TW483121B - Formation method of dynamic random access memory - Google Patents

Formation method of dynamic random access memory Download PDF

Info

Publication number
TW483121B
TW483121B TW90101077A TW90101077A TW483121B TW 483121 B TW483121 B TW 483121B TW 90101077 A TW90101077 A TW 90101077A TW 90101077 A TW90101077 A TW 90101077A TW 483121 B TW483121 B TW 483121B
Authority
TW
Taiwan
Prior art keywords
forming
dielectric layer
layer
random access
access memory
Prior art date
Application number
TW90101077A
Other languages
Chinese (zh)
Inventor
Hung-Huei Tzeng
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW90101077A priority Critical patent/TW483121B/en
Application granted granted Critical
Publication of TW483121B publication Critical patent/TW483121B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

This invention provides a formation method of dynamic random access memory. Firstly, an isolation region, a heavily doped region, a first dielectric layer and a second dielectric layer are formed on a semiconductor substrate. Subsequently, a trench and source/drain region are formed through photolithography and anisotropic etching on the substrate. A dopant-containing silicon oxide spacer is formed on the side wall of the trench, and a gate dielectric layer is formed at the bottom of the trench. A gate plug is formed on the top of the gate dielectric layer and then an isolation layer is formed on the plug and source/drain extension region is formed also. Finally, a capacitor is formed on the isolation layer of the trench.

Description

五、發明說明(1) 發明領域: 本發明係關於一種形成動能隨擔十 χ _ ... ΛL 1思機存取記憶體(dram cell)的方法,特別是關於—種電容.器直接位於具欲入式 =極“ecessed-gate)之電晶體上方之動態隨機存取記憶 體的形成方法。 發明背景: 近年來Ik著半V體裝私工業以及半導體設備工業的快 速進步,超大型積體電路(uHra—Urge scale integrated cirCuits ; ULS I)的產業有著極為快速的發 展。起大型積體電路通常由為數龐大的金氧半場效電晶體 (MOSFETs)所組成,其中每一個金氧半場效電晶體包含一 源極(source)和一汲極(drain),以及位於二者之間的閘 極(gate)。為求增加積體電路之元件密度(device density)和操作速率(〇perating speed),必須不斷地努 力縮小電晶體的特徵尺寸(f e a t u r e s i z e )。特別的是,電 晶體之P型通道或N型通道的通道長度(Channei length)與 元件的操作速率習習相關,為求增加積體電路的操作逮 率,勢必不斷地努力縮小電晶體的通道長度。 能否將電晶體的通道長度縮短的關鍵技術在於微影製 程(p h〇t〇1 i 1: h 〇 g r a p h y p r〇c e s s )。習知技術是以步進機 (stepper)來進行微影製程,近年來為求達到更小尺寸的 微影極限(phot ο 1 i thography 1 i m i t),已漸漸使用掃描機 (s c a η n e r )來取代步進機。一般而言,在微影製程中所能 483121 五、發明說明(2) 獲致最短之電晶體的通道長度,便等於所述步進機或掃描 機之微影極限。 為了形成通道長度為次〇· 1微米(s u b - 0 · 1 u πι)級的電晶 體’美國專利第6,093,94 7號專利中揭露了 一種具|入式 閘極(r e c e s s e d - g a t e )的金氧半場效電晶體。依據前揭專 利案,首先在一半導體基板上陸續形成一層墊氧化石夕層 (pad oxide layer)和一層介電層,其中所述半導體基板 上包含有複數個淺渠溝隔離區域(shal low trenehV. Description of the invention (1) Field of the invention: The present invention relates to a method for forming a kinetic cell to access ten χ _L ΛL 1 think-memory access memory cells (dram cells), especially about a capacitor. The device is directly located Forming method of dynamic random access memory above transistor with "ecessed-gate". Background of the Invention: In recent years, Ik has made rapid progress in the semi-V body packaging industry and the semiconductor equipment industry. The industry of uHra—Urge scale integrated cirCuits (ULS I) has developed extremely rapidly. Large integrated circuits are usually composed of a large number of metal-oxide-semiconductor field-effect transistors (MOSFETs), each of which has a metal-oxide-semiconductor field-effect transistor The transistor includes a source and a drain, and a gate between them. In order to increase the device density and operating speed of the integrated circuit ), We must continuously strive to reduce the feature size of the transistor. In particular, the channel length of the P-channel or N-channel of the transistor and the operation of the device Speed is related, in order to increase the operation rate of the integrated circuit, it is bound to continuously strive to reduce the channel length of the transistor. The key technology for reducing the channel length of the transistor is the lithography process (ph〇t〇1 i 1 : H 〇graphypr〇cess). The conventional technology uses a stepper to perform the lithography process. In recent years, in order to reach a smaller size lithography limit (phot ο 1 i thography 1 imit), it has been gradually used. Scanner (sca η ner) instead of stepper. Generally speaking, 483121 can be used in lithography process. 5. Description of the invention (2) The shortest channel length of the transistor is equal to the stepper or scan. In order to form a transistor with a channel length of the sub-0.1 micron (sub-0 · 1 u π) level, a U.S. Patent No. 6,093,94 7 discloses a device with a gate. Recessed-gate metal-oxide-semiconductor field-effect transistor. According to the previous patent, a layer of a pad oxide layer and a dielectric layer are successively formed on a semiconductor substrate. It includes a plurality of shallow trench isolation regions (shal low treneh substrate

isolation regions)。其次,在所述半導體基板上形成一 孔洞(h ο 1 e ),其包含有底壁及側壁。接下來先形成一層氧 化矽層,再利用非等向性蝕刻技術進行回蝕刻,以在所述 孔洞的側壁上形成具摻雜材質之氧化矽間隙壁區域(〇 χ丨d e spacer regions) ° 接下來在所述孔洞的底壁上形成閘極氧化矽層(g a t e oxide layer)。其次在所述孔洞及介電層上形成一層複晶 石夕層(polysi 1 icon layer),再以化學機械研磨法(CMp p r 〇 c e s s )將位於所述孔洞外的複晶矽層去除。 接下來將所述介電層去除,以裸露出所述墊氧化矽層和所 逆氧化石夕間隙壁區域的外壁。接下來並在所述孔洞之旁形isolation regions). Secondly, a hole (h ο 1 e) is formed in the semiconductor substrate, which includes a bottom wall and a sidewall. Next, a silicon oxide layer is formed first, and then anisotropic etching technology is used to etch back to form a silicon oxide spacer region with doped material on the sidewall of the hole. A gate oxide layer is formed on the bottom wall of the hole. Next, a polysilicon layer (polysi 1 icon layer) is formed on the holes and the dielectric layer, and then the polycrystalline silicon layer located outside the holes is removed by a chemical mechanical polishing method (CMp p r oc e s s). Next, the dielectric layer is removed to expose the outer wall of the pad silicon oxide layer and the reversed oxide stone gap wall region. Next and next to the hole

成源極/沒極區域。 最後進行一道回火製程(annealing pr〇cess)將含於 所述氧化石夕間隙壁區域内之摻雜材質擴散出來,以形成源 regions)0 ,並形成金 極 />及極擴展區域(s〇urce/drain extensi〇n 接下來在所述墊氧化矽層上形成氮化矽間隙壁Into the source / non-polar region. Finally, a tempering process is performed to diffuse out the doped material contained in the interstitial region of the oxidized stone to form source regions) 0, and form gold poles and > and pole extension regions ( s〇urce / drain extensi〇n Next, a silicon nitride spacer is formed on the pad silicon oxide layer.

第5頁 483121 五、發明說明(3) 屬接觸點,以完成所述具嵌入式閑極(recessed —gate) 金氧半場效電晶體的製程。 惟,根據前述之習知技術,為了形成動態隨機存 憶體之堆疊式電容器(stacked Capacit〇r),需要在上述 電晶體之上形成兩層複晶矽層(如苐二複晶矽層/第三^ 矽層、或是第三複晶矽層/第四複晶矽層)。所述堆:式= 容器在半導體基板上導致極高的拓樸輪廓(h丨gh且工私 =opol〇gy) ’使得後續之微影及蝕刻製程產生極高的困難 度,、而使製程的良率大幅下降。在另一方面,若 、洛 溝式電容器(trench capacit〇r)之動熊隨機存 二麟^ :必須在動態隨機存取記憶體的記憶:中形成額ί: J :幅::會浪費半導體基板的面《,相對地使製本 隨機存取記憶 路業界-項十分重要的課;低“的成本,便成為積體電 發明之概述: 本發明之主要目的是提供—Page 5 483121 V. Description of the invention (3) It is a contact point to complete the process of the recessed-gate metal-oxygen half field effect transistor. However, according to the aforementioned conventional technology, in order to form a stacked capacitor of a dynamic random memory, it is necessary to form two layers of a polycrystalline silicon layer (such as a polycrystalline silicon layer / Third ^ silicon layer, or third polycrystalline silicon layer / fourth polycrystalline silicon layer). The stack: the type = the container leads to a very high topography on the semiconductor substrate (h 丨 gh and industry and private = opolo), which makes the subsequent lithography and etching process extremely difficult, and makes the process The yield has dropped significantly. On the other hand, if the moving cap of the trench capacitor (trench capacit〇r) is stored randomly, it must be formed in the memory of the dynamic random access memory: J: amplitude :: will waste semiconductors The surface of the substrate "is relatively important in making random access memory circuits in the manufacturing industry-a very important lesson; the low" cost has become an overview of the integrated circuit invention: The main purpose of the invention is to provide-

Crecessed-gate)之動離隨 ^ <、肷入式閑極 本發明之次要目的=徂記憶體的形成方法。 體(DRAM cel 1 )的方法。 ' 種形成動態隨機存取記憶 本發明揭露一種形忐 & 先在一半導體基板上形& ^ =奴機存取記憶體的方法,首 形成搞離區域、濃摻雜區域、第一介 本發明更揭露一種動態隨機存取記憶體 具包含 483121 五 '發明說明(4) 電層和第二介電層。後續利用微影及非等向性蝕刻製程在 所边+導體基板上形成一渠溝,並同時形成源極/汲極區 域。接下來在所述渠溝的側壁上形成含有摻雜材質之氧化 矽間隙壁,並在所述渠溝的底壁上形成一層閘極介電層。 在所述閘極介電層之上形成閘極插塞之後,在所述閘極插 塞上形成一層隔離層,並形成源極/汲極擴展區域。最後 於所述渠溝内在所述隔離層之上形成一電容器。 晶體和~電容器。其中所述電晶體位於一半導體基板之导 溝中,包含有源極/汲極區域、問極/通道區域、以及源指 ^及極擴展區域。其中所述源極/没極區域被所述閘極/通 所分隔開;所述間極/通道區域包含一通道區域以 間,:5區域,其中所述閘極區域位於氧化矽間隙壁之 層閘極介★@ ^上方4接一層隔離層,其下方鄰接- 所述得間極介電層再鄰接所述半導體基板; 接所述源極Λ及極& Β 4 :所述乳化矽間隙壁,用以連 k 次位區域和所述通道區域。 所述電容器亦位於所汁 巨、装 〆 方,其舍厶一 了爲.於所述木溝内並位於所述隔離層的J: 極,其中所述下層命'介電層、以及一上層f 器介電;i γ &、+、电和1方;所述隔離層的上方;所述電溶 述電容器介電層的I :的上方;所述上層電極位於所 上方。Crecessed-gate) ^ <, intrusive idle pole The secondary object of the present invention = a method of forming a memory. Memory (DRAM cel 1). A method for forming dynamic random access memory The present invention discloses a method for forming memory on a semiconductor substrate. A slave device accesses a memory, firstly forming a disjoint region, a heavily doped region, and a first medium. The present invention further discloses that a dynamic random access memory device includes 483121 five 'invention description (4) an electrical layer and a second dielectric layer. Subsequent lithography and anisotropic etching processes are used to form a trench on the edge + conductor substrate and simultaneously form the source / drain regions. Next, a silicon oxide spacer containing a doped material is formed on a sidewall of the trench, and a gate dielectric layer is formed on a bottom wall of the trench. After a gate plug is formed on the gate dielectric layer, an isolation layer is formed on the gate plug, and a source / drain extension region is formed. Finally, a capacitor is formed on the isolation layer in the trench. Crystal and ~ capacitor. The transistor is located in a trench of a semiconductor substrate, and includes a source / drain region, an interrogation / channel region, a source index, and a pole extension region. Wherein, the source / non-electrode region is separated by the gate / pass; the inter-electrode / channel region includes a channel region between: 5 regions, wherein the gate region is located on a silicon oxide gap wall Layer Gate Dielectric ★ @ ^ above 4 is connected with an isolation layer, which is adjacent below-the interlayer dielectric layer is adjacent to the semiconductor substrate; connected to the source Λ and the electrode & Β 4: the emulsified silicon The partition wall is used to connect the k-th order region and the channel region. The capacitor is also located at the base and the mounting side, which is provided in the J: electrode in the trench and located in the isolation layer, wherein the lower layer is a dielectric layer and an upper layer. f device dielectric; i γ &, +, electricity and 1; above the isolation layer; above the dielectric layer of the electrolytic capacitor I: above; the upper electrode is located above.

483121 五、發明說明(5) 圖號說明: 10一半導體基板 1 3 -濃摻雜區域 1 6-第二介電層 2 0 -氧化矽間隙壁 2 4 -閘極插塞 2 8 -隔離層 3 2-下層電極483121 V. Description of the invention (5) Description of drawing number: 10—semiconductor substrate 1 3—doped region 1 6—second dielectric layer 2 0—silicon oxide spacer 2 4—gate plug 2 8—isolation layer 3 2-lower electrode

1 2 -淺渠溝隔離 1 4-第一介電層 1 8 -渠溝 2 2-閘極介電層 2 6 -源極/汲極擴展區域 3 0-第二導電層 3 4 -上層電極 本發明係關於一禮形成勤能卩左掉六取—& 41 2-Shallow trench isolation 1 4- First dielectric layer 1 8-Trench trench 2 2- Gate dielectric layer 2 6-Source / drain extension area 3 0- Second conductive layer 3 4-Upper electrode The present invention relates to the ability to form a courtesy.

*勒恶Ρ現機存取記憶體(DRAM ce 1 1)的方法,特別是關於_種電容器直接位於具嵌入式 閉極(recessed-gate)之電晶體上方之動態隨機存取記憶 體的形成方法。* The method of accessing memory (DRAM ce 1 1), especially the formation of dynamic random access memory with capacitors directly above a transistor with an embedded closed-gate method.

首先請參考圖一,其為本發明中形成淺渠溝隔離、濃 摻雜區域、第一介電層和第二介電層的製程剖面圖。首先 提供一 P型單晶的半導體基板1 0,並在所述半導體基板1 Q 上形成淺^:溝隔離(shallow trench isolation regiQns· S T I ) 1 2。彳文下來’利用傳統的離子佈值技術形成濃摻雜 區域13,並在所述半導體基板1〇上陸續形成第一介電層κ 和第二介電層16。 所述淺渠溝隔離1 2的形成方法,係首先利用傳統的微 影及非等向性蝕刻技術在所述半導體基板1 〇巧表面上形成 淺渠溝(shallow trenches)。在將光阻以氧氣電漿去除之 後,利用低壓化學沉積法(LPCVD)或電漿增強式化學沉積 483121Please refer to FIG. 1 first, which is a cross-sectional view of a process for forming a shallow trench isolation, a heavily doped region, a first dielectric layer, and a second dielectric layer in the present invention. First, a P-type single crystal semiconductor substrate 10 is provided, and a shallow trench isolation regiQns · S T I) 12 is formed on the semiconductor substrate 1 Q. The following text is used to form a heavily doped region 13 using a conventional ionic layout technique, and a first dielectric layer κ and a second dielectric layer 16 are successively formed on the semiconductor substrate 10. The method of forming the shallow trench isolation 12 is to first form shallow trenches on the surface of the semiconductor substrate 100 using conventional lithography and anisotropic etching techniques. After removing the photoresist with an oxygen plasma, low pressure chemical deposition (LPCVD) or plasma enhanced CVD is used 483121

五、發明說明(6) 法(P E C V D )形成一層氧化矽層以填滿該淺渠溝,再利用化 學機械研磨法(CMP)將半導體基板1〇表面上的該氧化碎層 去除。對於N型金氧半場效電晶體而言,所述濃摻雜區域 1 3的摻雜離子係砷(A s )或_ (p )離子;對於P型金氧半場 效電晶體而言,所述濃摻雜區域丨3的摻雜離子係硼(β )離% 子。所述濃摻雜區域1 3的摻雜濃度介於2 E 1 5 t 〇 9 E 1 5離 子/平乃公分之間,離子的植入能量介於1 5至2 5 k e V之 間’使摻雜離子的植入深度介於1 〇 〇 〇至2 〇 〇 〇埃之間。所 述第一介電層丨4係以傳統之低壓化學沉積法(LPCVD)或電 水乜^式化學沉積法(P E C V D)所形成,其厚度介於5 〇至 2 〇〇埃之間。所述第一介電層14係二氧化矽層、氧化鈦層 (h〇2)或氧化鈕層(Ta205 )。所述第二介電層u係氮化ς 層(sillcon nitride)或氮氧化矽層(siHc〇n ΠΛ1 tride),以傳統之低壓化學沉積法(LPCVD)或電漿增 學沉積法(PECVD)所形成,其厚度介於1〇〇〇至 之間。其中所述第一介電層14和第 必須有蝕刻選擇性。 %日i 间 接下來請參考圖二,利用 所述半導體基板1 0上形成渠溝 係分別對所述第二介電層1 6、 1 0進行蝕刻。 微影及非等向性蝕刻技術在 I8 °所述非等向性蝕刻技術 第一介電層1 4和半導體基板 所述渠溝1 8係位於所述濃摻雜 部分之濃摻雜區域1 3,如圖二所二°° ,、,、、、日〗,延伸牙透 於5㈣〇埃至1 5 0 0 0埃之間,其底辟Γ所^木溝1 8的深度介 一之的沬度大於所述濃摻雜 483121 五、發明說明(7) 區域1 3的接面深度(j U n c t i ο n d e p t h ),因而該非等向性|虫 刻製程延伸穿透部分之濃摻雜區域丨3而形成源極/汲極區 域(source/drain regi〇ns)13A。本發明之重點之一在於 所述渠溝1 8的深度遠較習知嵌入式閘極之渠溝為深,使得 本發明在形成電晶體的嵌入式閘極之後,後續製程可以直 接將動態隨機存取記憶體的電容器形成在所述嵌入式閘極 之上’且位於所述渠溝1 8之内,不但可以節省半導體基板 的面積’更可使動態隨機存取記憶體的拓樸輪廓極為平 坦丄可大幅降低製程成本並提昇製程良率。在本發明的一 個實施例中’所述渠溝的寬度小於〇 · 1微米;在本發明的 另一個實施例中,所述渠溝的寬度等於0 · 1微米。 接下來請參考圖三,其為在所述渠溝丨8的側壁上形成 含有推雜材質之氧化矽間隙壁2 0和閘極介電層2 2的示意 圖。首先利用傳統之PECVD技術或LPCVD技術形成一層含有 掺雜材質之氧化矽層,並利用非等向性蝕刻技術進行回钱 刻’以在所述渠溝1 8的側壁上形成含有摻雜材質之氧化石夕 間隙壁2 0。所述氧化矽間隙壁2 〇内含有p型摻雜材質(例如 棚)或格雜材質(例如石申或磷),使得後續利用一回火製 程便可將所述摻雜材質擴散至半導體基板中。接下來進行 一道濕餘刻製程,以NH4F和HF的混合溶液對所述半導體 基板1 0進行濕钱刻,以去除半導體基板1 0表面上的晶格缺 陷。其中所述NH4F和HF的混合溶液僅會蝕刻矽基板,對 於其他各層不會有損害。接下來利用熱氧化製程或化學汽 相沉積法在所述渠溝丨8的底壁上形成閘極介電層2 2。所述5. Description of the invention (6) The method (PECVD) forms a silicon oxide layer to fill the shallow trench, and then uses chemical mechanical polishing (CMP) to remove the oxide fragmentation layer on the surface of the semiconductor substrate 10. For an N-type metal-oxide-semiconductor field-effect transistor, the doped ions of the heavily doped region 13 are arsenic (A s) or _ (p) ions; The doped ionic boron (β) ion in the heavily doped region 3 is described. The doping concentration of the heavily doped region 1 3 is between 2 E 1 5 t 〇 9 E 1 5 ions / Ping Nai cm, and the implantation energy of the ions is between 15 and 2 5 ke V. The implantation depth of doped ions is between 1000 and 2000 Angstroms. The first dielectric layer 4 is formed by a conventional low-pressure chemical deposition method (LPCVD) or an electro-hydraulic chemical deposition method (PEC VD), and has a thickness between 50 and 2000 angstroms. The first dielectric layer 14 is a silicon dioxide layer, a titanium oxide layer (h02), or an oxide button layer (Ta205). The second dielectric layer is a sillcon nitride layer or a silicon oxynitride layer (siHcOn ΠΛ1 tride). The conventional low-pressure chemical deposition method (LPCVD) or plasma enhanced deposition method (PECVD) is used. The thickness formed is between 1000 and 1000. The first dielectric layer 14 and the first dielectric layer must have etching selectivity. % Day i Next, referring to FIG. 2, the second dielectric layers 16 and 10 are etched by using trenches formed on the semiconductor substrate 10, respectively. Lithography and anisotropic etching technology at I8 °. The anisotropic etching technology described above. The first dielectric layer 14 and the semiconductor substrate. The trench 18 are located in the heavily doped region 1 of the heavily doped portion. 3, as shown in the second two degrees ° ,,,,,, and day, extending teeth between 5 ㈣ angstroms to 15 0 0 angstroms, the depth of the dip Γ ^ Mugou 18 depth of one The degree of 大于 is greater than the heavily doped 483121 V. Description of the invention (7) The junction depth (j U ncti ο ndepth) of the region 1 3, so the anisotropic |丨 3 to form a source / drain region 13A. One of the key points of the present invention is that the depth of the trench 18 is much deeper than the trench of the conventional embedded gate, so that after the embedded gate of the transistor is formed in the present invention, the subsequent process can directly change the dynamic random The capacitor for accessing the memory is formed on the embedded gate and is located in the trench 18, which not only can save the area of the semiconductor substrate, but also can make the topology of the dynamic random access memory extremely extremely. Flat 丄 can significantly reduce process costs and improve process yield. In one embodiment of the present invention, the width of the trench is less than 0.1 micron; in another embodiment of the present invention, the width of the trench is equal to 0.1 micron. Next, please refer to FIG. 3, which is a schematic diagram of forming a silicon oxide spacer wall 20 including a dopant material and a gate dielectric layer 22 on a sidewall of the trench 8. First, a conventional PECVD technology or LPCVD technology is used to form a silicon oxide layer containing a doped material, and an anisotropic etching technique is used to carry back money engraving to form a doped material containing a doped material on the sidewall of the trench 18 Oxide stone evening wall 20. The silicon oxide spacer wall 20 contains a p-type doped material (such as a shed) or a lattice material (such as Shishen or phosphorus), so that the doped material can be diffused to the semiconductor substrate in a subsequent tempering process. in. Next, a wet after-etching process is performed, and the semiconductor substrate 10 is wet-etched with a mixed solution of NH4F and HF to remove lattice defects on the surface of the semiconductor substrate 10. Wherein, the mixed solution of NH4F and HF will only etch the silicon substrate, and will not damage the other layers. Next, a gate dielectric layer 22 is formed on the bottom wall of the trench 8 by a thermal oxidation process or a chemical vapor deposition method. Said

第10頁 ^3121 五、發明說明(8) 閑極介電層2 2的厚度介於2 0埃至3 0埃之間,由氧化矽或含 ^ ^之氣化石夕所構成。在本發明的另一個實施例中,所迷間 極介電層2 2的厚度小於2 0埃。 接下來在所述閘極介電層2 2、氧化矽間隙壁2 0、第二 介電層16的表面上形成第一導電層,厚度介於100 0埃至 3 0 0 0埃之間。所述第一導電層係一層摻有p型或n型雜質的 複晶矽層,由傳統之低壓化學沉積法(LPCVD)或電漿增強 式化學沉積法(PECVD)所形成。在本發明的一個實施例 中,所述雜質係在第一導電層的沉積過程中同步沉積 (in-situ)而摻入第一導電層中;在本發明的另一個實施 例中,係先形成本徵的(i n t r i n s i c )複晶矽層,再以離子 佈植技術將所述雜質摻入所述第一導電層中。後續利用非 等向性钱刻技術對所述第一導電層進行回钱刻,以在所述 渠溝18内形成閘極插塞(gate plug) 24,以做為動態隨機 i存取記憶體之電晶體的嵌入式閘極(r e c e s s e d - g a t e )。所 述閘極插塞2 4的頂部表面必須較所述第一介電層1 4的頂部 表面為低,如圖四所示。 接下來請參考圖五,利用一熱氧化技術,在所述閘極 插塞(gate plug)2 4的表面上形成一隔離層28。後續進行 一道回火製程(annealing process),將含於所述氧化矽 間隙壁2 0内之摻雜材質擴散出來,以形成源極/汲極擴展 區域(source/drain extension regions)26。所述回火製 程一般係以快速熱回火製程(r a p i d t h e r in a 1 a η n e a 1 i n g ; RT A )所進行。所述源極/汲極擴展區域2 6包覆所述氧化矽 483121 五、發明說明(9) 間隙壁2 0,用以連接所述源極/汲極區域1 3 A和位於所述閘 極介電層2 2下方的通道區域。接下來在所述隔離層28、氧 化矽間隙壁2 0、和第二介電層1 6的表面上形成第二導電層 3 0,厚度介於1 0 0 0埃至3 0 0 0埃之間。所述第二導電層3 0係 一層摻有P型或N型雜質的複晶矽層,由傳統之低壓化學沉 積法(LPCVD)或電漿增強式化學沉積法(PECVD)所形成。在 本發明的一個實施例中,所述雜質係在第二導電層3 0的沉 積過程中同步沉積(in-situ)而摻入第二導電層30中;在 本發明的另一個實施例中,係先形成本徵的(i η ΐ r i n s i c ) 複晶矽層,再以離子佈植技術將所述雜質摻入所述第二導 μ 電層30中。 接下來請參考圖六,利用傳統之微影及蝕刻技術定義 所述第二導電層3 0,以形成動態隨機存取記憶體之電容器 的下層電極3 2。其次,電容器介電層(未顯示在圖上)和 電容器的上層電極3 4亦依序形成在所述下層電極3 2之上。 本發明的重點在於,所述渠溝1 8的深度遠較習知嵌入式閘 極之渠溝為深,使得本發明在形成電晶體的嵌入式閘極之 後,後續製程可以直接將動態隨機存取記憶體的電容器形 成在所述嵌入式閘極之上,且位於所述渠溝1 8之内,不但 可以節省半導體基板的面積9更可使動態隨機存取記憶體 ‘ 的拓樸輪廓極為平坦,可大幅降低製程成本並提昇製程良 率 ° 以上所述係利用較佳實施例詳細說明本發明,而非限 制本發明的範圍,而且熟知此技藝的人士亦能明瞭,適當Page 10 ^ 3121 V. Description of the invention (8) The thickness of the leisure dielectric layer 22 is between 20 angstroms and 30 angstroms, and is composed of silicon oxide or a gaseous stone containing ^ ^. In another embodiment of the invention, the thickness of the dielectric layer 22 is less than 20 angstroms. Next, a first conductive layer is formed on the surface of the gate dielectric layer 22, the silicon oxide spacer 20, and the second dielectric layer 16 with a thickness between 100 angstroms and 300 angstroms. The first conductive layer is a polycrystalline silicon layer doped with p-type or n-type impurities, and is formed by a conventional low-pressure chemical deposition method (LPCVD) or a plasma enhanced chemical deposition method (PECVD). In one embodiment of the present invention, the impurities are simultaneously deposited in-situ during the deposition of the first conductive layer and are incorporated into the first conductive layer. In another embodiment of the present invention, the impurities An intrinsic polycrystalline silicon layer is formed, and the impurities are doped into the first conductive layer by an ion implantation technique. The anisotropic money engraving technique is then used to carry out money engraving on the first conductive layer to form a gate plug 24 in the trench 18 as a dynamic random access memory. Recessed-gate of a transistor. The top surface of the gate plug 24 must be lower than the top surface of the first dielectric layer 14 as shown in FIG. Next, referring to FIG. 5, an isolation layer 28 is formed on the surface of the gate plug 24 by using a thermal oxidation technique. Subsequently, an annealing process is performed to diffuse the doped material contained in the silicon oxide spacer 20 to form source / drain extension regions 26. The tempering process is generally performed by a rapid thermal tempering process (r a p i d t h e r in a 1 a n n a a i n g; RT A). The source / drain extension region 2 6 covers the silicon oxide 483121. V. Description of the invention (9) The partition wall 20 is used to connect the source / drain region 1 3 A and the gate electrode. The channel region under the dielectric layer 22. Next, a second conductive layer 30 is formed on the surfaces of the isolation layer 28, the silicon oxide spacer 20, and the second dielectric layer 16 with a thickness between 100 angstroms and 300 angstroms. between. The second conductive layer 30 is a polycrystalline silicon layer doped with P-type or N-type impurities, and is formed by a conventional low-pressure chemical deposition method (LPCVD) or a plasma enhanced chemical deposition method (PECVD). In one embodiment of the present invention, the impurities are simultaneously deposited in the second conductive layer 30 during the deposition process of the second conductive layer 30, and are incorporated into the second conductive layer 30. In another embodiment of the present invention, First, an intrinsic (i η rin rinsic) multicrystalline silicon layer is formed, and then the impurities are doped into the second conductive μ electric layer 30 by an ion implantation technique. Next, referring to FIG. 6, the second conductive layer 30 is defined by using conventional lithography and etching techniques to form a lower electrode 32 of a capacitor of a dynamic random access memory. Secondly, a capacitor dielectric layer (not shown in the figure) and an upper electrode 34 of the capacitor are also sequentially formed on the lower electrode 32. The main point of the present invention is that the depth of the trench 18 is much deeper than the trench of the conventional embedded gate, so that after the embedded gate of the transistor is formed in the present invention, the subsequent process can directly store the dynamic random storage. A capacitor for taking a memory is formed on the embedded gate and is located in the trench 18, which not only saves the area of the semiconductor substrate 9 but also makes the topology of the dynamic random access memory 'extremely simple. Flat, which can greatly reduce the process cost and improve the process yield. The above description uses the preferred embodiments to describe the present invention in detail, but not to limit the scope of the present invention. Those skilled in the art can also understand that it is appropriate

第12頁 483121 五、發明說明(ίο) 而作些微的改變與調整,仍將不失本發明之要義所在,亦 不脫離本發明之精神和範圍。 483121 圖式簡單說明 圖示說明: 圖一為本發明中形成淺渠溝隔離、濃摻雜區域、第一 介電層和第二介電層的製程剖面圖。 圖二是本發明中在所述半導體基板上形成渠溝的製程 剖面圖。 圖三是本發明中在所述渠溝的側壁上形成含有摻雜材 質之氧化矽間隙壁和閘極介電層的製程剖面示意圖。 圖四是本發明中形成閘極插塞的製程剖面圖。 圖五是本發明中形成導電層的製程剖面圖。 圖六是本發明中形成電容器的製程剖面圖。Page 12 483121 V. Description of the invention (ίο) Making minor changes and adjustments will still not lose the essence of the invention, nor depart from the spirit and scope of the invention. 483121 Brief description of the drawings Schematic description: FIG. 1 is a cross-sectional view of a process for forming a shallow trench isolation, a heavily doped region, a first dielectric layer, and a second dielectric layer in the present invention. FIG. 2 is a cross-sectional view of a process for forming a trench on the semiconductor substrate according to the present invention. FIG. 3 is a schematic cross-sectional view of a process for forming a silicon oxide spacer containing a doped material and a gate dielectric layer on a sidewall of the trench in the present invention. FIG. 4 is a sectional view of a process of forming a gate plug in the present invention. FIG. 5 is a cross-sectional view of a process for forming a conductive layer in the present invention. FIG. 6 is a cross-sectional view of a process for forming a capacitor in the present invention.

Claims (1)

483121 六、申請專利範圍 1. 一種形成動態隨機存取記憶體的方法,其步驟包含: a. 在一半導體基板上形成隔離區域及濃摻雜區域; b. 在所述半導體基板上陸續形成第一介電層和第二介電 層; c. 利用微影及非等向性蝕刻製程在所述半導體基板上形 成一渠溝,並同時形成源極/汲極區域; d. 在所述渠溝的側壁上形成含有摻雜材質之氧化矽間隙 壁; e. 在所述渠溝的底壁上形成一層閘極介電層; f .在所述閘極介電層之上形成閘極插塞; U g. 在所述閘極插塞上形成一層隔離層; h. 形成源極/汲極擴展區域;以及 i. 於所述渠溝内在所述隔離層之上形成一電容器。 2. 如申請專利範圍第1項之形成動態隨機存取記憶體的方 法,其中所述濃摻雜區域係以離子佈植技術所形成。 3. 如申請專利範圍第1項之形成動態隨機存取記憶體的方 法,其中所述第一介電層和第二介電層具有蝕刻選擇 性。 — 4. 如申請專利範圍第1項之形成動態隨機存取記憶體的方 法,其中所述第一介電層是氧化矽層。483121 VI. Application for patent scope 1. A method for forming a dynamic random access memory, the steps include: a. Forming an isolation region and a heavily doped region on a semiconductor substrate; b. Successively forming a first on the semiconductor substrate A dielectric layer and a second dielectric layer; c. Forming a trench on the semiconductor substrate using a lithography and anisotropic etching process, and simultaneously forming a source / drain region; d. In the trench A silicon oxide spacer containing a doped material is formed on the side wall of the trench; e. A gate dielectric layer is formed on the bottom wall of the trench; f. A gate plug is formed on the gate dielectric layer U g. Forming an isolation layer on the gate plug; h. Forming a source / drain extension region; and i. Forming a capacitor over the isolation layer in the trench. 2. The method for forming a dynamic random access memory according to item 1 of the application, wherein the heavily doped region is formed by an ion implantation technique. 3. The method for forming a dynamic random access memory according to item 1 of the application, wherein the first dielectric layer and the second dielectric layer have an etching selectivity. — 4. The method for forming a dynamic random access memory according to item 1 of the patent application scope, wherein the first dielectric layer is a silicon oxide layer. 第15頁 483121 六、申請專利範圍 5.如申請專利範圍第1項形成動態隨機存取記憶體的方 法,其中所述第二介電層是氮化矽層。 6 .如申請專利範圍第1項之形成動態隨機存取記憶體的方 法,其中所述第二介電層是氮氧化矽層。 7. 如申請專利範圍第1項之形成動態隨機存取記憶體的方 法,其中所述渠溝之底壁的深度大於所述濃摻雜區域之 接面深度。 1 8. 如申請專利範圍第1項之形成動態隨機存取記憶體的方 法,其中所述非等向性蝕刻製程係陸續蝕刻所述第二介 電層、第一介電層、和半導體基板。 9 .如申請專利範圍第1項之形成動態隨機存取記憶體的方 法,其中形成所述氧化矽間隙壁的方法係先沉積一層含 有摻雜材質之氧化矽層,再利用非等向性蝕刻技術進行 回颠刻。 1 0 .如申請專利範圍第1項之形成動態隨機存取記憶體的方 f 法,其中所述閘極介電層係由熱氧化技術所形成。 1 1.如申請專利範圍第1 0項之形成動態隨機存取記憶體的 方法,其中所述閘極介電層的厚度小於2 0埃。 第16頁 483121 六、申請專利範圍 1 2 .如申請專利範圍第1項之形成動態隨機存取記憶體的方 法,其中形成所述閘極插塞的方法係先沉積一層導電 層,再利用非等向性蝕刻技術對所述導電層進行回蝕 刻。 1 3 .如申請專利範圍第1 2項之形成動態隨機存取記憶體的 方法,其中所述導電層係一層摻有雜質的複晶矽層。 1 4.如申請專利範圍第1項之形成動態隨機存取記憶體的方 法,其中所述隔離層係由熱氧化技術所形成。 1 5 .如申請專利範圍第1項之形成動態隨機存取記憶體的方 法,其中形成所述源極/汲極擴展區域的方法係利用回 火技術,以將含於所述氧化矽間隙壁内之摻雜材質擴散 至所述半導體基板中。 1 6 .如申請專利範圍第1項之形成動態隨機存取記憶體的方 法,其中形成所述電容器的方法包含有: a. 形成一層導電層; · b. 定義所述導電層以形成所述電容器的下層電極; c. 在所述下層電極之上形成電容器介電層;以及 d. 在所述電容器介電層之上形成電容器的上層電極。Page 15 483121 6. Scope of patent application 5. The method for forming a dynamic random access memory according to the first scope of the patent application, wherein the second dielectric layer is a silicon nitride layer. 6. The method for forming a dynamic random access memory according to item 1 of the patent application scope, wherein the second dielectric layer is a silicon oxynitride layer. 7. The method for forming a dynamic random access memory according to item 1 of the patent application, wherein the depth of the bottom wall of the trench is greater than the junction depth of the heavily doped region. 1 8. The method for forming a dynamic random access memory according to item 1 of the scope of patent application, wherein the anisotropic etching process successively etches the second dielectric layer, the first dielectric layer, and the semiconductor substrate . 9. The method for forming a dynamic random access memory according to item 1 of the scope of patent application, wherein the method for forming the silicon oxide spacer is to deposit a silicon oxide layer containing a doped material first, and then use anisotropic etching Technology goes back. 10. The method f of forming a dynamic random access memory according to item 1 of the patent application scope, wherein the gate dielectric layer is formed by a thermal oxidation technique. 1 1. The method for forming a dynamic random access memory according to item 10 of the patent application, wherein the thickness of the gate dielectric layer is less than 20 angstroms. Page 16 483121 VI. Application for patent scope 1 2. The method for forming dynamic random access memory as described in the first patent application scope, wherein the method of forming the gate plug is to deposit a conductive layer first, and then use non- Isotropic etching technology etches back the conductive layer. 13. The method for forming a dynamic random access memory according to item 12 of the patent application scope, wherein the conductive layer is a polycrystalline silicon layer doped with impurities. 14. The method for forming a dynamic random access memory according to item 1 of the patent application scope, wherein the isolation layer is formed by a thermal oxidation technology. 15. The method for forming a dynamic random access memory according to item 1 of the scope of the patent application, wherein the method for forming the source / drain extension region is to use a tempering technique to contain the silicon oxide spacer The doped material inside diffuses into the semiconductor substrate. 16. The method for forming a dynamic random access memory according to item 1 of the scope of patent application, wherein the method for forming the capacitor includes: a. Forming a conductive layer; b. Defining the conductive layer to form the capacitor A lower electrode of the capacitor; c. Forming a capacitor dielectric layer over the lower electrode; and d. Forming an upper electrode of the capacitor over the capacitor dielectric layer. 第17頁 483121 六、申請專利範圍 1 7. —種動態隨機存取記憶體,其包含: 一電晶體,其中所述電晶體位於一半導體基板之渠溝 中,包含有源極/汲極區域、閘極/通道區域、以及源 極Λ及極擴展區域’其中 所述源極/汲極區域被所述閘極/通道區域所分隔 開; 所述閘極/通道區域包含一通道區域以及一閘極區 域,其中所述閘極區域位於氧化矽間隙壁之間,所 述閘極區域的上方鄰接一層隔離層,其下方鄰接一 層閘極介電層,所述閘極介電層再鄰接所述半導體 || 基板; 所述源極/汲極擴展區域包覆所述氧化矽間隙壁,用 以連接所述源極/没極區域和所述通道區域; 一電容器,其中所述電容器亦位於所述渠溝内並位於 所述隔離層的上方,其包含: 一下層電極,其位於所述隔離層的上方; 一電容器介電層,其位於所述下層電極的上方;以 及 一上層電極,其位於所述電容器介電層的上方。 1 8 .如申請專利範圍第1 7項所述之動態隨機存取記憶體, 其中所述閘極介電層的厚度介於2 0埃至3 0埃之間。 1 9 .如申請專利範圍第1 7項所述之動態隨機存取記憶體,Page 17 483121 VI. Scope of patent application 1 7. A dynamic random access memory including: a transistor, wherein the transistor is located in a trench of a semiconductor substrate and includes a source / drain region , The gate / channel region, and the source Λ and the pole extension region ', wherein the source / drain region is separated by the gate / channel region; the gate / channel region includes a channel region and A gate region, wherein the gate region is located between silicon oxide gap walls, an upper layer of the gate region is adjacent to an isolation layer, a gate dielectric layer is adjoined below, and the gate dielectric layer is adjoined The semiconductor || substrate; the source / drain extension region covers the silicon oxide spacer to connect the source / dead region and the channel region; a capacitor, wherein the capacitor is also Located in the trench and above the isolation layer, it includes: a lower layer electrode, which is located above the isolation layer; a capacitor dielectric layer, which is located above the lower layer electrode; and an upper layer Electrode, which is located above the capacitor dielectric layer. 18. The dynamic random access memory according to item 17 of the scope of the patent application, wherein the thickness of the gate dielectric layer is between 20 angstroms and 30 angstroms. 19. The dynamic random access memory described in item 17 of the scope of patent application, 第18頁 483121 六、申請專利範圍 其中所述閘極介電層的厚度小於2 0埃。 2 0 .如申請專利範圍第1 7項所述之動態隨機存取記憶體, 其中所述渠溝的寬度小於0. 1微米。Page 18 483121 6. Scope of patent application Wherein the thickness of the gate dielectric layer is less than 20 angstroms. 20. The dynamic random access memory described in item 17 of the scope of patent application, wherein the width of the trench is less than 0.1 micron.
TW90101077A 2001-01-17 2001-01-17 Formation method of dynamic random access memory TW483121B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90101077A TW483121B (en) 2001-01-17 2001-01-17 Formation method of dynamic random access memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90101077A TW483121B (en) 2001-01-17 2001-01-17 Formation method of dynamic random access memory

Publications (1)

Publication Number Publication Date
TW483121B true TW483121B (en) 2002-04-11

Family

ID=21677079

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90101077A TW483121B (en) 2001-01-17 2001-01-17 Formation method of dynamic random access memory

Country Status (1)

Country Link
TW (1) TW483121B (en)

Similar Documents

Publication Publication Date Title
JP5739210B2 (en) Semiconductor structure and manufacturing method thereof
US7262090B2 (en) Random access memory (RAM) capacitor in shallow trench isolation with improved electrical isolation to overlying gate electrodes
TW569451B (en) Process for fabricating a vertical bipolar junction transistor, process for fabricating an integrated circuit structure, and integrated circuit structure
JP2012033939A (en) Dram access transistor and method for forming the same
TW200423308A (en) Method for forming vertical transistor and trench capacitor
TW200921913A (en) Recessed-gate transistor device and mehtod of making the same
US6340614B1 (en) Method of forming a DRAM cell
TWI294667B (en) Method for forming buried plate of trench capacitor
TW451425B (en) Manufacturing method for memory cell transistor
US6872629B2 (en) Method of forming a memory cell with a single sided buried strap
CN102479694A (en) Formation method of metal gate and MOS transistor
TW201019463A (en) Memory device and fabrication thereof
US20050112839A1 (en) Method of selectively etching HSG layer in deep trench capacitor fabrication
TW512521B (en) Collar process for reduced deep trench edge bias
CN114267722A (en) Semiconductor device and method of forming the same
KR101160036B1 (en) Method for forming semiconductor device
TW200426999A (en) Memory cell with partly vertical channel and the manufacturing method thereof
TW483121B (en) Formation method of dynamic random access memory
TW522507B (en) Manufacturing method of semiconductor having trenched capacitor
TW200425417A (en) Trench type capacitor formation method
KR102411804B1 (en) Source/drains in semiconductor devices and methods of forming thereof
TW200421534A (en) Collar dielectric process for preventing top size of deep trench from enlargement
TWI227933B (en) Method for forming a self-aligned buried strap of a vertical memory cell
TW463327B (en) Method for forming dynamic random access memory
TW462080B (en) Forming method of MOSFET with recessed-gate beyond photolithography limit

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent