TW478050B - Method of fabricating polysilicon resistor on metal gate - Google Patents

Method of fabricating polysilicon resistor on metal gate Download PDF

Info

Publication number
TW478050B
TW478050B TW90106661A TW90106661A TW478050B TW 478050 B TW478050 B TW 478050B TW 90106661 A TW90106661 A TW 90106661A TW 90106661 A TW90106661 A TW 90106661A TW 478050 B TW478050 B TW 478050B
Authority
TW
Taiwan
Prior art keywords
gate
polycrystalline silicon
metal
layer
scope
Prior art date
Application number
TW90106661A
Other languages
Chinese (zh)
Inventor
Ming-Shing Tsai
Chi-Ming Wu
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW90106661A priority Critical patent/TW478050B/en
Application granted granted Critical
Publication of TW478050B publication Critical patent/TW478050B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

The present invention discloses a method of fabricating polysilicon resistor on metal gate, which can resolve the problem that the fabricated metal gate is damaged by the high-temperature process in the polysilicon resistor process during the following polysilicon resistor fabrication process after fabricating metal gate. The polysilicon resistor is fabricated together with the dummy resistor, and the high temperature process of polysilicon resistor and dummy gate are integrated together, a passivation layer is formed on the polysilicon resistor in the following processing steps of fabricating metal gate to avoid the damage of polysilicon resistor in the process of metal gate.

Description

478050 五、發明說明(1) 技術領域: 本發明係關於一種邏輯電路製程,特別是關於金屬閘 極(metal gate)與多晶矽電阻(poly_resist〇r)之製作方 法0 發明背景: 邏輯電路係由CMOS、電阻及電容器等組合形成,而 M0S電晶體元件是以閘極(gate)作為控制電極,一般而 言’是以含高濃度η型或p型的多晶矽(po 1 y — s i)做為此閘 極材質,但在 dual p〇ly的組態中,當閘極電壓夠高時, 會有部份的壓降跨在多晶矽閘極内,也就是造成空乏 (depletion)的現象。當空乏區的寬度和閘氧化層厚度接 近時(如gate oxide厚度小於10 nm後),相關效應就變 得很顯著。如果多晶矽閘極内摻雜物活化程度不夠的話, 空乏區的寬度也會越大。為改善此現象,1 9 9 7年美國德州 儀器(TI)公司發表利用金屬閘極(Al/TiN和W/TiN)做為 閘極的元件技術’其金屬閘極具有低的電阻與無c a r r i e r depletion的問題等優點。 一般製作金屬閘極的方式如下所述:首先,請參考圖 一 Μ示,依照傳統製作閘極結構方式形成一虛置閘極結 構100(dummy gate structure)與源/汲極區域15,在已有 淺溝渠隔離 20(shallow trench ioslation; STI)的半導 體基板1 〇上,先後沈積一閘極介電層、摻雜之多晶矽和矽 化金屬層於基板1 0上,續於閘極介電層、矽化金屬層和摻478050 V. Description of the invention (1) Technical field: The present invention relates to a logic circuit process, in particular to a method for manufacturing a metal gate and a polysilicon resistor. Background of the invention: The logic circuit is made of CMOS , Resistors, capacitors, etc., and M0S transistor elements use gates as control electrodes. Generally speaking, “Po 1 y — si” containing high concentration n-type or p-type is used for this purpose. Gate material, but in dual poly configuration, when the gate voltage is high enough, there will be part of the voltage drop across the polysilicon gate, which is the phenomenon of depletion. When the width of the empty region is close to the thickness of the gate oxide (for example, after the gate oxide thickness is less than 10 nm), the correlation effect becomes significant. If the activation level of the dopants in the polycrystalline silicon gate is insufficient, the width of the empty region will be larger. In order to improve this phenomenon, Texas Instruments (TI) issued a component technology using metal gates (Al / TiN and W / TiN) as its gate in 1997. The metal gate has low resistance and no carrier. Depletion problems and other advantages. The general method of making a metal gate is as follows: First, please refer to FIG. 1M, a traditional gate structure is used to form a dummy gate structure 100 (dummy gate structure) and a source / drain region 15. On a semiconductor substrate 10 having a shallow trench isolation 20 (STI), a gate dielectric layer, a doped polycrystalline silicon, and a silicide metal layer are successively deposited on the substrate 10, continued to the gate dielectric layer, Silicided metal layer and doped

478050 五、發明說明(2) ' 〜- 雜之多晶矽層定義出虛置閘極位置,僅留下閘極介電層 90、石夕化金屬| 80和摻雜之多晶石夕層7〇組成間極結構 1〇〇。接續[進行離子佈值以形成形成輕摻雜汲極(highiy ^ped dram; LDD);爾後,形成間隙壁6〇於虛置閘極結 ί/100之兩側並在進行離子佈值步驟以源/沒極區域15, 取後,沈積一乳化矽之介電層3〇於虛置閘極結構1〇〇盥基 ΐ = 行回㈣步驟使沈積之介電層之厚度與虛 置閑極結構1 0 0相同。 接續請參考圖- Β所示,將虛置閘極結構除去,係使 合不同之姓刻反應氣體或選擇性之濕㈣· :閘極"電層90、矽化金屬層8〇和摻 去,而開出閘極開口(gate opening)1〇〇a。曰曰夕層70除 再接著沈積高介電常數之介電屏 氧化鍀(Ta205 )等材質作為閘極介電9 ,石夕(Sl3N4)或 一 C所示,先後沈積氮化鈦(TiN)^為層阻^者/續參考圖 ⑺或紹⑴Μ乍為金屬層5〇,再經化及金屬鶴 …層除去,完成以高介電常留數在二電電 )、·阻障層40a與金屬層50a所形成 曰(圖中未不 在深次微米元件之製作時,當閘極尺二極結構2 0 0。 的寄生電阻亦隨之增加,如此,在壑雷,低時,其閘極 邏輯閘傳輸的延遲,在RF電路方面,合时方面’會造成 的fmax及雜訊(noise)特性,因此有;_曰嚴重影響到元件 主要是從改善閘極結構來加強元件特 f亟的產生。其 符性’ 型閘極之結構 478050 五、發明說明(3) 其在閘極的上半部呈延伸的形狀,所以截面較寬,如此, 可降低閘極的寄生電阻。其在製程中,亦先製作出虛置閘 極’如圖一 示’再來進行如圖一 B中所示··虛置閘極結 構除去’接著,沈積高介電常數之介電層如氮化石夕或氧^ 搭等材質作為閘極介電層,再接續,如圖一 E所示,先後 沈積氮化鈦作為阻障層40及金屬鎢或鋁作為金屬層5〇/使 用微影方式形成光阻5 1於閘極位置上,作為蝕二 〇 極;最後圖一 f所示,使用乾= =僅留下罩,保護下之阻障層40b及金屬層5〇b,而在除去 光阻5 1後即完成T-型閘極2〇〇b。 、 在經所述多重繁瑣步驟製作完金 於溝渠隔離20上製作多晶1極後才此接續 達到操作要求所需I 由於沈積多晶矽及為 驟,此些步驟約之阻值:需另對多晶石夕進行摻雜步 極結構,因後續製作之面溫製,,而所形成之金屬閘 層的品質,導致門4夕日曰夕電阻之鬲溫製程破壞閘極介電 前形成之經離子^ ^電壓之漂移或有遲滯現象產生;且先 後,其離子之擴耑此形成源/汲極區域,在經高溫製程 ί文狀況亦難以控制。 〇 發明之概述:478050 V. Description of the invention (2) '~-The miscellaneous polycrystalline silicon layer defines the position of the dummy gate, leaving only the gate dielectric layer 90, petrified metal | 80, and doped polycrystalline polysilicon layer 7〇 Composition of interpolar structure 100. Continued [Ion layout to form a lightly doped drain (highiy dped dram; LDD); Then, a spacer wall 60 is formed on both sides of the dummy gate junction // 100 and an ion layout step is performed to The source / inverter region 15 is deposited, and a dielectric layer of emulsified silicon 30 is deposited on the dummy gate structure 100. After the step is performed, the thickness of the deposited dielectric layer and the dummy idler are deposited. The structure 1 0 0 is the same. Please refer to Figure-BB for the continuation. The removal of the dummy gate structure is to etch the reactive gas or the selective wetness with different names. Gate: Electrical layer 90, silicided metal layer 80 and doped , And open the gate opening (gate opening) 100a. In addition to the layer 70, materials such as hafnium oxide (Ta205), which is a high-dielectric constant dielectric screen, are then deposited as the gate dielectric 9, as shown in Shi Xi (Sl3N4) or a C, and titanium nitride (TiN) is deposited successively. ^ Is the layer resistance ^ / continued reference picture ⑺ or Shao M is the metal layer 50, and then the chemical and metal crane ... layer removed, complete with high dielectric constant number in the second electricity), barrier layer 40a and When the metal layer 50a is formed (when the sub-micron device is not manufactured in the figure, the parasitic resistance of the gate ruler dipole structure 2 0 0) also increases, so when the thunder and thunder are low, the gate The delay of the transmission of the logic gate, in terms of the RF circuit, the timeliness, will cause the fmax and noise characteristics, so there are; _ said seriously affecting the component is mainly to improve the component characteristics by improving the gate structure The structure of the gate electrode of the same type is 478050 V. Explanation of the invention (3) It has an extended shape in the upper half of the gate, so the cross section is wide. In this way, the parasitic resistance of the gate can be reduced. It is in the manufacturing process In the process, the dummy gates are also made 'as shown in Figure 1', and then as shown in Figure 1B. The dummy gate structure is removed. Next, a dielectric layer with a high dielectric constant, such as nitride or oxygen, is deposited as the gate dielectric layer. Then, as shown in FIG. 1E, titanium nitride is successively deposited. As the barrier layer 40 and metal tungsten or aluminum as the metal layer 50 / using a photolithography method to form a photoresist 5 1 at the gate electrode position as the etch 20 electrode; as shown in the last figure 1f, using dry = = only left The lower cover protects the barrier layer 40b and the metal layer 50b, and after removing the photoresist 51, the T-gate 200b is completed. After completing the multiple tedious steps, the gold is completed in the trench. After the poly 1 pole is made on the isolation 20, this connection can meet the operation requirements. I Because polycrystalline silicon is deposited, this step is about the resistance value: doped step structure must be added to the polycrystalline stone. The surface temperature is controlled, and the quality of the metal gate layer is formed, which causes the temperature and temperature process of the gate resistor to destroy the ionized ^^^ voltage drift or hysteresis formed before the gate dielectric; and The expansion of its ions forms the source / drain region, which is also difficult in high temperature processes. Control SUMMARY square invention:

本發明之主要B 石夕電阻,同時形成声的:、長1供種製作金屬閘極上之多晶 屬閘極結構之後,閘極與多晶矽電阻,如此在形成金 壞了閘極介電層夕需再進行高溫之多晶矽電阻步驟而破 、品質。The main B resistance of the present invention simultaneously forms an acoustic: After the length of 1 is used to make a polycrystalline gate structure on a metal gate, the gate and polycrystalline silicon resistors are formed, so that the dielectric layer of the gate is damaged when gold is formed. Need to perform the high temperature polycrystalline silicon resistance step to break and quality.

第6頁 478050 五、發明說明(4) 本發明之次要目的為提供一種製作金屬閘極上之多晶 矽電阻,減少習知技術中製作金屬閘極與多晶矽電阻之步 本 矽電阻 本 先,提 氧化矽 義出虛 多晶矽 和基板 極和多 上,用 極開口 中完成 發明之再 ,在除去 發明係使 供已製作 、摻雜多 置閘極與 電阻兩側 上,並進 晶矽電阻 以保護多 後,依序 金屬閘極 一目 虛置 用下 完汲 晶矽 多晶 。續 行回 相同 晶碎 形成 結構 圖號說明: 10-基板 20-淺溝渠隔 4 0 -阻障層 4 0 a-阻障層 5 0 a-金屬層 5 1 -光阻 的為提供一種製作金屬閘極上之多晶 閘極時,使用光阻保護多晶矽電阻。 列步驟來達到上述之各項目的:首 /源極區域之半導體基板’依序沈積 層和矽化金屬層於基板上,接續,定 矽電阻,並形成間隙壁於虛置閘極與 沈積氧化矽於虛置閘極、多晶矽電阻 蝕刻使所沈積之介電層厚度與虛置閘 。再接著形成一光阻於多晶矽電阻 電阻,接著,除去虛置閘極形成一閘 氧化鉻、氮化鈦和金屬鎢於閘極開口 1 5 -源/汲極區域 3 0 -介電層 5 0 -金屬層 4 0 b -阻障層 5 0 b -金屬層 6 0-高電阻Page 6 of 478050 5. Description of the invention (4) The secondary purpose of the present invention is to provide a polycrystalline silicon resistor on a metal gate, reducing the steps of making metal gate and polycrystalline silicon resistor in the conventional technology. The silicon is made of virtual polycrystalline silicon and substrate poles, and the invention is completed in the electrode opening. After removing the invention, the polysilicon resistors have been fabricated and doped on the two sides of the resistors and resistors. In order, the order of the metal gates is exhausted and the drained polycrystalline silicon is used up. Continue to go back to the same crystal chip to form the structure drawing number description: 10-substrate 20-shallow trench separation 4 0 -barrier layer 4 0 a -barrier layer 5 0 a -metal layer 5 1 -photoresist is to provide a manufacturing metal In the case of polycrystalline gates on the gate, a photoresistor is used to protect the polycrystalline silicon resistor. Steps to achieve the above-mentioned items: the semiconductor substrate of the first / source region 'sequentially deposits a layer and a silicided metal layer on the substrate, continues, sets the silicon resistance, and forms a gap between the dummy gate and the deposited silicon oxide In the dummy gate, polysilicon resistive etching makes the thickness of the deposited dielectric layer and the dummy gate. Then a photoresistive polysilicon resistor is formed, and then the dummy gate is removed to form a gate chromium oxide, titanium nitride, and metal tungsten in the gate opening 15-source / drain region 3 0-dielectric layer 5 0 -Metal layer 4 0 b-barrier layer 5 0 b-metal layer 6 0-high resistance

第7頁 478050Page 7 478050

8 0-石夕化金 1 0 0 -虛置開 2 0Ob-T-型严甲, 7 0 0 -摻雜之 9 0 0 -介電層 屬層 極結構 極 多晶發層 7 0 -摻雜之多晶矽層 9 〇 -閘極介電層 2 0 0a-金屬閘極結構 5 0 0 -光阻層 8 0 0 -♦化金屬層 1 0 0 0 -多晶矽電阻結構8 0-Shi Xihua gold 1 0 0 -Dummy open 2 0Ob-T-type stern armor, 7 0 0 -Doped 9 0 0 -Dielectric layer belongs to layer structure and extremely polycrystalline hair layer 7 0 -Doped Miscellaneous polycrystalline silicon layer 9 0-gate dielectric layer 2 0 0a-metal gate structure 5 0-photoresistive layer 8 0 0-polymetallic layer 1 0 0 0-polycrystalline silicon resistive structure

發明的詳細說明: 本發明可運用在半導體製 形成金屬閘極及多晶石夕電阻之 製程中之高溫及佈值步驟而傷 構。本發明使用兩個實施例分 極來闡述本發明。 第一實施例 :〒作邏輯電路中,減低在 %步驟,避免多晶矽電阻 害只製# — w ^ 作凡之金屬閘極結 作鑲嵌式閘極與τ -型閘 首 式形成 極區域 上,先 於基板 光後留 用等向 碎化金 之多晶 化金屬 一卢置門極二=斤不,依照傳統製作閘極結構方 虛^ ^極、,構100、多晶矽電阻結構100峽源/沒 /5。先在已有淺溝渠隔離2〇(STI)的半導體基板1〇 後沈積一閘極介電層、摻雜之多晶矽和矽化金屬層 10亡,並旋塗光阻層於矽化金屬層之上,經微影曝 下光阻於閘極和多晶矽光阻位置上,用以保護在使 性蝕刻過程中其下之閘極介電層、摻雜之多晶矽和 屬層’而形成閘極介電層9 〇、矽化金屬屛 矽層70所組成之虛置閘極結構100和介電屉Qn彡雜 層8 0 0和摻雜之多晶矽層7〇〇所組成之多晶 〇、矽 電阻結Detailed description of the invention: The present invention can be used in the process of forming a metal gate and a polycrystalline silicon resistor in a semiconductor manufacturing process at a high temperature and a layout step to damage the structure. The invention uses two embodiments to illustrate the invention in a polarized manner. First embodiment: In the operation logic circuit, reduce the% step to avoid polysilicon resistance. Only # — w ^ The metal gate junction is made into a mosaic gate and a τ -type gate-formed pole region. Polycrystalline metal with isotropically crushed gold is left before the substrate is lighted, and the gate electrode is set to two = kilograms. According to the tradition, the gate structure is made square, ^, ^, 100, and polycrystalline silicon resistance structure. / 5. A gate dielectric layer, doped polycrystalline silicon and a silicided metal layer are deposited on a semiconductor substrate 10 having a shallow trench isolation 20 (STI), and a photoresist layer is spin-coated on the silicided metal layer. The photoresist is exposed on the gate and the polycrystalline silicon photoresist through lithographic exposure to protect the gate dielectric layer, the doped polycrystalline silicon and the underlying layer during the etching process to form the gate dielectric layer. 〇 、 Poly gate structure 100 composed of metal silicide silicon layer 70 and dielectric layer Qn doped layer 8000 and doped polycrystalline silicon layer 7000 polycrystalline silicon, silicon resistance junction

第8頁 478050 五、發明說明(6) 構 1000。 所述閘極介電層係传 石夕層70與7_先使 氣’其摻雜多晶 構之需求而定,豆多曰功换I 1铋上多晶矽電阻結 子源為磷(4子、、V曰二 用離子佈值方式,其離 至l〇〇KeV之間其劑量為二二使用離子能量介於30 層亦利用化學氣相沈積方切成。…金屬 全属JS +后ώ人 、飞开/成八摻雜多晶矽層與矽化 、屬曰之厗度;I於1 0 〇 〇埃至3 0 〇 〇埃之間。 #雜3 : ;τ仍清參考圖2,進行離子佈值以形成輕 石i Α)\以製作Ν型元件而言’係使用之換雜離子 以佈值石申為例其佈值能量介於.ν至 ί曰ΓΪ 後,形成間隙壁60於虛置閘極結構丨〇〇和 ΐ曰阻結構1〇00之兩側,其間隙壁60厚度介於3 0 0埃 j Ζ 1間,:使用之材質為氮化矽或氧化矽/氮化石夕 ψ ^二構° #著’進行離子佈值及高溫擴散步驟以製作 出源/汲極區域i 5,其所佈值之離子以製作難元件而言, 選用磷(P)或砷(As)離子,而以佈值砷為例其佈值能量介 於IKeV至l〇〇KeV之間,佈值濃度介於1El5 at⑽/㈣技 8E15 atom/cm2之間,其高溫擴散之溫度介於95〇11〇〇乞 之間。 最後,沈積一層氧化矽之介電層3〇蓋住虛置閘極結構 1〇〇、多晶矽電阻1 0 0 0和基板10,並使用化學機械研磨方Page 8 478050 V. Description of Invention (6) Structure 1000. The gate dielectric layer is based on the requirement of the polycrystalline structure of the passivation layers 70 and 7_. First, the polycrystalline silicon resistor junction source of Dou Duo for I 1 Bi is phosphorus (4, V and V are used in the way of ion distribution, and the dose is between 100KeV and 22. The ion energy is between 30 layers and it is cut by chemical vapor deposition .... The metal is all JS + post-purchaser , Flying apart / eight-doped polycrystalline silicon layer and silicidation, the degree of silicide; I is between 1000 angstroms and 300 angstroms. # 杂 3:; τ The value is to form pumice i Α) \ To make N-type elements, it is used to change the impurity ions. Take the cloth value Shishen as an example, and the cloth value energy is between .ν and ί 曰 ΓΪ. Gate structure 丨 〇〇 and ΐ on the two sides of the resistance structure 1000, the thickness of the gap wall 60 is between 300 angstroms j z 1: the material used is silicon nitride or silicon oxide / nitride nitride ψ ^ 二 建 ° # 着 'The ion distribution and high temperature diffusion steps are performed to make the source / drain region i 5. For the ions of the distributed value to make difficult components, phosphorus (P) or arsenic (As) is used. ion, Taking cloth-valued arsenic as an example, the cloth-valued energy is between I KeV and 100 KeV, the cloth-value concentration is between 1 El5 at ⑽ / ㈣ 技 8E15 atom / cm2, and the high-temperature diffusion temperature is between 950.111. Between begging. Finally, a silicon oxide dielectric layer 30 is deposited to cover the dummy gate structure 100, the polycrystalline silicon resistor 1000 and the substrate 10, and a chemical mechanical polishing method is used.

第9頁 接續請 其下之多晶 製作金屬閘 構1 0 0除去 或選擇性之 之多晶矽層 刻為例,使 層8 0與摻雜 CFH3等去除 接續開 478050 五、發明說明(7) 式進行回#刻步驟,使所沈積之介電層厚度 構1 0 0和多晶矽電阻1 0 0 0相同。 此時,虛置閘極結構1 0 0與多晶矽電阻J 作完畢’接繽為金屬閘極之製作。在製作金 管使用取代閘極(replacement gate)和鑲敌 (damascene gate)上皆先形成一虛置閘極與 域’爾後’再進行金屬閘極之製作,但在製 時,一般製程上需在製作完金屬閘極後進行 製作,而其多晶石夕電阻之製作過程中,由於 =積時之高溫環境、摻雜多晶矽之離子佈值 ,溫製程皆會影響到已製作完成之金屬閘極 貫施例中將多晶矽電阻結構丨0 〇 〇與虛置閘極 作,解決在-般製程中所遇到之問題,並節 參考圖二β所示^ |4」 矽電阻結構1 0 〇 〇不被後續形成 極結構2 〇 0 a之製程步驟影響, ,、係使用電漿蝕刻並配合不同: 濕餘刻將閘極介電層9 0、矽化 70除去,而開出閘極開口 1〇〇; ,含氯氣(C12)做為反應氣體j 多晶矽層70,而另使用含氟之 閘極介電層。 始沈積製作金屬閘& & # 一, 與虛置閘極結 U 冓1000已製 屬閘極時,不 閘極 源/汲極區 作邏輯電路 _ 多晶矽電阻之 需進行多晶矽 和離子擴散之 4 。而本發明之 100—同製 省所需之製程 r 5 0 0用以保護 極開口 100a及 將虛置閘極处 I刻反應氣體 屬層8〇和摻雜 以採取電漿蝕❹ Γ去矽化金屬 體如CF4、 五、發明說明(8) $二f之介電層如氮化矽(Si3N4)或氧化鉻(Ta205 )等材質 换甲f開口 10〇a中係作為閘極介電層(為避免圖形複 ΠΤί二二在阻圖Λ)4:續參考圖二C所示,先後沈積 )乍為阻Ρ早層4 0及金屬鎢(W)或鋁(A 1 )作為金屬芦 5 0 ° 曰 其南介電常數之介電層係使用低壓化學氣相沈積方式 (Low pressure chemical vapor deposition; LPCVD)形 成厚度介於1 5埃至2 0 〇埃之間,以氧化鉻為例係使用 Ta(0C2H5) 5與〇2做為反應氣體。而氮化鈦及金屬鎢或鋁使 用電*辅助化學氣相沈積(plasma-enhanced chemical vapor dep〇sition; pECVDM濺鍍方式形成,其中氮化鈦 沈積厚度介於50埃至5 0 0埃之間,金屬鎢或鋁之沈積厚度 介於5 0埃至2 0 〇 〇埃之間;重要是氮化鈦及金屬鎢或鋁之加 總厚度需填滿閘極開口 1 〇 〇 a。 接續’如圖二D所示,經化學機械研磨(CMP)將留在介 電層3 0上之阻障層及金屬層除去,完成以閘極介電層(圖 中未不)、阻障層4 〇 a與金屬層5 0 a所形成之金屬閘極結構 2 0 0。最後’將保護多晶矽電阻結構丨〇 〇 〇之光阻層5 〇 〇除 去’便已完成金屬閘極與多晶矽電阻之製作。 其中化學機械研磨係以介電層3 0作為回#刻之終止 層’而光阻層5 0 0使用乾式(電漿方式)或濕式以清除 之0 第二實施例The following page continues to ask the polycrystalline silicon below to make the metal gate structure 1 0 0, or the selective polycrystalline silicon layer is etched as an example, so that the removal of layer 80 and doped CFH3 and so on is continued. 478050 V. Description of the invention (7) Formula A step of back engraving is performed, so that the thickness of the deposited dielectric layer 100 is the same as that of the polycrystalline silicon resistor 100. At this time, the dummy gate structure 100 and the polycrystalline silicon resistor J are completed, and the connection is made of a metal gate. In the production of gold tubes, a replacement gate and a damascene gate are used to form a dummy gate and a field "later" before the metal gate is produced. However, during the manufacturing process, the general process requires After the metal gate is fabricated, it is produced. During the production process of the polycrystalline silicon resistor, due to the high temperature environment of the accumulated time and the polycrystalline silicon doped ionic distribution value, the temperature manufacturing process will affect the completed metal gate. In the examples, a polycrystalline silicon resistor structure 丨 0 〇 is used as a dummy gate to solve the problems encountered in the general process, and the section is shown in Figure 2 β | 4 ″ Silicon resistance structure 1 0 〇〇 Not affected by the subsequent process steps of forming the electrode structure 2000a, using plasma etching and different combinations: Wet gate electrode dielectric layer 90 and silicidation 70 are removed by wet etching, and the gate opening 1 is opened. 〇; Chlorine gas (C12) was used as the reaction gas j polycrystalline silicon layer 70, and a fluorine-containing gate dielectric layer was also used. Initial deposition and fabrication of metal gates &# 1. When the gate junction U 虚 1000 has been fabricated with gates, the gate / source regions are not used as logic circuits. _ Polycrystalline silicon resistors require polycrystalline silicon and ion diffusion. 4. The 100-thousand-manufacturing process r 5 0 0 of the present invention is used to protect the electrode opening 100 a and to dope the reactive gas metal layer 80 at the dummy gate and doping to adopt plasma etching ❹ to desiliconize Metal body such as CF4, V. Description of the invention (8) A dielectric layer such as silicon nitride (Si3N4) or chromium oxide (Ta205) is used as the gate dielectric layer in the opening 10a. In order to avoid the duplication of the pattern, the two are in the resistance map Λ) 4: continued to refer to Figure IIC, and deposited in succession) is the early resistance layer 4 0 and the metal tungsten (W) or aluminum (A 1) as the metal reed 5 0 ° The dielectric layer with a dielectric constant of South uses low pressure chemical vapor deposition (LPCVD) to form a thickness between 15 Angstroms and 200 Angstroms, using chromium oxide as an example. Ta (0C2H5) 5 and 02 were used as reaction gases. Titanium nitride and metal tungsten or aluminum are formed using plasma-enhanced chemical vapor deposition (pECVDM). The thickness of titanium nitride is between 50 angstroms and 500 angstroms. The deposited thickness of metal tungsten or aluminum is between 50 Angstroms and 2000 Angstroms; the important thing is that the combined thickness of titanium nitride and metal tungsten or aluminum needs to fill the gate opening 100a. As shown in FIG. 2D, the barrier layer and the metal layer remaining on the dielectric layer 30 are removed by chemical mechanical polishing (CMP), and the gate dielectric layer (not shown in the figure) and the barrier layer 4 are completed. The metal gate structure 2000 formed by a and the metal layer 50 a. Finally, 'removing the photoresist layer 500 which protects the polycrystalline silicon resistance structure 丨 00' has completed the fabrication of the metal gate and polycrystalline silicon resistance. Among them, the chemical mechanical polishing uses the dielectric layer 30 as the back-engraved stop layer and the photoresist layer 500 uses a dry (plasma method) or wet method to remove the second layer.

第11頁 發明說明(9)Page 11 Description of the invention (9)

置閘極的 其在 電版結構 例所述相 用以保護 除去。接 ‘實施例 氧化鉻等 先後沈積 5 0,其阻 發明亦可運用 同時,一同 製程中,亦 1 〇〇〇,如圖 同。並進行 其下之多晶 I ’沈積製 所述相同, 材質作為閘 氮化鈦作為 障層4 0與金 ί 閘極之製程中,亦可在製作虛 製作多晶矽電阻。 ,製作_出虛置閘極結構1 0 0與多晶矽 A所不’其製作方式亦與第一實施 °圖二B中所示··先形成一光阻層5 0 C 矽電阻結構10 〇 〇後,將虛置閘極結構 作金屬閘極所需之材質,其方式與第 沈積高介電常數之介電層如氮化矽或 極介電層,再接續,如圖二E所示, 阻障層4 0及金屬鎢或鋁作為金屬層 屬層5 0的製作方式及沈積厚度與前所The phase of the gate is described in the example of the electroplated structure for protection and removal. Following the ‘Example’, chromium oxide and the like are successively deposited at 50, and the resistance invention can also be applied. At the same time, it is also 100% in the same process, as shown in the figure. And the following polycrystalline I 'deposition process is performed as described above, the material is used as a gate, titanium nitride is used as a barrier layer 40, and the gold gate process, and a polycrystalline silicon resistor can also be fabricated in the fabrication process. The fabrication method of the dummy gate structure 100 is different from that of the polycrystalline silicon A. The manufacturing method is also the same as that of the first implementation. As shown in FIG. 2B, a photoresistive layer 5 0 C silicon resistance structure 10 is formed first. After that, the dummy gate structure is used as the material required for the metal gate. The method is the same as that of a high-k dielectric layer such as silicon nitride or a polar dielectric layer, as shown in Figure 2E. Manufacturing method of barrier layer 40 and metal tungsten or aluminum as metal layer subordinate layer 50 and thickness and former thickness

述之實施例相同,但在製作T-型閘極時,需在沈積金屬閘 極所需之材質後,使用微影方式形成光阻5 1於閘極位置 上,作為蝕刻時之罩幕來定義出T-型閘極;最後,如圖二 F所述,使用非等向性蝕刻方式僅留下罩幕保護下之阻障 層4Ob及金屬層50b,而在除去光阻51後即完成T-型閘極 2 0 0boThe embodiment described is the same, but when making a T-type gate, it is necessary to use a photolithography method to form a photoresist 5 at the gate position after depositing the required material of the metal gate. It is used as a mask during etching. Define the T-type gate; finally, as shown in Figure 2F, using anisotropic etching to leave only the barrier layer 4Ob and the metal layer 50b under the protection of the mask, and it is completed after removing the photoresist 51 T-gate 2 0 0bo

其光阻5 1可為正光阻或負光阻之材質,而使用之非等 向性蝕刻係使用含氯氣之反應氣體進行電漿蝕刻以除去金 屬層,而使用含氧氣或氮氣之反應氣體進行電漿蝕刻以除 去阻障層。而其光阻5 1之去除採用習知方式加以除去如電 聚#刻或濕#刻方式。 上述說明係以一較佳實施例來闡述本發明,而非限制Its photoresist 51 can be a material of positive or negative photoresistance, and the anisotropic etching used is plasma etching using a reaction gas containing chlorine to remove the metal layer, and using a reaction gas containing oxygen or nitrogen Plasma etching to remove the barrier layer. The photoresist 51 is removed by conventional methods, such as electro-polymerization or wet etching. The above description illustrates the present invention by way of a preferred embodiment, and is not limiting.

478050478050

第13頁 478050 圖式簡單說明 圖示的簡要說明: 圖一 A為習知技藝中形成電晶體之製程剖面圖。 圖一 B為習知技藝中除去虛置閘極結構之製程剖面 圖。 圖一 C為習知技藝中沈積阻障層及金屬層之製程剖面 圖。 圖一 D為習知技藝中經回蝕刻後形成金屬閘極之製程 剖面圖。 圖一 E為習知技藝中形成光阻作定義出T-型閘極之製 程剖面圖。 圖一 F為習知技藝中形成T-型閘極之製程剖面圖。 圖二A為本發明實施例中形成虛置閘極與多晶矽電阻 之製程剖面圖。 圖二B為本發明實施例中除去虛置閘極結構並使用光 阻保護多晶矽電阻之製程剖面圖。 圖二C為本發明第一實施例中沈積阻障層及金屬層之 製程剖面圖。 圖二D為本發明第一實施例中經回蝕刻後形成金屬閘 極之製程剖面圖。 圖二E為本發明第二實施例中形成光阻作定義出T-型 閘極之製程剖面圖。 圖二F為本發明第二實施例中形成T-型閘極之製程剖 面圖。Page 13 478050 Brief description of the diagram Brief description of the diagram: Figure 1A is a cross-sectional view of the process of forming a transistor in a conventional technique. Figure 1B is a cross-sectional view of the process of removing the dummy gate structure in the conventional art. Figure 1C is a cross-sectional view of a process for depositing a barrier layer and a metal layer in a conventional technique. Figure 1D is a cross-sectional view of a process for forming a metal gate electrode after etch-back in the conventional art. Figure 1E is a cross-sectional view of the process of forming a photoresist to define a T-gate in the conventional art. Figure 1F is a cross-sectional view of the process of forming a T-gate in the conventional art. FIG. 2A is a cross-sectional view of a process for forming a dummy gate and a polycrystalline silicon resistor in an embodiment of the present invention. FIG. 2B is a cross-sectional view of a manufacturing process in which a dummy gate structure is removed and a polysilicon resistor is protected by a photoresist according to an embodiment of the present invention. FIG. 2C is a cross-sectional view of a process for depositing a barrier layer and a metal layer in the first embodiment of the present invention. FIG. 2D is a cross-sectional view of a process of forming a metal gate electrode after etch-back in the first embodiment of the present invention. FIG. 2E is a cross-sectional view of a process for forming a photoresist to define a T-type gate in the second embodiment of the present invention. Fig. 2F is a cross-sectional view of a process for forming a T-type gate in the second embodiment of the present invention.

第14頁Page 14

Claims (1)

478050 六、申請專利範圍 1 · 一種製作金屬閘極(m e t a 1 g a t e)上之多晶矽電阻(ρ 〇 1 y resistor)的方法’係包含· (a) 同時形成虚置閘極(dummy gate structure)與多晶 矽電阻於半導體基板上,其中所述之半導體基板上已 製作完汲/源極區域; (b) 沈積一層介電層,並使用化學機械研磨方式進行回 姓刻步驟,使所述介電層的厚度與所述虛置閘極和多 晶矽電阻相同; (c )形成一光阻於所述多晶石夕電阻上; (d) 除去所述虛置閘極,形成一閘極開口(gate Φ opening); (e) 沈積高介電常數之介電層於所述閘極開口中作為閘 極介電層; (f )沈積閘極金屬層於所述半導體基板之上方; (g)將位於所述介電層上之所述閘極金屬層除去,完成 所述金屬閘極(metal gate)之製作。 2 ·如申請專利範圍第1項所述之製作金屬閘極上之多晶矽 電阻的方法,其中所述光阻係為負光阻。 •丨 3 ·如申請專利範圍第1項所述之製作金屬閘極上之多晶矽 電阻的方法,其中所述光阻係為正光阻。 4 ·如申請專利範圍第1項所述之製作金屬閘極上之多晶矽478050 VI. Scope of patent application1. A method for making polycrystalline silicon resistor (ρ 〇1 y resistor) on a metal gate (meta gate) includes: (a) simultaneously forming a dummy gate structure and a dummy gate structure; The polycrystalline silicon resistor is on a semiconductor substrate, wherein the drain / source region has been completed on the semiconductor substrate; (b) a dielectric layer is deposited, and a chemical mechanical polishing method is used to perform the engraving step to make the dielectric layer The thickness is the same as that of the dummy gate and polycrystalline silicon resistor; (c) forming a photoresist on the polycrystalline silicon resistor; (d) removing the dummy gate to form a gate opening (gate Φ (e) depositing a high dielectric constant dielectric layer in the gate opening as a gate dielectric layer; (f) depositing a gate metal layer over the semiconductor substrate; (g) will be located The gate metal layer on the dielectric layer is removed to complete the fabrication of the metal gate. 2. The method of making a polycrystalline silicon resistor on a metal gate as described in item 1 of the scope of the patent application, wherein the photoresist is a negative photoresist. • 丨 3 · The method for making a polycrystalline silicon resistor on a metal gate as described in item 1 of the scope of patent application, wherein the photoresist is a positive photoresist. 4 · Fabrication of polycrystalline silicon on metal gate as described in item 1 of the scope of patent application 第15頁 478050 六、申請專利範圍 電阻的方法,其中所述之間極介電層係為氮化矽 (Si3N4)〇 5 ·如申請專利範圍第1頊所述之製作金屬閘極上之多晶石夕 電阻的方法,其中所述之問極介電層係為氧化錯 (Ta205)。 6 ·如申請專利範圍第1項所述之製作金屬閘極上之多晶矽 電阻的方法,其中所述之間極金屬層係包含阻障層 (barrier layer)與金層層(metal layer)。 7 ·如申請專利範圍第7項所述之製作金屬閘極上之多晶石夕 電阻的方法,其中所述之阻障層係為氮化鈦(T i N)。 8 ·如申請專利範圍第7項所述之製作金屬閘極上之多晶石夕 電阻的方法,其中所述之金屬層係為金屬鎢(W)。 閘 屬 金 作 製 之 述 所 晶 〇 多} · 之A /(V 上 鋁 極 屬 金 為 係 層 屬 金 之 I、述饨所 第中 圍其 範, 利法 專方 請的 申阻 如電 9 1 0.如申請專利範圍第1項所述之製作金屬閘極上之多晶石夕 電阻的方法,其中所述之除去閘極金屬層係使用化學機 械研磨方式(chemical mechanical polished; CMP)。Page 15 478050 6. Method for applying patent range resistance, wherein the interlayer dielectric layer is silicon nitride (Si3N4). 05. Polycrystalline on metal gate as described in the first range of patent application range. The method of Shi Xi resistance, wherein the interlayer dielectric layer is oxidized oxide (Ta205). 6. The method for making a polycrystalline silicon resistor on a metal gate according to item 1 of the scope of the patent application, wherein the intermetallic layer includes a barrier layer and a metal layer. 7. The method for making a polycrystalline silicon resistor on a metal gate as described in item 7 of the scope of patent application, wherein the barrier layer is titanium nitride (T i N). 8. The method for manufacturing a polycrystalline silicon resistor on a metal gate as described in item 7 of the scope of the patent application, wherein the metal layer is metal tungsten (W). The gate is made of gold. The A / (V on the aluminum electrode is gold I is the layer of gold I. It is in the middle of the law, and the application of the law is requested by the law. 10. The method for manufacturing polycrystalline silicon resistors on metal gates as described in item 1 of the scope of the patent application, wherein the removal of the gate metal layer is by chemical mechanical polishing (CMP). 第16頁 478050 六、申請專利範圍 11 ·如申請專利範圍第1頊所述之製作金屬閘極上之多晶矽 電阻的方法,其中所述之同時形成虛置閘極與多晶矽電 阻於半導體基板上係包含: (a)先後沈積氧化矽、摻雜多晶矽層和矽化金屬層於所 述半導體基板上; (b )於所述氧化矽、所述摻雜多晶矽層和所述矽化金屬 層中定義出所述虛置閘極與所述多晶矽電阻; (c )形成間隙壁於所述虛置閘極與所述多晶矽電阻之兩 側。 1 2· —種製作T-型閘極(T-shape gate)上之多晶石夕電阻 (poly resistor)的方法,係包含: (a) 同時形成虛置閘極(dummygate structure)與多晶 矽電阻於半導體基板上,其中所述之半導體基板上已 製作完汲/源極區域; (b) 沈積一層介電層,並使用化學機械研磨方式進行回 蝕刻步驟,使所述介電層的厚度與所述虛置閘極和多 晶碎電阻相同; (c) 形成一光阻於所述多晶石夕電阻上; (d) 除去所述虛置閘極,形成一閘極開口(gate opening); (e )沈積高介電常數之介電層於所述閘極開口中作為閘 極介電層; (f )沈積閘極金屬層於所述半導體基板之上方;Page 16 478050 VI. Application for Patent Scope 11 · The method for making polycrystalline silicon resistors on metal gates as described in the first paragraph of the patent application scope, wherein the simultaneous formation of dummy gates and polycrystalline silicon resistors on a semiconductor substrate includes : (A) sequentially depositing silicon oxide, a doped polycrystalline silicon layer, and a silicided metal layer on the semiconductor substrate; (b) defining the silicon oxide, the doped polycrystalline silicon layer, and the silicided metal layer; A dummy gate and the polycrystalline silicon resistor; (c) forming a gap wall on both sides of the dummy gate and the polycrystalline silicon resistor; 1 2 · —A method for making poly resistors on T-shape gates, including: (a) forming a dummy gate structure and a polycrystalline silicon resistor at the same time On the semiconductor substrate, wherein the drain / source region has been completed on the semiconductor substrate; (b) depositing a dielectric layer and performing an etch-back step using chemical mechanical polishing to make the thickness of the dielectric layer and The dummy gate and the polycrystalline shred resistor are the same; (c) a photoresist is formed on the polycrystalline stone resistor; (d) the dummy gate is removed to form a gate opening (E) depositing a high dielectric constant dielectric layer in the gate opening as a gate dielectric layer; (f) depositing a gate metal layer over the semiconductor substrate; 第17頁 478050 六、申請專利範圍 (g) 使用微影方式於所述閘極金屬層中定義出T-型閘極 位置; (h) 除去除了 T-型閘極位置外之閘極金屬層,完成金屬 閘極(m e t a 1 g a t e )之製作。 1 3.如申請專利範圍第1 2項所述之製作T-型閘極上之多晶 矽電阻的方法,其中所述光阻係為正光阻。 14.如申請專利範圍第12項所述之製作Τ-型閘極上之多晶 矽電阻的方法,其中所述光阻係為負光阻。 1 5.如申請專利範圍第1 2項所述之製作Τ-型閘極上之多晶 矽電阻的方法,其中所述之閘極介電層係為氮化矽 (Si3N4)〇 1 6.如申請專利範圍第1 2項所述之製作T-型閘極上之多晶 矽電阻的方法,其中所述之閘極介電層係為氧化鉻 (Ta205)。 1 7.如申請專利範圍第1 2項所述之製作T-型閘極上之多晶 矽電阻的方法,其中所述之閘極金屬層係包含阻障層 (barrier layer)與金屬層(metal layer)。 1 8.如申請專利範圍第1 7項所述之製作T-型閘極上之多晶 矽電阻的方法,其中所述之阻障層係為氮化鈦(T i Ν)。Page 17 478050 6. Scope of patent application (g) Use lithography to define the T-gate position in the gate metal layer; (h) Remove the gate metal layer other than the T-gate position , Complete the production of metal gate (meta 1 gate). 1 3. The method for making a polycrystalline silicon resistor on a T-gate according to item 12 of the scope of the patent application, wherein the photoresist is a positive photoresist. 14. The method for manufacturing a polycrystalline silicon resistor on a T-gate according to item 12 of the scope of the patent application, wherein the photoresist is a negative photoresist. 1 5. The method for manufacturing a polycrystalline silicon resistor on a T-gate according to item 12 of the scope of patent application, wherein the gate dielectric layer is silicon nitride (Si3N4). The method for fabricating a polycrystalline silicon resistor on a T-gate according to item 12 of the scope, wherein the gate dielectric layer is chromium oxide (Ta205). 1 7. The method for manufacturing a polycrystalline silicon resistor on a T-gate according to item 12 of the scope of the patent application, wherein the gate metal layer includes a barrier layer and a metal layer . 1 8. The method for making a polycrystalline silicon resistor on a T-gate according to item 17 of the scope of the patent application, wherein the barrier layer is titanium nitride (T i Ν). 第18頁 478050 六、申請專利範圍 1 9.如申請專利範圍第1 7項所述之製作T-型閘極上之多晶 矽電阻的方法,其中所述之金屬層係為金屬鎢(W)。 2 0 .如申請專利範圍第1 7項所述之製作T-型閘極上之多晶 矽電阻的方法,其中所述之金屬層係為金屬鋁(A 1)。 2 1.如申請專利範圍第1 2項所述之製作T-型閘極上之多晶 矽電阻的方法,其中所述之除去除T-型閘極位置外之閘 極金屬層,係使用非等向性银刻。 22.如申請專利範圍第12項所述之製作T-型閘極上之多晶 矽電阻的方法,其中所述之同時形成虛置閘極與多晶矽 電阻於半導體基板上係包含: (a) 先後沈積氧化矽、摻雜多晶矽層和矽化金屬層於所 述半導體基板上; (b) 於所述氧化石夕、所述摻雜多晶石夕層和所述石夕化金屬 層中定義出所述虛置閘極與所述多晶矽電阻; (c) 形成間隙壁於所述虛置閘極與所述多晶矽電阻之兩 側0Page 18 478050 6. Scope of patent application 1 9. The method for making polycrystalline silicon resistors on T-gates as described in item 17 of the scope of patent application, wherein the metal layer is metal tungsten (W). 20. The method for manufacturing a polycrystalline silicon resistor on a T-gate according to item 17 of the scope of the patent application, wherein the metal layer is metal aluminum (A 1). 2 1. The method for making a polycrystalline silicon resistor on a T-type gate as described in item 12 of the scope of the patent application, wherein the gate metal layer except for removing the position of the T-type gate is anisotropic Sex silver engraving. 22. The method for manufacturing a polycrystalline silicon resistor on a T-gate according to item 12 of the scope of patent application, wherein the simultaneous formation of a dummy gate and a polycrystalline silicon resistor on a semiconductor substrate includes: (a) deposition oxidation Silicon, a doped polycrystalline silicon layer, and a silicided metal layer on the semiconductor substrate; (b) defining the virtual oxide in the oxidized silicon oxide, the doped polycrystalline silicon layer, and the lithiated metal layer; Placing a gate electrode and the polycrystalline silicon resistor; (c) forming a gap between the dummy gate electrode and the polycrystalline silicon resistor; 第19頁Page 19
TW90106661A 2001-03-21 2001-03-21 Method of fabricating polysilicon resistor on metal gate TW478050B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90106661A TW478050B (en) 2001-03-21 2001-03-21 Method of fabricating polysilicon resistor on metal gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90106661A TW478050B (en) 2001-03-21 2001-03-21 Method of fabricating polysilicon resistor on metal gate

Publications (1)

Publication Number Publication Date
TW478050B true TW478050B (en) 2002-03-01

Family

ID=21677707

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90106661A TW478050B (en) 2001-03-21 2001-03-21 Method of fabricating polysilicon resistor on metal gate

Country Status (1)

Country Link
TW (1) TW478050B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427703B (en) * 2008-12-16 2014-02-21 United Microelectronics Corp Semiconductor device structure and fabricating method thereof
US8716802B2 (en) 2008-12-11 2014-05-06 United Microelectronics Corp. Semiconductor device structure and fabricating method thereof
US8779530B2 (en) 2009-12-21 2014-07-15 Taiwan Semiconductor Manufacturing Company, Ltd. Metal gate structure of a field effect transistor
CN104541377A (en) * 2012-09-24 2015-04-22 英特尔公司 Precision resistor for non-planar semiconductor device architecture
TWI487009B (en) * 2009-06-22 2015-06-01 United Microelectronics Corp Method for fabricating metal gate and polysilicon resistor and related polysilicon resistor structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716802B2 (en) 2008-12-11 2014-05-06 United Microelectronics Corp. Semiconductor device structure and fabricating method thereof
TWI427703B (en) * 2008-12-16 2014-02-21 United Microelectronics Corp Semiconductor device structure and fabricating method thereof
TWI487009B (en) * 2009-06-22 2015-06-01 United Microelectronics Corp Method for fabricating metal gate and polysilicon resistor and related polysilicon resistor structure
US8779530B2 (en) 2009-12-21 2014-07-15 Taiwan Semiconductor Manufacturing Company, Ltd. Metal gate structure of a field effect transistor
US9129953B2 (en) 2009-12-21 2015-09-08 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making a gate structure
US9431505B2 (en) 2009-12-21 2016-08-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making a gate structure
CN104541377A (en) * 2012-09-24 2015-04-22 英特尔公司 Precision resistor for non-planar semiconductor device architecture
CN106971978A (en) * 2012-09-24 2017-07-21 英特尔公司 Precision resistor for non-planar semiconductor device framework
CN107256858A (en) * 2012-09-24 2017-10-17 英特尔公司 Precision resistor for non-planar semiconductor device framework
CN107256858B (en) * 2012-09-24 2020-11-10 英特尔公司 Precision resistor for non-planar semiconductor device architectures
CN106971978B (en) * 2012-09-24 2021-03-12 英特尔公司 Precision resistor for non-planar semiconductor device architectures

Similar Documents

Publication Publication Date Title
DE102009015747B4 (en) A method of fabricating transistors having metal gate electrode structures and high-k gate dielectric and an intermediate etch stop layer
TWI385733B (en) Metal gate transistor for cmos process and method for making
TWI230440B (en) System and method for integrating multiple metal gates for CMOS applications
US7233035B2 (en) Dual work function gate electrodes using doped polysilicon and a metal silicon germanium compound
TWI255007B (en) Method of fabricating a semiconductor device having reduced contact resistance
US7226827B2 (en) Method for fabricating semiconductor devices having silicided electrodes
TWI241620B (en) Manufacturing method of semiconductor device
US7977772B2 (en) Hybrid metal fully silicided (FUSI) gate
JP5090173B2 (en) Method of manufacturing a semiconductor device having a high dielectric constant gate dielectric layer and a silicide gate electrode
JP2002289700A (en) Method of manufacturing dual gate for semiconductor element
TW201010083A (en) Sealing structure for high-k metal gate and method of making
JP5103174B2 (en) Manufacturing method of semiconductor device having silicide layer
US20080023774A1 (en) Semiconductor device and method for fabricating the same
EP1782466A2 (en) Dual gate cmos fabrication
TW478050B (en) Method of fabricating polysilicon resistor on metal gate
JP3746907B2 (en) Manufacturing method of semiconductor device
US6835622B2 (en) Gate electrode doping method for forming semiconductor integrated circuit microelectronic fabrication with varying effective gate dielectric layer thicknesses
JP2008103613A (en) Semiconductor device and manufacturing method thereof
US5700734A (en) Process of fabricating field effect transistor having reliable polycide gate electrode
JP2000077618A (en) Semiconductor device and its manufacture
JP3259535B2 (en) Method for manufacturing semiconductor device having NMOS transistor and PMOS transistor
US20080122016A1 (en) Semiconductor device and fabricating method thereof
KR100384774B1 (en) Method for manufacturing gate in semiconductor device
JPH0831931A (en) Semiconductor device and its manufacture
WO2004012256A1 (en) Process for manufacturing mosfets using amorphous carbon replacement gate and structures formed in accordance therewith

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent