TW473856B - Method for reducing particle contamination by controlling the polarity on the surface of wafer - Google Patents

Method for reducing particle contamination by controlling the polarity on the surface of wafer Download PDF

Info

Publication number
TW473856B
TW473856B TW90102686A TW90102686A TW473856B TW 473856 B TW473856 B TW 473856B TW 90102686 A TW90102686 A TW 90102686A TW 90102686 A TW90102686 A TW 90102686A TW 473856 B TW473856 B TW 473856B
Authority
TW
Taiwan
Prior art keywords
silicon substrate
bombardment
particles
patent application
substrate
Prior art date
Application number
TW90102686A
Other languages
Chinese (zh)
Inventor
Guang-Chen Wu
Hung-Shing Liou
Yuan-Guo Huang
Shr-Shiung Chen
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW90102686A priority Critical patent/TW473856B/en
Application granted granted Critical
Publication of TW473856B publication Critical patent/TW473856B/en

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The present invention provides a method for reducing particle contamination by controlling the polarity on the surface of a wafer, which comprises: using oxygen-containing plasma ions to perform an in-situ bombardment on a damaged silicon substrate to reduce the magnitude of the contact angle between the particle and the surface of the silicon substrate when the particle is attached to the surface of the silicon substrate, in which the reasons of the surface of the silicon substrate being damaged include an ion implantation or etching procedure performed on this silicon substrate, and the silicon substrate being immersed into a particle cleaning tank to remove the polymer on the silicon substrate, in which the surface of the silicon substrate will form an oxide film layer in order to change the polarity on the surface of the silicon substrate into hydrophilic.

Description

473856 五、發明說明(i) 發明領域: 本發明與一種降低微粒污染的方法有關,特別是一種 控制晶圓表面極性以降低微粒污染的方法。 發明背景: 在半導體工業中,微粒污染之防治是高密度積體電路 的晶圓製造中非常重要的課題。目前的半導體工業已發展 出許多除去微粒的方法,例如:使用刷子洗;條器(b r u s h scrubber)去清除微粒、使用超音波(ultrasonic或 mega sound)等聲音擾動系統的化學洗滌法來除去微粒、 使用液體、氣體、或空氣來轟擊晶圓表面以吹走或洗去微 粒等等。傳統除去微粒污染的方法很多,例如美國專利第 557359 7號所揭露之 ”piasma processing system with reduced particle contamination”、美國專利第 6004399 號所揭露之 ’’Ultra-low particle semiconductor cleaner for removal of particle contamination and residues from surface oxide formation on semi conductor wafers、 傳統除去微粒污染的方法存在有若干缺點:(i)由 於大部份已發展出來的除去微粒之方法是利用物理去除473856 V. Description of the invention (i) Field of the invention: The present invention relates to a method for reducing particulate pollution, in particular, a method for controlling the surface polarity of a wafer to reduce particulate pollution. BACKGROUND OF THE INVENTION: In the semiconductor industry, the prevention and control of particulate contamination is a very important issue in wafer manufacturing of high-density integrated circuits. The current semiconductor industry has developed a number of methods to remove particles, such as: brush scrubbing; brush scrubber to remove particles, chemical washing methods using ultrasonic or mega sound sound disturbance systems to remove particles, Liquid, gas, or air is used to bombard the wafer surface to blow away or wash away particles and so on. There are many traditional methods of removing particulate pollution, such as "piasma processing system with reduced particle contamination" disclosed in U.S. Patent No. 5,557,357, and `` Ultra-low particle semiconductor cleaner for removal of particle contamination and disclosed in U.S. Patent No. 6004399. Residues from surface oxide formation on semi conductor wafers. There are several disadvantages to the traditional method of removing particulate pollution: (i) As most of the developed methods of removing particulates are physical removal

第4頁 473856 五、發明說明(2) --—— 法,故在除去微粒時容易對欲潔淨的表面造成損害,而 生其他微粒。(2)這些已發展出來的除去微粒之方法 常必須離開生產線(0f f —丨ine)後施行。(3)這些已發 展出來的除去微粒之方法通常是在晶圓已受到微粒污染% 才施行。 > 在半導體製程中,常發現微粒污染的其中一個地方 為:經過姓刻程序後所得到的閘極間隙壁,當其浸在微粒 清潔槽(例如:CR/STD( Caro’s acid/standard)槽) 中,進行聚合物清潔之剝除步驟後,在閘極間隙壁附近常 發現微粒污染。此微粒組成物是因為矽基底極性效應以及 微粒清潔槽之較差清潔效率所產生的,尤其是在高處理週 期(high process run)或嚴重的基底損害程序中特別明 顯’例如:間隙壁#刻程序。如果此微粒被晶圓瑕疲檢測 器(defect inspection machine)(例如:〇m ( optical microscope)或KLA( KLA-Tem〇公司所製造、型號為 KLA213x的KLA檢測器))所發現,則其可藉由再一次使用 CR/STD清潔程序來清除,但是如此將需要花費較多的成本 與較長的工作週期時間(cycle time)。 今以第一圖〜第三圖為圖例,簡略說明上述閘極間隙 壁附近常發現微粒污染之原因如下·· 請參照第一圖,當一具有場氧化層1 2、閘極結構1 4的Page 4 473856 V. Description of the invention (2) ------ method, so when removing particles, it is easy to cause damage to the surface to be cleaned, and other particles are generated. (2) These developed methods for removing particulates must often be implemented after leaving the production line (0f f — ine). (3) These methods of removing particles that have been exhibited are usually implemented only after the wafer has been contaminated with particles. > In semiconductor manufacturing, one of the places where particulate contamination is often found is: the gate gap wall obtained after the engraving process, when it is immersed in a particle cleaning tank (for example: CR / STD (Caro's acid / standard) tank ), After the polymer cleaning stripping step, particulate contamination is often found near the gate gap. This particle composition is caused by the polarity effect of the silicon substrate and the poor cleaning efficiency of the particle cleaning tank, especially in high process run or severe substrate damage procedures. For example, the gap wall # 刻 程序. If this particle is found by a defect inspection machine (such as: 0m (optical microscope) or KLA (KLA-Kem detector manufactured by KLA-Tem〇 company, model KLA213x)), it can be It is cleared by using the CR / STD cleaning procedure again, but it will take more cost and longer cycle time. Let's take the first picture to the third picture as examples to briefly explain the reasons why the particle contamination is often found near the gate gap wall as follows. Please refer to the first picture, when a field oxide layer 1 2 and a gate structure 14

第5頁 473856 五、發明說明(3) 矽基底1 〇上沈積一絕緣層(例如氧化物層)丨6之後,矽基 底10之表面將變成親水性(hydr〇phi 1 ic)的氧化矽 (S 1 _ 0)表面,此時若有微粒附著在此親水性 (hydrophilic)的氧化矽(Sl—0)表面上,則微粒與此 親水性(hydr〇Phillc)的氧化矽(以―〇)表面的接觸角 (contact angle)約為 8度 。 巧 > …、第一圖 ^進行閘極間隙壁餘刻程序後,部份 絕緣層1 6將被除去’而形成閘極間隙壁1 8於閘極結構1 4的 二側邊。此時矽基底1〇之表面將由親水性(hydr〇phi丨ic )的氧化矽(Si-Ο)表面變成排水性(hydr〇ph〇bic)的 石夕(S i - S i)表面,此時若有微粒附著在此排水性 (hydrophobic)的石夕(Sl- Sl)表面上,則微粒與此排 水性(hydrophobic)的矽(si— Sl)表面的接觸角 (contact angle)約為 26度。 清參照第二圖’將經過閘極間隙壁蝕刻程序後所得到 的晶圓’浸在微粒清潔槽(例如:CR/STD ( Car〇, s acid/standard)槽)中,以進行聚合物清潔之剝除步驟 後’理論上來說矽表面將形成化學氧化物,使得排水性的 石夕表面變成親水性的氧化矽表面,因而不會有微粒附著在 閘極間隙壁1 8附近。然而,由於電漿/離子佈植過度蝕刻 石夕基底或者微粒清潔槽之較差清潔效率,使得所產生的化 學氧化物組成不足’造成矽基底之表面仍為排水性的矽表Page 5 473856 V. Description of the invention (3) After an insulating layer (such as an oxide layer) is deposited on the silicon substrate 10, the surface of the silicon substrate 10 will become a hydrophilic (hydrophobic 1 ic) silicon oxide ( S 1 _ 0) surface, at this time, if there are particles attached to the surface of the hydrophilic silicon oxide (Sl-0), the particles and the hydrophilic silicon oxide (hydr0Phillc) silicon oxide (with ―〇) The contact angle of the surface is about 8 degrees. Q >…, the first picture ^ After the gate gap wall remaining process is performed, part of the insulating layer 16 will be removed 'to form a gate gap wall 18 on two sides of the gate structure 14. At this time, the surface of the silicon substrate 10 will change from the surface of the hydrophilic silicon oxide (Si-O) to the surface of the draining (hydrophophic) Si Xi (Si-Si). If there are particles attached to the surface of the hydrophobic stone (Sl-Sl), the contact angle between the particles and the surface of the hydrophobic silicon (Si-Sl) is about 26. degree. Refer to the second figure, “Dip the wafer obtained after the gate spacer etching process” in a particle cleaning tank (eg, CR / STD (Car〇, s acid / standard) tank) for polymer cleaning. After the stripping step, theoretically, a chemical oxide will be formed on the silicon surface, so that the water-repellent stone surface becomes a hydrophilic silicon oxide surface, and thus no particles will adhere to the gate gap wall 18. However, due to the over-etching of plasma / ion implantation, the poor cleaning efficiency of the Shi Xi substrate or the particle cleaning tank caused the insufficient chemical oxide composition ’to cause the surface of the silicon substrate to be still a water-repellent silicon surface.

第6頁 473856 五、發明說明(4) 面,以致於在閘極 上。此時附著於矽 接觸角(con tact 再一次使用微粒清 acid/standard) ^ 花費較多的成本與 因此,如何在 重考量下,降低上 亟需解決的問題。Page 6 473856 V. Description of the invention (4), so that it is on the gate. At this time, it is attached to the silicon contact angle (con tact again uses particulate acid / standard) ^ It costs a lot of cost and therefore, how to reduce the issue under urgent consideration after reconsideration.

發明目的及概述: 本發明之目的 粒污染的方法,藉 微粒污染問題。 本發明之另一 低微粒污染的方法 子佈植或#刻程序 依據本發明之 驟:(1)使用含I 間隙壁1 8附近有微粒2 0附著於石夕表面 表面上之微粒2 0與此矽基底1 〇之表面的 angle)大約為20度。目前’通常藉由 潔槽(例如:CR/STD ( Caro, s .)清潔程序來清除,但是如此將需要 較長的工作週期時間(cycU tiroe)。 不增加生產成本與不延長生產時間之雙 述晶圓表面上的微粒污$ ’遂成為業界 士,供種控制晶圓表面極性以降低微 由改#石々I ^ ^ 土底的極性來降低晶圓表面的Object and Summary of the Invention: The object of the present invention is a method for particle contamination by virtue of the problem of particle contamination. Another method of low particle pollution according to the present invention is to implant or #carve the program according to the steps of the present invention: (1) Use particles containing I near the partition wall 18, and particles 20 attached to the surface of Shi Xi's surface. The angle of the surface of the silicon substrate 10 is about 20 degrees. At present, it is usually removed by a cleaning tank (for example: CR / STD (Caro, s.) Cleaning procedure, but this will require a longer cycle time (cycU tiroe). It does not increase production costs and does not extend production time. The particle contamination on the wafer surface has become an industry expert, and he has been controlling the polarity of the wafer surface to reduce the polarity of the wafer surface to reduce the polarity of the wafer surface.

莸提ί、種控制晶圓表面極性以降 稭由改變石々A + ^ L 所指掠ΛΛ夕基底的極性來修復因為離 1領壞的晶圓表面。 L 提出的方法包括下列步 子對一表面遭到損壞的矽基 五、發明說明(5) angle)大小,其中 *面的接觸角(contact 此矽基底進行離子備石夕基底表面遭到損壞的原因包含對 A微粒清潔槽t,以^ t刻程序。(2) #此石夕基底浸 ^ τ 以除去此石夕某麻μ夕取人& 基底之表面將形成—氧化物#,二=,其甲此石夕 性變成親水性(hydrophilic、)曰。“此石夕基底之表面極 依據本發明之g _杳:> / r 驟:(1)形成閘極結構於?♦二提表出面的上方法包括下列步 化物層於間極結構與此石夕基底表面?。成: 步 時 小 構的-侧邊。(4)使用含氧的電聚離子對石夕基底進行同 π-situ)轟擊,以降低微粒附著在矽基底表面上 微粒與矽基底表面的接觸角(c〇ntact⑽幻幻大 (5)將矽基底浸入微粒清潔槽中,以除去矽基底上 之聚δ物,其中矽基底之表面將形成一氧化物膜層,使得 石夕基底之表面極性變成親水性(hydr〇phiHc、 在上述實施例中’氧化物層之材質包含氧化矽或四乙 基矽酸鹽(TE0S)。而同步(in —situ)轟擊所使用的電 聚離子包含氧氣’其中同步(in-sit u)轟擊包含在壓力 約75 0〜8 5 0mT、能量約70〜8〇rF,以3 0 0 sccm氬氣與2〇scCffl 氧氣進行時間長度約4〜6秒鐘的轟擊,而較佳條件為壓力 473856 五、發明說明(6) 800mT、能量75W之下,以300sccm氬氣與20sccm氧氣進行5 秒鐘的轟擊。又,微粒清潔槽包含C R / S T D ( C a r 〇 ’ s ac i d/standard)槽。 此外,上述氧化物層形成後的矽基底之表面與微粒間 的接觸角(contact angle)大小約為7〜9度、閘極間隙壁 形成後的矽基底之表面與微粒間的接觸角(contact a n g 1 e)大小約為2 4〜2 8度、經過同步(i η - s i t u)轟擊後 的石夕基底之表面與微粒間的接觸角(contact angle)大 小約為8〜1 2度、浸入微粒清潔槽後的矽基底之表面與微粒 間的接觸角(contact angle)大小約為0〜1度。 發明詳細說明·· 本發明之目的在提供一種控制晶圓表面極性以降低微 粒染的方法’藉由改變矽基底的極性來降低晶圓表面的 微粒污染問題。 & 本發明之另一目的在提供一種控制晶圓表面極性以降 低微粒污举^_ ^ ^ 木的万法’精由改變石夕基底的極性來修復因為離 子佈植或姓刻程序所損壞的晶圓表面。 本發明之特徵主要在於使用同步(in-situ)極化修In order to reduce the surface polarity of the wafer, the polarity of the substrate is changed by changing the polarity of the substrate A + ^ L to repair the damaged wafer surface. The method proposed by L includes the following steps on the surface of a silicon substrate that has been damaged. 5. The size of the invention (5) angle), where the contact angle of the * surface (contact This silicon substrate is ionized) Contains a cleaning procedure for A particles, ^ t carved procedures. (2) #This Shixi substrate dipping ^ τ to remove this Shixi some Ma μ Xi take people & the surface of the substrate will form-oxide # , 二 = , Its surface becomes hydrophilic (hydrophilic). "The surface of the surface of this substrate is in accordance with g_ 杳: > / r of the present invention: (1) forming a gate structure? The method of displaying the surface includes the following step formation layer on the interpolar structure and the surface of the Shixi substrate? Formation: Stepwise structure-side. (4) Use oxygen-containing electropolymeric ion to perform the same on the Shixi substrate -situ) bombardment to reduce the contact angle between the particles and the surface of the silicon substrate on the surface of the silicon substrate (contact) (5) immerse the silicon substrate in the particle cleaning tank to remove the poly delta on the silicon substrate An oxide film will be formed on the surface of the silicon substrate, so that the Shi Xi substrate The surface polarity becomes hydrophilic (hydrophiHc. In the above embodiment, the material of the oxide layer includes silicon oxide or tetraethyl silicate (TEOS). The electropolymer ion used for in-situ bombardment includes Oxygen 'in which simultaneous (in-sit u) bombardment consists of a pressure of about 75 0 ~ 850 mT, an energy of about 70 ~ 80 rF, and a duration of about 4 to 6 seconds with 30 sccm argon and 20 scCffl oxygen. The bombardment by a bell, and the preferred condition is a pressure of 473856. V. Description of the invention (6) Under 800mT and energy 75W, bombard with 300sccm argon and 20sccm oxygen for 5 seconds. Also, the particle cleaning tank contains CR / STD (C ar 〇 's ac id / standard) groove. In addition, the contact angle between the surface of the silicon substrate and the particles after the oxide layer is formed is about 7 to 9 degrees, and the silicon after the gate gap is formed. The contact angle between the surface of the substrate and the particles (contact ang 1 e) is about 2 4 to 28 degrees, and the contact angle between the surface of the substrate and the particles after the simultaneous (i η-situ) bombardment ) The size is about 8 ~ 1 2 degrees. The contact angle between the surface of the substrate and the particles is about 0 to 1 degree. Detailed description of the invention ... The purpose of the present invention is to provide a method for controlling the surface polarity of a wafer to reduce particle staining by changing the silicon substrate. To reduce the problem of particle contamination on the surface of the wafer. &Amp; Another object of the present invention is to provide a method to control the surface polarity of the wafer to reduce particle contamination. To repair wafer surfaces damaged by ion implantation or inscription processes. The invention is mainly characterized by the use of in-situ polarization correction

第9頁 473856 五、發明說明(7) 正觀念,在間隙壁蝕刻程序後,以很短的處理時間(較佳 時間約為5秒鐘)對矽基底進行含氧的電漿離子之同步 (in-situ)轟擊,以改變排水的(hydrophobic)石夕表面 成親水的(hydrophilic)氧化矽(Si-Ο)表面。如此一 來,只要親水的(hydrophi 1 ic)氧化矽(Si-0)表面完 全形成或部份形成,則在微粒清潔槽(例如:CR/STD槽) 中或其他濕的工作台上之微粒污染可以避免或降低。又, 此方法可以用於石夕表面遭姓刻或損壞的其他程序中(例如 離子佈植或姓刻)。 本發明係使用極性修正觀念來改變矽基底的極性,藉 由利用電漿濺擊潔淨程序來改變矽基底的極性,以降低晶 圓表面的微粒污染問題。今以一較佳實施例,詳述本發明 如下: 首先請參照第四圖,首先提供一矽基底3 0,然後利用 已知技術,於矽基底30表面上依序形成場氧化層32、閘極 結構3 4、氧化物層3 6。其中此處之閘極結構可以包含二氧 化石夕層、複晶矽層、矽化鎢層、氮化矽護層等,而氧化物 層36之材質包含氧化矽或四乙基矽酸鹽(TE〇s)。而由於 上述製程為利用昔知之技術製作而非本發明之重點,故不 加以詳述。值得一提的是,當上述氧化物層36形成之後, 石夕基底30之表面將變成親水性(hydrophilic)的氧化矽 (S 1 -0)表面,此時若有微粒附著在此親水性Page 9 473856 V. Description of the invention (7) The positive concept is that after the spacer etching process, the silicon substrate is synchronized with oxygen-containing plasma ions with a short processing time (preferably about 5 seconds) ( in-situ) bombardment to change the surface of the hydrophobic stone into a hydrophilic silicon oxide (Si-O) surface. In this way, as long as the surface of the hydrophi 1 ic silicon oxide (Si-0) is completely formed or partially formed, the particles in the particle cleaning tank (eg, CR / STD tank) or on other wet workbenches Contamination can be avoided or reduced. In addition, this method can be used in other programs where the surface of Shi Xi is engraved or damaged (such as ion implantation or engraving). The present invention uses the concept of polarity correction to change the polarity of the silicon substrate, and changes the polarity of the silicon substrate by using a plasma splash cleaning process to reduce the problem of particle contamination on the wafer surface. The present invention is described in detail in a preferred embodiment. First, referring to the fourth figure, a silicon substrate 30 is first provided, and then a known technique is used to sequentially form a field oxide layer 32 and a gate on the surface of the silicon substrate 30.极 结构 3 4 、 oxidation layer 36. The gate structure here may include a dioxide dioxide layer, a polycrystalline silicon layer, a tungsten silicide layer, a silicon nitride protective layer, and the like, and the material of the oxide layer 36 includes silicon oxide or tetraethyl silicate (TE 〇s). Since the above-mentioned process is made by the technology known in the past and is not the focus of the present invention, it will not be described in detail. It is worth mentioning that after the above-mentioned oxide layer 36 is formed, the surface of the Shixi substrate 30 will become a hydrophilic silicon oxide (S 1 -0) surface. At this time, if particles are attached to the hydrophilic property

第10頁 473856 五、發明說明(8) (hydroph i 1 i c)的氧化矽(S i -0)表面上,則微粒與此 親水性(hydroph i 1 i c)的氧化矽(s i -〇)表面的接觸角 (contact angle)約為 8度。 然後請參照第五圖,利用傳統微影蝕刻技術,除去部 份氧化物層3 6,以形成閘極間隙壁3 8於間極結構3 4的二側 邊。此時,經過閘極間隙壁#刻程序後的石夕基底3 0之表面 將由親水性(hydrophilic)的氧化石夕(si-Ο)表面變成 排水性(hydrophobic)的矽(Si- Si)表面,此時若有 微粒附著在此排水性(hydrophobic)的石夕(Si- Si)表 面上’則微粒與此排水性(h y d r 〇 p h 〇 b i c)的石夕(S i - S i )表面的接觸角(contact angle)約為26度。 接著請參照第六圖,使用含氧的電漿離子對矽基底3 0 進行很短時間之同步(i η - s i t u)轟擊4 0,其中同步 (in-sit u)轟擊40包含在壓力約750〜850 mT、能量約 7 〇〜8 0 W下,以3 0 0 s c c m氬氣與2 0 s c c m氧氣進行時間長度約 4〜6秒鐘的轟擊。其中較佳條件為:在壓力8〇〇mT、能量 7 5 rp,以3 0 0 s c c m氬氣與2 0 s c c m氧氣進行5秒鐘的轟擊。 此處之矽基底30經過同步(in —si tu)轟擊4〇後,損失的 厚度極少,並不會影響到元件的功能。若以上述同步、 (in_situ)轟擊40的較佳條件為例,矽基底3〇、p 一 層32、閘極結構34與閘極間隙壁38經過轟擊後所浐每乳化 度大約小於15埃。此時雖然矽基底3〇之表面仍為=^ =厚Page 10 473856 V. Description of the invention (8) On the surface of silicon oxide (S i -0) (hydroph i 1 ic), the particles are on the surface of silicon oxide (si -〇) which is hydrophilic (hydroph i 1 ic) The contact angle is about 8 degrees. Then, referring to the fifth figure, a part of the oxide layer 36 is removed by using a conventional lithography etching technique to form a gate spacer wall 38 on two sides of the interelectrode structure 34. At this time, the surface of the Shi Xi substrate 30 after the gate electrode gap wall # engraving procedure will change from a hydrophilic oxidized stone Xi (Si-O) surface to a hydrophobic Si (Si-Si) surface At this time, if there are particles attached to the surface of the hydrophobic stone (Si-Si), then the particles and the surface of the hydrophobic stone (Si-S i) The contact angle is about 26 degrees. Next, please refer to the sixth figure, using a plasma ion containing oxygen to synchronize (i η-situ) 40 on the silicon substrate 3 0 for a short time, wherein the in-sit u bombardment 40 contains a pressure of about 750 At ~ 850 mT and energy of about 70 ~ 80 W, bombardment was performed with 300 sccm argon and 20 sccm oxygen for a duration of about 4 ~ 6 seconds. The preferred conditions are: bombarding with 300 s c c m argon and 20 s c c m oxygen for 5 seconds at a pressure of 800 mT and an energy of 75 rp. Here, after the silicon substrate 30 is bombarded by in-si tu for 40 seconds, the thickness of the silicon substrate 30 is very small, and the function of the device is not affected. Taking the above-mentioned preferred conditions of in-situ bombardment 40 as an example, each emulsification degree of the silicon substrate 30, p-layer 32, gate structure 34 and gate spacer 38 after bombardment is less than about 15 angstroms. At this time, although the surface of the silicon substrate 30 is still thick

473856 五、發明說明(9) (hydrophobic)的矽(Si- Si)表面,但是若有微粒附 著在此矽基底3 0之表面上,則可以發現微粒與此石夕基底3 〇 之表面的接觸角(contact angle)已明顯變小了 (約由 2 6度變成1 0度)。 接者凊參照第七圖’將經過同步(i η - s i t u)森擊4 〇 後所得到的矽基底30,浸在微粒清潔槽(例如·· cr/std (Caro’s acid/standard)槽)中,以進行聚合物清潔之 剝除步驟。矽表面將形成化學氧化物,使得排水性的碎表 面變成親水性的氧化矽表面,因而不會有微粒附著在閘極 間隙壁1 8附近。此時經過聚合物清潔之剝除步驟後,石夕基 底3 0之表面上將有氧化物膜層4 2形成,使得矽基底3 〇之排 水性(hydrophobic)的矽表面將有部份或全部會變成親 水性(hydrophilic)的氧化矽(Si—〇)表面。此時之所 以無微粒附著在此矽基底3 〇之表面上,乃因為微粒與此矽 基底3 0之表面的接觸角(c〇ntact angle)已變成大約〇 度。因此在微粒清潔槽(例如:CR/STD槽)中或其他渴的 工作台上之微粒污染得以避免或降低。 … 隨後,即可進行後續輕摻雜汲極/源極之重掺雜區域 的離子佈植步驟。 _擊潔淨程序來改變:473856 V. Description of the invention (9) (hydrophobic) silicon (Si-Si) surface, but if there are particles attached to the surface of the silicon substrate 30, the particles can be found in contact with the surface of the stone substrate 30 The contact angle has become significantly smaller (about 26 degrees to 10 degrees). Then, referring to the seventh figure, the silicon substrate 30 obtained after synchronizing (i η-situ) senso 40 was immersed in a particle cleaning tank (for example, a cr / std (Caro's acid / standard) tank). To perform a polymer stripping step. Chemical oxides will form on the silicon surface, making the water-repellent shredded surface a hydrophilic silicon oxide surface, so no particles will adhere to the gate spacers 18 and below. At this time, after the polymer cleaning stripping step, an oxide film layer 4 2 will be formed on the surface of the Shi Xi substrate 30, so that the hydrophobic silicon surface of the silicon substrate 30 will be partially or completely formed. Will turn into a hydrophilic (hydrophilic) silicon oxide (Si-〇) surface. At this time, no particles are attached to the surface of the silicon substrate 30 because the contact angle between the particles and the surface of the silicon substrate 30 has become approximately 0 degrees. Therefore, particle contamination in particle cleaning tanks (eg CR / STD tanks) or other thirsty workbenches can be avoided or reduced. … Then, the ion implantation step can be performed for the lightly doped drain / source heavily doped regions. _ Click on the cleaning procedure to change:

473856473856

第13頁 473856 圖式簡單說明Page 13 473856 Schematic description

利用後續的說明 内容及優點有更A'! ϊσ下列圖丨’將可以對於本發明的 π又兩 楚之了解,其中: 第一圖為丰導u 欲美;+ 日日片之截面圖,顯示根據傳統技術在 吵吞紙上依序形点m与 取努乳化層、閘極結構、絕緣層的步驟; 弟一圖為半導 本部於纟s a a 日日片之截面圖,顯示根據傳統技術除 .^ 阳开^成閘極間隙壁於閘極結構的二側邊之 步驟; ^ 一圖為半導體晶片之截面圖,暴員示根據傳統技術將 石土 & /又在微粒清潔槽(例如:CR/STD ( Car〇, s acid/standard)槽)中,以進行聚合物清潔之步驟; 第四圖為半導體晶片之截面圖,顯示根據本發明之一 實施例在矽基底上依序形成場氧化層、閘極結構、氧化物 層的步驟; 第五圖為半導體晶片之截面圖,顯示根據本發明之一 實施例’除去部份絕緣層,而形成閘極間隙壁於閘極結構 的二側邊之步驟; 第六圖為半導體晶片之截面圖,顯示根據本發明之_ 實施例,使用含氧的電漿離子對矽基底進行很短時間之同 步(in-situ)轟擊之步驟;以及 第七圖為半導體晶片之截面圖,顯示根據本發明之一 實施例,將矽基底浸在微粒清潔槽(例如:CR/STD (Caro’s acid/standard)槽)中,以進行聚合物清潔之 步驟。The following descriptions and advantages have more A '! Ϊσ The following diagrams 丨' will help you understand the π of the present invention, where: The first picture is Fengdao u for beauty; + the cross section of the Japanese-Japanese film, Shows the steps of sequentially forming the point m and taking the emulsified layer, gate structure, and insulation layer on the noisy paper according to the traditional technology. The first figure is a cross-sectional view of the semiconducting headquarters on the 纟 saa sun-and-day film. ^ Yang Kai ^ The steps to form the gate gap on the two sides of the gate structure; ^ A picture is a cross-sectional view of a semiconductor wafer, and the rioter shows that the stone and soil are cleaned in a particulate cleaning tank (for example, according to traditional techniques) : CR / STD (Car0, s acid / standard) tank) for polymer cleaning; The fourth figure is a cross-sectional view of a semiconductor wafer, showing the sequential formation on a silicon substrate according to an embodiment of the present invention Field oxide layer, gate structure, and oxide layer steps. The fifth figure is a cross-sectional view of a semiconductor wafer, showing that according to an embodiment of the present invention, 'a portion of the insulation layer is removed, and a gate gap is formed on the gate structure. Steps on the two sides; the sixth picture is A cross-sectional view of a conductor wafer showing a step of in-situ bombarding a silicon substrate with oxygen-containing plasma ions for a short time according to an embodiment of the present invention; and the seventh diagram is a cross-sectional view of a semiconductor wafer It shows that according to an embodiment of the present invention, a silicon substrate is immersed in a particle cleaning tank (for example, a CR / STD (Caro's acid / standard) tank) to perform a polymer cleaning step.

473856 圖式簡單說明 圖號部分: 碎基底1 0 ; 場氧化層1 2 ; 閘極結構1 4 ; 絕緣層1 6 ; 閘極間隙壁1 8 ; 微粒2 0 ; 矽基底3 0 ; 場氧化層3 2 ; 閘極結構3 4 ; 氧化物層3 6 ; 閘極間隙壁3 8 ; 同步(in-situ)轟擊40; 氧化物膜層4 2。473856 Schematic description of the drawing number part: broken substrate 10; field oxide layer 12; gate structure 14; insulating layer 16; gate spacer 18; particles 20; silicon substrate 30; field oxide layer 3 2; gate structure 3 4; oxide layer 36; gate spacer 3 8; in-situ bombardment 40; oxide film layer 4 2.

第15頁Page 15

Claims (1)

473856 六、申請專利範圍 下,以3 0 0 s c c m氬氣與2 0 s c c m氧氣進行時間長度約4〜6秒鐘 的轟擊。 6. 如申請專利範圍第1項之方法,其中上述同步 (in-situ)轟擊包含在壓力800mT、能量75W之下,以 3 0 0 sccm氬氣與20sccm氧氣進行5秒鐘的轟擊。 7. 如申請專利範圍第1項之方法,其中上述微粒清潔槽包 含 CR/STD( Caro’s acid/standard)槽。 8 ·如申請專利範圍第1項之方法,其中上述氧化物層形成 後的該石夕基底之表面與微粒間的接觸角(contact angle )大小約為7〜9度。 9 ·如申請專利範圍第1項之方法,其中上述閘極間隙壁形 成後的δ亥砍基底之表面與微粒間的接觸角(Contact angle)大小約為24〜28度。 1 0 ·如申請專利範圍第1項之方法,其中上述經過同步 (in-si tu)轟擊後的該矽基底之表面與微粒間的接觸角 (contact angle)大小約為8〜12度。 11 ·如申請專利範圍第1項之方法,其中上述該石夕基底浸 入微粒清潔槽後,該矽基底之表面與微粒間的接觸角473856 6. Under the scope of patent application, bombardment with a length of about 4 to 6 seconds is performed with 300 sccm argon and 20 sccm m oxygen. 6. The method according to item 1 of the patent application range, wherein the above-mentioned in-situ bombardment includes bombardment at 300 sccm argon and 20 sccm oxygen for 5 seconds under a pressure of 800 mT and an energy of 75 W. 7. The method according to item 1 of the scope of patent application, wherein the above particle cleaning tank includes a CR / STD (Caro's acid / standard) tank. 8. The method according to item 1 of the scope of patent application, wherein the contact angle between the surface of the Shi Xi substrate and the particles after the formation of the oxide layer is about 7 to 9 degrees. 9. The method according to item 1 of the scope of patent application, wherein the contact angle between the surface of the δHai substrate and the particles after the formation of the gate gap is about 24 to 28 degrees. 10 · The method according to item 1 of the scope of patent application, wherein the contact angle between the surface of the silicon substrate and the particles after the in-situ bombardment is about 8-12 degrees. 11 · The method according to item 1 of the scope of patent application, wherein the contact angle between the surface of the silicon substrate and the particles after the Shi Xi substrate is immersed in the particle cleaning tank 第17頁 473856 六、申請專利範圍 (contact angle)大小約為 ο”度。 1 2 · —種降低晶圓表面上微粒污染的方法,該方法至少包 括下列步驟: 一使用含氧的電聚離子對一表面遭到損壞的矽基底進行 同步(in-situ)轟擊,以降低微粒附著在該矽基底表面 上時’該微粒與該矽基底表面的接觸角(c〇ntact angle )大小’其冲該石夕基底表面遭到損壞的原因包含對該矽基 底進行離子佈植或餘刻程序;以及 將該石夕基底浸入微粒清潔槽中,以除去該矽基底上之 聚合物,其中該矽基底之表面將形成一氧化物膜層,使得 該石夕基底之表面極性變成親水性(hydrophi 1 ic)。 1 3·如申請專利範圍第丨2項之方法,其中上述同步 (in-si tu)轟擊包含在壓力約75 0 〜 8 5 0mT、能量約7〇〜8〇w 下,以3 0 0 sccm氬氣與20sccm氧氣進行時間長度約4〜6秒鐘 的轟擊。 14 ·如申請專利範圍第1 2項之方法,其中上述同步 (in-situ)轟擊包含在壓力800mT、能量75W之下,以 3 0 0 sccm氬氣與20sccm氧氣進行5秒鐘的轟擊。 1 5 ·如申請專利範圍第1 2項之方法,其中上述微粒清潔槽 包含 CR/STD( Caro’s acid/standard)槽。Page 17 473856 6. The size of the patent application (contact angle) is about ο ”degrees. 1 2 · A method for reducing particle contamination on the surface of the wafer, the method includes at least the following steps:-using oxygen-containing electropolyion In-situ bombardment of a silicon substrate with a damaged surface to reduce the size of the contact angle of the particles to the surface of the silicon substrate when the particles are attached to the surface of the silicon substrate. Reasons for the damage to the surface of the Shi Xi substrate include performing ion implantation or post-etching procedures on the silicon substrate; and immersing the Shi Xi substrate in a particle cleaning tank to remove the polymer on the silicon substrate, wherein the silicon substrate An oxide film layer will be formed on the surface, so that the surface polarity of the Shixi substrate becomes hydrophilic (hydrophi 1 ic). 1 3. The method according to item 丨 2 of the patent application range, in which the above-mentioned synchronization (in-si tu) The bombardment involves a bombardment with a pressure of about 75 0 to 850 mT and an energy of about 70 to 80 w with 300 sccm argon and 20 sccm oxygen for a period of about 4 to 6 seconds. 14 · If the scope of patent application Item 12 A method, wherein the above-mentioned in-situ bombardment includes bombardment under a pressure of 800 mT and an energy of 75 W, and bombardment with 300 sccm argon and 20 sccm oxygen for 5 seconds. The method, wherein the particle cleaning tank includes a CR / STD (Caro's acid / standard) tank. 第18頁 473856 六、申請專利範圍 16.如申請專利範圍第12項之方法,其中上述經過同步 (in-si tu)轟擊後的該矽基底之表面與微粒間的接觸角 (contact angle)大小約為8〜12度。 1 7.如申請專利範圍第1 2項之方法,其中上述該矽基底浸 入微粒清潔槽後,該矽基底之表面與微粒間的接觸角 (contact angle)大小約為0〜1度。Page 18, 473856 6. Application scope of patent 16. The method according to item 12 of the scope of patent application, wherein the contact angle between the surface of the silicon substrate and the particles after the above-mentioned in-si tu bombardment (contact angle) About 8 ~ 12 degrees. 1 7. The method according to item 12 of the scope of patent application, wherein after the silicon substrate is immersed in the particle cleaning tank, the contact angle between the surface of the silicon substrate and the particles is about 0 to 1 degree. 第19頁Page 19
TW90102686A 2001-02-07 2001-02-07 Method for reducing particle contamination by controlling the polarity on the surface of wafer TW473856B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90102686A TW473856B (en) 2001-02-07 2001-02-07 Method for reducing particle contamination by controlling the polarity on the surface of wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90102686A TW473856B (en) 2001-02-07 2001-02-07 Method for reducing particle contamination by controlling the polarity on the surface of wafer

Publications (1)

Publication Number Publication Date
TW473856B true TW473856B (en) 2002-01-21

Family

ID=21677271

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90102686A TW473856B (en) 2001-02-07 2001-02-07 Method for reducing particle contamination by controlling the polarity on the surface of wafer

Country Status (1)

Country Link
TW (1) TW473856B (en)

Similar Documents

Publication Publication Date Title
TWI409862B (en) Cleaning method and solution for cleaning a wafer in a single wafer process
US6927176B2 (en) Cleaning method and solution for cleaning a wafer in a single wafer process
JP2003100712A (en) Method for cleaning metal oxide thin film
JP2000315670A (en) Cleaning method of semiconductor substrate
JPH08195369A (en) Cleaning method of substrate
US6416586B1 (en) Cleaning method
TW200303050A (en) Method for removing contamination and method for fabricating semiconductor device
US20060091110A1 (en) Cleaning solution and method for cleaning semiconductor device by using the same
TW473856B (en) Method for reducing particle contamination by controlling the polarity on the surface of wafer
TWI628718B (en) Glass with depleted layer and polycrystalline-silicon tft built thereon
JP2005150399A (en) Manufacturing method of semiconductor device
TW200524091A (en) Method for manufacturing semiconductor device
KR100196508B1 (en) Method of cleaning polysilicon of semiconductor device
KR100644073B1 (en) Method for cleaning silicon nitride layer
KR20010065793A (en) Measuring method of eliminatability of organic contamination
JP4609616B2 (en) Cleaning agent for semiconductor devices
TW468225B (en) Method to clean semiconductor wafer surface
JP2007073840A (en) Method for manufacturing semiconductor device
KR100854455B1 (en) Method for removing watermark in semiconductor device
KR20050112035A (en) Method for fabricating thin film transitor
KR100779399B1 (en) Method for fabricating a semiconductor device
CN113782415A (en) Gate oxide precleaning method
JP2002329701A (en) Semiconductor substrate and display device using it, and manufacturing method and manufacturing apparatus for the semiconductor substrate and display device
KR100219071B1 (en) A cleaning method of semiconductor substrate
CN115662879A (en) Room-temperature cleaning method for bare silicon surface in semiconductor manufacturing based on free radical reaction

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent