TW441123B - A resonant-tunneling heterostructure bipolar transistor - Google Patents

A resonant-tunneling heterostructure bipolar transistor Download PDF

Info

Publication number
TW441123B
TW441123B TW89102572A TW89102572A TW441123B TW 441123 B TW441123 B TW 441123B TW 89102572 A TW89102572 A TW 89102572A TW 89102572 A TW89102572 A TW 89102572A TW 441123 B TW441123 B TW 441123B
Authority
TW
Taiwan
Prior art keywords
gaas
layer
emitter
gallium arsenide
bipolar transistor
Prior art date
Application number
TW89102572A
Other languages
Chinese (zh)
Inventor
Wen-Chau Liou
Rung-Huei Tsai
Shiou-Ying Jeng
Original Assignee
Nat Science Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Science Council filed Critical Nat Science Council
Priority to TW89102572A priority Critical patent/TW441123B/en
Application granted granted Critical
Publication of TW441123B publication Critical patent/TW441123B/en

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

In this invention, we fabricate a new functional resonant-tunneling heterostructure bipolar transistor. In this device, N-AlGaAs, n-GaAs, and n-InGaAs materials are employed as emitter layers. The base layer is grown by an ultrathin p<SP>+</SP>-GaAs layer. Under normal operation mode, the device can exhibit excellent trransistor performances including high current gain, low offset voltage, and N-shaped negative-differential-resistance (NDR) phenomenon simultaneously at room temperature. Due to the insertion of n-GaAs at emitter layer, the potential spike at emitter-base (E-B) junction could be decreased. Thus, the collector-emitter (C-E) offset voltage can be substantially efficiency reduced. In addition, a high current gain is achieved attributed to the use of ultrathin base layer and the reduction of neutral base recombination current. Significantly, the transistor performances incorporating an interesting N-shaped NDR phenomenon are observed under large forward E-B bias at room temperature. That is mainly due to the resonant tunneling of electrons from depleted GaAs emitter (triangular barriers) to collector through the InGaAs quantum well (QW) and ultrathin base layer. Consequently, these properties make the device have a good potential for amplifier, oscillation and logic circuit applications.

Description

4 41 12 3 -Λ-Μ〇2572 主月日 修正 五、發明說明⑴ ----- 產業上之利用領域 本發明為一種新型的功能型共振穿透異質結構雙極性電晶 體,可達到高電流增益、低補償電壓之電晶體特性,且由於該元 件共振穿透之機制,經由適當之偏壓,可導致Ν型負微分電阻特 5性β此外,因其高頻效能與異質接面雙極性電晶體相似,元件之 雜訊低且操作頻率可連到非常高,故於微波之應用非常顯著,如 低雜訊放大器等。另一方面,利用Ν型負微分電阻多穩態之特性, 除了可應用在高頻震盪器、分頻器等微波元件上,亦可應用於同 位元產生器(parity generator)、多值邏輯電路等數位電路,為未來 10微波通訊電路及極大型積體電路的整合提供一個新的方向。 背 景 最近’新型異質結構雙極性電晶體的開發已吸引研究者高度 的興趣。由於具有高速及高電流操作能力,現已廣範應用於數位 15及微波功率方面。然而,現今積體電路蓬勃發展,大量縮減元件 數目’且增加元件功能已是時勢所趨。過去,國内外研究者已開4 41 12 3-Λ-Μ〇2572 Correction of the main month and day V. Description of the invention ⑴ ----- Industrial application field The present invention is a new type of functional resonance penetrating heterostructure bipolar transistor, which can achieve high Current gain, low compensation voltage transistor characteristics, and due to the mechanism's resonance penetration mechanism, through appropriate bias, can lead to N-type negative differential resistance characteristics 5 In addition, because of its high frequency performance and heterogeneous interface double The polarity transistor is similar, the component has low noise and the operating frequency can be connected to very high, so it is very significant in microwave applications, such as low noise amplifiers. On the other hand, using the characteristics of N-type negative differential resistance multi-stable state, in addition to being applicable to microwave components such as high-frequency oscillators and frequency dividers, it can also be applied to parity generators and multi-valued logic circuits. Equal digital circuits provide a new direction for the integration of 10 microwave communication circuits and very large integrated circuits in the future. Background Recently, the development of a new type of bipolar transistor with a heterostructure has attracted researchers' high interest. Due to its high-speed and high-current operation capabilities, it has been widely used in digital 15 and microwave power. However, today's integrated circuits are booming, and it is a trend to reduce the number of components' and increase component functions. In the past, researchers at home and abroad have opened

第5頁 441 123 --&amp;-M02572-一1_^ 日 修正 五、發明說明(2) ' ---:-- 發夕種實用之功能型電晶體,在同—元件中同時具有電晶體放大 及負微分電阻等功能。這些特性可實際應帛於放大器電路多穩態 邏輯電路及振盪器等。 5 習知技藝 近年來’本發明人已成功開發多種功能型電晶體,諸如 A1GaAs/GaAs型異質結構射極式雙極性電晶體(HEBT),1995年 於正EE Trans· Electron Device,第 42 卷第 1210-1215 頁報導 InGaP/GaAs 型 HEBT,1992 年於 IEEE Trans. Electron Devices 第 ίο 39卷第2214-2219頁報導AlGaAs/GaAs雙異質結構射極式雙極 性電晶體(DHEBT)及AlGaAs/lnGaAs/GaAs型異質結構射極及異 質結構基極式雙極性電晶體(^册乃等。此類異質結構射極式雙 極性電晶體(HEBT)由於具有同質射極層,因此與傳統異質接面 雙載子電晶體(HBT)比較,能有效降低補償電壓(offset voltage); 15同時此類異質結構射極式雙極性電晶體具有較大能隙之少數载子 侷限層,故能維持高電流增益。然此類元件皆不具備N型負微分Page 5 441 123-&amp; -M02572- 一 1_ ^ Day five amendments to the invention description (2) '---: --- a practical function type transistor, which also has a transistor in the same component Amplification and negative differential resistance. These characteristics can actually be applied to the multi-stable logic circuits and oscillators of the amplifier circuit. 5 Know-how In recent years, the inventor has successfully developed a variety of functional transistors, such as A1GaAs / GaAs-type heterostructure emitter bipolar transistors (HEBT), in 1995 EE Trans · Electron Device, Volume 42 Reports on InGaP / GaAs type HEBT, pages 1210-1215, IEEE Trans. Electron Devices, 1992, Vol 39, pages 2214-2219, reports AlGaAs / GaAs dual heterostructure emitter bipolar transistors (DHEBT) and AlGaAs / lnGaAs / GaAs-type heterostructure emitters and heterostructure base bipolar transistors (Shenai et al. This type of heterostructure emitter bipolar transistors (HEBT) has a homogeneous emitter layer, so it interfaces with traditional heterogeneity Compared with the double carrier transistor (HBT), it can effectively reduce the offset voltage; 15 At the same time, this type of heterostructure emitter bipolar transistor has a small number of carrier confined layers with a large energy gap, so it can maintain high current Gain, but none of these components have N-type negative differential

第6頁 441123Page 6 441123

電阻特性,無法運用於多功能方面應用。 本發明人首先開發完成新穎的功能型砷化鋁鎵/神化嫁/坤化 銦嫁共振穿透異質結構雙極性電晶體。利用極薄的基極層, 5 AlGaAs/GaAs/InGaAs異質結構射極及InGaAs量子井等設計, 使其在正常操作模式下具有大電流增益、低ι補償電麗及N型負微 分電阻之特性。此外’本元件製造簡單,特性穩定可於常溫下操 作,對國内外半導體工藝技術之提昇將有助益,且適用於工業生 產0 發明目標 本發明為研製一種新型的功能型共振穿透異質結構雙極性電 晶體。其在順向操作模式下,電晶體於常溫時可同時呈現大電流 增益、低補償電壓及N型負微分電阻之特性。在射極層中加 型砰化鎵’可降低集_射極間之補償電壓,使用極薄的基極層, 可降低中性基極區復合電流,因此可獲得高電流增益。在較大的 基-射極偏壓下,電晶體特性操作下可出現N型的負微分電阻現The resistance characteristics cannot be used for multi-functional applications. The inventors first developed and completed a novel functional aluminum gallium arsenide / aminated / kunhua indium-gated resonance penetrating heterostructure bipolar transistor. Utilizing a very thin base layer, 5 AlGaAs / GaAs / InGaAs heterostructure emitters and InGaAs quantum wells, etc., which make them have large current gain, low compensation compensation, and N-type negative differential resistance in normal operation mode . In addition, this component is simple to manufacture, stable in characteristics and can be operated at normal temperature, which will help to improve the semiconductor process technology at home and abroad, and is suitable for industrial production. 0 The object of the present invention is to develop a new type of functional resonance penetrating heterostructure Bipolar transistor. In forward operation mode, the transistor can simultaneously exhibit the characteristics of large current gain, low compensation voltage, and N-type negative differential resistance at room temperature. Adding gallium palladium in the emitter layer can reduce the compensation voltage between the collector and the emitter. The use of a very thin base layer can reduce the composite current in the neutral base region, so high current gain can be obtained. Under a large base-emitter bias, N-type negative differential resistance can appear under transistor characteristics.

第7頁 441123 ___案號 89102572 .年 月 9-___ 五、發明說明(4) 象,這些特性可應用於放大電路,振盪器及邏輯電路等&quot; 為使更進一步了解本發明之特點及技術内容’請參閱有關本 發明之附圖及詳細說明。 凡是熟悉該技藝的人士在閱讀下列經由不同圖解所展示之較 佳實施例詳細說明後,無疑地將非常清楚本發明所揭示之目的和 優點。然而所附圖示僅提供參考說明用,並非用來對本發明加以 限制者。 10 發明之詳細說明 本發明揭示一種新型的功能型共振穿透異質結構雙極性電晶 體(10)如圖1所示包括:一基板、—缓衝層、一集極層、一基極 層、一基板、一射極層丙、一射極層乙、一射極層甲及一歐姆性: I5接觸層。其中,一基板(12),係由砷化鎵(GaAs)材料形成;一緩 衝層(U),係由砷化鎵材料形成;一集極層(16),係由砷化鎵材 料形成;一基極層(18),係由珅化鎵材料形成;一射極層丙(2〇),Page 7 441123 ___Case No. 89102572. Month 9 -___ V. Description of the invention (4) These characteristics can be applied to amplifier circuits, oscillators and logic circuits, etc. &quot; To further understand the characteristics of the invention and Technical content 'Please refer to the accompanying drawings and detailed description of the present invention. Those skilled in the art will undoubtedly know the objects and advantages disclosed by the present invention after reading the following detailed description of the preferred embodiments shown by different diagrams. However, the accompanying drawings are provided for reference only and are not intended to limit the present invention. 10 Detailed Description of the Invention The present invention discloses a novel functional resonant penetrating heterostructure bipolar transistor (10). As shown in FIG. 1, it includes: a substrate, a buffer layer, a collector layer, a base layer, A substrate, an emitter layer C, an emitter layer B, an emitter layer A, and an ohmic: I5 contact layer. Among them, a substrate (12) is formed of gallium arsenide (GaAs) material; a buffer layer (U) is formed of gallium arsenide material; a collector layer (16) is formed of gallium arsenide material; A base layer (18) is formed of a gallium halide material; an emitter layer C (20),

4 4112 3 -挪 02572 __年月日____ 五、發明說明(5) &quot; 係由钟化銦鎵(In^Ga^As)材料形成;一射極層乙(22),係由砷化 鎵(GaAs)材料形成;一射極層甲(24),係由砷化鋁鎵(Al0.45Ga〇.55As) 材料形成;一歐姆性接觸層(26),係由砷化鎵(GaAs)材料形成。 其結構由下而上依次為n+型砷化錄(GaAs)基板;砷化鎵(GaAsM 5衝層;砷化鎵(GaAs)集極層;砷化鎵(GaAs)基極層;砷化銦鎵 (Ii^Ga^As)射極層丙;砷化鎵(GaAs)射極層乙;砷化鋁鎵 (Al〇.45Gaa55As)射極層甲;砷化鎵(GaAs)歐姆性接觸層。 本元件射極層包含η塑神化銘鎵、η型珅化鎵及η-型碑化銦 ίο鎵;基極層為極薄的ρ+型砷化鎵。其結構中射極為η砷化鋁鎵 (AlGaAs)/n砷化鎵(GaAs)/n·砷化銅鎵(InGaAs)異質結構,薄的砷 化铜鎵(InGaAs)量子井在η神化鎵(GaAs)射極及極薄的p+;E申化鎵 (GaAs)基極層中形成。各層厚度如下,砷化鎵(GaAs)緩衝層(14) 厚 2,00〇A,濃度 n+=3xl018cm-3;珅化鎵(GaAs)集極層(16)厚 5,000 15 A,濃度n =5xl016cm·3;砷化鎵(GaAs)基極層(18)厚100 A,濃度 p+=-lxl019cm_3 ;砷化銦鎵(InuGa^As)射極層丙(20)厚 1〇〇 A,濃4 4112 3-To 02572 __year month day __ 5. Description of the invention (5) &quot; is made of Indium Gallium (In ^ Ga ^ As) material; an emitter layer B (22) is made of arsenic GaAs material is formed; an emitter layer (24) is formed of aluminum gallium arsenide (Al0.45Ga0.55As) material; an ohmic contact layer (26) is formed of gallium arsenide (GaAs) ) Material formation. Its structure is from bottom to top: n + -type arsenide (GaAs) substrate; gallium arsenide (GaAsM 5 layer); gallium arsenide (GaAs) collector layer; gallium arsenide (GaAs) base layer; indium arsenide Gallium (Ii ^ Ga ^ As) emitter layer C; gallium arsenide (GaAs) emitter layer B; aluminum gallium arsenide (Al0.45Gaa55As) emitter layer A; gallium arsenide (GaAs) ohmic contact layer. The emitter layer of this device includes η plasticized indium gallium, η-type gallium sulfide, and η-type indium gallium; the base layer is a very thin ρ + -type gallium arsenide. The structure of the emitter layer is η aluminum arsenide Gallium (AlGaAs) / nGaAs / n · InGaAs heterostructure, thin copper gallium arsenide (InGaAs) quantum wells at η-GaAs emitter and extremely thin p + E is formed in a gallium (GaAs) base layer. The thickness of each layer is as follows, the gallium arsenide (GaAs) buffer layer (14) is 2,000 A thick, the concentration n + = 3xl018cm-3; the gallium tritide (GaAs) set The electrode layer (16) is 5,000 15 A thick, with a concentration of n = 5xl016cm · 3; the gallium arsenide (GaAs) base layer (18) is 100 A thick, with a concentration of p + =-lxl019cm_3; and an indium gallium arsenide (InuGa ^ As) emitter Layer C (20) 100A thick

第9頁 4 4 1 12 3 _案號891Q 2572__年.__月 曰 佟fp_ 五、發明說明(6) 度η· =5xl016cm_3 ;砷化鎵(GaAs)射極層乙(22)厚500 A,濃度 11=^101½^3 ;神化銘鎵(Al^Ga^As)射極層甲(24)厚 1,000 A, 濃度n =5xl017cnT3 ;砷化鎵(GaAs)歐姆性接觸層(26)厚3000 A, 濃度 n+=3xl018cnr3。 製備本發明的功能型共振穿透異質結構雙極性電晶體之方 法,包括:分子束蟲晶法(MBE)或有機金屬氣相沈積法 (MOCVD)。 10 目二祕本剌之—輯H的功麵共振料科結構雙極 性電晶體之共射極電流-電壓輸出特性曲線圖;在基極電流大於 l_2mA時,電晶體呈現明顯的N型負微分電阻現象。典型之電流 增益在發生負微分電阻前後分別為⑽及⑵,而备射極補償電 壓僅1〇〇mV。在較小的基-射極偏壓下,本結構如同一般電晶體 is操作’但基極層極薄中性基極區復合電流將降低,因此可獲得高 電流增益,其近似能帶如圖三⑻所示。在射極層中加入一 η華Page 9 4 4 1 12 3 _Case No. 891Q 2572__ Year. _ Month 佟 fp_ V. Description of the invention (6) Degree η · = 5xl016cm_3; Gallium arsenide (GaAs) emitter layer B (22) 500 thick A, concentration 11 = ^ 101½ ^ 3; Al (Ga ^ As) emitter layer (24) thickness 1,000 A, concentration n = 5xl017cnT3; GaAs ohmic contact layer (26) thickness 3000 A, concentration n + = 3xl018cnr3. A method for preparing the functional resonance penetrating heterostructure bipolar transistor of the present invention includes a molecular beam worm crystal method (MBE) or an organic metal vapor deposition method (MOCVD). 10 The Second Secret of the Book-Series H, the common emitter current-voltage output characteristic curve of the bipolar transistor of the work surface resonance material structure; when the base current is greater than l_2mA, the transistor exhibits a significant N-type negative differential Resistance phenomenon. The typical current gain is ⑽ and ⑵ before and after the negative differential resistance occurs, and the standby emitter compensation voltage is only 100mV. Under a smaller base-emitter bias, the structure operates like a general transistor is, but the composite current in the base layer is extremely thin and the neutral base region will be reduced, so a high current gain can be obtained, and its approximate energy band is shown in the figure Mikasa shown. Add a η Hua to the emitter layer

第10頁 441123 r—-案號 89102572 f 月 曰 κ 五、發明說明⑺ ' ------ 型)神化鎵’可降低射-基極間位障尖峰,進而可減小集_射極補償 電壓及不必要之功率消耗。 在較大的基-射極偏壓條件下,η型神化鎵射極空乏層厚度漸 5減小’且中性n神化鎵(GaAs)射極區將會出現。此時,在射極之 能帶將有效提升’並且會形成共振穿透之機制,電子共振穿透從 空乏的II石申化嫁(GaAs)位障(射極區)經钟化姻鎵⑦^GaAs)量子 井、極薄P+神化鎵(GaAs)基極’其近似能帶如圖三(b)所示。 ίο 圖四為中性η·神化鎵(GaAs)射極層費米能階對齊n_砷化銦 鎵導電帶時’穿透係數對神化銦鎵(InGaAs)量子井能量關係圖。 由圖可知,在砷化銦鎵量子井内出現二個次能帶(subband)(30及 120mV)。由於120mV次能帶較不明顯及常溫下熱效應之關係,) 因此在實驗中僅觀察一次明顯的N型負微分電阻現象(negative-15 differential resistance)。本發明元件基極區域採用一層非常薄的p-邀材料,因此於室溫之下操作,即發生共振穿透現象(resonant-Page 10 441123 r—case number 89102572 f month κ V. Description of the invention ⑺ '------ type) Deified gallium' can reduce the spikes between the emitter and the base, which can reduce the set_emitter Compensation voltage and unnecessary power consumption. Under a larger base-emitter bias condition, the thickness of the n-type amorphized gallium emitter empty layer gradually decreases' and a neutral n-type atheized gallium (GaAs) emitter region will appear. At this time, the energy band of the emitter will be effectively promoted, and a mechanism of resonance penetration will be formed, and the electron resonance penetration will pass from the vacant II Shishenhua (GaAs) barrier (emitter region) to the gallium. ^ GaAs) quantum well, ultra-thin P + atheized gallium (GaAs) base ', its approximate energy band is shown in Figure 3 (b). ίο Figure 4 is a graph of the relationship between the penetration coefficient of the neutral η · GaAs emitter layer and the n_InGaAs conductive band's transmission coefficient versus the energy of the InGaAs quantum well. It can be seen from the figure that two subbands (30 and 120mV) appear in the indium gallium arsenide quantum well. Due to the less obvious 120mV secondary energy band and the relationship between thermal effects at room temperature, the obvious N-type negative differential resistance (negative-15 differential resistance) was observed only once in the experiment. The base region of the device of the present invention uses a very thin layer of p-invited material, so when it is operated at room temperature, the resonance penetration phenomenon (resonant-

441 彳 2 3 案號 89102572 - 年 月 曰 條fp_ 五、發明說明(8) tunneling effect,RT)。而共振穿透現象由於具有非常快速的負微 分電阻(negative-differential resistance)之本質響應時間(小於 O.lps),故此優異之高速特性在微波、豪微米波之相關電路具有 極佳之發展潛力。 電子從空乏的砷化鎵射極層(三角位障)共振穿透經坤化銦嫁 量子井極薄的基極層至集極層,其集極電流出現高的峰對谷值 (PVCR)5.3 ’如圖2及3(b)所示。因此,本發明元件具有優異的 電晶體及負微分電阻特性,可增加元件應用範疇。 10 本發明該新型的功能型共振穿透異質結構雙極性電晶體,可 達到高電流增益、低補償電壓之電晶體特性,且由於該元件共振 穿透之機制,經由適當之偏壓,可導致N型負微分電阻特性。此 外,因其高頻效能與異質接面雙極性電晶體相似,元件之雜訊低 15且操作頻率可達到非常高,故於微波之應用非常顯著,如低雜訊 玫大器等。另一方面,利用N型負微分電阻多穩態之特性,除了441 彳 2 3 Case No. 89102572-Year Month Article fp_ 5. Description of the invention (8) Tunneling effect (RT). The resonance penetration phenomenon has very fast negative-differential resistance (less than O.lps), so the excellent high-speed characteristics have excellent development potential in the related circuits of microwaves and micro-microwaves. . The electrons resonate from the empty gallium arsenide emitter layer (triangular barrier) through the extremely thin base layer to the collector layer of the indium-grafted quantum well, and the collector current shows a high peak-to-valley value (PVCR). 5.3 'As shown in Figures 2 and 3 (b). Therefore, the device of the present invention has excellent transistor and negative differential resistance characteristics, which can increase the application range of the device. 10 The novel functional resonance penetrating heterostructure bipolar transistor of the present invention can achieve the transistor characteristics of high current gain and low compensation voltage, and due to the mechanism of the resonance penetrating of the element, through appropriate bias, it can cause N-type negative differential resistance. In addition, because its high-frequency performance is similar to that of a heterojunction bipolar transistor, the noise of the component is low and the operating frequency can reach very high, so it is very significant in microwave applications, such as low-noise amplifiers. On the other hand, using the characteristics of N-type negative differential resistance

441123 案號89102572 年月日 修正441123 Case No. 89102572 Amendment

第13頁 441123Page 13 441123

圖示說明 圖一係本發明之一種新型的功能型共振穿透異質結構雙極性電: 晶體結構圖。 圖二係本發明之一種新型的功能型共振穿透異質結構雙極性電. 晶體之共射極電流-電壓輸出特性曲線圖。 圖三係本發明之一種新型的功能型共振穿透異質結構雙極性電 晶體於較小的基一射極偏壓與較大的基—射極偏壓之能帶 圖》 (a) 高電流增益近似能帶 (b) η型砷化鎵空乏層厚度漸減小Schematic diagram Figure 1 is a new type of functional resonance penetrating heterostructure bipolar electricity: crystal structure diagram of the present invention. FIG. 2 is a graph showing a common-emitter current-voltage output characteristic curve of a novel functional resonance penetrating heterostructure bipolar electric crystal of the present invention. Figure 3 is a band diagram of a novel functional resonant penetrating heterostructure bipolar transistor of the present invention with smaller base-emitter bias and larger base-emitter bias. (A) High current Gain approximate energy band (b) The thickness of the n-type gallium arsenide empty layer decreases gradually

n^GaAs Eg-1.42eV N-AlGaAs Eg=1.96eVn ^ GaAs Eg-1.42eV N-AlGaAs Eg = 1.96eV

π-GaAs Ε^1.42©ν π-AlGaAs Eg=1.13eVπ-GaAs Ε ^ 1.42 © ν π-AlGaAs Eg = 1.13eV

p+-GaAs Eg-1.42eV n'-GaAs Eg-1.42eV 圖四係本發明之一種新型的功能型共振穿透異質結構雙極性電 晶體其穿透係數與toGaAs量子井能量關係圖。p + -GaAs Eg-1.42eV n'-GaAs Eg-1.42eV Figure 4 is a graph of the relationship between the penetration coefficient and the energy of a toGaAs quantum well in a novel functional resonant penetrating heterostructure bipolar transistor of the present invention.

第14頁 441 12 3 _案號89102572 年月日__ 圖式簡單說明 圖號說明 10.. .本發明之一種新型的功能型共振穿透異質結構雙極性電晶 體。 12.. .砷化鎵(GaAs)材料形成之基板。 5 14...珅化鎵(GaAs)材料形成之缓衝層。 16.. .珅化鎵(GaAs)材料形成之集極層。 18.. ...砷化鎵(GaAs)材料形成之基極層。 20.. ...神化銦鎵(In^Gao sAs)材料形成之射極層丙。 22.. .. ·砷化鎵(GaAs)材料形成之射極屠乙。 ίο 24.....砷化鋁鎵材料形成之射極層甲。 26一 ·砷化鎵材料形成之歐姆性接觸層。 E.射極層 B.基極層 C.集極層·Page 14 441 12 3 _Case No. 89102572 __ Brief Description of Drawings Description of Drawings 10... A new type of functional resonance penetrating heterostructure bipolar transistor of the present invention. 12... A substrate made of gallium arsenide (GaAs) material. 5 14 ... a buffer layer made of gallium halide (GaAs) material. 16 .. A collector layer made of GaAs material. 18 .. ... a base layer made of gallium arsenide (GaAs) material. 20 .. ... an emitter layer C formed from an indium-gallium (In ^ Gao sAs) material. 22 .. .. · Emitters made of gallium arsenide (GaAs) materials. ίο 24 ..... an emitter layer made of aluminum gallium arsenide material. 26-An ohmic contact layer made of gallium arsenide material. E. Emitter layer B. Base layer C. Collector layer

第15頁Page 15

Claims (1)

441123 __案號89102572_年月曰 修鸟_ 六、申請專利範圍 1. 一種共振穿透異質結構雙極性電晶體’係包括:一基板、一緩 衝層、一集極層、一基極層、一基板、一射極層丙、一射 極層乙、一射極層甲及一歐姆性接觸層。其中,一基板, 係由砷化鎵(GaAs)材料形成; 5 一緩衝層,係由砷化鎵(GaAs)材料形成; 一集極層,係由砷化鎵(GaAs)材料形成; 一基極層,係由砷化鎵(GaAs)材料形成; 一射極層丙,係由砷化銦鎵(Jn^Ga^As)材料形成;一射 極層乙,係由砷化鎵(GaAs)材料形成; 10 一射極層甲’係由砷化鋁鎵(Al0.45Ga〇.55As)材料形成; 一歐姆性接觸層’係由石申化鎵(GaAs)材料形成。 2. 如申請專利範圍第丨項之共振穿透異質結構雙極性電晶體, 該基板係由型砷化鎵(GaAs)形成。 3. 如申請糊範圍第1項之共振穿透異質結構雙極性電晶體, 15 該緩衝層,係由型砷化鎵(GaAs)材料形成。 4·如申請專利侧第!項之共振穿透異脑構雙極性電晶體,441123 __ Case No. 89102572_ Years and months of repairing the bird_ VI. Application for patent scope 1. A type of resonance penetrating heterostructure bipolar transistor 'system includes: a substrate, a buffer layer, a collector layer, a base layer , A substrate, an emitter layer C, an emitter layer B, an emitter layer A, and an ohmic contact layer. Among them, a substrate is formed of gallium arsenide (GaAs) material; 5 a buffer layer is formed of gallium arsenide (GaAs) material; a collector layer is formed of gallium arsenide (GaAs) material; a base The emitter layer is formed of gallium arsenide (GaAs) material; an emitter layer C is formed of indium gallium arsenide (Jn ^ Ga ^ As) material; the emitter layer B is made of gallium arsenide (GaAs) The material is formed. 10 An emitter layer A is formed of aluminum gallium arsenide (Al0.45Ga0.55As) material; an ohmic contact layer is formed of gallium carbide (GaAs) material. 2. If the resonant penetrating heterostructure bipolar transistor of item 丨 of the patent application scope, the substrate is formed of GaAs. 3. If the resonance penetrating heterostructure bipolar transistor of item 1 of the application scope is applied, the buffer layer is formed of a type of gallium arsenide (GaAs) material. 4 · If you apply for a patent! The resonance of the term penetrating the heterobrain bipolar transistor, 4 41 12 3 ___案號 89102572__年月日 修正____ 六、申請專利範圍 該集極層係由η型坤化鎵(GaAs)材料形成。 5_如申請專利範圍第1項之共振穿透異質結構雙極性電晶體’ 該基極層係由極薄的p+型砷化鎵(GaAs)材料形成。4 41 12 3 ___Case No. 89102572__Year Month Date Amendment ____ VI. Scope of Patent Application The collector layer is formed of n-type gallium Kunas (GaAs) material. 5_ The resonance penetrating heterostructure bipolar transistor according to item 1 of the scope of the patent application. The base layer is formed of an extremely thin p + -type gallium arsenide (GaAs) material. 6.如申請專利範圍第1項之共振穿透異質結構雙極性電晶體’ 5 該射極層丙係由η·型砷化銦鎵(in^Ga^As)材料形成。 7‘如申請專利範圍第1項之共振穿透異質結構雙極性電晶體, 該射極層乙係由η型砷化鎵(GaAs)材料形成。 8.如申請專利範圍第!項之共振穿透異質結構雙極性電晶體, 該射極層曱係由ri型砷化鋁鎵(AI〇45〇a〇55As)材料形成。 m 1〇 9.如申請專利範圍第1項之共振穿透異質結構雙極性電晶體, 該歐姆性接觸層係由n+型砷化.(GaAs)材料形成。 156. The resonant penetrating heterostructure bipolar transistor according to item 1 of the scope of the patent application. The emitter layer C is formed of η · type indium gallium arsenide (in ^ Ga ^ As) material. 7 &apos; As the resonant penetrating heterostructure bipolar transistor in the first scope of the patent application, the emitter layer B is formed of an n-type gallium arsenide (GaAs) material. 8. As for the scope of patent application! The resonance of the term penetrates a bipolar transistor of a heterostructure, and the emitter layer is formed of a ri-type aluminum gallium arsenide (AI45〇a〇55As) material. m 1 10. The ohmic contact layer is formed of an n + -type arsenide (GaAs) material as the resonant penetrating heterostructure bipolar transistor of item 1 of the scope of patent application. 15
TW89102572A 2000-02-10 2000-02-10 A resonant-tunneling heterostructure bipolar transistor TW441123B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89102572A TW441123B (en) 2000-02-10 2000-02-10 A resonant-tunneling heterostructure bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89102572A TW441123B (en) 2000-02-10 2000-02-10 A resonant-tunneling heterostructure bipolar transistor

Publications (1)

Publication Number Publication Date
TW441123B true TW441123B (en) 2001-06-16

Family

ID=21658796

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89102572A TW441123B (en) 2000-02-10 2000-02-10 A resonant-tunneling heterostructure bipolar transistor

Country Status (1)

Country Link
TW (1) TW441123B (en)

Similar Documents

Publication Publication Date Title
EP0541971B1 (en) A graded bandgap single-crystal emitter heterojunction bipolar transistor
JPS6313355B2 (en)
Nottenburg et al. High-current-gain submicrometer InGaAs/InP heterostructure bipolar transistors
Chang et al. InGaAsN/AlGaAs Pnp heterojunction bipolar transistor
TW200411927A (en) Semiconductor device
Wu et al. Small offset-voltage In/sub 0.49/Ga/sub 0.51/P/GaAs double-barrier bipolar transistor
Rhee et al. SiGe resonant tunneling hot‐carrier transistor
TW441123B (en) A resonant-tunneling heterostructure bipolar transistor
GB2358959A (en) Metamorphic heterojunction bipolar transistor for low cost fabrication on large size gallium arsenide wafers
Chang et al. III-V heterojunction bipolar transistors for high-speed applications
Fricke et al. Performance capabilities of HBT devices and circuits for satellite communication
Wang et al. Minimization of the offset voltage in heterojunction dipolar transistors by using a thick spacer
JPS60242671A (en) Hetero-junction bipolar transistor
Taira et al. InAs quantum‐well‐base InAs/GaSb hot‐electron transistors
Welty et al. Design and performance of tunnel collector HBTs for microwave power amplifiers
Kumakura et al. High-voltage operation with high current gain of pnp AlGaN∕ GaN heterojunction bipolar transistors with thin n-type GaN base
US5828077A (en) Long-period superlattice resonant tunneling transistor
Liu et al. On the multiple negative-differential-resistance (MNDR) InGaP-GaAs resonant tunneling bipolar transistors
TW406337B (en) Low offset voltage aluminum indium arsen/gallium indium arsen hetreo-junction bipolar transistor (HBT)
JPH0656851B2 (en) Semiconductor device
Liu et al. A novel InP/InAlGaAs negative-differential-resistance heterojunction bipolar transistor (NDR-HBT) with interesting topee-shaped current-voltage characteristics
JP2003007715A (en) Bipolar transistor
Taylor et al. An n-channel BICFET in the GaAs/AlGaAs material system
JP4774137B2 (en) Hetero bipolar semiconductor device
Nittono et al. Advanced IC fabrication technology using reliable, small-size, and high-speed AlGaAs/GaAs HBTs

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees