TW447115B - Storage electrode with porous, rough inner wall and the DRAM capacitor - Google Patents
Storage electrode with porous, rough inner wall and the DRAM capacitor Download PDFInfo
- Publication number
- TW447115B TW447115B TW088106047A TW88106047A TW447115B TW 447115 B TW447115 B TW 447115B TW 088106047 A TW088106047 A TW 088106047A TW 88106047 A TW88106047 A TW 88106047A TW 447115 B TW447115 B TW 447115B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- storage electrode
- patent application
- silicon
- dielectric layer
- Prior art date
Links
- 238000003860 storage Methods 0.000 title claims abstract description 50
- 239000003990 capacitor Substances 0.000 title claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 11
- 239000010703 silicon Substances 0.000 claims abstract description 11
- 239000004065 semiconductor Substances 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 27
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 21
- 230000015654 memory Effects 0.000 claims description 16
- 239000011856 silicon-based particle Substances 0.000 claims description 11
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 7
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 3
- 229920005591 polysilicon Polymers 0.000 claims description 3
- 239000004575 stone Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 2
- RJCRUVXAWQRZKQ-UHFFFAOYSA-N oxosilicon;silicon Chemical compound [Si].[Si]=O RJCRUVXAWQRZKQ-UHFFFAOYSA-N 0.000 claims 2
- 239000001301 oxygen Substances 0.000 claims 2
- 229910052760 oxygen Inorganic materials 0.000 claims 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 claims 1
- 239000008186 active pharmaceutical agent Substances 0.000 claims 1
- 238000004898 kneading Methods 0.000 claims 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims 1
- 235000015170 shellfish Nutrition 0.000 claims 1
- 210000002784 stomach Anatomy 0.000 claims 1
- 229910001936 tantalum oxide Inorganic materials 0.000 claims 1
- 239000002966 varnish Substances 0.000 claims 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000001039 wet etching Methods 0.000 description 5
- FEWHDZOJQQLPEN-UHFFFAOYSA-N [O].[N].[O] Chemical compound [O].[N].[O] FEWHDZOJQQLPEN-UHFFFAOYSA-N 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical class [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000005055 memory storage Effects 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- OXRMMGBHYZHRMG-UHFFFAOYSA-N [Si].[Ar] Chemical compound [Si].[Ar] OXRMMGBHYZHRMG-UHFFFAOYSA-N 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- -1 nitride nitride Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 210000000352 storage cell Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- HZYAPKYFYYWOKA-UHFFFAOYSA-N tetrahexyl silicate Chemical compound CCCCCCO[Si](OCCCCCC)(OCCCCCC)OCCCCCC HZYAPKYFYYWOKA-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
447115 A7 B7 五、發明説明() 5-1發明領域: 本發明係有關於一種動態隨機存取記憶體電容,特 別是有.關於一種動態隨機存取記憶體電容、其具有多孔狀及 粗縫内壁之儲存電極,以及其形成之方法。 5-2發明背景: 由於電子產品及電腦相關產品的普及化,使得半導 體記憶元件的需求急速增加。第一圖顯示記憶體14及相關 組織系統之示意圖。記憶體1 4的記憶儲存單元是排列成具 有水平列及垂直行的陣列結構。所有水平方向連接記憶體的 導線稱為字元線(word line)U,而垂直方向連接記憶體的導 線稱為位元線(bit line) 1 3,資料的進出則是經由這些位元線 13 〇 列位址1 0及行位址1 2係用來選擇眾多記憶體1 4 其中之一的位置。列位址緩衝器1 5及行位址緩衝器1 7則用 來分別暫存列位址1 0信號及行位址1 2信號。接著,列位址 緩衝器15及行位址緩衝器17將這些信號分別送至列解碼 器16及行解碼器18’以分別產生字元線(w〇rdiine)ii及位 元線(b i t 1 i n e) 1 3,此解碼器係用以減少存取眾多記憶體時之 2 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 赛—— \]/ (#先閱讀-#面之注¾事一^填寫本頁) -訂 線 經濟部智慧財產局員工消費合作社印製 447115 A7 __B7_ 五、發明説明() 位址信號線個數。列解碼器1 6及行解碼器1 8所產生之信號 則用以選定其中一個記憶體儲存單元。上述記憶體系統 1 4(如動態隨機存取記憶體)之陣列結構非常適合超大型積 體電路·設計、製造時所需要的規則性結構》 第二 Α圖顯示記憶體儲存單元之電路示意圖,其 中電晶體20的閘極由字元線(word line)信號所控制,儲存 資料的電容器2 2則連接至電晶體2 0的源極,並經由電晶體 20的汲極及位元線(bit丨ine)以讀出或寫入資料至電容器 22 ° 由於其具有每位元低成本、高密度可行性及讀寫的 靈活運用性,動態隨機存取記憶體已成為半導體記憶元件之 主要元件之一 °然而,當動態隨機存取記憶體之密度愈來愈 高,使得其電容的面積變小,連帶也使得其電容量變小。第 二B圖顯示一傳統動態隨機存取記憶體電容之剖面圖,其 電容器你由儲存電極(storage electrode)24及介質層 26組 成。當記憶體之尺寸隨著技術之進步及高密度記憶體元件之 需求增大而逐漸減小後,其電容的面積將會跟著變小,而使 得電容量變小。然而,為了減少因為外界輻射線干擾造成記 憶'體讀取之錯誤,記憶體元件必須維持一定的電容量。因 此,如何降低記憶體元件尺寸並同時得到一高電容量之電 — I-- (請先閲讀4面之注嘴事項彳1 2寫本頁) 訂_ 線 經濟部智慧財產局員工消費合作社印製 1 2 本紙張尺度適用t國國家標準(CNS ) A2規格(210X297公釐) t 447 1 15 A7 B7 五、發明説明() 經濟部智慧財產局員工消費合作社印製 容,變成一個重要且亟待解決的當前之務〇 為了增加電容量且維持儲存單元之高度集積 (integration)性,有人提出於多晶矽層中形成具手指狀、圓 筒狀或矩形狀之多層結構或間隙壁,用以增加電容器電極之 表面積。然而,此種傳统電容器表面積增加所得到的電容增 加量,仍然不足以彌補因記憶鱧元件尺寸減小所造成的電容量減少。 5-3發明目的及概述: 黎於上述之發明背景中,傳統動態隨機存取記憶體 電容器之缺點,本發明提出一種形成動態隨機存取記憶體電 谷具有多孔狀及粗糙内壁之儲存電極、以及其形成之方法, 用以增加電容量且維持儲存單元之高度集積性。 本發明令之電容結構,其主要可包含:儲存電極、 複數個半球狀《夕顆粒、介電層、以及導電層;儲存電極位於 半導體基材上,儲存電極與基材上之導電區域形成電性連 接’儲存電極並具有多孔狀結構,多孔狀結構包含由儲存電 極之上表面向下延伸之複數個凹孔,複數個凹孔内並具有粗 縫之表面;半球狀矽顆粒則位於儲存電極之侧壁上;介電層 私纸張適用中國@家標準(CNS)八4触_ (2IGx297公酱)447115 A7 B7 V. Description of the invention () 5-1 Field of the invention: The present invention relates to a dynamic random access memory capacitor, in particular, to a dynamic random access memory capacitor having a porous shape and a thick seam. Storage electrode on inner wall, and method for forming the same. 5-2 Background of the Invention: Due to the popularity of electronic products and computer-related products, the demand for semiconductor memory components has increased rapidly. The first figure shows a schematic diagram of the memory 14 and related tissue systems. The memory storage units of the memory 14 are arranged in an array structure having horizontal columns and vertical rows. All the wires connecting the memory in the horizontal direction are called word line U, and the wires connecting the memory in the vertical direction are called bit line 1 3, and data enters and exits through these bit lines 13 〇Column address 10 and row address 12 are used to select one of the many memories 1 4. The column address buffer 15 and the row address buffer 17 are used to temporarily store the column address 10 signal and the row address 12 signal, respectively. Then, the column address buffer 15 and the row address buffer 17 send these signals to the column decoder 16 and the row decoder 18 ', respectively, to generate a word line (wordiine) ii and a bit line (bit 1 ine) 1 3, this decoder is used to reduce access to many memories. 2 This paper size is applicable to China National Standard (CNS) A4 specifications (210X297 mm). —— \] / (# 先 读-# 面Note ¾ One thing ^ Fill in this page)-447115 A7 __B7_ printed by the employee's consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the invention () Number of address signal lines. The signals generated by the column decoder 16 and the row decoder 18 are used to select one of the memory storage units. The array structure of the above-mentioned memory system 14 (such as dynamic random access memory) is very suitable for the ultra-large integrated circuit. Regular structure required during design and manufacture. Figure 2A shows a schematic circuit diagram of the memory storage unit. The gate of the transistor 20 is controlled by a word line signal. The capacitor 22 for storing data is connected to the source of the transistor 20 and passes through the drain of the transistor 20 and the bit line.丨 ine) to read or write data to the capacitor 22 ° Due to its low cost per bit, high density feasibility, and flexible use of reading and writing, dynamic random access memory has become the main component of semiconductor memory elements 1 ° However, as the density of dynamic random access memory becomes higher and higher, the area of its capacitance becomes smaller, and its capacitance also becomes smaller. Figure 2B shows a sectional view of a conventional dynamic random access memory capacitor. The capacitor is composed of a storage electrode 24 and a dielectric layer 26. As the size of the memory gradually decreases with the advancement of technology and the increase in demand for high-density memory components, the area of its capacitance will then decrease, resulting in a smaller capacitance. However, in order to reduce memory reading errors caused by external radiation interference, memory elements must maintain a certain capacitance. Therefore, how to reduce the size of the memory components and get a high-capacity electricity at the same time — I-- (Please read the note on 4 sides 彳 1 2 write this page) Order _ Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs System 1 2 This paper size is applicable to the national standard (CNS) A2 specification (210X297 mm) t 447 1 15 A7 B7 V. Description of the invention () Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs has become an important and urgent need To solve the current task, in order to increase the capacitance and maintain the high integration of the storage cells, it has been proposed to form finger-shaped, cylindrical or rectangular multi-layer structures or spacers in the polycrystalline silicon layer to increase the capacitor. Surface area of the electrode. However, the increase in capacitance obtained by increasing the surface area of such conventional capacitors is still not enough to make up for the decrease in capacitance caused by the reduction in the size of memory cells. 5-3 Purpose and Summary of the Invention: In the context of the above-mentioned invention, the disadvantages of the conventional dynamic random access memory capacitors, the present invention proposes a storage electrode for forming a dynamic random access memory valley with porous and rough inner walls, And its formation method is used to increase the electric capacity and maintain the high integration of the storage unit. The capacitor structure provided by the present invention may mainly include: a storage electrode, a plurality of hemispherical particles, a dielectric layer, and a conductive layer; the storage electrode is located on a semiconductor substrate, and the storage electrode and the conductive region on the substrate form an electrical circuit. The storage electrode is sexually connected and has a porous structure. The porous structure includes a plurality of recessed holes extending downward from the upper surface of the storage electrode, and a plurality of recessed holes and a surface with a thick seam; the hemispherical silicon particles are located on the storage electrode. On the side wall; the dielectric layer of private paper is applicable to China @ 家 标准 (CNS) 八 4Touch_ (2IGx297 公 酱)
Hi .in HI (請先鬩讀背面之注意事據寫本頁) 訂 447 1 1 5Hi .in HI (Please read the notes on the back page first) Order 447 1 1 5
五、發明説明( 則覆蓋於多孔狀結構、儲存 (請先聞讀遺面之注填寫本頁) 上;導電層則位於介電層上。、及複數個半球狀矽顆教 •在本發明之實施例之命^ 先形成第一介電層於一半,形成電容之步驟如下:首 第一介電層上;再形成笼=7基材上;並形成第二介電層於 案化第三介電層、第二介電層電:於第二介電層接著圖 於其内;之後形成摻雜之多 第-介電層以形成接觸洞 上,然德#忐®人 多^夕層於接觸洞内及第三介電層 上’贫、復办成第四介雷展热接 電層於摻雜多晶矽層上;再圖案化第四 介電層及㈣多以層’以定義儲存電極;並形成半球狀顆 粒層(HSG)於第四介電層、摻雜多晶㈣及第三 訂 介電層Jl帛著蚀刻半5托狀顆粒層以定義複數個孔洞於半 球狀顆粒層之顆粒間、以藉由複數個孔洞曝露第四介電層; 再逸過複數個孔洞蚀刻於其下方之第四介電廣及推雜多晶 矽層以形成多孔狀電極;之後進行溼蝕刻製程,以去除第 四介電層及第三介電層、並蝕刻多孔狀電極内凹陷孔洞内之 側壁’以形成凹陷孔洞内之粗糙化表面;並形成第五介電層 於儲存電極上;最後則形成導電層於第五層上。 經濟部智慧財產局員工消費合作社印製 張 紙 本 明說 單 簡式 圖 圖 意示 統 系織組 關相及體 憶記示顯 圖ί 第 準 榇 家 國 國 中 用 適V. Description of the invention (they are covered on the porous structure and stored (please read this note to fill in this page first); the conductive layer is on the dielectric layer. And several hemispherical silicon particles are taught in the present invention The order of the embodiment ^ Firstly, the first dielectric layer is formed on half, and the steps of forming the capacitor are as follows: first on the first dielectric layer; then forming the cage = 7 substrate; and forming the second dielectric layer on the case. The three dielectric layers and the second dielectric layer are formed on the second dielectric layer, and then a doped first-dielectric layer is formed to form a contact hole. Ran De # 忐 ® 人 多 ^ 夕Layer in the contact hole and on the third dielectric layer, 'depleted, reconstituted as a fourth dielectric thundershower thermal connection layer on the doped polycrystalline silicon layer; and then patterning the fourth dielectric layer and the polysilicon layer' to define Storage electrode; and forming a hemispherical particle layer (HSG) on the fourth dielectric layer, the doped polycrystalline silicon and the third ordered dielectric layer Jl to etch a half 5 bracket-shaped particle layer to define a plurality of holes in the hemispherical particles The fourth dielectric layer is exposed between the particles of the layer through a plurality of holes; and the fourth dielectric layer etched under the plurality of holes is etched under the fourth dielectric layer. And doped polycrystalline silicon layer to form a porous electrode; then a wet etching process is performed to remove the fourth dielectric layer and the third dielectric layer, and to etch the sidewalls of the recessed holes in the porous electrode to form the roughness in the recessed holes; The surface is formed; and a fifth dielectric layer is formed on the storage electrode; and finally, a conductive layer is formed on the fifth layer. Group photo and body memory display diagram
釐 公 97 2 X 447115 A7 B7 五、發明説明( 圖 面 剖 第第Centimeter 97 2 X 447115 A7 B7 V. Description of the invention
示 顯 圖 A B 示 顯 圖 電 之 元 單 存 儲動 體統 專 態 法 方 之 明雜 發摻 本、 據層 根電 示介 顯三 圖第 三 、 第層 電 介 二 第 晶 多 之 圖 意 示 之 容 電 體 意 記 取 存 、 電 層介 電四 介第 一 及 第以 成、 形層 矽 面據義據 截根定根 之示以示 上顯,顯 材圖層圖 基四矽五 體第晶第 導 多 半 雜 於 摻 層 及 圖 意 示本 層 電 介 四 第 化 案 圖 法 方 之 明 發 層 粒 顆 狀 球 ο 9半 圖成意2 面法 截方 之之 電明 存發 儲本 (請先閱讀背面之注意事1^、寫本頁) -裝- (HSG)於第四介電層、摻雜多晶矽層之侧壁、以及第三介電 層上之截面示意圖。 第六圖顯示根據本發明之方法,透過複數個孔洞蝕 刻於其下方之第四介電層及摻雜多晶矽層後之截面示意 圖。 第七圖顯示根據本發明之方法,進行溼蝕刻製程, 以去除第四介電層及第三介電層、並蝕刻多孔狀電極内凹陷 孔洞内之側壁,以形成凹陷扎洞内之粗糙化表面、並完成電 容製作之截面示意圖。 5-5發明詳細說明: 本發明中之實施例可由以下之步驟介紹之,第三囷 6 本紙張尺度適用中國國家標準(CNS ) A4規格(2I0X297公变) 訂 經濟部智慧財產局員工消費合作社印製 447 1 1 5 A7 B7 五、發明説明() (請先閱讀背,面之注$項\^寫本頁} 之剖面圖顯示半導體基材110之截面示意圖,首先以傳統方 法於半導體基材110上形成第一介電層112:第一介電層 112可為以四已基矽酸鹽(TEOS)為反應氣體加以沈積於基 材110‘上而形成、或是沈積硼磷矽玻璃(BPS G)等,以做為 不同導電區域間隔絕的主要材質。接著,形成第二介電層 113於第一介電層112上面;在此例中,第二介電層113則 使用氧化矽層,以配合第二實施例中不同的製程,於後續的 製程之中做為蝕刻中止層,码氮化矽層可使用傳統的低壓化 學氣相沈積法(LPCVD)或電漿增強化學氣相沈積法(PECVD) 加以形成。接著形成第三介電層114於第二介電層113上 面’本例中第三介電層U 4係使用氮化矽層、並可藉由傳統 的化學氣相沈積法(CVD)加以形成之》 之後即囷案化第三介電層114'夢二介電層113、 以及第一介電層112’以定義接觸洞於其内,以連通至下方 基材110上的導電區域,例如源極區域等,以提供形成電性 連接所需的空間》 經濟部智慧財產局員工消費合作社印製 接著形成摻雜多晶*夕層118於第三介電層114 上’且填滿接觸洞1 1 6 〇在本實施例中,此摻雜多晶矽層n 8 係使用傳統化學氣相沈積法所形成,其位於氧化梦層1 1 4 表面之上的厚度約3〇00-7〇00埃。並形成第四介電層119於 本紙張尺度逍用中國國家揉準(CNS ) Λ4規格(210X297公釐) 447 1 1 5 A7 B7 五、發明説明() 摻雜多晶矽層118之上’在較佳實施例之中,第四介電層 1 1 9可為氮化矽層,並可利用傳統的化學氣相沈積法(CVD) 加以形成之。本例中第四介電層1 19的厚度約為ι〇〇至5〇0 埃之間‘ β 之後即應用微影製程形成並圖案化光阻層丨2〇於 第四介電層119上,以定義儲存電容的形成形狀及區域。參 見第四圊所示,利用光阻層120為罩幕,蝕刻第四介電層 1 1 9及摻雜多晶矽層1 1 8,在經過單一或多次的蚀刻製程 後,即可形成如圖中所示的儲存電極,並再將光阻層12〇 去除。 參見第i圖所不,並形成半球狀顆粒(hemi_ spherical grain; HSG)之石夕層124於第四介電層上、穆 雜多晶梦層118的側壁上、以及第三介電層114上,本例中 半球狀顆粒矽層124沈積之厚度約為200至1000埃,其顆 粒大小約為2 0 0至1 0 0 〇埃。 (#先聞讀'^面之注¾事产4'填寫本頁} -裝 、-ιτ.Show the picture AB Show the picture of the electric power of the single-storage system of the system and the special method of the mixed method, according to the layer of the electric display of the third picture of the third, the first layer of the dielectric and the second picture of the crystal capacity Mindfulness, the first and first layers of the dielectric layer, the dielectric layer, the silicon layer, and the silicon layer are shown on the basis of the root section. The material layer is shown in the figure. Miscellaneous layers and diagrams show the granular layered balls of the Mingfa layer in the fourth layer of the dielectric layer of this layer. 9 The half-map Chengyi 2 cuts of the Mingming layer of the Mingfa layer (please read the back page first) Note 1 ^, write this page)-Mounting-(HSG) A schematic cross-sectional view of the fourth dielectric layer, the side wall of the doped polycrystalline silicon layer, and the third dielectric layer. The sixth figure shows a schematic cross-sectional view of a fourth dielectric layer and a doped polycrystalline silicon layer etched underneath it through a plurality of holes according to the method of the present invention. The seventh figure shows a wet etching process to remove the fourth dielectric layer and the third dielectric layer according to the method of the present invention, and to etch the sidewalls of the recessed holes in the porous electrode to form a roughening in the recessed holes. Surface and cross-section schematic diagram of capacitor production. 5-5 Detailed description of the invention: The embodiments of the present invention can be introduced by the following steps. The third and sixth paper sizes are applicable to the Chinese National Standard (CNS) A4 specification (2I0X297 public change). Printed 447 1 1 5 A7 B7 V. Description of the invention () (Please read the back, note $ item on the front \ ^ write this page} The cross-sectional view shows a schematic cross-sectional view of the semiconductor substrate 110. First, the traditional method A first dielectric layer 112 is formed on the material 110: the first dielectric layer 112 can be formed by depositing tetrahexyl silicate (TEOS) as a reactive gas on the substrate 110 ', or depositing borophosphosilicate glass (BPS G), etc. as the main material for insulation between different conductive areas. Next, a second dielectric layer 113 is formed on the first dielectric layer 112; in this example, the second dielectric layer 113 is oxidized. The silicon layer is used to match the different processes in the second embodiment, and is used as an etching stop layer in subsequent processes. The coded silicon nitride layer can use traditional low-pressure chemical vapor deposition (LPCVD) or plasma-enhanced chemical gas. Phase deposition (PECVD). Form a third dielectric layer 114 on top of the second dielectric layer 113 'The third dielectric layer U 4 in this example is a silicon nitride layer and can be formed by a conventional chemical vapor deposition (CVD) method 》 After that, the third dielectric layer 114 ', the second dielectric layer 113, and the first dielectric layer 112' are filed to define a contact hole therein to communicate with a conductive region on the underlying substrate 110, such as a source Polar regions, etc. to provide the space needed to form an electrical connection. ”Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs and then forming a doped polycrystalline silicon layer 118 on the third dielectric layer 114 and filling the contact hole 1 160. In this embodiment, the doped polycrystalline silicon layer n 8 is formed using a conventional chemical vapor deposition method, and the thickness of the doped polycrystalline silicon layer n 8 on the surface of the oxide dream layer 1 14 is about 3,000-7000 angstroms. A fourth dielectric layer 119 is formed on this paper scale. It is used in the Chinese National Standard (CNS) Λ4 specification (210X297 mm) 447 1 1 5 A7 B7 V. Description of the invention () Doped polycrystalline silicon layer 118 In a preferred embodiment, the fourth dielectric layer 1 1 9 may be a silicon nitride layer, and may use conventional chemical vapor deposition. It is formed by CVD method. In this example, the thickness of the fourth dielectric layer 119 is between about 500,000 and 50,000 Angstroms' β, and then a photolithography process is used to form and pattern the photoresist layer 丨 2 〇 On the fourth dielectric layer 119, the formation shape and area of the storage capacitor are defined. As shown in the fourth figure, using the photoresist layer 120 as a mask, the fourth dielectric layer 119 and the doped polycrystalline silicon layer are etched. 1 1 8. After a single or multiple etching process, a storage electrode can be formed as shown in the figure, and the photoresist layer 12 can be removed. See FIG. I and form hemispherical particles ( hemi_ spherical grain (HSG) layer 124 is deposited on the fourth dielectric layer, the sidewalls of the polycrystalline dream layer 118, and the third dielectric layer 114. In this example, a hemispherical granular silicon layer 124 is deposited. The thickness is about 200 to 1000 Angstroms, and the particle size is about 200 to 100 Angstroms. (# 先 闻 读 '^ 面 之 注 ¾ 事 产 4'Fill in this page}-装 、 -ιτ.
--V 經濟部智慧財產局員工消費合作社印製 I張 -紙 本 中la 之d 例ee 施(S 實層 佳子 較種 在一 入 ° 力 前 之 於 可 粒 顆 狀 球 半 成 狀 粒 顆 於 •Mi 以 上 層4 電11 介層 四電 第介 於三 成第 形及 的以 句、 均上 層壁 鈦側 化的 氮8 1 用 1 使層 可矽 如晶 例多 矽11 成 層形 矽的 上 並 雜用 摻使 可 線 準 標 |家 國 國 中 用 適 一祕 29 447 115 A7 ___B7_ 五'發明説明() 如低壓化學氣相沈積法(LPCVD),以形成此氮化鈦層至大約 為100-3 00埃之厚度,此厚度範圍可視不同的需要而介於 50- 1 000埃之間。 在本實施例中,氮化鈦層提供形成半球狀顆粒層 (HSG)124之成核區域(nucleationsite),而在未應用氣化 鈦層之種子層時,則可由第四介電層119、摻雜多晶矽層 118、以及第三介電層H4表面的材質或粒子直接提供成核 區域。半球狀顆粒層(HSG) 124之多晶矽由氣相逐漸形成多 數個半球狀顆粒,因而形成第五圈所示之結構(半球狀顆粒 層之技術可參考美國專利第5,612,558號)。藉由使用電漿 增強化學氣相沈積法(PECVD)形成半球狀顆粒層(HSG)I24 於氮化鈦層122上可以降低反應溫度至250。(:至350 eC之 間、或是至3 0 0 °C左右;而若使用傳統的低壓化學氣相沈積 法(LPCVD)形成半球狀顆粒層則其溫度範圍可約為500°C至 650〇C » 接著並蝕刻半球狀顆粒層(HSG)124,以於半球狀 顆粒層(HSG) 124的顆粒之間形成許多個曝露出其下方之第 四介電層119的孔洞,如第五圖中所示;之後並透過這些孔 洞向下蝕刻下方第四介電層1 1 9及摻雜多晶矽層Π 8,以形 成如第六圖中的多孔狀結構,以較佳實施例而,可使用兩個 9 本紙張尺度適用t國國家棣準(CNS ) A4说格(210X297公釐) . :~— .S)· (請先閲讀席面之注$15^,填寫本頁) 、1T. 經濟部智慧財產局員工消費合作社印製 447115 A7 B7 五、發明説明( 乾μ刻製程分別進行對第四介電層n 9及摻雜多晶矽層u 8 的#刻’以形成多數個由儲存電極表面向下延伸的孔洞;以 較佳實施例而言’所形成孔洞的深度約為3 00埃至3 000埃 之間以藉由大幅提昇表面積來增加電容的電容值。在蝕刻 的過程之中’第四介電層119表面的半球狀顆粒層(HSG) 124 大部分皆會被去除。此外,第六圖中所示之矩形電極僅為一 介绍性實施例*當可視需要形成各種不同形狀之電極,例如 圓桎狀或橢圓狀等。 參見第八圖所示,之後即將第四介電層119及第三 介電層Π 4去除’在最佳實施例之争,係使用一溼蝕刻製 程,應用如熱磷酸等的蝕刻劑,以去除由氮化矽組成的第四 介電層119及第三介電層η4、並蝕刻曝露的多晶矽表面, 以使其粗糙化而成為粗糙之表面,而提供多孔狀储存亨極内 孔涧壁上粗撻化之表面,以增加其表面積,而儲存電極侧壁 上矽顆粒間所曝露的多晶矽,亦會受到熱磷酸的蝕刻而形成 凹Fa之表面,形成如圖中所示的側壁處之起伏形狀。 在上述的溼蝕刻製程之中,下方的第二介電層I。 即可做為一蝕刻中止層,本例中由於溼蝕刻時間的變化,氮 化梦之第三介電層114可以不將其完全去除,而於儲存電極 的下方留下部分的第三介電層114,也就是形成如第八囷中 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -- \... ί (請先閲讀#面之注意事寫本頁) 、tl. 經濟部智慧財產局員工消費合作社印製 447 1 1 5 Α7 Β7 五、發明説明() (請先閲讀背•面之注意事項·ί寫本頁) 所示的部分底切.結構,而增加對错存電極的支掉效果’並藉 由下方部分表面的曝露提供較大的表面積° .接著形成薄介電潛136、例如氧-氮-氧(ΟΝΟ)堆疊 層於多晶硬層118及氧化石夕層114之表面。由於氣-氮-氧 (ΟΝΟ)堆疊層136可以穩定的、具良好覆蓋性的形成於具有 表面形狀變化之多晶矽表面,因此經常被用來作為電容器之 介質。在此氧-氮-氧(ΟΝΟ)堆壘層136 t,其底層(及氧化矽 層)係由傳統熱氧化方法形成,再以低壓化學氣相沈積法沈 積氬化矽層作為中間層,最後以傳統熱氧化方法形成頂層氧 化石夕。其它材質,例如 BST (BaSiTi03)、PZT (lead zirconate titanate)、Ta2〇s,Ti〇2或NO(氧化發-氮化梦〉或其它介電常 數較佳的材質也可以用來代替氧-氮-氧(ΟΝΟ) »最後,形成 一導電廣138於薄介電層U6之表面,以作為動態隨機存取 記憶體電容器之電極板。此導電層138也可以用金屬層或石夕 化金肩層來代替。 經濟部智慧財產局員工消費合作社印製 因此,藉由上述之方法,即可形成本發明中之第二 實施例之電容結構,其主要可包含:儲存電極U8、複數個 半球狀矽顆粒124、介電層136、以及導電層138;儲存電 極118位於半導體基材110上’儲存電極118與基材u〇 上之導電區域形成電性連接,儲存電極118並具有多孔狀結 11 本紙張尺度適用中國國家標準(CNS )八4規格(210><297公釐) 447彳彳5 A7 B7 五、發明説明( 構,多孔狀結構包含由儲存電極之上表面向 凹孔,;ί!教個ΠίΤ·?丨ritr# 越^争之"複數個--V Printed I sheet by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs-Examples of la in paper on the paper (S solid layer Jiazi compares to the granular granules and semi-granular granules before entering the force) Yu • Mi above layer 4 Electrical 11 Dielectric four dielectrics are between 30% and 30% of nitrogen on the side of the upper layer 8 1 Use 1 to make the layer silicon like crystal polysilicon 11 layered silicon Combined with the use of mixed to make the line standard | Suitable for use in countries and countries 29 447 115 A7 _B7_ 5 'Description of the invention (such as low pressure chemical vapor deposition (LPCVD) to form this titanium nitride layer to about 100 -300 Angstrom thickness, this thickness range can be between 50-1,000 Angstrom according to different needs. In this embodiment, the titanium nitride layer provides a nucleation area (HSG) 124 forming a hemispherical particle layer (HSG) 124 ( nucleationsite), and when the seed layer of the vaporized titanium layer is not applied, the nucleation area can be directly provided by the material or particles on the surface of the fourth dielectric layer 119, the doped polycrystalline silicon layer 118, and the third dielectric layer H4. Hemisphere Polycrystalline silicon (HSG) 124 gradually forms a majority from the gas phase Hemispherical particles, thus forming the structure shown in the fifth circle (for the technique of the hemispherical particle layer, refer to US Patent No. 5,612,558). The hemispherical particle layer is formed by using plasma enhanced chemical vapor deposition (PECVD) (HSG) I24 on the titanium nitride layer 122 can reduce the reaction temperature to 250. (: to 350 eC, or to about 300 ° C; and if the traditional low pressure chemical vapor deposition (LPCVD) method is used The temperature range of the semi-spherical particle layer can be about 500 ° C to 6500 ° C. »Then, the hemispherical particle layer (HSG) 124 is etched to form many exposures between the particles of the hemispherical particle layer (HSG) 124. The holes of the fourth dielectric layer 119 below are shown as shown in the fifth figure. Then, the lower fourth dielectric layer 1 1 9 and the doped polycrystalline silicon layer Π 8 are etched downward through these holes to form the first dielectric layer 119. The porous structure in the sixth figure, in the preferred embodiment, can be used in two 9-paper scales applicable to the national standard (CNS) A4 grid (210X297 mm).: ~ — .S) · (Please First read the note of the table $ 15 ^, fill out this page), 1T. Employees ’intellectual property bureau consumption Cooperative prints 447115 A7 B7 V. Description of the invention (The dry μ-etching process is performed with #etching of the fourth dielectric layer n 9 and the doped polycrystalline silicon layer u 8 to form a plurality of holes extending downward from the surface of the storage electrode; In a preferred embodiment, the depth of the formed hole is about 300 Angstroms to 3,000 Angstroms to increase the capacitance value of the capacitor by substantially increasing the surface area. During the etching process, most of the hemispherical particle layer (HSG) 124 on the surface of the fourth dielectric layer 119 is removed. In addition, the rectangular electrode shown in the sixth figure is only an introductory embodiment. * When the electrode is formed in various shapes, such as a round or oval shape, as required. Referring to FIG. 8, the fourth dielectric layer 119 and the third dielectric layer Π 4 are to be removed later. In the preferred embodiment, a wet etching process is used, and an etchant such as hot phosphoric acid is used to The fourth dielectric layer 119 and the third dielectric layer η4 composed of silicon nitride are removed, and the exposed polycrystalline silicon surface is etched to roughen it into a rough surface, thereby providing a porous storage hen pole inner wall The roughened surface is increased to increase its surface area, and the polycrystalline silicon exposed between the silicon particles on the side wall of the storage electrode will also be etched by hot phosphoric acid to form the surface of the concave Fa, forming a side wall as shown in the figure. Undulating shapes. In the above-mentioned wet etching process, the second dielectric layer I below. It can be used as an etching stop layer. In this example, due to the change of the wet etching time, the third dielectric layer 114 of the nitride nitride can not be completely removed, but a portion of the third dielectric can be left under the storage electrode. Layer 114, which is formed as the eighth Chinese paper standard applicable to Chinese National Standards (CNS) A4 specifications (210X297 mm)-\ ... ί (please read # 面 之 NOTICE first to write this page), tl Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 447 1 1 5 Α7 Β7 V. Description of the Invention () (Please read the notes on the back side and write this page first) The undercut shown in the figure. The effect of the staggered electrodes is provided, and a larger surface area is provided by the exposure of the lower surface. Next, a thin dielectric latent 136, such as an oxygen-nitrogen-oxygen (ONO) stacked layer on the polycrystalline hard layer 118 and The surface of the oxidized stone layer 114. Since the gas-nitrogen-oxygen (ONO) stacked layer 136 can be formed stably and with good coverage on a polycrystalline silicon surface having a surface shape change, it is often used as a capacitor dielectric. Here, the oxygen-nitrogen-oxygen (NO) stack layer is 136 t, and its bottom layer (and silicon oxide layer) is formed by a conventional thermal oxidation method, and then a low-pressure chemical vapor deposition method is used to deposit a silicon argon layer as an intermediate layer. The top oxide stone is formed by a conventional thermal oxidation method. Other materials, such as BST (BaSiTi03), PZT (lead zirconate titanate), Ta20s, Ti02 or NO (oxidation-nitriding dream) or other materials with better dielectric constant can also be used instead of oxygen-nitrogen -Oxygen (ΟΝΟ) »Finally, a conductive layer 138 is formed on the surface of the thin dielectric layer U6 as the electrode plate of the dynamic random access memory capacitor. The conductive layer 138 can also be a metal layer or a gold shoulder Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Therefore, by the above method, the capacitor structure of the second embodiment of the present invention can be formed, which can mainly include: storage electrode U8, a plurality of hemispheres The silicon particles 124, the dielectric layer 136, and the conductive layer 138; the storage electrode 118 is located on the semiconductor substrate 110. The storage electrode 118 is electrically connected to a conductive region on the substrate u0, and the storage electrode 118 has a porous junction The dimensions of this paper are in accordance with Chinese National Standard (CNS) 8-4 specifications (210 > < 297 mm) 447 彳 彳 5 A7 B7 V. Description of the invention ί! Teach a Πί ? · Shu ritr # ^ the more indisputable " a plurality of
凹孔m數個凹孔内並具有粗链之表面;I 則位於儲存電極u δ之^ | € $ ' ·,..構、.儲存電極m、及複數個半球狀矽顆粒124上;導電 層138則位於介電層I%上。 以上所述僅為本發明之較佳實施例而已,並非用以 限疋本發明之申請專利範圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾,均應包含在下述之申請專 利範圍内。 _I II n I (請先閎绩背¾之注#事項π4寫本頁) 訂 經濟部智慧財產局WC工消費合作杜印製 張 ;紙 本 4 A )/ s N c 準 棣 家 國 國 中 一用 I適 一釐 I公 i 7 9 2The concave hole m has a plurality of concave holes and a surface with a thick chain; I is located on the storage electrode u δ ^ | € $ '· .. Structure, storage electrode m, and a plurality of hemispherical silicon particles 124; conductive The layer 138 is on the dielectric layer I%. The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of patent application of the present invention; all other equivalent changes or modifications made without departing from the spirit disclosed by the present invention should be included in the following Within the scope of the patent application. _I II n I (please note ## π4 write this page) Order the printed sheet of the WC Industry Consumer Cooperation Agreement of the Intellectual Property Bureau of the Ministry of Economic Affairs; paper 4 A) / s N c Use I suitable centimeter I male i 7 9 2
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW088106047A TW447115B (en) | 1999-04-15 | 1999-04-15 | Storage electrode with porous, rough inner wall and the DRAM capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW088106047A TW447115B (en) | 1999-04-15 | 1999-04-15 | Storage electrode with porous, rough inner wall and the DRAM capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
TW447115B true TW447115B (en) | 2001-07-21 |
Family
ID=21640309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW088106047A TW447115B (en) | 1999-04-15 | 1999-04-15 | Storage electrode with porous, rough inner wall and the DRAM capacitor |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW447115B (en) |
-
1999
- 1999-04-15 TW TW088106047A patent/TW447115B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW320758B (en) | ||
TW427013B (en) | The structure of the capacitors of DRAM and the manufacturing method of the same | |
TW401598B (en) | The manufacture method of hemispherical grain silicon (HSG-Si) | |
TW447115B (en) | Storage electrode with porous, rough inner wall and the DRAM capacitor | |
TW382810B (en) | Method of fabricating stack capacitor | |
TW399327B (en) | The manufacturing method of DRAM capacitor | |
US6100135A (en) | Method of forming a crown-fin shaped capacitor for a high density DRAM cell | |
TW382807B (en) | Method for fabricating DRAM capacitor | |
TW383500B (en) | Manufacturing method for lower electrode of capacitor using hemisphere grain polysilicon | |
TW381340B (en) | Capacitor structure of dynamic randon access memory and the manufacturing method thereof | |
TW383447B (en) | Capacitor structure and manufacturing method for DRAM | |
TW439264B (en) | Fabricating method of dynamic random access memory having porous and rough sidewall storage electrode | |
TW383495B (en) | Manufacturing method for DRAM capacitor | |
TW434886B (en) | Manufacturing method of stacked capacitor | |
TW383499B (en) | Manufacturing method for DRAM capacitors | |
TW407377B (en) | Method for manufacturing crown shape capacitor | |
TW415087B (en) | Fabrication method for storage electrode with porous and rugged side wall of DRAM capacitor | |
TW427015B (en) | Structure and manufacturing method of stacked-type capacitors | |
TW415093B (en) | Method for forming capacitor | |
TW302524B (en) | Memory cell structure of dynamic random access memory and manufacturing method thereof | |
TW415086B (en) | Double crown-shaped capacitor with high dielectric parameter materials | |
TW412867B (en) | DRAM capacitor manufacturing | |
TW432685B (en) | Dual crown-shaped rough polysilicon capacitor | |
KR100373361B1 (en) | Method for forming capacitor having oxide barrier between dielectric layer and electrode | |
TW396615B (en) | Manufacturing method of double crown capacitor of memory cell region in dynamic random access memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |