 of the scope of patent application, wherein the material of the dielectric layer is selected from the group consisting of: Zr〇2, Hf 02, Ta205, Ti02, and Al203. 39. The method of claim 36, wherein step (b) includes: forming a first conductive layer formed on the gate dielectric layer, and forming a second conductive layer formed on the first conductive layer. On the floor. 40. The method according to item 39 of the application, wherein the first conductive layer is selected from one of a doped polycrystalline silicon layer and a polycrystalline silicon germanium. < 41. The method as described in claim 39, wherein the second conductive layer is undoped polycrystalline silicon. 〃 42. The method as described in item 36 of the scope of patent application, wherein steps (c) and (d) further include: using the gate electrode to cover the semiconductor substrates & 底進行淡摻雜製程。 ^ 4 3 ·如申凊專利範圍第3 6項所述之方法,其中步驟(d) 係形成介電常數小於3之閒置間隔物。 44·如申請專利範圍第43項所述之方法,其中該閒置 間隔物之材質係擇自下列所組成之族群:摻氟矽玻璃 (FSG) 、HSQ (hydrogen silsesqui〇xane) MSQ (methyl silsesQui〇xane) 、fLare (Allied Signal 公司產製)、 PAE-2 (Schumacher公司產製)、以及SILK (Dow Chemical 公司產製)。 45·如申請專利範圍第36項所述之方法,其中步驟(e) 係形成介電常數介於3〜丨〇之間的主間隔物。 46·如申請專利範圍第45項所述之方法,其中該主間 隔物之材質係擇自下列所組成之族群:氧化矽、氮化矽、 以及氮氧化石夕。 47·如申清專利範園第項戶斤述之方法’其中步驟(e) 之後,更包括:以該閘極與該;間隔物為罩幕,對該半導 體基底進行濃推雜製程。The bottom is lightly doped. ^ 4 3 · The method described in item 36 of the patent application, wherein step (d) is to form an idle spacer with a dielectric constant of less than 3. 44. The method according to item 43 of the scope of patent application, wherein the material of the idle spacer is selected from the group consisting of: fluorine-doped silica glass (FSG), HSQ (hydrogen silsesquioxane) MSQ (methyl silsesQui〇 xane), fLare (made by Allied Signal), PAE-2 (made by Schumacher), and SILK (made by Dow Chemical). 45. The method according to item 36 of the scope of patent application, wherein step (e) is to form a main spacer having a dielectric constant between 3 and 〇. 46. The method according to item 45 of the scope of patent application, wherein the material of the main spacer is selected from the group consisting of silicon oxide, silicon nitride, and oxynitride. 47. According to the method described in the item No. 1 of the Shenqing Patent Fanyuan ’, after step (e), the method further includes: using the gate and the; spacer as a mask, performing a thick impurity doping process on the semiconductor substrate. 第19買 0503 -6236TWF1;TSMC2001 -0048;Esmond.p t c19th buy 0503 -6236TWF1; TSMC2001 -0048; Esmond.p t c
TW90114877A 2001-06-19 2001-06-19 Gate structure and its manufacturing method TW492087B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90114877A TW492087B (en) 2001-06-19 2001-06-19 Gate structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90114877A TW492087B (en) 2001-06-19 2001-06-19 Gate structure and its manufacturing method

Publications (1)

Publication Number Publication Date
TW492087B true TW492087B (en) 2002-06-21

Family

ID=21678585

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90114877A TW492087B (en) 2001-06-19 2001-06-19 Gate structure and its manufacturing method

Country Status (1)

Country Link
TW (1) TW492087B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446892A (en) * 2011-10-12 2012-05-09 上海华力微电子有限公司 High-performance metal-oxide-metal capacitor and manufacturing method thereof
TWI800120B (en) * 2015-07-17 2023-04-21 美商英特爾股份有限公司 Transistor with airgap spacer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446892A (en) * 2011-10-12 2012-05-09 上海华力微电子有限公司 High-performance metal-oxide-metal capacitor and manufacturing method thereof
CN102446892B (en) * 2011-10-12 2013-06-26 上海华力微电子有限公司 High-performance metal-oxide-metal capacitor and manufacturing method thereof
TWI800120B (en) * 2015-07-17 2023-04-21 美商英特爾股份有限公司 Transistor with airgap spacer

Similar Documents

Publication Publication Date Title
TWI337384B (en) Semiconductor fabrication process with asymmetrical conductive spacers
TW569451B (en) Process for fabricating a vertical bipolar junction transistor, process for fabricating an integrated circuit structure, and integrated circuit structure
US8946721B2 (en) Structure and method for using high-K material as an etch stop layer in dual stress layer process
KR20000058131A (en) Method of forming dual metal gate structures or cmos devices
US8624329B2 (en) Spacer-less low-K dielectric processes
US7220650B2 (en) Sidewall spacer for semiconductor device and fabrication method thereof
JPH11251579A (en) Field-effect transistor and manufacture thereof
US6649308B1 (en) Ultra-short channel NMOSFETS with self-aligned silicide contact
JP2003078137A (en) Method for forming elevated source/drain areas using polysilicon spacer
TWI226667B (en) Transistor fabrication method
JP2004006891A (en) Semiconductor device and its manufacturing method
TW200524156A (en) Devices with high-k gate dielectric
US6069044A (en) Process to fabricate ultra-short channel nMOSFETS with self-aligned silicide contact
US20090096023A1 (en) Method for manufacturing semiconductor device
TW492087B (en) Gate structure and its manufacturing method
CN101740389A (en) MOS (Metal Oxide Semiconductor) transistor and forming method thereof
US5895244A (en) Process to fabricate ultra-short channel nMOSFETs with self-aligned silicide contact
KR100549006B1 (en) fabrication method of a MOS transistor having a total silicide gate
KR20090064658A (en) Semiconductor device and method of fabricating the same
CN104425231B (en) A kind of preparation method of semiconductor devices
JP2002170951A (en) Manufacturing method of semiconductor device with mos structure
US6013554A (en) Method for fabricating an LDD MOS transistor
US7638400B2 (en) Method for fabricating semiconductor device
TW201838149A (en) Semiconductor device and manufacturing method thereof
KR100588777B1 (en) Semiconductor device and its fabricating method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent