TW451480B - Fabrication method of split-gate flash memory - Google Patents

Fabrication method of split-gate flash memory Download PDF

Info

Publication number
TW451480B
TW451480B TW89111576A TW89111576A TW451480B TW 451480 B TW451480 B TW 451480B TW 89111576 A TW89111576 A TW 89111576A TW 89111576 A TW89111576 A TW 89111576A TW 451480 B TW451480 B TW 451480B
Authority
TW
Taiwan
Prior art keywords
gate
layer
selection
polycrystalline silicon
silicon
Prior art date
Application number
TW89111576A
Other languages
Chinese (zh)
Inventor
Tsong-Minn Hsieh
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW89111576A priority Critical patent/TW451480B/en
Application granted granted Critical
Publication of TW451480B publication Critical patent/TW451480B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

The present invention provides a fabrication method of split-gate flash memory with self-alignment and high coupling ratio on a semiconductor substrate. The semiconductor substrate comprises a substrate, at least two selection gates are disposed on the substrate, and a dielectric layer is disposed on each selection gate. The method is to form a polysilicon spacer each on the inner wall between these two selection gates as the floating gate, then form a drain each on the substrate neighboring the outer side wall of these two selection gates, then form a source on the substrate between these two polysilicon spacers. Then form a silica layer on the surface of the semiconductor chip, and remove the silica layer with a predetermined thickness by dry etching, and remove the dielectric layer located on each selection gate till a predetermined thickness. Finally, form an ONO dielectric layer on the surface of the floating gate, and form a control gate between these two selection gates and on top of the floating gate.

Description

A514B〇 五、發明說明(i) 發明之領域 ^ 本發明提供一種分離閘極快閃記憶單元(spl i t gate flash memory cell)的製作方法,尤指一種具有自行對準 (self alignment)以及尚藕合值(high C0Upiing rati〇) 的快閃記憶單元的製作方法。 背景說明 可電抹除且可程式唯讀記憶體(electricaily erasable programmable read only memory,簡稱 EEPROM)由於具有可寫入、可電抹除加上寫入的資料可保 存十年以上等優點’因此已成為目前最常被使用也是發展 最迅速的記憶體產品之一。然而,卻具有存取速度 較慢的缺點。為了解決這個缺點,一種稱作快閃記憶體 (flash memory)的產品被英代爾(Intel)公司發展出來》 快閃記憶體的結構與EEPROM相同,只不過快閃記憶體的資 料抹除動作是以區域方式(block by block)進行,而非傳 統EE PROM以位元為單位(by te by byte )方式進行,因此能 明顯地節省資料抹除的時間。 此外,依閘極結構之不同,快閃記憶體大致可區分為 兩種:堆疊閘極(stacked gat e )快閃記憶體以及分離閘極 (sp 1 i t gat e )快閃記憶體。堆疊式閘極快閃記憶單元 (flash memory cell)包含有一用來儲存電荷的浮置閘極 (floating gate),一 0N0(〇xi de-nitride-oxide)結構的A514B〇 5. Description of the invention (i) Field of invention ^ The present invention provides a method for manufacturing a split gate flash memory cell, especially a method having self alignment and self-alignment. Manufacturing method of flash memory unit with high value (high C0Upiing rati〇). Background Description Electrically erasable programmable read only memory (EEPROM) has the advantages of being writable, electrically erasable plus written data that can be stored for more than ten years. It has become one of the most commonly used and rapidly developing memory products. However, it has the disadvantage of slower access speed. In order to solve this shortcoming, a product called flash memory was developed by Intel Corporation. The structure of flash memory is the same as that of EEPROM, but the data erasing action of flash memory It is performed in a block by block manner, instead of the traditional EE PROM in a bit by byte manner, so it can significantly save the time of data erasure. In addition, depending on the structure of the gate, flash memory can be roughly divided into two types: stacked gate (stacked gat e) flash memory and split gate (sp 1 i t gat e) flash memory. The stacked gate flash memory cell includes a floating gate for storing charge, and a 0N0 (〇xi de-nitride-oxide) structure.

第4頁 4-51^^0 -—~~___________—--- 五、發明說明(2) 介電層,以(及一用來控制資料存取的控制閘極(control gate)。記憶體可以利用類似電容的原理,將感應電荷儲 存於堆疊式閘極中,使記憶體存入訊號” 1" °如果需要更 換記憶體中的資料,只需再供給些許額外的能量’就可重 新進行資料存入的工作。 請參閱圖·,圖'為習知堆昼問極快閃記早疋1 〇的剖 面結構示意圖。如圖一所示,習知堆疊閘極快閃記憶單元 1 0包含有一堆疊閘極11、一没極2 2以及源極2 4。堆疊閘極 11係由一閘氡化層1 2、一浮動閘極14、一絕緣層1 6以及一 控制閘極1 8由下至上所堆疊於汲極2 2與源極2 4之間的矽基 底2 0表面。利用通道熱電子效應,在汲極2 2附近產生的熱 電子可越過閘氧化層12射入浮動閘極1 4,並提高浮動閘極 14的臨界電壓(threshold voltage)以達到儲存資料的目 的。堆疊閘極快閃記憶單元1 0雖然較不佔面積,然而卻有 過度抹除(over erase)的缺點。過度抹除容易造成資料寫 入時發生錯誤或無法寫入’而分離閘極炔閃記憶體可避免 此項缺點。 請參閱圖二’圖二為習知分離閘極快閃記憶單元3 〇的 剖面結構示意圖。如圖二所示’習知分離閘極快閃記懷單 元30包含有一閘氧化層32、一浮動閘極34、一控制閘極 38、一没極42以及一源極44。控制閘極38係向源極44方向 延伸而設於浮動閘極3 4與源極4 4之間的石夕基底上,形成—Page 4 4-51 ^^ 0-~~~ ___________---- 5. Description of the invention (2) Dielectric layer, and (and a control gate for controlling data access. Memory The principle of similar capacitance can be used to store the induced charge in the stacked gate, so that the memory can store the signal "1" If you need to replace the data in the memory, you only need to supply a little extra energy to restart it. The work of data storage. Please refer to the figure. The figure is a schematic diagram of the cross-sectional structure of the conventional heap flash flash early morning 疋. As shown in Figure 1, the conventional stacked gate flash memory unit 10 includes a Stacked gate 11, one gate 22, and source 24. Stacked gate 11 is composed of a gated layer 1, 2, a floating gate 14, an insulating layer 16, and a control gate 18 from below. The top surface of the silicon substrate 20 stacked between the drain 22 and the source 24. The hot electrons generated near the drain 2 2 can be injected into the floating gate 1 through the gate oxide layer 12 by using the channel thermal electron effect. 4, and raise the threshold voltage (threshold voltage) of the floating gate 14 to achieve the purpose of storing data. Stack Although the gate flash memory unit 10 occupies less area, it has the disadvantage of over erase. Excessive erasure can easily cause data to be written incorrectly or cannot be written. This disadvantage can be avoided. Please refer to FIG. 2 'FIG. 2 is a schematic cross-sectional structure diagram of a conventional separation gate flash memory unit 30. As shown in FIG. 2' the conventional separation gate flash memory unit 30 includes a gate The oxide layer 32, a floating gate 34, a control gate 38, a gate 42 and a source 44. The control gate 38 extends toward the source 44 and is provided at the floating gate 3 4 and the source 4 4 On the base of Shi Xi, formed—

第5頁 45 1 48 Ο _________ ' ---------—________ _____- —___ 五、發明說明(3) 選擇通道31。控制閘極38與浮勣閘極34之間另生成有一絕 緣層3 6。分離閘極快閃記憶雖然可以解決堆疊閘極快閃記 憶體之過度抹除的問題,然而習知的分離閘極快閃記憶的 藕合值(coupling rati〇,CR)偏低,造成抹除速度無法進 一步提昇’而且有抹除不完全或性能不穩定等缺點。此 外’控制閘極3 8和浮動閘極3 4重疊區咸會受到曝光對準機 對準偏差的影響’而在讀取資料時產生不穩定的通道電 流0 :: β 請參閱圖三,圖三顯示圖二中習知分離閘極快閃記憶 單元3 0的等效電路46之示意圖。如圖三所示,浮動閘極34 與控制閘極38之間的電容為C1,浮動閘極34與源極44之間 的電容為C2 ’浮動閘極34與矽基底40表面通道之間的電容 為C3 ’而浮動閘極34與汲極42之間的電容為C4。因此分離 閘極快閃記憶單元30的藕合值(CR值)可被定義為: CR = C1/(C1 + C2 + C3 + C4)Page 5 45 1 48 〇 _________ '---------—________ _____- —___ V. Description of the invention (3) Select channel 31. An additional insulating layer 36 is formed between the control gate 38 and the floating gate 34. Although the split gate flash memory can solve the problem of excessive erasure of the stacked gate flash memory, the conventional coupling gate flash memory (CR) is low, resulting in erasure. The speed cannot be further improved, and there are disadvantages such as incomplete erasure or unstable performance. In addition, 'the overlapping area of the control gate 38 and the floating gate 3 4 will be affected by the misalignment of the exposure alignment machine', and an unstable channel current will be generated when reading the data 0 :: β Please refer to Figure 3, Figure 3 shows a schematic diagram of the equivalent circuit 46 of the conventional split-gate flash memory unit 30 in FIG. 2. As shown in Figure 3, the capacitance between the floating gate 34 and the control gate 38 is C1, and the capacitance between the floating gate 34 and the source 44 is C2 'between the floating gate 34 and the surface channel of the silicon substrate 40. The capacitance is C3 'and the capacitance between the floating gate 34 and the drain 42 is C4. Therefore, the coupling value (CR value) of the split gate flash memory unit 30 can be defined as: CR = C1 / (C1 + C2 + C3 + C4)

CR值係為決定分離閘極快閃記憶單元30效能的指標,{^值 愈高表示快閃記憶體在進行寫入或抹除操作時所需的操作 電壓愈低,效能愈好。而由上述關係式可知,提高CR^的 方法可以增加C1或減少C2、C3以及C4。由於電容大小與電 容面積成正比,因此增加浮動閘極3慎控制閘極38之^的 電容面積即可增加C1。另一方面’減小浮動閘極3 4與發基 底4 0表面通道的電容面積,亦可有效減少C3" 'The CR value is an index for determining the performance of the split-gate flash memory unit 30. A higher value {^ indicates that the lower the operating voltage required by the flash memory for writing or erasing operation, the better the performance. According to the above relationship, the method of increasing CR ^ can increase C1 or decrease C2, C3, and C4. Since the size of the capacitor is directly proportional to the area of the capacitor, increasing the capacitance area of the floating gate 3 and carefully controlling the gate area of the gate 38 can increase C1. On the other hand, 'reducing the capacitance area of the floating gate electrode 34 and the surface channel of the substrate 40 can also effectively reduce C3 "'

4514B〇 五、發明說明(4) ' 請參考圖四至圖七,圖四至圖七為習知於一半導體晶 片5 0上製作一分離閘極快閃記憶單元8 〇的方法示意圓。: 圖四所示,半導體晶片50包含有一矽基底52,以及一石夕氣 層54形成於矽基底52表面。如圖五所示,習知方法是先於 梦氧層54的表面形成一經過一黃光(η thography)製種定 義過之光阻層56,用來作為後續離子佈植製程的硬革幕 (hard mask)。接著進行該離子佈植製程,利用光阻層 所形成的硬罩幕於矽基底5 2的表面形成二摻雜區(未顯 示)。隨後利用一快速熱製程(rapid thermal processing, RTP)使摻雜區内的摻質向下趨入至矽基底52 中以形成二擴散區6 2 ’用來作為記憶單元8 0的汲極與源 極’而擴散區6 2之間的矽基底則為分離閘極的通道 (channel) 60° 接著’如圖六所示’完全去除光阻層56。隨後進行一 低壓化學氣相沈積(low pressure chemical vapor deposition,LPCVD)製程’以於矽氧層54表面形成一多晶 石夕層(未顯示)。接著於該多晶矽層表面形成一經黃光製程 定義之光阻層66’並以光阻層66為硬罩幕進行一非等向性 截刻製程’垂直向下去除該多晶梦層直到梦氧層54表面, 形成分離閘極之浮動閘極6 4。 最後,如圖七所示,完全去除光阻層66。然後利用一 低壓化學氣相沈積製程’於半導體晶片5〇表面均勻地沈積4514B〇 5. Description of the invention (4) Please refer to FIG. 4 to FIG. 7. FIG. 4 to FIG. 7 are schematic circles of a method for making a separate gate flash memory unit 8 0 on a semiconductor wafer 50. As shown in FIG. 4, the semiconductor wafer 50 includes a silicon substrate 52, and a silicon oxide layer 54 is formed on the surface of the silicon substrate 52. As shown in FIG. 5, a conventional method is to form a photoresist layer 56 which is defined by η thography before the surface of the dream oxygen layer 54 and used as a hard leather curtain for the subsequent ion implantation process. (hard mask). Next, the ion implantation process is performed, and a hard mask formed by a photoresist layer is used to form a doped region (not shown) on the surface of the silicon substrate 5 2. A rapid thermal processing (RTP) is then used to cause the dopants in the doped region to descend into the silicon substrate 52 to form a second diffusion region 6 2 ′ for the drain and source of the memory cell 80. The silicon substrate between the diffusion regions 62 is a channel 60 ° for separating the gate electrodes, and then the photoresist layer 56 is completely removed as shown in FIG. 6. Subsequently, a low pressure chemical vapor deposition (LPCVD) process is performed to form a polycrystalline silicon layer (not shown) on the surface of the silicon oxide layer 54. Then, a photoresist layer 66 'defined by a yellow light process is formed on the surface of the polycrystalline silicon layer, and an anisotropic truncation process is performed using the photoresist layer 66 as a hard mask. The polycrystalline dream layer is removed vertically down to the dream oxygen. The surface of the layer 54 forms a floating gate 64 which separates the gates. Finally, as shown in FIG. 7, the photoresist layer 66 is completely removed. Then, a low pressure chemical vapor deposition process is used to uniformly deposit the semiconductor wafer 50 surface.

第7頁 45 1 48 Ο ___----- ~--— 五、發明說明(5) … , ,, 一石夕氧層68,作為隧穿氧化層(tunnel oxide Uyer)。接 著再進行另〆低壓化學氣相沈積製程’於石夕氧層68表面形 成一多晶石夕層(未顯示),然後於該多晶矽層表面形成一光 阻層(未顯承),並利用該光阻層為硬罩幕進行—非等向性 蝕刻製程,垂直向下去除該多晶麥層直到梦氧層68的表 面,形成分離閘極之控制閘極7 0 β 發明概述 本發明之主要目的在於提供一種具有自行對準特性的 分離閘極快閃記憶單元製作方法,以提高記憶單元的CR 值,進而提昇記憶單元的效能。 本發明係提供一種於一半導體晶片上製作分離閘極快 閃記憶單元的方法。該半導體晶片包含有一基底,至少二 個選擇閘極設於該基底之上,以及一介電層設於各選擇閘 極之上。本發明之方法是先於該二選擇閘極之間的内侧壁 上形成二多晶矽側壁子,用來作為該分離閘極快閃記憶單 元的浮動閘極,接著再於鄰接該二選擇閘極外側壁之基底 中各形成一汲極,並於該二多晶矽側壁子間之基底中形成 一源極。然後於該半導體晶片表面形成一矽氧層’覆蓋於 該介電層、該二選擇閘極以及該二多晶石夕側壁子的表面 上’並利用一乾蝕刻來去除一預定厚度之該矽氧層以及去 除位於各選擇閘極之上的該介電層至一預定厚度。最後於 該浮動閘極表面形成一 0Ν0 (oxidized-silicon 4 5 1 48 〇 五、發明說明(6) nitride-silicon oxide)介電層,並於該二選擇閘極間與 該洋置閘極上方形成一控制閘極’完成一具有高CR值的分 離閘極快閃記憶單元》 由於本發明方法於該二選擇閘極之間的側壁上各艰成 一多晶妙側壁子’用來作為該分離閘極快閃記憶單元的浮 動閘極。由於此浮動閘極是由一非等向性乾蝕刻所形成, 不需使用曝光對準機,因此可達到自行對準的目的。此 外,由於控制閘極對浮動閘極之間的接觸面積增加,也提 高了該分離閘極快閃記憶體單元之〇{?值 發明之詳細說明 請參閱圖八至圖十七,圖八至圖十七為本發明於一半 導體晶片1 0 0上製作一分離閘極快閃記憶單元1 5 〇的方法示 意圖。如圖八所示,半導體晶片1 〇 〇包含有一石夕基底丨〇 2, •閘氧化層1 0 4形成於發基底1 0 2的表面,一多晶梦層106 設於閘氧化層1 04的表面之上,以及一由二氧化石夕所構成 的介電層1 0 8設於多晶妙層1〇 6的表面之上。介電層iq §的 厚度約為 4000至 50 0 0埃(angstrom)。 如圖九所示,本發明是先於半導體晶片1〇〇表面進行 -黃光(1 i thography)製程以及一非等向性乾蝕刻製程, 向下钮刻介電層10 8以及多晶梦層1 0 6直到閘氧化層1 〇 4的 表面以形成一選擇閘極11 2、11 4、11 6、11 8。隨後利用.Page 7 45 1 48 Ο ___----- ~ --- 5. Description of the invention (5)…, ,, A stone oxide layer 68 is used as a tunnel oxide layer (tunnel oxide Uyer). Next, another low-pressure chemical vapor deposition process is performed to form a polycrystalline stone layer (not shown) on the surface of the silicon oxide layer 68, and then a photoresist layer (not explicitly supported) is formed on the surface of the polycrystalline silicon layer, and is used. The photoresist layer is a hard mask—anisotropic etching process. The polycrystalline wheat layer is removed vertically down to the surface of the dream oxygen layer 68 to form a control gate 7 0 β for the separation gate. SUMMARY OF THE INVENTION The main purpose is to provide a method for manufacturing a split gate flash memory unit with self-alignment characteristics, so as to increase the CR value of the memory unit, thereby improving the performance of the memory unit. The invention provides a method for fabricating a split gate flash memory unit on a semiconductor wafer. The semiconductor wafer includes a substrate, at least two selection gates are disposed on the substrate, and a dielectric layer is disposed on each selection gate. In the method of the present invention, two polycrystalline silicon sidewalls are formed on the inner side wall between the two selection gates to serve as the floating gate of the split gate flash memory unit, and then adjacent to the outside of the two selection gates. A drain is formed in each of the substrates of the wall, and a source is formed in the substrate between the two polycrystalline silicon sidewalls. Then a silicon oxide layer is formed on the surface of the semiconductor wafer 'covering the surface of the dielectric layer, the two selection gates and the two polycrystalline silicon sidewalls', and a dry etching is used to remove the silicon oxide of a predetermined thickness. Layer and removing the dielectric layer above each selected gate to a predetermined thickness. Finally, a 0N0 (oxidized-silicon 4 5 1 48 05) dielectric layer is formed on the surface of the floating gate, and between the two selected gates and above the western gate. Forming a control gate 'to complete a separate gate flash memory unit with a high CR value' Because the method of the present invention forms a polycrystalline sidewall on each of the side walls between the two selected gates to serve as the Floating gate of split gate flash memory unit. Since the floating gate is formed by an anisotropic dry etching, an exposure alignment machine is not required, so the purpose of self-alignment can be achieved. In addition, as the contact area between the control gate and the floating gate is increased, the separation gate flash memory unit ’s zero-point invention is also described in detail with reference to FIGS. 8 to 17 and FIGS. 8 to FIG. 17 is a schematic diagram of a method for fabricating a separate gate flash memory cell 150 on a semiconductor wafer 100 according to the present invention. As shown in FIG. 8, the semiconductor wafer 100 includes a stone substrate 〇〇2, a gate oxide layer 104 is formed on the surface of the hair substrate 102, and a polycrystalline dream layer 106 is provided on the gate oxide layer 104 On the surface of the polycrystalline silicon oxide layer, a dielectric layer 108 composed of SiO2 is disposed on the surface of the polycrystalline layer 106. The thickness of the dielectric layer iq § is about 4,000 to 50,000 angstroms. As shown in FIG. 9, the present invention is performed before the surface of the semiconductor wafer 100-a lithography process and an anisotropic dry etching process, and the dielectric layer 108 and the polycrystalline dream are etched downward. The layer 106 reaches the surface of the gate oxide layer 104 to form a selective gate 11 2, 11 4, 11 6 and 118. Use it later.

ab d 五、發明說明(7) 一厚度約為150至200 A之二氧化矽層122。 熱氧化製程將選擇閘極11 2、11 4、11 6、11 8的暴露表面氧 形成 化,加·丄、 e ----------- 接著如圖十所示,進行一化學氣相沈積(CVD)製程, 以於半導體晶片表面上形成一厚度約為2500至4000埃 之多晶矽層124,均勻地覆蓋於矽基底1〇2、介電層1〇8以 及選擇閘極112、114、116、11 8的表面。隨後進行一回蝕 刻製程,去除多晶矽層124直至矽基底1〇2的表面,並使殘 留於選擇閘極11 2、1 1 4、11 6、11 8兩側的側壁上之多晶石夕 層1 24形成一多晶矽侧壁子1 2 6。 ~ 如圖十—所示’隨後於半導體晶片1〇〇表面形成一已 ^„之光阻層130。光阻層130係覆蓋於選擇閘極11 4與選 甲極11 6之間以及多晶矽侧壁子1 2 6的表面上方,用來作 為後續蝕刻製程以及離子佈植製程的硬罩幕。然後如圖十 一所示,進行一乾蝕刻製程,去除選擇閘極與選擇閘 極114之間以及選擇閘極116與選擇閘極118之間未被光阻 層130覆蓋的多晶矽側壁子12卜接著再利用一離子佈植 程,以於選擇閘極Π2與選擇閘極114之間以及選擇閑極 11 6與選擇閘極118之間的矽基底1〇2表面各形成一汲 雜區131。 释 接下來,如圖十二所示,完全去除光阻層13〇之後, 再於選擇閘極112與選擇閘極114之間以及選擇閘極116與ab d 5. Description of the invention (7) A silicon dioxide layer 122 having a thickness of about 150 to 200 A. The thermal oxidation process forms oxygen on the exposed surfaces of the selected gate electrodes 11 2, 11 4, 11, 6, and 11 8 and adds 丄, e ----------- Then, as shown in Figure 10, a A chemical vapor deposition (CVD) process to form a polycrystalline silicon layer 124 on the surface of a semiconductor wafer with a thickness of about 2500 to 4000 angstroms, uniformly covering the silicon substrate 102, the dielectric layer 108, and the selection gate 112. , 114, 116, 118 surface. Subsequently, an etching process is performed to remove the polycrystalline silicon layer 124 up to the surface of the silicon substrate 102, and to leave the polycrystalline silicon layers on the sidewalls on both sides of the selection gate 11 2, 1 1 4, 11 6, 11 8 1 24 forms a polycrystalline silicon sidewall 1 2 6. ~ As shown in Figure 10—'a photoresist layer 130 is then formed on the surface of the semiconductor wafer 100. The photoresist layer 130 covers the selection gate 114 and the selection electrode 116 and the polycrystalline silicon side. Above the surface of the wall 1 2 6 is used as a hard cover for the subsequent etching process and ion implantation process. Then, as shown in FIG. 11, a dry etching process is performed to remove the selection gate and the selection gate 114 and The polysilicon sidewall 12 between the selection gate 116 and the selection gate 118 that is not covered by the photoresist layer 130 is then subjected to an ion implantation process to select between the selection gate Π2 and the selection gate 114 and the selection gate A doping region 131 is formed on the surface of the silicon substrate 102 between the silicon substrate 11 and the selection gate 118. Note that, as shown in FIG. 12, the photoresist layer 13 is completely removed, and then the selection gate 112 is formed. And select gate 114 and select gate 116 and

451480 五、發明說明(8) 選擇閘極11 8之間形成一光阻層1 3 6,以覆蓋於選擇閘極 1 1 2與選擇閘極1 1 4上方以及選擇閘極i 1 6與選擇閘極i丨8的 上方。隨後再進行一自行對準離子佈植製程,利用選擇閉 極114、116以及其間之多晶矽側壁子126作為硬光罩,於 選擇閘極11 4、1 1 6之間的多晶矽側壁子1 2 6間的矽基底i 0 2 表面形成一源極摻雜區133,並完全去除光阻層136。 然後如圖十四所示,在完全去除光阻層1 3 6之後,隨 即利用一快速熱製程(RTP)使汲極摻雜區1 3 1以及源極摻雜 區133内的摻質向下趨入至矽基底ι〇2中以形成汲極132與 源極134。再進行一化學氣相沈積製程,於半導體晶片1〇〇 表面形成一厚度約為1.5至2仁m之矽氧層138,並覆蓋於 介電層1 08、選擇閘極} i 2、U4、i i 6、i i 8以及多晶矽 壁子126的表面之上。 如圖十五所示,接著進行一非等向性乾蝕刻製程,向 下去除一厚度約為1. 7至2. m之矽氧層1 38以及厚度約為 2 5 0 0至2 8 0 0埃之介電層丨〇 8 ’使剩下的介電層i 〇 8的厚度約 為5 00至80 0埃。再於半導體晶片ι〇〇表面形成一絕緣層 142’並覆蓋於矽氧層138、介電層ι〇8以及側壁子126的 露表面上β *' 絕緣層1 4 2係為一厚度約為9 5至1 7 5埃之Ο Ν 0 〇Xldlzed-Sllic〇n nitride-silicon oxide)介電廇。形451480 V. Description of the invention (8) A photoresist layer 1 3 6 is formed between the selection gate 11 8 to cover the selection gate 1 1 2 and the selection gate 1 1 4 and the selection gate i 1 6 and the selection Above the gate i 丨 8. Subsequently, a self-aligned ion implantation process is performed, using the selective closed electrodes 114, 116 and the polycrystalline silicon sidewalls 126 therebetween as a hard mask, and the polycrystalline silicon sidewalls 1 2 6 between the selection gates 11 4 and 1 1 6 A source doped region 133 is formed on the surface of the silicon substrate i 0 2, and the photoresist layer 136 is completely removed. Then, as shown in FIG. 14, after the photoresist layer 136 is completely removed, a rapid thermal process (RTP) is then used to bring down the dopants in the drain doped regions 131 and the source doped regions 133. It goes into the silicon substrate 102 to form a drain 132 and a source 134. Then a chemical vapor deposition process is performed to form a silicon oxide layer 138 with a thickness of about 1.5 to 2 μm on the surface of the semiconductor wafer 100, and cover the dielectric layer 108, the selection gate} i 2, U4, ii 6, ii 8 and the surface of the polycrystalline silicon wall 126. As shown in FIG. 15, an anisotropic dry etching process is then performed to remove a silicon oxide layer 1 38 having a thickness of about 1.7 to 2. m and a thickness of about 2 5 0 to 2 8 0. A dielectric layer of 0 angstrom 〇0 ′ makes the thickness of the remaining dielectric layer 〇8 about 500 to 800 angstroms. Then, an insulating layer 142 'is formed on the surface of the semiconductor wafer ιo and covers the exposed surface of the silicon oxide layer 138, the dielectric layer ι 08, and the side wall 126. The insulating layer 1 * 2 is a thickness of about 9 5 to 175 Angstroms (N 0 0 × ldlzed-Sllicon nitride-silicon oxide) dielectric. shape

第11頁 45 1 48 〇 __一---—----........ .... .......-- 五、發明説明(9) 成絕緣層1 4 2的方法是先在多晶矽側壁子1 2 6的表面形成一 厚度約1 0至5 0埃的原生氧化(na t i v e 〇χ i de )層(未顯示)。 接著進行一電漿加強化學氣相沈積(plasma-enhanced CVD,PECVD)製程或一LPCVD製程,以二氣矽曱烷 (dichlorosilane,SiH2C12)以及氨氣(amm〇nia,nh3)為一 反應氣體’於該原生氧化層的表面沈積一厚度約為45埃之 氮化矽層(未顯示)。最後再於攝氏約8 〇 〇度的高溫含氧環 境中對半導體晶片100進行約30分鐘的高溫癒合(heal ing) 製程’以於氮化矽層表面形成一厚度約4 〇至8 〇埃之含氡矽 化物(silicon oxy-nitride)層(未顯示)。 如圖十六所示,接下來利用化學氣相沈積法,於半導 體晶片1 0 0表面沈積一厚度約為3 〇 〇 〇至3 5 0 0埃之多晶矽層 144。最後如圖十七所示,利用一黃光製程以及乾蝕刻製 程’向下银刻多晶矽層1 44以於選擇閘極11 4以及選擇閘極 11 6之間的多晶矽側壁子1 2 6上方形成一控制閘極1 4 5,完 成快閃記憶單元1 5 0的製作。 由於本發明之方法係利用多晶矽侧壁子1 2 6作為浮動 ^極,以做到自行對準。此外,本發明方法是先於半導體 晶片100表面形成厚度約為I 5至m之矽氧層ι38,接著 再利用一非等向性乾蝕刻製程’來去除厚度約為1. 7至2 2 A m之石夕氧層138以及厚度約為2500至2800埃之介電層 1 〇8 ’藉以有效地增加多晶矽側壁子126與控制閘極i45之Page 11 45 1 48 〇__ 一 -----------.......................... 5. Description of the invention (9) Insulation layer 1 The method of 42 is to first form a native oxide layer (not shown) with a thickness of about 10 to 50 angstroms on the surface of the polycrystalline silicon sidewalls 1 2 6. Next, a plasma-enhanced CVD (PECVD) process or an LPCVD process is performed with dichlorosilane (SiH2C12) and ammonia (ammonia, nh3) as a reaction gas. A silicon nitride layer (not shown) having a thickness of about 45 Angstroms is deposited on the surface of the native oxide layer. Finally, the semiconductor wafer 100 is subjected to a high-temperature healing process for about 30 minutes in a high-temperature oxygen-containing environment at about 8000 degrees Celsius to form a thickness of about 40 to 80 angstroms on the surface of the silicon nitride layer. Contains a silicon oxy-nitride layer (not shown). As shown in FIG. 16, a polycrystalline silicon layer 144 having a thickness of about 3000 to 3500 angstroms is then deposited on the semiconductor wafer 100 surface by a chemical vapor deposition method. Finally, as shown in FIG. 17, a yellow light process and a dry etching process are used to etch the polycrystalline silicon layer 1 44 downward to form a polysilicon sidewall 1 2 6 between the selective gate 114 and the selective gate 116. One control gate 1 4 5 completes the production of the flash memory unit 150. Because the method of the present invention uses the polysilicon sidewall spacers 1 2 6 as floating poles to achieve self-alignment. In addition, the method of the present invention is to form a silicon oxide layer ι38 with a thickness of about I 5 to m on the surface of the semiconductor wafer 100, and then use an anisotropic dry etching process to remove the thickness of about 1.7 to 2 2 A. m of silicon oxide layer 138 and a dielectric layer 1 08 ′ having a thickness of about 2500 to 2800 angstroms, thereby effectively increasing the thickness of the polycrystalline silicon sidewall 126 and the control gate i45.

第12頁 4 5 1 48 〇 五、發明說明(ίο) 間的電容面積,提高CR值,降低快閃記憶單元1 50之寫入 或抹除的操作電壓。 相較於習知分離閘極俠閃記憶單元CR值不足的缺失, 本發明提供了一種具有高CR值的分離閘極快閃記憶單元的 製作方法,以有效地提高分離閘極快閃記憶單元中浮動閘 極與控制閘極之間的電容面積,增加CR值,進而提昇快閃 記憶單元的效能。 以上所述僅為本發明之較佳實施例,凡依本發明申請 專利範圍所做之均等變化與修飾,皆應屬本發明專利之涵 蓋範圍。Page 12 4 5 1 48 〇 V. Capacitive area between inventions, increase CR value, reduce operating voltage of flash memory unit 150 writing or erasing. Compared with the conventional lack of CR value of the separation gate flash memory unit, the present invention provides a method for manufacturing a separation gate flash memory unit with a high CR value, so as to effectively improve the separation gate flash memory unit. The capacitance area between the floating gate and the control gate increases the CR value, thereby improving the performance of the flash memory cell. The above description is only a preferred embodiment of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application for the present invention shall fall within the scope of the invention patent.

第13頁 在51 圖式簡單說明 圖示之簡單說明 圖一為習知堆疊閘極快閃記憶單元的剖面結構示意 圖。 圖二為習知分離閘極快閃記憶單元的剖面結構示意 圖。 圖三為圖二中分離閘極快閃記體的等效電路示意圖。 圖四至圖七為習知製作分離閘極快閃記憶單元的方法 示意圖。 圖八至圖十七為本發明製作分離閘極快閃記憶單元的 方法示意圖。 圖示之符號說明 10 堆 疊 閘 極快 閃記憶 ;單 元 11 堆疊閘極 12 閘 氧 化 層 14 浮 動 閘 極 16 絕 緣 層 18 控 制 閘 極 20 矽 基 底 22 汲 極 24 源 極 30 分 離 閘 極 快閃記憶單元 31 選 擇 通 道 32 閘 氧 化 層 34 浮 動 閘 極 36 絕 緣 層 38 控 制 閘 極 40 矽 基 底 42 汲 極 44 源 極 46 等 效 電 容 50 半 導 體 晶 片 52 矽 基 底 54 閘 氧 化 層 56 光 阻 層 60 通 道Page 13 at 51 Brief description of the diagram Brief description of the diagram Figure 1 is a schematic diagram of the cross-sectional structure of a conventional stacked gate flash memory unit. Fig. 2 is a schematic sectional view of a conventional split gate flash memory unit. FIG. 3 is a schematic diagram of the equivalent circuit of the split gate flash memory in FIG. 2. Figures 4 to 7 are schematic diagrams of conventional methods for making a separate gate flash memory unit. FIG. 8 to FIG. 17 are schematic diagrams of a method for manufacturing a split gate flash memory unit according to the present invention. Symbol description in the figure 10 stacked gate flash memory; cell 11 stacked gate 12 gate oxide layer 14 floating gate 16 insulation layer 18 control gate 20 silicon substrate 22 drain 24 source 30 separated gate flash memory unit 31 Select channel 32 Gate oxide layer 34 Floating gate 36 Insulating layer 38 Control gate 40 Silicon substrate 42 Drain 44 Source 46 Equivalent capacitance 50 Semiconductor chip 52 Silicon substrate 54 Gate oxide layer 56 Photoresistance layer 60 channels

第U頁 4 51 48 〇 圖式簡單說明Page U 4 51 48 〇 Simple illustration

第15頁 62 擴 散 區 64 多 晶 矽 層 66 光 阻 詹 68 矽 氧 層 70 多 晶 矽 層 80 分 離 閘 極式快閃記 憶 單 元 100 多 晶 矽 層 102 矽 基 底 104 閘 氧 化 層 106 多 晶 矽 層 108 介 電 層 112 、1 L14、 116' 118 選 擇 閘 122 二 氧 化 矽 層 124 多 晶 矽 層 126 多 晶 矽 側 壁子 130 光 阻 層 132 汲 極 134 源 極 136 光 阻 層 138 矽 氧 層 142 絕 緣 層 144 多 晶 矽 層 145 控 制 閘 極Page 15 62 Diffusion region 64 Polycrystalline silicon layer 66 Photoresistive layer 68 Silicon oxide layer 70 Polycrystalline silicon layer 80 Split gate flash memory cell 100 Polycrystalline silicon layer 102 Silicon substrate 104 Gate oxide layer 106 Polycrystalline silicon layer 108 Dielectric layer 112, 1 L14 , 116 '118 Select gate 122 Silicon dioxide layer 124 Polycrystalline silicon layer 126 Polycrystalline silicon sidewall 130 Photoresistive layer 132 Drain 134 Source 136 Photoresistive layer 138 Silicon oxide layer 142 Insulating layer 144 Polycrystalline silicon layer 145 Control gate

Claims (1)

45148〇 六、申請專利範圍 1. 一種於一半導體晶片上製作一自行對準 (s e 1 f - a 1 i g n e d)分離間極快閃記憶單元(s p 1 i ΐ g a t e flash memory cell)的方法,該半導體晶片包含有一基 底,至少二個選擇閘極(select gate)設於該基底之上, 以及一介電層設於各選擇閘極之上,該方法包含有下列步 驟: 於該二選择閘極之間的内側壁上形成二多晶矽側壁 子; 於鄰接該二選擇閘極外側壁之基底中各形成一汲極; 於該二多晶矽側壁子之間的基底中形成一源極; 於該半導體晶片表面形成一石夕氧層(silicon oxide layer),並覆蓋於該介電層、該二選擇閘極以及該二多晶 石夕侧壁子的表面上; 進行一乾蝕刻(dry etch)製程,以去除一預定厚度之 該矽氧層以及去除位於各選擇閘極之上的該介電層至一預 定厚度; 於該二多晶矽側壁子的表面形成一絕緣層;以及 於該二多晶♦侧壁子上方形成一控制閘極(control gate); 其中’該二多晶矽侧壁子係皆用來作為該分離閘極快 閃記憶單元的自行對準浮動閘極(floating gate),以提 兩該分離閘極快間記憶單元之輕合值(coupling ratio)。 2. 如申請專利範圍第1項之方法,其中該二選擇閘極係45148〇 6. Application patent scope 1. A method for fabricating a self-aligned (se 1 f-a 1 igned) discrete inter-flash memory cell (sp 1 i ΐ gate flash memory cell) on a semiconductor wafer, which The semiconductor wafer includes a substrate, at least two select gates are disposed on the substrate, and a dielectric layer is disposed on each of the select gates. The method includes the following steps: On the two select gates Two polycrystalline silicon sidewalls are formed on the inner sidewalls between the electrodes; a drain is formed in each of the substrates adjacent to the outer sidewalls of the two selection gates; a source is formed in the substrate between the two polycrystalline silicon sidewalls; A silicon oxide layer is formed on the wafer surface and covers the surfaces of the dielectric layer, the two selective gates, and the two polycrystalline silicon sidewalls; a dry etch process is performed to Removing a silicon oxide layer of a predetermined thickness and removing the dielectric layer above each selection gate to a predetermined thickness; forming an insulating layer on a surface of the two polycrystalline silicon sidewalls; and A control gate is formed above the sidewall of the crystal; wherein the two polycrystalline silicon sidewall subsystems are used as self-aligning floating gates of the flash memory cell of the separation gate to The coupling ratio of the two fast memory cells of the separation gate is provided. 2. For the method of applying for the first item of the patent scope, wherein the two selection gate systems are 第16頁 45148ο 六、申請專利範圍 皆由一第一多晶梦層(p〇〗ysilic〇n layer)以及一閘氧化 層(gate oxide)上下堆疊所構成,且該二選擇閘極的側壁 上設有一二氧化梦層。 3.如申請專利範圍第1項之方法,其中該介電層係由二 氧化矽(silicon dioxide)所構成。 4. 如申請專 之間的内側壁 步驟: 於該半導 該基底表面、 進行一回 底表面,並使 晶矽層各形成 於該二選 一第一光阻層 進行一敍 晶矽側壁子, 子。 利範圍第1項之方法,兑中於兮―、印w 上形成該二多晶矽侧壁子的方法包含有下列 體晶片表面形成一第-吝s办 夂哂冰 取弟一夕日曰矽層,並覆蓋於 各選擇閘極與介電層表面; 盍於 製程’以去除該第二多晶矽 ==選擇間極之周圍侧壁上的第3 夕晶梦側壁子; 夕 擇閑極内侧壁之間的多晶 ;以及 明/调堃子上方形成 j製程,去除未被該第一 以於該二選擇閘極之間形成該:多 5.如申請專利範圍第4項之方法,1由产— 程之後,另包含有 /、中在元成該蝕刻製 進行以形成該汲極以及源極: 離子佈植製程,以於鄰接該二選擇閑極外Page 16 45148ο 6. The scope of patent application is composed of a first polycrystalline dream layer (p〇〗 ysilicOn layer) and a gate oxide layer (gate oxide) stacked on top of each other, and the two select gate on the side wall With a dream layer of dioxide. 3. The method according to item 1 of the patent application scope, wherein the dielectric layer is composed of silicon dioxide. 4. If applying for the inner side wall step between the substrates: perform a back surface on the surface of the semiconductor substrate, and form a crystalline silicon layer on each of the two first photoresist layers to perform a crystalline silicon side wall. , Child. The method of the first item of the scope of interest is the method of forming the two polycrystalline silicon sidewalls on the printed substrate. The method includes forming a silicon layer on the surface of the body wafer as follows: And covering the surface of each selection gate and the dielectric layer; in the manufacturing process to remove the second polycrystalline silicon == the third night crystal side wall on the surrounding side wall of the selection center; the inner side wall of the selection electrode Polycrystalline between; and the process of forming j above the Ming / Tiaozi to remove the non-first to form between the two selection gates: more 5. If the method of the scope of patent application No. 4, 1 by After the production process, the etching process is further included to form the drain electrode and the source electrode. The ion implantation process is adjacent to the second selection electrode. 第17頁 4 5M8〇 六、申請專利範圍 側壁之基底中各形成一汲極摻雜區; 1 完全去除該第一光阻層; 於該半導體晶片表面形成一第二光阻層,且該第二光 阻層並不覆蓋於該二選擇閘極之間; 進行一第二離子佈植製程,於該二選擇閘極間之多晶 矽側壁子間的該基底表面形成一源極摻雜區; 完全去除該第二光阻層;以及 進行一回火(annealing)製程,以完成該沒極以及源 極之製作。 6. 如申請專利範圍第1項之方法,其中該絕緣層係為一 ONO (oxidized-silicon nitride-silicon oxide)介電 磨0 7. 如申請專利範圍第1項之方法,其中該控制閘極係由 摻雜(doped)多晶石夕所構成。 8. 一種具有高耦合比的分離閘極快閃記憶單元之製作方 法,該分離閘極快閃記憶單元係製作於一半導體晶片上, 該半導體晶片包含有一矽基底,該方法包含有下列步驟: 於該♦基底表面依序形成一閘氧化層、一第一多晶石夕 層以及一介電層; 進行一黃光(lithography)製程以及一乾飯刻製程, 蝕刻該介電層、第一多晶矽層直至該閘氧化層表面,以形Page 17 4 5M806. A drain-doped region is formed in each of the substrates of the side walls of the patent application. 1 The first photoresist layer is completely removed. A second photoresist layer is formed on the surface of the semiconductor wafer. Two photoresist layers are not covered between the two selection gates; a second ion implantation process is performed to form a source doped region on the surface of the substrate between the polycrystalline silicon sidewalls between the two selection gates; completely Removing the second photoresist layer; and performing an annealing process to complete the fabrication of the anode and the source. 6. The method according to item 1 of the patent application, wherein the insulating layer is an ONO (oxidized-silicon nitride-silicon oxide) dielectric mill. 7. The method according to item 1 of the patent application, wherein the control gate It is composed of doped polycrystalline stone. 8. A method for manufacturing a split gate flash memory unit with a high coupling ratio. The split gate flash memory unit is fabricated on a semiconductor wafer. The semiconductor wafer includes a silicon substrate. The method includes the following steps: A gate oxide layer, a first polycrystalline silicon layer, and a dielectric layer are sequentially formed on the surface of the substrate; a lithography process and a dry rice engraving process are performed to etch the dielectric layer, the first The crystalline silicon layer reaches the surface of the gate oxide layer in a shape of 第18頁 45 1 48 ο - 六、申請專利範圍 成一第一選擇閘極、第二選擇閘極以及第三選擇閘極; 於該第一、第二以及第三選擇閘極兩側的側壁上各形 成一多晶砂側壁子; 去除該第二以及第三選擇閘極之間側壁上的多晶矽侧 壁子; 於該第二以及第三選擇閘極之間的矽基底表面形成一 汲極; 於該第一以及第二選擇閘極側壁上的多晶矽側壁子之 間的矽基底表面形成一源極; 於該半導體晶片表面形成一矽氧層,並覆蓋於該第 一、第二、第三選擇閘極以及該多晶矽側壁子的表面; 進行一乾蝕刻製程,以去除一預定厚度之該矽氧層以 及去除位於各選擇閘極之上的該介電層至一預定厚度; 於該多晶矽側壁子的表面形成一絕緣層;以及 於該第一以及第二選擇閘極之間的多晶矽側壁子上方 形成一控制閘極; 其中,該多晶矽側壁子係用來作為該分離閘極快閃記 憶單元的浮動閘極,以提高該分離閘極快閃記憶單元之耦 合值。 9. 如申請專利範圍第8項之方法,其中形成該多晶矽侧 壁子的方法包含有下列步驟: 於該半導體晶片表面上形成一第二多晶矽層,並覆蓋 於該矽基底、談第一、第二以及第三選擇閘極表面;以及Page 18 45 1 48 ο-6. The scope of patent application is a first selection gate, a second selection gate and a third selection gate; on the side walls on both sides of the first, second and third selection gates Forming a polycrystalline silicon sidewall each; removing the polycrystalline silicon sidewall on the sidewall between the second and third selection gates; forming a drain electrode on the surface of the silicon substrate between the second and third selection gates; A source is formed on the surface of the silicon substrate between the polysilicon sidewalls on the first and second selection gate sidewalls; a silicon oxide layer is formed on the surface of the semiconductor wafer and covers the first, second, and third layers Select the gate and the surface of the polycrystalline silicon sidewall; perform a dry etching process to remove the silicon oxide layer of a predetermined thickness and remove the dielectric layer above each selected gate to a predetermined thickness; on the polycrystalline silicon sidewall An insulating layer is formed on the surface; and a control gate is formed above the polycrystalline silicon sidewall between the first and second selection gates; wherein the polycrystalline silicon sidewall is used as the separation gate fast The floating gate of the flash memory unit to increase the coupling value of the split gate flash memory unit. 9. The method according to item 8 of the patent application, wherein the method for forming the polycrystalline silicon sidewall comprises the following steps: forming a second polycrystalline silicon layer on the surface of the semiconductor wafer and covering the silicon substrate; First, second and third selection gate surfaces; and 第19頁 45148 ο 六、申請專利範圍 進行一回蝕刻製程,以去除該第二多晶·矽層直至 基底表面,並使殘留於該第一、第二以及第三選擇閘 侧的侧壁上之第二多晶矽層形成該多晶矽側壁子。 10. 如申請專利範圍第8項之方法,其中去除該第二t 第三選擇閘極間的多晶矽側壁子的方法,包含有下列 驟: 於該第一以及第二選擇閘極之間形成一第一光阻 覆蓋於該第一、第二選擇閘極上方以及該第一與第二 閘極間之多晶矽側壁子表面;以及 進行一蝕刻製程,以去除該第二以及第三選擇閘 之多晶梦側壁子。 11, 如申請專利範圍第10項之方法,其中去除完該第 及第三選擇閘極間的多晶矽側壁子之後,該方法尚包 下列步驟: 進行一離子佈植製程,以於該第二以及第三選擇 間之該矽基底表面形成一汲極; 完全去除該第一光阻層; 於該第二以及第三選擇閘極間形成一第二光阻層 覆蓋於該第二以及第三選擇閘極上方; 進行一自行對準離子佈植製程,利用該第一以及 選擇閘極間的多晶矽側壁子作為硬光罩,以於該第一 第二選擇閘極間之多晶矽側壁子間的該矽基底表面形 該矽 極兩 (及 步 層, 選擇 極間 二以 含有 閘極 ,並 第二 以及 成一Page 19, 45148 ο 6. The scope of the patent application is to perform an etching process to remove the second polycrystalline silicon layer up to the surface of the substrate and leave it on the sidewalls of the first, second and third selection gates. The second polycrystalline silicon layer forms the polycrystalline silicon sidewall. 10. The method according to item 8 of the patent application, wherein the method for removing the polysilicon sidewall between the second and third selection gates includes the following steps: forming a first between the first and second selection gates A first photoresist covers the polycrystalline silicon sidewall sub-surfaces above the first and second selection gates and between the first and second gates; and an etching process is performed to remove the second and third selection gates. Crystal dreams. 11. If the method of claim 10 is applied, after removing the polysilicon sidewall between the first and third selection gates, the method still includes the following steps: An ion implantation process is performed for the second and third selection gates. A drain is formed on the surface of the silicon substrate between the third selection; the first photoresist layer is completely removed; a second photoresist layer is formed between the second and third selection gates to cover the second and third selections Above the gate; perform a self-aligned ion implantation process, using the first and selected polycrystalline silicon sidewalls between the gates as a hard mask, so that the polycrystalline silicon sidewalls between the first and second selected gates The surface of the silicon substrate is formed with two silicon electrodes (and a step layer, and the inter-electrode two is selected to contain a gate electrode, and the second and the first electrode are formed into one). 第20頁 4 5 1 48 〇 六、申請專利範圍 源極;以及 ' 完全去除該第二光阻層。 1 2.如申請專利範圍第1 1項之方法,其中該第一以及第二 光阻層係分別用來作為該離子佈植製程以及該自行對準離 子佈植製程的硬光罩(hard mask)。 1 3.如申請專利範圍第8項之方法,其中形成該第一、第 二以及第三選擇閘極之後,該方法另包含有一熱氧化製 程,以於該第一多晶石夕層的暴露表面氧化形成一二氧化石夕 層。 1 4.如申請專利範圍第8項之方法,其中該絕緣層係為一 ΟΝΟ介電層。 1 5 .如申請專利範圍第8項之方法,其中該控制閘極係由 摻雜多晶矽所構成。Page 20 4 5 1 48 〇 6. Patent application source; and 'The second photoresist layer is completely removed. 12 2. The method according to item 11 of the scope of patent application, wherein the first and second photoresist layers are used as hard masks for the ion implantation process and the self-aligned ion implantation process, respectively. ). 1 3. The method according to item 8 of the patent application, wherein after forming the first, second and third selection gates, the method further includes a thermal oxidation process for exposing the first polycrystalline layer The surface is oxidized to form a layer of dioxide. 14. The method according to item 8 of the patent application, wherein the insulating layer is a 100N dielectric layer. 15. The method according to item 8 of the patent application, wherein the control gate is composed of doped polycrystalline silicon. 第21頁Page 21
TW89111576A 2000-06-14 2000-06-14 Fabrication method of split-gate flash memory TW451480B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89111576A TW451480B (en) 2000-06-14 2000-06-14 Fabrication method of split-gate flash memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89111576A TW451480B (en) 2000-06-14 2000-06-14 Fabrication method of split-gate flash memory

Publications (1)

Publication Number Publication Date
TW451480B true TW451480B (en) 2001-08-21

Family

ID=21660071

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89111576A TW451480B (en) 2000-06-14 2000-06-14 Fabrication method of split-gate flash memory

Country Status (1)

Country Link
TW (1) TW451480B (en)

Similar Documents

Publication Publication Date Title
JP5188686B2 (en) NAND flash memory device and manufacturing method thereof
TWI328881B (en)
TW494573B (en) Non-volatile memory device having a metal-oxide-nitride-oxide-semiconductor gate structure and fabrication method thereof
KR100801078B1 (en) Non volatile memory integrate circuit having vertical channel and fabricating method thereof
US7098109B2 (en) Multi-level memory cell and fabricating method thereof
TWI694592B (en) Non-volatile memory and manufacturing method thereof
JP5781733B2 (en) Nonvolatile memory cell and manufacturing method thereof
US20050285219A1 (en) Nonvolatile semiconductor memory and method of fabricating the same
JP4131896B2 (en) Method for manufacturing nonvolatile semiconductor memory device
KR100936627B1 (en) Flash memory device and method for manufacturing the same
JP2005223340A (en) Self aligned split gate-type nonvolatile semiconductor memory element, and manufacturing method of the same
US20050245037A1 (en) Method for fabricating flash memory device
CN103180952B (en) Getter in memorizer charge storage structure
US11133422B2 (en) Method for manufacturing a semiconductor device
JP3544308B2 (en) Manufacturing method of nonvolatile semiconductor memory device
TW202018917A (en) Non-volatile memory and manufacturing method thereof
US7932154B2 (en) Method of fabricating non-volatile flash memory device having at least two different channel concentrations
TWI251337B (en) Non-volatile memory cell and manufacturing method thereof
US6245614B1 (en) Method of manufacturing a split-gate flash memory cell with polysilicon spacers
KR100683389B1 (en) Cell transistor of flash memory and forming method
KR20100080243A (en) Semiconductor device and fabricating method thereof
US7220651B2 (en) Transistor and method for manufacturing the same
TW451480B (en) Fabrication method of split-gate flash memory
JP2008066725A (en) Eeprom device and method of manufacturing the same
JP2007081301A (en) Semiconductor device manufacturing method and semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent