TW468274B - Manufacturing method of bottom storage node - Google Patents
Manufacturing method of bottom storage node Download PDFInfo
- Publication number
- TW468274B TW468274B TW089123776A TW89123776A TW468274B TW 468274 B TW468274 B TW 468274B TW 089123776 A TW089123776 A TW 089123776A TW 89123776 A TW89123776 A TW 89123776A TW 468274 B TW468274 B TW 468274B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- patent application
- scope
- conductive
- item
- Prior art date
Links
- 238000003860 storage Methods 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 61
- 229910052751 metal Inorganic materials 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 32
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 27
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 22
- 238000005530 etching Methods 0.000 claims abstract description 6
- 238000001039 wet etching Methods 0.000 claims abstract description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 239000004575 stone Substances 0.000 claims description 8
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 7
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 claims description 5
- 229910021342 tungsten silicide Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- 239000012212 insulator Substances 0.000 claims description 3
- 229920005591 polysilicon Polymers 0.000 claims description 3
- 238000005498 polishing Methods 0.000 claims 3
- 239000012086 standard solution Substances 0.000 claims 2
- 229910021341 titanium silicide Inorganic materials 0.000 claims 2
- 101100518501 Mus musculus Spp1 gene Proteins 0.000 claims 1
- 229910008486 TiSix Inorganic materials 0.000 claims 1
- 229910010979 Ti—Six Inorganic materials 0.000 claims 1
- 239000013078 crystal Substances 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 239000004576 sand Substances 0.000 claims 1
- 239000003990 capacitor Substances 0.000 description 18
- 239000004065 semiconductor Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000005360 phosphosilicate glass Substances 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 2
- 238000000038 ultrahigh vacuum chemical vapour deposition Methods 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 phosphorus ions Chemical class 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- RCYJPSGNXVLIBO-UHFFFAOYSA-N sulfanylidenetitanium Chemical compound [S].[Ti] RCYJPSGNXVLIBO-UHFFFAOYSA-N 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
468 274 五、發明說明(1) 發明之領域 本發明係提供一種於半導體晶片表面製作一下層儲存 電極表面積方法’尤指一種可增加該下層儲存電極之表面 積的方·法。 -— 背景說明 動態隨機存取記憶體(dynamic random access memory, DRAM)是由數目魔大的記憶元(memory cell)所聚 集而成的e DRAM中的每一個記憶元包含有一個金屬氧化物 半導艘電晶體(metal oxide semiconductor field effect transistor·, MOSFET)作為一開關電晶體(pass transistor)以及一個電容器(capacit〇r)用來儲存電荷。 電容器是藉由下層儲存電極(storage node)與電極接觸洞 (node contact)中的導電物電連接,並與M0SFET之没極 (drain)形成一位元存取的通路。當其中一個電極層被施 予電壓時,另一電極層便得以感應一相對應之電荷值,藉 以達到記憶或輸出資料的目的。 電容器是動態隨機存取記憶體用來儲存訊號的重要元 件。如果一個DRAM的電容器所能儲存的電荷越多,在讀出 放大器讀取資料時就越不容易受到影響而發生軟錯記 (soft errors)等缺陷,同時亦可大幅降低其上電荷的再468 274 V. Description of the invention (1) Field of the invention The present invention provides a method for making the surface area of a lower layer storage electrode on the surface of a semiconductor wafer, and particularly a method and method that can increase the surface area of the lower layer storage electrode. -— Background Description Dynamic random access memory (DRAM) is an e DRAM that consists of a large number of memory cells. Each memory cell contains a metal oxide half. A metal oxide semiconductor field effect transistor (MOSFET) is used as a pass transistor and a capacitor to store charge. The capacitor is electrically connected to the conductive material in the node contact through the lower storage node and a one-bit access path to the drain of the MOSFET. When voltage is applied to one of the electrode layers, the other electrode layer can sense a corresponding charge value, thereby achieving the purpose of memorizing or outputting data. Capacitors are important components used by dynamic random access memory to store signals. The more charge a DRAM capacitor can store, the less likely it is to be affected when reading data from the sense amplifier, resulting in defects such as soft errors, and it can also significantly reduce the recharge of charges on it.
第4頁 274 五、發明說明(2) 補充頻率。目前增加電容器儲存電荷能力大致上朝兩個主 要的方向發展’第一是改進電容器元件之下層儲存電極 (storage node)與上層場電極(field Piate)中間之電容 器介電層( capacitor dielectric layer)的性質;第二是 增加電·容器的面積’尤其是下層儲存電極以及上層場電極 的表面積’以增加整個儲存於電容器内的電荷數量。電容 Is介電屠現多以0N0 (oxide/nitride/oxide)的複合結構 製成’這種複合結構不但能有效地減少單胞介電層的厚度 (僅約為5nm),同時亦提供了 一良好的介電常數,進而增 加電容器之單位表面積的儲存電荷數《本申請案即為—增 加電容器表面積的技術。 請參閱圖一至圖三’圖一至圖三為習知製作一DRAM堆 疊型電容(stacked capacitor,簡稱STC)單胞(ceii)元件 的流程剖面示意圖。如圖一所示,習知製作堆叠型電容單 胞的方法是先利用區域氧化法(local oxidation of silicon, LOCOS)於一半導體晶片10表面的矽基底12上形 成一場氧化層(field oxide)14,接著沉積一絕緣層16覆 蓋於場氧化層14之上方,而絕緣層16中另包復有一對相對 稱之摻雜多晶梦(doped poly-silicon)位元線(bit line) 18。接著沉積一無摻雜二氧化石夕(neutral silicate glass, NSG)層20於絕緣層16之上,用來作為隔離保護。 隨後再塗佈一光阻層22於NSG層20之上,並於光阻層22中 蝕刻出一圓形之孔洞23通達光阻層22下方之NSG層20表Page 4 274 V. Description of the invention (2) Supplementary frequency. At present, the ability to increase the charge storage capacity of a capacitor is generally developed in two main directions. The first is to improve the capacitor dielectric layer of the capacitor element between the storage node below the capacitor element and the upper field electrode. The second is to increase the area of the electric container, especially the surface area of the lower storage electrode and the upper field electrode, to increase the amount of charge stored in the capacitor. Capacitor Is dielectrics are mostly made of 0N0 (oxide / nitride / oxide) composite structures. 'This composite structure not only effectively reduces the thickness of the single cell dielectric layer (only about 5nm), but also provides a Good dielectric constant, which in turn increases the number of stored charges per unit surface area of the capacitor. "This application is a technique for increasing the surface area of a capacitor. Please refer to FIG. 1 to FIG. 3 ′. FIG. 1 to FIG. 3 are schematic cross-sectional flow diagrams of a conventional process for fabricating a DRAM stacked capacitor (STC) single cell (ceii) element. As shown in FIG. 1, a conventional method for manufacturing a stacked capacitor cell is to first form a field oxide 14 on a silicon substrate 12 on the surface of a semiconductor wafer 10 by using a local oxidation of silicon (LOCOS) method. Then, an insulating layer 16 is deposited to cover the field oxide layer 14, and the insulating layer 16 further includes a pair of correspondingly doped poly-silicon bit lines 18. Next, a non-doped neutral silicate glass (NSG) layer 20 is deposited on the insulating layer 16 for isolation protection. Subsequently, a photoresist layer 22 is coated on the NSG layer 20, and a circular hole 23 is etched in the photoresist layer 22 to reach the surface of the NSG layer 20 under the photoresist layer 22.
4 6 8 27 4 五 '發明說明(3) 面,以定義出一接觸洞24之位置。 接著如圖二所示,利用一非等向性(anisotropic)姓 刻將半導體晶片1 0表面垂直蝕刻出一接觸洞2 4,然後去除 光阻層*2 2,並利用化學氣相沉積法(c h^e m i c a 1 v a ρ 〇 r deposition, CVD)以及回蚀法(etch back)將接觸洞24之 側壁(sidewall)表面形成一厚度約1000 A之二氧化矽側壁 子26。此時NSG層20的厚度亦隨著回蝕等反應而由最先沉 積的2300A剩下為1000A左右。 隨後如圖三所示’再次利用CVD法於半導體晶片10表 面進行一多晶矽層(未顯示)的沉積,並隨著多晶矽層沉積 反應的進行現場(in-situ)將磷離子摻雜進入多晶矽層 中,使得接觸洞24以及NSG層20的上方均勻地生成一層摻 雜多晶矽層。接著利用微影及蝕刻等方式將多餘不要之摻 雜多晶矽層加以去除,而形成一蕈狀之下層儲存電極28。 此外,摻雜多晶矽層的生成亦可利用離子植佈法(i 〇n implantation)將磷等摻質以離子的型態植入多晶矽層之 中 。 最後再於下層儲存電極28表面依序形成一0N0複合結 構之單胞介電層30以及一上層場電極32。首先利用CVD法 直接在下層儲存電極2 8之表面沉積一層約5 nm厚度的氮化 層(未顯示)’旋即通入920 t的高溫蒸氣將氮化層進行一4 6 8 27 4 5 'Explanation (3) plane to define the position of a contact hole 24. Then, as shown in FIG. 2, a contact hole 24 is vertically etched on the surface of the semiconductor wafer 10 by using an anisotropic name, and then the photoresist layer * 2 2 is removed, and a chemical vapor deposition method ( Ch ^ emica 1 va ρ οr deposition (CVD) and etch back method will form a silicon dioxide sidewall 26 with a thickness of about 1000 A on the sidewall surface of the contact hole 24. At this time, the thickness of the NSG layer 20 is also reduced to about 1,000 A from the first 2300 A deposited with the reaction such as etch back. Subsequently, as shown in FIG. 3, a polycrystalline silicon layer (not shown) is deposited on the surface of the semiconductor wafer 10 by the CVD method again, and phosphorus ions are doped into the polycrystalline silicon layer as the polycrystalline silicon layer deposition reaction proceeds. In order to uniformly form a doped polycrystalline silicon layer over the contact hole 24 and the NSG layer 20. Then, the unnecessary doped polycrystalline silicon layer is removed by lithography and etching to form a mushroom-shaped lower storage electrode 28. In addition, the doped polycrystalline silicon layer can be formed by implanting dopants such as phosphorus into the polycrystalline silicon layer using an ion implantation method. Finally, a single cell dielectric layer 30 of a 0N0 composite structure and an upper field electrode 32 are sequentially formed on the surface of the lower storage electrode 28. First, a CVD method is used to directly deposit a nitride layer (not shown) with a thickness of about 5 nm on the surface of the lower storage electrode 28. Then, a high-temperature vapor of 920 t is passed into the nitride layer for one time.
468 274 五、發明說明(4) 再氧化(re-oxidized)反應,使得氮化層之表面反應生成 一層厚度約2nro的氧化層◊如此’加上原本下層儲存電極 28之多晶矽層表面就有的一層原始氣化層(native 〇xide ),便可得到一ΟΝΟ複合結構之單胞介電層go β然後再次 利用CVD法沉積一層多晶矽層用來做.為一上層場電極3 2,以 製備完成一個典型之堆疊型電容單胞元件。 發明概述 本發明之主要目的在於提供一種新的電容器元件之下 層儲存電極的製作方法。 本發明之另一目的在於提供一種鰭狀(fin-type)下層 儲存電極的製作方法,可有效地增加該下層儲存電極的表 面,進而使得後續沉積之0 N0介電層以及上層場電極亦同 樣地具有較大之表面積來累積電荷。 本發明之下層儲存電極(storage node)的製作方法包 含有下列步驟:(1)提供一基底’且該基底表面上包含有 至少一第一導電層’(2)於該基底上形成一介電層並完全 復蓋該導電層,(3)進行一黃光及钱刻製程,以於該介電 層中形成一接觸洞通達至該導電廣’(4)於該介電廣表面 上形成一第二導電層並填滿該接觸洞,(5)於該第二導電 層上依序形成一金屬矽化層以及一第三導電層’(6)於該468 274 V. Description of the invention (4) The re-oxidized reaction causes the surface reaction of the nitrided layer to form an oxide layer with a thickness of about 2 nro. This is what is added to the surface of the polycrystalline silicon layer of the original lower storage electrode 28. A layer of original gasification layer (native 〇xide), a single cell dielectric layer go β of a composite structure of 10N0 can be obtained, and then a polycrystalline silicon layer is deposited again by CVD method as an upper field electrode 3 2 to complete the preparation A typical stacked capacitor unit cell. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for manufacturing a new storage electrode under a capacitor element. Another object of the present invention is to provide a method for manufacturing a fin-type lower storage electrode, which can effectively increase the surface of the lower storage electrode, so that the 0 N0 dielectric layer and the upper field electrode that are subsequently deposited are also the same. The ground has a large surface area to accumulate charges. The method for manufacturing a lower storage node according to the present invention includes the following steps: (1) providing a substrate 'and the surface of the substrate including at least a first conductive layer' (2) forming a dielectric on the substrate Layer and completely covering the conductive layer, (3) performing a yellow light and money engraving process to form a contact hole in the dielectric layer to reach the conductive surface; (4) forming a surface on the surface of the dielectric surface; The second conductive layer fills the contact hole. (5) A metal silicide layer and a third conductive layer are sequentially formed on the second conductive layer. (6)
4 6 8 274 五、發明說明(5) 第三導電層表面上形成一圖案化之光阻層,以定義該下層 儲存電極之圖案與位置,(7 )蝕刻未被該光阻層覆蓋之該 第三導電層、該金屬矽化層以及該第二導電層直至該介電 層表面,(8 )去除該光阻層以及(9 )濕钱刻該金屬發化層, 完成該-鰭狀下層儲存電極的製作。-一 由於本發明係利用RC A標準清洗溶液來選擇性地蝕刻 由摻雜多晶矽層以及金屬矽化層所交互堆疊而成之下層儲 存電極結構,進而形成一種鰭狀(fin-type)的下層儲存電 極,另外下層儲存電極表面又可再實施一 HSG製程,以有 效增加下層儲存電極的表面積,提高STC單胞元件的電容 量,進而大幅降低STC單胞元件的再補充頻率。 發明之詳細說明 請參考圖四至圖七,圖四至圖七為本發明製作鰭狀堆 疊型下層儲存電極元件的剖面示意圖。首先如圖四所示, 在半導體晶片50表面之矽基底42上依序形成一場氧化層44 以及一由場氧化層44所隔離之摻雜區60。摻雜區60可以為 一 Μ 0 S電晶體之汲極或源極。在本發明之另一實施例中, 石夕基底42可以為一石夕復絕緣(silicon-on-insulator, SOI)基板。接著於矽基底42表面上沈積一厚度數千埃之介 電層46完全覆蓋摻雜區60。介電層46可以為二氧化矽、硼 鱗石夕玻璃(borophosphosilicate glass, BPSG)、填石夕玻4 6 8 274 V. Description of the invention (5) A patterned photoresist layer is formed on the surface of the third conductive layer to define the pattern and position of the underlying storage electrode, and (7) the etching is not covered by the photoresist layer. The third conductive layer, the metal silicide layer, and the second conductive layer up to the surface of the dielectric layer, (8) remove the photoresist layer and (9) wet metal etch the metal formation layer to complete the -fin-shaped lower layer storage Fabrication of electrodes. -Because the present invention uses the RC A standard cleaning solution to selectively etch the underlying storage electrode structure formed by stacking the doped polycrystalline silicon layer and the metal silicide layer alternately, thereby forming a fin-type underlying storage In addition, the surface of the lower storage electrode can be further subjected to an HSG process to effectively increase the surface area of the lower storage electrode, increase the capacitance of the STC unit cell, and then significantly reduce the replenishment frequency of the STC unit cell. Detailed description of the invention Please refer to FIG. 4 to FIG. 7, which are schematic cross-sectional views of manufacturing a fin-stacked lower storage electrode element according to the present invention. First, as shown in FIG. 4, a field oxide layer 44 and a doped region 60 isolated by the field oxide layer 44 are sequentially formed on the silicon substrate 42 on the surface of the semiconductor wafer 50. The doped region 60 may be a drain or a source of an M 0S transistor. In another embodiment of the present invention, the stone evening substrate 42 may be a silicon-on-insulator (SOI) substrate. A dielectric layer 46 having a thickness of several thousands angstroms is then deposited on the surface of the silicon substrate 42 to completely cover the doped region 60. The dielectric layer 46 may be silicon dioxide, borophosphosilicate glass (BPSG), or stone-filled glass.
468274 五、發明說明(6) 璃(phosphosilicate glass, PSG)或其它類似之低介電常 數材料。在沈積完介電層46,可以接著選擇性進行一化學 機械研磨製程(chemical mechanical poiish, CMP) ’ 以 獲得一平坦化的表面輪廓。接著進行一黃光及钱刻製程’ 以於介電層46中形成一通達摻雜區6-0表面之接觸洞55。 接著進行一低壓化學氣相沈積(low-pressure chemical vapor deposition, LPCVD)製程’以於介電層 46上均勻沈積一厚度約為1000 A的多晶矽(P〇1ysil icon) 層62。其中LPCVD製程的條件是:以矽甲烷(silane, S i H4)為反應氣體,溫度設定在5 7 5至6 5 0 °C之間,壓力約 為0.3至0.6托耳(Torr)。由於利用LPCVD*法所沈積的多 晶矽層6 2的電阻率(r e s i s t i v i t y )很高’因此必須對多晶 矽層62進行一摻雜(doping)製程以降低其電阻率。摻雜的 方式係將含有摻質之反應氣體,例如磷化氫(Phosphine, PH3),導入CVD反應器中’使得在沈積多晶矽層62的同 時,可以現場(in-situ)換雜推'質°需注意的疋’多晶石夕 層6 2需填滿接觸洞5 5。 隨後再進行一碎化金屬化學氣相沈積製程(silicide CVD),於多晶矽層62表面上沈積一厚度約為1500至2000人 之矽化金屬層6 4。矽化金屬層6 4可以為矽化鎮、石夕化鈦、 矽化鉬、矽化钽、或矽化鈷等等’其中又以矽化鎢較佳。 相較其它的金屬矽化物,由於矽化鎮具有以下的優點’因468274 V. Description of the invention (6) Glass (phosphosilicate glass, PSG) or other similar low dielectric constant materials. After the deposition of the dielectric layer 46, a chemical mechanical polishing process (CMP) can be optionally performed to obtain a flattened surface profile. Then, a yellow light and money engraving process is performed to form a contact hole 55 in the dielectric layer 46 to reach the surface of the doped region 6-0. Next, a low-pressure chemical vapor deposition (LPCVD) process is performed to uniformly deposit a polysilicon (Polysilicon) layer 62 on the dielectric layer 46 with a thickness of about 1000 A. The conditions of the LPCVD process are as follows: silane (Si H4) is used as the reaction gas, the temperature is set between 575 and 650 ° C, and the pressure is about 0.3 to 0.6 Torr. Since the resistivity (r e s s t i v i t y) of the polycrystalline silicon layer 62 deposited by the LPCVD * method is high ', a doping process must be performed on the polycrystalline silicon layer 62 to reduce its resistivity. The doping method is to introduce a dopant-containing reaction gas, such as phosphine (PH3), into the CVD reactor, so that while depositing the polycrystalline silicon layer 62, the impurity can be changed in-situ. ° Note that the polycrystalline stone layer 6 2 needs to fill the contact hole 5 5. Subsequently, a silicide CVD process is performed to deposit a silicide metal layer 64 on the surface of the polycrystalline silicon layer 62 with a thickness of about 1500 to 2000 people. The silicide metal layer 64 may be a silicide town, titanium sulfide, molybdenum silicide, tantalum silicide, or cobalt silicide, etc. Among them, tungsten silicide is preferred. Compared with other metal silicides, the silicide town has the following advantages ’
4 6 8 274 五、發明說明(7) 此本發明之較佳實施例中選擇矽化鎢:(1 )與多晶矽表面 結合力較好’(2)較無剝離(peei ing)問題發生,以及(3) 形成石夕化鎢時的反應溫度較低。典型的石夕化鎢化學氣相沈 積製程係利用六氟化鎢(tungsten hexafluoride, WF6)以 及矽甲-烷為反應氣體,在溫度約為3 〇 〇—至4 0 0 °C的條件下, 壓力約在0,3至l.OTorr下進行。接著再進行一與沈積多晶 矽層62相同之L PC VD製程,以於矽化鎢層64表面上沈積一 厚度約為1000A之摻雜多晶矽層66。 隨後如圖五所示,於摻雜多晶矽層66表面形成一經過 曝光以及顯影之光阻層68,以定義出下層儲存電極之圖案 以及位置。接著進行一乾蝕刻製程,利用光阻層6 8為蝕刻 遮罩,向下姓刻摻雜多晶石夕膚66、石夕化金屬層64以及多晶 矽層62,直至介電層46表面。接著去除光阻層68 ’形成一 堆疊結構7 0。為了降低矽化金屬層6 4的電阻率 (resistivity),此時可以接著選擇性地進行一快速回火 製程(rapid thermal annealing, RTA) ’ 使石夕化金屬層 64 的電阻率降至約70/zQ-cm以下。需注意的是’為了避免 影響到摻雜區60之接合深度(junction depth) ’快速回火 製程的昇溫速率以及加熱溫度皆必須有嚴格的控制° 接下來,如圖六所示,對金屬矽化層6 4進行一濕轴刻 製程,以於堆疊結構70中形成一凹槽71 ,並形成一鰭狀堆 疊結構72。濕蝕刻金屬矽化層64的方法可以利用RCA標準4 6 8 274 V. Description of the invention (7) Tungsten silicide is selected in the preferred embodiment of the present invention: (1) the bonding force with the polycrystalline silicon surface is better '(2) the problem of no peeling occurs, and ( 3) The reaction temperature is low in the formation of tungsten carbide. The typical tungsten chemical vapor deposition process of Shixihua uses tungsten hexafluoride (WF6) and silyl-alkane as reaction gases. At a temperature of about 300-400 ° C, The pressure is carried out at about 0,3 to l.OTorr. Then, the same L PC VD process as that of the deposited polycrystalline silicon layer 62 is performed to deposit a doped polycrystalline silicon layer 66 with a thickness of about 1000 A on the surface of the tungsten silicide layer 64. Then, as shown in FIG. 5, a photoresist layer 68 is formed on the surface of the doped polycrystalline silicon layer 66 after exposure and development to define the pattern and position of the lower storage electrode. Next, a dry etching process is performed, and the photoresist layer 68 is used as an etching mask, and the polycrystalline silicon layer 66, the petrified metal layer 64, and the polycrystalline silicon layer 62 are etched to the last name until the surface of the dielectric layer 46. Then, the photoresist layer 68 'is removed to form a stacked structure 70. In order to reduce the resistivity of the silicided metal layer 64, a rapid thermal annealing (RTA) process can be optionally performed at this time to reduce the resistivity of the petrified metal layer 64 to about 70 / zQ-cm or less. It should be noted that 'in order to avoid affecting the junction depth of the doped region 60', the heating rate and heating temperature of the rapid tempering process must be strictly controlled. Next, as shown in Figure 6, the silicon is silicified. The layer 64 is subjected to a wet-axis engraving process to form a groove 71 in the stacked structure 70 and a fin-shaped stacked structure 72. Method for wet etching metal silicide layer 64 can use RCA standard
第10頁 46 8 274 五、發明說明(8) 清洗溶液,或其它類似可以選擇性蝕刻金屬矽化層6 4的清 洗溶液。更明確的說’進行此濕蝕刻製程時,係將半導體 晶片50浸泡於HC 1 : H2〇2 : H20體積比=1 : 1 : 6之混合溶 液中(一般又稱為SC-2溶液),於溫度約25至70°C下進行約 數秒镂至數分鐘之浸泡清洗’以形成鰭狀堆疊結構7 2。接 著再進行一LPCVD製程’以於鰭狀堆疊結構72表面上均句 沈積一厚度約為500 A的非晶砂(amorphous silicon)層 73。其中LPCVD製程的條件是:以矽甲烷(si lane, Si 為反應氣體,溫度設定在5 7 5至6 5 0 °C之間,壓力約為〇 . 3 至 0 . 6 T 〇 r r 〇 接著如圖七所示’將鰭狀堆疊結構7 2以外,即介電層 46表面上,之非晶矽層73去除。去除介電層46表面上之非 晶矽層7 3的方法係利用一乾蝕刻製程直接去除介電層4 6表 面上的非晶矽層7 3。隨後進行一超高度真空化學氣相沈積 (ultra high vacuum chemical vapor deposition, UHV CVD)製程,利用甲石夕院(Si H4)以及二氣甲石夕院 (dichlorosilane, SiH2Cl2)為反應氣體,於壓力低於1 T 〇 r r以及溫度介於5 5 0至8 0 0 °C的條件下,均勻地於非晶石夕 層73的表面上形成一具有半球狀晶粒(hemi-spherical grain, HSG)結構的多晶矽層75,並完成一鰭狀堆叠下層 儲存電極7 4。多晶矽層7 5的厚度約為5 〇 〇 A。然後進行一 回火(anneal ing)製程,於一惰性環境下使下層儲存電極 74中的南濃度墙原子擴散至多晶石夕層75中,並將下層儲存Page 10 46 8 274 V. Description of the invention (8) Cleaning solution, or other similar cleaning solution that can selectively etch metal silicide layer 64. More specifically, 'when this wet etching process is performed, the semiconductor wafer 50 is immersed in a mixed solution of HC 1: H 2 02: H 20 volume ratio = 1: 1: 6 (also commonly referred to as SC-2 solution), Perform immersion cleaning for about several seconds to several minutes at a temperature of about 25 to 70 ° C to form a fin-like stacked structure 72. Then, an LPCVD process is further performed to deposit an amorphous silicon layer 73 on the surface of the fin-like stacked structure 72 with a thickness of about 500 A. The conditions of the LPCVD process are as follows: silicon dioxide (si lane, Si is used as the reaction gas, the temperature is set between 575 and 650 ° C, and the pressure is about 0.3 to 0.6 T 〇rr 〇 followed by As shown in FIG. 7, the amorphous silicon layer 73 is removed from the surface of the dielectric layer 46 except for the fin-like stacked structure 7 2. The method of removing the amorphous silicon layer 73 from the surface of the dielectric layer 46 is to use a dry etching. The process directly removes the amorphous silicon layer 7 3 on the surface of the dielectric layer 46. Then, an ultra high vacuum chemical vapor deposition (UHV CVD) process is performed, using a Kishiyuin (Si H4) And dichlorosilane (SiH2Cl2) is a reactive gas, which is uniformly deposited on the amorphous stone layer at a pressure of less than 1 Torr and a temperature of 5500 to 800 ° C. 73 A polycrystalline silicon layer 75 having a hemi-spherical grain (HSG) structure is formed on the surface of the surface, and a fin-shaped stacked lower storage electrode 74 is completed. The thickness of the polycrystalline silicon layer 75 is about 500 A. Then Perform an annealing process to make the lower storage electrode in an inert environment Atoms in the South Concentration Wall in 74 diffuse into the polycrystalline stone layer 75 and store the lower layer
第11頁 468274 五、發明說明(9) 電極74的非晶係材質轉換成多晶矽材質。 請參閱圖八,圖八為本發明另一實施例之剖面示意 圖。如圖八所示,本發明之鰭狀堆疊下層儲存電極74亦可 以為三-層摻雜多晶矽層6 2、6 6、8 2以及兩層金屬矽化層 6 4 a、6 4 b所構成。然而,本發明並不限定於上述之實施 例,利用複數層金屬矽化層以及複數層摻雜多晶矽層交互 堆疊亦可以形成本發明之鰭狀下層儲存電極。 相較於習知下層儲存電極的製程,由於本發明係利用 RCA標準清洗溶液來選擇性地蝕刻由摻雜多晶矽層以及金 屬矽化層所交互堆疊而成之下層儲存電極結構,進而形成 一種鰭狀(fin-type)的下層儲存電極,另外下層儲存電極 表面又可再實施一標準的HSG製程,以有效增加下層儲存 電極的表面積,提高STC單胞元件的電容量,進而大幅降 低STC單胞元件的再補充頻率。 以上所述僅為本發明之較佳實施例,凡依本發明申請 專利範圍所做之均等變化與修飾,皆應屬本發明專利之涵 蓋範圍。Page 11 468274 V. Description of the invention (9) The amorphous material of the electrode 74 is converted into a polycrystalline silicon material. Please refer to FIG. 8, which is a schematic cross-sectional view of another embodiment of the present invention. As shown in FIG. 8, the fin-shaped stacked lower storage electrode 74 of the present invention may also be composed of a three-layer doped polycrystalline silicon layer 6 2, 6 6, 8 2 and two metal silicide layers 6 4 a, 6 4 b. However, the present invention is not limited to the above-mentioned embodiments, and a plurality of metal silicide layers and a plurality of layers of doped polycrystalline silicon layers are alternately stacked to form the fin-like lower storage electrodes of the present invention. Compared with the conventional manufacturing process of the lower storage electrode, the present invention uses the RCA standard cleaning solution to selectively etch the lower storage electrode structure alternately stacked from the doped polycrystalline silicon layer and the metal silicide layer to form a fin-like structure. (Fin-type) lower storage electrode. In addition, the surface of the lower storage electrode can be implemented with a standard HSG process to effectively increase the surface area of the lower storage electrode, increase the capacitance of the STC cell element, and then significantly reduce the STC cell element. Replenishment frequency. The above description is only a preferred embodiment of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application for the present invention shall fall within the scope of the invention patent.
第12頁 i 6 8 27 4 圖式簡單說明 圖示之簡單說明 圖一至圖三為習知DRAM堆疊型電容單胞元件的製作方 法剖面示意圖。 圖四至圖七為本發明鰭狀堆疊型電容單胞元件的製作 方法剖面示意圖。 圖八為本發明另一實施例之剖面示意圖。 圖式之符號說明 10 半導體晶片 14 場氧化層 18 位元線 2 2 光阻層 24 接觸洞 28 下層儲存電 3 2 上層場電極 44 場氧化層 5 0 半導體晶片 60 摻雜區 64、64a、64b 金廣石夕化層 68 光阻層 71 凹槽 7 3 非晶矽層 12 矽基底 16 絕緣層 20 NSG 層 2 3 孔洞 26 側壁子 極30 單胞介電層 42 矽基底 46 介電層 5 5 接觸洞 6 2 多晶矽層 66 摻雜多晶矽層 70 堆疊結構 7 2 鰭狀堆疊結構 7 4 鰭狀堆疊下層儲存電極Page 12 i 6 8 27 4 Brief description of the diagrams Brief description of the diagrams Figures 1 to 3 are schematic cross-sectional views of the manufacturing method of a conventional DRAM stacked capacitor unit cell. 4 to 7 are schematic cross-sectional views illustrating a method for manufacturing a fin-shaped stacked capacitor unit cell according to the present invention. FIG. 8 is a schematic cross-sectional view of another embodiment of the present invention. Symbols of the drawings 10 semiconductor wafer 14 field oxide layer 18 bit lines 2 2 photoresist layer 24 contact hole 28 lower storage electricity 3 2 upper field electrode 44 field oxide layer 5 semiconductor wafer 60 doped regions 64, 64a, 64b Jin Guangshi Xihua layer 68 Photoresist layer 71 Groove 7 3 Amorphous silicon layer 12 Silicon substrate 16 Insulation layer 20 NSG layer 2 3 Hole 26 Side wall sub-electrode 30 Cell dielectric layer 42 Silicon substrate 46 Dielectric layer 5 5 Contact Hole 6 2 polycrystalline silicon layer 66 doped polycrystalline silicon layer 70 stacked structure 7 2 fin-like stacked structure 7 4 fin-like stacked lower storage electrode
第13頁 ^ G 8 274P. 13 ^ G 8 274
第14頁Page 14
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW089123776A TW468274B (en) | 2000-11-10 | 2000-11-10 | Manufacturing method of bottom storage node |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW089123776A TW468274B (en) | 2000-11-10 | 2000-11-10 | Manufacturing method of bottom storage node |
Publications (1)
Publication Number | Publication Date |
---|---|
TW468274B true TW468274B (en) | 2001-12-11 |
Family
ID=21661885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW089123776A TW468274B (en) | 2000-11-10 | 2000-11-10 | Manufacturing method of bottom storage node |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW468274B (en) |
-
2000
- 2000-11-10 TW TW089123776A patent/TW468274B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6709919B2 (en) | Method for making auto-self-aligned top electrodes for DRAM capacitors with improved capacitor-to-bit-line-contact overlay margin | |
US7364967B2 (en) | Methods of forming storage capacitors for semiconductor devices | |
US20040036051A1 (en) | Integrated capacitor with enhanced capacitance density and method of fabricating same | |
JPH06140569A (en) | Capacitor of semiconductor device and its manufacture as well as semiconductor device provided with said capacitor and its manufacture | |
US6365497B1 (en) | Method for making an I - shaped access transistor having a silicide envelop | |
US6159793A (en) | Structure and fabricating method of stacked capacitor | |
JP3664467B2 (en) | Manufacturing method of single transistor ferroelectric memory cell using chemical mechanical polishing | |
JP2008193078A (en) | Wiring structure of semiconductor device, and forming method thereof | |
TWI226106B (en) | Novel method for making three-dimensional metal-insulator-metal capacitors for dynamic random access memory and ferroelectric random access memory | |
US6825520B1 (en) | Capacitor with a roughened silicide layer | |
TW578297B (en) | Semiconductor integrated circuit device and the manufacturing method thereof | |
JP4053226B2 (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
US6127221A (en) | In situ, one step, formation of selective hemispherical grain silicon layer, and a nitride-oxide dielectric capacitor layer, for a DRAM application | |
US6187659B1 (en) | Node process integration technology to improve data retention for logic based embedded dram | |
KR20020094977A (en) | Method for Fabricating Cell Plug of Semiconductor Device | |
TW461047B (en) | Manufacturing method of embedded DRAM | |
US6054347A (en) | Method for forming a modified crown shaped, dynamic random access memory, (DRAM), capacitor structure | |
US5893980A (en) | Semiconductor device capacitor fabrication method | |
US5792688A (en) | Method to increase the surface area of a storage node electrode, of an STC structure, for DRAM devices, via formation of polysilicon columns | |
TW468274B (en) | Manufacturing method of bottom storage node | |
US6136644A (en) | Method of manufacturing a multi-pillared storage node using silylated photoresist | |
TW408486B (en) | The manufacture method of crown shape capacitor with rough surface | |
TW490801B (en) | Method for forming isolation gap between bit line and capacitor | |
US20020072172A1 (en) | Method of fabricating a storage node | |
TW382814B (en) | Method of making DRAM device having bitline top capacitor structure of linear bitline shape on substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |