TW484210B - Manufacturing method of oxide-nitride-oxide layer - Google Patents

Manufacturing method of oxide-nitride-oxide layer Download PDF

Info

Publication number
TW484210B
TW484210B TW90111331A TW90111331A TW484210B TW 484210 B TW484210 B TW 484210B TW 90111331 A TW90111331 A TW 90111331A TW 90111331 A TW90111331 A TW 90111331A TW 484210 B TW484210 B TW 484210B
Authority
TW
Taiwan
Prior art keywords
layer
oxide layer
scope
manufacturing
patent application
Prior art date
Application number
TW90111331A
Other languages
Chinese (zh)
Inventor
Kuo-Hua Chang
Hsiang-Lan Lung
Fuh-Cheng Jong
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW90111331A priority Critical patent/TW484210B/en
Application granted granted Critical
Publication of TW484210B publication Critical patent/TW484210B/en

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Non-Volatile Memory (AREA)

Abstract

This invention provides a manufacturing method of oxide-nitride-oxide (ONO) layer. A first oxide layer is formed on a given substrate and a rapid thermal nitridation (RTN) process is performed to anneal the first oxide layer and simultaneously nitrify the surface of the first oxide layer. Subsequently, a low pressure chemical vapor deposition (LPCVD) process is carried out to form a silicon nitride layer onto the first oxide layer. Finally, a second oxide layer is formed on the nitride layer to create ONO layer from the second oxide layer, the nitride layer and the first oxide layer.

Description

484210 五、發明說明(1) 發明之領域 本發明係提供一種氮化物唯讀記憶體之0N0層的製作 方法。 背景說明 唯讀記憶體(Read only memory, ROM)元件是一種用 來儲存資料的半導體元件,由複數個記憶單元(memory c e i 1 )所組成,如今已廣泛應用於電腦等各式產品的資料 儲存與記憶。而依資料儲存方式,可將唯讀記憶體分為覃 幕式唯讀記憶體(m a s k R 0 Μ )、可程式化唯讀記憶體 (Programmable ROM, PROM)、可抹除且可程式化唯讀記憶 體(Erasable programmable ROM,EPROM)、可電除且可程 式 4匕唯讀言己 體(Electrically erasable programmable ROM, EEPR0M)等數種。 不同於其他唯讀記憶體使用多晶矽或金屬之浮動閘極 儲存電荷,氮化物唯讀記憶體(n i t r i d e r e a d ο η 1 y m e m o r y, N R 0 M )之主要特徵為使用氮化矽之絕緣介電層作 為電荷儲存介質(charge trapping medium)。由於氮化石夕 層具有高度之緻密性,因此可使經由M0S電晶體隧穿 (tunneling)進入至氮化矽層中的熱電子陷於(trap)其 中,進而形成一非均勻之濃度分佈,以加快讀取資料速度484210 V. Description of the invention (1) Field of the invention The present invention provides a method for manufacturing a 0N0 layer of a nitride read-only memory. Background Description A read only memory (ROM) device is a semiconductor device used to store data. It is composed of multiple memory cells (memory cei 1). Nowadays, it is widely used in data storage of computers and other products. And memory. According to the data storage method, the read-only memory can be divided into Qin curtain read-only memory (mask R 0 Μ), programmable ROM (programmable ROM, PROM), erasable and programmable ROM Erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPR0M), and several other types. Unlike other read-only memories that use polycrystalline silicon or metal floating gates to store charge, the main feature of nitride read-only memory (nitrideread ο η 1 ymemory, NR 0 M) is the use of an insulating dielectric layer of silicon nitride as the charge Storage medium (charge trapping medium). Due to the high density of the nitride stone layer, hot electrons tunneled into the silicon nitride layer through the MOS transistor can be trapped therein, thereby forming a non-uniform concentration distribution to speed up Read data speed

484210 五、發明說明(2) 並避免漏電流。 凊參閱圖一,圖一為習知氮化物唯讀記憶體的標、準結 構示意圖。半導體晶片10包含有一P型矽基底12,兩個N型 離子摻雜區14、16位於矽基底12表面,一由底氧化層18、 氮化矽層20、上氧化層22所構成的0N0介電結構24位於矽 基底1 2表面,以及一閘極導電層26設於0Ν0介電結構2 4之 上。請參考圖二與圖三,圖二與圖三為習知應用圖一之標 準結構所製作之氮化物唯讀記憶體的方法示意圖。如圖二 所示’習知製作氮化物唯讀記憶體閘極的方法是先提供一 包含有Ρ型矽基底(silicon base)32之半導體晶片30,接 著利用一高溫氧化(high temperature oxidation)來形成 一 50〜150埃(angstrom,A)的氧化層於石夕基底32表面,用 來當作底氧化層3 4。隨後進行一低壓化學氣相沈積(1 ow chemical pressure vapor deposition, LPCVD)製程,於 底氧化層34表面沈積一厚度為50〜15〇埃(A)之氮化矽層 3 6。最後於9 5 0 t:之高溫環境中,進行一回火製程3 0分鐘 以修補氮化石夕層3 6的結構,並通入水蒸氣以進行濕式氧化 而在氮化石夕層36表面形成一厚度為5〇〜150埃(A)之含氧 石夕化物(silicon oxy-nitride)層,作為上氧化層38。其 中’形成於石夕基底32表面上之底氧化層34、氮化石夕層36以 及上氧化層3 8,便合稱為0 N 0介電結構4 〇。 接著進行一黃光製程以及蝕刻製程,以於上氧化層3 8484210 V. Description of the invention (2) and avoid leakage current.凊 Refer to Figure 1. Figure 1 is a schematic diagram of the standard and quasi-structure of a conventional nitride read-only memory. The semiconductor wafer 10 includes a P-type silicon substrate 12, two N-type ion-doped regions 14, 16 are located on the surface of the silicon substrate 12, and a 0N0 dielectric composed of a bottom oxide layer 18, a silicon nitride layer 20, and an upper oxide layer 22. The electrical structure 24 is located on the surface of the silicon substrate 12, and a gate conductive layer 26 is disposed on the ON0 dielectric structure 24. Please refer to FIG. 2 and FIG. 3. FIG. 2 and FIG. 3 are schematic diagrams of the conventional method of nitride read-only memory using the standard structure of FIG. As shown in Figure 2, the conventional method for making nitride read-only memory gates is to first provide a semiconductor wafer 30 including a P-type silicon base 32, and then use a high temperature oxidation to An oxide layer of 50 to 150 angstroms (A) is formed on the surface of the Shixi substrate 32, and is used as a bottom oxide layer 34. A low-pressure chemical vapor deposition (LPCVD) process is subsequently performed to deposit a silicon nitride layer 3 6 having a thickness of 50 to 150 Å (A) on the surface of the bottom oxide layer 34. Finally, in a high temperature environment of 950 ton, a tempering process is performed for 30 minutes to repair the structure of the nitrided layer 36, and water vapor is passed in for wet oxidation to form a surface of the nitrided layer 36. A silicon oxy-nitride layer having a thickness of 50 to 150 angstroms (A) is used as the upper oxide layer 38. Among them, the bottom oxide layer 34, the nitride nitride layer 36, and the upper oxide layer 38 formed on the surface of the Shi Xi substrate 32 are collectively referred to as a 0 N 0 dielectric structure 40. Next, a yellow light process and an etching process are performed for the upper oxide layer 3 8

484210 五、發明說明(3) 以及氮化矽層3 6中形成一閘極圖案。隨後再進行一離子佈 植製程,於矽基底32中形成複數個摻雜區42,以作為M0S 電晶體的沒極與源極。然後利用一熱氧化法(t h e r m a 1 , 〇x i d a t i ο n )於源極/沒極上方表面形成一場氧化層4 4,作 為各氮化矽層3 6之間的隔離。最後,再沉積一摻雜多晶矽 層4 6以作為閘極導電層,如圖三所示。 習知形成上氧化層之製作方法,其形成過程需要較高 的溫度熱預算以於氮化物表面長出一氧化層,因此可能導 致閘極氧化層的分解而影響N R 0 Μ的品質可靠度。此外,由 於石夕基底與底氧化層介面的不連續性以及介面上的未飽和 鍵(unsaturated bondings),因it匕有部分介面陷入電荷 (trapped charge)存在於底氧化層中,進而影響起始電壓 (threshold voltage)的分布。 發明概述 因此,本發明之主要目的即在提供一改善底氧化層電 性的0 N 0層製作方法,以提昇氮化物唯讀記憶體之寫入與 抹除效率、耐久性(endurance)以及可靠度 (reliability) 〇 在本發明的最佳實施例中,是先在半導體晶片的矽基 底表面形成一第一氧化層,接著進行一快速加熱氮化484210 V. Description of the invention (3) and a gate pattern is formed in the silicon nitride layer 36. Subsequently, an ion implantation process is performed to form a plurality of doped regions 42 in the silicon substrate 32 as the anode and source of the MOS transistor. Then, a thermal oxidation method (t h e r m a 1, 0 x i d a t i ο n) is used to form a field oxide layer 4 4 on the upper surface of the source / non-electrode as an isolation between the silicon nitride layers 36. Finally, a doped polycrystalline silicon layer 46 is deposited as the gate conductive layer, as shown in FIG. The conventional manufacturing method for forming the upper oxide layer requires a higher temperature thermal budget for the formation of an oxide layer on the surface of the nitride, which may lead to the decomposition of the gate oxide layer and affect the quality reliability of N R 0 Μ. In addition, due to the discontinuity of the interface between the Shixi substrate and the bottom oxide layer and the unsaturated bonding on the interface, part of the interface of the it is trapped in the bottom oxide layer, which affects the initiation. The distribution of voltage (threshold voltage). SUMMARY OF THE INVENTION Therefore, the main object of the present invention is to provide a 0 N 0 layer manufacturing method for improving the electrical properties of the bottom oxide layer, so as to improve the write and erase efficiency, endurance, and reliability of nitride read-only memory. Reliability 〇 In the preferred embodiment of the present invention, a first oxide layer is formed on the surface of the silicon substrate of the semiconductor wafer first, and then a rapid heating nitridation is performed.

484210 五、發明說明(4) (rapid thermal nitridation, RTN)製程,以對該第一氧 化層進行一回火處理(annealing),並同時氮化該第一乳 化層的表面。隨後進行一低壓化學氣相沈積 、 (low-pressure chemical vapor deposition, LPCVD) ’ 以於該第一氧化層表面形成一氮化層。最後於該氮化層表 面形成一第二氧化層,以使該第二氧化層、該氮化層以及 該第一氧化層構成該0N0層。 I g 乙 t 1 iin 氧 S δ 快11底 laη 一a&、ad 用nn底ni鍵 利(a基ha懸 是理矽ec的。 明處於(m間質 發火積力之品 本回聚應底電 於一此械基介 由行因機矽的 進,其與層 層面放化化484210 V. Description of the invention (4) (rapid thermal nitridation (RTN)) process, to perform an annealing process on the first oxide layer, and simultaneously nitride the surface of the first emulsion layer. A low-pressure chemical vapor deposition (LPCVD) is subsequently performed to form a nitride layer on the surface of the first oxide layer. Finally, a second oxide layer is formed on the surface of the nitride layer, so that the second oxide layer, the nitride layer, and the first oxide layer constitute the ON0 layer. I g B t 1 iin Oxygen S δ Fast 11 base laη a a & ad with nn base ni bond (a base ha suspension is rational silicon ec. Ming is in (m interstitial pyrotechnical product of the product back to the reaction The ground power is transmitted through the mechanism of silicon through the mechanism, which is chemically related to the layers.

彳表釋氧氧 氧的以底底 底 导y , /層/彳於善 對化能在改 以氧子存而 ,底原和進 程化氮飽, 製氤之並} 化寺面,11(1 3 氮 介} b Γ S 發明之詳細說明 請參考圖四至圖六,圖四至圖六為本發明製作氮化物 唯讀記憶體之0 N 0層的方法示意圖。如圖四所示,本發明 之0N0層係製作於一半導體晶片50之矽基底52或矽覆絕緣 (silicon-on-insulator,SOI)基底(未顯示)表面。首先 利用一熱氧化製程來氧化基底52之矽表面,以形成一厚度 介於40埃至1〇〇埃(angStrom)之底氧化層54,以作為一氮 化物唯讀記憶體(nitride read only memory, NR0M)的通The 彳 table releases oxygen and oxygen, and the bottom guides y, / layers / 善 善, and the good energy is changing to the existence of oxygen, the base and the process are nitrogen-saturated, and the system is combined} Huasi noodle, 11 ( 1 3 Nitrogen} b Γ S For a detailed description of the invention, please refer to FIGS. 4 to 6, which are schematic diagrams of a method for fabricating a 0 N 0 layer of a nitride read-only memory according to the present invention. As shown in FIG. 4, the present invention The 0N0 layer is fabricated on the surface of a silicon substrate 52 or a silicon-on-insulator (SOI) substrate (not shown) of a semiconductor wafer 50. First, a silicon oxide surface of the substrate 52 is oxidized by a thermal oxidation process to form A bottom oxide layer 54 having a thickness between 40 angstroms and 100 angstroms (angstrom) is used as a communication channel for a nitride read only memory (NR0M).

484210 五、發明說明(5) 道氧化(tunneling oxide)層。該熱氧化製程是以氧氣 (02)以及T-LC(C12)作為前趨氣體(precursor),然後於一 含有氮氣以及氧氣(N2/02)且溫度介於攝氏800度(。〇的環 境中進行。 接下來對底氧化層54進行一快速加熱氮化(rap id thermal nitridation, RTN)製程。該製程是於攝氏800〜 1050 °C的溫度之間通入氧化亞氮(nitrous oxide, N20)或 一氧化氮(nitric oxide, NO)作為反應氣體,製程歷時約 60秒’以對底氧化層54進行一回火處理(annealing),並 同時氮化底氧化層5 4的表面。例如在9 0 0 °C的溫度下通入 氧化亞氮(N20)或一氧化氮(NO)作為反應氣體,或者於95〇 °C的溫度下通入氧化亞氮(N2〇)或一氧化氮(NO)作為反應 氣體,並歷時約6 0秒。除了快速加熱氮化製程以及回火處 理之外,亦可利用一氮電漿製程、一氮離子佈值製程或是 一含氮溶液浸泡製程來氮化該底氧化層5 4表面。 然後如圖五所示,進行一低壓化學氣相沈積 (low-pressure chemical vapor deposition,LPCVD)製 程’以於氧化層54表面形成一氮化層56。該製程之溫度與 壓力條件分別為攝氏7 0 0 °C以及0 · 6托耳(T 〇 r r ),並且通入 二氯矽烷(dichlorosilane, SiCl2H2, DCS)、氨氣 (ammonia, NM以及氮氣(I)作為反應氣體,以於底氧化 層54表面形成一厚度介於110埃至150埃(angstrom)之氮化484210 V. Description of the invention (5) Tunneling oxide layer. The thermal oxidation process uses oxygen (02) and T-LC (C12) as the precursor gas (precursor), and then in an environment containing nitrogen and oxygen (N2 / 02) at a temperature of 800 degrees Celsius (.0 ° C). Next, a rapid thermal nitridation (RTN) process is performed on the bottom oxide layer 54. This process is performed by passing nitrous oxide (N20) between 800 ° C and 1050 ° C. Or nitric oxide (NO) as a reaction gas, the process lasts about 60 seconds to perform an annealing treatment on the bottom oxide layer 54 and simultaneously nitride the surface of the bottom oxide layer 54. For example, at 9 Pass nitrous oxide (N20) or nitric oxide (NO) as the reaction gas at a temperature of 0 0 ° C, or pass nitrous oxide (N2O) or nitric oxide (NO) at a temperature of 95 ° C ) As a reaction gas, which lasts about 60 seconds. In addition to the rapid heating nitriding process and tempering treatment, a nitrogen plasma process, a nitrogen ion cloth value process, or a nitrogen-containing solution soaking process can be used for nitrogen. Surface of the bottom oxide layer 54. Then, as shown in FIG. A low-pressure chemical vapor deposition (LPCVD) process is used to form a nitride layer 56 on the surface of the oxide layer 54. The temperature and pressure conditions of the process are 700 ° C and 0.6 Torr respectively. (Torr), and dichlorosilane (SiCl2H2, DCS), ammonia (ammonia, NM, and nitrogen (I)) as a reaction gas to form a thickness of 110 angstroms on the surface of the bottom oxide layer 54 Nitriding up to 150 angstroms

484210 五、發明說明(6) 層5 6 〇 最後如圖六所示,於一含有水蒸氣(steam)且溫度為 攝氏1 0 0 0度(°C )的環境中進行另一熱氧化製程來氧化氮化 層56表面,以形成一厚度約為90埃(angstrom)之上氧化層 58,以使上氧化層58、氮化層56以及底氧化層54構成一氮 化物唯讀記憶體之0 N 0層6 0。 本發明是利用一快速加熱氮化製程,以對底氧化層進 行一 E7火處理(annealing)並氮化底氧化層的表面,因此 可以改善氧化層品質,以減少底氧化層的電子捕捉效應並 縮小起始電壓分布,增進底氧化層之介電性質。 以 相較於習知氮化物唯讀記憶體之〇N〇層製作方法 t明係=用一快速加熱氮化製程來改善底氧化層品質 ^小平可電壓飄移(flat band voltage shift)以及減小 福市漢。右電壓(Fowier — N〇rdheim voltage)變化,進而增 $該氣化物唯讀記憶體之寫入與抹除效率、耐久性以及可 f度。此外’本發明之方法亦可以應用於一般之電容等元 件之0N0層的製備程序中。 專引^ ΐ =述僅為本發明之較佳實施例,凡依本發明申請 蓋範圍。 < 勺4熒化與修飾,皆應屬本發明專利之涵484210 V. Description of the invention (6) Layer 5 6 〇 Finally, as shown in Figure 6, another thermal oxidation process is performed in an environment containing steam and a temperature of 100 ° C (° C). The surface of the nitride layer 56 is oxidized to form an upper oxide layer 58 having a thickness of about 90 angstroms, so that the upper oxide layer 58, the nitride layer 56, and the bottom oxide layer 54 constitute a nitride read-only memory. N 0 layer 6 0. The invention uses a rapid heating nitriding process to perform an E7 annealing on the underlying oxide layer and nitride the surface of the underlying oxide layer. Therefore, the quality of the oxide layer can be improved, and the electron trapping effect of the underlying oxide layer can be reduced. Reduce the initial voltage distribution and improve the dielectric properties of the bottom oxide layer. Compared with the conventional method of manufacturing a 0N layer of conventional nitride read-only memory, the Ming system = using a rapid heating nitriding process to improve the quality of the bottom oxide layer ^ Xiaoping flat band voltage shift and reduction Fushi Han. The change in the right voltage (Fowier — Nordheim voltage) further increases the write and erase efficiency, durability, and feasibility of the gaseous read-only memory. In addition, the method of the present invention can also be applied to a procedure for preparing a 0N0 layer of a general capacitor and the like. The specific reference ^ ΐ = is only a preferred embodiment of the present invention, and the scope of application is covered according to the present invention. < Fluorescence and modification of spoon 4 should be covered by the patent of the present invention

$ 9頁 484210 圖式簡單說明 圖示之簡單說明 圖一為習知氮化物唯讀記憶體的標準結構示意圖、。 圖二與圖三為習知製作氮化物唯讀記憶體的方法示意 圖。 圖四至圖六為本發明製作氮化物唯讀記憶體之0 N 0層 的方法示意圖。 圖示之符號說明 1 0 ^ 30 道 體 曰 3曰 片 22 ^ 38 上 氧 化 層 1 2 '32 矽 基 底 24 、40 0 N 0介電結構 14、1 6 、42 摻 雜 區 26 、46 閘 極 導 電層 1 8 '34 底 氧 化 層 44 場 氧 化 層 9 0 >36 氮 化 矽 層 50 半 導 體 晶 片 52 矽 基 底 54 底 氧 化 層 56 氮 化 層 58 上 氧 化 層 60 ΟΝΟ層$ 9 pages 484210 Simple illustration of the diagram Simple illustration of the diagram Figure 1 is a schematic diagram of the standard structure of a conventional nitride read-only memory. Figures 2 and 3 are schematic diagrams of conventional methods for making nitride read-only memory. FIG. 4 to FIG. 6 are schematic diagrams of a method for fabricating a 0 N 0 layer of a nitride read-only memory according to the present invention. Symbols shown in the figure: 1 0 ^ 30 channels, 3 spheres, 22 ^ 38, upper oxide layer 1 2 '32, silicon substrate 24, 40 0 N 0 dielectric structure 14, 16, 42 doped regions 26, 46 gate Conductive layer 1 8 '34 bottom oxide layer 44 field oxide layer 9 0 > 36 silicon nitride layer 50 semiconductor wafer 52 silicon substrate 54 bottom oxide layer 56 nitride layer 58 upper oxide layer 60 ONO layer

第10頁Page 10

Claims (1)

484210 六、申請專利範圍 1. 一種0N0 (oxide-nitride-oxide)層的製作方法,該 製作方法包含有下列步驟: 提供一基底; 、 於該基底表面形成一第一氧化層; 進行一快速力口熱氮 4匕(rapid thermal nitridation, R T N )製程,以對該第一氧化層進行一回火處理 (annealing),並同時氮化該第一氧化層的表面; 於該第一氧化層表面形成一氮化層;以及 於該氮化層表面形.成一第二氧化層,以使該第二氧化 層、該氮化層以及該第一氧化層構成該0 iN 0層。 2. 如申請專利範圍第1項之製作方法,其中該基底係為 一石夕基底或一石夕覆絕緣(silicon-on-insulator, SOI)基 底。 3. 如申請專利範圍第2項之製作方法,其中該第一氧化 層係利用一第一熱氧化製程來氧化該基底之矽表面所形成 的,且該第一氧化層的厚度係介於4 0埃至1 0 0埃 (angstrom)之間 〇 4. 如申請專利範圍第3項之製作方法,其中該第一熱氧 化製程係進行於一含有氮氣以及氧氣(N2/02)且溫度介於攝 氏8 0 0度(r)的環境中。484210 VI. Scope of patent application 1. A method for manufacturing an 0N0 (oxide-nitride-oxide) layer, the method includes the following steps: providing a substrate; forming a first oxide layer on the surface of the substrate; performing a rapid force A rapid thermal nitridation (RTN) process is performed to perform an annealing process on the first oxide layer and simultaneously nitride the surface of the first oxide layer; forming on the surface of the first oxide layer A nitride layer; and forming a second oxide layer on the surface of the nitride layer, so that the second oxide layer, the nitride layer, and the first oxide layer constitute the 0 iN 0 layer. 2. The manufacturing method according to item 1 of the patent application scope, wherein the substrate is a stone-on-insulator or silicon-on-insulator (SOI) substrate. 3. The manufacturing method of item 2 in the scope of patent application, wherein the first oxide layer is formed by oxidizing the silicon surface of the substrate using a first thermal oxidation process, and the thickness of the first oxide layer is between 4 0 angstrom to 100 angstrom (angstrom) 04. For example, the manufacturing method of item 3 of the patent application scope, wherein the first thermal oxidation process is performed in a nitrogen and oxygen (N2 / 02) containing temperature between In an environment of 800 degrees Celsius (r). 484210 々、申請專利範圍 5. 如申請專利範圍第4項之製作方法,其中該第一熱氧 化製程的前趨氣體(precursor)為氧氣(02)以及 T-LC(C12)。 , 6. 如申請專利範圍第1項之製作方法,其中該快速加熱 氮化(RTN)製程歷時約60秒,且製程溫度介於攝氏8 0 0〜 1 0 5 0 °C之間,而該快速加熱氮化(RT N )製程的反應氣體為 氧化亞氮(nitrous oxide, N20)或一氧化氮(nitric oxide, NO) °484210 (1) Application scope of patent 5. For the method of making the patent application No. 4, the precursor of the first thermal oxidation process is oxygen (02) and T-LC (C12). 6. If the manufacturing method of item 1 of the scope of patent application, the rapid heating nitriding (RTN) process lasts about 60 seconds, and the process temperature is between 80 ° C to 105 ° C, and the The reaction gas for the rapid heating nitriding (RT N) process is nitrous oxide (N20) or nitric oxide (NO) ° 7. 如申請專利範圍第1項之製作方法,其中該氮化層的 厚度係介於110埃至150埃(angstrom)之間。 8. 如申請專利範圍第1項之製作方法,其中形成該氮化 層的方法係為一低壓化學氣相沈積(1 〇 w - p r e s s u r e chemical vapor deposition, LPCVD)。7. The manufacturing method according to item 1 of the scope of patent application, wherein the thickness of the nitrided layer is between 110 angstroms and 150 angstroms. 8. The manufacturing method of item 1 in the scope of the patent application, wherein the method for forming the nitrided layer is a low pressure chemical vapor deposition (100 w-p r e s s u r e chemical vapor deposition, LPCVD). 9. 如申請專利範圍第8項之製作方法,其中該低壓化學 氣相沈積(LPCVD)之製程溫度與壓力分別為攝氏7 0 0 °C以及 0.6托耳(Torr),且該低壓化學氣相沈積(LPCVD)的反應氣 體包含有二氯石夕烧(dichlorosilane, SiCl2H2, DCS)、氧 氣(ammon i a, N H3)以及氮氣(N2)。 l〇. 如申請專利範圍第1項之製作方法,其中該第二氧化9. For example, the manufacturing method of item 8 in the scope of patent application, wherein the process temperature and pressure of the low pressure chemical vapor deposition (LPCVD) are 700 ° C. and 0.6 Torr, respectively, and the low pressure chemical vapor phase The reaction gas for deposition (LPCVD) includes dichlorosilane (SiCl2H2, DCS), oxygen (ammon ia, N H3), and nitrogen (N2). l〇. The manufacturing method of item 1 in the scope of patent application, wherein the second oxidation 第12頁 484210 六、申請專利範圍 層係利用一第二熱氧化製程來氧化該氮化層表面所形成 的,且該第二氧化層的厚度約為90埃(angstrom)。 11. 如申請專利範圍第1 0項之製作方法,其中該第二熱氧 化製程係進行於一含有水蒸氣(steam)且溫度為攝氏1000 度(°C )的環境中。Page 12 484210 VI. Scope of patent application The layer is formed by oxidizing the surface of the nitrided layer by a second thermal oxidation process, and the thickness of the second oxide layer is about 90 angstroms. 11. The manufacturing method of item 10 in the scope of patent application, wherein the second thermal oxidation process is performed in an environment containing steam and a temperature of 1000 degrees Celsius (° C). 12. 如申請專利範圍第1項之製作方法,其中該第一氧化 層係用來當作一氮化物唯讀記憶體(n i t r i d e r e a d ο η 1 y meniory, N ROM)的通道氧化(tunneling oxide)層。 13. —種ΟΝΟ (oxide-nitride-oxide)層的製作方法,該 製作方法包含有下列步驟: 提供一基底; 於該基底表面形成一第一氧化層; 對該第一氧化層進行一表面處理; 於該第一氧化層表面形成一氮化層;以及 於該氮化層表面形成一第二氧化層,以使該第二氧化 層、該氮化層以及該第一氧化層構成該0 N 0層。12. The manufacturing method according to item 1 of the application, wherein the first oxide layer is used as a tunneling oxide layer of nitride read only memory (n 1 y meniory, N ROM). . 13. A method of manufacturing a ΟΝΟ (oxide-nitride-oxide) layer, the manufacturing method includes the following steps: providing a substrate; forming a first oxide layer on the surface of the substrate; and subjecting the first oxide layer to a surface treatment Forming a nitride layer on the surface of the first oxide layer; and forming a second oxide layer on the surface of the nitride layer so that the second oxide layer, the nitride layer, and the first oxide layer constitute the 0 N 0 layer. 14. 如申請專利範圍第1 3項之製作方法,其中該基底係為 一矽基底或一矽覆絕緣(SOI )基底。 15. 如申請專利範圍第1 4項之製作方法,其中該第一氧化14. The manufacturing method according to item 13 of the scope of patent application, wherein the substrate is a silicon substrate or a silicon-on-insulator (SOI) substrate. 15. The manufacturing method according to item 14 of the scope of patent application, wherein the first oxidation 第13頁 484210 六、申請專利範圍 層係利用一熱氧化製程來氧化5亥基底之碎表面所形成的, 用來當作氮化物唯讀記憶體(NR0M)的通道氧化(tunneling oxide)層,且該第一氧化層的厚度係介於40埃至100埃 (angstrom)之間 。 16·如申請專利範圍第1 5項之製作方法’其中該熱氧化製 程係進行於一含有氮氣以及氧氣(N2/〇2)且溫度介於攝氏 800度(。〇的環境中,而該熱氧化製程的前趨氣體 (precursor)為氧氣(〇2)以及T"~LC(C12)。 17. 如申請專到範圍弟1 3項之製作方法’其中該表面處理 包含有一回火處理(annealing),一氮電漿製程,一氮離 子佈值製程或是一含氮溶液浸泡製程。 18. 如申請專利範圍第1 了項之製作方法,其中該回火處理 係為一利用氧化亞氮(N20)或一氧化氮(NO)當作反應氣 體,且溫度介於攝氏8 0 0〜1 0 5 0 °C、歷時約6 0秒的快速加 熱氮化(RTN)製程。 19· 如申請專利範圍第1 3項之製作方法,其中該氮化層係 利用一低壓化學氣相沈積(L P C V D )所形成的,且該氮化層 的厚度係介於1 1 0埃至1 5 0埃(a n g s t r 〇 m )之間。 20. 如申請專利範圍第1 9項之製作方法,其中該低壓化學Page 13 484210 VI. The scope of the patent application layer is formed by using a thermal oxidation process to oxidize the broken surface of the substrate, which is used as a tunneling oxide layer of nitride read-only memory (NR0M). The thickness of the first oxide layer is between 40 angstroms and 100 angstroms. 16. The production method according to item 15 of the scope of the patent application, wherein the thermal oxidation process is performed in an environment containing nitrogen and oxygen (N2 / 〇2) and the temperature is between 800 degrees Celsius (° C), and the heat The precursor gases of the oxidation process are oxygen (〇2) and T " ~ LC (C12). 17. If you apply for the production method of item 13 of the scope, where the surface treatment includes an annealing treatment (annealing) ), A nitrogen plasma process, a nitrogen ion value process, or a nitrogen-containing solution soak process. 18. For the manufacturing method of item 1 in the scope of patent application, the tempering process is a process using nitrous oxide ( N20) or nitric oxide (NO) as a reactive gas, and a rapid heating and nitriding (RTN) process at a temperature between 800 ° C to 105 ° C and a duration of about 60 seconds. 19 · If applying for a patent The manufacturing method of the item 13 in the range, wherein the nitrided layer is formed by a low pressure chemical vapor deposition (LPCVD), and the thickness of the nitrided layer is between 110 angstroms and 150 angstroms (angstr. 〇m). 20. If the manufacturing method of item 19 in the scope of patent application, The low-pressure chemical 第14頁 484210 六、申請專利範圍 氣相沈積(LPCVD)之製程溫度與壓力分別為攝氏7 0 0 °C以及 6 0 0毫托耳(mTorr),且該低壓化學氣相沈積(LPCVD)的反 應氣體包含有二氣矽烷(SiCl2H2)、氨氣(NH3)以及氮氣 (N2)。 2 1. 如申請專利範圍第1 3項之製作方法,其中該第二氧化 層的厚度約為90埃(angstrom),且該第二氧化層係於一含 有水蒸氣(s t e a m )且溫度約為攝氏1 0 0 0度(°C )的環境中, 氧化該氮化層表面所形成的。Page 14 484210 VI. Patent application scope The process temperature and pressure of LPCVD are 700 ° C and 600 millitorr (mTorr) respectively, and the low pressure chemical vapor deposition (LPCVD) The reaction gas includes digas silane (SiCl2H2), ammonia (NH3), and nitrogen (N2). 2 1. The production method according to item 13 of the scope of patent application, wherein the thickness of the second oxide layer is about 90 angstroms, and the second oxide layer is formed of a steam containing steam at a temperature of about 90 angstroms. It is formed by oxidizing the surface of the nitrided layer in an environment of 100 degrees Celsius (° C). 第15頁Page 15
TW90111331A 2001-05-11 2001-05-11 Manufacturing method of oxide-nitride-oxide layer TW484210B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90111331A TW484210B (en) 2001-05-11 2001-05-11 Manufacturing method of oxide-nitride-oxide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90111331A TW484210B (en) 2001-05-11 2001-05-11 Manufacturing method of oxide-nitride-oxide layer

Publications (1)

Publication Number Publication Date
TW484210B true TW484210B (en) 2002-04-21

Family

ID=21678220

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90111331A TW484210B (en) 2001-05-11 2001-05-11 Manufacturing method of oxide-nitride-oxide layer

Country Status (1)

Country Link
TW (1) TW484210B (en)

Similar Documents

Publication Publication Date Title
JP5518880B2 (en) Manufacturing method of semiconductor device
US8524589B2 (en) Plasma treatment of silicon nitride and silicon oxynitride
US7479425B2 (en) Method for forming high-K charge storage device
US7115469B1 (en) Integrated ONO processing for semiconductor devices using in-situ steam generation (ISSG) process
US9105740B2 (en) SONOS type stacks for nonvolatile changetrap memory devices and methods to form the same
US7060594B2 (en) Memory device and method of manufacturing including deuterated oxynitride charge trapping structure
TW200541013A (en) Tunnel oxynitride in flash memories
US8241974B2 (en) Nonvolatile memory device with multiple blocking layers and method of fabricating the same
JP2002217317A (en) Non-volatile semiconductor storage device and its manufacturing method
US6548425B2 (en) Method for fabricating an ONO layer of an NROM
US20020168869A1 (en) Method for fabricating an ONO layer
JP2009176803A (en) Semiconductor device and method of manufacturing the same
JP3998403B2 (en) Semiconductor device and manufacturing method thereof
TW484210B (en) Manufacturing method of oxide-nitride-oxide layer
KR101003492B1 (en) Method for fabricating non-volatile memory device having charge trap layer
KR100791333B1 (en) Method for fabricating nonvolatible memory device and nonvolatible memory device fabricated thereby
KR100685742B1 (en) Non-volatile memory device and Method of manufacturing the same
TW480656B (en) Method for manufacturing ONO layer of nitride read only memory
JP5960724B2 (en) Oxide-nitride-oxide stack having multilayer oxynitride layer
KR20070058725A (en) Method of manufacturing non-volatile memory device
JP2000208645A (en) Forming method for silicon group dielectric film and manufacture of nonvolatile semiconductor storage device
KR20070106155A (en) Method for manufacturing non volatile memory device
KR20080010514A (en) Method of forming a dielectric layer structure and method of forming a non-volatile memory device using the same
TW492146B (en) Manufacturing method of semiconductor device with gate stack dielectric layer
JP3316210B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent