TW492084B - Manufacturing method of the semiconductor device having self-aligned metal source/drain - Google Patents

Manufacturing method of the semiconductor device having self-aligned metal source/drain Download PDF

Info

Publication number
TW492084B
TW492084B TW90105815A TW90105815A TW492084B TW 492084 B TW492084 B TW 492084B TW 90105815 A TW90105815 A TW 90105815A TW 90105815 A TW90105815 A TW 90105815A TW 492084 B TW492084 B TW 492084B
Authority
TW
Taiwan
Prior art keywords
layer
drain
source
semiconductor
scope
Prior art date
Application number
TW90105815A
Other languages
Chinese (zh)
Inventor
Fu-Liang Yang
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW90105815A priority Critical patent/TW492084B/en
Application granted granted Critical
Publication of TW492084B publication Critical patent/TW492084B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

The present invention provides a manufacturing method of the semiconductor device having self-aligned metal source/drain, which comprises the following steps: forming an insulation layer and a semiconductor layer on the semiconductor substrate; forming a shallow trench isolation layer to isolate an active layer on the predetermined position of the semiconductor layer, wherein the shallow trench isolation layer and the insulation layer form a continuous insulation layer; forming a gate structure on the semiconductor layer; forming a gate insulation sidewall layer on both sides of the gate structure; use the gate insulation sidewall layer for use as the mask to etch back the semiconductor layer till reaching the buried insulation layer to form a source/drain opening; forming a metal source/drain on the source/drain opening.

Description

五、發明說明(1) 本發月ίτ'有關於一種半導犛元叫 有關於一稀I古Α “ 的表造方法,料別係 ,關於栓具有自行對準金屬源/汲柄 孖扪你 …。其利用自行對準金屬源/汲極;代=件的製 及極,以降低活化溫度及減小寄生電阻代傳切摻雜源/ 傳統的矽摻雜源/汲極,由於1 阻,使得當積體電路元件的特徵尺寸二/生::汲極電 再,,石夕摻雜源/汲極須要很寸高V活電阻隨, 疋在90 0- 1 1 00 t,如此對於 “ 〇化胍度,一般 high-K閘極介雷;进成不剎# & 應、低溫金屬閘極及 體電路元件尺寸製程的瓶頸。 〜缺2成為縮減積 目前在積體電路製程技術的領域上 矽(Si I icon on 彳 nsnlqtnr Qnr Λ ^ 杜七、、象肢上有 用。且日-▲ —β牵 SOi)的技術正被廣泛的應 曰μ 1 a復盍於一絕緣層上之半導體材料上形成電 曰日肢,此技術在積體電路發展的領域越來越重要。二二 層上製作積體電路元件,相對於在—較厚的^士/ 、中:作相同的1C元件,可得到較低的寄生電容與較大的丹通 逼,流’因此其速度較快。再者,位於S0I結構的石夕層上 之場效電晶體,例如金氧半場效電晶體(M0SFET),比5 統矽基底上所製作的M0SFET具有更多的優點,包括對短通 迢效應的電阻、較陡峭的次臨界(subthreshold)斜率、辩 t的電流驅動、較高的封裝密度、減小的寄生電容、J 單的製程步驟等。此外,近來在so i之矽層品質、埋 化物品質及產量上的進步使0·丨微米以下之極大型積體 路儿件的製造變得可能。由於so J結構有效地減少寄生元V. Description of the invention (1) This month, "τ" is about a semiconducting element called "A rare I ancient A", a method of making materials, and it is about the peg with self-aligned metal source / dip handle. You ... It uses self-aligned metal source / drain; the design and electrode of the component to reduce the activation temperature and reduce the parasitic resistance of the pass-through doped source / traditional silicon doped source / drain, since 1 Resistance, so that when the characteristic size of the integrated circuit element is two / battery ::: Drain electric power, Shi Xi doped source / drain needs to be very high V active resistance, 随 at 90 0- 1 1 00 t, so As for the "degree of guanidine", generally high-K gate-mediated lightning; Jinchengbucha #, low-temperature metal gate and body circuit component size process bottlenecks. ~ Missing 2 has become a reduction product. At present, silicon (Si I icon on 彳 nsnlqtnr Qnr Λ ^ ^, 、, useful for elephant limbs) in the field of integrated circuit process technology is being widely used. The application of μ 1 a to a semiconductor material on an insulating layer forms an electric solar limb. This technology is increasingly important in the field of integrated circuit development. The integrated circuit components are fabricated on the second and second layers. Compared with the thicker 1C components, the same 1C components can get lower parasitic capacitance and larger Dantong force, so the flow rate is faster. fast. Furthermore, field-effect transistors, such as metal-oxide-semiconductor field-effect transistors (MOSFETs), located on the stone layer of the SOI structure have more advantages than MOSFETs fabricated on a 5-system silicon substrate, including the effect of short pass chirp. Resistance, steeper subthreshold slope, current drive, higher package density, reduced parasitic capacitance, J-step process steps, etc. In addition, recent advances in silicon layer quality, buried material quality, and yield have made it possible to manufacture very large integrated circuit components below 0 · 丨 micron. As the so J structure effectively reduces parasitics

第4頁 492084 五、發明說明(2) 件,同時增加結構對接面崩潰的容忍度,因此S0 I技術適 用於南效能及南密度的積體電路。 第1圖係顯示日立公司(Hi tach i Ltd·)所發表之具有 金屬源/汲極之半導體元件的結構。D i g h H i s a m o t 〇等人在 Symposium on VLSI Technology Digest of Technical Pagers^ p· 208-209,20 00 所發表之” a Compact FD-SOI MOSFETs Farication Process Featuring SixGei'x Gate andPage 4 492084 V. Description of the invention (2), and at the same time increase the tolerance of collapse of the structural butt joint, so the SOI technology is suitable for integrated circuits with south efficiency and south density. Figure 1 shows the structure of a semiconductor device with a metal source / drain published by Hitachi Ltd. D i g h H i s a m o t 〇 et al. Published in Symposium on VLSI Technology Digest of Technical Pagers ^ p. 208-209, 20 00 "a Compact FD-SOI MOSFETs Farication Process Featuring SixGei'x Gate and

Damascene-Dummy SAC”,其最終結構請參照第丨圖,埋藏 氧化層1 0、半導體層(絕緣體上有矽層,S〇 ί)丨2、淺溝槽Damascene-Dummy SAC ", the final structure please refer to Figure 丨, buried oxide layer 10, semiconductor layer (silicon layer on the insulator, S〇) 2, shallow trench

隔離層1 4、閘極結構1 6、閘極絕緣側壁層丨8、第一絕緣層 2 0、第二絕緣層2 2、複晶矽層2 4及鎢接觸插塞2 6,其中複 晶矽層24及鎢接觸插塞26同時作為源/汲極及接觸插塞之 用。由圖中可以看出,此結構之接觸插塞與源/汲極用尺 寸相同,亦即接觸插塞之尺寸過大,胃產生高的輕合電容 (coupling capacitance) ° 為了解決上述問題, 自行對準金屬源/汲極之 自行對準金屬源/汲極取 化溫度及減小寄生電阻。 、本發明之目的即在提供一種具有 半導體元件的製造方法。其利用 代傳統矽摻雜源/汲極,以降低活 因此,本發明提供一種具 半導體元件的製造方法,包括 形成一埋藏絕緣層及一半導體 置形成一淺溝槽隔離層以隔離 有自行對準金屬源/汲極之 以下步驟:在半導體基底上 層;在此半導體層之既定位 出 主動區,此淺溝槽隔離Isolation layer 14, gate structure 16, gate insulation sidewall layer 丨 8, first insulation layer 20, second insulation layer 2, 2, polycrystalline silicon layer 24, and tungsten contact plug 26, among which polycrystalline The silicon layer 24 and the tungsten contact plug 26 serve as both a source / drain and a contact plug. It can be seen from the figure that the contact plug of this structure has the same size as the source / drain, that is, the contact plug is too large in size, and the stomach produces high coupling capacitance. To solve the above problem, The self-aligned metal source / drain of the metal source / drain takes temperature and reduces parasitic resistance. It is an object of the present invention to provide a method for manufacturing a semiconductor device. It uses a conventional silicon doped source / drain to reduce the activity. Therefore, the present invention provides a method for manufacturing a semiconductor device, which includes forming a buried insulating layer and a semiconductor trench forming a shallow trench isolation layer to isolate a self-aligned layer. The following steps of the metalloid source / drain: layer on the semiconductor substrate; the active region is located in this semiconductor layer, and the shallow trench is isolated

五、發明說明(3) 層與此埋藏絕緣層係形点 形成-閘極結構;⑨此之絕緣層;在此半導體層上 壁層;以此閘極絕緣側壁岸:3兩側側壁形成閘極絕緣側 此埋藏絕緣層以形成源/ "為罩幕回蝕刻此半導體層至 口形成金屬源/汲極。 開口;以及於此源/汲極區開 為讓本發明之上诚曰 下文特舉較佳實施例,並=特徵及優點能更明顯易懂, 下。 亚配θ所附圖式,做詳細說明如 圖式簡單說明 第1圖係顯示係顯干口& 之旦有今屬漁公司(Hitachi Ud·)所發表 八 〜/及極之半導體元件的結構之剖面圖。 ^ t —2E圖係顯示本發明實施例之具有自行對準全^ 源/汲極之半導體元件之製程剖面圖。 卩對丰金屬 符號說明 6 2〜埋藏絕緣層; 6 6〜淺溝槽隔離層 6 7〜閘極介電層; 6 9〜閘極遮蔽層; 7 4〜源/及極區開口 78〜金屬源/汲極; 8 2〜鎢層。 60〜基底; 64〜半導體層; G〜閘極結構; 6 8〜閘極電極 7 2〜擴展源/汲極; 7 6〜閘極絕緣側壁層 8 〇〜氮化鈦層; 實施例 本發明提供一 元件的製造方法。 種具有自行對準金屬源/汲極之半 其利用自行對準金屬源/汲極取代傳:V. Description of the invention (3) The layer forms the gate structure of this buried insulating layer-the gate structure; the insulating layer here; the upper layer of the semiconductor layer; the side wall of the gate is insulated by this gate: 3 sides form the gate The buried insulating layer is formed on the electrode insulation side to form a source / and the semiconductor layer is etched back to the mask to form a metal source / drain. Opening; and opening at the source / drain region To make the present invention better, the following exemplifies preferred embodiments, and features and advantages can be more clearly understood. Sub-theta θ, the detailed description of the diagram, the diagram is briefly explained. The first diagram is a display of the dry mouth & once there is a semi-conductor element published by Hitachi Ud. Sectional view of the structure. ^ t-2E is a cross-sectional view showing a manufacturing process of a semiconductor device with a self-aligned full source / drain in accordance with an embodiment of the present invention.说明 Description of Fengfeng metal symbols 6 2 ~ Buried insulating layer; 6 6 ~ Shallow trench isolation layer 6 7 ~ Gate dielectric layer; 6 9 ~ Gate shielding layer; 7 4 ~ Source / and electrode area opening 78 ~ Metal Source / drain; 8 2 ~ tungsten layer. 60 ~ substrate; 64 ~ semiconductor layer; G ~ gate structure; 6 8 ~ gate electrode 7 2 ~ extended source / drain; 7 6 ~ gate insulating sidewall layer 8 0 ~ titanium nitride layer; embodiment of the present invention A method of manufacturing a component is provided. One type has a self-aligning metal source / drain which uses a self-aligning metal source / drain to replace the pass:

492084492084

矽摻雜源/汲極,以降低活化溫度及減小寄生電阻。 請參照第2A圖,在一半導體基底6〇上形成一埋藏絕 層6 2及一半導體層6 4,本實施例則以一絕緣體上有石夕 (S 0 I )之晶圓為例’用以做為啟始材料,可利用植入氧 (SIM0X)或是Smart Cut®技術來得到隔離,但並不以此 限制。半導體層(SOI層)64 —般是厚度小於約1〇〇〇 A的矽 材料。埋藏絕緣層6 2 —般是由氧化矽所構成。接著,在 導體層64上形成一淺溝槽隔離層66以隔離出一主動區j汽 溝槽隔離層與埋藏絕緣層是形成連續之絕緣層。 义 然後,如第2B圖所示,在半導體層64上形成一閘極結 。閘極結構G是由閘極介電層67、閘極電極68及閘極遮 蔽層6 9所構成。其中,閘極介電層6 7可由氮化矽' 氧氮化 矽' 或是高κ的介電材料所構成,閘極電極68可為複晶矽 層或金屬層,閘極遮蔽層6 9可為氮化矽層或二氧化矽層, 但並不以此為限制。 e 、、其次,如第2C圖所示,於半導體層64上形成擴展源/ ^及極(source and drain extensi〇ns)74。擴展源 / 汲極 /可利用離子植入法(Extensi〇n 來完成。之 後,於閘極結構G兩側侧壁形成閘極絕緣側壁層7 2,閘極 絕緣側壁層72可為氧化矽層或氮化矽層。 。然後,如第2D圖所示,以閘極絕緣側壁層72作為罩幕 ^蝕刻半導體層64至該埋藏絕緣層62以形成源/汲極開口 制^回蝕刻半導體層64之製程係利用,如非等向性乾蝕刻 衣耘或反應離子蝕刻(Reactive i〇ri etching,RIE)製 五、發明說明(5) 程,但並不以此為限制。 、取後’如第2Ε圖所示,於源/汲極區開口 76形成金屬 :、/及^極7 8。金屬源/汲極7 8可由氮化鈦層8 〇及鎢層8 2所構 ,氮化鈦層8 0可藉由低壓化學氣相沉積或電漿促進化學 2沉積而形《’鎢層82可藉由化學氣相沉積或物理氣相 /儿積而形成,但並不以此為限制。 在上述實施例之後尚可施行傳統形成金屬接觸插塞之 W以—絕緣層、定義接觸窗開口及形成導電層等步 ~以元成金屬接觸插塞。 切换ί發明之實施例利用自行對準金屬源/汲極取代傳统 没極’其所須之活化溫度是在7。。代傳逹充 摻雜源/汲極之900_110(rc,再者,金屬源 二私阻亦低於傳統矽摻雜源/汲極5因 未以下之極大型積體電路元 k用於0·1被 統之擴展源/汲極使得亓杜M @ / k •貝苑例亦維持傳 久4上便侍兀件特性可與有办 %例之後續形成金屬彡 6 丁相奋。本貫 而不會有日立公司fHit h 程序可利用傳統之方法, 與接觸插塞一體成型.二而Ltd.』= 又主 < 結構而產生尚的偶奋雷女+ k I? -大t本發明已以較佳實施例揭露如上,缺盆並非:。 限疋本發明,任何 …、其亚非用以 和範圍内,當可作: ^ t、’在不脫離本發明之精神 範圍當視後附之申;專利::,名因此本發明之保護 甲明寻利靶圍所界定者為準。Silicon doped source / drain to reduce activation temperature and reduce parasitic resistance. Please refer to FIG. 2A, a buried insulating layer 62 and a semiconductor layer 64 are formed on a semiconductor substrate 60. In this embodiment, a wafer with a stone evening (S0I) on an insulator is used as an example. As a starting material, implanted oxygen (SIM0X) or Smart Cut® technology can be used for isolation, but it is not limited to this. The semiconductor layer (SOI layer) 64 is generally a silicon material having a thickness of less than about 1,000 A. The buried insulating layer 6 2 is generally composed of silicon oxide. Next, a shallow trench isolation layer 66 is formed on the conductor layer 64 to isolate an active region. The trench isolation layer and the buried insulating layer form a continuous insulating layer. A gate junction is then formed on the semiconductor layer 64 as shown in FIG. 2B. The gate structure G is composed of a gate dielectric layer 67, a gate electrode 68, and a gate shielding layer 69. Among them, the gate dielectric layer 67 may be composed of silicon nitride 'silicon oxynitride' or a high-k dielectric material, the gate electrode 68 may be a polycrystalline silicon layer or a metal layer, and the gate shielding layer 6 9 It can be a silicon nitride layer or a silicon dioxide layer, but it is not limited thereto. e. Second, as shown in FIG. 2C, source and drain extensions 74 are formed on the semiconductor layer 64. The extended source / drain / can be completed by ion implantation (Extension). After that, a gate insulating sidewall layer 72 is formed on both sides of the gate structure G, and the gate insulating sidewall layer 72 can be a silicon oxide layer. Or a silicon nitride layer. Then, as shown in FIG. 2D, the gate insulating sidewall layer 72 is used as a mask to etch the semiconductor layer 64 to the buried insulating layer 62 to form a source / drain opening and etch back the semiconductor layer. The process of 64 is made using, for example, anisotropic dry etching or reactive ion etching (Reactive ion etching (RIE)). 5. Description of the Invention (5) process, but it is not limited thereto. As shown in FIG. 2E, a metal: and / or a pole 78 are formed in the source / drain region opening 76. The metal source / drain 78 can be composed of a titanium nitride layer 80 and a tungsten layer 82, and nitrided. The titanium layer 80 can be formed by low-pressure chemical vapor deposition or plasma-assisted chemical 2 deposition. The tungsten layer 82 can be formed by chemical vapor deposition or physical vapor deposition, but is not limited thereto. After the above embodiments, the conventional method of forming a metal contact plug can be implemented: an insulating layer, a contact window opening, and a formation. The electrical layer is equal to the step of forming a metal contact plug. The embodiment of switching the invention uses a self-aligned metal source / drain to replace the traditional electrode. The required activation temperature is at 7 .... 900_110 (rc, source / drain), and the second source resistance of metal source is lower than traditional silicon doped source / drain 5 due to the extremely large integrated circuit element k for the extended source of 0 · 1 / Dip pole makes 亓 DU M @ / k • Bei Yuan also maintains the characteristics of the server for 4 years and can work with the subsequent formation of metal 彡 6 Ding. There is no fHit h program from Hitachi. The traditional method can be used to form the contact plug in one piece. Er Er Ltd. == master < structure and still have a strong female + k I?-Large t The present invention has been disclosed as above with a preferred embodiment, The lack of pots is not limited to the present invention. Any ..., its sub-African uses and scope, can be used as: ^ t, 'without departing from the spirit and scope of the present invention; Therefore, the protection of Jiaming profit-seeking target range of the present invention shall prevail.

0503-5957TWF-ptd0503-5957TWF-ptd

Claims (1)

492084 六、申請專利範圍 1 · 一種具有自行對準金屬源/汲極之半導體元件的製 造方法,包括下列步驟: 在半導體基底上形成一埋藏絕緣層及一半導體層; 在該半導體層之既定位置形成一淺溝槽隔離層以隔離 出一主動區,該淺溝槽隔離層與該埋藏絕緣層係形成連續 之絕緣層; 在該半導體層上形成一閘極結構; 於該閘極結構兩側側壁形成閘極絕緣側壁層; 以該閘極絕緣側壁層作為罩幕回蝕刻該半導體層至該 埋藏絕緣層以形成源/汲極開口;以及 於該源/汲極區開口形成金屬源/汲極。 2. 如申請專利範圍第1項所述之方法,其中,更包括 在形成該閘極結構後於該半導體層上利用離子植入法形成 擴展源/;及極。 3. 如申請專利範圍第1項所述之方法,其中,該閘極 結構是由閘極介電層、複晶矽層及氮化矽遮蔽層所構成。 4. 如申請專利範圍第1項所述之方法,其中,該閘極 絕緣側壁層是氧化秒層或氮化碎層。 5. 如申請專利範圍第1項所述之方法,其中,回蝕刻 該半導體層係利用非等向性乾蝕刻製程。 6. 如申請專利範圍第1項所述之方法,其中,該金屬 源/沒極是由氮化鈦層及鎢層所構成。 7. —種具有自行對準金屬源/汲極之半導體元件的製 造方法,包括下列步驟:492084 VI. Application Patent Scope 1 · A method for manufacturing a semiconductor device with self-aligned metal source / drain, including the following steps: forming a buried insulating layer and a semiconductor layer on a semiconductor substrate; at a predetermined position of the semiconductor layer Forming a shallow trench isolation layer to isolate an active area, the shallow trench isolation layer and the buried insulating layer forming a continuous insulating layer; forming a gate structure on the semiconductor layer; on both sides of the gate structure A gate insulating sidewall layer is formed on the sidewall; the semiconductor insulating layer is etched back to the buried insulating layer using the gate insulating sidewall layer as a mask to form a source / drain opening; and a metal source / drain is formed in the source / drain region opening pole. 2. The method according to item 1 of the patent application scope, further comprising forming an extended source /; and an electrode on the semiconductor layer by ion implantation after forming the gate structure. 3. The method according to item 1 of the scope of patent application, wherein the gate structure is composed of a gate dielectric layer, a polycrystalline silicon layer, and a silicon nitride shielding layer. 4. The method according to item 1 of the scope of patent application, wherein the gate insulating sidewall layer is an oxide second layer or a nitrided layer. 5. The method according to item 1 of the scope of patent application, wherein the semiconductor layer is etched back using an anisotropic dry etching process. 6. The method according to item 1 of the scope of patent application, wherein the metal source / electrode is composed of a titanium nitride layer and a tungsten layer. 7. A method of manufacturing a semiconductor device with a self-aligned metal source / drain, including the following steps: 0503-5957TWF-ptd 第9頁 492084 六、申請專利範圍 在半導體基底上形成一埋藏絕緣層及一半導體層; 在該半導體層之既定位置形成一淺溝槽隔離層以隔離 岀一主動區,該淺溝槽隔離層與該埋藏絕緣層係形成連續 之絕緣層; 在該半導體層上形成一閘極結構; 於該半導體層上形成擴展源/汲極。 於該閘極結構兩側側壁形成閘極絕緣側壁層; 以該閘極絕緣側壁層作為罩幕回蝕刻該半導體層至該 埋藏絕緣層以形成源/汲極開口;以及 於該源/汲極區開口形成金屬源/汲極。 8. 如申請專利範圍第7項所述之方法,其中,形成該 擴展源/汲極是利用離子植入法來完成。 ‘ 9. 如申請專利範圍第7項所述之方法,其中,該閘極 結構是由閘極介電層、複晶矽層及氮化矽遮蔽層所構成。 1 〇.如申請專利範圍第7項所述之方法,其中,該閘極 絕緣侧壁層是氧化矽層或氮化矽層。 Π .如申請專利範圍第7項所述之方法,其中,回蝕刻 該半導體層係利用非等向性乾蝕刻製程或反應離子蝕刻製 程。 1 2.如申請專利範圍第7項所述之方法,其中,該金屬 源/汲極是由氮化鈦層及鎢層所構成。0503-5957TWF-ptd Page 9 492084 6. The scope of the patent application forms a buried insulating layer and a semiconductor layer on a semiconductor substrate; a shallow trench isolation layer is formed at a predetermined position of the semiconductor layer to isolate a first active region. The shallow trench isolation layer and the buried insulating layer form a continuous insulating layer; a gate structure is formed on the semiconductor layer; and an extended source / drain is formed on the semiconductor layer. Forming a gate insulating sidewall layer on both side walls of the gate structure; using the gate insulating sidewall layer as a mask to etch back the semiconductor layer to the buried insulating layer to form a source / drain opening; and at the source / drain The region opening forms a metal source / drain. 8. The method according to item 7 of the scope of patent application, wherein forming the extended source / drain is performed by ion implantation. ‘9. The method as described in item 7 of the scope of patent application, wherein the gate structure is composed of a gate dielectric layer, a polycrystalline silicon layer, and a silicon nitride shielding layer. 10. The method according to item 7 of the scope of patent application, wherein the gate insulating sidewall layer is a silicon oxide layer or a silicon nitride layer. Π. The method according to item 7 of the scope of patent application, wherein the semiconductor layer is etched back using an anisotropic dry etching process or a reactive ion etching process. 1 2. The method according to item 7 of the scope of patent application, wherein the metal source / drain is composed of a titanium nitride layer and a tungsten layer. 0503-5957TW?-ptd 第10頁0503-5957TW? -Ptd Page 10
TW90105815A 2001-03-13 2001-03-13 Manufacturing method of the semiconductor device having self-aligned metal source/drain TW492084B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90105815A TW492084B (en) 2001-03-13 2001-03-13 Manufacturing method of the semiconductor device having self-aligned metal source/drain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90105815A TW492084B (en) 2001-03-13 2001-03-13 Manufacturing method of the semiconductor device having self-aligned metal source/drain

Publications (1)

Publication Number Publication Date
TW492084B true TW492084B (en) 2002-06-21

Family

ID=21677625

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90105815A TW492084B (en) 2001-03-13 2001-03-13 Manufacturing method of the semiconductor device having self-aligned metal source/drain

Country Status (1)

Country Link
TW (1) TW492084B (en)

Similar Documents

Publication Publication Date Title
TWI222711B (en) Chip incorporating partially-depleted, fully-depleted and multiple-gate transistors and method of fabricating the multiple-gate transistor
JP5274594B2 (en) CMOS structure and method using a self-aligned dual stress layer
TWI342601B (en) Ultra-thin soi vertical bipolar transistors with an inversion collector on thin-buried oxide(box) for low substrate-bias operation and methods thereof
JP4001866B2 (en) Method for limiting divot formation after shallow trench isolation (STI) process
US7701010B2 (en) Method of fabricating transistor including buried insulating layer and transistor fabricated using the same
TWI324787B (en) Semiconductor device with tensile strain silicon introduced by compressive material in a buried oxide layer
TWI250639B (en) Self-aligned planar double-gate process by amorphization
JP2002141420A (en) Semiconductor device and manufacturing method of it
US8492803B2 (en) Field effect device with reduced thickness gate
TW200522348A (en) Advanced strained-channel technique to improve CMOS performance
JP5224769B2 (en) CMOS structure including a three-dimensional active region
US7446007B2 (en) Multi-layer spacer with inhibited recess/undercut and method for fabrication thereof
US6417056B1 (en) Method to form low-overlap-capacitance transistors by forming microtrench at the gate edge
TWI818928B (en) Method for fabricating semiconductor device
TWI226667B (en) Transistor fabrication method
TW200524156A (en) Devices with high-k gate dielectric
US6979867B2 (en) SOI chip with mesa isolation and recess resistant regions
TWI224353B (en) Semiconductor-on-insulator (SOI) device with hyperabrupt source/drain junctions
US6642536B1 (en) Hybrid silicon on insulator/bulk strained silicon technology
WO2014131239A1 (en) Semiconductor component and manufacturing method therefor
TW492084B (en) Manufacturing method of the semiconductor device having self-aligned metal source/drain
CN110858544A (en) Semiconductor device and method of forming the same
CN110047741A (en) Semiconductor structure and forming method thereof
US6919250B2 (en) Multiple-gate MOS device and method for making the same
CN104425231B (en) A kind of preparation method of semiconductor devices

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent