TW483090B - Manufacturing method of high-density stacked metal capacitor device - Google Patents
Manufacturing method of high-density stacked metal capacitor device Download PDFInfo
- Publication number
- TW483090B TW483090B TW90117935A TW90117935A TW483090B TW 483090 B TW483090 B TW 483090B TW 90117935 A TW90117935 A TW 90117935A TW 90117935 A TW90117935 A TW 90117935A TW 483090 B TW483090 B TW 483090B
- Authority
- TW
- Taiwan
- Prior art keywords
- metal
- dielectric layer
- scope
- block
- patent application
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
^3090 五、發明說明(1) 本發明有關於一種製造高密度堆疊MIM電容元件的方 法,特別有關於一種可以增加電極面積的高密度堆疊 (high density stacked) MIM銅電容元件的製造方法。 [習知技術說明] 請參照第1圖,其顯示習知技術之平板式M丨M銅電容之 刮面示意圖。 首先,請參閱第1圖,符號10表示鑲嵌在半導體基底 的鋼,底,當作電容元件的下電極,符號丨丨則表示用來當 作電容70件之上電極的銅區塊,符號丨2表示上下電極田 =介電層。雖然目前”銅”是電容電極材料的最佳 曰 雙限於銅金屬只能用化學機械研磨(CMp)來除,盔也,但 傳統化學乾蝕刻或濕蝕刻的方式來去除,因此…難使用 有堆疊形狀的電容鋼電極。所以目前一般/難製作出 的平板式MIM銅電容(如第!圖所示)。 ,、1仍採用習知 但隨著電容元件縮小化,而又要增加曰 兩個研究方向可以考慮,一是改進介電材料=篁時,有 增加電容電極的面積。有鑑於此,本發明曰、'性,—是 研磨法與傳統的沉積、微影蝕刻製程 ::^化學機械 ?材料下’製作出具有高密度堆疊以 殳習知的介 在同樣的體積空間下,比習知的平 屬電各元件;即 電容電極的面積而可有較大的電容存;,電容有更大的^ 3090 V. Description of the invention (1) The present invention relates to a method for manufacturing a high-density stacked MIM capacitor element, and more particularly to a method for manufacturing a high-density stacked MIM copper capacitor element that can increase the electrode area. [Description of the conventional technology] Please refer to FIG. 1, which shows a schematic diagram of a scraped surface of a flat plate M 丨 M copper capacitor of the conventional technology. First, please refer to Figure 1. Symbol 10 indicates the steel embedded in the semiconductor substrate. The bottom is used as the lower electrode of the capacitor element. The symbol 丨 丨 indicates the copper block used as the upper electrode of the capacitor 70. The symbol 丨2 indicates upper and lower electrode fields = dielectric layer. Although "copper" is currently the best material for capacitor electrodes, copper metal can only be removed by chemical mechanical polishing (CMp), and helmets, but traditional chemical dry etching or wet etching is used to remove it, so it is difficult to use. Stacked capacitor steel electrodes. Therefore, it is common / difficult to produce flat-type MIM copper capacitors (as shown in the figure!). , 1 is still used. But as the size of the capacitor element shrinks, but it needs to be increased. Two research directions can be considered. One is to improve the area of the capacitor electrode when the dielectric material = 篁. In view of this, the present invention states that "the nature" is a grinding method and a traditional deposition and lithography process: ^ under the chemical mechanical? Under the material 'to produce a high-density stack to the conventional volume in the same volume space , Than the conventional flat electrical components; that is, the area of the capacitor electrode can have a larger capacitance;
0503-5930TWF;TSMC2000-0602;Jacky.ptd 第5頁 483090 五、發明說明(2) [發明概述] 為達成上述目的,本發明利用化學機械研磨法與傳統 的沉積、微影蝕刻製程,製作出具有高密度堆疊ΜIΜ金屬 電各元件,其製作步驟包括:(a)提供一鑲嵌有一第一金 f區塊的半導體基底,該基底部分表面露出有該第一金屬 ^塊的上表面。(b)全面性地在該半導體基底上方形成一 第一介電層。(c)選擇性地除去該第一介電層,而形成露 出該第一金屬區塊的一第一開口 ,以界定出一第二金屬區 ,,範圍。(d)在該第一開口内填入該第二金屬區塊,使 6亥第一金屬區塊與該第二金屬區塊當作該金屬電容元件的 下電,。(e )全面性地在該金屬電容元件的下電極上方形 成:第二介電層。(f)選擇性地除去該第二介電層,而形 各出該金屬電谷元件下電極表面的一第二開口。(8)在 =第二開口之底部及側壁順應性形成一第三介電層,以告 Ϊ該I ΐ元件之介電層’以及(h)在該第二開口内填入-田 弟二金屬區塊,以當作該電容元件之上電極。 2中在進行步驟(b)之前,更包括全面性地在該半 體基底上方形成一餘刻停止層。 其中在進行步驟(e)之前' f白乜少# 與下電極表面順應性形成一餘刻更/止括層在邊該半導體基底 其中上述方法之該第_、0503-5930TWF; TSMC2000-0602; Jacky.ptd Page 5 483090 5. Description of the invention (2) [Summary of the invention] In order to achieve the above purpose, the present invention uses chemical mechanical polishing method and traditional deposition and lithography etching process to produce Each high-density MIM metal-electric component has the following manufacturing steps: (a) providing a semiconductor substrate inlaid with a first gold f block; and a surface of the base portion is exposed from an upper surface of the first metal block. (B) A first dielectric layer is formed over the semiconductor substrate comprehensively. (C) Selectively removing the first dielectric layer to form a first opening exposing the first metal block to define a second metal region. (D) Fill the second metal block into the first opening, so that the first metal block and the second metal block are used as power-off of the metal capacitor element. (E) Comprehensively forming a second dielectric layer on the lower electrode of the metal capacitor element. (F) selectively removing the second dielectric layer, and forming a second opening on the surface of the lower electrode of the metal valley device. (8) A third dielectric layer is formed on the bottom and side walls of the second opening to conform to the dielectric layer of the I element, and (h) is filled in the second opening-Tian Di Er The metal block is used as the electrode above the capacitor. Before performing step (b) in step 2, it further includes forming a full stop layer over the half substrate. Before performing step (e), 'f 白 乜 少 #' conforms to the surface of the lower electrode for a while to form a stop / stop layer on the semiconductor substrate.
Cn、Pt、Pd或RU…等等金屬區塊了第二金屬區塊例如為 其中上述方法之該第_ — 石夕。 及第一 ”電層例如為二氧化Cn, Pt, Pd, or RU ... etc. The second metal block is, for example, the first one in the above method — Shi Xi. And the first "electrical layer is, for example, dioxide
0503-5930TWF;TSMC2000-0602;J acky.ptd 第6頁 483090 五、發明說明(3) " 一 -八其中上述方法之用以當作該電容元件之介電層的該第 :"電層為氮化矽(SiN/Si3N4)或氮氧化矽(Si〇N)…等等高 ;|電係數之介電材料。 其中上述方法之填入該第二及第三金屬區塊的方法包 I列步驟··先以沈積法(例如CVD)全面性地形成該等金 屬區塊,接著再利用化學機械研磨法(CMp)進行該等金 區塊的平坦化。 两 有t於此,本發明的目的在於提供一種不需要更改習 與2 "電材料下,用沈積、微影蝕刻步驟,再加上利用化 八械研磨去把多餘的金屬區塊表面除去及磨平,而使用 雷六如、·銅)之堆疊(stacked of copper)製程製造MIM I谷、法,可使μ I Μ電容的電容量比習知平板式電容增 、特徵、和優點能更明 並配合所附圖式,作詳 為讓本發明之上述和其他目的 顯易懂,下文特舉一較佳實施例, 細說明如下: [圖式之簡單說明] 圖 第1圖係顯示習知技術之平板式Μ! Μ銅電容之剖面示意 意圖 第2圖係顯示本發明之高密度堆疊ΜΙΜ銅電容 的剖面示 的製 造過程示意圖 j圖係顯示本發明之高密度堆疊謹銅電容0503-5930TWF; TSMC2000-0602; Jacky.ptd Page 6 483090 V. Description of the invention (3) " One-eight of which the method described above is used as the dielectric layer of the capacitive element: " The layer is made of silicon nitride (SiN / Si3N4) or silicon oxynitride (SiON). Among them, the method of filling the second and third metal blocks includes the first step. The metal blocks are firstly formed by a deposition method (such as CVD), and then the chemical mechanical polishing method (CMp) is used. ) To flatten the gold blocks. Both are here, and the object of the present invention is to provide a method of removing deposition and lithography etching steps without the need to change the habit of electrical materials, plus the use of chemical polishing to remove the surface of excess metal blocks. And smoothing, and the manufacturing of MIM I Valley using the stacked of copper manufacturing process, can increase the capacitance, characteristics, and advantages of μ I Μ capacitors compared to conventional flat capacitors. In order to make the above and other objects of the present invention more comprehensible, the following detailed description is given in detail in conjunction with the accompanying drawings: [A brief description of the drawings] Figure 1 shows The cross-sectional schematic diagram of a conventional plate-shaped M! M copper capacitor is shown in the second figure, which shows the manufacturing process of the high-density stacked MIM copper capacitor of the present invention. The figure is a diagram showing the high-density stacked copper capacitor of the present invention.
483090483090
[元件符號說明] 10、20〜銅區塊下電極, 12、22〜介電層, 110〜第一銅區塊, 130〜第一介電層, 1 5 0〜第一開口, 180〜第二介電層, 210〜第三銅區塊, 11、2 1〜銅區塊上電極, 100〜半導體基底, 1 2 0、1 7 0〜餘刻停止層, 140、190〜光阻層, 160〜第二銅區塊, 2 0 0〜第二開口, 220〜第三介電層。 實施例: 以下利用第3a〜3 j圖所示之高密度堆疊MIM電容元件製 程剖面示意圖,以說明本發明以銅製程為例之較佳實施 首先’請參閱第3a圖,提供一鑲嵌有 第 金屬區塊 110的半導體基底100,該基底100部分表面露出有該第一 ”區塊no的上表面’而該第—金屬區塊11〇,係當作電 今兀件之下電極。另外要說明的A,本實施例的該第一、 -=金屬區塊i1Q例如是Gu、Pt、pd^u等金屬區塊, 但本實施例以銅區塊為例。 接著請參閱第3b圖,可先在東iL X 地形成-餘刻停止層120 ’ <列j.t導體基底100上全面性 地报- 了& 例如SiN或SiON。接著,全面性 2形成例如一乳化石夕層之第一介 光阻層140於該第一介電芦ηη μ 後有丹文復 你田…+斗, 电層U0上,並以微影定義圖案。之 後再除去該光阻層14〇。 ^[Explanation of component symbols] 10, 20 ~ copper block lower electrode, 12, 22 ~ dielectric layer, 110 ~ first copper block, 130 ~ first dielectric layer, 150 ~ first opening, 180 ~ first Two dielectric layers, 210 ~ third copper block, 11, 2 1 ~ copper block upper electrode, 100 ~ semiconductor substrate, 1 2 0, 17 0 ~ remaining stop layer, 140, 190 ~ photoresist layer, 160 to the second copper block, 200 to the second opening, and 220 to the third dielectric layer. Example: The following is a schematic cross-sectional view of the manufacturing process of the high-density stacked MIM capacitor element shown in Figs. 3a to 3j to illustrate the preferred implementation of the present invention using a copper process as an example. First, please refer to Fig. 3a. The semiconductor substrate 100 of the metal block 110, a part of the surface of the substrate 100 is exposed with the first "upper surface of the block no" and the first-metal block 11 is used as an electrode below the electrical element. A explained, the first,-= metal block i1Q in this embodiment is, for example, a metal block such as Gu, Pt, pd ^ u, but this embodiment uses a copper block as an example. Then refer to FIG. 3b, It can be firstly formed on the East iL X-stop stop layer 120 '< column jt conductor substrate 100 comprehensively-for example & SiN or SiON. Then, comprehensiveness 2 is formed as the first layer of an emulsified stone layer A dielectric photoresist layer 140 has Danwen Futian after the first dielectric layer ηη μ. The photoresist layer is on U0, and the pattern is defined by lithography. The photoresist layer 14 is removed after that. ^
483090 五、發明說明(5) 接著,參閱第3c圖,選擇性地蝕刻除去該第一介電層 130、該蝕刻停止層12〇,而形成露出該第一銅區塊11()的 一第一開口 15〇,以界定出該電容元件之一第二銅區塊16〇 的範圍。蝕刻方法例如,使用光阻1 4〇為罩幕,藉由反應 性離子餘刻法(RIE)而進行非等向性蝕刻。 接著,參閱第3d圖,在該第一開口 150内形成一第二 銅區塊160,例如使用CVD將銅沉積上去。接著,利用化學 機械研磨法(chemicai mechanical polishing; CMP)以去 除部分該第二銅區塊160,使該第二銅區塊16〇的上表面與 孩第一介電層13〇的表面在同一平面上,而如第仏圖所 示〇 /此時,將該第一銅區塊110與該第二銅區塊16〇共同定 義形成該電容元件之下電極。接著,利用蝕刻法將該第一 介電層130、該蝕刻停止層12〇去除乾淨,而如第3丨圖所 不 ° μ ί 參閱第3g圖,可先在下電極110及160上順應性 =刻停止層170,例如Si“tSi0N。接著,全面性 地形成例如二氧化石夕層之—第二介 阻層190於該第二介電層18() μ ^ 按者复復九 桩鍫灸M H 並以微影定義圖案。 接著’參閱弟3h圖,撰遮a liIt ^ t 1 β η ^ ^ t 1^1 ^擇性地蝕刻除去該第二介電層 180、該蝕刻停止層17〇、 ^ ^ .Pa n9nn P; w ^ b 向形成露出下電極ll 0與l 60的第 一開口 2 0 0,以界定出該雷 ^ m 加山 ^ i. 1 Λ 谷70件之第三銅區塊210的範 圍。例如,使用光阻i 9 〇 礼 而、#分非笪a从al w 旱幕,藉由反應性離子蝕刻法 而進仃非4向性蝕刻而形忐# & 夂 成或第二開口 2 〇 〇。之後再除去483090 V. Description of the invention (5) Next, referring to FIG. 3c, the first dielectric layer 130 and the etch stop layer 12 are selectively etched and removed to form a first portion exposing the first copper block 11 (). An opening 15 is defined to define a range of a second copper block 16 of the capacitor element. For the etching method, for example, photoresist 140 is used as a mask, and anisotropic etching is performed by a reactive ion etching method (RIE). Next, referring to FIG. 3d, a second copper block 160 is formed in the first opening 150. For example, copper is deposited by CVD. Next, chemical mechanical polishing (CMP) is used to remove part of the second copper block 160 so that the upper surface of the second copper block 160 is the same as the surface of the first dielectric layer 13. On the plane, as shown in FIG. 0 //, at this time, the first copper block 110 and the second copper block 160 are jointly defined to form an electrode under the capacitor element. Next, the first dielectric layer 130 and the etch stop layer 12 are removed by using an etching method, and as shown in FIG. 3 丨 See the FIG. 3g, the compliance of the lower electrodes 110 and 160 may be first = The etch stop layer 170 is, for example, Si “tSiON. Then, a second dielectric layer 190 is formed on the second dielectric layer, such as a stone dioxide layer, in a comprehensive manner. 18 () μ ^ MH and the pattern is defined by lithography. Next, referring to the 3h figure, write a liIt ^ t 1 β η ^ ^ t 1 ^ 1 ^ selectively remove the second dielectric layer 180 and the etch stop layer 17. ^ ^ .Pa n9nn P; w ^ b to form a first opening 2 0 0 that exposes the lower electrodes ll 0 and l 60 to define the third copper area of the thunder ^ m plus mountain ^ i. 1 Λ valley 70 The range of block 210. For example, using a photoresist i 9 〇 eli and # 分 非 笪 a from al w dry screen, by reactive ion etching to form non-directional etching and forming # & 夂 成Or the second opening 2 00. Then remove
483090483090
該光阻層1 9 0。 接著參閱第3 i圖,利用备風γ^ … 三介電層220於第二介電二相,製程’形成-第 〇Πη ^ _ ” 电曰180的表面,並延伸至第二開口The photoresist layer is 190. Then referring to FIG. 3i, using the prepared wind γ ^… three dielectric layers 220 on the second dielectric two-phase, the process is formed to form a surface of No. 〇Πη ^ _ ”, which extends to the second opening
Si〇N : °及」壁’其中該第三介電層220可以是SiN或 以二tit電係數材質所構成,該第三介電層220用 下電極之間的介電層。之後,便沉積 3屬填入第:開口 200内而形成一第三銅區塊21〇,用以 田作该金屬電容之上電極21〇 〇 最後,進行銅的化學機械研磨把該電容之上電極21〇 夕餘的部分磨去而形成與該第三介電層220共平面,如第 圖所不,如此即完成一高密度堆疊MIM銅電容元件。 因此,由第1圖習知平板式M丨M電容和第2圖本發明之 堆疊式ΜIΜ電容相比較,可知在相同體積下,第2圖該堆最 式ΜΙΜ電容的電極面積比習知平板式ΜΙΜ電容的電極面^ 很多’而可有較大的電容量。 雖然本發明已以較佳實施例揭露如上,然其並非 限定本發明,任何熟習此項技藝者,在不脫離本發明之= 神和範圍内,當可作更動與潤飾,因此本發明之保護# = 當視後附之申請專利範圍所界定者為準。 乾SiON: ° and "wall", where the third dielectric layer 220 may be SiN or made of a two-tit coefficient material, and the third dielectric layer 220 is a dielectric layer between the lower electrodes. After that, 3 gens were deposited and filled into the first: opening 200 to form a third copper block 21o, which was used as the electrode 2100 on the metal capacitor. Finally, a chemical mechanical polishing of copper was performed on the capacitor. The remaining part of the electrode 21 is removed to form a coplanar surface with the third dielectric layer 220. As shown in the figure, a high-density stacked MIM copper capacitor element is completed. Therefore, comparing the conventional plate-type M 丨 M capacitor in Fig. 1 with the stacked MIM capacitor of the present invention in Fig. 2, it can be seen that the electrode area of the pile-type MIM capacitor in Fig. 2 is smaller than the conventional plate under the same volume. The electrode surface of the MIM capacitor has a large number of electrodes, and can have a large capacitance. Although the present invention has been disclosed in the preferred embodiment as above, it is not a limitation of the present invention. Any person skilled in the art can make changes and retouching without departing from the scope of the present invention. Therefore, the protection of the present invention # = Subject to the scope of the attached patent application. dry
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90117935A TW483090B (en) | 2001-07-23 | 2001-07-23 | Manufacturing method of high-density stacked metal capacitor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90117935A TW483090B (en) | 2001-07-23 | 2001-07-23 | Manufacturing method of high-density stacked metal capacitor device |
Publications (1)
Publication Number | Publication Date |
---|---|
TW483090B true TW483090B (en) | 2002-04-11 |
Family
ID=21678836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90117935A TW483090B (en) | 2001-07-23 | 2001-07-23 | Manufacturing method of high-density stacked metal capacitor device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW483090B (en) |
-
2001
- 2001-07-23 TW TW90117935A patent/TW483090B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7179706B2 (en) | Permeable capacitor electrode | |
TW405174B (en) | Process for manufacturing semiconductor integrated circuit device | |
US20240147727A1 (en) | Microelectronic devices including staircase structures, and related memory devices | |
JP2002076142A (en) | Method for forming charge storage electrode of capacitor | |
JP2005531919A5 (en) | ||
TW408443B (en) | The manufacture method of dual damascene | |
TW519723B (en) | Method for forming multi-level metal interconnection | |
US6909592B2 (en) | Thin film capacitor and fabrication method thereof | |
TW380316B (en) | Manufacturing method for fin-trench-structure capacitor of DRAM | |
US10229967B2 (en) | High-density MIM capacitors | |
TW417293B (en) | Formation of DRAM capacitor | |
TW483090B (en) | Manufacturing method of high-density stacked metal capacitor device | |
US20040152259A1 (en) | Thin film capacitor and fabrication method thereof | |
TW202017001A (en) | Method of fabricating semiconductor device | |
TW200403848A (en) | Method of manufacturing capacitor in semiconductor devices | |
JP3102387B2 (en) | Method for manufacturing semiconductor device | |
TW383495B (en) | Manufacturing method for DRAM capacitor | |
TW427015B (en) | Structure and manufacturing method of stacked-type capacitors | |
JP2001210714A (en) | Method of manufacturing semiconductor device | |
TW381341B (en) | Manufacturing method for crown shape capacitor bottom plate | |
TW200905803A (en) | Method of making planar-type bottom electrode for semiconductor device | |
TW580754B (en) | Dual damascene process | |
TW409405B (en) | Manufacture method of crown type charge storage electrode | |
TW293950B (en) | The 3D polysilicon resistance of IC | |
TW499758B (en) | Flash memory cell and its manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |