TW441034B - Method to form insulation spacer of a single polysilicon gate of EEPROM - Google Patents

Method to form insulation spacer of a single polysilicon gate of EEPROM Download PDF

Info

Publication number
TW441034B
TW441034B TW89102209A TW89102209A TW441034B TW 441034 B TW441034 B TW 441034B TW 89102209 A TW89102209 A TW 89102209A TW 89102209 A TW89102209 A TW 89102209A TW 441034 B TW441034 B TW 441034B
Authority
TW
Taiwan
Prior art keywords
oxide layer
gate
layer
silicon
forming
Prior art date
Application number
TW89102209A
Other languages
Chinese (zh)
Inventor
Ming-Chou Ho
Wen-Ting Chu
Hsin-Ming Chen
Chun-Li Chang
Di-Son Kuo
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW89102209A priority Critical patent/TW441034B/en
Application granted granted Critical
Publication of TW441034B publication Critical patent/TW441034B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

The present invention provides a method to form the insulation spacer of a single polysilicon gate of EEPROM, wherein a high temperature oxide layer is deposited after forming an oxide insulation material on the surface of a single polysilicon to reduce the stress damage of the silicon nitride spacer formed later to the silicon oxide insulation layer, so that the electron transition to the silicon nitride spacer is prevented. Thus the electrons stored originally in a single polysilicon gate can be further preserved and the loss of the memory data is prevented.

Description

4 41 03 4 五、發明說明(1) 本發明係有關於一種電氣抹除式可編程唯讀記憶體之 單一複晶矽閘極’特別是有關於一種電氣抹除式可編程唯 讀記憶體之單一複晶矽問極之絕緣間隙壁的形成方法。 電氣抹除式可編程唯讀記憶體(Electrical Erasable Programmable Read Only Memory,其後以EEPR0M 簡稱之) 為現今資訊電子產品所廣泛採用的記憶元件。其中,係包 括一種具有單一複晶矽閘極之EEPR0M,其製程係適用於一 傳統的具有單一複晶矽閘極之CMOS製程中。 在此’請參看第1A〜1C圖,以更明顯的看出一般之具 有單一複晶矽閘極的EEPR0M單元之結構及其程式化與抹除 動作之進行;其中,第1A圖係顯示該EEPR0M之佈局 (layout) ’第1B圖係顯示沿著第1 A圖中之1B--1B線之裁面 圖,第1C圖則顯示沿著第1A圖中之1C--1C線之截面圖。 如第1A〜1C圖所示,該EEPR0M單元100係形成於一 p形 矽基板112上,其包括一對互為相隔的源極區114與汲極區 11 6,在該源極區1 1 4與汲極區11 6間之矽基板11 2中則為一 通道區118。在通道區118之上方則包括一閘氧化層130, 且其上係形成一浮動閘(f 10a t i ng ga t e ) 1 3 4。此外,該 EEPROM單元1 00更包括一TIM井區1 20以及一隔離物質,如 場氧化層(field oxide ) FOX或淺溝槽隔離STI,在此係以 淺溝槽隔離ST I為例;而該淺溝槽隔離ST I係用以將源極區 114、汲極區116、通道區118與TIM井區120隔絕。在丁1!|{井 區120中更包括一 N型離子濃摻雜區124,係作為接觸 (contact)之用;於其另一側則為一控制閘區(contr〇14 41 03 4 V. Description of the invention (1) The present invention relates to a single compound silicon gate of an electrically erasable programmable read-only memory, and particularly to an electrically erasable programmable read-only memory Method for forming insulating spacer of single polycrystalline silicon interrogator. Electrical erasable programmable read-only memory (hereinafter referred to as EEPR0M) is a widely used memory element in today's information electronics. Among them, it includes an EEPROM with a single compound silicon gate, and the process is applicable to a traditional CMOS process with a single compound silicon gate. Here, please refer to Figures 1A ~ 1C for a clearer view of the general structure of an EEPROM cell with a single polysilicon gate and its programming and erasing operations; of which Figure 1A shows the EEPR0M's layout 'Figure 1B shows a cut-out view along line 1B--1B in Figure 1 A, and Figure 1C shows a cross-section view along line 1C--1C in Figure 1A . As shown in FIGS. 1A to 1C, the EEPROM cell 100 is formed on a p-shaped silicon substrate 112 and includes a pair of source regions 114 and a drain region 116 which are separated from each other. In the source region 1 1 The silicon substrate 11 2 between 4 and the drain region 116 is a channel region 118. Above the channel region 118, a gate oxide layer 130 is included, and a floating gate (f 10a t i ng ga t e) 1 3 4 is formed thereon. In addition, the EEPROM cell 100 further includes a TIM well region 12 and an isolation material, such as field oxide FOX or shallow trench isolation STI. Here, the shallow trench isolation ST I is taken as an example; and The shallow trench isolation ST I is used to isolate the source region 114, the drain region 116, the channel region 118 and the TIM well region 120. The D1! | {Well region 120 further includes an N-type ion-concentrated doped region 124 for contact, and on the other side is a control gate region (contr〇1).

第5頁 441 03 4 五、發明說明(2) ga t e reg i on ) 1 2 8 ’在此控制閘區1 28之矽基板1 1 2表面則 為一控制閘氧化層132。 請參看第IB、1C圖’當進行程式化(pr〇gram)時,係 於該N型離子濃摻雜區124中加入一相對高電壓,並於汲極 區116中加入一相對低電壓’且矽基板112與源極區114接 地’以使電子因穿隧效應(F-N Tunneling Effect)由汲極 區116穿過閘氧化層130而注入浮動閘134中;相反地,當 對EEPR0M 1 00進行抹除(erase)時,則於該汲極j 6中加 入一相對高電壓,並於該N型離子濃摻雜區1 24中加入一相 對低電壓,以使電子因穿隧效應由浮動閘1 3 4穿過閘氧化 層1 30而注入汲極區11 6。 在一般形成EEPR0M之單一複晶矽閘極的步騍中,通常 會在其複晶矽閘極之侧壁上再形成—絕緣間隔物 (spacer),如第2圖所示:於一矽基板2〇上形成有一淺溝 槽隔離S T I,其間則形成閘氧化層2 1與單一複晶矽閘極 22 ’在經過離子的淡摻雜(LDD)入矽基板2〇之後,將該單 一複晶矽閘極2 2氧化使其表面生成一氧化矽絕緣層(未顯 不),再於其側壁上產生一氮化矽間隔物23,之後,濃摻 雜離子使進入矽基板20中’以形成一對源/汲極24。 然而,此種氮化矽間隔物23對其所包圍之氧化矽絕緣 層或是石夕材質之物質的應力(stress)大,因此容易造成氧 化砂絕緣層受到損害(damage)。由於EEPR〇M單元中之單一 複晶矽閘極在動作期間是要儲存電子以記憶資料,因此若 包圍其外部之氧化矽絕緣層受損,極易造成單一複晶矽閘Page 5 441 03 4 V. Description of the invention (2) ga t e reg i on) 1 2 8 ′ Here, the surface of the silicon substrate 1 1 2 of the control gate region 1 28 is a control gate oxide layer 132. Please refer to Figs. IB and 1C. "When programming is performed, a relatively high voltage is added to the N-type ion doped region 124, and a relatively low voltage is added to the drain region 116." In addition, the silicon substrate 112 and the source region 114 are grounded to allow electrons to be injected into the floating gate 134 from the drain region 116 through the gate oxide layer 130 due to a tunneling effect; on the contrary, when EEPR0M 1 00 is performed, When erasing, a relatively high voltage is added to the drain j 6, and a relatively low voltage is added to the N-type ion doped region 1 24, so that the electrons are removed from the floating gate due to the tunneling effect. 1 3 4 passes through the gate oxide layer 130 and is implanted into the drain region 116. In the step of forming a single polycrystalline silicon gate of EEPR0M, an insulating spacer is usually formed on the side wall of the polycrystalline silicon gate, as shown in FIG. 2: on a silicon substrate A shallow trench isolation STI is formed on 20, and a gate oxide layer 21 and a single polycrystalline silicon gate 22 ′ are formed thereon. After the ion is lightly doped (LDD) into the silicon substrate 20, the single polycrystalline silicon is formed. The silicon gate 22 is oxidized to form a silicon oxide insulating layer (not shown) on the surface, and a silicon nitride spacer 23 is generated on the sidewall. After that, heavily doped ions are allowed to enter the silicon substrate 20 'to form A pair of source / drain electrodes 24. However, such a silicon nitride spacer 23 has a large stress on a silicon oxide insulating layer or a material made of stone material surrounded by the silicon nitride spacer 23, and therefore, the oxide sand insulating layer is likely to be damaged. Since a single polycrystalline silicon gate in the EEPROM cell is used to store electrons to memorize data during operation, if the silicon oxide insulating layer surrounding it is damaged, it is very easy to cause a single polycrystalline silicon gate

^ Μ 1 0 3 4^ Μ 1 0 3 4

89102209_年月日__ 入(trap)該氧化矽絕緣層,而進一步躍至氮 化矽間隙壁中。這使得原先儲存於單一複晶矽閘極中之資 料流失,而產生資料保留功能失效(d a ΐ a r e t e η ΐ i ο η faii)。 有鑑於此,本發明之目的在於提供一種形成電氣抹除 式可編程唯讀記憶體之i 一複晶矽閘極之絕緣間隔物的方 法 > 其能夠減槪氮化矽間隙壁給予氧化矽絕綠層之應力, 而避免儲存於單一複晶矽閘極中之電子陷入氧化矽絕緣 層,更躍至氤化矽間隔物内,因此,可避免資料的流失》 為了達到本發明之目的,係提供了一種方法,其於單 —複晶矽表面的氧化絕緣物質形成之後,再沈積一層高溫 氧化物層,用以減低氮化矽間隔物對氧化矽絕緣層之應力 破壞,以防止電子躍遷至該氮化矽間隔物中,進一步保存 原先存於單一複晶矽閘極中之電子,進而記憶資料使其免 於流失。此種方法適用於一半導體基板,且於該半導體基 板中係形成一控制閘區、以及一位於該控制閘區表面之隧 穿氧化層,包括下列步騍··形成一閘氧化層於該半導體基 板之表面;彤成一複晶矽閘極於該閘氧化層之表靣,且部89102209_ 年月 日 __ Trap the silicon oxide insulation layer and jump further into the silicon nitride spacer. This results in the loss of data previously stored in a single polycrystalline silicon gate, resulting in the failure of the data retention function (d a ΐ a r e t e η ΐ i ο η faii). In view of this, an object of the present invention is to provide a method for forming an insulating spacer of an i-multiplexed silicon gate of an electrically erasable programmable read-only memory > which can reduce the silicon nitride spacer and give silicon oxide The stress of the green insulation layer can prevent the electrons stored in a single polycrystalline silicon gate from sinking into the silicon oxide insulating layer and jumping into the silicon oxide spacer. Therefore, the loss of data can be avoided. "In order to achieve the purpose of the present invention, A method is provided for depositing a high-temperature oxide layer after the formation of an oxidative insulating material on the surface of a mono-polycrystalline silicon to reduce the stress damage of the silicon nitride spacer to the silicon oxide insulating layer to prevent electronic transitions. To the silicon nitride spacer, the electrons originally stored in the single compound silicon gate are further stored, and then the data is saved to prevent it from being lost. This method is suitable for a semiconductor substrate, and a control gate region and a tunneling oxide layer on the surface of the control gate region are formed in the semiconductor substrate. The method includes the following steps: forming a gate oxide layer on the semiconductor The surface of the substrate; a complex silicon gate is formed on the surface of the oxide layer of the gate, and

I 分之該複晶矽閘極係與該隧穿氧化層相接;形成一氧化層 於該複晶矽閘極之表面;形成一對互為相隔的離子摻雜區 於靠近該複晶矽閘極兩側之該半導體基板中;形成一緩衝 層於該氧化層之表面;形成一氮化層於該緩衝層之表面; 以及蝕刻該氮化層與緩衝層以於該複晶矽閘極周圍形成一 !絕緣間隔物。The I-Si gate is connected to the tunneling oxide layer; an oxide layer is formed on the surface of the Si-Si gate; a pair of spaced apart ion-doped regions is formed near the Si-Si gate. In the semiconductor substrate on both sides of the gate; forming a buffer layer on the surface of the oxide layer; forming a nitride layer on the surface of the buffer layer; and etching the nitride layer and the buffer layer to the polycrystalline silicon gate A! Insulation spacer is formed around.

05O3-5OSOTWFl.ptc 第?頁05O3-5OSOTWFl.ptc No? page

1^-明(4) 修正" 補益 89102209 44103 4 ±_η 曰 修正 為讓本發明之上述目的、特徵、和優點能更明顯易 懂=下文特叛一較佳實施例,並配合所附圖式,作詳細說 明如下: 圖式之簡單說明: 第1 A- 1 C圖係顯示習知之具有單一複晶矽閘極之 EEPROM的構造圖: 第2圖係顯示習知之具有間隔物之單一複晶矽閘極其 載面構造圖; 第3Α與3Β圖係顯示一般之具有單〆複晶矽閘極之 EEPROM的構造圖;以及 第4A〜4F圖係顯示依據本發明之製造單一複晶矽閘極 之間隔物的製造流程剖面圖。 |符號說明 100、300~EEPROM 單元;112、312~P 型矽基板;114、 314〜源極區;116、316〜汲極區;118、318 -通道區; 120、320〜Τί Μ井區;124 '324〜N型離子濃摻雜區;128、 328〜控制閘區;13〇 ' 3 3 0〜間氧化層;132、332〜控制閘氧 化層;134、334〜浮動閘;ST卜淺溝槽隔離;20、4〇〜砂# 板;21~閘氧化層;22〜複晶矽閘極;23〜氮化石夕間仿土 • 24〜源/汲極;4卜浮動閘極;4 1 0〜閘氧化層;4 j丨〜㈣物; 層;42、42卜氧化石夕層;43卜源/沒極之渓摻雜區複晶發 源/汲極之濃摻雜區:44、441〜高溫氣化物層;^,432〜 氣化石夕層;46〜絕緣間隔物;47〜源/汲極3 、45b 實施例1 ^ -Ming (4) Correction " Supplement 89102209 44103 4 ± _η means to make the above-mentioned objects, features, and advantages of the present invention more obvious and understandable. = The following is a preferred embodiment and cooperates with the accompanying drawings. The detailed description is as follows: Brief description of the diagram: Figure 1 A- 1 C shows the structure of a conventional EEPROM with a single complex silicon gate: Figure 2 shows the conventional single complex with a spacer Figure 3A and 3B show structure diagrams of general EEPROMs with single crystal silicon gates; and Figures 4A to 4F show single silicon gates manufactured according to the present invention Cross-sectional view of the manufacturing process of the pole spacer. | Symbol Explanation 100, 300 ~ EEPROM cells; 112, 312 ~ P type silicon substrates; 114, 314 ~ source regions; 116, 316 ~ drain regions; 118, 318-channel regions; 120, 320 ~ Τ Μ well regions 124'324 ~ N-type ion-doped heavily doped region; 128, 328 ~ control gate region; 13〇 '3 3 0 ~ inter-oxide layer; 132,332 ~ control gate oxide layer; 134,334 ~ floating gate; ST Bu Shallow trench isolation; 20, 4〇〜 沙 # plate; 21 ~ gate oxide layer; 22 ~ polycrystalline silicon gate; 23 ~ nitride evening soil • 24 ~ source / drain; 4bu floating gate; 4 1 0 ~ gate oxide layer; 4 j 丨 ~ allium oxide; layer; 42, 42 oxide oxide layer; 43 source / doped erbium-doped region complex crystal source / drain-rich doped region: 44 441 ~ high temperature gasification layer; ^ ~ 432 ~ gasification stone layer; 46 ~ insulating spacer; 47 ~ source / drain 3, 45b

441 03 4 五、發明說明(5) 首先’晴先參看第3A與第3B圖’以說明本發明形成絕 緣間隔物之前制條件’其中’第3 B圖係為沿著第3 a圖中之 3B--3B線之截面圖;如圖,該EEPR0M單元3〇〇係形成於一 p 形石夕基板312上’其包括一對互為相隔的源極區314與汲極 區3 1 6 ’在該源極區3 1 4與汲極區31 6間之;ε夕基板31 2中則為 一通道區318。在通道區118之上方則包括一閘氧化層 3 3 0,且其上係形成—浮動閘(亦即單_複晶矽閘極)3 3 4。 此外,該EEPROM單元300更包括一TIM井區320以及一淺溝 槽隔離ST I ’而該淺溝槽隔離ST I係用以將源極區3 1 4、及 極區316、通道區318與TIM井區320隔絕。在ΠΜ井區320中 更包括一 N型離子濃摻雜區324,係作為接觸之用;於其另 一側則為一控制閘區3 2 8,在此控制閘區3 2 8之矽基板3 1 2 表面則為一控制閘氧化層(亦即隧穿氧化層)3 3 2。 接下來’為方便說明起見’請參看第4A〜4F圖,其所 示係為沿者弟3A圖中之3C--3C線之截面圖而顯示依據本發 明之形成EEPROM之單一複晶矽閘極的間隔物之方法;首 先’請參看第4A圖’係提供一半導體基板4〇,例如是矽基 板’且在該矽基板40之表面係形成一淺溝槽隔離mi,用 以做各元件間之絕緣;在其間並形成一浮動閘極 (floating gate)41 ’其包括一閘氧化層410,例如是二氧 化碎層’以及一單一複晶梦層411(single-poly layer), 其中,部分之單一複晶石夕層411係與第3B圖中之隧穿氧化 層332相接。 接下來,請參看第4B圖’形成一氧化層於該複晶矽閘441 03 4 V. Description of the invention (5) First, "see Figs. 3A and 3B" to explain the conditions before the formation of the insulating spacer of the present invention, where "3B" is shown along the 3A A cross-sectional view of line 3B--3B; as shown, the EEPR0M unit 300 is formed on a p-shaped stone substrate 312 'which includes a pair of source regions 314 and a drain region 3 1 6' spaced apart from each other. Between the source region 3 1 4 and the drain region 3 16, there is a channel region 318 in the epsilon substrate 31 2. Above the channel region 118, a gate oxide layer 3 3 0 is included, and a floating gate (ie, a single-complex silicon gate) 3 3 4 is formed thereon. In addition, the EEPROM cell 300 further includes a TIM well region 320 and a shallow trench isolation ST I ', and the shallow trench isolation ST I is used to connect the source region 3 1 4 and the electrode region 316, the channel region 318 and TIM well area 320 is isolated. In the UIM well region 320, an N-type ion-doped region 324 is further included for contacting; on the other side, a gate region 3 2 8 is controlled, and a silicon substrate of the gate region 3 2 8 is controlled here. The surface of 3 1 2 is a control gate oxide layer (ie, tunneling oxide layer) 3 3 2. Next, for the sake of convenience, please refer to FIGS. 4A to 4F, which are cross-sectional views taken along line 3C--3C in FIG. 3A and show a single polycrystalline silicon forming an EEPROM according to the present invention. Gate spacer method; first 'see Figure 4A' is to provide a semiconductor substrate 40, such as a silicon substrate 'and a shallow trench isolation mi is formed on the surface of the silicon substrate 40 for each Insulation between components; a floating gate 41 is formed therebetween, which includes a gate oxide layer 410, such as a fragmented oxide layer, and a single poly-layer layer 411, where A part of the single polycrystalite layer 411 is in contact with the tunnel oxide layer 332 in FIG. 3B. Next, please refer to FIG. 4B ′ to form an oxide layer on the polysilicon gate.

-^10 3 4 五、發明說明(6) 極之表面;例如,利用熱氧化法(thermal oxidation)使 複晶矽表面起氧化作用以於該浮動閘極41表面形成一層氧 化石夕層4 2。之後,淡掺雜離子入砂基板4 0中,以於該浮動 閘極4 i兩側下方之矽基板40中形成一對源/汲極之淡摻雜 區域(LDD)431,如第4C圖所示。 接下來,請參看第4D圖,要進行本發明最關鍵之步 驟’亦即形成一緩衝層於該氧化物層之表面:例如,在 4〇0~ 8 0 0 °C的高溫下沈積一層高溫氧化物層(HT0)44於該氧 化矽層42之表面,其厚度大體在100A以上。 之後’請參看第4E圖’係形成一氮化層於該緩衝層之 表面;例如,以氨氣(NH3)為反應氣體,進行電漿加強式 化學氣相沈積法(PECVD)沈積一層氮化矽層45於該高溫氧 化物層44之表面,且其厚度大體在5〇〇〜2000 A之間。 接下來’請參看第4F圖,係蝕刻該氮化層與緩衝層以 於該複晶矽閘極周圍形成一絕緣間隔物;例如,以含氟 (fluoride)氣體之電漿,對該氮化矽層45與高溫氧化物層 44進行乾式蝕刻(dry etching),以於該浮動閘41之周圍 形成一絕緣間隔物46,其包括氧化矽層421、高溫氧化物 層441、以及氮化矽層451。緊接著。以該絕緣間隔物“為 罩,佈植離子至該矽基板40中以形成一對源/汲極47 ’ 其包括離子之淡摻雜區431與濃摻雜區432。 依據本發明之方法所形成的絕緣間隔物,在達到絕緣 目”前提下’由於高溫氧化物層441具有一定厚度,: 此”存在能夠將氮切層451對氧切層421的應力平移至-^ 10 3 4 V. Description of the invention (6) The surface of the electrode; for example, the surface of the polycrystalline silicon is oxidized by thermal oxidation to form a layer of oxidized stone on the surface of the floating gate 41 4 2 . Then, lightly doped ions are introduced into the sand substrate 40 to form a pair of lightly doped regions (LDD) 431 of the source / drain in the silicon substrate 40 below the sides of the floating gate 4 i, as shown in FIG. 4C. As shown. Next, referring to FIG. 4D, to perform the most critical step of the present invention, that is, forming a buffer layer on the surface of the oxide layer: for example, depositing a layer of high temperature at a high temperature of 400 ~ 800 ° C The oxide layer (HT0) 44 is on the surface of the silicon oxide layer 42 and has a thickness of approximately 100A or more. Afterwards, please refer to FIG. 4E to form a nitride layer on the surface of the buffer layer; for example, using ammonia gas (NH3) as a reaction gas to perform plasma enhanced chemical vapor deposition (PECVD) to deposit a layer of nitride A silicon layer 45 is on the surface of the high-temperature oxide layer 44 and has a thickness between 500 and 2000 A. Next, please refer to FIG. 4F. The nitride layer and the buffer layer are etched to form an insulating spacer around the polycrystalline silicon gate; for example, a plasma containing fluoride gas is used to nitride the nitride layer. The silicon layer 45 and the high-temperature oxide layer 44 are dry-etched to form an insulating spacer 46 around the floating gate 41. The insulating spacer 46 includes a silicon oxide layer 421, a high-temperature oxide layer 441, and a silicon nitride layer. 451. Immediately. Using the insulating spacer as a cover, ions are implanted into the silicon substrate 40 to form a pair of source / drain electrodes 47 ′ including a lightly doped region 431 and a heavily doped region 432 of the ion. The formed insulating spacer, under the premise that the insulation purpose is reached, "because the high-temperature oxide layer 441 has a certain thickness, this" existence can translate the stress of the nitrogen-cut layer 451 to the oxygen-cut layer 421 to

第10頁Page 10

r—--^ 41 〇S A 修正 ^啤4月1日1/ f號89102209_年月日__ ;==£=i*mscifc 較遠離浮動閘極4 i的方向,亦即減低氮化矽層45 1對氧化 矽層421之應力破壞,進而減少電荷陷入氧化矽層42 1中的 數量,進一步防止電子躍遷至該氮化石夕層4 5 1中,因而可 保存原先存於浮動閘極4 I中之電子,因此所記憶之資料能 免於流失。 此外:本發明之製程簡易,因此不會造成製造時之成 ; j本及複雜度(c 〇 m p 1 e X i 1: y)增加。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此項技藝者,在不脫離本發明之精 神和範圍内,當可作更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。r —-- ^ 41 〇SA correction ^ Beer April 1st / f No. 89102209_year month__; == £ = i * mscifc The direction farther from the floating gate 4 i, that is, reducing silicon nitride The stress damage of the layer 45 1 on the silicon oxide layer 421 further reduces the amount of charge trapped in the silicon oxide layer 42 1 and further prevents electrons from jumping into the nitride layer 4 5 1, so that the original existence of the floating gate 4 can be saved. The electrons in I, so the stored data can be prevented from being lost. In addition: the manufacturing process of the present invention is simple, so it will not result in manufacturing; j complexity and complexity (c 0 m p 1 e X i 1: y) increase. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make changes and retouching without departing from the spirit and scope of the present invention. The scope of protection shall be determined by the scope of the attached patent application.

0503-5080^1. ptc 第11頁0503-5080 ^ 1.ptc page 11

Claims (1)

丨4 4 1 Ο 3 4 ::::^~^-^:^条.號 89102209 h ^ 曰》f fl 修正本 、、_請專利範圍 "" ~ ' ' ~ ^ 1. 一種形成電氣抹除式可編程唯讀記憶體之單一 複,矽閘極之絕緣間隔物的方法,適用於一半導體基板, ^該半導體基极令係形成—控制閘區 '以及一位於讀扣 市1閘區表面之隧穿氧化層,包括下列步驊: 工 形成一閘氧化層於該半導體基板之表面; 、 形成一複晶矽閘極於該閘氧化層之表靣,且部分夕 後晶矽閘極係與該隧穿氧化層相接; 、^ 形成一氧化層於該複晶矽閘極之表面; 形成一對互為相隔,的離子淡摻雜區於靠近該複晶矽 兩側之該丰導體基板',中; 巧 形成一緩衝層於該氧化層之表面; 形成一氮化層於該緩衝層之表面;以及 韻刻該氮化層與緩衝層以於該複晶矽閘極周圍形虑 絕緣間隔物。 . 2. 如申請專利範圍第1項所述之方法,其中,該緩衝 層係為在400〜850 t的高溫下所沈積的高溫氧化物層,且 其厚度大體在ΙΟίΜΟΟΟ A之間。 3. 如申請專利範圍第1項所述之方法’其中,該氮化 R係為以氛風1為叹應氣體,進行電漿加強式化學氣相沈積 法所沈積的氮化矽,且其厚度大體在500〜20〇〇 A之間。 4. 如申請專利範園第1項所述之方法’其中,該氧化 層係為以熱氧化法,使該複晶石夕閘極表面起氧化作用而於 該複晶矽閘極表面形成一層厚度在1 0 ~ 2 0 0 A間之氧化石夕 層。丨 4 4 1 Ο 3 4 :::: ^ ~ ^-^: ^ Article No. 89102209 h ^ "F fl revised version, _ please patent scope " " ~ '' ~ ^ 1. A form of electrical The method of erasing programmable read-only memory with a single compound and an insulating spacer of a silicon gate is applicable to a semiconductor substrate. ^ The semiconductor base formation system is formed to control the gate area 'and a gate located in the readout city. The tunneling oxide layer on the surface of the area includes the following steps: forming a gate oxide layer on the surface of the semiconductor substrate; forming a polycrystalline silicon gate electrode on the surface of the gate oxide layer; The pole system is in contact with the tunneling oxide layer; ^ forms an oxide layer on the surface of the polycrystalline silicon gate; forms a pair of lightly doped regions of ions spaced apart from each other on both sides of the polycrystalline silicon A conductor substrate ', in the middle; forming a buffer layer on the surface of the oxide layer; forming a nitride layer on the surface of the buffer layer; and engraving the nitride layer and the buffer layer around the polycrystalline silicon gate Consider insulating spacers. 2. The method according to item 1 of the scope of patent application, wherein the buffer layer is a high-temperature oxide layer deposited at a high temperature of 400 to 850 t, and the thickness is generally between 10 ΙΟΟΟ A. 3. The method according to item 1 in the scope of the patent application, wherein the nitride R is silicon nitride deposited by plasma enhanced chemical vapor deposition with atmosphere wind 1 as the gas of sigh, and its The thickness is generally between 500 ~ 200A. 4. The method according to item 1 of the patent application park, wherein the oxide layer is formed by thermally oxidizing the surface of the polycrystalline silicon gate to form an oxide layer on the surface of the polycrystalline silicon gate. An oxide layer with a thickness between 10 and 2 0 A. 4 4 1 0 3 4 _案號89102209_年月日__ 六、申請專利範圍 5. 如申請專利範圍第1項所述之方法,其中,係以含 氟氣體之電漿,對該氮化層與緩衝層進行乾式蝕刻而形成 該絕緣間隔物。 6. 如由請專利範圍第1項所述之方法,其中,該半導 體基板係為矽基板。 7. —種形成電氣抹除式可編程唯讀記憶體之單一複晶 矽閘極之絕緣間隔物的方法,適用於一矽基板,且於該半 導體基板中係形成一控制閘區、以及一位於該控制閘區表 面之隧穿氧化層,包括下列步驟: 形成一閘氧化層於該梦基板之表面; 形成一複晶矽閘極於該閘氧化層之表面,且部分之該 i複晶5夕閘極係與該隨穿氧化層1相接; i | 形成一氧化矽層於該複晶矽閘極之表面; I 形成對互為相隔的離子之淡推雜區域於恭近該複晶 I矽閘極兩側之該矽基板中; 形成一高溫氧化物層於該氧化層之表面; 形成一氮化矽層於該高溫氧化物層之表面; 蝕刻該氮化層與緩衝層以於該複晶矽閘極周圍形成一 絕緣間隔物;以及 形成一對互為相隔的離子之濃摻雜區域於靠近該複晶 矽閘極兩側之該矽基板中。 8. 如申請專利範圍篱7項所述之方法,其中,該高溫 氧化物層係為在400-850 °C的高溫下進行沈積而成,且其 厚度大體在1 0 0〜1 0 0 0 A之間。4 4 1 0 3 4 _Case No. 89102209_Year Month Date__ VI. Patent Application Range 5. The method described in item 1 of the patent application range, in which a plasma containing fluorine gas is used for nitriding The layer and the buffer layer are dry-etched to form the insulating spacer. 6. The method as described in item 1 of the patentable scope, wherein the semiconductor substrate is a silicon substrate. 7. —A method for forming an insulating spacer of a single polycrystalline silicon gate of an electrically erasable programmable read-only memory, which is suitable for a silicon substrate, and a control gate region is formed in the semiconductor substrate, and a The tunneling oxide layer on the surface of the control gate region includes the following steps: forming a gate oxide layer on the surface of the dream substrate; forming a polycrystalline silicon gate electrode on the surface of the gate oxide layer, and part of the i compound crystal On the 5th, the gate electrode is connected to the through oxide layer 1; i | forms a silicon oxide layer on the surface of the complex silicon gate; I forms a lightly doped region of ions separated from each other so as to be close to the complex In the silicon substrate on both sides of the silicon gate; forming a high-temperature oxide layer on the surface of the oxide layer; forming a silicon nitride layer on the surface of the high-temperature oxide layer; etching the nitride layer and the buffer layer to Forming an insulating spacer around the complex silicon gate; and forming a pair of densely doped regions of ions spaced apart from each other in the silicon substrate near the two sides of the complex silicon gate. 8. The method as described in item 7 of the patent application scope, wherein the high-temperature oxide layer is deposited at a high temperature of 400-850 ° C, and the thickness is generally between 100 and 100. Between A. 0503-508〇η·Ρ1.ρΐο 第13頁 4 41 03 4 - 案號 891f)2?flQ__^__β -曰— 修正_ 六、申琦專利範圍 9.如申請專利範圍第8項戶斤述之方法,其中,該氮化 石夕層係為以氨氣為反應氣體,造行電漿加強式化學氣相沈 積法戶斤沈積而成,且其厚度大體在500〜2000Α之間。 1 〇.如申請專利範圍第9項所述之方法,其中,該氧化 石夕層係為以熱氧化法,使該複晶矽閘極表面起氧化作用而 於該複晶矽閘極表面所形成,且其厚度大體在10〜20 0 Α之 間。 1 1.如申請專利範圍第1 〇項所述之方法’其中’係以 含氟氣體之電漿,對該氮化矽層與高溫氧化物層進行乾式 餘刻而形成該絕緣間隔物。0503-508〇η · Ρ1.ρΐο Page 13 4 41 03 4-Case No. 891f) 2? FlQ __ ^ __ β-Said — Amendment_ VI. The scope of Shenqi's patent 9. As described in item 8 of the scope of patent application The method is characterized in that the nitrided layer is deposited by plasma enhanced chemical vapor deposition method using ammonia as a reaction gas, and the thickness is generally between 500 and 2000 A. 10. The method as described in item 9 of the scope of the patent application, wherein the oxidized stone layer is formed by thermally oxidizing the surface of the polycrystalline silicon gate and performing oxidation on the surface of the polycrystalline silicon gate. Formed, and its thickness is generally between 10 ~ 20 0 A. 1 1. The method according to item 10 of the scope of the patent application, wherein the insulating spacer is formed by dry etching the silicon nitride layer and the high-temperature oxide layer with a plasma containing fluorine gas.
TW89102209A 2000-02-10 2000-02-10 Method to form insulation spacer of a single polysilicon gate of EEPROM TW441034B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89102209A TW441034B (en) 2000-02-10 2000-02-10 Method to form insulation spacer of a single polysilicon gate of EEPROM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89102209A TW441034B (en) 2000-02-10 2000-02-10 Method to form insulation spacer of a single polysilicon gate of EEPROM

Publications (1)

Publication Number Publication Date
TW441034B true TW441034B (en) 2001-06-16

Family

ID=21658747

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89102209A TW441034B (en) 2000-02-10 2000-02-10 Method to form insulation spacer of a single polysilicon gate of EEPROM

Country Status (1)

Country Link
TW (1) TW441034B (en)

Similar Documents

Publication Publication Date Title
KR101618160B1 (en) Non-volatile semiconductor memory, and production method for non-volatile semiconductor memory
JP4976796B2 (en) Semiconductor device
US8110461B2 (en) Flash memory device and manufacturing method of the same
JP2002217318A (en) Non-volatile semiconductor storage element and its manufacturing method
JPH11135654A (en) Split-gate flash memory cell structure
US6943404B2 (en) Sonos multi-level memory cell
KR970000537B1 (en) Method for manufacturing a nonvolatile semiconductor memory device
KR100806787B1 (en) Method of Manufacturing Flash Semiconductor Device
TW480715B (en) Nonvolatile memory structure capable of increasing gate coupling-coefficient
KR100596484B1 (en) Method of Forming Insulator Layer and Method of Manufacturing Non-Volatile Memory Device Using the same
TWI228834B (en) Method of forming a non-volatile memory device
JPH07169863A (en) Non-volatile semiconductor storage
US20050020010A1 (en) Method for forming non-volatile memory cell with low-temperature-formed dielectric between word and bit lines, and non-volatile memory array including such memory cells
TW441034B (en) Method to form insulation spacer of a single polysilicon gate of EEPROM
US20050176201A1 (en) Spacer for a split gate flash memory cell and a memory cell employing the same
KR100654359B1 (en) Method for fabricating nonvolatible memory device
KR100814376B1 (en) Non-volatile memory device and method of manufacturing the same
JP4895823B2 (en) Semiconductor device
US20140357072A1 (en) Methods and structures for split gate memory
JP2009016688A (en) Method of manufacturing semiconductor device
KR100481869B1 (en) Method of forming sonos memory cells
TW523879B (en) UV-programmed p-type mask ROM and fabrication thereof
JP2000299395A (en) Nonvolatile semiconductor storage device and manufacture thereof
KR100862145B1 (en) Flash memory device and method for manufacturing the same
KR100253582B1 (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent