TW468314B - Increased capacity bidirectional DWDM network architecture with frequency stacking system - Google Patents

Increased capacity bidirectional DWDM network architecture with frequency stacking system Download PDF

Info

Publication number
TW468314B
TW468314B TW089107300A TW89107300A TW468314B TW 468314 B TW468314 B TW 468314B TW 089107300 A TW089107300 A TW 089107300A TW 89107300 A TW89107300 A TW 89107300A TW 468314 B TW468314 B TW 468314B
Authority
TW
Taiwan
Prior art keywords
head end
dwdm
signals
main
passbands
Prior art date
Application number
TW089107300A
Other languages
Chinese (zh)
Inventor
Robert Howald
Shlomo Ovadia
Timothy Brophy
Curtiss Smith
Original Assignee
Gen Instrument Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Instrument Corp filed Critical Gen Instrument Corp
Application granted granted Critical
Publication of TW468314B publication Critical patent/TW468314B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2801Broadband local area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0226Fixed carrier allocation, e.g. according to service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • H04J14/023Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
    • H04J14/0232Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON] for downstream transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0286WDM hierarchical architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/21Server components or server architectures
    • H04N21/222Secondary servers, e.g. proxy server, cable television Head-end
    • H04N21/2221Secondary servers, e.g. proxy server, cable television Head-end being a cable television head-end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6106Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
    • H04N21/6118Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving cable transmission, e.g. using a cable modem
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6156Network physical structure; Signal processing specially adapted to the upstream path of the transmission network
    • H04N21/6168Network physical structure; Signal processing specially adapted to the upstream path of the transmission network involving cable transmission, e.g. using a cable modem
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/173Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
    • H04N7/17309Transmission or handling of upstream communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/22Adaptations for optical transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Optical Communication System (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Details Of Television Systems (AREA)

Abstract

A bidirectional dense wave division multiplexing (DWDM) cable television network architecture with frequency stacking system provides increased capacity in the reverse path. The combination of optical multiplexing, using dense wave division multiplexing, and RF multiplexing, using frequency stacking, significantly increases the efficiency of the return path in a bidirectional architecture. The ITU grid transmitters and the frequency stacking system may be located at the nodes, at the primary or secondary headends, or with the frequency stacking system at the node and the ITU grid transmitters at the primary/secondary headend.

Description

A7 4 6 8 31 4 ___B7__ 五、發明說明(1 ) 發明領域: 本煢明係大致有關一種在網路的反向路徑中提供更大 的容量之有線電視混合光纖同軸電纜(CAble Television Hybrid-Fiber-Coax;簡稱CATVHFC)架構。更具體而目’本發 明說明一種採多工以提高返回路徑的效率之架構’而此種 多工爲使用高密度光波分割多工(Dense Wave Division Multiplexing :簡稱DWDM)之光波多工、及使用頻率堆 疊(frequency stacking )之射頻多工。 發明背景: 傳統的CATVHF C網路進展爲雙向互動式資料通 訊平台(包括纜線數據機及經由纜線的網路電話)再加上 朝向頭端合倂的趨勢,已使正向路徑及反向路徑有更多頻 寬的需求。 更具體而言,在一現代的典型有線電視系統中,下行 內容佔用了網路的5 0-8 7 0百萬赫頻率分區。返回路徑 信號則佔用了 5 -4 2百萬赫頻率(當然,熟悉本門技術者 當可了解,雖然美國的反向路徑頻寬是5-4 2百萬赫,而 國外的範圍將有變化,可能是5 -8 5百萬赫,但是本文所 說明的觀念並不限於在現行美國的範圍)。由於所使用頻 帶的非對稱本質,極有可能首先將限制反向路徑的通訊量 0 * 目前已部署了 DWDM系統,以便提供區隔及更大的 頻寬。然而,D W D Μ本身即有可能增加早先系統不.存在 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ---.----------裝--------訂i n n ft {請先閱讀背面之注意事項^舄本頁) 經濟部智慧財產局員工消费合作社印製 -4- 4 β B 3 Μ ΚΙ ___Β7__ 五、發明說明(2 ) 的損耗。此外,已將使用頻率堆疊的射頻頻域中之多工用 於反向路徑通帶,以便提高頻寬效率。亦即,採用一頻率 堆曼系統時*將擴展每一家庭可用的返回頻寬,並可容許 較大的節點規模,因而降低了整體系統成本。然而,頻率 堆疊本身仍然可能增加系統的損耗。 因此,本發明係有關開發一種架構,此種架構可符合 多工化類比及數位系統的目前需求,並分割正向信號,以 便定址到個別的用戶,且在不使用額外光纖的情形下,增 加雙向容量》 發明槪述 本發明提供了一種具有頻率堆疊架構的混合式 DWDM,用以解決多工化類比及數位系統的目前需求, 以便提供基於雙向互動式資料通訊的最大容量。 根據本發明的一實施例,一 CATV架構在反向路徑 網路中提供了更大的容量,且該CATV架構包含複數個 光學至電氣轉換節點、一主要/輔助頭端、及一主頭端。 該主要/輔助頭端連接該等光學至電氣轉換節點及主頭端 。該等節點及主要/輔助頭端合而包含:一升頻變頻器, 用以自複數個同軸電纜支線接收複數個射頻反向路徑通帶 ,並將該等返回通帶升頻變頻爲不同的通帶:複數個 DWDM發射機,每一發射機在I TU柵上具有一輸出端 ,並傳輸一組不連接的通帶;以及一 DWDM多工器,用 以自每一該等複數個DWDM發射機接收一信號’並.在一 --------I------裝--------訂------—I -線 (請先閱讀背面之注意事項4¾本頁) 經濟部智慧財產局員工消費合作社印製. 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -5- A7 468314 B7___ 五、發明說明(3 ) J L------------ 裝.I 1 (請先閱讀背面之注意事項I、寫本頁) 單一光纖上以光學方式將該等DWDM發射機多工化,且 將多工化信號繞送到該主頭端。該主頭端包含:一 D‘W DM解多工器,用以將自該DWDM多工器接收的信 號解多工爲個別波長:複數個區段轉換接收機(Block Conversion Receiver;簡稱B C R ),用以接收該等個別波長 ,並將該等信號轉換成複合射頻信號;以及複數個區段降 頻變頻器(Block Downconverter :簡稱BCD),用以自 該等B C R接收該等複合射頻信號,並將該等信號轉換成 個別射頻信號.。自該等複數個B C D輸出的該等個別射頻 信號對應於每一光學至電氣轉換節點上的該等複數個同軸 電纜支線。 -線 本發明的另一面向在該主要/輔助頭端上設有一光學 放大器,用以在將自該DWDM多工器輸出的該等多工化 信號繞送到該主頭端之前,先將該等多工化信號放大。在 一特定實施例中,該光學放大器可以是一餌摻雜光纖放大 器(E r b i u m - D 〇 p e d F i b e r A m p 1 i f i e r ;簡稱 E D F A )。 經濟部智慧財產局員工消費合作社印製 本發明的又一面向包含使用劃碼多向近接(Code Division MultipleAccess;簡稱 CDMA)、分頻多向近接 (Frequency Division Multiple Access;簡稱 FDMA)、分時多向 近接(T i m e D i v i s i ο η M u U i p 1 e A c c e s s;簡稱 T D M A)、或上述方 式的任何組合,以便可得到由頻道參數界定的傳輸鏈路之 可用容量。 本發明的另一實施例係有關一種用來增加雙向纜線通 訊架構的反向路徑中的容量之方法,該架構具有複數.個光 6 - 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) A7 468314 B7__ 五、發明說明(4 ) (請先閱讀背面之注意事項再埔寫本頁) 學至電氣轉換節點、一主頭端、及一主要/輔助頭端’該 主要/輔助頭端連接該等節點及主頭端。該方法之步驟包 含:自複數個同軸電纜支線接收複數個射頻反向路徑通帶 ’並將該等返回通帶升頻變頻爲不同的通帶;利用複數個 DWDM發射機傳輸一組不連接的通帶,每一發射機在 I TU柵上具有一輸出端;利用一DWDM多工器在一單 一光纖上將多工化信號繞送到該主頭端;將所接收的信號 解多工爲個別波長;接收該等個別波長,並將該等信號轉 換成複合射頻信號;以及接收該等複合射頻信號’並將該 等信遗轉換成個別射頻is號。 附圖簡述: 若參照下文之詳細說明,並配合各附圖’將可更易於 了解本發明的上述及其他目的、特徵、及優點,這些附圖 有: 圖1示出一混合光纖/同軸電纜(H F C )有線電視 網路架構之一典型樹及分支組態; 圖2示出一DWDM副載波多工化網路架構; 經濟部智慧財產局員工消費合作社印製 圖3 A及3 B示出一標準有線電視配送系統的一 DWDM疊層之一典型架構; 圖4是一典型節點組態之方塊圖; 圖5是一典型頻率堆疊系統(Frequency Stacking System,·簡稱F S S )之方塊圖; 圖6示出根據本發明而結合D W D M及F S S技術的 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 4 6 8 31 4 A7 B7 五、發明說明(5 ) —架構之一第一實施例; 圖7..示出根據本發明而結合D W D Μ及F S S技術的 架構之一第一實施例; .圖8示出根據本發明而結合DWDM及FSS技術的 一架構之一第二實施例; 圖9示出根據本發明而結合DWDM及F S S技術的 一架構之一第三實施例; 圖1 0示出四個升頻變頻的返回路徑頻率區段之一複 合射頻頻譜;以及 圖1 1示出一結合式頻率堆疊及DWDM返回路徑系 :—,----------裝— (請先閱讀背面之注意事項I.舄本頁) 經濟部智慧財產局員工消費合作社印製 統提供之頻寬擴展。 主要元件對照 320, 750 DWDM發射機 10, 300 主頭端 12a, 12b, 12c, 330 主要/輔助頭端 14a,14b,14c,14d 大都巾區 16a,16b,16c,16d,360,865 光纖節點 23a,23b,23c,335 餌摻雜光纖放大器 305 類比發射機來源 340 光分配器 350 類比/數位耦合器 325 多工器 355 解多工器 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -8- -線· 4 6 8 3 1 4 Α7 Β7 五、發明說明(6 ) 385 DWDM雷射 380 返回接收機 500, 766 升頻變頻器 5 10. 正向路徑發射機 520 FSS接收機 530, 790 降頻變頻器 735 區段變頻接收機 755,860 多工器 770 解多工器 780 接收機 866 ITU發射機 900 頻率堆疊系統 910a - d DWDM雷射 920 DWDM多工器 930 雙接收機 詳細說明: ---.----------裝--- (請先閲讀背面之注意事項!寫本頁) _ --線· 經濟部智慧財產局員工消費合作社印製 典型的有線電視系統幾乎已被唯一地設計成自一·頭端 到家庭的“單向傳輸”。返回路徑實施例通常只有很少的負載 ’且主要係用於具有終端機或視訊轉換器(settop box )的 低速通訊。最近由於需要在不增加額外光纖的情形下大幅 皮高雙向容量及傳輸接取速度,因而激勵了在有線電視中 使用D W D Μ。 本發明係有關一種可在反向路徑網路中提供更大的容 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -9- 經濟部智慧財產局Μ工消费合作社印製 4 6 8 3 14 Α7 Β7 五、發明說明(7 ) 量之混合式D W D M / F S S有線電視架構。因此’本發 明大幅提高了在現有線電視系統中處理雙向互動式多媒體 通訊的能力,且並不需要使用額外的光纖。 下文中在簡要說明DWDM及頻率堆疊系統之後,將 說明本發明的一些特定實施例。A7 4 6 8 31 4 ___B7__ 5. Description of the invention (1) Field of invention: The present invention is roughly related to a CAble Television Hybrid-Fiber cable that provides greater capacity in the reverse path of the network -Coax; referred to as CATVHFC) architecture. More specifically, the present invention describes a framework that employs multiplexing to improve the efficiency of the return path. Such multiplexing is lightwave multiplexing using high-density lightwave division multiplexing (DWDM), and uses RF multiplexing for frequency stacking. Background of the Invention: The traditional CATVHF C network has evolved into a two-way interactive data communication platform (including cable modems and internet telephones via cables), coupled with the trend toward head-end convergence, which has made the forward path and reverse There is a need for more bandwidth on the path. More specifically, in a typical modern cable television system, downlink content occupies 50-8700 MHz frequency partitions of the network. The return path signal occupies a frequency of 5-4 2 MHz (Of course, those skilled in the art will understand that although the reverse path bandwidth in the United States is 5-4 2 MHz, the foreign range will have The change may be 5-8 5 MHz, but the concepts explained in this article are not limited to the current US scope). Due to the asymmetric nature of the frequency band used, it is very likely that the traffic on the reverse path will first be limited. 0 * DWDM systems have been deployed to provide segmentation and greater bandwidth. However, DWD M itself may increase the previous system. There is a paper size that applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) ---.---------- install- ------ Order inn ft {Please read the precautions on the back ^ 舄 this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs -4- 4 β B 3 Μ ΚΙ ___ Β7__ 5. Description of the invention (2) loss. In addition, multiplexing in the RF frequency domain using frequency stacking has been used for the reverse path passband in order to improve bandwidth efficiency. That is, when using a frequency Heman system *, the return bandwidth available to each home will be extended, and a larger node size will be allowed, thereby reducing the overall system cost. However, the frequency stack itself may still increase the loss of the system. Therefore, the present invention is related to the development of an architecture that can meet the current requirements of multiplexed analog and digital systems, and divide the forward signal in order to address individual users, and increase the number of cases without using additional optical fibers. Two-way capacity "Description of the invention The present invention provides a hybrid DWDM with a frequency stacking structure to solve the current needs of multiplexed analog and digital systems in order to provide the maximum capacity based on two-way interactive data communication. According to an embodiment of the present invention, a CATV architecture provides greater capacity in a reverse path network, and the CATV architecture includes a plurality of optical-to-electrical conversion nodes, a main / auxiliary head end, and a main head end . The primary / secondary headend connects the optical-to-electrical conversion nodes and the primary headend. The nodes and the main / auxiliary headends include: an up-converter for receiving a plurality of RF reverse path passbands from a plurality of coaxial cable branches, and upconverting these return passbands into different Passband: a plurality of DWDM transmitters, each transmitter having an output terminal on the I TU grid, and transmitting a set of unconnected passbands; and a DWDM multiplexer for each of the plurality of DWDM Transmitter receives a signal 'and. On a -------- I ------ installation -------- order ------- I-line (please read the back first Note on this page 4¾) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) -5- A7 468314 B7___ V. Description of the invention (3) J L ------------ Installation. I 1 (Please read the precautions on the back I, write this page) The DWDM transmitters are optically multiplexed on a single fiber, and The multiplexed signal is routed to the master head end. The main head end includes: a D'W DM demultiplexer for demultiplexing signals received from the DWDM multiplexer to individual wavelengths: a plurality of block conversion receivers (BCR) For receiving the individual wavelengths and converting the signals into composite RF signals; and a plurality of block downconverter (BCD) converters for receiving the composite RF signals from the BCRs, And convert these signals into individual RF signals ... The individual radio frequency signals output from the plurality of B C D correspond to the plurality of coaxial cable branches on each optical-to-electrical conversion node. -Another aspect of the present invention is to provide an optical amplifier on the main / auxiliary head end to route the multiplexed signals output from the DWDM multiplexer to the main head end. These multiplexed signals are amplified. In a specific embodiment, the optical amplifier may be a bait-doped fiber amplifier (E r b i u m-D o p d F i b e r A m p 1 i f i e r; abbreviated as E D F A). Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, another aspect of the present invention includes the use of Code Division Multiple Access (CDMA), Frequency Division Multiple Access (FDMA), time division multiple Proximity (T ime D ivisi ο η M u U ip 1 e A ccess; TDMA for short), or any combination of the above methods, in order to obtain the available capacity of the transmission link defined by the channel parameters. Another embodiment of the present invention relates to a method for increasing the capacity in the reverse path of a two-way cable communication architecture. The architecture has a plurality of optical fibers. 6-This paper standard is applicable to China National Standard (CNS) A4 specifications ( 210 X 297 mm) A7 468314 B7__ 5. Description of the invention (4) (Please read the precautions on the back before writing this page) Learn the electrical conversion node, a main head end, and a main / auxiliary head end. The primary / secondary headends connect these nodes and the primary headend. The steps of the method include: receiving a plurality of RF reverse path passbands from a plurality of coaxial cable branches and frequency-converting the return passbands into different passbands; using a plurality of DWDM transmitters to transmit a set of unconnected Passband, each transmitter has an output end on the I TU grid; a DWDM multiplexer is used to wind the multiplexed signal to the main head end on a single fiber; and demultiplex the received signal into Individual wavelengths; receiving the individual wavelengths and converting the signals into composite radio frequency signals; and receiving the composite radio frequency signals' and converting the signal traces into individual radio frequency is numbers. Brief Description of the Drawings: The above and other objects, features, and advantages of the present invention can be more easily understood with reference to the following detailed description and the accompanying drawings. These drawings are: Figure 1 shows a hybrid optical fiber / coaxial A typical tree and branch configuration of a cable (HFC) cable television network architecture. Figure 2 shows a DWDM subcarrier multiplexed network architecture. Figures 3 A and 3 B are printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Fig. 4 is a block diagram of a typical node configuration; Fig. 5 is a block diagram of a typical Frequency Stacking System (referred to as FSS); Figure 6 shows that the paper size according to the present invention combined with DWDM and FSS technology is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 4 6 8 31 4 A7 B7 V. Description of the invention (5)-Architecture A first embodiment; FIG. 7 shows a first embodiment of a framework combining DWD M and FSS technology according to the present invention; FIG. 8 shows one of a framework combining DWDM and FSS technology according to the present invention Second embodiment FIG. 9 illustrates a third embodiment of an architecture combining DWDM and FSS technology according to the present invention; FIG. 10 illustrates a composite radio frequency spectrum of one of the four up-conversion return path frequency segments; and FIG. 11 illustrates A combined frequency stacking and DWDM return path are: —, ---------- install— (Please read the precautions on the back I. 舄 This page) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs The bandwidth expansion provided by the system. The main components are compared with 320, 750 DWDM transmitters 10, 300 main head ends 12a, 12b, 12c, 330 main / auxiliary head ends 14a, 14b, 14c, 14d metropolitan areas 16a, 16b, 16c, 16d, 360, 865 fiber node 23a, 23b, 23c, 335 bait-doped fiber amplifier 305 analog transmitter source 340 optical splitter 350 analog / digital coupler 325 multiplexer 355 demultiplexer This paper standard applies to China National Standard (CNS) A4 specification (210 X 297 Mm) -8--line · 4 6 8 3 1 4 Α7 Β7 V. Description of the invention (6) 385 DWDM laser 380 Return receiver 500, 766 Upconverter 5 10. Forward path transmitter 520 FSS reception 530, 790 Down Frequency Inverter 735 Segment Inverter Receiver 755,860 Multiplexer 770 Demultiplexer 780 Receiver 866 ITU Transmitter 900 Frequency Stacking System 910a-d DWDM Laser 920 DWDM Multiplexer 930 Dual Receiver Details Instructions: ---.---------- install --- (Please read the precautions on the back first! Write this page) Cable television systems have been designed almost exclusively from the head end to the home " One-way transmission. " Embodiments of the return path usually have very little load, and are mainly used for low-speed communication with a terminal or a settop box. Recently, the need to significantly increase the bi-directional capacity and transmission access speed without adding additional optical fibers has encouraged the use of D W D M in cable television. The invention relates to a paper that can provide greater capacity in the reverse path network. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm). System 4 6 8 3 14 Α7 Β7 V. Description of the invention (7) Mixed DWDM / FSS cable television architecture. Therefore, the present invention greatly improves the ability to handle two-way interactive multimedia communications in existing cable television systems, and does not require the use of additional optical fibers. Hereinafter, after briefly describing the DWDM and the frequency stacking system, some specific embodiments of the present invention will be described.

I .DWDM 目前在有線電視中的DWDM系統係唯一地用於 1 5 5 0奈米的光波範圍(該波長範圍受到歡迎主要是因 爲較低的光纖信號耗損,其耗損在1 5 5 0奈米波長下的 耗損大約爲0 2 2分貝/千米’且使用餌摻雜光纖放大 器(E D F A ),以利用該耗損的優點)。包含I T U柵 的波長實際上是一組預定頻率,例如間隔爲1 〇 〇 〇億赫 的一組預定頻率,且可利用該組頻率得到波長。該波長間 隔大約爲0 8奈米’且該波長範圍涵蓋了自大約 1 5 30至1 570奈米的EDFA頻帶。當然’無須將 所有的波長用於任何特定的系統’且商業化產品提供了 1 0 0 0. 2000、及4000億赫的間隔,而且提供 了多種個別的產品。在將於下文中詳述的本發明之一較佳 實施例中,所選擇的間隔爲2 0 0 0億赫,且該間隔是使 系統‘‘有高密度的”接近波長(這是用來使D W D Μ系統與在 一 WDM配置中使用1 3 1 0奈米及1 5 5-0奈米的組合 之某些現有有線電視系統有所區別)。在有線電視領域中 1使用諸如D W D Μ發射機(例如將於下文中說明的圖3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公蹵) -10- ----.----------裝--- (請先閱讀背面之注意事項ΐ寫本頁) 訂: -線 A7 4 6 8 3 1 4 ______ 五、發明說明P ) 器、分接頭、及同軸電纜,且自每一光纖節點(16a-d )跨越到對應的裝有數位視訊轉換器之用戶家庭。 圖2示出用於多個AM/QAM頻道傳輸的一 DWDM副載波多工化(S CM)網路架構之一實例。在 該網路架構中,主有線電視頭端(1 0 )係經由一主光纖 環而連接到一大都市區中之主要頭端(12a)、 (12 b ) , (12c)=通常係經由衛星及陸地廣播以及本地 視訊伺服器而接收主頭端(1 0 )上的類比及數位視訊節 目(熟悉本門技術者當可了解,也可在主要或輔助頭端上“ 注入”或接收類比信號。利用串接的餌摻雜光纖放大器( E D F A ) (13a)、 (23b)、 (23c)而使用 高密度的高密度光波分割多.工(DWDM)及解多工,因 而獲致極高的中繼容量。在該主要光纖節點中,係在使用 6 4/2 5 6 QAM的通帶通訊上,甚或在諸如0C — 4 8等的基頻帶通訊上,對利用AM及數位視頻信號的每 —波長混合的在1 5 5 0奈米頻帶中之多個波長進行副載 波多工化(S CM)。輔助光纖環將各主要頭端連接到輔 助頭端。在一輔助光纖環中*只利用具有若干串接 EFDA的1 5 50奈米或1 3 1 0奈米雷射發射機對少 數的波長進行解多工及傳輸。在輔助頭端上,可針對窄播 (narrowcasting )及廣播服務而將基於1 5 5 0奈米的廣 播通訊切換到基於1310奈米的通訊。在每一光纖節點 中,利用光接收機將在不同波長上向下傳送的光信號轉換 回電氣信號,並將該電氣信號經由同軸電纜系統而傳.送到 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) r---;11!!----裝 i ! ---訂 I ! 1 I 線 (請先閱讀背面之注^項一{寫本頁) 經濟部智慧財產局員工消費合作社印製 A7 468314 B7__ 五、發明說明(1〇 ) 每一用戶。 爲了 I將返回路徑定址,圖3示出一簡化的主頭端( 300)(對應於圖1及2所示之代號(10))、若干 主要/輔助頭端/集線器(3 3 0 )(分別對應於圖1及 2 所示之代號(12a)、 (12b), (12c)、以 及(14a)、 (14b), (14c)、及(14d) )、以及節點(360)(對應於圖1及2所示之代號( 1 6 a - 1 6 d )。該圖是一傳統的混合光纖/同軸電纜( H F C )有線電視網路的一 〇 w D Μ疊層之一般性架構( 請注意’爲了便於例示,圖3假設光纖網路在自主要/輔 助頭端到節點的過程中都保持在1 5 5 0奈米的範圍), 且該架構包含一外部調變式類比發射機來源(3 0 5 )及 一外部調變式DWDM發射機(320)(當然,該發射 機並不必然是一 DWDM外部調變式發射機,而也可以是 一直接調變式發射機)。如圖3A及3B所示,主頭端合 稱(300),主要/輔助頭端/集線器合稱( 330) ,且節點合稱(360)(個別是(360a)、( 3 6 0 b)等)(熟悉本門技術者當可了解,雖然圖中示 出上述的情形,但是I T U發射機並不必然需要置於與廣 播發射機相同的位置)。 圖中示出位於主頭端之DWDM發射機(3 2 0 )包 含:用來提供偏壓及溫度之雷射模組、預失真電路及監視 控制單元、以及利用射頻內容調變射頻來源之裝置。該射 頻內容是類比廣播電視信號、或目標服務Q A Μ信號.。調 ..---.----------裝—— - (請先閱讀背面之注意事項再«寫本黃) *β -線_ 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 * 297公釐〉 -13- 16 8 31 4 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(11 ) 變技術是外部調變(利用經過修改的平衡電橋Mach-Zehnder _干涉儀)或是直接調變(直接利用雷射的電流控制 )0 -以光學方式將類比發射機來源(3 0 5 )之輸出放大 (3 〇 7 )到一飽和位準(例如,大約+ 1 7分貝米), 然後經由4萬米的標準(無耗散移位)單模光纖(SMF )(所提供的SMF長度仍然只是作爲一例示値)而傳送 到主要/輔助頭端,並再度經由一餌摻雜光纖放大器( E D F A ) (335)放大後,由光分配器(340)分 成若干符合目標服務波長數之輸出。 在光分配之後,類比信號蠆一類比/數位耦合器( 3 5 0 )中與該QAM波長多工化,且再度分配該複合信 號,以便服務作爲該特定波長目標的若干節點(3 6 〇 ) 。在該一般性系統中,各節點(3 6 0 )離開該主要/輔 助頭端有“ 2 0公里”遠,且係利用標準S M F而連接該等節 點(3 6 0 )(請注意,每一波長可能有多個目標節點, 尤其在用戶採用率較低的早期部署階段時尤其會發生此種 情形,此時對應於每一節點有較低的頻寬需求)。 請參閱圖3Α及3 Β,我們當了解,雖然DWDM雷 射光源在該例示系統中也是外部調變式發射機(3 2 〇 ) ,但是也可使用直接調變式光源。圖中示出八個波長,並 將這八個波長合倂在一多工器(3 2 5 )中的一單一光纖 中(在2 0 0 0億的間隔下,可將8個波長多工化)。多 工器(3 2 5 )(及將於下文說明之解多工器(3 5 5 ))組件 請 先 閱 讀 背 Sr 之 注 項 域 1:裝 頁 訂 ▲ 本紙張尺度適用中國國家標準(CNS)A4規格(210x 297公釐) -14 - A7 468314 _—_B7_______ 五、發明說明(12 ) 係用來結合各I T U柵波長通過一低耗損耦合器’並將該 等波長鱗送到一單一光纖(且解多工器(3 5 5 )隨即隔 離這些波長,以便將這些波長置於個別的光纖)°雖然該 SMF可以是任何的長度,但是標準的SMF是4 0公里 長,且可能與載送類比信號的光纖有所不同’但也可以在 相同的光纖纜線束中(每一光纖纜線束都包含多個光纖) 。在該4 0公里之後,在該主要/輔助頭端的位置上’ EDFA (357)將合倂後的波長放大’然後由解多工 器(3 5 5 )將該波長解多工到若該獨立的光纖中。如前 文所述,每一目標服務波長與其中一個類比信號輸出合倂 ,並將由載送類比及數位信號的一單一光纖而配送到各節 點(360)。光纖節點(360)包含一接收機,用以 偵測類比及Q A Μ信號,以便經由射頻纜線系統而配送到 該節點之外。 經濟部智慧財產局員工消费合作社印製 配合向更對稱網路發展的趨勢,圖3Α及3 Β所示 D W D Μ疊層系統中示出的返回路徑反映了下行路徑的趨 勢。此種反映的一個例外並不常發生在DWDM系統的單 一光纖中,而是常發生在自節點(3 6 0 )到主要/輔助 頭端(3 3 0 )的返回路徑部分中。係以一種雙跳程序管 理該返回路徑。在所示系統中,一溫度補償式1 3 1 0/1 550奈 米的雷射(通常爲一 DFB)是在節點(36 0)中。由該 節點服務的每一家庭(例如1 ο 〇 〇-1 2 σο個用戶)發 出的分時及分頻多工射頻信號驅動D W D Μ雷射(385 )。 光輸出係經由鏈路(圖中示爲"2 0公里”)而傳送到主要/ 本紙張尺度適用中國國家標準(CNS)A4規格(210 * 297公釐) I 15 - :~~" 經濟部智慧財產局貝工消费合作杜印製 6 8 3 1 4 A7 ___B7____ 五、發明說明(13 ) 輔助頭端(330),此時一返回接收機(380)先偵 測並放大_該光輸出’然後該光輸出才直接調變一 I T U柵 DWDM雷射發射機( 385)。雷射(3 8 5)是數個 雷射中的一個雷射,這些雷射將整個返回路徑結合成一 DWDM組’以便經由該4 0公里鏈路而傳送回主頭端( 3 0 0 ),而進行後續的處理。每一 DWDM波長可利用 分時、分頻、及劃碼多工的一種組合而處理來自多個節點 (360)的返回通訊。 如前文所述,圖3 A及3 B所示之網路解決方案假設 該光纖網路自主頭端到節點都保持在1 5 5 0奈米的範圍 。然而,如果一現有的系統在主要/輔助頭端上採用一重 新傳輸架構,則其目標是儘量保持此種基礎的架構。幸運 的是仍然可利用DWDM提供該窄播疊層= I I .頻率堆疊 在頻率堆疊系統中,該5 -4 2百萬赫的返回通帶係以 區段方式升頻變頻或移動到另一頻率通帶。可在一主要/ 輔助頭端環境中,或在將於下文中說明的用戶所在節點中 ,執行上述的工作。一頻率堆疊系統(F S S )實施例的 主要優點在於擴展了每一家庭所通過的返回頻寬,因而可 容許有較大的節點規模,且又降低了整體系統成本(更具 體而言,F S S實施例提供了 一種相同數目饰用戶可使用 較高的速度或系統可以有較大數目的用戶之擴展方式)。 如果我們檢視圖4所示之“典型”節點組態,則該節點服 本紙張尺度適用+國國家標準<CNS)A4规格(210 * 297公釐> -16- "" ------— — —— — * I I-----« — — III — — ^ I, <請先《讀背面之it意事項再缜寫本真) 468 31 4 A7 ____B7 五、發明說明〇5 ) 到5 0-4 0 0通帶內的各不同通帶。一引示載波有兩個主 要的功熊,在第一功能中,該引示載波補償了光纖網路所 導入的鏈路耗損範圍,且在第二功能中,降頻變頻器利用 該引示載波而保持與升頻變頻器的相位鎖定,因而消除了 頻率偏移。 本應用中使用的發射機並不是一標準的頻帶限制式返 回路徑發射機。在該實施例中,被設計成在5 0-4 0 0百 萬赫通帶中作業的一正向路徑發射機(510)係用來自 升頻變頻器(5 0 0 )傳輸升頻變頻信號。 FSS接收機(BCR) (520)也不同於正常的 返回路徑接收機(圖4中之RPR (4 10))。仍然是 爲正向路徑而選擇的接收機(5 2 0 )提供複合射頻輸出 。與該通帶合倂的是四個升頻變頻頻帶及引示載波。爲了 回復個別的頻帶,係由降頻變頻器(5 3 0 )執行一降頻 變頻程序,該降頻變頻器(5 3 0 )將送回升頻變頻頻帶 的裝置提供給這些頻帶原始的5 - 4 2百萬赫頻譜。使用 l· I J--— — — — — — — * — — — — — — — — — — — — I— (諳先閱讀背面之注意事項ti 寫本頁) 率 頻 作 供 經濟部智慧財產局員工消費合作杜印製, 3 -獨 D 個 C 四 B 供 ί 提 器並 頊 ’ 變序 頻程 降的 段動 區發 ’ 所 時點 波節 載該 示行 弓執 的向 步反 5 合 個\ 1 配 有分 帶回 頻返 頻到 變送 頻傳 升出 1 輸 每些 而這 ’ 將 帶後 通然 赫。 萬帶 百通 2 赫 4 萬且 - 百, 5 2 路 的 4 網 立 一 倂 周 11-'w 解 務 艮 且 的 別 個 於 止 終 後 最 堆 率 頻 及 Μ DW D 式 合 結一 圖 後 之 統 系 S S F 及 Μ DW D 了 明 說 中 文 上 在 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 4 6 8 31 4 A7 __________B7___ 五、發明說明〇6 ) 分別示出根據本發明的一結合式系統之第一、第二、及第 三實施例。每一種方式協同工作,以便提高網路在返回配 送及返回傳輸上的效率,並可讓該結合式例.示系統在一單 一光纖上具有三十二個5 - 4 2百萬赫的返回頻帶。如將 於下文中說明的,這些實施例間之主要差異在於I TU柵 發射機的位置、及頻率堆疊系統的位置(圖7所示之網路 架構係在主要/輔助頭端設有DWDM發射機,圖8所示 之網路架構在節點設有DWDM發射機,而圖9所示之網 路架構在主要/輔助頭端設有頻率堆疊系統及DWDM發 射機)。 在圖7所示之第一實施例中,ITU柵DWDM發射 機(7 5 0 )係位於主要/輔助頭端。如圖所示,該組態 在節點位置上(節點合稱爲(7 6 0 ))以升頻變頻器( 7 6 6 )將返回路徑信號升頻變頻。該返回路徑信號經由 光纖配送網路而傳送回主要/輔助頭端,並由正向路徑區 段轉換接收機(BCR) (735)接收這些信號。I. DWDM The DWDM system currently used in cable TV is uniquely used in the 1 500 nm optical wave range (this wavelength range is popular mainly because of the lower optical fiber signal loss, which is in the 1 500 nm The loss at the wavelength is about 0 2 2 dB / km 'and a bait-doped fiber amplifier (EDFA) is used to take advantage of the loss). The wavelength including the I T U grid is actually a set of predetermined frequencies, such as a set of predetermined frequencies spaced at 100 billion Hz, and the set of frequencies can be used to obtain the wavelength. The wavelength interval is approximately 0.8 nm 'and the wavelength range covers the EDFA band from approximately 1530 to 1570 nm. Of course, ‘there is no need to use all the wavelengths for any particular system’ and commercial products provide 100, 2000, and 400 gigahertz intervals, and a variety of individual products are provided. In a preferred embodiment of the present invention, which will be described in detail below, the interval selected is 200 gigahertz, and the interval is such that the system `` has a high density '' close to the wavelength (this is used to Differentiates the DWD Μ system from some existing cable television systems that use a combination of 1300 nanometers and 15 5-0 nanometers in a WDM configuration.) In the field of cable television1 uses such as DWD Μ transmission (Such as Figure 3 which will be explained below) This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 cm) -10- ----.---------- pack- -(Please read the precautions on the back and write this page first) Order: -A7 4 6 8 3 1 4 ______ V. Description of the invention P) Connectors, taps, and coaxial cables, and from each fiber node (16a -d) Span to the corresponding user home equipped with digital video converter. Figure 2 shows an example of a DWDM subcarrier multiplexed (S CM) network architecture for multiple AM / QAM channel transmission. In this network architecture, the main cable head (1 0) is connected to the main heads (12a), (12b), (12) in a large metropolitan area via a main optical fiber ring. c) = Receive analog and digital video programs on the main headend (1 0) usually via satellite and terrestrial broadcast and local video server (those skilled in the art can understand, can also be on the main or auxiliary headend "Inject" or receive analog signals. Use tandem bait-doped fiber amplifiers (EDFA) (13a), (23b), (23c) to use high-density, high-density optical wave segmentation. DWDM and demultiplexing Therefore, the relay capacity is extremely high. In this main fiber node, it is used in the passband communication using 6 4/2 5 6 QAM, or even in the baseband communication such as 0C-4 8. And digital video signals, each of which is mixed with multiple wavelengths in the 1550 nanometer band for subcarrier multiplexing (S CM). The auxiliary optical fiber ring connects each main head end to the auxiliary head end. In the auxiliary optical fiber loop *, only a few 150 nm or 13 10 nm laser transmitters with a series of EFDA are used to demultiplex and transmit a small number of wavelengths. On the auxiliary head end, it can be targeted for narrowcast (narrowcasting) and broadcasting services and will be based on 150,000 nanometer broadcasting It switched to 1310nm-based communication. In each fiber node, an optical receiver was used to convert the optical signals transmitted down at different wavelengths back to electrical signals, and the electrical signals were transmitted via the coaxial cable system. To this paper size, the Chinese National Standard (CNS) A4 specification (210 X 297 mm) is applied r ---; 11 !! ---- install i! --- order I! 1 I line (please read the first Note ^ Item 1 {write this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 468314 B7__ 5. Description of Invention (1) Each user. In order to address the return path, FIG. 3 shows a simplified main head end (300) (corresponding to the code (10) shown in FIGS. 1 and 2), several main / auxiliary head ends / hubs (3 3 0) ( Corresponding to the codes (12a), (12b), (12c), and (14a), (14b), (14c), and (14d)) and nodes (360) (corresponding to Figures 1 and 2) The code (16a-16d) shown in Figures 1 and 2. This figure is the general architecture of a 10w DM stack of a traditional hybrid fiber / coaxial cable (HFC) cable television network (please Note 'For ease of illustration, Figure 3 assumes that the fiber optic network stays in the range of 1550 nanometers from the primary / secondary headend to the node), and that the architecture includes an external modulating analog transmitter source (3 0 5) and an external modulation DWDM transmitter (320) (Of course, the transmitter is not necessarily a DWDM external modulation transmitter, but can also be a direct modulation transmitter.) Such as As shown in Figures 3A and 3B, the main head end is collectively referred to as (300), the main / auxiliary head end / hub is collectively referred to as (330), and the node is collectively referred to as (360) (individually (360a), (3 6 0 b), etc. ) ( Those skilled in the art should understand that although the above situation is shown in the figure, the ITU transmitter does not necessarily need to be placed in the same position as the broadcast transmitter.) The figure shows the DWDM transmitter at the main head end ( 3 2 0) includes: a laser module for providing bias voltage and temperature, a pre-distortion circuit and a monitoring control unit, and a device for modulating a radio frequency source using radio frequency content. The radio frequency content is an analog broadcast television signal or a target service QA Μ signal .. tuned ..---.---------- install --- (please read the notes on the back before «writing yellow) * β -line _ staff of Intellectual Property Bureau, Ministry of Economic Affairs Printed by the consumer cooperatives The paper size applies to the Chinese National Standard (CNS) A4 specifications (210 * 297 mm> -13- 16 8 31 4 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (11) The technology is external modulation (using a modified balanced bridge Mach-Zehnder _ interferometer) or direct modulation (directly using laser current control). 0-Optically convert the analog transmitter source (3 0 5) Output amplification (3 07) to a saturation level (for example For example, approximately + 17 dBm), and then transmitted to the main / auxiliary head via a standard (no dissipative shift) single-mode fiber (SMF) of 40,000 meters (the SMF length provided is still only an example). End, and after being amplified by a bait-doped fiber amplifier (EDFA) (335), it is divided by the optical splitter (340) into a number of outputs that meet the target service wavelength number. After optical distribution, the analog signal is multiplexed with the QAM wavelength in an analog / digital coupler (350), and the composite signal is redistributed in order to serve several nodes (36) that are targets of the specific wavelength. . In this general system, each node (360) is "20 km" away from the primary / auxiliary headend, and these nodes (360) are connected using standard SMF (note that each There may be multiple target nodes for the wavelength, especially in the early deployment phase when the user adoption rate is low, which corresponds to a lower bandwidth requirement for each node). Please refer to FIGS. 3A and 3B. We should understand that although the DWDM laser light source is also an external modulation transmitter (3 2 0) in this example system, a direct modulation light source can also be used. The figure shows eight wavelengths, and combines these eight wavelengths into a single fiber in a multiplexer (325) (at an interval of 200 billion, 8 wavelengths can be multiplexed) Into). The multiplexer (3 2 5) (and the demultiplexer (3 5 5) to be described below) components, please read the note field on the back of Sr 1: binding and binding ▲ This paper size applies to the Chinese National Standard (CNS ) A4 specification (210x 297 mm) -14-A7 468314 ___B7_______ V. Invention Description (12) is used to combine the ITU grid wavelengths through a low loss coupler 'and send these wavelength scales to a single fiber (And the demultiplexer (3 5 5) then isolates these wavelengths so that they are placed on individual fibers) ° Although the SMF can be any length, the standard SMF is 40 km long and may be The fiber that sends the analog signal is different 'but it can also be in the same fiber optic cable bundle (each fiber cable bundle contains multiple fibers). After the 40 km, at the position of the primary / secondary head end, 'EDFA (357) amplifies the combined wavelength' and then demultiplexes the wavelength to the independent by the demultiplexer (3 5 5). In the fiber. As mentioned above, each target service wavelength is combined with one of the analog signal outputs, and will be distributed to each node (360) by a single fiber carrying the analog and digital signals. The fiber node (360) includes a receiver for detecting analog and Q AM signals for distribution outside the node via a radio frequency cable system. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs In line with the trend towards a more symmetrical network, the return path shown in the DW DM stack system shown in Figures 3A and 3B reflects the trend of the downward path. An exception to this reflection does not often occur in a single fiber of a DWDM system, but often occurs in the part of the return path from the node (360) to the primary / secondary headend (330). The return path is managed by a two-hop program. In the system shown, a temperature-compensated laser (usually a DFB) of 1 3 1 0/1 550 nm is in the node (36 0). The time-division and frequency-division multiplexed radio frequency signals sent by each household (for example, 1 ο 〇 〇 -12 σ ο users) served by this node drive the D W D MH laser (385). The light output is transmitted via the link (shown as " 20 km ") to the main / paper size that applies the Chinese National Standard (CNS) A4 specification (210 * 297 mm) I 15-: ~~ " Printed by DuPont Consumer Cooperation of the Intellectual Property Bureau of the Ministry of Economic Affairs 6 8 3 1 4 A7 ___B7____ V. Description of the invention (13) Auxiliary head end (330), at this time, it will be detected and amplified upon returning to the receiver (380) _ The light Output 'and then the optical output directly modifies an ITU grid DWDM laser transmitter (385). The laser (3 8 5) is one of several lasers that combine the entire return path into a DWDM Group 'in order to transmit back to the main head end (300) via the 40 km link for subsequent processing. Each DWDM wavelength can be processed using a combination of time division, frequency division, and code division multiplexing Return communication from multiple nodes (360). As mentioned earlier, the network solution shown in Figures 3 A and 3 B assumes that the fiber-optic network autonomous head-to-node is maintained in the range of 1550 nm However, if an existing system uses a retransmission architecture on the primary / secondary headend, it The standard is to keep this basic structure as far as possible. Fortunately, DWDM can still be used to provide the narrowcast stack = II. Frequency stacking in the frequency stacking system, the 5-4 2 MHz return passband is divided into sections Upconverting or moving to another frequency passband. The above work can be performed in a primary / secondary headend environment, or in the node where the user will be described below. A frequency stacking system (FSS) implementation The main advantage of the example is that it expands the return bandwidth passed by each family, which can allow a larger node size and reduce the overall system cost (more specifically, the FSS embodiment provides a same number of decorative users A higher speed can be used or the system can be extended with a larger number of users.) If we examine the "typical" node configuration shown in Figure 4, the node serves the paper standard applicable to the national standard of the country < CNS ) A4 specification (210 * 297 mm > -16- " " ------— — —— — * I I ----- «— — III — — ^ I, < (Read the photobook on the back and reprint the photo) 468 31 4 A7 ____B7 V. Description of the invention 05) The different passbands in the passbands from 5 to 4 0 0. A pilot carrier has two main power bearers. In the first function, the pilot carrier compensates the optical fiber network. In the second function, the down-converter uses the pilot carrier to maintain phase lock with the up-converter, thereby eliminating frequency offset. The transmitter used in this application It is not a standard band-limited return path transmitter. In this embodiment, a forward path transmitter (510) designed to operate in a 50-400 MHz passband uses an up-converter signal from an up-converter (500). . The FSS receiver (BCR) (520) is also different from the normal return path receiver (RPR (4 10) in Figure 4). The receiver (520) still selected for the forward path provides a composite RF output. Combined with the passband are four up-conversion frequency bands and pilot carriers. In order to restore individual frequency bands, a down-converting program is performed by a down-converter (530), which provides the devices returned to the up-conversion frequency band to the original 5- 4 2 MHz spectrum. Use l · I J --- — — — — — — * — — — — — — — — — — — — I— (read the notes on the back first, write this page) frequently used as the intellectual property of the Ministry of Economic Affairs Bureau ’s consumer cooperation, printed by Du, 3-D D C, 4 B for lifter and 顼 顼 变 降 变 变 变 变 变 变 变 变 变 变 变 动 动 动 动 动 动 区 动 动 动 动 区 区 区 区 区 区 区 区 区 区 区 区 区 区 区 区 发 时 点 点 波 波 载 载 载 步 执 步 步 步 步 反 反 反 反 合 5 合Each \ 1 is equipped with a sub-band back frequency and a back frequency to a transmission frequency and the transmission rises to 1 and loses each of them, which will be magnificent after the band. Wandai Belden 2H 4K and -100, 5 2 road 4 network stand up in a week 11-'w solve the problem and the other end of the most stacking frequency and MDW D type after a picture The system is SSF and M DW D. In Chinese, the Chinese National Standard (CNS) A4 specification (210 X 297 mm) is applicable to this paper standard. 4 6 8 31 4 A7 __________B7___ V. Description of the invention. First, second, and third embodiments of a combined system of the present invention. Each method works together to improve the efficiency of the network in return distribution and return transmission, and allows the combined example. The system has thirty-two 5-4 2 MHz return bands on a single fiber . As will be explained below, the main differences between these embodiments are the location of the I TU grid transmitter and the location of the frequency stacking system (the network architecture shown in Figure 7 has DWDM transmissions at the primary / secondary headends). The network architecture shown in Figure 8 is equipped with a DWDM transmitter at the node, while the network architecture shown in Figure 9 is equipped with a frequency stacking system and a DWDM transmitter at the primary / secondary head end). In the first embodiment shown in Fig. 7, the ITU grid DWDM transmitter (750) is located at the primary / secondary head end. As shown in the figure, at the node position (the node is collectively referred to as (760)), the return path signal is up-converted by an up-converter (76). The return path signals are transmitted back to the primary / secondary head end via a fiber optic distribution network, and these signals are received by a forward path segment switching receiver (BCR) (735).

與隨即將射頻輸出自該接收機傳送到一降頻變頻器的 標準F S S網路不同,在本發明的第一實施例中,該射頻 輸出係繞送到一 DWDM發射機( 7 5 0 ),而DWDM 發射機(7 5 0 )在該I TU栅上具有一輸出波長。圖7 所示之特定實施例在每一這些發射機上具有一組的四個不 連接的5 _ 4 2百萬赫通帶(當然,熟悉本門技術者當可 了解,每一發射機上的通帶數可大於圖示的“4”個通帶,事 實上,該通帶數只受限於雷射所能處理的數目)。 ------- l·· n —Μ I f -I n ·1 I n I ^ I ^ n >1 n ϋ ^ i tt I (請先閱讀背面之注意事項』..其本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS>A4規格(210 X 297公釐) 4 6 8 31 4 A7 ___B7 五、發明說明(17 ) (锖先《讀背面之注意事項再填寫本頁) 使用諸如2 0 0 0億赫的間隔時’圖7所示之組態可 以光學方_式在一單一光纖上將八個分別有其本身不同 I TU柵波長的發射機(7 5 0 )多工化(利用多工器( 755)),而在該單一光纖上提供了32個分離的5— 4 2百萬赫通帶,因而淸楚地示出F S S與DWDM的結 合如何大幅提高返回路徑的通訊容量。然後將該等信號繞 送到頭端(請注意,根據所涉及距離及諸如備援等需求的 不同,各光學放大器可能需要符合頭端接收機的輸入要求 〇 _ 在頭端上,解多工器(7 70)將光信號解多工(在 所示的例示解多工器中,係將光信號解多工成八個波長) 。將個別的波長繞送到接收機(B C R ) ( 7 8 0 )(每 經濟部智慧財產局貝工消费合作社印製 一波長有一接收機),而這些接收機與主要/輔助頭端上 用於接收頻率堆疊多工光信號的接收機類型相同。此時, 將複合射頻信號自該等BCR (780)繞送到各降頻變 頻器(790),即完成了該FSS系統。來自降頻變頻 器(7 9 0 )的四個5_4 2百萬赫射頻輸出對應於合倂 到用戶所在節點(7 6 0 )的四個同軸電纜支線,且可將 這四個5 - 4 2百萬赫射頻輸出繞送到各種返回路徑應用 接收機。 然而’請務必注意,自通訊系統的觀點而論,使用降 頻變頻時並沒有固有的要求,要求應是取決於硬體的實施 方式。主要/輔助頭端或主頭端實施例可在5 一 4 2百萬 赫的範圍內預期有一射頻信號,且可將該等實施例設計成 -20- 本紙張尺度適用中困國家標準(CNS)A4規格(210 * 297公釐) 468 31 4 A7 _ B7 五、發明說明ί9 ) 穩定性是與本發明所述的技術組合以及D W D Μ本身相關 聯的一慨技術議題。 ·'現在將說明本發明的一第三實施例,圖9示出一基於 主要/輔助頭端的頻率堆疊及DWDM系統實施例<如圖 所τκ,頻率堆疊系統(圖中示出一個4或8頻帶系統,而 前文中已說明了該頻率堆疊系統之細節)(9 0 0 )及 DWDM雷射(9 10 a — d) /DWDM 多工器( 9 2 0 )都係位於主要/輔助頭端內。主要/輔助頭端以 雙接收機RPR/2 (930)接收各光纖節點的輸出。 同樣地,亦可實施第三實施例經過小幅修改的版本。 請再參閱圖2所示之網路架構,在如同圖9所示第三實施 例中的輔助(或主要)集線器上,可聚集反向路徑資料, 以便利用頻率堆疊(F S )方法而驅動每一 D W D Μ雷射 發射機。來自每一用戶的反向路徑資料傳輸通常是劃碼多 向近接(CDMA)、分頻多向近接(FDMA)、分時 多向近接(TDMA )這三種多向近接架構中的一種架構 ,或是這些架構的任何組合。由於有效率地使用反向路徑 鏈路以確保實現更大的容量,所以可使用C DMA、 FDMA、TDMA之任何組合連同結合式DWDM/FS網路 架構而將頻道的使用最佳化。 因此,在本發明的每一實施例中,頻率堆疊系統大幅 增加反向路徑的通訊容量。此種情形係示於圖1 0,圖中 示出由四個升頻變頻返回路徑頻率區段(5 — 4 2百萬赫 )構成的一複合射頻頻譜。在該實例中’在載送多工.信號 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -f I T I — II-----* — I (請先閱讀背面之注意事項ί \寫本頁)Unlike the standard FSS network, which then transmits the RF output from the receiver to a down-converter, in the first embodiment of the present invention, the RF output is routed to a DWDM transmitter (750), The DWDM transmitter (750) has an output wavelength on the ITU grid. The specific embodiment shown in FIG. 7 has a set of four unconnected 5 _ 4 2 MHz passbands on each of these transmitters (of course, those skilled in the art will understand that each transmitter The number of passbands can be greater than the "4" passbands shown in the figure, in fact, the number of passbands is limited only by the number of lasers that can be processed). ------- l · · n —Μ I f -I n · 1 I n I ^ I ^ n > 1 n ϋ ^ i tt I (Please read the precautions on the back first ..... this page ) Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the paper size applies to Chinese national standards (CNS > A4 size (210 X 297 mm) 4 6 8 31 4 A7 ___B7 V. Description of the invention (17) (锖(Please note that this page is to be completed on this page.) When using an interval such as 200 billion Hz, the configuration shown in Figure 7 can be used to optically combine eight different I TU grating wavelengths on a single fiber. The transmitter (7 50) is multiplexed (using the multiplexer (755)), and 32 separate 5-4 2 MHz passbands are provided on this single fiber, so the FSS and How does the combination of DWDM greatly increase the communication capacity of the return path. Then these signals are routed to the head end (please note that depending on the distance involved and requirements such as redundancy, each optical amplifier may need to meet the head end receiver's Input requirements 0_ On the head end, the demultiplexer (7 70) demultiplexes the optical signal (in the illustrated demultiplexer, Demultiplex the optical signal into eight wavelengths). Circulate the individual wavelengths to the receiver (BCR) (780) (each receiver printed by a wavelength of the Shellfish Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs has a receiver), and These receivers are of the same type as the receivers on the main / auxiliary head-end for receiving frequency-stacked multiplexed optical signals. At this time, the composite RF signal is routed from these BCRs (780) to the down-converters (790) This completes the FSS system. The four 5_4 2 megahertz RF outputs from the down-converter (7 9 0) correspond to the four coaxial cable branch lines combined to the user's node (760). Route these four 5-4 2 megahertz RF outputs to various return path application receivers. However, 'Please note that from the viewpoint of the communication system, there are no inherent requirements when using down-conversion, and the requirements should be It is a hardware-dependent implementation. The primary / secondary or main head-end embodiments can be expected to have an RF signal in the range of 5 to 42 MHz, and these embodiments can be designed as -20- Paper Standard Applies to National Standards for Difficulties (CNS) A4 (210 * 297 mm) 468 31 4 A7 _ B7 V. Description of the invention ί 9) Stability is a technical issue associated with the technical combination described in the present invention and the DWD M itself. "'The present invention will now be explained A third embodiment, FIG. 9 shows an embodiment of the frequency stacking and DWDM system based on the primary / secondary headends < As shown in the figure τκ, the frequency stacking system (the figure shows a 4 or 8 band system, and The details of the frequency stacking system (9 0 0) and the DWDM laser (9 10 a-d) / DWDM multiplexer (9 2 0) are all located in the main / auxiliary headend. The primary / secondary head-end receives the output of each fiber node with a dual receiver RPR / 2 (930). Similarly, a slightly modified version of the third embodiment can also be implemented. Please refer to the network architecture shown in FIG. 2 again. On the auxiliary (or main) hub in the third embodiment shown in FIG. 9, the reverse path data can be aggregated to drive each of them using the frequency stacking (FS) method. A DWD M laser transmitter. The reverse path data transmission from each user is usually one of the three multidirectional proximity architectures: coded multidirectional proximity (CDMA), frequency division multidirectional proximity (FDMA), and time division multidirectional proximity (TDMA). Is any combination of these architectures. Because the reverse path links are used efficiently to ensure greater capacity, any combination of C DMA, FDMA, TDMA can be used in conjunction with the combined DWDM / FS network architecture to optimize channel usage. Therefore, in each embodiment of the present invention, the frequency stacking system greatly increases the communication capacity of the reverse path. This situation is shown in Figure 10, which shows a composite radio frequency spectrum composed of four frequency-conversion return path frequency segments (5-42 MHz). In this example, 'multi-tasking is carried. The paper size of this signal applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -f ITI — II ----- * — I (Please read the (Note \ Write this page)

•V -線. 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 46 831 4 A7 B7 五、發明說明r ) 之上產生一基準引示音,以便合成該四個頻帶的堆疊。該 引示音係連同升頻變頻信號而傳送,且將該引示音用於一 區段降頻變頻器單元,以便使降頻變頻同步,因而去除任 何頻率偏移誤差。然後利用該複合射頻信號驅動每一 DWDM反向路徑雷射發射機。該DWDM雷射發射機可 以是在1 5 5 0奈米波長頻帶中工作的直接調變式或外部 調變式D F B雷射發射機。如同在先前的實施例中,多工 器(9 2 0 )以光學方式將來自DWDM雷射(9 1 0 a _ d )的信號多工化到一單一光纖,以便繞送到頭端,可 在頭端上將光信號放大,並以光學方式將光信號解多工到 四個不同的光接收機》來自每一光接收機的複合輸出射頻 信號被傳送到一區段降頻變頻器單元,而提取四個獨立的 5 - 4 2百萬赫頻帶。仍然可將每一高速資料頻帶繞送到 各返回路徑應用接收機。 圖1 1示出結合式F S S/DWDM擴展程序。如圖 所示,一單一共用式傳統3 7百萬赫區段提供給每一家庭 74千赫(針對通過5 00戶家庭的節點)。實施頻率堆 疊(4個頻帶)時,將共用區段增加爲1 4 8百萬赫,因 而將每一家庭的返回頻寬增加到2 9 6千赫。然而*同時 實施頻率堆疊及DWDM時,將返回路徑頻寬區段增加到 原先的3 2倍或1 1 8 4百萬赫,因而將每一家庭的返回 頻寬增加到2 . 3 6 8百萬赫。 · 因此,本發明之架構在反向路徑網路中提供了更大的 容量,且該架構相當適合實施於可能有光纖限制的現.有系• V-line. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 46 831 4 A7 B7. V. Description of the invention. Stacking of frequency bands. The pilot tone is transmitted together with the up-converted frequency conversion signal, and the pilot tone is used in a section of the down-converter unit in order to synchronize the down-conversion frequency, thereby removing any frequency offset error. The composite RF signal is then used to drive each DWDM reverse path laser transmitter. The DWDM laser transmitter can be a direct-modulated or externally-modulated D F B laser transmitter operating in a 1 500 nm wavelength band. As in the previous embodiment, the multiplexer (9 2 0) optically multiplexes the signal from the DWDM laser (9 1 0 a _ d) to a single optical fiber for routing to the head end. Amplify the optical signal on the head end and optically demultiplex the optical signal to four different optical receivers. The composite output RF signal from each optical receiver is transmitted to a section of a down-converter unit. While extracting four independent 5-4 2 MHz bands. Each high-speed data band can still be routed to each return path application receiver. Figure 11 shows the combined F S S / DWDM extension procedure. As shown in the figure, a single shared traditional 37 Mhz segment is provided to each family at 74 kHz (for nodes that pass through 500 households). When implementing frequency stacking (4 frequency bands), the common sector was increased to 148 MHz, thereby increasing the return bandwidth of each household to 296 kHz. However * when the frequency stacking and DWDM are implemented at the same time, the return path bandwidth section is increased to 3 times the original or 1 1 84 MHz, thus increasing the return bandwidth of each household to 2. 3 6 8 hundred Vandoch. · As a result, the architecture of the present invention provides greater capacity in a reverse path network, and the architecture is quite suitable for implementation in an environment where fiber limitations may exist.

本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公H flij· — ----------·!ϊ··— — 訂·!----- (請先閱讀背面之;i意事項ί>,.寫本頁) 一 468314 A7 _B7 五、發明說明θ ) 統。 雖然_本文已詳細示出且說明了各種實施例’但是我們 當.了解,在不脫離本發明的精神及範圍下’且在最後的申 請專利範圍之界限內,可以前文的揭示事項涵蓋對本發明 的各種修改及變化。 — I-t — l — lf--- - I (請先閱讀背面之注意事項一攻寫本頁) tj· -線 經濟部智慧財產局員工消費合作杜印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -24 -This paper size applies to China National Standard (CNS) A4 specifications (210 X 297 male H flij · — ---------- ·! Ϊ ·· — — Order ·! ----- (Please read first On the back of the page; i means matters >,. Write this page) 468314 A7 _B7 V. Description of the invention θ) system. Although various embodiments have been shown and described in detail herein, but we should understand that without departing from the spirit and scope of the present invention, and within the limits of the scope of the final patent application, the foregoing disclosure may cover the present invention. Various modifications and changes. — It — l — lf ----I (please read the notes on the back first to write this page) tj · -The Intellectual Property Bureau of the Ministry of Online Economics and Consumer Cooperation Du printed this paper. The paper standards are applicable to China National Standards (CNS) A4 size (210 X 297 mm) -24-

Claims (1)

468314 I 六、申請專利範圍 1 · 一種在雙向纜線通訊的反向路徑網路中提供了更 大的容量之有線電視架構,該架構包含: 一―—----------- 複數個光學至電氣轉換節點及一主要/ .輔助頭端,該 主要/輔助頭端連接該等光學至電氣轉換節點及一主頭端 ’且該等節點及主要/輔助頭端共同包含: 一升頻變頻器’用以自複數個同軸電纜支線接收複數 個射頻反向路徑通帶’並將該等返回通帶升頻變頻爲不同 的通帶; 複數個DWDM發射機’每一發射機在I TU柵上具 有一輸出端’該等發射機傳輸一組不連接的通帶;以及 一 DWDM多工器’該多工器自每一該等複數個 DWDM發射機接收一信號,並在一單一光纖上以光學方 式將該等DWDM發射機多工化,且將多工化信號繞送到 該主頭端; 且該主頭端包含: 接 器Η 多Μ DW D 該 白 將 以 用·’ ,長 器波 工別 多個 解爲 ΜΗ D 多 W解 D 號 j 信 的 收 經濟部智慧財產局員工消費合作社印製 R C B 信 頻 射 合 複 ί成 機換 收轉 接號 換信 轉等 段該段 區將區 個並個 數,數 複長複 波 •ΤΓΤ 器 頻 變 頻 降 D 個 等 該 收 等 接 以 用 及該 以自 •’ 以 號用 別 個 成 換 轉 號 信· 等 該 將 並 號 信 頻 射 合 複 等 該 收, 接號 R 信 C 頻 Β 射 對支 號纜 信電 頻軸 射同 別個 個數 等複 該等 的該 出的 輸上 D 點 C 節 Β 換 個轉 數氣 複電 等至 該學 自光 中一 其每 於 應 本紙張尺度適用中國國家棣準(CNS ) Ad规格(210X29?公釐) -25- A8 B8 C8 D8 46 8 314 π、申請專利範圍 線。 2 ·_如申請專利範圍第1項之架構,其中該主要/輔 助頭端進一步包含一光學放大器’其中該光學放大器在將 自該DWDM多工器輸出的該等多工化信號繞送到該主頭 端之前,先將該等多工化信號放大。 3 .如申請專利範圍第2項之架構,其中該光學放大 器是一餌摻雜光纖放大器(EDFA)。 4 .如申請專利範圍第3項之架構,其中包含該 1 TU柵的該等波長是一組間隔在2 0 〇 0億赫的預定頻 率。 5 .如申請專利範圍第1項之架構,其中係使用分時 多向近接(TDMA)、分頻多向近接(FDMA)、劃 碼多向近接(CDMA)、或上述方式的任何組合將頻道 參數所界定的傳輸鏈路之通訊速率最佳化。 6 . —種在雙向纜線通訊的反向路徑網路中提供了更 大的容量之有線電視架構,該架構包含: 複數個光學至電氣轉換節點,每一節點包含: 一升頻變頻器,用以自複數個同軸電纜支線接收複數 個射頻反向路徑通帶,並將該等返回通帶升頻變頻爲不同 的通帶;以及 由自該升頻變頻器輸出的升頻變頻信號驅動的一正向 路徑發射機,用以傳輸一頻率堆疊式多工化信號;以及 一主要/輔助頭端,用以連接該等光學至電氣轉換節 點及一主頭端,該主要/輔助頭端包含: 本紙張尺度適用中國®家雄準(CNS ) A4規格(210Χ297公釐) I:---^------^------1T------^ (诗先閱讀背面之注$項再填t .¾) 經濟部智慧財產局員工消費合作社印製 -26- Α8 Β8 C8 D8 六、申請專利範圍 (請先閲讀背面之注意事項再填良只) 複數個正向路徑區段轉換接收機(BCR),用以接 收該等羯率堆疊式多工化信號,並將該等信號轉換成一複 合射頻輸出· 複數個DWDM發射機,每一發射機在I TU柵上具 有一輸出端,每一該等複數個DWDM發射機自其中一個 該等複數個B C R接收一射頻輸出,且每一 DWDM發射 機傳輸一組不連接的通帶;以及 一 DWDM多工器,該多工器在一單一光纖上以光學 方式將該等D.W DM發射機多工化,且將多工化信號繞送 到該主頭端; 且該主頭端包含: —DWDM解多工器,用以將自該DWDM多工器接 收的信號解多工爲個別波長; 複數個區段轉換接收機(BCR),用以接收該等個 別波長’並將該等信號轉換成複合射頻信號;以及 趣·"部智慧財凌局員工消費合作社印製 複數個區段降頻變頻器(BCD),用以自該等 B C R接收該等複合射頻信號,並將該等信號轉換成個別 射頻信號, 其中自該等複數個B C D輸出的該等個別射頻信號對 應於每一光學至電氣轉換節點上的該等複數個同軸電纜支 線。 7 _如申請專利範圍第6項之架構,其中該主要/輔 助頭端進一步包含一光學放大器,其中該光學放大器在將 自該DWDM多工器輸出的該等多工化信號繞送到該主頭 本紙張尺度逋用中國國家榡率(CNS ) Α4规格(21〇χ297公釐) 6 4 經濟部智慧財產局員工消費合作社印製 8 314 ll D8 ___ 六、申請專利範圍 端之前,先將該等多工化信號放大。 8 如申請專利範圍第6項之架構,其中係使用分時 多向近接(TDMA)、分頻多向近接(FDMA)、劃 碼多向近接(CDMA)、或上述方式的任何組合將頻道 參數所界定的傳輸鏈路之通訊速率最佳化。 9 一種在雙向纜線通訊的反向路徑網路中提供了更 大的容量之有線電視架構,該架構包含: 複數個光學至電氣轉換節點,每一節點具有: 一升頻變頻器,用以自複數個同軸電纜支線接收複數 個射頻反向路徑通帶,並將該等返回通帶升頻變頻爲不同 的通帶;以及 在該ITU柵上具有一輸出端之一DWDM發射機’ 該發射機傳輸一組不連接的通帶:以及 一主要/輔助頭端,用以連接該等光學至電氣轉換節 點及一主頭端,該主要/輔助頭端具有: 一 DWDM多工器,該多工器自每一該等DWDM發 射機接收一信號,並在一單一光纖上以光學方式將該等 D W D Μ發射機多工化,且將多工化信號繞送到該主頭端 1 且該主頭端具有: 一 DWDM解多工器,用以將自該DWDM多工器接 收的信號解多工爲個別波長; , 複數個區段轉換接收機(B C R ),用以接收該等個 別波長,並將該等信號轉換成複合射頻信號:以及 本紙張尺度適用中國國家標準(CNS ) A4说格(210x297公董) I ^---^------裝-- (锖先閲讀背面之注意事項再填tao -a -28- 經濟部智慧財產局員工消費合作社印製 8 314 晋 D8 _____________________ 六、申請專利範圍 複數個區段降頻變頻器(BCD) ’用以自該等 β C R撲收該等複合射頻信號,並將該等信號轉換成個別 射頻信號, .其中自該等複數個B CD輸出的該等個別射頻信號對 應於每一光學至電氣轉換節點上的該等複數個同軸電纜支 線。 1 0 .如申請專利範圍第9項之架構,其中該主要/ 輔助頭端進一步包含一光學放大器,其中該光學放大器在 將自該DWDM多工器輸出的該等多工化信號繞送到該主 頭端之前,先將該等多工化信號放大。 1 1 .如申請專利範圍第9項之架構,其中係使用分 時多向近接(TDMA)、分頻多向近接(FDMA)、 劃碼多向近接(C D Μ A )、或上述方式的任何組合將頻 道參數所界定的傳輸鏈路之通訊速率最佳化。 1 2 . —種在雙向纜線通訊的反向路徑網路中提供了 更大的容量之有線電視架構,該架構包含; 複數個光學至電氣轉換節點,每一節點具有通到一主 要/輔助頭端之光纖鏈路; 其中該主要/輔助頭端連接該等複數個光學至電氣轉 換節點及一主頭端,該主要/輔助頭端包含: 一升頻變頻器,用以自複數個同軸電纜支線接收複數 個射頻反向路徑通帶,並將該等返回通帶升頻變頻爲不同 的通帶;以及 —DWDM發射機,該發射機在I TU栅上具有一輸 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) IU丨.----裝------訂------線 (讀先S讀背面之注意事項再填tΛ) •29- 6 4 經濟部智慧財產局員工消費合作社印製 D8 六、申請專利範圍 出端,該發射機傳輸一組不連接的通帶;以及 —DWDM多工器,該多工器自每一該等DWDM發 射機接收一信號,並在一單一光纖上以光學方式將該等 DWDM發射機多工化,且將多工化信號繞送到該主頭端 且該主頭端包含: 一 DWDM解多工器,用以將自該DWDM多工器接 收的信號解多工爲個別波長; 複數個區段轉換接收機(BCR),用以接收該等個 別波長,並將該等信號轉換成複合射頻信號;以及 複數個區段降頻變頻器(BCD),用以自該等 B C R接收該等複合射頻信號,並將該等信號轉換成個別 射頻信號, 其中自該等複數個B C D輸出的該等個別射頻信號對 應於每一光學至電氣轉換節點上的該等複數個同軸電纜支 線。 1 3 ·如申請專利範圍第1 2項之架構,其中該主要 /輔助頭端進一步包含一光學放大器,其中該光學放大器 在將自該DWDM多工器輸出的該等多工化信號繞送到該 主頭端之前,先將該等多工化信號放大。 1 4 . 一種用來增加雙向纜線通.訊架構的民向路徑中 的容量之方法,該架構具有複數個光學至電氣轉換節點, 一主頭端、及一主要/輔助頭端,該主要/輔助頭端連接 該等節點及主頭端,該方法包含下列步驟: 本紙張尺度適用中國國家插準(CNS ) A4规格(210X297公釐) I--------裝------訂-----.ΙΊ 線 (請先閱讀背面之注意事項再填f < ) -30- $888 ABCD 468314 六、申請專利範圍 自複數個同軸電纜支線接收複數個射頻反向路徑通帶 ,並將該等返回通帶升頻變頻爲不同的通帶; 利用複數個DWDM發射機傳輸一組不連接的通帶’ 每一發射機在ITU柵上具有一輸出端: 利用一DWDM多工器在一單一光纖上將自該等 DWDM發射機接收的信號多工化; 將多工化信號繞送到該主頭端; 將所接收的信號解多工爲個別波長; 接收該等個別波長,並將該等信號轉換成複合射頻信 號;以及 接收該等複合射頻信號,並將該等信號轉換成個別射 頻信號。 1 5 ·如申請專利範圍第1 4項之方法,進一步包含 下列步驟: 在將自該DWDM多工器輸出的該等多工化信號繞送 到該主頭端之前,先將該等多工化信號放大。 1 6 .如申請專利範圍第1 4項之方法,其中係使用 分時多向近接(TDMA)、分頻多向近接(FDMA) 、劃碼多向近接(C D Μ A )、或上述方式的任何組合將 頻道參數所界定的傳輸鏈路之通訊速率最佳化。 本紙張尺度適用中画國家揉率(CNS > A4現格(210X297公釐) 1ΊΙ^------裝-- (請先閱讀背面之注意事項再填S..爿) 、rr 經濟部智慧財產局員工消費合作社印製 -31 -468314 I VI. Scope of Patent Application 1 · A cable television architecture that provides greater capacity in a reverse path network with two-way cable communication. The architecture includes: --------------- -A plurality of optical-to-electrical conversion nodes and a main / auxiliary head end, the main / auxiliary head end connects the optical-to-electrical conversion nodes and a main head end 'and the nodes and the main / auxiliary head end together include: An up-converter 'used to receive multiple RF reverse path passbands from multiple coaxial cable branch lines' and upconvert these return passbands to different passbands; multiple DWDM transmitters' each transmitter On the I TU grid, there is an output 'these transmitters transmit a set of unconnected passbands; and a DWDM multiplexer' which receives a signal from each of the plurality of DWDM transmitters, and Optically multiplex the DWDM transmitters on a single optical fiber, and multiplex the multiplexed signal to the main head end; and the main head end includes: a connector Η multi-M DW D which will be used · ', Multiple solutions of long-wave generators are ΜΗ D W solution D number j The receipt of the Ministry of Economic Affairs Intellectual Property Bureau employee consumer cooperative printed RCB letter frequency radio frequency recovery chengcheng exchange for transfer number exchange letter conversion and other sections Complex wave • ΤΓΤ frequency conversion down to D, waiting for the receiver to use and use the "'number to use another for the transfer of the number of signals · waiting for the number of signals and the frequency of radio transmission and recombination, waiting for the receiver, R The letter C frequency B is shot on the cable of the support cable. The frequency signal of the cable is shot with the same number and so on. The output is on point D. Section C. B is changed for a number of revolutions. According to this paper size, China National Standard (CNS) Ad specifications (210X29? Mm) -25- A8 B8 C8 D8 46 8 314 π, patent application line. 2 · _ If the structure of the first patent application scope, wherein the main / auxiliary head end further includes an optical amplifier 'wherein the optical amplifier is routing the multiplexed signals output from the DWDM multiplexer to the Before the main head end, the multiplexed signals are amplified. 3. The structure of item 2 of the patent application scope, wherein the optical amplifier is an bait-doped fiber amplifier (EDFA). 4. The structure according to item 3 of the scope of patent application, wherein the wavelengths including the 1 TU grid are a set of predetermined frequencies spaced at 200 billion hertz. 5. The structure of item 1 of the scope of patent application, which uses time-division multi-directional proximity (TDMA), frequency-division multi-directional proximity (FDMA), coded multi-directional proximity (CDMA), or any combination of the above methods to channel The communication rate of the transmission link defined by the parameters is optimized. 6. A cable television architecture that provides greater capacity in a reverse path network with two-way cable communications. The architecture includes: a plurality of optical-to-electrical conversion nodes, each node including: an up-converter, It is used to receive multiple RF reverse path passbands from a plurality of coaxial cable branches, and upconvert these return passbands to different passbands; and driven by the upconverter signals output from the upconverter. A forward path transmitter for transmitting a frequency-stacked multiplexed signal; and a main / auxiliary head end for connecting the optical-to-electrical conversion nodes and a main head end, the main / auxiliary head end including : This paper size is applicable to China® Jia Xiong Zhuan (CNS) A4 specification (210 × 297 mm) I: --- ^ ------ ^ ------ 1T ------ ^ (Shi Xian Read the note on the back and fill in t. ¾) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs -26- Α8 Β8 C8 D8 VI. Application scope of patents (please read the precautions on the back before filling in only) Path-to-Segment Conversion Receiver (BCR) to receive these rate-dependent reactors Multiplexed signals, and convert these signals into a composite RF output. A plurality of DWDM transmitters, each transmitter has an output terminal on the I TU grid, each of the plurality of DWDM transmitters from one of the A plurality of BCRs receive a radio frequency output, and each DWDM transmitter transmits a set of unconnected passbands; and a DWDM multiplexer, which optically connects the DW DM transmitters on a single optical fiber Multiplexing and routing the multiplexed signal to the master head end; and the master head end includes:-a DWDM demultiplexer for demultiplexing signals received from the DWDM multiplexer to individual wavelengths A plurality of segment conversion receivers (BCRs) to receive the individual wavelengths and convert the signals into composite radio frequency signals; and the Fun " Ministry of Smart Finance Bureau employee consumer cooperative prints a plurality of segments A down-converter (BCD) is used to receive the composite RF signals from the BCRs and convert the signals into individual RF signals, where the individual RF signals output from the multiple BCDs correspond to each Light Electrical switching nodes to a plurality of such coaxial line branches. 7 _ If the architecture of the scope of patent application item 6, wherein the main / auxiliary head end further includes an optical amplifier, wherein the optical amplifier is routing the multiplexed signals output from the DWDM multiplexer to the main The size of the original paper is in Chinese National Standard (CNS) A4 (21 × 297 mm) 6 4 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 8 314 ll D8 ___ 6. Wait for multiplexed signal amplification. 8 If the structure of the sixth item of the scope of patent application is applied, the channel parameters are time-division multi-directional proximity (TDMA), frequency-division multi-directional proximity (FDMA), coded multi-directional proximity (CDMA), or any combination of the above methods. The communication rate of the defined transmission link is optimized. 9 A cable television architecture that provides greater capacity in a reverse path network with two-way cable communication, the architecture includes: a plurality of optical-to-electrical conversion nodes, each node having: an up-converter for Receiving a plurality of RF reverse path passbands from a plurality of coaxial cable branches and upconverting the return passbands to different passbands; and a DWDM transmitter with one of the outputs on the ITU grid And a set of unconnected passbands: and a main / auxiliary head end for connecting the optical-to-electrical conversion nodes and a main head end, the main / auxiliary head end has: a DWDM multiplexer, the multi The multiplexer receives a signal from each of the DWDM transmitters, and optically multiplexes the DWD M transmitters on a single optical fiber, and winds the multiplexed signal to the master head end 1 and the The main head end has: a DWDM demultiplexer for demultiplexing signals received from the DWDM multiplexer to individual wavelengths; and a plurality of segment conversion receivers (BCR) for receiving the individual wavelengths , And these The signal is converted into a composite RF signal: and this paper size is applicable to the Chinese National Standard (CNS) A4 grid (210x297). I ^ --- ^ ------ install-(锖 read the precautions on the back before reading Fill in tao -a -28- Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 8 314 Jin D8 _____________________ VI. Application for a patent range of multiple sector down-converter (BCD) 'Used to collect from these β CR The RF signals are composited and converted into individual RF signals. The individual RF signals output from the plurality of B CDs correspond to the plurality of coaxial cable branches on each optical-to-electrical conversion node. 10. The architecture of item 9 of the scope of the patent application, wherein the main / auxiliary head end further includes an optical amplifier, wherein the optical amplifier is routing the multiplexed signals output from the DWDM multiplexer to the Before the main head end, the multiplexed signals are amplified. 1 1. The structure of the 9th scope of the patent application, which uses time division multidirectional proximity (TDMA), frequency division multidirectional proximity (FDMA), Yards Proximity (CD Μ A), or any combination of the above methods, optimizes the communication rate of the transmission link defined by the channel parameters. 1 2.-Provides a larger in the reverse path network of two-way cable communication The cable television architecture of the capacity includes: a plurality of optical-to-electrical conversion nodes, each node having an optical fiber link to a primary / secondary headend; wherein the primary / secondary headend connects the plurality of optical to An electrical conversion node and a main head end, the main / auxiliary head end includes: an up-converter for receiving a plurality of RF reverse path passbands from a plurality of coaxial cable branches and upconverting these return passbands Frequency conversion into different passbands; and —DWDM transmitter, which has a paper size on the I TU grid that is applicable to Chinese National Standard (CNS) Α4 specification (210X297 mm) IU 丨 .---- install- ----- Order ------ line (read the notes on the back and then fill in tΛ) • 29- 6 4 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs D8 6. The scope of the patent application is coming out, The transmitter transmits a group of unconnected The passband; and-a DWDM multiplexer that receives a signal from each of these DWDM transmitters and optically multiplexes the DWDM transmitters on a single fiber and multiplexes The signal is routed to the main head end and the main head end includes: a DWDM demultiplexer for demultiplexing the signals received from the DWDM multiplexer to individual wavelengths; a plurality of segment conversion receivers (BCR ) For receiving the individual wavelengths and converting the signals into composite radio frequency signals; and a plurality of sector down-converters (BCDs) for receiving the composite radio frequency signals from the BCRs and converting the The isochronous signals are converted into individual radio frequency signals, where the individual radio frequency signals output from the plural BCDs correspond to the plural coaxial cable branches on each optical-to-electrical conversion node. 1 3 · According to the structure of claim 12 in the scope of patent application, wherein the main / auxiliary head end further includes an optical amplifier, wherein the optical amplifier is routing the multiplexed signals output from the DWDM multiplexer to Before the main head end, the multiplexed signals are amplified. 1 4. A method for increasing the capacity in the civilian path of a two-way cable communication architecture. The architecture has a plurality of optical-to-electrical conversion nodes, a main head end, and a main / auxiliary head end. The main / Auxiliary head end connects these nodes and the main head end. The method includes the following steps: This paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm) I -------- install --- --- Order -----. ΙΊ cable (please read the precautions on the back and fill in f <) -30- $ 888 ABCD 468314 VI. Patent application scope Receive multiple RF reverse paths from multiple coaxial cable branches Passband and upconvert these return passbands into different passbands; use a plurality of DWDM transmitters to transmit a set of unconnected passbands' Each transmitter has an output on the ITU grid: use a DWDM The multiplexer multiplexes the signals received from the DWDM transmitters on a single optical fiber; winds the multiplexed signal to the master head end; demultiplexes the received signal into individual wavelengths; receives the multiplexer Individual wavelengths and convert these signals into composite RF signals Such a composite RF signal and receiving and converting such signals into individual radio frequency signals. 15 · The method according to item 14 of the scope of patent application, further comprising the following steps: Before routing the multiplexed signals output from the DWDM multiplexer to the main head end, first multiplex the signals Signal amplification. 16. The method according to item 14 of the scope of patent application, which uses time-division multi-directional proximity (TDMA), frequency-division multi-directional proximity (FDMA), coded multi-directional proximity (CD M A), or the method described above. Any combination optimizes the communication rate of the transmission link as defined by the channel parameters. This paper size applies to Chinese painting country kneading rate (CNS > A4 now (210X297mm) 1ΊΙ ^ -------- installation-- (Please read the precautions on the back before filling in S .. 爿), rr economy Printed by the Ministry of Intellectual Property Bureau's Consumer Cooperatives -31-
TW089107300A 1999-04-19 2000-06-14 Increased capacity bidirectional DWDM network architecture with frequency stacking system TW468314B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12991299P 1999-04-19 1999-04-19
US49408300A 2000-01-28 2000-01-28

Publications (1)

Publication Number Publication Date
TW468314B true TW468314B (en) 2001-12-11

Family

ID=26828022

Family Applications (1)

Application Number Title Priority Date Filing Date
TW089107300A TW468314B (en) 1999-04-19 2000-06-14 Increased capacity bidirectional DWDM network architecture with frequency stacking system

Country Status (6)

Country Link
EP (1) EP1173945A1 (en)
JP (1) JP2003524313A (en)
AU (1) AU4249200A (en)
CA (1) CA2370762A1 (en)
TW (1) TW468314B (en)
WO (1) WO2000064087A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10059559A1 (en) * 2000-11-30 2002-06-13 Siemens Ag Method and device for data transmission via optical fibers
US6944404B2 (en) 2000-12-11 2005-09-13 Harris Corporation Network transceiver for extending the bandwidth of optical fiber-based network infrastructure
US6731830B2 (en) 2001-01-05 2004-05-04 Redfern Broadband Networks, Inc. Asymmetric compatible network element
US20020126709A1 (en) * 2001-03-06 2002-09-12 Richard Lauder DWDM network
US7433598B2 (en) * 2001-06-29 2008-10-07 Broadband Royalty Corp. Uncooled laser generation of narrowcast CATV signal
US20030063847A1 (en) * 2001-07-20 2003-04-03 Buabbud George H. Deep fiber network architecture
US20040208572A1 (en) * 2001-12-27 2004-10-21 Koninklijke Philips Electronics N.W. WDM optical transmission system with passive hub
JP4568287B2 (en) * 2004-11-11 2010-10-27 日本電信電話株式会社 Optical transmission apparatus, optical transmission system, optical transmission method, and optical transmission method
CN100461856C (en) * 2006-05-23 2009-02-11 长飞光纤光缆有限公司 Open type decoding multiplexing system in full frequencies in digital TV
WO2010000307A1 (en) * 2008-06-30 2010-01-07 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and modules for an optical network
JP5228225B2 (en) * 2009-06-17 2013-07-03 株式会社ブロードネットマックス Optical CATV system
US9614618B2 (en) 2013-03-15 2017-04-04 Arris Enterprises, Inc. CATV video and data transmission system with hybrid input

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064460A (en) * 1974-03-16 1977-12-20 Communications Patents Limited Coaxial wired broadcasting system with tone responsive program selectors
US5136411A (en) * 1987-12-11 1992-08-04 General Instrument Corporation Dynamically responsive CATV system with shared fiber optic link
US5809395A (en) * 1991-01-15 1998-09-15 Rogers Cable Systems Limited Remote antenna driver for a radio telephony system
US5699176A (en) * 1995-11-06 1997-12-16 Lucent Technologies Inc. Upgradable fiber-coax network
WO1997049248A1 (en) * 1996-06-21 1997-12-24 Fiber Optic Network Systems Corp. Wavelength division multiplexing system

Also Published As

Publication number Publication date
EP1173945A1 (en) 2002-01-23
WO2000064087A1 (en) 2000-10-26
CA2370762A1 (en) 2000-10-26
JP2003524313A (en) 2003-08-12
AU4249200A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
EP1887724B1 (en) A wavelength division multiplexing passive optical network and its implement method
US5572347A (en) Switched video architecture for an optical fiber-to-the-curb telecommunications system
US7412169B2 (en) FTTH system for convergence of broadcasting and communication through switched broadcasting
US20080131125A1 (en) Loopback-type wavelength division multiplexing passive optical network system
KR100606102B1 (en) Broadcast/communication unified passive optical network system
CN102724012B (en) Light-source-shared WDM-PON (wavelength division multiplexed passive optical network) system based on suppressed carrier modulation technique
US20150010307A1 (en) Integrated access network
TW468314B (en) Increased capacity bidirectional DWDM network architecture with frequency stacking system
AU692455B2 (en) Optical fibre communications system
US20100021164A1 (en) Wdm pon rf/video broadcast overlay
US7450581B2 (en) Ethernet passive optical network for convergence of broadcasting and communication
CN103259593A (en) Passive optical network system for the delivery of bi-directional rf services
WO2008003215A1 (en) A method, system and device for realizing broadcast in wdm-pon
JP3533370B2 (en) Trunk node device and optical access network
WO2010064999A1 (en) Wavelength division multiplexed passive optical network
JP2006166465A (en) Method of transmitting broadcasting signal in passive optical subscriber network system, and the passive optical subscriber network system
WO2007135407A1 (en) A method and apparatus for combining electrical signals
JP2003234721A (en) Optical communication system
JPH05235867A (en) Optical connection system for subscriber terminal and branch station of communication network
JP4691330B2 (en) Broadcast and communication fusion distribution system
WO1995005041A1 (en) Optical fibre communications system
EP0645906B1 (en) Optical CATV system
CA2315869A1 (en) Method of transmitting an information signal
JP2000165354A (en) Digital optical transmission system
JPWO2007083384A1 (en) Unidirectional transmission signal distribution method, station side apparatus and subscriber premises side apparatus in passive optical network system

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees