TW475238B - Semiconductor manufacture process to prevent diffusion of fluorine atom - Google Patents

Semiconductor manufacture process to prevent diffusion of fluorine atom Download PDF

Info

Publication number
TW475238B
TW475238B TW88116806A TW88116806A TW475238B TW 475238 B TW475238 B TW 475238B TW 88116806 A TW88116806 A TW 88116806A TW 88116806 A TW88116806 A TW 88116806A TW 475238 B TW475238 B TW 475238B
Authority
TW
Taiwan
Prior art keywords
layer
rich
item
silicon
patent application
Prior art date
Application number
TW88116806A
Other languages
Chinese (zh)
Inventor
Tian-Yi Bau
Shiun-Ming Jang
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW88116806A priority Critical patent/TW475238B/en
Application granted granted Critical
Publication of TW475238B publication Critical patent/TW475238B/en

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

This invention provides semiconductor manufacture process to prevent diffusion of fluorine atom of fluorinated silicate glass, which primarily deposits silicon rich oxide layer above and beneath the fluorinated silicon glass to function as barrier layer. According to the process of the present invention, using silicon rich oxide layer as barrier layer can effectively block the diffusion of fluorine atoms. Therefore, the use of low dielectric constant of fluorinated silicate glass can enhance the device performance by reducing the interconnect parasitic capacitance and RC delay, and also the attack of copper interconnect by fluorine atom can be prevented. Moreover, reliability of damascene copper process is increased as the silicon rich oxide layer can prevent the diffusion of copper atoms.

Description

475238 五、發明說明(1) 【發明領域】 本發明是有關於半導體製程技術’且特別是有關於 種利用s石夕氧化層作為阻障層,以避免#氟石夕玻璃層 (F S G )之氟原子擴散造成金屬導線錄钱和起泡 (corrosion and bubbling)的製程。 【發明背景】 隨著積體電路日趨精密與複雜化,為了能夠在有限 晶片表面上製作足夠的金屬内連線,目前大多採周多; 連線的立體架構方式,以完成各個元件的連接,並以^475238 V. Description of the invention (1) [Field of the invention] The present invention relates to semiconductor process technology, and in particular, to the use of SiO2 oxide layer as a barrier layer, in order to avoid #fluorite sphere glass layer (FSG). The diffusion of fluorine atoms leads to the process of recording and bubbling metal wires. [Background of the Invention] With the increasing precision and complexity of integrated circuits, in order to be able to make sufficient metal interconnections on the surface of a finite chip, most of them are currently adopted; the three-dimensional structure of the connection to complete the connection of various components, And start with ^

間介電層(I MD )來作為隔離各金屬内連線之介電材料。 傳統用來作為金屬間介電層的材料包括有:電漿氧化矽 (PE-ΟΧ)、硼磷矽玻璃(BPSG)、磷矽玻璃(psG 塗式玻璃(S0G )等。 U 近年來’為配合元件尺寸縮小化的發展以及提高 刼作速度的需I,具有低電阻常數 金屬,已逐漸被應用來作為金屬内連線的材質移;= 的鋁金屬製程技術’其中配合銅金屬的鑲嵌式 damascene)内連線技術不僅可達到内連線的縮小化 :決了金屬銅蝕刻不易的問題’因此已成為 線主要的發展趨勢。 里門連 另方面卩現著元件尺寸縮小化的發展,不僅庫用導 =高之銅材料的導線技術方興未艾,為了有效;:! 屬V線間寄生電容和元件_延遲’許多製程也逐漸改用 475238 五、發明說明(2) ^ 具有低介電常數(1〇w-k )之介電材料層,來取代一般的 介電材料而作為金屬層間介電層(〖MD )。 近來’利用高密度電漿化學氣相沈積法(HDPCVD )所 形成的摻氟矽玻璃(FSG,介電常數約3. 5 ),已成為製作 低介電常數之金屬層間介電層的重要材料之一,其可以採 單獨使用或與未摻雜矽玻璃(USG)共存但份量較多的方 式來降低介電常數。然而,經過研磨或高溫回火後,摻氟 石夕玻璃中的氟原子非常容易擴散而攻擊金屬銅,特別是經 過化學機械研磨(CMP )後,會使得摻氟矽玻璃層的表層 部分受潮(m〇istured )而產生氫氟酸^^^造成銅導 線的銹飯和起泡(corrosi〇n and bubbling )而影響元侔 的性質。 因此’為了使摻氟矽玻璃在鑲嵌式銅製程的應用更壤 於完善’實有必要針對氟原子擴散的問題謀求改善之道。 【發明概述】 日有鐘於此,本發明的主要目的就是為了解決上述問題 而提供種可防止摻氟砂玻璃之氟原子擴散的半導體製、 程。 為達上述目的,本發明的方法,孤在摻氟碎玻嗔之上 及之下設置一富矽氧化層(Si rich oxide )…作為阻擋 氟原子擴散的阻障層,其原理是利用^參氧化層中的懸^ 鍵( dang l i ng bonds )去捕捉擴散的氟原子,而達到^ & 阻障的效果。The inter-dielectric layer (I MD) is used as a dielectric material to isolate each metal interconnect. Materials traditionally used as intermetal dielectric layers include: plasma silicon oxide (PE-OX), borophosphosilicate glass (BPSG), phosphosilicate glass (psG coated glass (S0G), etc.). With the development of the reduction of the size of components and the need to increase the operation speed, metals with low resistance constants have been gradually used as the material shifting of metal interconnects; = aluminum metal process technology 'in which the copper metal is embedded damascene) interconnect technology can not only reduce the size of interconnects: the problem of difficult copper metal etching is resolved ', so it has become the main trend of the line. Limenlian On the other hand, the development of component size reduction is not only emerging, but not only the use of lead technology of high-conductor copper materials in the library is in the ascendant, in order to be effective ;! V line parasitic capacitance and component _ delay 'Many processes have gradually changed to 475238 V. Description of the invention (2) ^ A dielectric material layer with a low dielectric constant (10wk), instead of general dielectric materials As a metal interlayer dielectric layer (MD). Recently, fluorine-doped silica glass (FSG, dielectric constant about 3.5) formed by high-density plasma chemical vapor deposition (HDPCVD) method has become an important material for making low-k dielectric metal interlayer dielectric layers. For one, it can be used alone or coexisting with undoped silica glass (USG) but in a larger amount to reduce the dielectric constant. However, after grinding or high-temperature tempering, the fluorine atoms in the fluorite-doped glass easily diffuse and attack metallic copper, especially after chemical mechanical polishing (CMP), the surface portion of the fluoro-doped silica glass layer is dampened ( m〇istured) and the generation of hydrofluoric acid ^^^ caused the copper wire rust and bubbling (corrosion and bubbling), which affects the properties of the element. Therefore, in order to make the application of fluorine-doped silica glass in the inlay copper process more perfect, it is necessary to seek improvement on the issue of fluorine atom diffusion. [Summary of the Invention] As the clock is here, the main purpose of the present invention is to provide a semiconductor process and a process for preventing the diffusion of fluorine atoms of fluorine-doped sand glass in order to solve the above-mentioned problems. In order to achieve the above-mentioned object, the method of the present invention provides a silicon-rich oxide layer alone above and below the fluorine-doped shattered glass. As a barrier layer to prevent the diffusion of fluorine atoms, the principle is to use ^ reference Dangling bonds in the oxide layer are used to capture the diffused fluorine atoms and achieve the effect of ^ & barrier.

第5頁 475238 五、發明說明(3) 根據本發明之一型熊,在卢协〆 富砍氧化層作為阻障層:其玻璃層之上覆蓋- 氟矽玻璃層於半導體基底^ . ( V '匕舌.(a )沈積摻 述綱玻璃層上;ίυν沈積富石夕氧化層於上 1卞局防止亂原子擴檄之阳暗掹· /Page 5 475238 V. Description of the invention (3) According to one type of bear of the present invention, the oxide layer of Lu Xieyu is used as a barrier layer: its glass layer is covered with a fluorosilicone glass layer on a semiconductor substrate ^ (V 'Dagger tongue. (A) Deposition on the glass layer; υυν deposited on the stone-rich oxidized layer on the upper surface to prevent the darkening of the chaotic atom · /

)於富矽氧化層與摻氟矽玻璃層中義 d ’ C 於基底上沈積金屬層並填人 義出開口, (d ) 金屬層。 θ亚真入上述開口;以及(e )磨平此 根據本發明之另一型態 一富矽氧化層作為阻障層, 沈積富矽氧化層、摻氟矽玻 述之富石夕氧化層係作為防止 於換氟石夕玻璃層與富石夕氧化 基底上沈積金屬層並填入上 屬層。 ,係在摻氟矽破璃層之下設置 其主要步驟包括:(a)依序 璃層於半導體基底上,其中上 氟原子擴散之阻障層;(b ) 層中定義出一開口; (c)於 述開口;以及(d )磨平此金 根據本發明之再一型態,係同時在摻氟矽玻璃層之上 下各設置一富碎氡化層作為阻障層,其主要步驟包括: (a)依序沈積第一富矽氧化層、摻氟矽玻璃層、第二富 石夕氧化層於一半導體基底上,其中第一富矽氧化層與第二 富矽氧化層係作為防止氟原子擴散之阻障層;(b )於上 述第一富石夕氧化層、摻氟石夕玻璃層、第一富石夕氧化層中定 義出一開口, (c)於基底上沈積金屬層並填入上述開 口,以及(d)磨平此金屬層。 在本發明中,適當的富石夕氧化層為折射率(r I )大於 1 · 4 6者,特別疋利用電聚加強化學氣相沈積法所形成之電) In a silicon-rich oxide layer and a fluorine-doped silicon glass layer, a metal layer is deposited on the substrate and the artificial opening is filled. (D) The metal layer. θ Yazhen enters the above opening; and (e) smoothes the silicon-rich oxide layer according to another form of the present invention as a barrier layer, and deposits a silicon-rich oxide layer and a fluorine-doped silicon glass-rich oxide-rich oxide system It is used to prevent the metal layer from being deposited on the fluorite and glass-rich oxidized substrate and to fill the upper layer. The main steps under the fluorine-doped silicon breaking glass layer include: (a) a sequential glass layer on a semiconductor substrate, in which a barrier layer for diffusion of upper fluorine atoms; (b) an opening is defined in the layer; ( c) the openings described above; and (d) flattening the gold according to another form of the present invention, at the same time, a fragment-rich hafnium layer is provided as a barrier layer above and below the fluorine-doped silica glass layer, and its main steps include : (A) A first silicon-rich oxide layer, a fluorine-doped silicon glass layer, and a second silicon-rich oxide layer are sequentially deposited on a semiconductor substrate, wherein the first silicon-rich oxide layer and the second silicon-rich oxide layer serve as prevention A barrier layer for diffusion of fluorine atoms; (b) an opening is defined in the first rich stone oxide layer, the fluorine-doped stone glass layer, and the first rich stone oxide layer; (c) a metal layer is deposited on the substrate Fill in the opening, and (d) smooth the metal layer. In the present invention, a suitable stone-rich oxidized layer is one having a refractive index (r I) greater than 1.46, in particular, an electrode formed by using chemical polymerization to enhance chemical vapor deposition

475238 五、發明說明(4) 漿氧化矽層(ΡΕοχ ),例 矽之PE-TEOS氧化層。 依據本發明之上述製 rich oxide )作為阻障層 故除了使用低介電、奪瓦了 屬導線間寄生電容和延 氟原子擴散而攻擊銅導線 銹蝕和起泡(c〇rrosi〇ri 驗證實,本梦明戶生里用之 擴散之外,尚可有效防止 後式銅製程的可靠度。 為讓本發明之上述和 顯易懂,下文特舉出較佳 細說明如下: 如是富石夕之PE-SlH4氧化層或富 程’ t以畫石夕、氧化層(S i 二可以有效阻擋氟原子的擴散, law-k )之摻氟矽玻場來降—低金 遲而提昇元件性質外,且可防止 ,並避免產生氫氟酸而造成導線 and bubbling ) 。1此外,根據實 富石夕氧化層除了可阻擋氟原子的 銅原子的擴^ 其他目的、特徵、和優點能更明 實施例,並配合所附圖式,作詳 【圖式之簡單說明】 第1二4圖為一系列剖面圖,用以說明本發明一較佳實 施例以富矽氧化層防止氟原子擴散之半導體製程。貝 一第5〃圖為一剖面圖,用以說明本發明另一較佳實施例 以富碎氧化層防止氟原子擴散之半導體製程。 、 …第6〃圖為一剖面圖,用以說明本發明再一較佳實施例 以富石夕氧化層防止氟原子擴散之半導體製程。 【符號說明】 10〜半導體基底;475238 V. Description of the invention (4) Plasma silicon oxide layer (PEEx), such as PE-TEOS oxide layer of silicon. According to the invention, the above-mentioned rich oxide is used as a barrier layer, so in addition to using low dielectrics, robbing the parasitic capacitance between metal wires and the diffusion of fluorine atoms to attack the corrosion and blistering of copper wires (coorrosiori), In addition to the diffusion of this dream, the reliability of the post-type copper process can still be effectively prevented. In order to make the above-mentioned and obviousness of the present invention, the following detailed descriptions are given as follows: PE-SlH4 oxide layer or fucheng't use fluorite-doped silicon glass field to reduce stone-oxide, oxide layer (S i II can effectively block the diffusion of fluorine atoms, law-k)-low gold, but improve component properties , And can prevent and avoid the generation of hydrofluoric acid and lead wires and bubbling). 1 In addition, other purposes, features, and advantages of the oxide-rich oxide layer in addition to copper atoms that can block fluorine atoms can be more clearly described in the embodiment, and will be described in detail with the accompanying drawings [Simplified description of the drawings] Figures 12 and 4 are a series of cross-sectional views for illustrating a semiconductor process in which a silicon-rich oxide layer is used to prevent the diffusion of fluorine atoms in a preferred embodiment of the present invention. Fig. 5 (a) is a cross-sectional view for explaining another preferred embodiment of the present invention for a semiconductor process for preventing the diffusion of fluorine atoms with a rich oxide layer. ... Figure 6 is a cross-sectional view for explaining a further preferred embodiment of the present invention for a semiconductor manufacturing process using a rich oxide layer to prevent the diffusion of fluorine atoms. [Symbol description] 10 ~ semiconductor substrate;

475238 五、發明說明(5) 1 2〜氟矽玻璃層; 1 4〜富矽氧化層; 1 6〜光阻; 1 8〜導線溝槽; 2 0〜金屬銅; 2 2〜銅導線。 【實施例】 本實施例係根據上述方法應用在鑲嵌結構的銅金屬内 連線製程上,為方便起見,以下僅以單鑲嵌製程為例進行 說明,但應知熟悉此技藝者亦可應用在雙鑲嵌製程上。 請參照第1圖至第4圖,第1圖至第4圖係用以說明本發 明之一較佳實施例的剖面圖。本發明之製程係適用一半導 體基底1 0上,例如是一石夕晶圓,其上方可以形成任何所兩 的半導體元件,例如Μ 0 S電晶體、電阻、邏輯元件等,不 過此處為了簡化圖式,僅以平整的基板10表示之。在以Υ 的敘述中,「基底」一詞係包括半導體晶圓上已形成的t 件與覆盍在晶圓上的各種塗層;「基底表面」一詞係包g 半導體晶圓的所露出的最上層,例如石夕晶圓表面、纟邑緣 層、金屬導線等。 如第1圖所示,在上述半導體基底上沈積一摻氟石夕破 璃層(FSG ) 12作為金屬層間介電層(IMD )。例如,可、 高密度電漿化學氣相沈積法(HDPCVD )來沈積上迷採氣^ 玻璃層(FSG) 12。接著,於上述摻敦石夕玻璃層(p$Q) /475238 V. Description of the invention (5) 1 2 ~ fluorosilicone glass layer; 1 4 ~ silicon-rich oxide layer; 16 ~ photoresist; 18 ~ wire groove; 20 ~ metal copper; 2 ~ copper wire. [Embodiment] This embodiment is applied to the copper metal interconnection process of the mosaic structure according to the above method. For convenience, the following description uses only a single mosaic process as an example, but it should be understood that those skilled in the art can also apply On a dual damascene process. Please refer to Figs. 1 to 4, which are sectional views for explaining a preferred embodiment of the present invention. The manufacturing process of the present invention is applicable to a semiconductor substrate 10, such as a stone wafer, on which any two semiconductor elements, such as M 0 S transistors, resistors, logic elements, etc. can be formed, but to simplify the diagram here The formula is expressed only by the flat substrate 10. In the description of Υ, the term "substrate" refers to the t-pieces that have been formed on the semiconductor wafer and the various coatings on the wafer; the term "substrate surface" refers to the exposure of semiconductor wafers. The uppermost layer of the wafer, such as the surface of Shixi wafer, the marginal layer of Huiyi, metal wires, etc. As shown in Fig. 1, a fluorite-doped silica layer (FSG) 12 is deposited on the semiconductor substrate as an intermetal dielectric layer (IMD). For example, a high-density plasma chemical vapor deposition (HDPCVD) method can be used to deposit a gas layer ^ glass layer (FSG) 12. Next, on the above-mentioned doped Shixi glass layer (p $ Q) /

第8頁 475238 五、發明說明(6) --~ 上形成一富矽氧化層1 4作為防止氟原子擴散的阻障層。上 述用來作為阻障層的富矽氧化層丨4可利用電漿化學氣相沈 積法(PECVD )在低於4〇〇它下所沈積而得,例如是以TE〇s 為主反應物所沈積的PE_TE〇s ,或者是SlH4為主反應物所 沈積的PE-Si Η#,並藉由增加原料氣體中TE〇s或8丨1的流 量,而形成一富含矽元素的氧化層。依照本發明,為了達-到理想的阻障效果,富含矽氧化層丨4的厚度最好大於5 〇 、 A,且又以5 〇 〇〜丨〇 〇 0 A較佳。 如第2圖所示,以習知的微影成像與蝕刻程序,在富 石夕氧化層1 4與摻氟矽玻璃層丨2中定義出導線溝槽丨8。先在_Page 8 475238 V. Description of the invention (6) --- A silicon-rich oxide layer 14 is formed on the barrier layer to prevent the diffusion of fluorine atoms. The above-mentioned silicon-rich oxide layer used as a barrier layer can be deposited by plasma chemical vapor deposition (PECVD) at a temperature lower than 400, for example, TE0s is the main reactant. The deposited PE_TE0s, or PE-Si Η # deposited by SlH4 as the main reactant, and by increasing the flow of TE0s or 8 丨 1 in the raw material gas, a silicon-rich oxide layer is formed. According to the present invention, in order to achieve an ideal barrier effect, the thickness of the silicon-rich oxide layer 4 is preferably greater than 50, A, and more preferably 500 to 丨 0 0 A. As shown in FIG. 2, a conventional trench imaging and etching procedure is used to define a wire trench 8 in the rich oxidized layer 14 and the fluorine-doped silica glass layer 2. First in _

基底表面上塗佈一光阻層1 6後,以微影製程在光阻中定義I 出導線溝槽圖案,然後利用反應性離子蝕刻法(RI E )進 行非等$性的飯刻,將導線溝槽圖案從光阻層依序轉移到 底下的富石夕氧化層丨4與摻氟矽玻璃層丨2,便可得到第2圖 所不之結果。After coating a photoresist layer 16 on the surface of the substrate, a lithography process is used to define a wire groove pattern in the photoresist, and then the reactive ion etching (RI E) is used to perform non-isotropic meal engraving. The pattern of the wire trench is sequentially transferred from the photoresist layer to the bottom-rich oxide layer 4 and the fluorine-doped silica glass layer 2 to obtain the result not shown in FIG. 2.

如第3圖所示,在基底表面上沈積一銅金屬層2〇,並 使其填滿上述導線溝槽18。在沈積銅金屬層之前,可先在 基底上沈積一順應性覆蓋(conformal )的阻障層(未顯 不),,其幫助後續金屬的附著並防止其擴散。對銅而言, 適當的阻障層材料包括:钽(Ta ),氮化钽(TaN ),氮 化鎮(WN ) ’以及習知中常用的氮化鈦(τ丨n )等。銅金 屬的沈積可利用化學氣相沈積法(CVD )、物理氣相沈積 法(PVD )或電鍍沈積法(ECD )進行。例如,可先以離子 化金屬電漿(IMP )先形成一層3 00〜1 500 A的晶種層後,As shown in FIG. 3, a copper metal layer 20 is deposited on the surface of the substrate and fills the above-mentioned wire grooves 18. Before depositing the copper metal layer, a conformal barrier layer (not shown) can be deposited on the substrate to help the subsequent metal adhesion and prevent its diffusion. For copper, suitable barrier layer materials include: tantalum (Ta), tantalum nitride (TaN), nitrided town (WN) ', and titanium nitride (τn) commonly used in the art. Copper metal can be deposited by chemical vapor deposition (CVD), physical vapor deposition (PVD), or electroplating (ECD). For example, an ionized metal plasma (IMP) can be used to form a seed layer of 3 00 ~ 1 500 A.

^75238 五、發明說明(7) 再以電鍍法於晶種層上形成銅導電 〇C下進杆…w ,十 守电臂之後,在150〜4 00 =二逼熱 序’以降低金屬銅的阻值。 ),以ΓΛ所V對上述基底進行化學機械研磨(CMP 2 2鑲#於:田矽氧化層1 4上多餘的銅# ’即可得到銅導線 屬間介電層的均句結構。在上述熱回火與化學 機械研磨的過程中,由於富矽氧化層14中的縣浮鍵 bonds) :的效果,可避免銅導線22受到氟原子攻擊而影響元件 ,貝。此外,由於富矽氧化層亦可阻擋銅原子的擴散,因 此’將之覆蓋在氟矽玻璃層1 2上,亦可防止化學機械研磨 後殘餘的金屬銅從上方擴散進入氟矽玻璃層。 第5圖係顯示本發明另一較佳實施例以富矽氧化層防 止氣原子擴散之半導體製程。根據本發明之另一較佳實施 例’前述之富矽氧化層1 4亦可設置於氟矽玻璃層1 2的下 方’亦即,在尚未沈積氟矽玻璃層之前,先形成一富矽氧 化層’以避免氟原子擴散至下方的半導體元件。經過與前 述類似的鑲嵌式銅製程後,可得到第5圖所示之鑲嵌結 構。 第6圖係顯示本發明再一較佳實施例以富矽氧化層防 止氟原子擴散之半導體製程。根據本發明之再一較佳實施$ 例’前述之富矽氧化層1 4亦可同時設置於氟矽玻璃層1 2的 上方與下方,以阻擋氟原子的擴散。經過與前述類似的鑲 . 散式銅製程後,可得到第6圖所示之鑲嵌結構。^ 75238 V. Description of the invention (7) Copper electroconductivity is formed on the seed layer by electroplating. The lower rod is inserted ... w, after the ten-arm electrical arm, 150 ~ 4 00 = two-force thermal sequence 'to reduce metallic copper. Resistance value. ), The above substrate is chemically and mechanically polished with ΓΛV (CMP 2 2 inlaid on: extra silicon on the silicon oxide layer 14 4) to obtain the uniform structure of the dielectric layer of the copper wire. In the above, During the process of thermal tempering and chemical mechanical polishing, due to the effect of the county floating bonds (bonds) in the silicon-rich oxide layer 14, the copper wire 22 can be prevented from being attacked by the fluorine atom to affect the components. In addition, since the silicon-rich oxide layer can also block the diffusion of copper atoms, covering it on the fluorosilica glass layer 12 can also prevent the residual metallic copper after chemical mechanical polishing from diffusing into the fluorosilica glass layer from above. FIG. 5 shows a semiconductor process in which a silicon-rich oxide layer is used to prevent the diffusion of gas atoms in another preferred embodiment of the present invention. According to another preferred embodiment of the present invention, the aforementioned silicon-rich oxide layer 14 can also be disposed under the fluorosilica glass layer 12, that is, a silicon-rich oxide is formed before the fluorosilica glass layer is deposited. Layer 'to prevent fluorine atoms from diffusing into the underlying semiconductor element. After a similar mosaic copper process as described above, the mosaic structure shown in Figure 5 can be obtained. FIG. 6 shows a semiconductor process in which another preferred embodiment of the present invention uses a silicon-rich oxide layer to prevent the diffusion of fluorine atoms. According to yet another preferred embodiment of the present invention, the aforementioned silicon-rich oxide layer 14 can also be disposed above and below the fluorosilica glass layer 12 to block the diffusion of fluorine atoms. After the similar inlay and loose copper process as described above, the inlay structure shown in Fig. 6 can be obtained.

第10頁 475238 五、發明說明(8) 為進一步證明本發明之富矽氧化層確實可阻擋氣原子 的擴散與銅原子的擴散,請參照以下的實驗數據: 氟原子擴散實驗Page 10 475238 V. Description of the invention (8) To further prove that the silicon-rich oxide layer of the present invention can actually block the diffusion of gas atoms and copper atoms, please refer to the following experimental data: Fluorine atom diffusion experiment

首先,在石夕晶圓上以高密度電漿化學氣相沈積法 (HDPCVD)沈積ΐοοοΑ的摻氟矽玻璃層(氟原子含量約 1 〇%),然後再以電漿加強化學氣相沈積法(PECVD ^沈積 厚度同樣為10 〇〇 A的各式介電層,其中包括反射率} 富矽氧化層。完成介電層的沈積後,將大部分的試樣在 4 〇 C下回火2小時,最後並以二次離子質譜儀(s I MS )觀 測氟原子擴散的情形,其結果如表1所示。First, a high density plasma chemical vapor deposition method (HDPCVD) was used to deposit a fluorine-doped silica glass layer (fluorine content of about 10%) on the Shixi wafer, and then the chemical vapor deposition method was enhanced by plasma. (PECVD ^ deposits a variety of dielectric layers with a thickness of 100A, including the reflectivity} silicon-rich oxide layer. After the dielectric layer is deposited, most of the samples are tempered at 4 ° C. 2 Hours, and finally the secondary ion mass spectrometer (s I MS) was used to observe the diffusion of fluorine atoms. The results are shown in Table 1.

Si-rich P£〇XSi-rich P £ 〇X

PEOX PEOX —^^_SiON_[RI1.MJ___PUgQS _[RLL461 TRI 1 火是 是是是 是 否PEOX PEOX — ^^ _ SiON_ [RI1.MJ ___ PUgQS _ [RLL461 TRI 1 Fire Yes Yes Yes Yes Yes No

由表1可看出,31^1、富矽81(^與8101〇句為極佳的氟屌 :擴散阻障層,但其介電常數太高(約7〜8)並不適的:用原 具=為IMD層。相較之下,富矽氧化矽層(RI = 151 )同樣 2、有良好的擴散阻障效果,且具有一般的介電常數(約4 展),非常適合用在IMD層中作為阻擋氟原子擴散的阻障 ^ j另外,一般的PE-TE0S、PEOX則是阻障效果太差,不 疋以作為擴散阻障層。 475238 五、發明說明(9) —-一· 銅原子擴散貫驗 在另一批矽晶圓上,以電聚加強化學氣相沈積法形成 氧化層,然後再沈積厚度為丨600 〇 A的銅金屬層最後沈 積各式介電層,其中包括反射率為1.51的富矽氧化層。完 成介電層的沈積後’將所有試樣在4 〇 〇 t下回火2小時,最 後並以二次離子質譜儀(S丨MS )觀測銅原子擴散的情形, 其結果如表2所示。 表2It can be seen from Table 1 that 31 ^ 1, rich silicon 81 (^ and 8101〇 sentences are excellent fluorine rhenium: diffusion barrier layer, but its dielectric constant is too high (about 7 ~ 8) and is not suitable: use Original = IMD layer. In comparison, the silicon-rich silicon oxide layer (RI = 151) is also the same 2. It has a good diffusion barrier effect and has a general dielectric constant (about 4 extensions), which is very suitable for use in In the IMD layer, it acts as a barrier to prevent the diffusion of fluorine atoms. In addition, the general PE-TEOS and PEOX have too poor barrier effects, so they are not used as diffusion barriers. 475238 V. Description of the invention (9) --- a · Copper atom diffusion test was performed on another batch of silicon wafers. An oxide layer was formed by electro-enhanced chemical vapor deposition, and then a copper metal layer with a thickness of 丨 600 Å was deposited. Finally, various dielectric layers were deposited. Includes a silicon-rich oxide layer with a reflectivity of 1.51. After the deposition of the dielectric layer is complete, all samples are tempered at 4,000 t for 2 hours, and finally copper atoms are observed with a secondary ion mass spectrometer (S 丨 MS) In the case of diffusion, the results are shown in Table 2. Table 2

Si-rich PEOX SiN SiON SiON [Ri 1.M1 擴散琛度 65λ 9〇A ιοοΑ ------- ΐδ〇Α 由表2可看出,富矽氧化層亦可阻擋銅原子的擴散, 因此將富矽氧化層覆蓋在氟矽玻璃層上,可避免CMP後銅 原子從上方擴散進入氟ί夕玻璃層的情形。Si-rich PEOX SiN SiON SiON [Ri 1.M1 Diffusion degree 65λ 9〇A ιοοΑ ------- ΐδ〇Α As can be seen from Table 2, the silicon-rich oxide layer can also block the diffusion of copper atoms, so Covering the silicon-rich oxide layer on the fluorosilica glass layer can prevent the copper atoms from diffusing into the fluorine glass layer from above after CMP.

綜上所述,依據本發明之以富矽氧化層防止氟原子擴 散之半導體製程,由於以富矽氧化層(Si rich oxide ) 作為阻障層,可以有效阻擋氟原子的擴散,故除了使用低 介電常數(low -k)之摻氧石夕玻璃來降低金屬導線間寄生 電容和RC延遲而提昇元件性質外,且可防止氟原子擴散而 攻擊銅導線。此外,本發明所使用之富矽氧化層尚可防止 銅原子的擴散,更提高了鑲嵌式銅製程的可靠度。 雖然本發明已以較佳實施例揭露如上,然其並非用以To sum up, according to the semiconductor process of the present invention using a silicon-rich oxide layer to prevent the diffusion of fluorine atoms, since the silicon-rich oxide layer is used as a barrier layer, the diffusion of fluorine atoms can be effectively blocked. Oxygen-doped glass with a dielectric constant (low -k) can reduce the parasitic capacitance and RC delay between metal wires to improve the properties of the device, and can prevent the diffusion of fluorine atoms to attack copper wires. In addition, the silicon-rich oxide layer used in the present invention can still prevent the diffusion of copper atoms and further improve the reliability of the damascene copper process. Although the present invention has been disclosed above in the preferred embodiment, it is not intended to

第12頁 475238Page 12 475238

第13頁Page 13

Claims (1)

1 · —1 j 二· 包括下列步驟鱼矽氧化層防止氟原子擴散之半導 — ί氟石夕玻璃層於一半導體基底上; 原子擴散:=化層於該摻氟石夕玻璃層上,作 =S砂氧化層與該摻氣石夕玻璃層中定義出 二以土底上沈積一金屬層並填入上述開口; 磨平該金屬層。 富石夕2羞如申請專利範圍第1項所述之半導體製程, 填田 化層為利用電漿加強化學氣相沈積法所形 3」如申請專利範圍第2項所述之半導體製程 晨田矽氧化層為富矽之ρΕ一S%氧化層。 Ί 4 ·如申請專利範圍第2項所述之半導體製程 =田石夕氧化層為富矽之PE-TEOS氧化層。 g 5·如申請專利範圍第1、2、3或4項所述之半 ^程’其中該富矽氧化層為折射率大於1· 46者。 g 6 ·如申請專利範圍第5項所述之半導體製程 舉虽石夕氧化層為折射率約i · 5 3者。 之 7 ·如申請專利範圍第1項所述之半導體製程 金屬層為銅金屬層。 、 8 ·如申請專利範圍第1項所述之半導體製程 開口包括一内連線溝槽。 9 ·如申請專利範圍第1項所述之半導體製程 開口包括一介層窗。 體製程, 為防止氟 一開口 ; 以及 其中該 成者。 其中該 ’其中該 導體製 ,其中該 ,其中該 ,其中該 ,其中該1 · —1 j II. Including the following steps: a semi-conductive silicon oxide layer to prevent the diffusion of fluorine atoms— a fluorite glass layer on a semiconductor substrate; atomic diffusion: a chemical layer on the fluorite-doped glass layer, As the = S sand oxide layer and the aerated stone glass layer, a metal layer is deposited on the soil bottom and filled in the opening; the metal layer is smoothed. Fu Shixi 2 is the semiconductor process described in item 1 of the scope of the patent application, and the padding layer is formed by the plasma enhanced chemical vapor deposition method. The silicon oxide layer is a silicon-rich pE-S% oxide layer. Ί 4 · Semiconductor process as described in item 2 of the scope of patent application = Tian Shixi oxide layer is a silicon-rich PE-TEOS oxide layer. g 5. The half-way process as described in item 1, 2, 3, or 4 of the scope of the patent application, wherein the silicon-rich oxide layer has a refractive index greater than 1.46. g 6 · Semiconductor manufacturing process as described in item 5 of the scope of the patent application. Although the oxide layer has a refractive index of about i · 53. 7 • The semiconductor process as described in item 1 of the scope of the patent application. The metal layer is a copper metal layer. 8. The semiconductor manufacturing process as described in item 1 of the patent application. The opening includes an interconnecting trench. 9 · The semiconductor process as described in item 1 of the patent application. The opening includes a via window. System procedures, to prevent the opening of fluorine; Where ‘where the conductor system, where the, where the, where the, which where 曰 --室號 8811680R 六 申請專利範圍 ____ 说ϋ 2·如申請專利範圍第1項所述之半導體製栽^ 播氣石夕破璃I程,其中兮 者。$層為利用两密度電漿化學氣相沈積法所形:該 程 1 1 · 一種以富矽氧化層防止氟原子 包括下列步驟: 擴散之半導體製 依序沈積一 基底上,其中上 阻障層; 虽矽氧化層、一摻氟矽玻璃層於—半 述之富碎氧化層係作為防止氟原子擴散3 於該推氟石夕玻璃層與該富矽氧化層中定 於兮:&办· 、羽開口 、该基底上沈積—金屬層並填入上述 磨平該金屬層。 及 如申請專利範圍第n項所述之半導體製程,其 “田石氧化層為利用電漿加強化學氣相沈積法所形成者 ^ 13·如申請專利範圍第12項所述之半導體製程,复 該虽矽氧化層為富矽之PE一SiH4氧化層。 /、 4.如申請專利範圍第12項所述之半導體製程,其中 該富石夕氧化層為富矽之PE —TE0S氧化層。 •/5·如申請專利範圍第11、12、13或14項所述之半導 體製私’其中該富矽氧化層為折射率大於1.46者。 16·如申請專利範圍第15項所述之半導體製程,其中 該富♦氧化層為折射率約丨.5 3者。 1 7 ·如申請專利範圍第11項所述之半導體製程,其中 該金屬層為銅金屬層。 1 8·如申請專利範圍第丨丨項所述之半導體製程,其中Said --- room number 8811680R VI. Patent application scope ____ Say ϋ 2 · Semiconductor manufacturing as described in the first patent application scope ^ The process of blasting Shi Xiboli, one of them. The $ layer is formed by a two-density plasma chemical vapor deposition method: the process 1 1 · A silicon-rich oxide layer to prevent fluorine atoms includes the following steps: A diffused semiconductor is sequentially deposited on a substrate, in which an upper barrier layer is formed ; Although the silicon oxide layer and a fluorine-doped silica glass layer are described in the half-fragment-rich oxide layer as preventing the diffusion of fluorine atoms, the fluorite glass layer and the silicon-rich oxide layer are determined as follows: & · Feather opening, deposition on the substrate-a metal layer and filling in the above-mentioned flattened metal layer. And the semiconductor process described in item n of the scope of the patent application, the "field stone oxide layer is formed by the use of plasma enhanced chemical vapor deposition method ^ 13. The semiconductor process described in the scope of the patent application, item 12, The silicon oxide layer is a silicon-rich PE-SiH4 oxide layer. 4. The semiconductor process as described in item 12 of the patent application scope, wherein the stone-rich oxide layer is a silicon-rich PE-TE0S oxide layer. / 5 · Semiconductor manufacturing as described in item 11, 12, 13, or 14 of the patent application scope, wherein the silicon-rich oxide layer is a refractive index greater than 1.46. 16. · Semiconductor manufacturing process as described in item 15 of the patent application scope Among them, the oxidized-rich layer is a refractive index of about 1.5 3. 1 7 · The semiconductor process as described in item 11 of the scope of patent application, wherein the metal layer is a copper metal layer. 1 8 · as in the scope of patent application丨 丨 The semiconductor process described in the above item, wherein 0503.4879TWl;Esmond.ptc 六 申請專利範圍 該開〇.. L括一内連線溝槽 ^ "n ^ ^ ^ ^ t 該摻氟⑦玻項所述之半導體製程’其中 者。 喝層為利用局密度電聚化學氣相沈積法所形成 程,2二種二富:氧化層…原子擴散之半導體製 秒氧:ί 層盆-摻敗妙玻璃層、第二富 富石夕氧化層倍其中第一富石夕氧化層與第二 、θ糸作為防止氟原子擴散之阻障層; 化二ΐΐ:Γ:氧化層、摻氣珍玻璃層、卜富妙氧 於該基底上沈積一金屬層並填入上述開口;以及 磨平該金屬層。 該2^·如申請專利範圍第21項所述之半導體製程,其中 [Α 一與第二富石夕氧化層為利用電漿加強化學氣相沈積法 所形成者。 、 •一 23·如申請專利範圍第22項所述之半導體製程,其中 該第一與第二富矽氧化層為富矽之pE —SiH4氧化層。 ·· 24·如申請專利範圍第22項所述之半導體製程,其中 該第一與第二富矽氧化層為富矽之PE-TEOS氧化層。 25·如申請專利範圍第21、22、23或24項所述之半導 體製私’其中該第一與第二富矽氧化層為折射率大於丨·46 者00503.4879TWl; Esmond.ptc 6 Application scope of patent The open 0 .. L includes an interconnecting trench ^ " n ^ ^ ^ ^ t t One of the semiconductor processes described in the fluorine-doped hafnium glass item. The drinking layer is formed by the local density electropolymerization chemical vapor deposition method. There are two kinds of two rich: oxide layer ... atomic diffusion of the semiconductor second oxygen:: layer pot-doped with wonderful glass layer, the second rich rich stone The oxide layer is composed of the first rich stone oxide layer and the second, θ 糸 as a barrier layer to prevent the diffusion of fluorine atoms; ΐΐ: Γ: an oxide layer, an aerated glass layer, and a rich oxygen on the substrate Depositing a metal layer and filling the opening; and smoothing the metal layer. The 2 ^ · semiconductor manufacturing process as described in item 21 of the scope of the patent application, wherein [A- and the second rich stone oxide layer are formed by using a plasma enhanced chemical vapor deposition method. • The semiconductor process as described in item 22 of the scope of patent application, wherein the first and second silicon-rich oxide layers are silicon-rich pE-SiH4 oxide layers. 24. The semiconductor process according to item 22 of the scope of application, wherein the first and second silicon-rich oxide layers are silicon-rich PE-TEOS oxide layers. 25. The semiconducting system described in item 21, 22, 23, or 24 of the scope of patent application, wherein the first and second silicon-rich oxide layers have a refractive index greater than 丨 · 46 or 0. s 26·如申請專利範圍第25項所述之半導體製程,其中 以第與第二富矽氧化層為折射率約1 · 5 3者。 ^ 27·如申請專利範圍第21項所述之半導體製程,其中 該金屬層為鋼金屬層。 ^ 28·如申請專利範圍第21項所述之半導體製程,其中 该開口包括一内連線溝槽。 • 29·如申請專利範圍第21項所述之半導體製程,其中 該開口包括一介層窗。 30·如申請專利範圍第21項所述之半 其中 :摻氟矽玻璃層為利用高密度電漿化學氣相沈積法所形成s 26. The semiconductor process according to item 25 of the scope of patent application, wherein the first and second silicon-rich oxide layers have a refractive index of about 1.53. ^ 27. The semiconductor process according to item 21 of the scope of patent application, wherein the metal layer is a steel metal layer. ^ 28. The semiconductor process according to item 21 of the patent application scope, wherein the opening includes an interconnect line trench. • 29. The semiconductor process as described in item 21 of the patent application scope, wherein the opening includes a via window. 30. As described in item 21 of the scope of patent application, where: the fluorine-doped silica glass layer is formed by high-density plasma chemical vapor deposition
TW88116806A 1999-09-30 1999-09-30 Semiconductor manufacture process to prevent diffusion of fluorine atom TW475238B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88116806A TW475238B (en) 1999-09-30 1999-09-30 Semiconductor manufacture process to prevent diffusion of fluorine atom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88116806A TW475238B (en) 1999-09-30 1999-09-30 Semiconductor manufacture process to prevent diffusion of fluorine atom

Publications (1)

Publication Number Publication Date
TW475238B true TW475238B (en) 2002-02-01

Family

ID=21642444

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88116806A TW475238B (en) 1999-09-30 1999-09-30 Semiconductor manufacture process to prevent diffusion of fluorine atom

Country Status (1)

Country Link
TW (1) TW475238B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809966B (en) * 2022-05-17 2023-07-21 南亞科技股份有限公司 Semiconductor device structure with fluorine-catching layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI809966B (en) * 2022-05-17 2023-07-21 南亞科技股份有限公司 Semiconductor device structure with fluorine-catching layer

Similar Documents

Publication Publication Date Title
US7169698B2 (en) Sacrificial inorganic polymer intermetal dielectric damascene wire and via liner
US8361900B2 (en) Barrier layer for copper interconnect
US8178437B2 (en) Barrier material and process for Cu interconnect
US6492270B1 (en) Method for forming copper dual damascene
US6716693B1 (en) Method of forming a surface coating layer within an opening within a body by atomic layer deposition
JP2005340820A (en) Low-carbon-doped silicon oxide film and damascene structure using it
US20070205507A1 (en) Carbon and nitrogen based cap materials for metal hard mask scheme
US6100181A (en) Low dielectric constant coating of conductive material in a damascene process for semiconductors
JP2007067083A (en) Semiconductor device manufacturing method
JP2003521124A (en) Method of forming a copper interconnect using a sacrificial dielectric layer
US6495448B1 (en) Dual damascene process
US6958524B2 (en) Insulating layer having graded densification
TW200303057A (en) Integration scheme for advanced BEOL metallization including low-k cap layer and method thereof
US20040251547A1 (en) Method of a non-metal barrier copper damascene integration
US9087877B2 (en) Low-k interconnect structures with reduced RC delay
KR100703968B1 (en) Method for fabricating interconnection line in a semiconductor device
JP2001085436A (en) Method for manufacture of diffusion barrier and ic
US7629239B2 (en) Method of fabricating a semiconductor device with a dopant region in a lower wire
US20030228750A1 (en) Method for improving adhesion of a low k dielectric to a barrier layer
KR100538748B1 (en) Chromium adhesion layer for copper vias in low-k technology
JP4558273B2 (en) Copper vias in low dielectric constant technology.
JP2002164351A (en) Method of forming self-aligned copper cap diffusion barrier
TW475238B (en) Semiconductor manufacture process to prevent diffusion of fluorine atom
US6867135B1 (en) Via bottom copper/barrier interface improvement to resolve via electromigration and stress migration
US6171947B1 (en) Method of reducing incidence of stress-induced voiding in semiconductor interconnect lines

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent