TW478013B - Method of formation of nano-structures on the surface of silicon - Google Patents
Method of formation of nano-structures on the surface of silicon Download PDFInfo
- Publication number
- TW478013B TW478013B TW89115962A TW89115962A TW478013B TW 478013 B TW478013 B TW 478013B TW 89115962 A TW89115962 A TW 89115962A TW 89115962 A TW89115962 A TW 89115962A TW 478013 B TW478013 B TW 478013B
- Authority
- TW
- Taiwan
- Prior art keywords
- silicon
- ion
- wave
- sputtering
- silicon crystal
- Prior art date
Links
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
經濟部智慧財產局員工消費合作社印製 478013 A7 _B7 _ 五、發明說明(1 ) 【本發明之領域】 本發明係關於一種矽晶表面的微結構之成形方法,此等 毫微結構物可成爲微電子及光電子生產技術之基楚,尤其是 矽量子線陳列,但非局限於,其可用於製造矽基光電子及微 電子元件。 本發明尤指以離子照射之矽量子線成型法,特別是有關 於利用一均勻之氮氣分子離子流體使一高純度之絕緣體外緣 石夕單晶膜(silicon-on-insulator SOI)表面灑射之方法, 以形成波浪狀起伏,而製成一微矽晶“量子線”陳列。此量 子線陳列可用爲光電子裝置或微電子元件之光源;例如,當 作一場效晶體之通道。 【本發明之背景】 在一己知以橫斷面10x1 5nm2埋置於氧化砍之砂晶量子 線之成型方法中,其利用低能量氧離子植入矽晶,再以電子 光束石印,及濕式化學蝕刻,最後再於一惰性環境以高溫退 火。其法形成埋置於氧化矽底端中央V形槽之矽晶量子線 (參閱 Y· Ishikawa,N· Shibata,P · Fukatsu “Fabrication of [ll〇]-aligned Si quantum wires embedded in Si02 by low-energy oxygen implantation” Nuclear Instruments and Methods in Physics Research, B, 1999,v. 147, pp. 304-309,Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 478013 A7 _B7 _ V. Description of the Invention (1) [Field of the Invention] The present invention relates to a method for forming a microstructure on the surface of a silicon crystal. These nanostructures can become The foundation of microelectronics and optoelectronics production technology, especially the display of silicon quantum wires, but not limited to, it can be used to manufacture silicon-based optoelectronics and microelectronic components. The invention particularly relates to a method for forming a silicon quantum wire by ion irradiation, and particularly relates to spraying a high-purity silicon-on-insulator SOI surface with a uniform nitrogen molecular ion fluid. Method to form wavy undulations and make a micro-silicon "quantum wire" display. This quantum display can be used as a light source for optoelectronic devices or microelectronic components; for example, as a field effect crystal channel. [Background of the present invention] In a known molding method of cross-section 10x1 5nm2 embedded in sand crystal quantum wire oxidized chopping, it uses low-energy oxygen ions to implant silicon crystals, and then uses electron beam lithography, and wet Chemical etching, and finally annealing in an inert environment at high temperature. This method forms silicon crystal quantum wires buried in the central V-groove of the bottom end of silicon oxide (see Y · Ishikawa, N · Shibata, P · Fukatsu "Fabrication of [ll〇] -aligned Si quantum wires embedded in Si02 by low- energy oxygen implantation ”Nuclear Instruments and Methods in Physics Research, B, 1999, v. 147, pp. 304-309,
Elsevier Science Ltd.)[參考 1] 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) j--------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 478013Elsevier Science Ltd.) [Reference 1] 3 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) j -------- Order --------- Line ( (Please read the notes on the back before filling out this page) 478013
經濟部智慧財產局員工消費合作社印制π 五、發明說明(2 ) 此一方法有很多缺點。在矽晶表面形成v形槽時’電子 光束石印及濕式化學蝕刻之使用,會限制結構元件密度及降 低量子線之產量。由於制程中缺乏控制’其亦降低量子線之 產量。由於量子線密度低,此量子線並不適用於相鄰量子線 中帶電粒子之交互作用非常重要之微電子裝置。 在一本發明人參與之發表著作中,揭露一在砂晶上,尤 其在絕緣體外緣矽單晶膜(silicon-on_insulator SOI) 上之波形結構(wave-〇rdered_structures,WOS)形成 法。此一方法包括:藉由一高度真空中以一氮分子探針作一 光域掃猫,使絕緣體外緣砂單晶膜(silicon-on-insulator SOI)濺射,以更形成一周期性波形毫微起伏(wave-ordered-structures,WOS)。此毫微起伏之波前呈離子入 射方向。此一方法包括SOI絕緣體二次離子放射信號之偵 測,及於此信號達到人預定値時停止濺射。此一發表著作亦 揭露出,波形結構(wave-ordered-structures,W0S)之 成型,取決於離子能量E,離子入射角Θ,相對表面正常狀 況,及絕緣體外緣砍單晶膜(silicon-on-insulator SOI) 樣本之溫度T。此一著述亦確認起伏成型之特徵,亦即濺 射深度Dm乃相對於波形毫微起伏之強度,而且此一著述亦討 論到濺射深度Dm乃依取決於離子能量E,離子入射角Θ,絕 緣體外緣砂單晶膜(silicon-on-insulator SOI)樣本之溫 度T ’ 及波形結構(wave-ordered-structures,W0S)之 波長λ而定。此一著述同時亦指出,絕緣體外緣矽單晶膜 (silicon-on_insulator SOI)之厚度Dm不可低於使所需波 4 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) I---^---7---裝--------訂--------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 478013 A7 B7 ___ 五、發明說明(3 ) 長之波形結構(wave-ordered-structures,WOS)成型之 濺射深度(參閱V.K. Smirnov,D.S· Kibalov,S.A. Krivelevich, P.A. Lepahin, E.V. Potapov, R.A. Yankov,W· Skorupa,V.V. Makarov,A.B. Danilin uWave-ordered structures formed on SOI wafers by reactive ion beams” 一 Nuclear Instruments and Methods in Physics Research B,1 999,v. 14 7, pp. 310-315,Elsevier Science Ltd.)[參考2]。 在本發明之一發明人所參與之一著作中,揭露一退火方 法,用於參考2所揭露,在隋性環境溫度爲100CTC中一小時 之材料,使其退火。(參閱V.K. Smirnov,A.B. Danilin; “Nanoscale wave-ordered structures on SOI” -Proceedings of the NATO Advanced Research Workshop “Perspective,science and technologies for novel silicon on insulator devices,5/Ed By P.I.F. Hemment,1999,Elsevier Science Ltd.)[參考3] 〇 在本發明之一發明人所參與之另一著作中,揭露出,氮 化矽(Si3N4)層之厚,Dn,對於離子能量E,離子對表面之 入射角及高溫退火(900- 1 000。(: 一小時)之依賴情況。退 火對氮化矽(SisN4)層之厚並無影響,但會增大矽(si) /氮化矽(ShNU)界面銳度。如其著作中所示,Dn乃相等 於離子滲入矽中之距離R,其顯示出用於波形結構(wave_ ordered-structures,WOS)成型法相同能量之離子能量e 之線性函數。依此揭露之數據,離子滲入矽中之距離R對於 離子能量E之依賴度可以下列式表示之: 5 本紐尺度適財關家標準(CNS)A4規格(21G X 297公楚) -- I I I I J---U---裝--------訂--------- <請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 478013 Α7 五、發明說明(4 ) R(nm)=l .5E(keV) + 4. (1) (參閱V.I· Bachurn,Α·Β· Churilov,E.V· Potapov, V.K· Smirnov,V.V· Makarov and Α·Β· Danilin;Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs π 5. Description of Invention (2) This method has many disadvantages. The use of 'electron beam lithography and wet chemical etching when v-shaped grooves are formed on the surface of silicon crystals will limit the density of structural elements and reduce the yield of quantum wires. Due to the lack of control in the process, it also reduces the yield of quantum wires. Due to the low density of quantum wires, this quantum wire is not suitable for microelectronic devices where the interaction of charged particles in adjacent quantum wires is very important. In a published work in which the present inventors participated, a method for forming a wave-structured structure (WOS) on a sand crystal, particularly on a silicon-on_insulator SOI, was disclosed. This method includes: sputtering a silicon-on-insulator SOI film by using a nitrogen molecular probe as a light field sweep cat in a high vacuum to form a periodic waveform Wave-ordered-structures (WOS). This nano-undulating wave front is in the direction of ion incidence. This method includes detecting a secondary ion emission signal of the SOI insulator, and stopping sputtering when the signal reaches a predetermined threshold. This published work also revealed that the formation of wave-ordered-structures (W0S) depends on the ion energy E, the ion incidence angle Θ, the normal condition of the opposite surface, and the silicon-on -insulator SOI) Temperature T of the sample. This work also confirms the characteristics of undulation molding, that is, the sputtering depth Dm is relative to the intensity of the wave undulation, and this work also discusses that the sputtering depth Dm depends on the ion energy E, the ion incidence angle Θ, and the insulator. The temperature T ′ of the silicon-on-insulator SOI sample and the wavelength λ of the wave-ordered-structures (WOS) of the outer sand single crystal film are determined. This work also states that the thickness Dm of the silicon-on_insulator SOI on the outer edge of the insulator must not be less than the required wave. 4 The paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm). I --- ^ --- 7 --- install -------- order --------- (Please read the precautions on the back before filling this page) Employees of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Consumer Cooperative 478013 A7 B7 ___ V. Description of the invention (3) Sputtering depth of long wave-ordered-structures (WOS) (see VK Smirnov, DS Kibalov, SA Krivelevich, PA Lepahin, EV Potapov , RA Yankov, W. Skorupa, VV Makarov, AB Danilin uWave-ordered structures formed on SOI wafers by reactive ion beams ”-Nuclear Instruments and Methods in Physics Research B, 1 999, v. 14 7, pp. 310-315, Elsevier Science Ltd.) [Reference 2]. In one of the works invented by one inventor of the present invention, an annealing method is disclosed for reference to the material disclosed in Reference 2, which has an inert environment temperature of 100CTC for one hour, so that It is annealed. (See VK Smirnov, AB Danili n; "Nanoscale wave-ordered structures on SOI" -Proceedings of the NATO Advanced Research Workshop "Perspective, science and technologies for novel silicon on insulator devices, 5 / Ed By PIF Hemment, 1999, Elsevier Science Ltd.) [Reference 3] 〇 In another work in which one of the inventors participated, it was revealed that the thickness of the silicon nitride (Si3N4) layer, Dn, for the ion energy E, the incident angle of the ion to the surface and high temperature annealing (900-1 000 (: One hour). Annealing has no effect on the thickness of the silicon nitride (SisN4) layer, but increases the sharpness of the silicon (Si) / silicon nitride (ShNU) interface. As shown in his work, Dn is equal to the distance R at which the ions penetrate into the silicon, and it shows a linear function of the ion energy e of the same energy used in the wave_ordered-structures (WOS) molding method. According to the data disclosed here, the dependence of the distance R of the ions into the silicon on the ion energy E can be expressed by the following formula: 5 This standard is suitable for financial standards (CNS) A4 (21G X 297)-IIII J --- U --- install -------- Order --------- < Please read the precautions on the back before filling this page) System 478013 Α7 V. Description of the invention (4) R (nm) = 1.5E (keV) + 4. (1) (see VI. Bachurn, Α. Churilov, EV. Potapov, VK. Smirnov, VV. Makarov and Α · Β · Danilin;
Formation of Thin Silicon Nitride Layers on Si byFormation of Thin Silicon Nitride Layers on Si by
Low Energy N2+ Ion Bomardment” - Nuclear I n s t r u m e n t s a n d M e t: h o d s i η P h y s i c s R e s e a r c h B, 1 999,v,147,pp. 316-319,Elsevier Science Ltd·) [參考4]。 上述參考資料[參考1],[參考2],[參考3]及[參考4]聯 合揭露出一矽量子線陳列成型之基本方法。和分離線之使用 相較’使用砂墓子線陳列於微電子及光電子元件之最大益處 乃在於提高產量及增強信號雜訊比之電流特徵。由於相鄰量 子線中帶電粒子之交互作用,,其同時亦賦予陳列式元件潛 在之可能輸出功率。 但是上述參考資料[參考1],[參考2],[參考3]及[參考 4]聯合揭露之矽量子線陳列成型之基本方法亦有很多缺點。 [參考2]並不針對濺射深度由Dm增加到Dp時波形結構 (wave-ordered-structures,WOS)之波長λ是否改變, 及001與01)之間是否有任何相互關係等問題有所討論。本發明 確認此方法之特徵應和在深度DF時發展出之最終波形結構 (wave-ordered-structures,WOS)有關係,而非和[參 考2]所謂之深度Dp有關係。同時,[參考2]對於波形結構 (wave-ordered-structures,WOS )成型之(Ε,θ)平面 之分域有否限度,亦無任何討論。此等限度在[參考2],[參 6 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) I -----Ί--T-----------訂-----I I I ^9 (請先閱讀背面之注意事項再填寫本頁} 478013 A7 B7 五、發明說明(5 ) 考3]及[參考4]所揭露之著述意味’所要求之絕緣體外緣矽單 晶膜(silicon_on-insulator SOI)厚度,不能依參考資料 所提供之參數間之相對關係來預先判定。而用以控制濺射過 程之基本參數(離子能量E,入射角度Θ及絕緣體外緣矽單晶 膜溫度T)亦無法預先決定。另外,對於在成型於絕緣體外 緣砂單晶膜(silicon-on_insulator SOI)之波形結構 (wave-ordered-structures,WOS)相鄰砂晶線間之隔 離,波形結構之起伏之波谷和絕緣體外緣矽單晶膜之矽晶層 與絕緣體外緣矽單晶膜之絕緣層間邊界之精確吻合是很重要 的。[參考2]揭露出,次級離子發射信號可用以終止濺射,然 而其並無指出任何預先決定信號値之方法,用以分離矽晶 線。也就是說,前述之著作並無揭露出一方法,能使成型〜 波形結構(wave-ordered-structures,WOS),使波形結 構之起伏之波谷和絕緣體外緣矽單晶膜之矽晶層與絕緣體外 緣矽單晶膜之絕緣層間邊界之精確吻合,以便形成一隔離矽 晶線陳列。 經濟部智慧財產局員工消費合作社印製 (請先閱讀背面之注意事項再填寫本頁} 況且,在矽基微電子及光電科技整合之實際應用上,爲 了獲得有用之結構,,例如,在一由微結構陳列相連之二個 分離矽晶墊結構中,必須確認能在表面上之特定微範圍內成 型微結構陳列。然而,上述著作中並無任何石印術之運用, 或在石印術之運用中中光罩層之使。 本發明同時亦確定出,波形結構(wave-ordered-structures,WOS)成型過程對於絕緣體外緣矽單晶膜 (silicon-on-insulator SOI)表面之之雜質,尤其是氧化 7 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 478013 A7 B7 五、發明說明(6 ) 石夕很敏感,這些雜質降低波形結構(wave_ordered-structures,WOS)起伏之平滑性。如眾所知,矽晶置於空 氣中會在表面產生一天然氧化砂薄層。 (請先閱讀背面之注意事項再填寫本頁) 所有上述之缺點對於波形結構(wave-ordered-structures,WOS)成型之實際運用之控制有很大關係。 在已知微電子元件,其包含由由一直徑20-nm之矽通道 (量子點)所連接之矽晶墊,一厚度40-nm絕緣層覆蓋於矽 通道及砍晶墊之表面,及設於絕緣層表面之電極。砂晶接觸 墊及矽通道乃成型於絕緣體外緣矽單晶膜(silicon-on-insulator SOI)物質之砂單晶膜上(參閱Ε· Leobandung, L. Guo, Υ· Wang, S,Chou “observation of quantum effects and Coulomb blockade in silicon quantum-dot transistors at temperature over 100k” Applied Physics Letters,v. 67,No. 7,1 9 9 5,pp · 9 3 8 - 9 4 0, American Institute of Physics,1 9 9 5 )[參考 5] o 由於元件之微小尺寸限制石印術之運用,此已知微電子 元件之缺點乃無通道陳列及低產能,亦即有效結果可之重複 性低。 經濟部智慧財產局員工消費合作社印製 在另一已知之量子線基場效晶體(quantum -wire-based FET),其包含由具86xl00nm2之七道方型斷面之砂 晶線通道所連接之矽晶墊。此砂晶線通道由一厚度3 0 - n m爲 之氧化矽層所覆蓋。一電極閘乃設於此一群矽晶線通道上。 上一^兀件利用絕緣體外緣砂單晶膜(silicon_on-insulator SOI)材枓製成(參閱J.P· Colinge,X. Baie,V. Bayot, 8 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 478013 A7 B7 五、發明說明(7) E. Grivei αΑ silicon-On-Insulator Quantum Wire59 -Solid-State Electronics,Vol. 39,No. 1,1 996, pp. 49-5 1,Elsevier Science Ltd 1 996 )[參考6] 0 由於石印術在製程上之限制,此已知元件無法在和矽通 道長度相等之距離之成型矽通道。 上述所有參考案指出在特定實驗案例中如何製造砂量子 線陳列。然而,這些參考案均無歸納出一實驗法,使量子線 能製成所要之尺寸,也無提出有效製程控制。另外,市場上 有很強烈的要求,希望能將矽量子線整合成有用之元件,如 在場效晶體上成型一通道陳列。 【本發明之槪述】 本發明之第一特徵係在提供一種矽晶微結構成型法,其 包括: 利用一均勻之氮氣分子離子流體,在一空度真空中,濺 射一矽晶表面,以便形成一周期性波浪狀起伏,該波浪狀起 伏之波前呈離子入射平面相同之方向; 並包括下列步驟: 選擇一所需周期性波浪狀起伏之波長,範圍在9nm至 1 2 0 n m 間; 依所選定之波長,決定離子能量、對於該材枓表面之離 子入射角、該矽晶之溫度、該波浪狀起伏之成型深度、該波 浪狀起伏之高度及離子滲入矽晶之範圍。 最好是,該離子能量、該離子入射角、該矽晶之該溫 度、該波浪狀起伏之成型深度及該波浪狀起伏之高度均依有 9 ^紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) "" -----^----裝--------訂--------- (請先閱讀背面之注意事項再填寫本頁) 478013 A7 經濟部智慧財產局員工消費合作社印製 五、爹明說明(8 ) _胃11子能量 '該離子入射角、該矽晶之該溫度、該波浪狀 深度及該波浪狀起伏之高度依該周期性波浪狀起 伏之波長而獲得之實驗數據而定。 Λ女子此一方法還包括另一步驟,其是在濺射之前,定位 並包含懸邊之氮化矽光罩於該矽晶表面之濺射 區’並經由該窗孔濺射該矽晶表面。 最好此一方法還包括另一步驟,其是在濺射之前,將任 《可ϋ胃彳足所欲成型該波浪狀起伏之該矽晶層移除。 最好此一方法還包括另一步驟,其是在濺射之後,將該 起伏之材料於惰性環境中退火。最好此材料之退火溫度爲 1 000至1200。〇間,而時間爲一小時。 在本發明之較佳實施例中,該矽晶微結構包括一矽量子 線陳列’且該矽晶包括一絕緣體外緣矽單晶膜材料之矽晶 層。此方法亦包括: 選擇該矽晶層厚度不小於該波浪狀起伏之成型深度,該 波浪狀起伏之高度,及該離子滲透範圍之總合。 最好此一方法還包括另一步驟,其是在濺射之同時,偵 測來自該絕緣體外緣矽單晶膜材料之絕緣層之二次離子發射 信號,並在所測信號値輒到預定之臨界値時終止濺射,而最 好該二次離子發射信號之臨界値爲信號超過平均背景値之量 相等於信號噪聲部分之峰至峰高度。 依本發明之其它特徵,本發明亦提供含有本發明之方法 所成型之量子線陳列之光電子及電元件,例如一光電二件, 其包括有由該矽量子線陳列所連接之矽晶墊,一設於該量子 10 (請先閱讀背面之注意事項再填寫本頁) 訂---------線一 •Ί . -Μ · ^^尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 478013 A7 B7 五、發明說明(9 ) 線陳列上之絕緣層,及一設於該絕緣層上之電極之光電元 件。 完成此方法之裝置包括一超高直空箱,一樣本引入裝 置,一附有可調離子能量及離子探針之離子微光束儀,一電 子槍,一可定位及調整傾斜度及旋轉度及附有可改變及控制 樣本溫度之樣本座,一第二電子偵測器,及一第二離子質子 分析儀。合宜之習用裝置可爲多功能表面分析高輸出功率儀 器。 本發明提供一以一單一參數,亦即用以控制製制程相關 參數所需之陳列周期(波長)來控制製程,因而能克服上述 習用技術之缺點。 爲能讓貴審查委員能更瞭解本發明之技術內容,特舉 較佳具體實施例配合下列圖式說明如下,其中。 【圖式簡單說明】 第1 A圖係一初步絕緣體外緣砂單晶膜(siiicon-on-insulator SOI)結構 立體圖,包括一氮化矽光罩。 第1B圖係應用本發明於第1A圖之之初步絕緣體外緣砂單晶膜 (silicon-on-insulator SOI)結構後之最終絕緣體外緣矽單晶膜 (silicon-on-insulator SOI)結構立體圖。 第1C圖係顯示一二次離子發射信號運用於本發明實施例方法 之控制情形。 第1D圖係第1B圖中濺射結構A部份之斷面放大圖。 11 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -----V—^------------訂--------- (請先閱讀背面之注意事項再填寫本頁) 478013Low Energy N2 + Ion Bomardment "-Nuclear I nstruments and M et: hodsi η P hysics R esearch B, 1 999, v, 147, pp. 316-319, Elsevier Science Ltd ·) [Reference 4]. The above reference material [Reference 1 ], [Reference 2], [Reference 3], and [Reference 4] jointly reveal the basic method of silicon quantum wire display molding. Compared with the use of separation lines, the use of sand gravel strands is displayed on microelectronics and optoelectronic components. The biggest benefit is to increase the output and enhance the current characteristics of the signal-to-noise ratio. Due to the interaction of charged particles in adjacent quantum wires, it also gives the potential possible output power to display elements. But the above reference material [Reference 1] [Reference 2], [Reference 3], and [Reference 4] The basic methods of silicon quantum wire display molding jointly disclosed also have many shortcomings. [Reference 2] does not address the waveform structure when the sputtering depth is increased from Dm to Dp ( Whether the wavelength λ of wave-ordered-structures (WOS) changes and whether there is any correlation between 001 and 01) are discussed. The present invention confirms that the characteristics of this method should be the same as when the depth DF The final wave-ordered-structures (WOS) on display are related to the so-called depth Dp of [Reference 2]. At the same time, [Reference 2] for wave-ordered-structures (WOS) There are no limits on the division of the shaped (E, θ) plane, and there is no discussion. These limits are in [Reference 2], [Ref. 6 This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) ) I ----- Ί--T ----------- Order ----- III ^ 9 (Please read the notes on the back before filling out this page} 478013 A7 B7 V. Invention Explanation (5) Examination 3] and [Reference 4] revealed that the work meant 'required thickness of the silicon outer silicon single crystal (silicon_on-insulator SOI) film, not based on the relative relationship between the parameters provided in the reference material to predict in advance The basic parameters used to control the sputtering process (ion energy E, incidence angle Θ, and temperature T of the silicon single crystal film on the outer edge of the insulator) cannot be determined in advance. In addition, for single-crystal sand films ( silicon-on_insulator SOI) Wave-ordered-structures (WOS) It is important that the undulating valleys of the shape structure and the silicon crystal layer of the outer silicon single crystal film on the outer edge of the insulator coincide with the insulating layer boundary of the outer silicon single crystal film on the outer edge of the insulator. [Reference 2] revealed that the secondary ion emission signal can be used to stop the sputtering, but it does not indicate any method of predetermining the signal chirp to separate the silicon line. That is to say, the aforementioned work does not disclose a method that can make molding-wave-ordered-structures (WOS), the undulations of the wave structure and the silicon crystal layer of the outer silicon single crystal film The boundary between the insulating layers of the silicon single crystal film on the outer edge of the insulation precisely matches to form an isolated silicon crystal line display. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs (please read the notes on the back before filling out this page). Moreover, in order to obtain useful structures in the practical application of silicon-based microelectronics and optoelectronic technology integration, for example, in a In the two separated silicon pad structures connected by the microstructure display, it must be confirmed that the microstructure display can be formed in a specific micro range on the surface. However, there is no application of lithography or the use of lithography in the above works. The present invention also determines that the process of the wave-ordered-structures (WOS) molding process is an impurity on the surface of the silicon-on-insulator SOI film, especially the impurities. It is oxidized 7. This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210 X 297 mm) 478013 A7 B7 V. Description of the invention (6) Shi Xi is very sensitive. These impurities reduce the fluctuation of wave_ordered-structures (WOS). Smoothness. As everyone knows, silicon crystals in the air will produce a thin layer of natural oxide sand on the surface. (Please read the precautions on the back before filling this page) The shortcomings mentioned above have a lot to do with the control of the actual application of wave-ordered-structures (WOS) molding. Known microelectronic components include a 20-nm diameter silicon channel (quantum dot) For the connected silicon pad, a 40-nm-thick insulating layer covers the surface of the silicon channel and the chip-cut pad, and the electrode provided on the surface of the insulating layer. The sand crystal contact pad and the silicon channel are formed on the outer edge of the silicon single crystal. Film (silicon-on-insulator SOI) on a sand single crystal film of matter (see Ε · Leobandung, L. Guo, Υ · Wang, S, Chou "observation of quantum effects and Coulomb blockade in silicon quantum-dot transistors at temperature over 100k ”Applied Physics Letters, v. 67, No. 7, 1 9 9 5, pp · 9 3 8-9 4 0, American Institute of Physics, 1 9 9 5) [Reference 5] o Due to the small size of the component The use of lithography, the shortcomings of this known microelectronic component are non-channel display and low production capacity, that is, the repeatability of effective results is low. The consumer cooperative of the Intellectual Property Bureau of the Ministry of Economics printed on another known quantum wire base field effect Material (quantum -wire-based FET), comprising silicon pads having a crystal sand 86xl00nm2 of seven wire channel of square cross-section of the connector. The sand crystal line channel is covered by a silicon oxide layer having a thickness of 30-n m. An electrode gate is placed on this group of silicon wire channels. The previous part was made of silicon_on-insulator SOI material (see JP · Colinge, X. Baie, V. Bayot, 8) This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 478013 A7 B7 V. Description of the invention (7) E. Grivei αΑ silicon-On-Insulator Quantum Wire59 -Solid-State Electronics, Vol. 39, No. 1,1 996, pp. 49-5 1, Elsevier Science Ltd 1 996) [Reference 6] 0 Due to the limitation of lithography process, this known device cannot form a silicon channel at a distance equal to the length of the silicon channel. All the above references indicate how to make sand quantum wire displays in specific experimental cases. However, none of these references summarizes an experimental method to enable quantum wires to be made to the required size, nor does it propose effective process control. In addition, there is a strong demand in the market, hoping to integrate silicon quantum wires into useful components, such as forming a channel display on a field effect crystal. [Introduction of the present invention] A first feature of the present invention is to provide a silicon crystal microstructure forming method, which includes: using a uniform nitrogen molecular ion fluid to sputter a silicon crystal surface in a vacuum of a degree of vacuum so that Forming a periodic wave-like undulation, the wave-like undulation wavefront is in the same direction as the ion incident plane; and includes the following steps: selecting a desired periodic wave-like undulation with a wavelength ranging from 9 nm to 120 nm; According to the selected wavelength, determine the ion energy, the angle of incidence of the ions on the surface of the material, the temperature of the silicon crystal, the depth of the wave-like undulations, the height of the wave-like undulations, and the range of ions penetrating into the silicon crystal. Preferably, the ion energy, the angle of incidence of the ion, the temperature of the silicon crystal, the depth of the wave-like undulations and the height of the wave-like undulations are all in accordance with the 9 ^ paper standard applicable to China National Standard (CNS) A4 specifications (210 X 297 mm) " " ----- ^ ---- Installation -------- Order --------- (Please read the notes on the back before filling (This page) 478013 A7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Five, Daming description (8) _ Stomach 11 sub-energy 'the ion incident angle, the temperature of the silicon crystal, the wave-like depth and the wave-like fluctuation The height depends on the experimental data obtained from the periodic undulating wavelengths. This method also includes another step, which is to position and include a suspended silicon nitride mask on the surface of the silicon crystal surface before sputtering, and to sputter the silicon crystal surface through the window hole. . Preferably, this method further includes another step, which is to remove the silicon crystal layer which can form the undulating undulations as desired, before sputtering. Preferably, this method further comprises the step of annealing the undulating material in an inert environment after sputtering. Preferably, the annealing temperature of this material is 1 000 to 1200. 〇, and the time is one hour. In a preferred embodiment of the present invention, the silicon crystal microstructure includes a silicon quantum wire display 'and the silicon crystal includes a silicon crystal layer of an insulating outer silicon single crystal film material. This method also includes: selecting the thickness of the silicon crystal layer to be not less than the forming depth of the wavy undulations, the height of the wavy undulations, and the sum of the ion penetration range. Preferably, this method further includes another step, which is to detect the secondary ion emission signal from the insulating layer of the silicon single crystal film material of the outer periphery of the insulator while sputtering, and to reach a predetermined Sputtering is terminated at the critical threshold, and preferably the critical threshold of the secondary ion emission signal is that the signal exceeds the average background threshold by an amount equal to the peak-to-peak height of the signal noise portion. According to other features of the present invention, the present invention also provides optoelectronic and electrical components including a quantum wire display formed by the method of the present invention, such as a photoelectric two piece, which includes a silicon pad connected by the silicon quantum wire display, One set in the quantum 10 (please read the precautions on the back before filling this page) Order --------- Line one • Ί. -Μ · ^^ scales are applicable to China National Standard (CNS) A4 specifications ( 210 X 297 mm) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 478013 A7 B7 V. Description of the invention (9) The insulating layer on the wire display and a photovoltaic element with an electrode on the insulating layer. The device for completing this method includes an ultra-high straight empty box, a sample introduction device, an ion microbeamer with adjustable ion energy and ion probes, an electron gun, a position and adjustment of tilt and rotation and attachment There is a sample holder that can change and control the temperature of the sample, a second electronic detector, and a second ion proton analyzer. A convenient conventional device is a high-output instrument for multi-functional surface analysis. The present invention provides a single parameter to control the manufacturing process with a single parameter, that is, a display period (wavelength) required to control the relevant parameters of the manufacturing process, so that it can overcome the disadvantages of the conventional techniques described above. In order to allow your reviewing committee to better understand the technical content of the present invention, the preferred embodiments are described in conjunction with the following drawings, among which. [Schematic description] Figure 1A is a perspective view of a siiicon-on-insulator SOI structure, including a silicon nitride mask. Figure 1B is a perspective view of the final silicon-on-insulator SOI structure after applying the present invention's preliminary silicon-on-insulator SOI structure in Figure 1A. . Fig. 1C shows a control situation in which a secondary ion emission signal is applied to the method of the embodiment of the present invention. Figure 1D is an enlarged cross-sectional view of part A of the sputtering structure in Figure 1B. 11 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ----- V — ^ ------------ Order --------- (Please read the notes on the back before filling out this page) 478013
經濟部智慧財產局員工消費合作社印製 瓦、發明說明(10) _ ^ 第1E圖係一示意圖,顯示依本發明所形成之離子入射角’離 子能量及波形結構(wave-ordered-structures,W0S)之波長間之 關係。 第1F圖係一示意圖,顯示依本發明所形成波形結構(wave_ ordered-stmctures,W0S)之波長隨絕緣體外緣砂單晶膜(silicon· on-insulator SOI)材枓溫度變化而予不同離子能量。 第2A圖至第2D圖爲一絕緣體外緣矽單晶膜(silicon-on-insulator SOI) 平面示意圖,顯示依本發明方法而製之場效晶體元件 之成型。 第3圖係一之體圖,顯示依本發明方法而製,設有矽晶微結構 陳列通道之場效晶體結構。 [較佳具體實施例之詳細說明】 請先參閱第1 A圖所示之初步絕緣體外緣矽單晶膜 (silicon-on-insulator SOI)結構,其包括一砂基板5, 一氧化矽絕緣層4,一矽晶層3,用以於其上成型量子線,一 薄氧化砂層2成型於砂晶層3之上,及一氮化砂光罩層1,成 型於薄氧化矽層2之上。第1B圖之最終絕緣體外緣矽單晶膜 (silicon-on-insulator SOI)結構,包括如第1A圖所示之 矽基板5及氧化矽絕緣層4,而第1A圖所示之矽晶層3已被濺 射成第1A圖所不之光罩層1所遮蔽之砂晶層6,及一未爲光罩 層1所遮蔽之矽晶微結構陳列7。箭頭所示,指N2 +離子流體 於濺射時之流動方向。成型波形結構(wave-ordered-structures,WOS)之基本濺射法在[參考2]中已有詳述。如 12 紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)""""" " 一 (請先閱讀背面之注意事項再填寫本頁) --------訂---------. 478013 A7 B7 五、發明說明αι) 在[參考2]中所述,一聚焦離子光束被掃瞄於絕緣體外緣矽單 晶膜(silicon-on-insulator SOI)材枓表面。 (請先閱讀背面之注意事項再填寫本頁) 第1D圖顯示由本發明濺射法而成型之矽晶微結構斷面 例,其包括無定形氮化矽區8,無定形矽晶和氮化矽混合物區 9,氧化氮矽晶區10,及晶體矽晶區12。 以下將詳述有關於絕緣體外緣矽單晶膜(silicon-on-insulator SOI)材抖,波形結構(wave-ordered-structures,WOS)及波形結構(wave-ordered-structures,WOS)成型法之參數,並請同時參閱圖一: D2仍絕緣體外緣砂單晶膜(silicon-on-insulator SOI)材枓矽晶層3之初期厚度。 DF仍起伏成型厚(亦即爲獲得穩定之波形結構,而從 矽晶層3之原始表面至波形結構峰頂由濺射所移除之材枓最少 厚度,”濺射厚度”仍從原始矽晶表面至波形結構頂點之垂直 距離)。 Η仍已穩定之波形結構起伏之高;亦即波峰和最近之波 谷之垂直距離(波幅之雙倍)。 經濟部智慧財產局員工消費合作社印製 R仍予以一已定離子能量之離子滲入矽晶之範圍。 本發明尤其有關於濺射過程之控制,以便使所欲成型 之矽晶微結構能和所預定之參數相附。另外,本發明之發明 人所作之波形結構成型法調查,獲得下列結論: (a)從在濺射深度〇111時波形結構成型初期開始直至在濺射 深度Dp時波形結構穩定後,及其後濺射至〇1?數倍値深 度,波形結構波長λ始終維持不變。 13 ^紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) " 478013 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(12) (b) 起伏高度,隨著時間從深度Dm至深度Dp呈線性上升’ 而在深度Dp時達到Η値,而在其後繼續濺射,均維持 不變。亦即,DF後之繼續濺射,波形結構之形狀及尺 寸均維持不變’然而波形結構在絕緣體外緣矽單晶膜 (silicon-on-insulator SOI)材枓上以和離子入射 方向相反之方向移動(第1D圖虛13指出波形結構在濺 射深度相等於DF時之位置’而主圖示顯示此結構在稍 後濺射終止後之情形)。 (c) Dp與Dm之相對關係,可以下列式子表示之··Printed tiles and description of invention by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs (10) _ ^ Figure 1E is a schematic diagram showing the ion incident angle 'ion energy and waveform structures (WOS) formed according to the present invention ). FIG. 1F is a schematic diagram showing different ion energies given by the wavelengths of the wave-ordered-stmctures (WOS) formed according to the present invention as a function of the material temperature of the silicon on-insulator SOI. . Figures 2A to 2D are schematic plan views of a silicon-on-insulator SOI film, showing the formation of a field-effect crystal element made according to the method of the present invention. Fig. 3 is a body view showing a field effect crystal structure made by the method of the present invention and provided with a silicon crystal microstructure display channel. [Detailed description of the preferred embodiment] Please refer to the preliminary silicon-on-insulator SOI structure shown in Figure 1A, which includes a sand substrate 5, a silicon oxide insulation layer 4. A silicon crystal layer 3 for forming quantum wires thereon, a thin oxide sand layer 2 formed on the sand crystal layer 3, and a nitrided sand mask layer 1 formed on the thin silicon oxide layer 2. . The final silicon-on-insulator SOI structure of FIG. 1B includes a silicon substrate 5 and a silicon oxide insulating layer 4 as shown in FIG. 1A, and the silicon layer as shown in FIG. 1A. 3 has been sputtered into a sand crystal layer 6 masked by the mask layer 1 shown in FIG. 1A, and a silicon crystal microstructure display 7 not masked by the mask layer 1. The arrow indicates the flow direction of N2 + ion fluid during sputtering. The basic sputtering method for forming wave-ordered-structures (WOS) has been detailed in [Reference 2]. For example, 12 paper sizes are applicable to China National Standard (CNS) A4 (210 X 297 mm) " " " " " " First (Please read the precautions on the back before filling this page) ---- ---- Order ---------. 478013 A7 B7 V. Description of the invention αι) As described in [Reference 2], a focused ion beam is scanned on a silicon single crystal film (silicon) -on-insulator SOI) material surface. (Please read the precautions on the back before filling in this page) Figure 1D shows an example of a cross-section of a silicon crystal microstructure formed by the sputtering method of the present invention, which includes amorphous silicon nitride region 8, amorphous silicon crystal and nitride Silicon mixture region 9, silicon oxide silicon crystal region 10, and crystalline silicon crystal region 12. The following will describe in detail the silicon-on-insulator SOI material shake, wave-ordered-structures (WOS) and wave-ordered-structures (WOS) molding methods. For the parameters, please refer to Figure 1: D2 is still the initial thickness of silicon-on-insulator SOI material and silicon crystal layer 3. DF is still undulating and thick (that is, in order to obtain a stable wave structure, the minimum thickness of the material removed by sputtering from the original surface of the silicon layer 3 to the peak of the wave structure, the "sputter thickness" is still from the original silicon Vertical distance from the crystal surface to the apex of the wave structure). ΗThe undulating height of the stable waveform structure; that is, the vertical distance between the peak and the nearest valley (double the amplitude). Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. R still allows an ion with fixed ion energy to penetrate into the scope of the silicon crystal. The present invention is particularly related to the control of the sputtering process so that the desired microstructure of the silicon crystal can be attached to predetermined parameters. In addition, the investigation of the waveform structure forming method made by the inventor of the present invention, the following conclusions were obtained: (a) from the beginning of the waveform structure forming at the sputtering depth of 111 until the waveform structure is stable at the sputtering depth Dp, and thereafter Sputtered to a depth of several times 値, the wavelength λ of the waveform structure remains unchanged. 13 ^ Paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) " 478013 Printed by A7 B7, Consumer Cooperatives, Intellectual Property Bureau, Ministry of Economic Affairs 5. Description of the invention (12) (b) The height of the undulation, as The time rises linearly from the depth Dm to the depth Dp, and reaches Η 値 at the depth Dp, and then continues to sputter after that, both remain unchanged. That is, after DF, sputtering continues, and the shape and size of the wave structure remain unchanged. However, the wave structure is on the silicon-on-insulator SOI material outside the insulator and is opposite to the direction of ion incidence. Directional movement (Figure 13D shows the position of the waveform structure when the sputtering depth is equal to DF ', and the main diagram shows the situation of this structure after the termination of sputtering). (c) The relative relationship between Dp and Dm can be expressed by the following formula ...
Dp= 1 .5Dm (d) DF與波形結構入射角λ之相對關係,可以下列式子表示 之: DF(nm)= 1 .3 1 6(λ (nm)-9) (2) λ範圍在9nm〜120nm。 (e) H和λ成比例,此比例隨離子光束之入射角Θ而改變; 例如: 方令θ = 410 貝丨J Η = 0·26λ 於θ = 43〇 貝丨J Η = 0·25λ 於θ = 45 0 貝丨J Η = 0·23λ 方令θ = 550 貝丨J Η = 0·22λ 於θ = 58〇 貝丨J Η = 0·22λ (f)由矽晶表面之”真實,,之二次電子發射之行爲,反應波形 結構在濺射深度0111時之外觀,及在濺射深度Dp時已穩 14 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -I I ! I 丨訂·1 — ------ 478013 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(13) 定之波形結構之成型。發射增強之開始,相當於深度 Dm。而發射飽和之開始,相當於濺射之深度D7。 調查硏究亦顯示出,λ仍依離子光束能量E,離子光束入射角Θ及絕 緣體外緣矽單晶膜(silicon-on-insulatorSOI)材枓之溫度Τ (或,尤指絕緣 體外緣矽單晶膜之矽晶層溫度)而定。第1E圖所示之數據顯示在室 溫時,λ隨光束能量E及離子光束入射角Θ而改變。曲線1 5界定波形結構 (wave-ordered-structures,W0S )成型之分域範圍。依照公式(2),曲線1 5 ,Ιό及120限定波开多結構(wave-ordered-structures,W0S)分域中,波狀 起伏有一於λ與D間呈線性之更相干之結構。第1 F圖顯示在不同E及Θ値 時,λ隨溫度而改變。曲線22相當於E = 9keV,θ = 45%曲線26相 當方令 Ε = 9 k e V,Θ = 55。。 由這些數據可得知,在室溫時,λ可在一有用數値範圍內從30nm至 120nm而改變。將樣本之溫度由室溫調整至5〇〇K,並不產生明 顯之作用。將樣本從500K加溫至850K,和室溫時相比,λ之 値減少了因數3.3。 本發明之發明人同時亦確定了既定波形結構(^^6-0池1^(1-structures, W0S)所需之絕緣體外緣矽單晶膜(silicon-on-insulator SOI)材 枓之矽晶層3之深度Db,可以下列分式表示之: DB>DP + H + R (4) 在此需注意到,深度DB = DP + H已夠所欲成型之穩定 波形結構(wave-ordered-structures,WOS)之所需。但 是,本發明之發明人已發現到,爲了確保濺射法相互隔離量 子矽晶線之可靠成型,及/或後來的濺射產品之高溫退火, 在計算最低深度DB時,將離子滲入範圍R納入考量是很重要 15 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ------'7---------------訂--------- (請先閱讀背面之注意事項再填寫本頁) 478013 經濟部智慧財產局員工消費合作社印製 Α7 Β7 五、發明說明(14 ) 的。 本發明之發明人所作之調查,亦確認出,當波形結構 (wave-ordered-structures,WOS)之波谷離絕緣體外緣 砂單晶膜(silicon-on-insulator SOI)材抖之砂晶一絕緣 體之邊界之距離約爲R時,絕緣體外緣砍單晶膜(silicon-〇n_insulator SOI)絕緣層之離子二次發射便開始。 這些觀察使以一預設波形結構(wave-ordered-structures,WOS)波長λ値而成型所需矽晶微結構之成型 法得以控制。 在第1Ε圖所示之數據,容許Ε及Θ値可依在室溫時所需 從30nm至120nm之λ値而決定(E = 2keV而θ = 58。)。低λ 値,如第IF圖所示,可由加溫絕緣體外緣矽單晶膜 (silicon-on_insulator SOI)材枓至 550K而得到。 同樣地,對一選定之λ値,適宜Ε,Θ及T値亦可被確 定。離子滲入範圍及成型深度D9,可由公式(1)及(2)及實驗 數據(3)之計算而得知,而絕緣體外緣矽單晶膜(silicon-on-insulator SOI)矽晶層之所需深度Dp可由公式(4)之計 算而得知。 舉例來說,如要製造一第1E圖所示,線周期(λ)爲 30nm之矽量子線陳列,則(藉由歸納法)可確定,λ = 30η E = 2keV而θ = 58°。由這些値,貝(]可確定R = 7nm, H = 6.6nmDP = 27.6nm,因此DB = 41.2nm 〇Dp = 1.5Dm (d) The relative relationship between DF and the incident angle λ of the waveform structure can be expressed by the following formula: DF (nm) = 1.3 3 6 (λ (nm) -9) (2) The range of λ is between 9nm ~ 120nm. (e) H is proportional to λ, and this ratio changes with the incident angle Θ of the ion beam; for example: Let θ = 410 丨 J Η = 0 · 26λ at θ = 43 〇 丨 J Η = 0 · 25λ at θ = 45 0 丨 J Η = 0 · 23λ squared θ = 550 丨 J Η = 0 · 22λ at θ = 58 〇 Η J Η = 0 · 22λ (f) from the "real" surface of the silicon crystal, The behavior of the secondary electron emission, the appearance of the response waveform structure at the sputtering depth of 0111, and the stability at the sputtering depth of Dp 14 This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) ( (Please read the precautions on the back before filling this page) -II! I 丨 · 1 — ------ 478013 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Explanation of the Waveform Structure (13) The beginning of emission enhancement is equivalent to the depth Dm. The beginning of emission saturation is equivalent to the depth of sputtering D7. Investigations have also shown that λ still depends on the ion beam energy E, the incident angle of the ion beam Θ, and the outside of the insulator. Temperature of the silicon-on-insulator SOI material (or, especially, the silicon crystal of the outer silicon single-crystal film) Temperature). The data shown in Figure 1E shows that at room temperature, λ changes with the beam energy E and the incident angle Θ of the ion beam. Curves 15 define wave-ordered-structures (WOS) forming points The range of the domain. According to formula (2), curves 1 5, Ιό, and 120 define the wave-ordered-structures (W0S) subdomain. The wave-like fluctuations have a more coherent structure that is linear between λ and D. Figure 1 F shows that λ changes with temperature at different E and Θ 値. Curve 22 is equivalent to E = 9keV, θ = 45%. Curve 26 is equivalent to E = 9 ke V, Θ = 55. From these The data shows that at room temperature, λ can be changed from 30nm to 120nm in a useful number range. Adjusting the temperature of the sample from room temperature to 500K does not produce a significant effect. When the temperature is increased from 500K to 850K, compared with room temperature, the 値 of λ is reduced by a factor of 3.3. The inventor of the present invention also determined the required waveform structure (^^ 6-0 pool 1 ^ (1-structures, W0S) The depth Db of the silicon crystal layer 3 of the silicon-on-insulator SOI material can be expressed by the following fractional table The: DB > DP + H + R (4) One should note here, the depth DB = DP + H is required to be of the desired stable structure forming the waveform (wave-ordered-structures, WOS). However, the inventors of the present invention have found that in order to ensure the reliable formation of the quantum silicon crystal lines from each other by the sputtering method, and / or the high temperature annealing of subsequent sputtering products, when calculating the minimum depth DB, the ions penetrate into the range R It is important to take into consideration 15 This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) ------ '7 --------------- Order- -------- (Please read the notes on the back before filling this page) 478013 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Α7 Β7 V. Description of Invention (14). Investigations conducted by the inventors of the present invention have also confirmed that when the valleys of wave-ordered-structures (WOS) are separated from the insulating outer-peripheral sand single crystal film (silicon-on-insulator SOI), the sand crystal-insulator is shaken. When the distance of the boundary is about R, the secondary emission of ions of the insulating layer of silicon-on-insulator SOI is started. These observations enable the forming method of the silicon microstructures required to be formed with a wavelength-ordered-structures (WOS) wavelength λ 値. In the data shown in Figure 1E, the allowable E and Θ 値 can be determined according to the required λ 所需 from 30nm to 120nm at room temperature (E = 2keV and θ = 58.). Low λ 値, as shown in Figure IF, can be obtained by heating a silicon-on_insulator SOI material to 550K. Similarly, for a selected λ 値, the appropriate E, Θ, and T 値 can also be determined. The range of ion penetration and forming depth D9 can be obtained from the calculation of formulas (1) and (2) and experimental data (3), and the silicon-on-insulator SOI silicon crystal layer The required depth Dp can be obtained from the calculation of formula (4). For example, to produce a silicon quantum wire display with a line period (λ) of 30 nm as shown in Figure 1E, (by induction) it can be determined that λ = 30η E = 2keV and θ = 58 °. From these 値, it can be determined that R = 7nm, H = 6.6nm, DP = 27.6nm, so DB = 41.2nm.
在另一例子中,如要製造一線周期(λ)爲9nm之矽 量子線陳列,則樣品應加熱,使λ減少3.3倍,而得在850K 16 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -丨;----ΊΙΙΊ-----------訂---------線9 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 478013 A7 B7 五、發明說明(15 ) _ 時λ = 9ηηι相當於室溫時λ = 30ηηι。依第1E圖所示,(藉由歸 納法)可確定,在850Κ時λ = 9ηιη,E = 2keV而θ = 58°。由這 些値,則可確定R = 7nm,H=1.99nm,DF = Onm,因此 D9 = 8.98nni 〇 在又一例子中,如要製造一線周期(λ)爲120nm之 矽量子線陳列,依第1E圖所示,可確定,在λ=120ηιη時, E = 8keV而Θ二45° 0由這些値,貝[j可確定R=16nm, H>27.6nm, ϋί^Μόππι,因此D3 = 189.68nm 。同樣地λ値, 亦可能得到另一組參數値,亦即,在λ=120ηιη時, E = 5.5keV而θ = 430。由這些値,貝ij可確定R=12.25nm, H = 30nm,DB=188.3nm 〇 因此,在,量子線陳列周期λ値爲9nm至120nm間, 控制製程之參數如上所述可先確定。 很多絕緣體外緣砍單晶膜(silicon-on-insulator SOI)材枓可用於此製程,例如,由氧氣植入分離法 (SIMOX)之技術而得之絕緣體外緣矽單晶膜(silicon-on-insulator SOI)材枓可達所要之矽晶層厚度。 其它可行之方法,任何熟悉此技藝者在本發明領域 內,可輕易思及,例如,機智切割法(Smart Cut technology)而得絕緣體外緣砂單晶膜(siiicon_on_ insulator SOI)材枓,或在石英或玻璃晶圓上置矽晶單晶 膜。 17 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ----ΊΜ--7·----裝--------訂---------^9 (請先閱讀背面之注意事項再填寫本頁) 478013 A7 B7 五、發明說明(16 ) (請先閱讀背面之注意事項再填寫本頁) 第一圖所示爲氧氣植入分離法(SIMOX)技術運用 例。矽晶層3之厚度必須高度均一(合適SIMOX晶圓可自美 國Ibis公同取得)。 —旦絕緣體外緣砂單晶膜(silicon-on-insulator SOI)材枓選定,氮化矽光罩層1可依第1A圖備妥。氮化矽 光罩層1置於薄氧化矽層2上面。而光罩窗孔可由石印術及電 漿化學蝕刻成型於光罩層1,而薄氧化矽層2當作電漿化學蝕 刻時之阻擋層。之後,在光罩窗孔區內之薄氧化矽層2,以溼 式蝕刻法去除,而在光罩窗孔週緣形成一懸邊。光罩層之厚 度必須嚏以防止在光罩窗孔區內矽晶層3表面起伏之形成。在 光罩窗孔週緣形成一懸邊,其有助於獲得一由一平坦矽晶表 面所圍繞之均一波形結構(wave-ordered-structures, WOS )。 如第1A圖標號11所示,矽晶層6在濺射過程時接地,以 防止濺射時所產生之電荷對矽晶微結構陳列7造成損傷。 經濟部智慧財產局員工消費合作社印製 光罩窗孔最好如第ΙΑ,1B及2圖所示,依離子光束之 方向定向,如此離子入射平面才會平穩,而離子流動方向才 會和方形光罩窗孔之長邊相平行。此設計使光罩窗孔懸邊達 成最佳成效。 光罩厚度可選定’而在光罩材枓於濺射移除時,光罩 材枓和光罩窗孔區內之砂晶表面以幾乎相同之速率被濺射。 濺射步驟乃依預先決定之E,T及θ參數而執行。濺射 步驟可在表面分析儀(如Perkin Elmer,USA之PHI660 ) 18 本纸張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 478013 A7 B7 五、發明說明(π) (請先閱讀背面之注意事項再填寫本頁) 之超高真空箱內實施。在濺射時’絕緣體外緣矽單晶膜 (silicon-on-insulator SOI)材枓之絕緣層4之二次離子 發射信號加以監視,而在此信號超越臨界値時終止濺射’顯 示波形結構(wave-orderedeStructures,W0S)波谷接近 矽晶一絕緣體邊界。如第ic圖所示’此臨界値s ’可界定爲 信號超過平均背景値B之量等於噪音訊號N峰至峰高度(亦 即,S=B+N)。 一低能量電子槍(圖未示)可用以電子照射濺射區,以 便補償離子充電。 經濟部智慧財產局員工消費合作社印製 這些步驟使矽晶微結構陳列7成型於光罩窗孔區內。第 1D圖顯示室溫製造時,矽晶微結構陳列7之內部結構。當在 8 5 0K時製造,矽晶微結構陳列7之內部結構曾和室溫時造出 之結構不同。當在850K時製造,本發明之發明人發現到,在 和室溫時以相同參數製造相比,波形結構(wave-ordered-structures,WOS)波長値減少了因數3.3。但是,各表層 之厚度及波浪邊之斜度和在室溫製造時一樣不變。在850K時 製造時所獲得之結構,並無晶體矽晶區12。無定形氮化矽區 8之水平面積和室溫製造相比’被因數3·3所減短,而且氧化 氮矽晶區10並不被分離。在此情況下,無定形矽晶和氮化矽 混合物區9於退火後,被無定形氮化矽區8所分離,而可被 視爲量子線。 在濺射步驟完成後,產品在惰性環境下以高溫氧化退 火,退火溫度爲lOOOW至1 200°C,而退火時間最少一小 19 未紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) — 478013 A7 B7 五、發明說明(IS) (請先閱讀背面之注意事項再填寫本頁) 時。退火步驟造成無定形矽晶和氮化矽混合物區9之氮被有效 用盡,而在無定形矽晶和氮化矽混合物區9周圍產生一淸楚之 氮切割邊界。加之,無定形矽晶和氮化矽混合物區9被轉化成 晶狀矽。高溫氧化步驟和在半導體氧化閘層製造時所運用之 氧化步驟相似。 依上所述,藉由本發明,矽量子線陳列可以三種基本 方法之任一方法製造之。首先,在室溫濺射時,濺射結構包 含矽晶區12,其被無定形氮化矽區8所分離,而可被視爲量 子線。第二,假在室溫被濺射之結構隨後被退火,則無定形 矽晶和氮化矽混合物區9被覆蓋晶狀矽晶,而亦可視爲子線。 第三,如陳列在850K時被濺射,濺射結構並不包含晶狀矽晶 區12,而繼之之退火使無定形矽晶和氮化矽混合物區9被轉 化爲晶狀矽晶,因而形成量子線陳列,而被無定形氮化矽區8 所分離。 退火亦及於無定形氮化矽區8之最低角落,以改善上述 各案例中之無定形矽晶和氮化矽混合物區9之分離效果。 經濟部智慧財產局員工消費合作社邱製 依上所述,波長範圍3 0 n m至1 2 0 n m之量子線陳列可以 溫濺射扇型,而在約5 5 0K以上濺射時。提高材枓溫度,則可 減短波長至約9nm,而在約850K時,則可得最低之波長。依 製程參數而定,濺射所得之波形結構(wave-ordered-structures,WOS)可包含晶狀矽晶區12,其可提供可用且 相互分離之量子。在不包含晶狀矽晶區12之濺射結構,量子 線乃以將濺射結構退火之方式而成型於無定形矽晶和氮化矽 混合物區9。 20 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 478013 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(19) 一 第二及三圖顯示以上述方法製成具有量子線陳列7之元 件,如場效晶體。弟2A圖顯τρ:在濺射前,氮化砂光罩層1方々 絕緣體外緣矽單晶膜(silic〇n_on_insulat〇r SOI)材枓界 定一光罩窗孔。第2B圖顯不量子線陳列7成型於砂晶層6。 第2C圖顯示製作具有量子線陳列7元件之第一步驟。先 前所述筒溫氧化步驟’在職射結構表面形成一薄絕緣層2 8。 使用習用石印技術,一聚矽矩形結構30成型於絕緣層之上 端,並橫越量子線陳列7之寬度。線陳列7之長度l可比聚砂 矩形結構3〇之寬度W更長。在聚矽矩形結構周遭區可蝕刻 回到絕緣體外緣矽單晶膜絕緣層4,然後藉由石印術,聚砂矩 形結構30之端點加以蝕刻,使矽晶墊36及38留置於量子線陳 歹[]7之任一纟而’並且’如弟圖2D所不,使砂晶墊%及π金屬 化,在此,標號17所指即量子線陳列7蝕刻後之淸形,其長 度由L減至W。 在此必須了解到,量子線製成後,元件可依習用之半 導體製造技術加以製造。 第2D及3圖顯示依上述方法製成之場效電晶體。在第 2D及3圖,標號32指氧化絕緣層,標號34指第C3圖之相對 表層28及30蝕刻後所留下之聚矽晶層。在第3圖中,各層32 及34均有部份被移除,而使在下的量子線陳列7露出。在第 2D圖中,各層32及34延伸至矽晶墊36及38。 本發明使這類元件之尺寸得以製成更小,而產品品質及 穩定性能更佳。 21 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -----TI — ---•裝--------訂---------^9. ί靖先閱讀背面之注意事項再填寫本頁} 經濟部智慧財產局員工消費合作社印製 478013 A7 B7 五、發明說明(20) 本發明以濺射法於波形結構上製成量子線陳列,已加 詳述。但是,濺射成型之波形結構亦可於量子電腦應時,可 於離子植入(例如,低能量磷離子移植)矽晶時當光罩用。 離子移植是在大型積體電路應用時,用以將摻雜劑原子導入 半導體材枓之基本技術。具有窗孔之光罩層,遍常用於二維 摻雜劑分配之形成。離子移植之後,通常隨之退火,使摻雜 劑電子活化,並使半導體晶體結構復原。例如,第1D圖所示 之波形結構(wave-ordered-structures,WOS)成型後, 其後之無定形氮化矽區8之高溫退火可當作光罩,使選定離子 植入無定形矽晶和氮化矽混合物區9之右手邊(低能量離子流 體之流向通常向著材枓之表面)。此離子移植過程,會形 成,具有和波形結構(wave-ordered-structures,W0S) 相同周期之交替摻雜之條絞圖型。利用一波形結構周期約爲 10nm,以此方法形成之磷摻雜之條絞能使量子電腦應用時所 須之相互作用。離子移植亦可用於使用波形結構當光罩之量 子線陳列製作。 以上所述,僅爲本發明之具體實施例,惟本發明之特 徵並不侷於,任何熟悉該項技藝者在本發明領域內,可輕易 思及之變化或修飾,皆可涵蓋在以下本案之專利範圍。 22 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -----秦---^4-----------訂---------線 (請先閱讀背面之注意事項再填寫本頁)In another example, if a silicon quantum wire display with a line period (λ) of 9 nm is to be manufactured, the sample should be heated to reduce λ by 3.3 times, and the Chinese paper standard (CNS) A4 specification should be applied at 850K 16 (210 X 297 mm)-丨; ---- ΊΙΙΊ ----------- Order --------- Line 9 (Please read the notes on the back before filling this page ) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 478013 A7 B7 V. Description of the invention (15) _ at λ = 9ηη is equivalent to λ = 30ηη at room temperature. As shown in Figure 1E, (by induction) it can be determined that at 850K λ = 9ηη, E = 2keV and θ = 58 °. From these 値, we can determine R = 7nm, H = 1.99nm, DF = Onm, so D9 = 8.98nni 〇 In another example, if you want to make a silicon quantum wire display with a line period (λ) of 120nm, according to the first As shown in Figure 1E, it can be determined that at λ = 120ηιη, E = 8keV and Θ = 45 °. 0 From these 贝, [j can determine R = 16nm, H > 27.6nm, ϋί ^ Μόππ, so D3 = 189.68nm . Similarly, λ 値, it is also possible to obtain another set of parameters 値, that is, when λ = 120ηιη, E = 5.5keV and θ = 430. From these 値, Beij can determine that R = 12.25nm, H = 30nm, DB = 188.3nm. Therefore, in the quantum wire display period λ 値 is between 9nm and 120nm, the parameters of the control process can be determined as described above. Many silicon-on-insulator SOI materials can be used for this process. For example, silicon-on-insulator silicon-on-insulators obtained by SIMOX technology -insulator SOI) material can reach the desired silicon layer thickness. For other feasible methods, anyone skilled in the art can easily think of, for example, smart cut technology to obtain a siiicon_on_insulator SOI material, or A silicon single crystal film is placed on a quartz or glass wafer. 17 This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) ---- ΊΜ--7 · ---- installation -------- order ------- -^ 9 (Please read the notes on the back before filling this page) 478013 A7 B7 V. Description of the invention (16) (Please read the notes on the back before filling this page) The first picture shows the oxygen implantation and separation Application of SIMOX technology. The thickness of the silicon layer 3 must be highly uniform (suitable SIMOX wafers can be obtained from the US Ibis). -Once the silicon-on-insulator SOI material is selected, the silicon nitride mask layer 1 can be prepared according to Figure 1A. A silicon nitride mask layer 1 is placed on top of the thin silicon oxide layer 2. The mask window hole can be formed on the mask layer 1 by lithography and plasma chemical etching, and the thin silicon oxide layer 2 is used as a barrier layer during the plasma chemical etching. Thereafter, the thin silicon oxide layer 2 in the mask window hole area is removed by a wet etching method, and an overhang is formed on the periphery of the mask window hole. The thickness of the mask layer must be sneezed to prevent the formation of undulations on the surface of the silicon crystal layer 3 in the window area of the mask. A cantilevered edge is formed at the periphery of the mask window hole, which helps to obtain a uniform wave-ordered-structures (WOS) surrounded by a flat silicon crystal surface. As shown by icon number 11A, the silicon crystal layer 6 is grounded during the sputtering process to prevent damage to the silicon crystal microstructure display 7 caused by the charges generated during the sputtering. The photomask window holes printed by the Employee Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs are best shown in Figures IA, 1B, and 2 and oriented in the direction of the ion beam so that the ion incident plane will be stable and the ion flow direction will be square. The long sides of the mask window holes are parallel. This design achieves the best results with the overhang of the reticle window. The thickness of the photomask can be selected and when the photomask material is removed by sputtering, the surface of the sand crystal and the surface of the sand crystal in the window aperture area of the photomask are sputtered at almost the same rate. The sputtering step is performed according to predetermined E, T and θ parameters. The sputtering step can be performed on a surface analyzer (such as PHI660 from Perkin Elmer, USA). 18 This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm). 478013 A7 B7. 5. Description of the invention (π) (please Read the precautions on the back before filling out this page). During sputtering, the secondary ion emission signal of the insulating layer 4 of the silicon-on-insulator SOI material material is monitored, and the sputtering is terminated when the signal exceeds the critical threshold. The waveform structure is displayed. (Wave-orderedeStructures, WOS) The wave valley is close to the silicon-insulator boundary. As shown in Fig. Ic, 'this critical 値 s' can be defined as the signal exceeding the average background 値 B is equal to the noise signal N peak-to-peak height (that is, S = B + N). A low-energy electron gun (not shown) can be used to illuminate the sputtering area with electrons to compensate for ion charging. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs These steps shape the silicon microstructure display 7 in the mask window area. Figure 1D shows the internal structure of the silicon crystal microstructure display 7 during manufacturing at room temperature. When manufactured at 850K, the internal structure of the silicon microstructure display 7 was different from that produced at room temperature. When manufactured at 850K, the inventors of the present invention have found that compared to manufacturing at room temperature with the same parameters, the wave-ordered-structures (WOS) wavelength 値 is reduced by a factor of 3.3. However, the thickness of each surface layer and the inclination of the wavy edges are the same as when manufactured at room temperature. The structure obtained at the time of manufacturing at 850K has no crystalline silicon region 12. The horizontal area of the amorphous silicon nitride region 8 is shortened by a factor of 3 · 3 compared with room temperature fabrication, and the silicon oxide silicon crystal region 10 is not separated. In this case, after the annealing, the amorphous silicon crystal and silicon nitride mixed region 9 is separated by the amorphous silicon nitride region 8 and can be regarded as a quantum wire. After the sputtering step is completed, the product is annealed at a high temperature under an inert environment. The annealing temperature is 100OW to 1 200 ° C, and the annealing time is at least a minimum. 19 The paper size is applicable to China National Standard (CNS) A4 (210 X 297). Mm) — 478013 A7 B7 V. Description of the invention (IS) (Please read the notes on the back before filling this page). The annealing step causes the nitrogen of the amorphous silicon and silicon nitride mixed region 9 to be effectively used up, and a sever nitrogen cut boundary is generated around the amorphous silicon and silicon nitride mixed region 9. In addition, the amorphous silicon and silicon nitride mixed region 9 is converted into crystalline silicon. The high temperature oxidation step is similar to the oxidation step used in the fabrication of semiconductor oxide gates. As described above, with the present invention, the silicon quantum wire display can be manufactured by any one of three basic methods. First, at room temperature sputtering, the sputtered structure includes a silicon crystal region 12 which is separated by an amorphous silicon nitride region 8 and can be regarded as a quantum line. Second, if the structure that is sputtered at room temperature is subsequently annealed, the amorphous silicon crystal and silicon nitride mixture region 9 is covered with crystalline silicon crystals, and can also be regarded as a strand. Third, if the display is sputtered at 850K, the sputtered structure does not contain the crystalline silicon crystal region 12, and then the annealing causes the amorphous silicon crystal and silicon nitride mixture region 9 to be converted into crystalline silicon crystal. Thus a quantum wire display is formed, which is separated by the amorphous silicon nitride region 8. Annealing is also applied to the lowest corner of the amorphous silicon nitride region 8 to improve the separation effect of the amorphous silicon crystal and silicon nitride mixture region 9 in each of the above cases. Qiu Zhi, Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs According to the above, quantum wire displays with a wavelength range of 30 nm to 120 nm can be sputtered at a temperature of more than 550K. Increasing the material temperature can shorten the wavelength to about 9nm, and at about 850K, the lowest wavelength can be obtained. Depending on the process parameters, the wave-ordered-structures (WOS) obtained by sputtering may include crystalline silicon regions 12, which can provide usable and separated quantums. In the sputtered structure that does not include the crystalline silicon region 12, the quantum wire is formed in the amorphous silicon and silicon nitride mixed region 9 by annealing the sputtered structure. 20 This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 478013 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (19) The second and third pictures show the above method Made of elements with quantum wire displays 7, such as field-effect crystals. Figure 2A shows τρ: before sputtering, the nitrided sand mask layer 1 square; the outer edge of the silicon outer single crystal silicon (silicon_on_insulat〇r SOI) material boundary defines a mask window. FIG. 2B shows that the quantum wire display 7 is formed on the sand crystal layer 6. Fig. 2C shows the first step of making a 7-element with quantum wire display. The first step of the barrel temperature oxidation step 'forms a thin insulating layer 28 on the surface of the firing structure. Using conventional lithographic techniques, a polysilicon rectangular structure 30 is formed on the upper end of the insulating layer and traverses the width of the quantum wire display 7. The length l of the line display 7 may be longer than the width W of the sandy rectangular structure 30. In the surrounding area of the polysilicon rectangular structure, the silicon single crystal film insulating layer 4 can be etched back to the outer edge of the insulator. Then, by lithography, the endpoints of the polysilicon rectangular structure 30 are etched, so that the silicon pads 36 and 38 are left on the quantum wires Any of Chen Yu's ['7' and 'and', as shown in Figure 2D, metallizes the sand crystal pad% and π. Here, the reference numeral 17 refers to the quantum wire display 7 after the etching, and its length From L to W. It must be understood here that after the quantum wire is made, the element can be manufactured using conventional semiconductor manufacturing techniques. Figures 2D and 3 show the field effect transistor made by the above method. In Figs. 2D and 3, reference numeral 32 denotes an oxide insulating layer, and reference numeral 34 denotes a polysilicon crystal layer left after etching of the opposite surface layers 28 and 30 in Fig. C3. In Figure 3, each of the layers 32 and 34 has been partially removed, leaving the underlying quantum wire display 7 exposed. In FIG. 2D, the layers 32 and 34 extend to the silicon pads 36 and 38. The invention enables the size of such components to be made smaller, and the product quality and stability to be better. 21 This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) ----- TI — --- • Installation -------- Order --------- ^ 9. Jing Jing read the notes on the back before filling out this page} Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 478013 A7 B7 V. Description of the invention (20) The present invention uses the sputtering method to make quantum wires on a wave-shaped structure. Display, has been detailed. However, the sputter-shaped wave structure can also be used as a photomask for ion implantation (for example, low-energy phosphorus ion implantation) of silicon crystals in quantum computer applications. Ion implantation is a basic technology used to introduce dopant atoms into semiconductor materials when large integrated circuits are used. Photomask layers with window holes are commonly used for the formation of two-dimensional dopant distributions. After ion implantation, it is usually annealed to activate the dopants electronically and restore the semiconductor crystal structure. For example, after the wave-ordered-structures (WOS) shown in FIG. 1D is formed, the subsequent high-temperature annealing of the amorphous silicon nitride region 8 can be used as a photomask to implant selected ions into the amorphous silicon crystal. The right-hand side of the silicon nitride mixture region 9 (the flow of the low-energy ionic fluid is usually directed toward the surface of the material). This ion implantation process will form a twisted pattern of alternating doping with the same period as wave-ordered-structures (WOS). Using a waveform structure with a period of about 10 nm, the phosphorus-doped strands formed in this way can enable the interaction required in quantum computer applications. Ion implantation can also be used for the fabrication and display of photon beams using wave structures as photomasks. The above are only specific embodiments of the present invention, but the features of the present invention are not limited to it. Any changes or modifications that can be easily considered by those skilled in the art in the field of the present invention can be covered in the following case. The scope of patents. 22 This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) ----- Qin --- ^ 4 ----------- Order ------- --Line (Please read the notes on the back before filling this page)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW89115962A TW478013B (en) | 2000-08-08 | 2000-08-08 | Method of formation of nano-structures on the surface of silicon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW89115962A TW478013B (en) | 2000-08-08 | 2000-08-08 | Method of formation of nano-structures on the surface of silicon |
Publications (1)
Publication Number | Publication Date |
---|---|
TW478013B true TW478013B (en) | 2002-03-01 |
Family
ID=21660700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW89115962A TW478013B (en) | 2000-08-08 | 2000-08-08 | Method of formation of nano-structures on the surface of silicon |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW478013B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI402897B (en) * | 2008-10-23 | 2013-07-21 | Univ Nat Sun Yat Sen | Semiconductor structure with quantum wire and method for forming the same |
-
2000
- 2000-08-08 TW TW89115962A patent/TW478013B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI402897B (en) * | 2008-10-23 | 2013-07-21 | Univ Nat Sun Yat Sen | Semiconductor structure with quantum wire and method for forming the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6274007B1 (en) | Methods of formation of a silicon nanostructure, a silicon quantum wire array and devices based thereon | |
Hiller et al. | Low temperature silicon dioxide by thermal atomic layer deposition: Investigation of material properties | |
TW419829B (en) | Polycrystalline semiconductor material, its manufacture method, semiconductor device using such material, and its evaluation method | |
De Dood et al. | Amorphous silicon waveguides for microphotonics | |
EP2334848B1 (en) | Method for making side growth semiconductor nanowires and transistors obtained by said method | |
US8779414B2 (en) | Collapsable gate for deposited nanostructures | |
Savolainen et al. | Ion beam sputtering for progressive reduction of nanostructures dimensions | |
JPH05507390A (en) | Method for thinning etching of substrates | |
TWI473188B (en) | Etch depth determination for sgt technology | |
TW540162B (en) | Electronic devices comprising thin-film transistors, and their manufacture | |
Berencén et al. | CMOS‐Compatible Controlled Hyperdoping of Silicon Nanowires | |
TW478013B (en) | Method of formation of nano-structures on the surface of silicon | |
Zgirski et al. | Ion beam shaping and downsizing of nanostructures | |
US8058086B2 (en) | Self-organized pin-type nanostructures, and production thereof on silicon | |
KR100785036B1 (en) | Method of fabricating electrical field sensor having electrical field shield | |
TWI227516B (en) | Nano-electronic devices using discrete exposure method | |
TWI272691B (en) | SOI substrates, semiconductor substrate, and method for production thereof | |
TW442872B (en) | Method for planarization of semiconductor device | |
Kanematsu et al. | Observation of quantum size effect from silicon nanowall | |
TW540117B (en) | Method for improving the roughness of the sidewall of a polysilicon layer in an etching process | |
Tokioka et al. | Low-damage surface smoothing of laser crystallized polycrystalline silicon using gas cluster ion beam | |
KR20060001987A (en) | Characterization of soi nano-wire transistor | |
JP3391729B2 (en) | Polycrystalline silicon film and semiconductor device having the same | |
Za'bah | Top-down fabrication of silicon nanowire using optical lithography | |
Karlin et al. | The influence of silicon substrate crystallinity and doping on TiSi2 thin film morphology |