TW437103B - Nitride semicondcutor device - Google Patents

Nitride semicondcutor device Download PDF

Info

Publication number
TW437103B
TW437103B TW88103785A TW88103785A TW437103B TW 437103 B TW437103 B TW 437103B TW 88103785 A TW88103785 A TW 88103785A TW 88103785 A TW88103785 A TW 88103785A TW 437103 B TW437103 B TW 437103B
Authority
TW
Taiwan
Prior art keywords
nitride semiconductor
layer
film
semiconductor film
multilayer film
Prior art date
Application number
TW88103785A
Other languages
Chinese (zh)
Inventor
Koji Tanizawa
Tomotsugu Mitani
Yoshinori Nakagawa
Hironori Takagi
Hiromitsu Marui
Original Assignee
Nichia Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP16145298A external-priority patent/JP3680558B2/en
Application filed by Nichia Kagaku Kogyo Kk filed Critical Nichia Kagaku Kogyo Kk
Application granted granted Critical
Publication of TW437103B publication Critical patent/TW437103B/en

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

To substantially utilize the characteristics of the active layer of multiple quantum well structure to intensify the luminous output thereof thereby for expanding the application range of various products of the nitride semiconductor device, the present invention provides a nitride semiconductor device which comprises an active layer, the active layer is interposed between an n-region having a plurality of nitride semiconductor films and a p-region having a plurality of nitride semiconductor films, and a multi-film layer stacked with two kinds of the nitride semiconductor films is formed in at least one of the n-region or the p-region.

Description

437103 A7 B7 五、發明說明( 發明領域 本發明係有關於一種發光二極體(LED) '雷射二極體 (LD)、太陽電池、光感測器等的發光元件與受光元件、或 是電晶體、高功率裝置等電子裝置所使用的氮化物半導體 元件(例如 ’ InxAlyGai.x_yN,〇Sx,〇sy, X 十 yd)» 發明背章: 氮化物半導禮係為一種高輝度青色LED、純綠色LED 的材料其係被實用作為全色LED裝置、交通信號燈、影 像掃描光源等的各種光源。該等的LED元件的構造基本上 如在—監石英基板上依序堆積有一由GaN所形成的緩衝 θ、一由摻入Si雜質之GaN所形成^侧接觸層、一單一 量子井構造(SQW, Single-Quantum-Well)的 InGaN 或是具 有 InGaN 之多重量子丼構造(MQW, Multi-Quantum-Well) 的活性爲 «、一由摻入Mg雜質之AiGaN所形成的p側復蓋 ^ ~由摻入Mg雜質之GaN所形成的p側接觸層;其 在2〇mA之下,發光波長450nm之音色LED係具有5mW、 二量子放率為9.1%的良好特性,而發光波長520nm之 ED係具有5mW、外部量子效率為6.3%的良好特 性。 在上述氮化物半導體發光元件中係採用一具有由 InGaN所形成之井層的單一量子井構造、或是具有多重量 子井構造之活性層的雙異型構造。 此外’對於氣化物半導體發光元件而言,由於多重量 (CNiS)Al (2 (請先閱讀背面之注意事項再填寫本頁) 裝---- 經濟部智慧財產局員工消費合作社印製 經 ;f 部 智 ,¾ 財 產 局 消 費 合 作 社 印 製 4371〇3 A7 ______B7 _ 五、發明說明() 子丼構造係為一由複數個小型鍵結所形成的構造’故可有 效率地以較小的電流來進行發光,因此,其係比軍一量子 井構造更能提升使發光輸出增高等的元件特性。 就使用多重量子井構造之活性層的led元件而言, 係例如特開平1 0- 1 3 55 14號公報中所揭示者,其中,為使 氮化物半導體元件具有良好的發光效率及發光光度,該氮 化物半導體元件係包含有一至少以一由未挣雜質\ GaN 所形成的阻隔層、一由未摻雜質之InGaN所形成之多重量 子井構造的發光$ :以及一比該發光層之ρ且隔層還寬,且 具有鍵隙的覆蓋層° 然而,或使活性層成為多章眚子其姓、A ^ ^ 々I重于井構造,則將會使縱 向串聯電阻增加,進而使一 LED分杜iA -, 疋件的Vf(順向電壓)增 南。437103 A7 B7 V. Description of the Invention (Field of the Invention The present invention relates to a light emitting diode (LED), a laser diode (LD), a solar cell, a light sensor and other light emitting elements and light receiving elements, or Nitride semiconductor devices used in electronic devices such as transistors and high-power devices (such as' InxAlyGai.x_yN, 〇Sx, 〇sy, X ten yd) »Back of the invention: The nitride semiconductor is a high-brightness cyan LED The materials of pure green LEDs are practically used as various light sources for full-color LED devices, traffic lights, image scanning light sources, etc. The structure of such LED elements is basically as follows: a quartz substrate is sequentially stacked on a quartz substrate. The formed buffer θ, a side contact layer formed of GaN doped with Si impurities, an InGaN with a single quantum well structure (SQW, Single-Quantum-Well), or a multiple quantum rhenium structure with InGaN (MQW, Multi- Quantum-Well) has an activity of «, a p-side cover formed by Mg-doped AiGaN ^ ~ a p-side contact layer formed by Mg-doped GaN; it emits light below 20 mA 450nm Tone LED with 5mW The two-quantum emission rate is 9.1%, and the ED system with an emission wavelength of 520nm has the good characteristics of 5mW and an external quantum efficiency of 6.3%. In the above-mentioned nitride semiconductor light-emitting element, a well layer formed of InGaN is used. Single quantum well structure or double heterostructure of active layer with multiple quantum well structure. In addition, 'for gaseous semiconductor light-emitting devices, due to the weight of (CNiS) Al (2 (Please read the precautions on the back before (Fill in this page) ---- Printed by the Consumers' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs; f Ministry of Intellectual Property, ¾ printed by the Consumers ’Cooperatives of the Property Bureau 4371〇3 A7 ______B7 _ 5. Description of the invention () The structure of the child is one The structure formed by a plurality of small-sized bonds can efficiently emit light with a small current. Therefore, the structure can improve device characteristics such as an increase in light output compared to the military-quantum well structure. The LED device of the active layer of the quantum well structure is disclosed in, for example, Japanese Patent Application Laid-Open No. 10- 1 3 55 14 in which a nitride semiconductor device has Good luminous efficiency and luminosity, the nitride semiconductor device includes a luminescence structure consisting of at least a barrier layer formed of unearned impurities \ GaN and a multiple quantum well formed of undoped InGaN: And a cover layer that is wider than the light-emitting layer and has a wider interlayer and a key gap. However, if the active layer is made into a multi-chapter scorpion whose last name, A ^ ^ 々I is more important than the well structure, it will make The vertical series resistance increases, which in turn increases the Vf (forward voltage) of an LED sub-iA-, and the component.

就可使Vf下降的技術而士,彳& Λ丨』u H m 3 ,係例如特開平9-298341 號公報中所揭示者’其所记述者得基一 ^ 、有係為種雷射元件,該元The technology that can reduce Vf, 彳 & Λ 丨 』u H m 3 is, for example, disclosed in JP-A-9-298341, and its description is based on a laser, which is a kind of laser. Element

件係將位於活性層之上的p側井类咕 《 Λ L 叫尤争友層、及接觸層等作為 一含有InAlGaN的超晶格層。續姑俺任.通… 忑技術係王要利用將p型氮The system uses the p-side wells "ΛL", which are located above the active layer, as the U.S. friend layer and the contact layer as a superlattice layer containing InAlGaN. Continuing Aunt Ren. Through ... Wang Wang, Department of Technology, wants to use p-type nitrogen

化物半導體層作為一具有含In乏奇仆从*请A ιη < 51化物丰導體層的超晶 格構造’據以使P層的載子濃度增加,且使雷射元件的啟 始值降低。然而事實上,就一由InA1GaN《4元混晶所構 成的氮化物半導體而言,其饪晶,τ & , 穴..σ时性並不好,此外’對於含The compound semiconductor layer has a superlattice structure with an Indium-containing odd-and-so-missive conductor layer, which increases the carrier concentration of the P layer and reduces the initial value of the laser device. However, as a matter of fact, for a nitride semiconductor composed of InA1GaN "quaternary mixed crystal, its crystal, τ &

In之氮化物半導體而言,其俘猓齙ά 〇 穴你很難成為Ρ型,因此,實際 上,欲據此而製造出LED元侔成τη -从企阳 匕仟或LD兀件實屬困難。 承上所述,雖然期待以多舌善$政Λ 夕重量子井構造之活性層來有 --------^---------^ (請先閱讀背面之泫意事項再填寫表f }As for the nitride semiconductor of In, it is very difficult for you to become a P-type. Therefore, in fact, if you want to make an LED element based on this, it is really τη-from the enterprise dagger or LD element difficult. According to the above, although we look forward to the active layer of the multi-tongue good political structure xi Xi Zhongzijing structure -------- ^ --------- ^ (Please read the back of the first Fill out the form f}

經濟部智慧財產局員工消費合作社印製 v A37103 A7 ___B7 _ 五、發明說明() 效地提升發光輸出,但,實際上並不能完全發揮所期待的 可能性。 此外’有關LD元件,本案發明人係曾在一氮化物半 導體基板上製作出一含有活性層的氮化.物半導體雷射元 件,其係在世界上首先達成室溫下連續發振1萬小時以上 者’其係發表於 ICNS'97 預稿集,0<^〇56『27- 31,1997,p444-446、以及 Jpn.J.Appl.Phys.Vol.36(1997) p p. L 1 5 6 8 -1 5 7 1 ' P a r 12,N 〇. 1 2 A,1 D e c e m b e r 1 9 9 7。 而’為使LED元件可利用於照明用光源、或是受日光 直射的屋外顯示裝置上’因此,必須要求元件之Vf更低, 且發光效率更高。此外,就LD元件而言,為使其可作為 光S買寫頭寻之光源使用’其必須使啟始值進一步降低以延 長壽命,所以必須進一步改良。 近來,對於使用氮化物半導體之發光元件而言,如特 開平8-9 7468號公報所示,其係利用鍵隙能量較〇aN小的 InGaN來形成ρ型接觸層,以替代習知使用GaN、且形成 有一 p側電極之p型接觸層》換言之,即是藉由利用鍵隙 能量較GaN小的InGaN ’即可使p型接觸層與p側電極之 間的阻隔降低’俾形成一良好的歐姆接觸。 然而,由於InGaN係很難成長出一缺陷少、結晶性佳 的膜,因此,很難獲致一符合期望之具有低接觸電阻的歐 姆接觸。此外’由於所成長出的InGaN層之結晶性係很凌 亂,因此會有接觸電阻不安定的問題。所以,對於習知具 有一由inGaN所形成之p型接觸層的氮化物半導體元件而 __________— ___ 第6貫 t B f.^1 -r (>M〇 >Τ?ί^7Γ;'™------------------------------------------ n n n n n I— El I 1» rl I I - i n i n n nn n I (請先閱讀背面之注意事項再填寫本頁) A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明( 言’其係很難獲致超低、安定的動作電壓,以及高輸出的 特性。由於如此,故若利用一由InGaN所形成之p型接觸 層而構成一LED元件時,其在20mA下的順向電壓vf係 最多只能降到3.4V〜3.8V之間,同時,其尚有分佈凌亂的 問題。 除此之外,對於由氮化物半導體所形成之元件而言, 其構造上會因一遠比人體所帶之靜電還弱的! 〇〇 V電整, 即可能產生劣化,因此在利用上必須非常小心。所以,為 使一氤化物半導體元件之信賴性提升’則必須使其靜電耐 壓進一步提升。 發明目的及概诚: 有鑑於上述缺點,本發明之目的係主要在於提升以 LED、LD等氮化物丰導體元件之輸出,同時使其及啟 始值降低進而提升元件的發光效率。在此所謂提升發光效 率亦指有關進一步提升使用受光元件等的氮化物半導體 之其他電子元件效率而言。 此外’本發明之另一目的係藉由使用多重量子丼構造 之活性層,並充分發揮其特性,以達發光輸出的進一步提 升’同時擴大氮化物半導體元件適用於各種對應製品的範 圍。 再者’本發明之又一目的係提供—種可縮小P側電搔 與P型接觸層間的接觸電阻,且可以安定、較低的動作電 壓獲得較高之輸出的氮化物半導體元件。 . --------^ --------- (請先閱續背面之:-i意事項再填寫本頁) :ΛΙ Λ37 i Ο 3 Α7 R7 五、發明說明() 又,本發明之再一目的係提供一種可提升發光輸出, 且具有良好之靜電耐壓的氮化物半導體元件。 本發明之第1氮化物半導體元件係可藉由下述構造而 使啟始值降低,龙且可使發光效率提升。 亦即’本發明之弟1氮化物半導體元件係具有一活性 層,其中該活性層係介於一含有複數個氮化物丰導體層之 η側區域及一含有複數個氮化物半導體層之ρ側區域之 間,其特徵在於:該η惻區域中至少有一個氮化物半導體 層係為η側多層膜層,而該η惻多層膜層係由一含有Ιη 之第1氮化物半導體膜、及一組成係不同於該第1氮化物 半導體膜的第2氮化物半導體膜所堆積而成;此外,該第 1氮化物半導體獏與第2氮化物半導體膜中至少有一方的 膜厚係在1 0 0埃以下。 於本發明之第1氮化物半導體元件中,該第1氮化物 半導體膜與第2氮化物半導體膜兩者係最好均在! 00埃以 下’而最好係在70埃以下,更佳者係最好在50埃以下。 由於藉由將膜厚如上述般地變薄,即可使多層膜層呈超晶 格構造,進而使多層膜層的結晶性變好,因此可提升輸 出。此外’活性層係可為具有一含有I η之氮化物半導體, 最好是由InGaN所形成之井層的單一量子井構造,或是多 重量子井構造。 此外’於本發明之第1氮化物半導體元件中,該第! 氣化物半導體膜係可由InxGai xN(〇<x<丨)所構成;而該第2 氛化物半導體膜係可由InyGaiiNfOfyd,y<x;)所構成,而 {請先閱讀背面之注意事項再填寫太頁) 裝--------訂---------^ 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 Λ37^ 〇3Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs v A37103 A7 ___B7 _ V. Description of the invention () Effectively increase the luminous output, but in reality, the expected possibilities cannot be fully realized. In addition, with regard to LD devices, the inventors of this case have fabricated a nitride semiconductor substrate with an active layer on a nitride semiconductor substrate. The semiconductor semiconductor laser device has achieved 10,000 hours of continuous vibration at room temperature for the first time in the world. The above 'is published in the ICNS'97 pre-draft collection, 0 < ^ 〇56 『27-31, 1997, p444-446, and Jpn.J.Appl.Phys.Vol.36 (1997) p p. L 1 5 6 8 -1 5 7 1 'P ar 12, N 〇 1 2 A, 1 De embember 1 9 9 7. In order to use the LED element in a light source for lighting or an outdoor display device that is exposed to direct sunlight, it is necessary to lower the Vf of the element and increase the luminous efficiency. In addition, as for the LD element, in order to use it as a light source for the optical head, it is necessary to further reduce the initial value to extend the life, so further improvement is required. Recently, as for a light-emitting element using a nitride semiconductor, as disclosed in Japanese Patent Application Laid-Open No. 8-9 7468, a p-type contact layer is formed by using InGaN having a smaller gap energy than 0aN instead of the conventional use of GaN. In other words, the barrier between the p-type contact layer and the p-side electrode can be reduced by using InGaN that has a smaller bond gap energy than that of GaN. Ohmic contact. However, since it is difficult to grow an InGaN-based film with few defects and good crystallinity, it is difficult to obtain an Ohm contact having a low contact resistance as expected. In addition, since the crystallinity of the grown InGaN layer is disordered, there is a problem that the contact resistance is unstable. Therefore, for a conventional nitride semiconductor device having a p-type contact layer formed of inGaN, __________- ___ 6th t B f. ^ 1 -r (> M〇 > Τ? Ί ^ 7Γ; '™ ------------------------------------------ nnnnn I— El I 1 »Rl II-ininn nn n I (Please read the notes on the back before filling in this page) A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Operating voltage and high output characteristics. Because of this, if a LED element is formed using a p-type contact layer formed of InGaN, its forward voltage vf at 20mA can only be reduced to a maximum of 3.4V ~ Between 3.8V, at the same time, there is still a problem of disorderly distribution. In addition, for a device formed of a nitride semiconductor, its structure will be weaker than the static electricity carried by the human body! 〇 〇V voltage adjustment, that is, degradation may occur, so it must be used very carefully. Therefore, in order to improve the reliability of monolithic semiconductor devices', it is necessary to further increase their electrostatic withstand voltage. Object of the invention and sincerity: In view of the above disadvantages, the object of the present invention is mainly to improve the output of nitride-rich conductor elements such as LEDs and LDs, and at the same time reduce their initial values and thereby improve the luminous efficiency of the elements. Increasing luminous efficiency also refers to further improving the efficiency of other electronic components using nitride semiconductors such as light-receiving elements. In addition, 'another object of the present invention is to use an active layer with a multiple quantum ytterbium structure and fully utilize its characteristics, To further improve the luminous output, at the same time, the scope of the nitride semiconductor device applicable to various corresponding products is expanded. Furthermore, another object of the present invention is to provide a method for reducing the contact resistance between the P-side electrode and the P-type contact layer. And it can be stable, lower operating voltage to obtain higher output nitride semiconductor devices. -------- ^ --------- (Please read the following: -i Please fill in this page again): ΛΙ Λ37 i Ο 3 Α7 R7 V. Description of the invention () Another object of the present invention is to provide a light-emitting diode which can improve the luminous output and has a good static voltage resistance. Compound semiconductor element. The first nitride semiconductor element system of the present invention can reduce the initial value by the following structure, and can improve the luminous efficiency. That is, 'the first nitride semiconductor element system of the present invention has a An active layer, wherein the active layer is between an n-side region containing a plurality of nitride-rich conductor layers and a p-side region containing a plurality of nitride semiconductor layers, and is characterized in that at least A nitride semiconductor layer is an η-side multilayer film layer, and the η 恻 multilayer film layer is composed of a first nitride semiconductor film containing 1η and a second nitrogen which is different in composition from the first nitride semiconductor film. A compound semiconductor film is deposited; and at least one of the first nitride semiconductor rhenium and the second nitride semiconductor film has a film thickness of 100 angstroms or less. In the first nitride semiconductor element of the present invention, it is preferable that both the first nitride semiconductor film and the second nitride semiconductor film are present! Below 00 Angstroms' and preferably below 70 Angstroms, more preferably below 50 Angstroms. By reducing the film thickness as described above, the multilayer film layer can have a superlattice structure, and the crystallinity of the multilayer film layer can be improved, so that the output can be improved. In addition, the 'active layer system may be a single quantum well structure having a nitride semiconductor containing I η, preferably a well layer formed of InGaN, or a multi-baryon structure. In addition, in the first nitride semiconductor device of the present invention, the first! The vapor semiconductor film system can be composed of InxGai xN (〇 < x <丨); and the second semiconductor vapor film can be composed of InyGaiiNfOfyd, y <x;), and {Please read the precautions on the back before filling (Pages) -------- Order --------- ^ Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Λ37 ^ 〇3

At ___ Β7 五、發明說明() 最好係為GaN。 再者’於本發明之第1氮化物半導體元件中,該第1 氮化物半導體膜或第2氮化物半導體膜中至少有一方的膜 厚係不同於近接的第1氮化物半導體膜或第2氮化物半導 體膜之膜厚。亦即’當多層膜層係由複數層第1氮化物半 導體膜及第2氮化物半導體膜所堆積而成時,用以夾住第 2氮化物半導體膜(第1氮化物半導體膜)的兩個第丨氮化 物丰導體膜(第2氮化物丰導體膜)的膜厚係不相同。 再者,於本發明之第I氮化物半導體元件中,該第1 氮化物半導體膜或第2氮化物半導體膜中至少有一方的 ΙΠ族疋素組成係不同於近接的第丨氮化物半導體膜或第2 氮化物半導體膜之同一 In族元素組成。亦即,當多層膜 層係由複數層第1氮化物半導體膜及第2氮化物半導體膜 所堆積而成時,用以夾住第2氮化物半導體膜(第^氮化 物半導體膜)的兩個第丨氮化物半導體膜(第2氮化物半導 體膜)的III族元素組成比係不相同。 再者,於本發明之第1氮化物半導體元件中,該η倒 多層模層雖可與活性層分離而設,但,為使輸出進一步提 升,其係鄰接於活性層者為佳。 再者,於本發明之第i氮化物半導趙元件中,該第i 氮化物半導禮膜與第2氣化物半導體膜係可未#雜質4 此,所謂的未捧雜質係指刻意地不捧入雜質狀態,例如對 於由鄰接之氮化物半導體層所擴散而混入的雜質而言,於 本發明中亦屬未摻雜質。又,因擴散而混入的雜質係會使 第9頁 ______ 37公犮 ---------lit. · ------ t ^---------^ f請先閲讀背面之ii音?事項再填罵本頁) 經濟部智慧財產局員工消費合作社印製 437103 A7 ------— B7______ 五、發明說明() 層内的雜質產生梯度。 再者’於本發明之第1氮化物半導體元件中,該第! 氮匕物半導體膜或第2氮化物半導體膜中的任一方係可摻 有11型雜質。也就是所謂的調變摻雜,藉由調變接雜即可 使輸出提升。作為n型雜質者係可如Si、Ge、Sn、s等的 第1v族 '或第VI族元素,其最好係以si、Gn來作為n 型雜質。 再者’於本發明之第1氮化物半導體元件中,該第1 氮化物半導體膜與第2氮化物丰導體膜十係可均摻有11型 雜質。在摻有η型雜質時,其雜質濃度係最好調整在 SxlO^cm3以下’而更佳者係調整在ixl〇2Vcm3以下。若 超過5 X 1 0-1 /cm3 ’則氮化物半導體層的結晶性將會變差, 反而使輸出下降。此對於調變摻雜質時的亦有相同情況。 又,於本發明之第1氮化物半導體元件中,該p侧區 域中的一氮化物半導體層係為P側多層膜層,而該p侧多 層膜層係由一含有A1之第3氮化物半導體膜、及一組成 係不同於該第3氮化物半導體膜的第4氮化物半導體膜所 堆積而成;而該第3氮化物半導體膜與第4氮化物半導體 膜中至少有一方的膜厚係在1〇〇埃以下。於本發明中,最 好該第3氮化物半導體膜的第4氮化物半導體膜之兩者的 膜厚係均在10 0埃以下,而最好係在7〇埃以下,更佳者 係最好在50埃以下。由於藉由將膜厚如上述般地變薄, 即可使多層膜層呈超晶格構造,進而使多層膜層的結晶性 變好,因此可提升輸出。 第10頁 紙获圪;s 一 ------------- I ,t·-------訂----— I —ί·^ (請先閱讀背面之注意事項再填寫本頁) 03 03 經濟部智慧財產局員工消費合作社印 A7 B7 五、發明說明() 又’於本發明之第丨氮化物半導體元件中,該第3氮 化物半導體膜係可由AlaGai-aN(0<aSl)所構成:而該第4 氮化物半導體膜係可由InbGai.bN(〇Sb<l,b<a)所構成,該 第4氮化物半導體膜最佳者係為GaN。 又’於本發明之第1氮化物半導體元件中,該第3氮 化物半導體膜或第4氮化物半導體膜中至少有一方的獏厚 係不同於近接的第3氮化物半導體膜或第4氮化物半導體 膜之膜厚。亦即’當多層膜層係由複數層第3氮化物半導 體膜及第4氮化物半導體膜所堆積而成時,用以夾住第3 氮化物半導體膜(第4氮化物半導體膜)的兩個第4氮化物 半導體膜(第3氮化物半導體膜)的膜厚係不相同。 又’於本發明之第1氮化物半導體元件中,該第3氮化 物半導體膜或第4氮化物半導體膜中至少有—方的111族 疋素组成係不同於近接的第3氮化物半導體膜或第4氮化 物半導體膜之同一 III族元素組成。亦即,當多層膜層係 由複數層第3氮化物半導體膜及第4氮化物半導體膜所堆 積而成時,用以夾住第3氮化物半導體膜(第4氮化物半 導體膜)的兩個第4氮化物半導體膜(第3氮化物半導體膜) 的1Π族元素組成比係不相同。 再者,於本發明之第1氮化物半導體元件中,該p側 多層膜層雖可與活性層分離而設,但,為使輸出進一步提 升’其係鄰接於活性層者為佳。 再者,於本發明之第1氮化物半導體元件中,該第3 氮化物半導體膜與第4氮化物半導體膜係可未摻雜質。當 第11頁 -.η .;^ί!] ^!· rg ------------------- (請先閱讀背面之注意事項再填寫本3 --------^---------轉 437103 經濟部智婪財產局員工消費合作社印製 A7 B7 五、發明說明() P側多層膜層係未摻雜質時,其膜厚係最好在〇」只m以 下。右其獏厚係比0 _ 1以m厚時,則活性層中將很難進行 正孔注入,因此會使發光輸出降低。又,有關未摻雜質之 定義係同於η側多層膜層。 再者’於本發明之第1氮化物半導體元件中,該第3 氮化物半導體膜或第4氮化物半導體膜中的任一方係摻有 Ρ型雜質。藉由調變摻雜即可使輸出提升。ρ型雜質者係 可如Mg、Zn ' Ca ' Be、cd等的週期表第Η族元素,其 最好係以Mg、Be來作為ρ型雜質。 再者,於本發明之第1氮化物半導體元件中,該第3 氮化物半導體膜與第4氮化物半導體,摸中係均摻有ρ型雜 質。在#有Ρ型雜質時’其雜質濃度係最好調整在 lxl〇:2/cm3以下,而更佳者係調整在5x】〇2〇/cm3以下。若 超過lxl 0 22/cm] ’則氮化物半導體層的結晶性將會變差, 反而使輸出下降。此對於調變摻雜質時的亦有相同情況。 本發明之第2〜第5氮化物半導體元件可藉由下述構 造來提升一具有多重量子井構造之活性層的氮化物半導 體元件的發光輸出’以及擴大氮化物半導體元件之應用製 品的適用範圍。 亦即’本發明之第2氮化物半導體元件係具有—活性 層’其中該活性層係介於一含有複數個氮化物半導體層之 η侧區域及一含有複數個氮化物半導體層之ρ側區域之 間’其特徵在於:該η側區域中至少有一個氮化物半導體 層係為η側第1多層膜層,而該η側第1多層膜層係至少 第12頁 〜 _ __ 紙,浪尺度適爪中附準(CKS)aTST:?!¥^1,¥^厂)—^ ----------------- -------------^ --------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 4371 03 A7 _____ B7_____ 五、發明說明() 由分別摻入不同濃度之η型雜質,且各自具有不同鍵隙能 量的2種氮化物半導體摸所堆積而成;該p側區域中至少 有一個氮化物半導體層係為P側多層膜覆蓋層,而該p側 多層膜覆蓋層係由分別接入不同濃度之P型雜質,且各自 具有不同鍵味能量的第3、第4氮化物半導體膜所堆積而 成;又,該活性層係為一由InaGai.aN(0^a<1)所形成的多 重量子井構造。 而,本發明之第3氮化物半導體元件係具有—活性 層’其中該活性層係介於一含有複數個氮化物半導體層之 η惻區域及一含有複數個氮化物半導體層之p侧區域之 間’其特徵在於:該n側區域中至少有一個氮化物半導體 屠係為η倒第丨多層膜層’而該η側第1多層膜層係至少 由分別摻入不同濃度之η型雜質,且具有相同組成的2種 氮化物半導體膜所堆積而成;該ρ侧區域中至少有—個氮 化物半導體層係為Ρ側多層膜覆蓋層,而該ρ側多層膜覆 蓋層係由分別摻入不同濃度之ρ型雜質,且各自具有不同 鍵隙能量的第3、第4氮化物半導體膜所堆積而成;又, 該活性層係為一由InaGa〗_aN(〇Sa<l)所形成的多重量子井 構造。 此外’於本發明之第2、第3氮化物半導體元件中, 琢第3氮化物半導體膜與第4氮化物半導體膜中係分別接 有不同漢度的P型雜質。或是摻有相同濃度的P型雜質。 又,本發明之第4氮化物半導體元件係具有一活性 屠’其中該活性層係介於一含有複數個氮化物半導體層之 ___ 第13頁 说尺,——— …一. - - - --- - - ---- * ------1 訂-丨II 丨丨—丨 (請先閱讀背面之注意事項再填寫本頁) 4371〇3 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明( n側區域及一含有複數個氮化物半導體層之p側區域之 間’其特徵在於…側區域中至少有一個氮化物半導體 層係為n側第1多層膜層,而該η側第1多層膜層係至少 由分別掺入不同濃度之,型雜質,且具有相同組成的:種 氛化物半導體膜所堆積而成;該Ρ惻區域中至少有一個氛 化物半導體層係為Ρ側單一膜覆蓋層,而肖ρ側單一膜覆 蓋層係由含有Ρ型雜質之AlbGai调〇如)所形成;又, 該活性層係為-由InaGauaN呢a<1)所形成的多重量子井 構造β 此外,於本發明之第3、第4氣化物半導體元件中, 这11 1則弟1多層膜層係可由分別掺入不同濃度之η型雜質 疋GaN所形成的2種氮化物半導體摸所堆積而成。 又,本發明《第5氮化物半導體元件係具有一活性 層,其中該活性層係介於—含有複數個氮化物半導體層之 η側區域及一含有複數個氮化物半導體層纟p側區域之 間’其特徵在H η侧區域中至少有-個氮化物半等體 層係為η側第1多層膜層,而該η側第1多層膜層係至少 由分別樓人不同濃度之η型雜質,且具有不同㈣能量的 種氮化物半導體膜所堆積而成;該ρ側區域中至少有一 個氮化物半導體層係為Ρ側單-膜覆蓋層,而該Ρ惻單一 膜覆蓋屠係由含有Ρ型雜質之AlbGai bN(〇加)所形成; 又,該法性層係為-自InaGai aN((^a<1)所形成的多重量 子丼構造。 再者,於本發明之帛2〜第5氮化物半導體元件中, ------------裝--------訂---------I (淆先閱讀背面之沒意事項再填寫本頁) ,ί··νAt ___ Β7 V. Description of the invention () It is best to be GaN. Furthermore, in the first nitride semiconductor device of the present invention, at least one of the first nitride semiconductor film or the second nitride semiconductor film has a film thickness different from that of the first nitride semiconductor film or the second nitride semiconductor film in close proximity. The thickness of the nitride semiconductor film. In other words, when a multilayer film layer is formed by stacking a plurality of first nitride semiconductor films and second nitride semiconductor films, two layers of the second nitride semiconductor film (first nitride semiconductor film) are sandwiched. The thickness of each nitride-rich conductor film (the second nitride-rich conductor film) is different. Furthermore, in the first nitride semiconductor element of the present invention, at least one of the first nitride semiconductor film or the second nitride semiconductor film has a group III element composition different from that of the adjacent nitride semiconductor film. Or the same In group element of the second nitride semiconductor film. That is, when the multilayer film layer is formed by stacking a plurality of layers of the first nitride semiconductor film and the second nitride semiconductor film, two layers of the second nitride semiconductor film (the third nitride semiconductor film) are sandwiched. The composition ratios of the group III elements of the first nitride semiconductor film (second nitride semiconductor film) are different. Furthermore, in the first nitride semiconductor device of the present invention, although the η-inverted multilayer mold layer can be provided separately from the active layer, it is preferable to further increase the output by adjoining the active layer. Furthermore, in the i-th nitride semiconductor semiconductor device of the present invention, the i-th nitride semiconductor film and the second vapor semiconductor film may be impurities # 4. Here, the so-called unsupported impurities means intentionally The impurity-free state is not undoped in the present invention, for example, impurities that are diffused and mixed by the adjacent nitride semiconductor layer. In addition, the impurities that are mixed in due to diffusion will cause the 9th page ______ 37 public --------- lit. · ------ t ^ --------- ^ f Please read the sound on the back? Please fill in this page to reprint this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 437103 A7 ---------- B7______ 5. Description of the invention () Impurities in the layer produce a gradient. Furthermore, in the first nitride semiconductor device of the present invention, the first! Either the nitrogen semiconductor film or the second nitride semiconductor film may be doped with an 11-type impurity. This is the so-called modulation doping, which can increase the output by modulation doping. The n-type impurity may be a Group 1v ′ or Group VI element such as Si, Ge, Sn, s, etc., and it is preferable to use si or Gn as the n-type impurity. Furthermore, in the first nitride semiconductor device of the present invention, both the first nitride semiconductor film and the second nitride-rich conductor film may be doped with an 11-type impurity. When doped with an n-type impurity, its impurity concentration is preferably adjusted to be less than SxlO ^ cm3 'and more preferably is adjusted to less than ixl02Vcm3. If it exceeds 5 X 1 0-1 / cm3 ', the crystallinity of the nitride semiconductor layer will be deteriorated, and the output will be reduced instead. This is also the same when the dopant is modulated. Furthermore, in the first nitride semiconductor device of the present invention, a nitride semiconductor layer in the p-side region is a P-side multilayer film layer, and the p-side multilayer film layer is made of a third nitride containing A1. The semiconductor film and a fourth nitride semiconductor film having a composition different from that of the third nitride semiconductor film are deposited; and at least one of the third nitride semiconductor film and the fourth nitride semiconductor film has a film thickness. It is below 100 Angstroms. In the present invention, the film thickness of both the third nitride semiconductor film and the fourth nitride semiconductor film is preferably 100 angstroms or less, and more preferably 70 angstroms or less. Fortunately below 50 Angstroms. By reducing the film thickness as described above, the multilayer film layer can have a superlattice structure, and the crystallinity of the multilayer film layer can be improved, so that the output can be improved. Page 10 paper won; s a ------------- I, t · ------- order ----— I —ί · ^ (Please read the first Note: Please fill in this page again) 03 03 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention () In the nitride semiconductor element of the present invention, the third nitride semiconductor film can be used by AlaGai -aN (0 < aSl): The fourth nitride semiconductor film system may be composed of InbGai.bN (0Sb < 1, b < a), and the fourth nitride semiconductor film is preferably GaN. In the first nitride semiconductor device of the present invention, at least one of the third nitride semiconductor film or the fourth nitride semiconductor film has a thickness different from that of the third nitride semiconductor film or the fourth nitrogen that is close to each other. The thickness of the compound semiconductor film. In other words, when the multilayer film layer is formed by stacking a plurality of third nitride semiconductor films and fourth nitride semiconductor films, two layers of the third nitride semiconductor film (fourth nitride semiconductor film) are sandwiched. The thicknesses of the fourth nitride semiconductor films (third nitride semiconductor films) are different. In the first nitride semiconductor device of the present invention, the third nitride semiconductor film or the fourth nitride semiconductor film has at least one of the group 111 halogen elements having a composition different from that of the adjacent third nitride semiconductor film. Or the same group III element composition of the fourth nitride semiconductor film. That is, when the multilayer film layer is formed by stacking a plurality of third nitride semiconductor films and fourth nitride semiconductor films, two layers of the third nitride semiconductor film (fourth nitride semiconductor film) are sandwiched. The composition ratios of the group 1II elements of the fourth nitride semiconductor films (third nitride semiconductor films) are different. Furthermore, in the first nitride semiconductor device of the present invention, the p-side multilayer film layer may be provided separately from the active layer, but it is preferable that it is adjacent to the active layer in order to further increase the output. Furthermore, in the first nitride semiconductor device of the present invention, the third nitride semiconductor film and the fourth nitride semiconductor film may be undoped. When page 11-.η.; ^ Ί!] ^! · Rg ------------------- (Please read the notes on the back before filling in this 3- ------ ^ --------- Transfer 437103 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention () When the P-side multilayer film is undoped, its The thickness of the film is preferably 0 m or less. When the thickness of the film is thicker than 0 -1 and m, it is difficult to perform positive hole injection in the active layer, which will reduce the luminous output. Moreover, the non-doped The definition of the impurity is the same as that of the η-side multilayer film. Furthermore, in the first nitride semiconductor device of the present invention, either one of the third nitride semiconductor film or the fourth nitride semiconductor film is doped with P. Type impurities. Output can be improved by modulating doping. Ρ type impurities can be group VIII elements of the periodic table, such as Mg, Zn 'Ca' Be, cd, etc., it is best to use Mg, Be as the p-type impurity. Furthermore, in the first nitride semiconductor device of the present invention, the third nitride semiconductor film and the fourth nitride semiconductor are both doped with a p-type impurity. When # P-type impurity is present 'The impurity concentration is best adjusted at lx l〇: 2 / cm3 or less, and more preferably, it is adjusted to 5x] 〇2〇 / cm3. If it exceeds lxl 0 22 / cm] ', the crystallinity of the nitride semiconductor layer will be deteriorated, and the output will be reduced instead. This is also the same when the dopant is modulated. The second to fifth nitride semiconductor elements of the present invention can improve the nitride semiconductor element having an active layer with a multiple quantum well structure by the following structure. "Light emission output" and expanding the applicable range of application products of nitride semiconductor devices. That is, "the second nitride semiconductor device of the present invention has an" active layer ", wherein the active layer is interposed between a plurality of nitride semiconductor layers. The n-side region and a p-side region containing a plurality of nitride semiconductor layers are characterized in that at least one nitride semiconductor layer in the n-side region is a first multilayer film layer on the n-side, and the n-side first 1 Multi-layer film system is at least page 12 ~ _ __ paper, wave scale suitable claw aTST:?! ¥ ^ 1, ¥ ^ factory) — ^ ------------ ----- ------------- ^ -------- Order --------- line (please read the notes on the back before filling Page) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 4371 03 A7 _____ B7_____ V. Description of the invention () Deposited by 2 kinds of nitride semiconductors doped with n-type impurities of different concentrations and each having different bond gap energy At least one nitride semiconductor layer in the p-side region is a P-side multilayer film cover layer, and the p-side multilayer film cover layer is respectively connected with P-type impurities of different concentrations and each has a different bond taste The third and fourth nitride semiconductor films of energy are deposited; and the active layer is a multiple quantum well structure formed by InaGai.aN (0 ^ a < 1). However, the third nitride semiconductor device of the present invention has an active layer, wherein the active layer is interposed between an η 恻 region containing a plurality of nitride semiconductor layers and a p-side region containing a plurality of nitride semiconductor layers. It is characterized in that at least one nitride semiconductor system in the n-side region is an η-th multi-layer film layer, and the η-side first multi-layer film system is at least doped with n-type impurities of different concentrations, respectively. And two nitride semiconductor films having the same composition are stacked; at least one nitride semiconductor layer in the ρ-side region is a P-side multilayer film cover layer, and the ρ-side multilayer film cover layer is doped separately. 3rd and 4th nitride semiconductor films with different concentrations of ρ-type impurities and each having a different bond gap energy are deposited; and the active layer is formed of InaGa 〖aN (〇Sa < l) Of multiple quantum wells. In addition, in the second and third nitride semiconductor devices of the present invention, P-type impurities having different degrees of contact are respectively connected to the third nitride semiconductor film and the fourth nitride semiconductor film. Or doped with P-type impurities at the same concentration. In addition, the fourth nitride semiconductor device of the present invention has an active layer, wherein the active layer is interposed between a nitride semiconductor layer and a plurality of nitride semiconductor layers. --------- * ------ 1 Order-丨 II 丨 丨-丨 (Please read the precautions on the back before filling out this page) 4371〇3 B7 Consumers ’Cooperatives, Bureau of Intellectual Property, Ministry of Economic Affairs Printing 5. Description of the invention (between the n-side region and a p-side region containing a plurality of nitride semiconductor layers' is characterized in that at least one nitride semiconductor layer in the side region is the n-side first multilayer film layer, The first multi-layer film layer on the η side is formed by at least doping impurities of different concentrations and having the same composition: stacked semiconductor semiconductor films; at least one of the semiconductor semiconductor layers in the PZ region Is a P-side single film cover layer, and the ρ-side single film cover layer is formed of AlbGai containing P-type impurities, such as); and, the active layer is-formed of InaGauaN? A < 1) Multiple quantum well structure β In addition, in the third and fourth gaseous semiconductors of the present invention, Element, a brother of the 11-based multilayer film 1 may be incorporated in each of different two kinds of nitride η-type impurity concentration of the formed GaN semiconductor piece goods are piled touch. In addition, the fifth nitride semiconductor device according to the present invention has an active layer, wherein the active layer is interposed between an n-side region containing a plurality of nitride semiconductor layers and a n-side region containing a plurality of nitride semiconductor layers. It is characterized by at least one nitride hemiisotope layer in the η-side region as the η-side first multilayer film layer, and the η-side first multilayer film layer is at least composed of η-type impurities of different concentrations. And at least one nitride semiconductor layer with different plutonium energy is deposited; at least one nitride semiconductor layer in the ρ-side region is a P-side single-film cover layer, and the P-single-film cover layer is composed of The P-type impurity is formed by AlbGai bN (0 plus); and the legal layer is a multiple quantum pseudo structure formed from InaGai aN ((^ a < 1). Furthermore, in the invention 2 ~ In the 5th nitride semiconductor device, ------------ install -------- order --------- I (confusion read the unintentional matters on the back before (Fill in this page), ί · ν

五、發明說明( 4371 〇3 經濟部智慧財產局員工消費合作社印刻*' 該η惻第1多層膜層與活性層之間 1叹有_ η側 多層膜層’其中該η惻第2多層膜層係由—含有&之一 氮化物半導體膜 '及一組成不同於該^氮化物半::1 的第2氮化物半導體膜所堆積而成。 植 又,於本發明之第2〜第5氮化物半導體元件中,兮 側第1多層膜層與基板側之間係設可有一含有η : η側接觸層。 又,於本發明之第2〜第5氮化物半爭禮元件中,該η 側接觸層係可形成於一未摻雜質之QaN層上。 w η 又’於本發明之第2〜第5氮化物半導體元件中,該 未摻雜質之GaN層係可形成於一由低溫成長之= 所形成的緩衝層上,且於上述p侧多層膜41覆蓋· 廣或是P侧單一覆蓋層上更可形成有—含有Mg<p型Z 質的ρ側GaN接觸層。 也就是說’本發明之第2〜第5氮化物半導體元件係 利用一位於η侧、由η型雜質濃度不同之2種以上氮化物 半導體膜所形成的η側第1多層膜層;以及利用— 1乂於p 倒、由第3及第4氮化物半導體膜所形成的ρ側多層膜声 蓋層’或是含有ρ型雜質、且由AlbGai_bN(〇Sby )所形成 的P側單一膜覆蓋層’來夾住具有多層量子井構造的發光 層’因此可以提升發光效率。 承上所述,藉由將具有特定組成或構造的複數個氮化 物半導體層加以組合’即可使多層量子井構造之活性層的 性能有效地發揮。 第151 'R Ρϋ (^NS)A ] Mi- C210 X ·Δ)7 i> ) %^--------訂---------線 (請先閱讀背面之沒意事項再填寫本頁) 4371 0 3 Λ7 .------______ 五、發明說明() 於本發明之第2〜第5氮化物半導體元件中’若該〇 側第1多層膜層與活性層之間設有一 η側第2多層膜層, 其中該η側第2多層膜層係由一含有Ιη之第1氣化物半 導體膜、及一組成不同於該第丨氮化物半導體膜的第2氮 化物半導體膜所堆積而成時,則可進一步提升發先效率氣 同時亦可使Vf下降。 又,於本發明之第2〜第5氮化物半導體元件中’若 該η侧第1多層膜層與基板側之間係設有一含有n型雜質 的η侧接觸層時,則可進—步提升發光輸出’同時亦可使 Vf下降。 又,於本發明之第2〜第5氮化物半導體元件中,若 該η侧接觸層係形成於一未摻雜質之GaN層上時,則可押 致一結晶性良好的未摻雜質之〇aN層,因此,可使用以形 成η電極的η側接觸層之結晶性變好,同時,由於形成於 該η側接觸層之活性層等的其他氮化物半導體層之結晶性 亦會變好,所以可使發光輸出進—步提升。 又,於本發明之第2〜第5氮化物半導體元件中’若 菘未摻雜質之GaN層係形成於一由低溫成長之GadA1| dM〇<cUi)所形成的緩衝層上時,則可使未摻雜質之 層之結晶性變好,因此,可使發光輸出進一步提升,此外, 若於上述P側多層膜覆蓋層或是P侧單一覆蓋層上係形成 有—含有Mg之p型雜質的p侧GaN接觸層時,則可獲致 良好的p型導電性’因此可使形成於該p側GaN接觸層上 的P電極與該p惻GaN接觸層之間具良好的歐姆接觸,故 _________________ 第16 頁 ,卜 1¾ 厂、-----1—- — ---------------------—_____ -v.. , .. E Hr, .,) — (請先閱讀背面之注意事項再填寫本頁> 裝------ 訂---------線 經濟部智韃財產局員工消費合作社印製 4371 03 A7 Β7 經濟部智慧財產局員工消費合作社印製 五、發明說明() 可以進一步提升發光輸出。 另外,本發明之第6氮化物半導體元件係使一含有ίη 的Ρ型接觸層具有超晶格構造,據以形成一缺陷較少 '結 晶性較诖的ρ型接觸層;亦即本發明之第6氮化物半導體 元件係提供一種可以較低的動作電壓來獲致較高且安定 之輸出的氮化物半導體元件。 也就是說,本發明之第6氮化物半導體元件係具有一 活性層,其中該活性層係介於一由複數個氮化物半導體層 所構成之η側區域、及一含有ρ型接觸層且具有複數個氮 化物半導體層之ρ側區域之間,其特徵在於:該ρ型接觸 層係具有一由组成相異之第〗及第2氮化物半導體膜所依 序堆積而成的超晶格構造,且上⑨2㈤氮化物半導體摸 中,至少其中之第1氮化物丰導體膜係含有匕。 據此,即可縮小"電極與p型接觸層之間的接觸電 阻,因而可以-安定、低動作電壓來獲致—較高的輸出。 此外’於本發明之第6氮化物半導體元件中,在該第 ^氛化物半導體膜與第2氮化物半導體膜之間係可形成有 一组成係從該第1氮化物半導體 肢媒之組成連續變化到該第 I化物半導體膜之组成的组成梯度層。 又,於本發明之第6氮化物半導體元件中,卜 化物半導體膜與第2氮化物半 " 虱 哪千译體膜係可分別含有In, 中該第1氮化物半導體膜中的ln 、 1 含有里係大於該第2 g 化物半導體膜中的[η本有香 有量1此,即可ί吏Ρ型接觸層 的電阻更為降低。 Ρ 土饮网臂 -------------- 第17頁 .:後”丨 ------------^--------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 〇3 AT B7 經濟部智慧財產局員工消費合作社印5取 五、發明說明()V. Description of the invention (4371 〇3 Imprinted by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs * 'There is a _ η side multilayer film layer' between the η 恻 first multilayer film layer and the active layer, where the η 恻 second multilayer film The layer system is made up of a nitride semiconductor film containing & and a second nitride semiconductor film having a composition different from that of the nitride nitride half :: 1. 5 In the nitride semiconductor device, a contact layer containing η: η side may be provided between the first multilayer film layer on the Xi side and the substrate side. In addition, in the second to fifth nitride semiconductor devices of the present invention, The η side contact layer may be formed on an undoped QaN layer. W η is also formed in the second to fifth nitride semiconductor devices of the present invention, and the undoped GaN layer may be formed on A buffer layer formed by low-temperature growth can be formed on the p-side multilayer film 41 or on the P-side single cover layer—a ρ-side GaN contact layer containing Mg < p-type Z-quality In other words, the second to fifth nitride semiconductor devices of the present invention use an n-type The η-side first multilayer film formed by two or more different nitride semiconductor films; and the ρ-side multilayer film acoustic cover layer formed by using -1 p-side-down and 3rd and 4th nitride semiconductor films' Or a P-side single film cover layer 'containing p-type impurities and formed of AlbGai_bN (〇Sby) to sandwich a light-emitting layer having a multi-layer quantum well structure can improve the light-emitting efficiency. As mentioned above, by A combination of a plurality of nitride semiconductor layers having a specific composition or structure can effectively perform the performance of an active layer of a multilayer quantum well structure. 151'R Ρϋ (^ NS) A] Mi-C210 X · Δ) 7 i >)% ^ -------- Order --------- line (please read the unintentional matter on the back before filling this page) 4371 0 3 Λ7 .------______ 5. Description of the invention () In the second to fifth nitride semiconductor elements of the present invention, 'if the 0-side first multilayer film layer and the active layer are provided with an n-side second multilayer film layer, wherein the n-side first 2 The multilayer film layer is composed of a first gaseous semiconductor film containing Ιη and a second nitride half having a composition different from that of the first nitride semiconductor film. When the deposited film formed, can be made to further enhance the efficiency of gas while also make Vf lowered. In addition, in the second to fifth nitride semiconductor devices of the present invention, if an η-side contact layer containing n-type impurities is provided between the η-side first multilayer film layer and the substrate side, it may be further advanced. Increasing the light emission output 'can also decrease Vf. Furthermore, in the second to fifth nitride semiconductor devices of the present invention, if the n-side contact layer is formed on an undoped GaN layer, an undoped material with good crystallinity can be formed. 〇aN layer. Therefore, the crystallinity of the n-side contact layer that can be used to form the n-electrode becomes better. At the same time, the crystallinity of other nitride semiconductor layers such as the active layer formed on the n-side contact layer also changes. OK, so the light output can be further improved. Further, in the second to fifth nitride semiconductor devices of the present invention, the 'what's undoped GaN layer system is formed on a buffer layer formed of GadA1 | dM0 < cUi) grown at a low temperature, Then the crystallinity of the undoped layer can be improved, so that the luminous output can be further improved. In addition, if it is formed on the P-side multilayer film cover layer or the P-side single cover layer—the one containing Mg When the p-side GaN contact layer of the p-type impurity, good p-type conductivity can be obtained. Therefore, a good ohmic contact can be made between the P electrode formed on the p-side GaN contact layer and the p 恻 GaN contact layer. , So _________________ page 16, Bu 1¾ factory, ----- 1—- — ---------------------—_____ -v ..,. . E Hr,.,) — (Please read the precautions on the back before filling out this page> -------- Order --------- Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 4371 03 A7 Β7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the invention () can further improve the luminous output. In addition, the sixth nitride semiconductor device of the present invention uses a The type contact layer has a superlattice structure, so as to form a p-type contact layer with less defects and a higher degree of crystallinity; that is, the sixth nitride semiconductor element system of the present invention provides a lower operating voltage to achieve A nitride semiconductor device having a high and stable output. That is, the sixth nitride semiconductor device of the present invention has an active layer, wherein the active layer is located on the η side composed of a plurality of nitride semiconductor layers. Between a region and a p-side region containing a p-type contact layer and having a plurality of nitride semiconductor layers, wherein the p-type contact layer has a first and a second nitride semiconductor film having different compositions The superlattice structure is sequentially stacked, and at least one of the first nitride-rich conductor films in the ⑨2㈤ nitride semiconductor is contained. According to this, the " electrode and p-type contact layer can be reduced. The contact resistance between the two electrodes can be-stable, low operating voltage to achieve-higher output. In addition, in the sixth nitride semiconductor device of the present invention, the third nitride semiconductor film and the second nitride A composition gradient layer that continuously changes the composition of the first nitride semiconductor substrate to the composition of the first nitride semiconductor film may be formed between the semiconductor films. Also, the sixth nitride semiconductor device of the present invention may be formed. In the compound semiconductor film and the second nitride semi-transistor film system, In may be included in the first nitride semiconductor film, and ln and 1 in the first nitride semiconductor film contain a larger amount than the second g semiconductor film. In [η 本 有 香 有 量 1 , the resistance of the P-type contact layer is further reduced. Ρ 土 喝 网 臂 -------------- Page 17: "" ------------ ^ -------- Order --------- line (Please read the precautions on the back before filling this page) 〇3 AT B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs

又’於本發明之第6氮化物半導體元件中,在該第1 氮化物半導體摸與第2氮化物半導體膜中之一層係為一含 有In的層時’則該第1氮化物半導體膜係可由InxGai.xN 所構成;而該第2氮化物半導體膜係可由AlyGahNiOSyd) 所構成。 再者’於本發明之第6氮化物半導體元件中,該第i 氣化物半導體膜與第2氮化物半導體膜中的一方係可摻有 P型雜質’而另一方係未摻有p型雜質c 此外’於本發明之第6氮化物半導體元件中,當第1 及第2氮化物半導體膜兩方均有摻雜質時,則其中的一方 I系摻有;辰度在lxl〇19/cm3〜5xl〇21/cm3之間的p型雜質; 而另一方所摻濃度係在lxl〇!S/cm3〜 5xl〇[9/cm3之間,且 其接入量係比前者之氮化物半導體膜所摻之p型雜質還 少。 此外’於本發明之第6氮化物半導體元件中1該第1 氮化物半導體膜係可形成於最表面,且形成於最表面的第 1氮化物半導體膜係鄰接有一 p侧電極。此時,上述第t 氮化物半導體膜的P型雜質係最好大於第2氮化物半導體 膜的P型雜質。 又,於本發明之第6氮化物半導體元件中,該活性層 與P型接觸層之間係可設有一由含有八丨之氮化物半導體 所形成的P型覆蓋層。 就本發明之第6氮化物半導體元件而言,該P型覆蓋 層係具有由一以Α1χ〇3ι·χΝ(〇<χ<1)所構成的層、以及—以 第18頁 (請先閱讀背面之注意事項再填寫本頁} 裝---- 訂---------線 Ή- 4371 03 Λ7 B7 五、發明說明( InyGaUyN(0< 構造。 1)所構成的層相互交替堆積而成的超晶格 承上所述,由於本發明之第6亂化柳干争體疋什保包 含有一該p型接觸層’該P型接觸層係具有一由組成相異 之第1及第2氮化物半導體膜所依序堆積而成的超晶格構 造,且上述2個氮化物半導體膜中’至少其中之第1氤化 物半導體膜係含有In,因此’可形成一缺陷較少、結晶性 佳的p型接觸層,同時可降低ρ型接觸層與p側電極間的 接觸電阻,故可以一安定、低動作電壓來獲致一較高的輸 出。 本發明之第7、第8氮化物半導體元件可藉由下述構 造來提升一具有多重量子井構造之活性層的氮化物半導 體元件的發光輸出,以及擴大氮化物半導體元件之應用製 品的適用範圍。 亦即,本發明之第7氮化物半導體元件係具有一活性 層,其中該活性層係介於一含有複數個氮化物半導體層之 η側區域及一含有複數個氮化物半導體層之ρ側區域之 間,其特徵在於··該η側區域中至少有一個氮化物半導體 層係為η側第!多層膜層,而該η側第i多層膜層係以_ 由未摻雜質之氮化物半導體膜所形成之下層、—由摻入η =雜質之氮化物半導體膜所形成之中間層、及—由未捧雜 :…物半導體膜所形成之上層等至”層依岸堆積而 層膜:區域中至少有一個氮化物半導體層係為Ρ側多 層膜覆兔層,而該?側多層膜覆蓋層係由分別換入不同濃 職紳 11---------- --------訂·--— I--- f請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 第19頁 一,_____ ( -1^ 2s'; :Λ ίί > 4371 〇3 A7 B7 五、發明說明() 度之P型雜質’且各自具有不同鍵隙能量的第3、第4氬 化物丰導體膜所堆積而成:又,該活性層係為一由 IbGahNtOQO所形成的多重量子井構造。 此外’於本發明之第7氣化物半導體元件中,該第3 氮化物半導體膜^㈣雜質漢度係可不㈣第4氤化物 半導體膜中的P型雜質濃度,或是該第3氮化物半導體膜 中的P型雜質濃度係可同於第4氮化物半導體膜中的^ 雜質濃度。 & 另外,本發明之第8氮化物半導體元件係具有—活性 廣,其中該活性層係介於一含有複數個氣化物半導體層之 η側區域及一含有複數個氮化物半導體層之p側區域之 間’其特徵在於:冑η側區域中至少有—個氮化物半擎體 層係為η側第1多層膜層’而該η側第】多層膜層係以— 由未摻雜質之氮化物半導體膜所形成之下層、一由摻入n 型雜質<氮化物半導體膜所形成之中間層、及一由未摻雜 質之氮化物半導體膜所形成之上層等至少3層依序堆積而 成’涊P側區域中至少有一個氮化物丰導體層係為p惻單 一膜覆蓋廣’而該P侧簞一膜覆蓋層係由含有P型雜質之 AlbGai-bN(t^bU)所形成;又,該活性層係為一由InaGau aN(〇Sa<:I)所形成的多重量子丼構造。 再者’於本發明之第7、第8氮化物半導體元件中, 遠Π側第i多層膜層係以一膜厚為1 〇〇〜丨〇〇〇〇埃,且由 未換雜質之氮化物半導體膜所形成之下層、一膜厚為 〜1000埃’且由摻入η型雜質之氮化物半導體膜所形成之 卜固 V.㈣奶(2i〇 y V97 (請先閱讀背面之注意事項再填寫本頁) 裝--------訂------線 經濟部智慧財產局員工消費合作社印絜 第20頁 4371 03 Α7 Β7 經濟部智慧財產局員Η消費合作社印製 五、發明說明( 中間層25〜⑽G埃,且由未換雜質之氣化 物半導體膜所形成之上層所構成。 又,於本發明之第7、第8氮化物半導體元件中,該n 側第1多層膜屠與活性層之間係更可設有-n侧第2多層 膜層’其中該n側第2多層膜層係由一含有In之第!氮 化物半導體膜、及-組成不同於該第!氮化物半導體膜的 第2氮化物半導體膜所堆積而成。 又’於本發明之第7'第8氮化物半導體元件中,該n 側第1多層膜層與基板之間係可設有一含有η型雜質之η 側接觸層。 又於本發明之第7、第8氮化物半導體元件中’該η 側接觸層係形成於-未摻雜質之㈣層上者為佳。 此外,於本發明之第7、第8氮化物半導體元件中, 該未摻雜質之GaN層係可形成於—由低溫成長之叫从-㈣娜斤形成的緩衝層上,且於上述p側多層膜覆蓋 層或是P側單-覆蓋層上更形成有一含有Mg《p型雜質 的p側GaN接觸層。 也.说疋豸本發明之第7、第8氣化物半導體元件係 利用一位& n惻區域、由—未換雜質之下層一摻入^型 雜質之中間層、及一未摻雜質之上層所形成的η側第!多 層膜廣;以及利用一位於",卜由第3及第4氮化物半導 體膜所形成的㈠則多層模復蓋層,或是含有ρ型雜質、且 由AUGahNCO^l)所形成的口侧單一膜覆蓋層,來夫住 具有多唐量子井構造的活性層,因此可以提升發光效率, 第21肓 (Ο;!:·;)/,; r-i〇^c 公 I n n .^1 n t. · n n n n n —1 一OJ (^1 I— n II. I n I (請先閱讀背面之注意事項再填寫本頁) 4371 03 Λ7 B7 經濟部智慧財產局員工消費合作社印製 (c:n:s 五、發明説明 同時f獲致一發光輸出良好、且靜電耐壓良好的氮化物半 導體元件。 再者’由於本發明係將構成η側第1多層膜層的各層 膜厚設在特定範圍的組合,因此,可使發光輸出良好、且 可使靜電耐壓變好。 片又’於本發明中,所謂的未摻雜質係指刻意地不摻入 =質狀態’而即使對^由鄰接之氮化物半導體層所擴散而 的雜質’或是因原料或裝置所產生的污染物而混入 質之居 ~ β而言’於本發明中亦屬未摻雜質的層。但,因擴散 叱入的雜質係會使層内的雜質產生梯度。 '卜?尤與多重量予井構造之活性層相組合者而言, 其係亦可以下述之其他氮化物半導體層。 .於本發明中,若上述η側第1多層膜層與活性層之間 ί系 ''由一含有In之第1氮化物半導體膜,及一組成 積,弟見化物半導體膜的第2氮化物半導體膜所堆 率5 11倒第2多層膜層時,則可進一步提升發光效 同時亦可使顒向電壓(以下以Vf表示)下降’進而提升 發光效率。 再者’於本發明中,若該η惻第1多層膜層與基板之 間係設有—本古 ; D哥n型雜質之η側接觸層時,則可提升發光 效率,亦可使Vf 丁降。 又 r ' ,於本發明中’若該η側接觸層係形成於一未摻雜 資之GaN廢卜ni ' 〇aN 增上時,則可獲致一結晶性良好的未摻雜質之 因此’可使用以形成η電極的η側接觸層之結晶 笫22頁 (:·Μ0 公楚) -------------- 装--------訂---------線 1 ί請先閱讀背面之注音?事項再填寫本頁> 經濟部智慧財產局員工消f合作社印製 :、4371 03 A7 *-----------B7___ 五、發明說明() 性變好,同時,由於形成於該n惻接觸層之活性層等的其 他氮化物半導體層之結晶性亦會變好,所以可使發光輸出 進一步提升。 此外,於本發明中,若該未摻雜質之QaN層係形成於 由低溫成長之〇3(1八11.(1>1(〇<(^1)所形成的緩衝層上時, 則可使未摻雜質之GaN層之結晶性變好,同時亦可使n 側接觸層之結晶性變好,因此,可使發光輸出進一步提 升,此外,若於上述p側多層膜覆蓋層或是p側單一覆蓋 層上係形成有一含有Mg之p型雜質的p側GaN接觸層 時,則可獲致良好的p型導電性,因此可使形成於該p側 GaN接觸層上的p電極與該p側οaN接觸層之間具良好的 歐姆接觸’故可以進一步提升發光輸出。 另外’就本發明之第9〜11氮化物半導體元件而言, 其η側區域與p側區域中係分別具有多層膜層,藉由^側 區域之多層膜層與ρ側區域之多層膜層的組合、或是層數 的非對稱關係1即可增高發光輸出及靜電耐壓,並且可使 ν f降低,進而使其擴大對各種應用製品的適用範圍。 亦即’本發明之第9氮化物半導體元件係具有一活性 層’其中該活性層係介於一含有複數個氮化物半導體層之 η侧區域及一含有複數個氮化物半導體層之ρ惻區域之 間,其特徵在於:該η側區域中至少有一個氮化物半導體 層係為一由複數個氮化物半導體膜所堆積而成的η型多層 膜層;該ρ侧區域中至少有一個氮化物半導體層係為一由 複數個氮化物半導體膜所堆積而成的ρ型多層膜層;且 箫23頁 ---------I--¾--------訂.ίι—i - <請先閱讀背面之;£意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 • 4371 03 A7 • ----------B7__ 五、發明說明() 構成該11¾多層膜層的組成係不同於構成該p型多層膜層 的組成。 此外,本發明之第1 0氮化物半導體元件係具有一活 性層,其中孩活性層係介於—含有複數個氮化物半導體層 I n侧區域及—含有複數個気化物半導體層之P側區域之 門其特徵在於.該n侧區域中至少有一個氮化物半導體 層知’為—由複數個氮化物半導體膜所堆積而成的η型多層 膜層:該Ρ側區域中至少有—個氮化物半導體層係為一由 複數個氮化物半導體膜所堆積而成的ρ型多層膜層;且 構成該η型多層膜層之氮化物半導體膜的堆積層數係不同 於構成該ρ型多層膜層之氮化物半導體膜的堆積層數。 另外’本發明之第u氮化物半導體元件係具有一活 性層’其中該活性層係介於一含有複數個氮化物半導體層 之η側區域及一含有複數個氮化物半導體層之ρ側區域之 間’其特徵在於:該η側區域中至少有一個氮化物半導體 層係為一由複數個氮化物半導體膜所堆積而成的η型多層 膜廣:該ρ側區域中至少有一個氮化物半導體層係為一由 複數個氮化物半導體膜所堆積而成的ρ型多層膜層;且 構成該η型多層膜層的组成係不同於構成該ρ型多層膜層 的组成,並且構成該η型多層膜層之氮化物半導體膜的堆 積層數係不同於構成該Ρ型多層膜層之氮化物半導體膜的 堆積層數。 於本發明之第9〜11氮化物半導體元件中,構成該ρ 型多層膜層之氮化物半導體膜的堆積層數係少於構成該η 第24頁 I 1 -·—· —一 . . .. ·»—.— 4_ · . - , > , ****** - I I I - - , -丨 I | - I ·,· - - - 家七:芈(CNS)A.i 仗格(;仙 Χ29Γ 公:V ) --—IIIJIIII— 裝.I I I II 1 I 訂 --- - - ---I I {請先閱讀背面之生意事項再填寫本頁) Λ7 B7 437103 -- ----—^ - 五'發明說明() 型多層膜層之氮化物半導體膜的堆積層數者為佳3 又,於本發明之第9〜1 1氮化物半導體元件中,該n 型多層膜層係含有A1zGai.zN(0:iz<l)、及inpGa卜卩1^(0<?<;1) 者為佳;而該P型多層膜層係含有AlxGa|.xN(0<x<l)、及 為佳。 又,於本發明之第9〜11氮化物半導體元件中,該p 型多層膜層與(或)η型多層膜層係以調變摻雜的方式形成 者為佳。 也就是說,由於本發明之第9〜1丨氮化物半導體元件 係分別形成一 η型及ρ型、且組成及(或)層數不同的^型 多層膜層及Ρ型多層膜層,據以將上述活性層夾住,同時, 元件構造中之活性層附近的層構造係予以特定,因此,可 提供一使發光輸出提升、使vf下降’且具有良好靜電耐 壓的氮化物半導體元件。 雖然量子井構造的活性層係隱藏有提升發光輸出的 可at性’但’對於習知的元件而言,欲充分發探量子丼構 造的可能性實有其困難。 對此’本案發明人為充分發揮量子井構造之活性層的 f ^因此進行各種檢討,其結果顯示係可在相鄰活性層 或圪接於浩性層處分別形成一組成不同或層數不同的n型 層膜層與P型多|膜層,藉此,即可使活性廣之性能充 而達到發光輸出的提升,同時,亦可達到使Vf 下降、以及靜電对壓提升。 上迷理由雖不是很肯定*但,其可能係由於多層膜而 第25貫 i n K H ίι n n n n ί I · n n 1 n *^i -^ϋ 訂---------線 ί锖先間讀背面之;it事項再填寫本頁;> 經濟部智慧財產局員工消費合作社印製 4371 03In the sixth nitride semiconductor device of the present invention, when one of the first nitride semiconductor and the second nitride semiconductor film is a layer containing In, the first nitride semiconductor film system It can be composed of InxGai.xN; and the second nitride semiconductor film can be composed of AlyGahNiOSyd). Furthermore, in the sixth nitride semiconductor device of the present invention, one of the i-th vapor semiconductor film and the second nitride semiconductor film may be doped with a P-type impurity and the other is not doped with a p-type impurity. c In addition, in the sixth nitride semiconductor device of the present invention, when both the first and second nitride semiconductor films have a dopant, one of them is doped with I; the degree is lxl019 / cm3 ~ 5xl021 / cm3 p-type impurity; the other side is doped at a concentration of lxl0! S / cm3 ~ 5xl0 [9 / cm3, and its access amount is higher than the former nitride semiconductor The film is also doped with less p-type impurities. In the sixth nitride semiconductor device of the present invention, the first nitride semiconductor film system may be formed on the outermost surface, and the first nitride semiconductor film system formed on the outermost surface is adjacent to a p-side electrode. In this case, the p-type impurity of the t-th nitride semiconductor film is preferably larger than the P-type impurity of the second nitride semiconductor film. Further, in the sixth nitride semiconductor device of the present invention, a P-type cover layer made of a nitride semiconductor containing 八 may be provided between the active layer and the P-type contact layer. With regard to the sixth nitride semiconductor device of the present invention, the P-type cladding layer has a layer composed of A1 × 〇3ι · χΝ (〇 < χ < 1), and-on page 18 (please first Read the notes on the back and fill in this page again} Assembling ---- ordering --------- line Ή- 4371 03 Λ7 B7 V. Description of the invention (InyGaUyN (0 < structure. 1) The layers formed by each other As described above, the superlattice stacked alternately, because the sixth messenger willow in the present invention includes a p-type contact layer, and the p-type contact layer has a first component having a different composition. The superlattice structure in which the first and second nitride semiconductor films are sequentially stacked, and 'at least one of the first halide semiconductor films contains In in the two nitride semiconductor films, so that a defect may be formed. The p-type contact layer with less and good crystallinity can reduce the contact resistance between the p-type contact layer and the p-side electrode, so that a stable and low operating voltage can be used to achieve a higher output. 8Nitride semiconductor devices can be used to enhance the nitride of an active layer with a multiple quantum well structure by the following structure The light-emitting output of the semiconductor element and the application range of the application product of the nitride semiconductor element are enlarged. That is, the seventh nitride semiconductor element of the present invention has an active layer, wherein the active layer is interposed between a plurality of nitrides. Between the n-side region of the semiconductor layer and a p-side region containing a plurality of nitride semiconductor layers, it is characterized in that at least one nitride semiconductor layer in the n-side region is the n-th! Multilayer film layer, and The η-side i-th multilayer film layer consists of an underlayer formed of an undoped nitride semiconductor film, an intermediate layer formed of a nitride semiconductor film doped with η = impurity, and an unmade impurity : ... the upper layer formed by the bio-semiconductor film waits until "layers are piled up on the shore and the layer film: at least one nitride semiconductor layer in the area is a P-side multilayer film covering the rabbit layer, and the? -Side multilayer film covering layer consists of (Change into different professional gentry 11 ---------- -------- Order ----- I --- f Please read the notes on the back before filling this page) Wisdom of the Ministry of Economic Affairs Printed by the Employees 'Cooperatives of the Property Bureau Page 19 First, _____ (-1 ^ 2s' ;: Λ ίί > 4371 〇3 A7 B7 V. Explanation of the invention () P-type impurities' and 3rd and 4th argon-rich conductor films with different bond gap energies are stacked: again, the activity The layer system is a multiple quantum well structure formed of IbGahNtOQO. In addition, in the seventh gaseous semiconductor device of the present invention, the third nitride semiconductor film may be included in the fourth semiconductor semiconductor film without the impurity impurity. The P-type impurity concentration in the third nitride semiconductor film or the P-type impurity concentration in the third nitride semiconductor film may be the same as the ^ impurity concentration in the fourth nitride semiconductor film. In addition, the eighth nitride semiconductor device of the present invention It has a wide activity, wherein the active layer is between an n-side region containing a plurality of gaseous semiconductor layers and a p-side region containing a plurality of nitride semiconductor layers. It is characterized in that: At least one nitride semiconductor layer is the η-side first multilayer film layer, and the η-side] multilayer film layer is formed by an underlayer formed of an undoped nitride semiconductor film, n-type impurity < nitride semiconductor The intermediate layer formed by the film and an upper layer formed by an undoped nitride semiconductor film are sequentially stacked. At least one nitride-rich conductor layer in the P-side region is p 恻. A single film covers a wide area, and the P-side film covering layer is formed of AlbGai-bN (t ^ bU) containing P-type impurities; and the active layer is formed of InaGau aN (〇Sa <: I) The resulting multiple quantum plutonium structure. Furthermore, in the seventh and eighth nitride semiconductor devices of the present invention, the i-th multilayer film layer on the far side is formed with a film thickness of 100-1000 Angstroms, and the nitrogen is not replaced by impurities. The lower layer formed by a compound semiconductor film, a film thickness of ~ 1000 Angstrom 'and formed by a nitride semiconductor film doped with n-type impurities. V. Milk (2i〇y V97 (Please read the precautions on the back first) (Fill in this page again.) Install -------- Order ------ Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Page 20 4371 03 Α7 Β7 Printed by the Consumers’ Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 2. Description of the invention (Intermediate layer 25 to ⑽G Angstroms, and composed of an upper layer formed by a vaporized semiconductor film without changing impurities. In the seventh and eighth nitride semiconductor devices of the present invention, the n-side first Between the multilayer film and the active layer, a -n-side second multilayer film layer may be further provided, wherein the n-side second multilayer film layer is composed of an In-containing! Nitride semiconductor film, and the composition is different from the No.! The second nitride semiconductor film is deposited on the nitride semiconductor film. It is also referred to as the seventh and eighth nitride of the present invention. In the semiconductor device, an n-side contact layer containing an n-type impurity may be provided between the n-side first multilayer film layer and the substrate. In the seventh and eighth nitride semiconductor devices of the present invention, the n-side contact is provided. It is preferable that the layer system is formed on an undoped hafnium layer. In addition, in the seventh and eighth nitride semiconductor devices of the present invention, the undoped GaN layer system can be formed on-grown at a low temperature. It is called a p-side GaN contact layer containing Mg "p-type impurities on the buffer layer formed by -Sonaquin, and on the p-side multilayer film cover layer or P-side single-cover layer. Also said 7The seventh and eighth gaseous semiconductor devices of the present invention use a one-bit & n 恻 region, an intermediate layer doped with ^ -type impurities, a lower layer of unexchanged impurities, and an upper layer of undoped impurities. The η side is formed! The multi-layer film is wide; and a multi-layer mold cover layer formed by the third and fourth nitride semiconductor films is used, or it contains p-type impurities and is made of AUGahNCO ^ l) The formed single-layer coating layer on the mouth side is used to hold the active layer with a multi-tangent quantum well structure. Can improve luminous efficiency, the first 21 肓 (Ο;!: ·;) / ,; ri〇 ^ c public I nn. ^ 1 n t. · Nnnnn —1-OJ (^ 1 I— n II. I n I ( (Please read the precautions on the back before filling this page) 4371 03 Λ7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs (c: n: s) 5. Description of the invention At the same time, a light emitting output with good static voltage resistance is obtained. Nitride semiconductor element. Furthermore, since the present invention is a combination in which the film thickness of each layer constituting the first multilayer film layer on the η side is set in a specific range, the light emission output can be improved, and the electrostatic withstand voltage can be improved. In the present invention, the so-called undoped substance means that the impurity is intentionally not doped in the state of “quality”, even if the impurity diffused from the adjacent nitride semiconductor layer is generated by the raw material or the device. In the present invention, β is also an un-doped layer. However, the impurity system incorporated by diffusion causes a gradient of impurities in the layer. 'Bu? In particular, in combination with an active layer having a multi-weight pre-well structure, it may be another nitride semiconductor layer described below. In the present invention, if the first multilayer film layer on the η side and the active layer are formed by a first nitride semiconductor film containing In and a composition product, the second nitrogen of the compound semiconductor film is seen. When the stacking ratio of the compound semiconductor film is 5 11 down to the second multilayer film layer, the luminous efficiency can be further improved and the forward voltage (hereinafter referred to as Vf) can be reduced, thereby improving the luminous efficiency. Furthermore, in the present invention, if the η 恻 first multilayer film layer is provided between the substrate and the substrate—Bengu; when the η-side contact layer of the n-type impurity is D, the luminous efficiency can be improved, and Vf can also be increased. Ding Jiang. Also r ', in the present invention,' if the η-side contact layer is formed on an undoped GaN wafer, Ni '〇aN, an un-doped material with good crystallinity can be obtained.' Crystals that can be used to form the η-side contact layer of the η electrode 页 Page 22 (: · M0 公 楚) -------------- Equipment -------- Order --- ------ Line 1 Please read the Zhuyin on the back first? Please fill in this page again for the items > Printed by the staff of the Intellectual Property Bureau of the Ministry of Economic Affairs, Co-operative Society :, 4371 03 A7 * ----------- B7___ V. The description of the invention () becomes better, and at the same time, due to the formation The crystallinity of other nitride semiconductor layers such as the active layer of the n 恻 contact layer will also be improved, so that the light emission output can be further improved. In addition, in the present invention, if the undoped QaN layer is formed on a buffer layer formed by a low-temperature-growth θ3 (18 11.1 (1 > 1 (0 < (1)), The crystallinity of the undoped GaN layer can be improved, and at the same time, the crystallinity of the n-side contact layer can be improved. Therefore, the light-emitting output can be further improved. Or, when a p-side GaN contact layer containing a p-type impurity containing Mg is formed on the p-side single cladding layer, good p-type conductivity can be obtained, so the p-electrode formed on the p-side GaN contact layer can be obtained. There is a good ohmic contact with the p-side οaN contact layer ', so the light emission output can be further improved. In addition, in the ninth to eleventh nitride semiconductor devices of the present invention, the n-side region and the p-side region are different. With multi-layered film layers, the combination of the multi-layered film layers in the ^ side region and the multi-layered film layers in the ρ-side region, or an asymmetric relationship between the number of layers 1 can increase the light output and the electrostatic withstand voltage, and can reduce ν f , So that it can expand the scope of application of various application products. That is, the ninth of the present invention The semiconductor device has an active layer, wherein the active layer is interposed between an n-side region containing a plurality of nitride semiconductor layers and a p 恻 region containing a plurality of nitride semiconductor layers, characterized in that the η At least one nitride semiconductor layer in the side region is an η-type multilayer film formed by stacking a plurality of nitride semiconductor films; at least one nitride semiconductor layer in the p-side region is a layer composed of a plurality of nitrogen P-type multilayer film formed by compound semiconductor film; and page 23 --------- I--¾ -------- Order. Ίι-i-< Please read first The back of the page; please fill in this page for further information.) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs • 4371 03 A7 • ---------- B7__ 5. Description of the invention () The composition system is different from the composition constituting the p-type multilayer film layer. In addition, the tenth nitride semiconductor device system of the present invention has an active layer, wherein the active layer system is between-containing a plurality of nitride semiconductor layers I n side Regions and—gates containing P-side regions of multiple halide semiconductor layers It is characterized in that at least one nitride semiconductor layer in the n-side region is known as-an n-type multilayer film layer formed by stacking a plurality of nitride semiconductor films: at least one nitride semiconductor layer in the p-side region Is a p-type multilayer film layer formed by stacking a plurality of nitride semiconductor films; and the number of stacked layers of the nitride semiconductor film constituting the n-type multilayer film layer is different from that of the nitrogen constituting the p-type multilayer film layer The number of stacked layers of a compound semiconductor film. In addition, the "u-th nitride semiconductor device of the present invention has an active layer", wherein the active layer is located between an n-side region containing a plurality of nitride semiconductor layers and a layer containing a plurality of nitrogen Between the p-side regions of the compound semiconductor layer is characterized in that at least one nitride semiconductor layer in the n-side region is an n-type multilayer film formed by stacking a plurality of nitride semiconductor films: the p-side At least one nitride semiconductor layer in the region is a p-type multilayer film layer formed by stacking a plurality of nitride semiconductor films; and the composition system constituting the n-type multilayer film layer is different from the structure. The ρ-type multilayer film composition and the number of layers constituting the stack-based product of η-type multilayer film of the nitride semiconductor film different from the number of stacking layers constituting the multilayer film of Ρ type nitride semiconductor film. In the ninth to eleventh nitride semiconductor devices of the present invention, the number of stacked layers of the nitride semiconductor film constituting the p-type multilayer film layer is less than that constituting the η page 24 I 1-···-one ... . »» —.— 4_ ·.-, ≫, ******-III--,-丨 I |-I ·, ·---Jiaqi: 芈 (CNS) Ai 格格 (; 仙Χ29Γ Male: V) --- IIIJIIII- equipment. III II 1 I order -------- II {Please read the business matters on the back before filling this page) Λ7 B7 437103------- ^ -Description of the five 'invention: The number of stacked layers of the nitride semiconductor film of the () type multilayer film layer is preferably 3. In the ninth to eleventh nitride semiconductor devices of the present invention, the n-type multilayer film layer contains A1zGai .zN (0: iz < l), and inpGabu 1 ^ (0 <? <; 1) are preferred; and the P-type multilayer film system contains AlxGa | .xN (0 < x < l), And better. In the ninth to eleventh nitride semiconductor devices of the present invention, it is preferable that the p-type multilayer film layer and / or the n-type multilayer film layer are formed by modulating doping. That is, since the ninth to ninth nitride semiconductor elements of the present invention form a ^ -type multilayer film layer and a P-type multilayer film layer with different compositions and / or number of layers, respectively, according to n-type and p-type, according to The active layer is sandwiched, and the layer structure near the active layer in the device structure is specified. Therefore, a nitride semiconductor device having a good electrostatic withstand voltage can be provided, which improves the luminous output and decreases vf '. Although the active layer of the quantum well structure hides the ability to enhance the luminous output ', it is difficult for conventional devices to fully explore the possibility of the quantum plutonium structure. In this regard, the inventor of the present case conducted various reviews to make full use of the active layer of the quantum well structure, and the results show that an adjacent active layer or a layer connected to a fertile layer can be formed with different compositions or different numbers of layers, respectively. The n-type film layer and the P-type multi-layer film layer can improve the luminous output and the performance of a wide range of activities. At the same time, it can also reduce the Vf and increase the electrostatic pressure. Although the reason for the addiction is not very sure *, it may be the 25th in KH ίι nnnn ί I · nn 1 n * ^ i-^ ϋ due to the multilayer film Order --------- 线 ί 锖 先Read it on the back; please fill in this page again for it matters; > Printed by the Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 4371 03

五、發明說明( ^结晶性提升,進而使活性層之結晶性或形成# p電極之 層的結晶性變除此之外,又可能加上組成不同或層數 (請先閱讀背面之注意事項再填寫本頁) 不同的n型多層模層與p型多層膜層的相乘作用’而對全 體疋件有艮好的影#,進而使元件特性(發光輪出、Vf' 靜電耐壓等)得以提升。 於本發明之第9〜! i氮化物半導體元件中,所謂的多 層膜層係指至少係由2種以上组成不同的單一氮化物半導 體層堆積2層以上所構成者,亦即由單-氮化物半導體層 堆積複數層而成,其中相鄰的氮化物半導體層之組成係不 相同。 於本發明 < 第9〜U氮化物半導體元件中,所謂構成 η型多層膜層之氮化物半導體之組成不同於構成p型多層 膜層氮化物半導體之組成係指構成各多層膜層之單一氮 化物半導體之組成雖可相同,但’由複數個單一氮化物半 導髏層所構成之多層膜層全體之組成係不相同。亦即,構 成η型多層膜層及ρ型多層膜層的組成係可部份一致, 但’氮化物半導體之組成並不能完全一致。 經濟部智慧財產局員Μ消費合作社印製 例如,所謂的組成不同係可指構成氮化物半導體之元 素(例如2元混晶、3元混晶的種類)、元素比、或是鍵隙 能量之不同。此外,該等的值係為多層膜層全體的平均 值。 此外’於本發明中,所謂的堆積層數不同係指η型及 Ρ型中的一方,構成多層膜層的氮化物半導體係至少多出 一層。 . 第 261Τ m : 紙::用中 437Ί 03 Λ 7 Β7 經濟部智慧財產局員X消費合作社印^ 五、發明說明( 再者,於本發明之第9〜11 I化物半導體元件中,由 於構成P型多層膜層之氮化物丰導體層之層數在少於構成 η型多層膜層之氮化物半導體層之層數時,發光輸出、Vf、 及靜電耐壓均為良好,因此構成p型多層膜層之氮化物半 導體層之層數係少於構成η型多層膜層之氮化物丰導體層 之層數者為佳。 又,於本發明之第9〜Π氮化物半導體元件中,ρ型 多看膜層所堆積的層數係可至少比η型多層膜層所堆積的 層數少一層。 另外’於本發明之第9〜11氮化物半導體元件中,若 該η型多層膜層係含有AlzGai zN(〇SZ<1)、及 PN(〇<p<l):而該P型多層膜層係含有AlxGau xNCiXxcl)、及時,則可進一步獲致良 好的發光輸出、Vf、及靜電耐壓。 另外,於本發明之第9〜π氮化物丰導體元件中’若 琢Ρ型多層膜層與(或)η型多層膜層係以調變挣雜的方式 形成時,則可使發光輸出、Vf、及靜電耐壓提升。 再者,於本發明之第9〜11氮化物半導體元件中’所 β的調曼摻雜係指對於用以形成多層膜層之單—氮化物 半導體層而了,其雜質1度係與相臨的氮化物半導體層之 雜質濃度不同;或是用以形成多層膜層之相鄰-方的氣化 物半導體層係未㈣質,而另―方詩有雜質;此外,在 均捧有雜質的情況下’其相鄰之氮化物半導體間 的雜質濃度係不同。 n n t ^ I I I i I ^ . ^ n ^ 1· I I I-i_5°J» 1 t ^ n ^ n I · <請先閱讀背面之ii意事項再填寫本頁) 本紙張尺度迖用,|,舀舀 ΐ (CNS)A-l {;ίΐ 第27頁 經濟部智慧財產局員工消費合作社印製 ,4371 〇3 A7 __B7_ 五、發明說明() 再者,於本發明之第9〜11氮化物半導體元件中,當 η型多層膜層之組成不同於p型多層膜層之組成時,構成 Ρ型多層摸層之層數、以及構成η型多層膜層之層數係可 相同或是不同,而最好是不相同,更好的是構成Ρ型多層 膜層之層數比構成η型多層膜層之層數少’如此,即可獲 致較佳的發光輸出、V f、靜電耐壓。 再者,於本發明中,當η型多層膜層之層數不同於ρ 型多層膜層之層數時,則Ρ型多層膜層之組成、以及η型 多層膜層之組成係可相同或是不同,而最好是不相同,據 此,即可獲致如上述般的本發明之效果。 再者,於本發明中,當η型多層膜層之層數不同於ρ 型多層膜層之層數時,η型與ρ型的層數组合並無一定限 制,只要是η型多層膜層之層數不同於ρ型多層膜層即 可,如上所述,最好是構成ρ型多層膜層之層數比構成η 型多層漠層之層數少,據此,即可獲致如上述般的本發明 之效果。 圖式簡單說明: 第1圖為用以表示本發明實施形態1之氮化物半導體元件 (LED元件)之構成模式的剖面圖。 第2圖為用以表示本發明之實施例2之LED元件之構成模 式的剖面圖。 第3圖為用以表示本發明之實施例1 6之氮化物半導體元 件(LD元件)之構成模式的斜視圖。 第 281Γ 本張尺技k巧十E Η 砭7- :Λ ! '丨;丨⑺丨)X 297公龙ί ------------ ,衣.-------訂---------, (請先閱璜背面之沒意事項再填寫本頁) 經濟部智慧財產局員1消f合作社印- 4371 03 A7 --— B7 五、發明說明() 第4圖為用以表示本發明實施形態2之氮化物半導體元件 (LED元件)之構成模式的剖面圖。 第5圖為用以表示本發明實施形態3之氮化物半導體元件 之構成模式的剖面圖。 第6A圖為用以表示本發明實施形態4之氮化物半導體元 件中’ P側接觸層之構成模式的剖面圖。 第6B圖為將第6A圖中的In组成以模式表示的說明圖。 第7圖為對應於本發明之多層膜(p側接觸層)波長之光吸 收率的說明圖。 第S圖為用以表示本發明實施形態5之氮化物半導體元件 (LED元件)之構成模式的剖面圖° 第9A圖為實施形態5中,用以表示對應於未摻雜值之上 層305c膜厚之p〇及v;f之相對值的說明圖。 第9B圖為實施形態5中,用以表示對應於未摻雜值之上 層305c膜厚之靜電耐壓相對值的說明圖。 第1 0A圖為實施形態5中,用以表示對應於中間層305b 膜厚之Po及Vf之相對值的說明圖。 第10B圖為實施形態5中,用以表示對應於中間層305b 膜厚之靜電耐壓相對值的說明圖。 第11A圖為實施形態5中,用以表示對應於未摻雜值之下 層3 0 5a膜厚之Po及Vf之相對值的說明圖。 第ΠΒ圖為實施形態5中,用以表示對應於未掺雜值之下 層305a膜厚之靜電耐壓相對值的說明圖。 ------------^--------訂---------線- (謗先閱讀背面之注意事項再填寫本頁) ----- --------—-------—„ IU -r ·Ί|| _ _ :4371 03 Λ7 _Β7 五、發明說明() 圖號對照說明: 經濟部智慈財產局員工消費合作社印製 1 藍石英基板 Ο 第1緩衝層 η 第2緩衝層 4 η侧接觸層 5 第3緩衝層 6 η側多層膜層 6 a 第1氮化物丰導體膜 6b 第2氮化物半導體膜 7 活性層 8 ρ側多層膜層 8a 第3氮化物半導體膜 8b 第4氮化物半導體膜 9 p側接觸層 10 p電極 11 p整電極 12 η電極 18 P側覆蓋層 30 η側區域 40 P側區域 50 GaN基板 52 η型GaN層 53 In〇. [Gao.gN 層 54 η側覆蓋層 55 η型GaN光導層 56 活性層 5 7 Al〇.:zGa〇_sN 層 58 ρ型GaN光導層 59 P側覆蓋層 60 p型GaN接觸層 61 ρ側電極 70 η側區域 80 P側區域 102 緩衝層 103 未摻雜質之GnN層 105 η惻第1多層膜層 1 06 η側第_2多層膜層 106a 第1氮化物半導體膜 106b 第2氮化物半導體 108 ρ側覆蓋層 108 a 第3氮化物半導體 108b 第4氮化物半導體膜2〇2 203 第In側氮化物半導體層 204 第2η側氮化物半導體層 第30頁 緩衝層 !·'.^ {CNS)A1 (::1〇χ:^;7 (請先閱讀背面之注意事項再填冩本頁) 4371 03 Λ7 五、發明說明( 205第3n側氮化物半導體滑 208 p側接觸層 , 208a 第1氮化物半導體膜 208b 第2氮化物半導體趙, 卞乎fl膜J〇5 η側第1多層膜層 3 05a 下層 3〇5b 中間層 3 05c 上屠 3〇6 η侧第2多層膜層 3〇63第1氮化物半導體膜州b帛化物半導體膜 發明詳細說明: 以下將依據圖示來說明本發明之較佳實施形態。 【實施形態1】 .第1圖係將本發明之伞.a ^ μ 之《她形態1的氮化物半導體元件 (LED兀件)(構造模式化的剖面圖。該LE〇元件係在—藍 石英基板1上依序堆積(沈積)有一由GaN所形成的第1緩 衝層2 —由未摻雜質之GaN所形成的第2緩衝層3 — 摻Si < GaN所形成的n側接觸層4、一由未摻雜質之GaN 所形成的第3緩衝層5、—由InGaN/GaN超晶格構造所形 成的ϋ側多層膜層6、一由InGaN/GaN所形成的多重量子 井構造之活性層7、一由AlGaN/GaN超晶格構造所形成的 p惻多層膜層8、及一摻Mg之GaN所形成的p側接觸層9。 亦即’就該LED元件而言,在藍石英基板1之上’ 該多重量子井構造之活性層7係夾設於一由第丨緩衝層 2、第1緩衝層3、η側接觸層4 '第3緩衝層5、及n側 多層膜層6所構成的η側區域3 〇,以及一由p側多層摸層 第31頁 公:*,ί (請先閱讀背面之注意事項再填寫本頁) 裝--------訂---------轉 經濟部智慧財產局員工消費合作社印製 f2|fj 經濟部智慧財產局員工消費合作社印製 、4371 03V. Description of the invention (^ Crystallinity is improved, and then the crystallinity of the active layer or the crystallinity of the layer forming the #p electrode is changed. In addition, a different composition or number of layers may be added (please read the precautions on the back first) Fill in this page again) The multiplication of different n-type multi-layer mold layers and p-type multi-layer film layers 'has a good effect on the whole file #, and thus makes the device characteristics (light-emitting wheel out, Vf' electrostatic withstand voltage, etc. In the ninth to the i-nitride semiconductor device of the present invention, the so-called multilayer film layer refers to a structure in which at least two kinds of single nitride semiconductor layers with different compositions are stacked in two or more layers, that is, The single-nitride semiconductor layer is formed by stacking a plurality of layers, wherein the composition of adjacent nitride semiconductor layers is different. In the 9th to U nitride semiconductor devices of the present invention, the so-called n-type multilayer film The composition of the nitride semiconductor is different from the composition of the nitride semiconductor constituting the p-type multilayer film. Although the composition of a single nitride semiconductor constituting each multilayer film may be the same, it is composed of a plurality of single nitride semiconductor layers. The composition of the multilayer film is different. That is, the composition of the η-type multilayer film and the ρ-type multilayer film may be partially the same, but the composition of the nitride semiconductor is not completely the same. Printed by the bureau M consumer cooperative. For example, the so-called composition difference refers to the difference in the elements (such as the type of binary mixed crystal and ternary mixed crystal), element ratio, or bond gap energy that constitute nitride semiconductors. In addition, the The equivalent value is an average value of the entire multilayer film layer. In addition, in the present invention, the difference in the number of stacked layers means one of the η-type and the P-type, and the nitride semiconductor system constituting the multilayer film layer has at least one additional layer. … Article 261Tm: Paper: 437Ί 03 Λ 7 Β7 Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs X Consumer Cooperatives ^ V. Description of the Invention (Furthermore, in the ninth to eleventh semiconductor compounds of the present invention, due to the composition When the number of the nitride-rich conductor layers of the P-type multilayer film is less than the number of the nitride semiconductor layers constituting the η-type multilayer film, the light-emitting output, Vf, and electrostatic withstand voltage are all good. The number of layers of the nitride semiconductor layer of the film layer is preferably less than the number of layers of the nitride-rich conductor layer constituting the η-type multilayer film layer. In the ninth to ninth nitride semiconductor device of the present invention, ρ The number of stacked layers of the multi-type film layer may be at least one layer less than that of the n-type multilayer film layer. In addition, in the ninth to eleventh nitride semiconductor devices of the present invention, if the n-type multilayer film layer It contains AlzGai zN (〇SZ < 1), and PN (〇 < p < l): and the P-type multilayer film layer contains AlxGau xNCiXxcl, and in time, it can further obtain good light output, Vf, and static electricity. In addition, in the ninth to π-nitride-rich conductor elements of the present invention, if the P-type multilayer film and / or the η-type multilayer film are formed in a modulating manner, it can be made Luminous output, Vf, and electrostatic withstand voltage increased. In addition, in the ninth to eleventh nitride semiconductor devices of the present invention, the so-called beta tuning doping refers to the single-nitride semiconductor layer used to form a multilayer film, and the impurity 1 degree is related to the phase. The impurity concentration of the adjacent nitride semiconductor layer is different; or the adjacent-side gaseous semiconductor layer used to form the multi-layer film layer is not high quality, and the other side has impurities; in addition, In this case, the impurity concentration is different between adjacent nitride semiconductors. nnt ^ III i I ^. ^ n ^ 1 · II I-i_5 ° J »1 t ^ n ^ n I · < Please read the meanings on the back before filling out this page) This paper is not used in this paper, |, CN (CNS) Al {; ΐ 27 Page 27 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, 4371 〇3 A7 __B7_ V. Description of the invention () Furthermore, in the 9th to 11th nitride semiconductor devices of the present invention In this case, when the composition of the η-type multilayer film layer is different from the composition of the p-type multilayer film layer, the number of layers constituting the P-type multilayer layer and the number of layers constituting the η-type multilayer film layer may be the same or different. Fortunately, it is different, and it is better that the number of layers constituting the P-type multilayer film layer is less than the number of layers constituting the η-type multilayer film layer. In this way, a better light emitting output, V f, and electrostatic withstand voltage can be obtained. Furthermore, in the present invention, when the number of layers of the η-type multilayer film layer is different from the number of layers of the ρ-type multilayer film layer, the composition of the P-type multilayer film layer and the composition of the η-type multilayer film layer may be the same or It is different, but preferably different, so that the effects of the present invention as described above can be obtained. Furthermore, in the present invention, when the number of layers of the η-type multilayer film layer is different from the number of layers of the ρ-type multilayer film layer, the combination of the η-type and ρ-type layer arrays is not limited as long as it is an η-type multilayer film layer The number of layers may be different from the ρ-type multilayer film layer. As described above, it is preferable that the number of layers constituting the ρ-type multilayer film layer be less than the number of layers constituting the η-type multilayer desert layer. Effect of the present invention. Brief description of the drawings: Fig. 1 is a cross-sectional view showing a configuration pattern of a nitride semiconductor element (LED element) according to the first embodiment of the present invention. Fig. 2 is a cross-sectional view showing a configuration mode of an LED element according to a second embodiment of the present invention. Fig. 3 is a perspective view showing a configuration pattern of a nitride semiconductor device (LD device) according to Embodiment 16 of the present invention. Chapter 281Γ This ruler skill Q E 10 砭-7-: Λ! '丨; 丨 ⑺ 丨) X 297 male dragon ------------, clothing .------ -Order ---------, (please read the unintentional matter on the back of the page before filling out this page) Member of the Intellectual Property Bureau of the Ministry of Economic Affairs and the Cooperative Press-4371 03 A7 --- B7 V. Description of the invention ( FIG. 4 is a cross-sectional view showing a configuration pattern of a nitride semiconductor element (LED element) according to Embodiment 2 of the present invention. Fig. 5 is a cross-sectional view showing a configuration pattern of a nitride semiconductor device according to a third embodiment of the present invention. Fig. 6A is a cross-sectional view showing a configuration pattern of a 'P-side contact layer in a nitride semiconductor device according to a fourth embodiment of the present invention. FIG. 6B is an explanatory diagram showing the In composition in FIG. 6A in a pattern. Fig. 7 is an explanatory diagram of light absorption corresponding to the wavelength of the multilayer film (p-side contact layer) of the present invention. Fig. S is a cross-sectional view showing a configuration mode of a nitride semiconductor element (LED element) according to the fifth embodiment of the present invention. Fig. 9A is a diagram showing the upper layer 305c film corresponding to the undoped value in the fifth embodiment. Explanatory diagram of the relative values of thick p0 and v; f. Fig. 9B is an explanatory diagram showing the relative value of the electrostatic withstand voltage corresponding to the film thickness of the upper layer 305c in the fifth embodiment. Fig. 10A is an explanatory diagram showing relative values of Po and Vf corresponding to the film thickness of the intermediate layer 305b in the fifth embodiment. Fig. 10B is an explanatory diagram showing the relative value of the electrostatic withstand voltage corresponding to the film thickness of the intermediate layer 305b in the fifth embodiment. Fig. 11A is an explanatory diagram showing the relative values of Po and Vf corresponding to the film thickness of the underlying layer 305a in the fifth embodiment. Figure ΠB is an explanatory diagram showing the relative value of the electrostatic withstand voltage corresponding to the film thickness of the underlying layer 305a in the fifth embodiment. ------------ ^ -------- Order --------- line- (Please read the precautions on the back before filling in this page) ---- --------------------— IU -r · Ί || _ _: 4371 03 Λ7 _Β7 V. Description of the invention () Comparison of drawing numbers: Intellectual Property Office of the Ministry of Economic Affairs Printed by employee consumer cooperatives 1 Blue Quartz substrate 0 1st buffer layer η 2nd buffer layer 4 η-side contact layer 5 3rd buffer layer 6 η-side multilayer film 6 a 1st nitride conductor film 6b 2nd nitride semiconductor Film 7 Active layer 8 ρ-side multilayer film layer 8a Third nitride semiconductor film 8b Fourth nitride semiconductor film 9 p-side contact layer 10 p electrode 11 p whole electrode 12 η electrode 18 P side cover layer 30 η side region 40 P Side region 50 GaN substrate 52 η-type GaN layer 53 In〇. [Gao.gN layer 54 η-side cladding layer 55 η-type GaN light guide layer 56 Active layer 5 7 Al〇 .: zGa〇_sN layer 58 ρ-type GaN light guide layer 59 P-side cladding layer 60 p-type GaN contact layer 61 ρ-side electrode 70 η-side region 80 P-side region 102 Buffer layer 103 Undoped GnN layer 105 η 1 First multilayer film layer 1 06 η-side _2 multilayer Film layer 106a First nitride semiconductor film 106b Second nitride Conductor 108 ρ side cladding layer 108 a 3rd nitride semiconductor 108b 4th nitride semiconductor film 202 2 203 In side nitride semiconductor layer 204 2η side nitride semiconductor layer 30th buffer layer! '. ^ { CNS) A1 (:: 1〇χ: ^; 7 (Please read the notes on the back before filling this page) 4371 03 Λ7 V. Description of the invention (205th 3n-side nitride semiconductor sliding 208p-side contact layer, 208a The first nitride semiconductor film 208b, the second nitride semiconductor film, and the fl film J05, the first multilayer film layer 3 05a on the η side, the lower layer 305a, the intermediate layer 3 05c, and the second multilayer film on the 306 side. 3063 The first nitride semiconductor film is a detailed description of the invention. The following is a description of a preferred embodiment of the present invention based on the drawings. [Embodiment 1]. The first figure is an umbrella of the present invention. a ^ μ "Nitride semiconductor element (LED element) of structure 1 (structured patterned cross-sectional view. The LE0 element is sequentially stacked (deposited) on the blue quartz substrate 1 with a GaN formed First buffer layer 2 —Second buffer layer 3 made of undoped GaN —Si-doped < Ga An n-side contact layer 4 formed of N, a third buffer layer 5 formed of undoped GaN, a pseudo-side multilayer film layer 6 formed of an InGaN / GaN superlattice structure, and an InGaN / An active layer 7 of a multiple quantum well structure formed of GaN, a p 恻 multilayer film 8 formed of an AlGaN / GaN superlattice structure, and a p-side contact layer 9 formed of Mg-doped GaN. That is, 'for the LED element, on the blue quartz substrate 1', the active layer 7 of the multiple quantum well structure is sandwiched by a first buffer layer 2, a first buffer layer 3, and an n-side contact layer 4. 'The third buffer layer 5 and the n-side multi-layer film layer 6 are composed of the η-side region 3 〇, and a p-side multi-layer layer p. 31 public: *, ί (Please read the precautions on the back before filling this Page) Install -------- Order --------- Transfer to the Consumer Property Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs to print f2 | fj

8及P側接觸層9所構成的P側區域之間。 於本實施形態1之氮化物半導體元件中,如第1圖所 示,用以央住該活性層7且位於其下部的n側區域3〇係 包含有-η側多層膜層6,叾令該n側多層膜層6係由一 含有In的第i氮化物丰導體膜6a、及一組成成份不同於 孩第1氮化物半導體膜6a的第2氮化物半導體膜⑪所堆 積而成。就該η側多層膜層6而言,丨第】氮化物半導體 膜6a與第2氮化物半導體膜6b係最少分別形成有一層以 上,合計共3層以上,最好是分別形成有2層以上, 共4層以上者為佳。 β 在該“則多層膜層6接合於該活性層7時,接觸於該 ^性層之最初層(丼層、或障壁層)的多層膜層係可為第1 氮化物半導體膜6a或是第2氮化物半毕體膜“,此時,η 側多層膜層6的堆積順戽並無特別限制。 又,雖然於第1圖中η側多層膜層“系接合於該活性 層7,但,在本實施形態1中,η側多層膜層6與活性層7 《間…有由…型氮化物半導體所形成的層”匕 外,構成該η側多屢膜層6的第【氮化物半導體膜6&或 是第2氮化物半導體膜6…至少須有一方之厚 1〇0埃以下’而最好係在7。埃以下,更佳者係最好在5。 埃以下:據此’將可使薄膜層係在彈性臨界膜厚以下,而 使結晶變佳,進而使第1 sjj g 1 # α运向使弟1或弟2氣化物半導體膜的結晶性 變得更好’因此,可使多層膜層全體之結晶性變好,同時 亦可提升元件的輸出功能》 第32貫8 and the P-side region formed by the P-side contact layer 9. In the nitride semiconductor device according to the first embodiment, as shown in FIG. 1, the n-side region 30 located at the lower portion of the active layer 7 to contain the active layer 7 includes a -η-side multilayer film 6. The n-side multilayer film layer 6 is formed by stacking an i-th nitride-rich conductor film 6a containing In and a second nitride semiconductor film 组成 having a composition different from that of the first nitride semiconductor film 6a. As for the η-side multilayer film layer 6, at least one nitride semiconductor film 6a and the second nitride semiconductor film 6b are formed with at least one layer and a total of three or more layers, and preferably two or more layers are formed respectively. It is better to have 4 or more floors. β When the “multilayer film layer 6 is bonded to the active layer 7”, the multilayer film layer in contact with the first layer (the plutonium layer or the barrier layer) of the thin layer may be the first nitride semiconductor film 6a or The second nitride semi-bibody film "in this case, there is no particular limitation on the deposition sequence of the η-side multilayer film layer 6. In addition, although the η-side multilayer film layer “is bonded to the active layer 7 in FIG. 1, in the first embodiment, the η-side multilayer film layer 6 and the active layer 7 are in between… they have… In addition to the "layer formed by a semiconductor", the [nitride semiconductor film 6 & or the second nitride semiconductor film 6 constituting the n-side multiple film layer 6 must have at least one thickness of 100 angstroms or less. ' It is best tied at 7. Below Egypt, the best is better at 5. Angstrom or less: According to this, the thin film layer can be made below the critical elastic film thickness, and the crystal can be improved, and the first sjj g 1 # α can be transported to make the crystallinity of the first or second gas semiconductor film. Better 'Therefore, the crystallinity of the entire multilayer film can be improved, and the output function of the device can be improved.

f--------tr---------# <琦先閱讀背面之注意事項再填寫本頁) 4371 03 A7 B7 經濟耶智慧財產局員工消費合作社印製 五、發明說明( .該第1氮化物半導體膜6a係為m的氣化物半 導體,其係可為3元混晶的InxGai xN(〇<x<i),或是X值 係在0.5以下的InxGai_xN,或是χ值最好係在心丨的 InxGaNxN者·而第2氮化物半導體膜6b只要是其組成不 同於該第1氮化物半導體膜6a即可,其並無特別之限定, 但’為使能長出結晶性良好的第2氮化物半導體膜⑪,其 須係為一鍵隙能量比第i氛化物半導體膜心還大的2元 混晶或3元混晶的氮化物半導體,例如,即可使長成 的多層膜層全體具有良好的結晶性β因此,最佳的組合係 為:第1氮化物半導體膜6a係使用χ值係在〇 5以下的 inxGU,而第2氮化物半導體膜讣係使用。 就較佳實施形態而言,$ 1及第2氮化物半導體獏雙 方的厚度係為1〇〇埃以下,而最好係在7〇埃以下為佳, 更佳者係最好在50埃以下。當第1及第2氮化物半導體 膜雙万的厚度係為⑽埃以下時,第j及第2氮化物半導 體膜係均可在彈,;·生臨界膜厚以下,相較於厚膜的情況下, 其係較可長成結晶性良好的氤化物半導體。此外’若是雙 方均在70埃以下時,則多層膜層係可為超晶格結構,當 在此30〖生良好的超晶格結構之多層膜層上形成活性 層時’該多層摸層即可作為.緩衝層用,進而可成長出一結 晶性良好的活性層。 再者於本實施形態1中,第1或第2氮化物半導體 膜其中至少有-厚度係可不同於近接的第1或第2氮化物 半導體膜的厚庋。例如,當帛I氮化物半導體膜係為 第33頁 (t'Ks.A; λ:f -------- tr --------- # < Qi first read the notes on the back before filling out this page) 4371 03 A7 B7 DESCRIPTION OF THE INVENTION (1) The first nitride semiconductor film 6a is a gas semiconductor of m, which may be a ternary mixed crystal InxGai xN (0 < x < i), or an InxGai_xN with an X value of 0.5 or less. Or InxGaNxN whose χ value is preferably in the heart. The second nitride semiconductor film 6b is not limited as long as its composition is different from that of the first nitride semiconductor film 6a. A second nitride semiconductor film can be grown with good crystallinity, and it must be a two-element mixed crystal or a three-element mixed crystal nitride semiconductor having a larger bond gap energy than the i-th semiconductor semiconductor film core, for example, That is, the entire multi-layered film layer can be formed to have good crystallinity β. Therefore, the optimal combination is that the first nitride semiconductor film 6a uses inxGU with a value of χ of 0 or less, and the second nitride semiconductor film The film is used. In a preferred embodiment, the thickness of both $ 1 and the second nitride semiconductor is 100 angstroms or less. The thickness is preferably less than 70 angstroms, and more preferably less than 50 angstroms. When the thicknesses of the first and second nitride semiconductor films are less than ⑽angstroms, the jth and second nitrides The semiconductor film system can be elastic, and it is less than the critical film thickness. Compared with the thick film, it can grow into a halide semiconductor with good crystallinity. In addition, if both sides are below 70 Angstroms, The multilayer film system can be a superlattice structure. When an active layer is formed on the multilayer film layer having a good superlattice structure, the multilayer touch layer can be used as a buffer layer, which can be grown out. An active layer with good crystallinity. In the first embodiment, at least one of the first or second nitride semiconductor films may have a thickness different from that of the first or second nitride semiconductor films in close proximity. For example, when the rhenium nitride semiconductor film is page 33 (t'Ks.A; λ:

經濟部智慧財產局員工消費合作社印Μ 、437103 A7 --------B:______ 五、發明說明()Printed by the Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs, 437103 A7 -------- B: ______ V. Description of Invention

InGaN ’而第2氮化物半導體膜係為GaN時,位於GaN層 輿GaN層之間的inGaN層的膜厚係可越接近活性層越 厚,或疋越接近活性層越薄,據此,由於可使多層膜層内 部之折射率變化,因此可形成折射率依序變化的層。換言 之,其實質上係與形成一具組成梯度(钭度)之氮化物半導 體層相同效果。據此,對於必須形成有雷射元件般之光導 波路徑的元件而言,則即可以該多層膜層來形成導波路 徑,進而可調整雷射光的模態。 此外,第1或第2氮化物半導體膜其中至少有一為第 III族兀素的組成,且其组成係可不同於近接的第1或第二 氮化物半導體膜。例如’當帛1氮化物半導體膜係為 InGaN,而第2氮化物半導體膜係為GaN時,位於GaN層 與GaN層之間的inGaN層的In组成係可越接近活性層越 多或疋越接近活性層越少’據此,與膜厚順次變化一樣 地將可使多層膜層内部之折射率變化,而實質上形成一 具组成悌度之氮化物半導體層。又,隨著ln組成的減少, 其折射率係有變小的傾向。 此外,於本實施形態1中,第1與第2氮化物半導體 膜兩者係可均為未接雜質者,或是其兩者亦均可捧入。型 雜質者,或是甚至其中之一係捧入有雜質者。為使其具有 良好結晶性’其最好是未摻雜質者,其次依序為調變摻 雜其次為兩者均摻雜者。又,當兩者均摻入η型雜質時, 第1氮化物半導體膜的η型雜質濃庋係最好不同於第2氮 化物半導體膜的η型雜質濃度。 __ 笫34頁 紙 ik尺圾圬用,h-g 國家拎準―― -----------------------------When InGaN 'and the second nitride semiconductor film system is GaN, the film thickness of the inGaN layer between the GaN layer and the GaN layer can be thicker as it approaches the active layer, or thinner as it becomes closer to the active layer. Since the refractive index inside the multilayer film layer can be changed, a layer whose refractive index is sequentially changed can be formed. In other words, it has substantially the same effect as forming a nitride semiconductor layer with a composition gradient (degree). According to this, for a device that must have a light guide path like a laser element, the multilayered film layer can be used to form a guide path, and the mode of the laser light can be adjusted. In addition, at least one of the first or second nitride semiconductor films has a composition of a Group III element, and its composition may be different from that of the first or second nitride semiconductor films in close proximity. For example, 'When the 帛 1 nitride semiconductor film system is InGaN and the second nitride semiconductor film system is GaN, the In composition system of the inGaN layer located between the GaN layer and the GaN layer can be more close to the active layer or larger The less it is close to the active layer, accordingly, the refractive index inside the multilayer film layer can be changed in the same way as the film thickness is changed sequentially, and a nitride semiconductor layer with a compositional degree of the substance is substantially formed. As the ln composition decreases, the refractive index tends to decrease. In addition, in the first embodiment, both the first and second nitride semiconductor films may be those in which no impurities are connected, or both of them may be used. Type impurities, or even one of them is the one with impurities. In order to make it have good crystallinity ', it is preferably an undoped one, followed by a modulation dopant followed by a doped both. When both are doped with n-type impurities, the n-type impurity concentration of the first nitride semiconductor film is preferably different from the n-type impurity concentration of the second nitride semiconductor film. __ 页 Page 34 paper ik rule, for h-g country standard ---------------------------------

^--------訂·--------轉 (埼先閱讀背面之注寺?事項再填寫本NO 43 71 Ο Α7 __________R7 __ _ 五'發明說明() 再者,於本實施形態丨中 > 如第1圖所示,用以夾住 活性層、且位於其上部的P側區域係包含有一 p測多層媒 層8,該p側多層膜層8係由一含有A1之第3氮化物半導 體摸8a、及一組成不同於該第3氮化物半導體膜8a的第4 氮化物半導體膜8b所堆積而成。就該p側多層膜層8而 言,其係與η側多層膜層6 —樣,其第3氮化物半導體膜 8a與第4氮化物半導體膜8b係最少分別形成有一層以 上,合計共3層以上’最好是分別形成有2層以上,合計 共4層以上者為佳。又,當p侧區域係包含有一多層膜層 時’ :¾•膜厚係較π側之多廣膜層薄時,則元件的v f、啟始 值係有較易降低的傾向a如第1圖所示,若p侧多層膜層 8接合於該活性層7時,則接觸於該活性層之最下層(丼 層、或障壁層)的p側多層膜層係可為第3氮化物半導體 膜8a或是第4氮化物半導體膜8b。此外,雖然於第1圖 中P側多層膜層8係接合於該活性層7,但,於p側多屠 膜層8與活性層7之間亦可設有由其他氮化物半導體所形 成的層。 再者’於本實施形態1中,第4氮化物半導體膜中之 一或兩者之膜厚係可不同於近接的第3或第4氮化物半導 體膜的厚度。例如’當第3氮化物半導體膜係為AlGaN, 而第4氮化物半導體膜係為GaN時,位於層與GaN 層之間的AlGaN層的膜厚係可越接近活性層越厚,或是越 接近活性層越薄,據此’由於可使多層膜層内部之折射率 變化’因此可形成折射率依序變化的層。換言之,其實質 ___ _ 第35頁 本‘丨’R内'.“打: 1—. (請先閱讀背面之注意If項再填寫本頁) 裝--------訂---------产^ -------- Order · -------- Turn (埼 first read the Note Temple on the back? Matters and then fill out this NO 43 71 Ο Α7 __________R7 __ _ 5) Description of the invention () Furthermore, In this embodiment, as shown in FIG. 1, the P-side region for sandwiching the active layer and located on the upper side includes a p-measurement multi-layered dielectric layer 8. The p-side multi-layered film layer 8 is composed of a The third nitride semiconductor film 8a containing A1 and a fourth nitride semiconductor film 8b having a composition different from that of the third nitride semiconductor film 8a are stacked. As for the p-side multilayer film layer 8, the system is As with the η-side multilayer film layer 6, the third nitride semiconductor film 8a and the fourth nitride semiconductor film 8b are each formed with at least one layer and a total of 3 or more layers. It is preferable that two or more layers are formed. It is better to have a total of more than 4 layers. In addition, when the p-side region includes a multi-layer film layer:: ¾ • When the film thickness is thinner than the wide film layer on the π-side, the element's vf and initial value are As shown in FIG. 1, when the p-side multilayer film layer 8 is bonded to the active layer 7, it is in contact with the lowermost layer of the active layer. Layer) The p-side multilayer film layer may be the third nitride semiconductor film 8a or the fourth nitride semiconductor film 8b. In addition, although the P-side multilayer film layer 8 is bonded to the active layer 7 in FIG. However, a layer made of another nitride semiconductor may be provided between the p-side multi-layer film layer 8 and the active layer 7. Furthermore, in the first embodiment, one of the fourth nitride semiconductor films or The film thickness of the two can be different from the thickness of the adjacent third or fourth nitride semiconductor film. For example, 'When the third nitride semiconductor film is AlGaN and the fourth nitride semiconductor film is GaN, it is located on the layer. The thickness of the AlGaN layer between the GaN layer and the active layer can be thicker or thinner as it approaches the active layer. Based on this, the refractive index can be formed because the refractive index inside the multilayer film layer can be changed. The order changes the layer. In other words, its essence ___ _ page 35 of this' 丨 'R'. "Hit: 1—. (Please read the Note If on the back first and then fill out this page.) --Order --------- Production

經濟部智慧財產局員工消費合作杜印M 4371 Ο Λ7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明( 上係與形成一具组成梯度之氮化物半導體層相同效果。據 此’對於必須形成有雷射元件般之光導波路徑、或閉光層 的元件而言,則即可以該多層膜層來同時形成導波路徑與 閉光層*進而可調整雷射光的模態。 此外’第3或第4氮化物半導體膜其中至少有一為第 III族元素的組成,且其組成係可不同於近接的第3或第4 氮化物半導體膜。例如,當第3氮化物半導體膜係為 AlGaN ’而第4氮化物半導體膜係為〇aN時,位於GaN 層與GaN層之間的AlGaN層的A1組成係可越接近活性層 越多’或是越接近活性層越少,據此,與前述態樣一樣地, 將可使多層膜層内部之折射率變化,而實質上形成一具组 成梯度之氮化物半導體層。又,隨著A1組成的增加,其 折射率係越變越小。因此可因應目的而將該等組成梯度的 層配置在P層側。 該第3氮化物半導體膜8 a係為一含有A1的氮化物半 導體’其係可為3元混晶的,或是a值 最好係在0‘5以下的AlaGa丨-aN者。當a值係超過0.5時, 則其結晶性將會惡化,而使縫隙易於摻入。另外,該第4 氮化物半導體膜7b只要是其組成不同於該第3氮化物半 導體膜8 a即可’其並無特別之限定’但’為使能長出結 晶性良好的第4氮化物半導體膜8 b ’其須係為一鍵隙能量 比第3氮化物半導體膜還大的2元混晶或3元混晶的 氮化物半導體,例如GaN,即可使長成的多層膜層全體具 有良好的結晶性。因此,最佳的組合係為:第3氮化物半 第36頁 ^ _.......................一 ': · v -hj-7 <請先閱讀背面之注意事項再填寫本頁) ^衣.-------訂---------的 d37l 〇3Du Yin M 4371 Ο Λ7 B7, Intellectual Property Bureau, Ministry of Economic Affairs, Consumer Consumption Printed by the Consumer Cooperative of Intellectual Property Bureau, Ministry of Economic Affairs For devices that must have a laser-guided light-guiding path or a light-blocking layer, the multilayer film layer can be used to form a light-guiding path and a light-blocking layer at the same time * to adjust the mode of laser light. At least one of the third or fourth nitride semiconductor film has a composition of a Group III element, and its composition may be different from that of the adjacent third or fourth nitride semiconductor film. For example, when the third nitride semiconductor film is AlGaN 'and the fourth nitride semiconductor film system is 0 aN, the Al1 composition system of the AlGaN layer located between the GaN layer and the GaN layer can be more closer to the active layer' or less the closer to the active layer, and accordingly, As in the previous aspect, the refractive index inside the multilayer film layer can be changed, and a nitride semiconductor layer with a composition gradient can be formed substantially. Moreover, as the composition of A1 increases, the refractive index system becomes smaller and smaller. Therefore, the layer having such a composition gradient can be disposed on the P layer side according to the purpose. The third nitride semiconductor film 8 a is a nitride semiconductor containing A1, and the system may be a ternary mixed crystal, or The value of a is preferably AlaGa 丨 -aN below 0'5. When the value of a is more than 0.5, the crystallinity will be deteriorated, and the gap will be easily incorporated. In addition, the fourth nitride semiconductor film 7b As long as the composition is different from the third nitride semiconductor film 8 a, it is not particularly limited, but it is necessary to grow the fourth nitride semiconductor film 8 b with good crystallinity. A binary mixed crystal or a ternary mixed crystal nitride semiconductor having a larger bond gap energy than the third nitride semiconductor film, such as GaN, can make the grown multilayer film have good crystallinity as a whole. Therefore, it is the best The combination is: Page 3 of the third nitride. Page 36 ^ _............. a ': · v -hj-7 < Please (Read the precautions on the back before filling this page) ^ 衣 .------- Order --------- d37l 〇3

經濟部智慧財產局員工消費合作社印製 五、發明說明( 導體膜8a係使用a值係在〇 5以下的,而第4 氮化物半導體蟆8b係使用GaN。 再者第J氮化物半導體膜8 a的厚度係為1 〇 〇埃以 下’而最好係在70埃以下為佳’更佳者係最好在50埃以 下’同樣i也第4氮化物半導體膜8 b的厚度係為】〇 〇埃 以下而最好係在7 〇埃以下為佳,更佳者係最好在5 〇埃 以下當I的第〕或第4氮化物半導體膜的厚度係為⑽ 埃以下時其铋均可在氮化物半導體之彈性臨界膜厚以 下相較於厚膜的情況下,其係較可K U Μ 化物半導體。此外,由於氮化物半導體層之結晶性變得較 好,因此,在添加有Ρ型雜質時,其載子濃度將會變大, 因ππ可獲a t阻率較小的ρ層’同時亦可使元件的w、 啟始值降低。 此卜於本實施形態1 第3氮化物半導ft摸h 及第4氮化物半導體膜8b兩者係可均為未摻雜質者,或 是其兩者亦均可捧入p型雜質者,或是甚至其中之一係摻 入有P 土雜質者3為獲致一高載子濃度的ρ層,其最好是 調變捧雜者。又,如上所冰 i , 上所这在未摻雜質時’其厚度係為 (M…下者為佳,而最好係為7〇〇埃以下,更好的是係 在500埃以下。若装厘Λ , 、厚度超過〇. 1从m時’則未摻雜質層 的電阻值係會有增高的傾向。又,當兩者均掺人ρ型雜質 時第3鼠化物半導體膜8a的ρ型m❹μ u 於第4氮化物半導體膜8b的ρ型雜質濃度。 就上述實施形^之氮化物半導體元件而言’雖然該 第37頁 n n n n n n . n n n In 01 I — II ..... II ϋ I I (請先閱讀背面之注意事項再填寫本頁) A7 A371 〇3 _B7_ 五、發明說明() p側區域4 0中係形成有p側多層膜層8,但,本發明並非 只限於此,其亦可如第2圖所示,而以一單層的p惻覆蓋 層1 8來代替p側多層膜層8。此外,在第2圖的氮化物半 導體元件中,p側區域41係由p側覆蓋層1 8與p侧接觸 層9所構成。 【變化實施例】 雖然在上述實施形態1中已經以LED元件為例做過 說明,但,本發明並非只限於此,其亦可適用於雷射二集 體,其效果係與實施形態1相同,同時其更可為如下述的 變化。 換言之,對LD元件而言,其η側多層膜層係可由一 由InGaN所形成的第1氮化物半導體膜、以及一由GaN 所形成的第2氮化物半導體膜相互交替堆積而成,且該第 1氮化物半導體膜的膜厚係朝活性層依序增大。由於η側 多層膜層係具有上述構成,因此,對該η惻多層膜層而言, 其折射率大的InGaN比例將隨著接近活性層而增加,而因 使隨著η側多層膜層接近活性層,其折射率增大,所以可 獲致一具有折射率梯度的層。 此外,對LD元件而言,其ρ側多層膜層係可由一由 AlGaN所形成的第3氮化物半導體膜、以及一由GaN所形 成的第4氮化物半導體膜相互交替堆積而成,且該第3氮 化物半導體膜的膜厚係朝活性層依序變薄。由於P側多層 膜層係具有上述構成,因此,對該P側多層膜層而言’其 第3B頁 : : .ίΐ ^ ^ :': ·;!- mi1: {>']:: >. 2:;} ) ϋ— ϊ JJ. n I - m ί 1 1 t ί 1 . I - — i I . ~I - n n in 1^1 I (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 A7 B7 〆 4371 0 3 五、發明說明( 折料小❸A1GaN比例將隨著接近活性層而減少,而因使 隨著p側多層膜層接近活性層,其折射率增大,所以可獲 致一具有折射率梯度的層。 承上所述’由上述所構成之LD元件係與實施形態i -樣’由於其每一氮化物半導體層的結晶性係可變好,因 此可使致始電壓降低,且可提升輸出。 此外’對琢種LD元件而言,由於位於夾住該活性層 之η惻多層膜層與p側多廣膜層之任一方係為一越接近活 性層其4射率越大之具有折射率梯度的層,可形成 一免好的光導波路徑,且可輕易、有效地調整雷射光的模 態。 .…在上述LD元件的例子中,係藉由第1及第3氮化物 半等體膜厚的變化’錢n側與p側多層膜層成為一 折射率梯度層’然,本發明係不只限於此’其亦可使第2 及“氮化物半導體膜之膜厚順次變化,而使其作為折射 率梯度層。 〖此外’於本發明中’第1或第2氮化物半導體膜其中 至少有―為第m族元素的組成’且其組成係依序不同於 近接< 同為第⑴族元素組成…或第2氮化物半導體 膜據以使其具有折射率梯度。例如,當第i氮化物半導 係為InGaN ’而第2氮化物半導體膜係為GaN時 1氮化物半導體膜中的In比率係隨著接近活性層而逐步增 多,因此其折射率係可隨著接近活性層而增大,進而可: 成-同樣具有折射率梯度之氮化物半導體層…對邮州 筇391 f Μ--------^---------^ (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the Invention (Conductor film 8a uses a value less than 0, and the fourth nitride semiconductor 8b uses GaN. Furthermore, J nitride semiconductor film 8 The thickness of a is 100 angstroms or less, and more preferably 70 angstroms or less. The more preferred is 50 angstroms or less. Similarly, the thickness of the fourth nitride semiconductor film 8 b is []. Below 0 angstroms, and preferably below 70 angstroms, more preferably below 50 angstroms. When the thickness of the 1st or 4th nitride semiconductor film is ⑽angstroms or less, bismuth may be used. When the elastic critical film thickness of a nitride semiconductor is less than that of a thick film, it is a KUM compound semiconductor. In addition, since the crystallinity of the nitride semiconductor layer becomes better, a P-type is added. In the case of impurities, the carrier concentration will increase, because ππ can obtain a ρ layer with a lower resistivity. At the same time, the initial value of w and the element can be reduced. This is explained in the third nitride half of Embodiment 1 Both the guide ft and the fourth nitride semiconductor film 8b may be undoped, or Both of them can be incorporated into p-type impurities, or even one of them is doped with P soil impurities. 3 is a ρ layer with a high carrier concentration, and it is best to modulate the impurity. As mentioned above, the thickness of the above-mentioned ice when it is undoped is (M ... the lower is better, and it is preferably below 700 angstroms, and more preferably below 500 angstroms. If When the thickness is larger than 0.1 and the thickness exceeds 0.1, the resistance value of the undoped material layer tends to increase. When both of them are doped with p-type impurities, the third mouse compound semiconductor film 8a The ρ-type m❹μ u is the ρ-type impurity concentration in the fourth nitride semiconductor film 8 b. As for the nitride semiconductor device of the above embodiment, 'though this page 37 nnnnnn. nnn In 01 I — II ..... II ϋ II (Please read the precautions on the back before filling this page) A7 A371 〇3 _B7_ V. Description of the invention () The p-side multilayer film 8 is formed in the p-side region 40, but the present invention is not limited to this It can also replace the p-side multilayer film layer 8 with a single p 恻 cover layer 18 as shown in Fig. 2. In addition, the nitride semiconductor in Fig. 2 In the case, the p-side region 41 is composed of the p-side cover layer 18 and the p-side contact layer 9. [Variation Example] Although the LED element has been described as an example in the first embodiment, the present invention It is not limited to this, and it can also be applied to the second group of lasers. The effect is the same as that of Embodiment 1. At the same time, it can be changed as follows. In other words, for the LD device, the η-side multilayer film layer can be changed by A first nitride semiconductor film formed of InGaN and a second nitride semiconductor film formed of GaN are alternately stacked on each other, and the film thickness of the first nitride semiconductor film is sequentially increased toward the active layer. Big. Since the η-side multilayer film has the above-mentioned structure, the ratio of InGaN with a large refractive index for the η 恻 multilayer film layer will increase as it approaches the active layer, and as the η-side multilayer film layer will approach The active layer has an increased refractive index, so a layer with a refractive index gradient can be obtained. In addition, for the LD device, the p-side multilayer film layer may be formed by alternately stacking a third nitride semiconductor film made of AlGaN and a fourth nitride semiconductor film made of GaN, and the The film thickness of the third nitride semiconductor film is sequentially reduced toward the active layer. Since the P-side multilayer film has the above-mentioned structure, for the P-side multilayer film, 'its page 3B:: .ίΐ ^ ^:': ·;!-Mi1: {> '] :: >. 2 ::}) ϋ— ϊ JJ. N I-m ί 1 1 t ί 1. I-— i I. ~ I-nn in 1 ^ 1 I (Please read the notes on the back before filling this page ) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 〆4371 0 3 V. Description of the Invention (The proportion of A1GaN will decrease as it approaches the active layer, and as the p-side multilayer film layer approaches the active layer, Its refractive index increases, so a layer with a refractive index gradient can be obtained. From the above-mentioned 'LD element system composed as described above and embodiment i-like', the crystallinity of each nitride semiconductor layer can be obtained. It becomes better, so that the initial voltage can be reduced, and the output can be improved. In addition, for the LD device, since it is located between the η 恻 multilayer film sandwiching the active layer and the p-side multi-wide film layer, It is a layer with a refractive index gradient that is closer to the active layer and has a higher emissivity, which can form a good optical waveguide path, and can easily Effectively adjust the mode of the laser light ... In the example of the LD device described above, the multilayers of the n-side and p-side layers are refracted by the change in the film thickness of the first and third nitride halves. However, the present invention is not limited to this. It can also sequentially change the film thickness of the second and "nitride semiconductor films" to make it a refractive index gradient layer. [In addition, "in the present invention," the first Or the second nitride semiconductor film has at least "is a composition of a group m element" and its composition is sequentially different from the adjacent < the same as the group VIII element composition ... or the second nitride semiconductor film is based on Refractive index gradient. For example, when the i-th nitride semiconductor system is InGaN 'and the second nitride semiconductor film system is GaN, the In ratio system in a 1-nitride semiconductor film gradually increases as it approaches the active layer, so its refraction The rate can be increased as it approaches the active layer, and thus can be:-a nitride semiconductor layer that also has a refractive index gradient ... for Youzhou 筇 391 f Μ -------- ^ ------ --- ^ (Please read the notes on the back before filling out this page) Staff Consumption of Intellectual Property Bureau, Ministry of Economic Affairs Printed by a cooperative

43 71 〇3 五、發明說明( 而言,隨著In組成的增 61大其折射率係越大。 此外,對於p側多層膜屠 1 口 右呆J或第4氮化物 半導體膜其中至少有—為笛m社_ 為第111族疋素的組成,且其組成 係依序不同於近接之第3β卜 疋第3或第4氮化物半導體膜時’即可 使其具有折射率梯度。 , _ 丨 田弔3氮化物半導體膜係為 AKJaM,而第4氮化物丰连轉除β上43 71 〇3 V. Description of the invention (In terms of 61, the increase in the composition of In increases the refractive index system. In addition, for the p-side multilayer film, there is at least one of the right J or the fourth nitride semiconductor film. — 为 笛 m 社 _ is the composition of the 111th group of halogens, and its composition is sequentially different from that of the 3rd, 3rd, or 4th nitride semiconductor film in close proximity, so that it can have a refractive index gradient. _ 丨 Tiandang 3 nitride semiconductor film system is AKJaM, and the fourth nitride plume is transferred to β

牛導體膜係為時’若位於GaN 層與GaN層之間的AlGaN ®沾A, 〇aN層的A1組成係越接近活性層越 少’則可·^ P型多層膜層㈣之折射㈣次變化,進而可 實質上形成-具組成梯度之氮化物半導體層。又,隨著八丨 組成的增b ’其折射率係越變越小。因此可因應目的而將 該等組成梯度的層配置在p層側β 【實施形態2】 以下將依據第4圖來說明有關本發明之實施形態2的 氮化物半導體元件。 ' 本發明之實施形態2的氮化物半導體元件係為一具有 雙異型構造的發光元件’其係在基板丨上形成有—多重量 子丼構造的活性層7 ,其中該活性層7係分別為—由複數 氮化物半導體層所形成之η側區域1 3 0以及一 ρ侧區域 夾住。 ''斤 更詳而言之’於實施形態2之氮化物半導體元件 4圖所示,該n側區域丨3 〇係包含有一緩衝層丨、 未摻雜質之GnN層103、一含有n型雜質的n倒接觸層 —含有η型雜質的η側第1多層膜層1 〇5、及—由第夏 I * 」—_ J y K.A ίΐ ί>] ψ ----—---------------------- ' ' Ϊ ·'· =f- ((.;KS)A 1 rti^r (:)]〇 y 207 ------------- 裝--------訂---------結 <請先閱讀背面之;£意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印敢 第4〇頁 Λ7 B7 4371 03 五、發明說明( 氛化物半導體膜106a與第2氮 匕物+導體膜1 〇6b所形成 之η側第2多層膜層106 ;而兮 成Ρ惻區域140係包含一由 單層或多層膜所形成之覆蓋層丨 8、及一摻有Mg的ρ側 GnN接觸層9。又,於實施形輯— / ^ 2疋釓化物半導體元件中, 在該η側接觸層4上、以及該 成Ρ侧GnN接觸層9上係分別 形成有一 η電極12及一 p電極η 再者,於第4圖中作為ρ側復蓋廣1〇8者係為一由第 1QSa與第物半導體膜嶋所堆 積形成之多層膜層。 於本發明中,用以作為甚 44&板者係可為—以藍石英c面 或R面、Α面為主面的藍石英,或是如尖晶石(MgAi办) 般的絕緣性基板’或是SlC(含有6h、4h、3c)、以、Zn〇、 GaAs ' GaN等的半導體基板。 於本發明中,該緩衝層1〇2係為一由GadAli dN(d係 在〇<<!£;】的範園内)所形成的氮化物半導體’其中A1的比 例越小,其組成又結晶性越有明顯改善,因此該緩衝層i 〇2 最好係由GaN所構成。 該緩衝層1 02的膜厚係在〇.〇〇2〜〇 5 # m之間,而最 好係調整在0.005〜0.2# m之間,而更好係在〇,〇1〜〇.〇2 V m之間。若該緩衝層1 〇 2的膜厚係調整在上述範園之内 時’則II化物半導體的結晶性將會變好,進而使成長於該 緩衝層1 02上的氮化物半導體的結晶性獲得改善。 該緩衝層1 02的成長溫度係在2〇〇〜900度C之間, 最好係調整在400〜800度C之間。當成長溫度係在上述 ----II -----------1 — 訂·!III — —.^'* (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 第41頁 4371 03 A7 37 經濟部智慧財產局員工消費合作社印製 五、發明說明( 溫度範®内時’則其係可形成良好的複晶,以該複晶係作 為種结晶’則成長於該缓衝層1 上的氪化物半導體的結 晶性將會變好。 依基板之種類、以及成長方式之不同,上述以低溫所 長成之緩衝層1 0 2係可被省略。 其次’於實施形態2中,該未摻雜質之GnN層103 係為一於長成時未添加有n型雜質的層。若將該未摻雜質 之GnN層1 〇3成長於緩衝層1 〇2上時,則該未摻雜質之 GnN層1 03的結晶性將會很好,進而使成長於該未摻雜質 之GnN層1 〇3上之η侧接觸層4等的結晶性變好。該未摻 雜質之GnN層1 〇3的膜厚係在〇,〇 1 m以上,而最好係 在〇. 5 ν m以上,而更好係在1 4 m以上a當膜厚係在上述 範圍時’則將可使η侧接觸層4以後的層能以良好之結晶 性來成長。此外’該未摻雜質之GnN層1 03的膜厚並無一 定上限,其係可考量製造效率而加以適當調整。 其次,於實施形態2中,該含有η型雜質的n側接觸 層4所含有之η型雜質的濃度係為3xl〇iS/cm3以上,而最 好是在5 X I 〇 "/cm3以上。若將上述η型雜質大量摻入’並 以此層作為η側接觸層時,則可降低V f及啟始值。若雜 質濃度係脫離上述範固時,則Vf將很難下降。此外,當 A η側接觸層4係形成於該未摻雜質之層1 〇3上時, 則無論其係是否具有高濃度的η型雜質’其亦可具有良好 I結晶性。於本發明中,雖然該η側接觸層4之η型雜質 並# 一定的上限,但,為使其持有作為良好接觸層機能之 (請先閱讀背面之注意事項再填寫本頁) , t--------訂---------病 經濟部智慧財產局員工消費合作社印製 4371 03 五、發明說明() 結晶性,其濃度最好係在02 !/Cm3以下。 該n側接觸層4的组成係可由IneAlGai e tN(〇幺, e + kl)所構成,其組成並無一定的限定,但為獲致結晶缺 陷較少的氮化物半導體層,其係以GaN、或是f值係〇-2 以下的AlfGai-fN者為佳。此外,雖然該n側接觸層4的 膜厚並無-定的限定’但’由於其係為—用以形成η電極 的層,因此,其膜厚係為0‘1〜2〇#m之間者為佳,最好 係在0.5〜之間,而更好係在1〜^m之間。若其 膜厚係在上述範圍之内時,則可降低其電阻值,且可降低 發光元件的順向電壓° 此外,苦後述的n側第1多層膜層⑻係形成為_較 厚的膜,且作為接觸層使用#’則該n側接觸層4係可被 省略。 再者,於實施形'態2中,該η側第1多層膜層105係 由氮化物半導體層所堆積而成之多層模所形成,其中,該 氮化物半導體層係至少包含有2種以相互不同。型雜質漠 度摻入而鍵隙能量不同的半導體層,或是2種以相互不同 η型雜質濃度摻入而有相同組成的半導體層,f“侧第丄 多層膜層1〇5的膜厚係為2/zm以下,而最好係在i 5#m 以下,更好係在0.9 y m以下。雖然其下限並無一定限制’ 但最好係在0.0 5 y m以上。 構成上述多層膜之氮化物半導體層間的之不同濃度 係可利用調變摻雜,此時,其一方的層膜係呈不接雜質狀 態,也就是說可為未摻雜質狀態。 - ---I------ 裝---II---訂--- ------.^ (請先閱讀背面之注意事項再填寫本頁) ‘ 4371 03 A7If the Al conductor film is located between the GaN layer and the GaN layer, the A1 composition of the 〇aN layer is closer to the active layer, and the refractive index of the P-type multilayer film can be reduced. The change can further form a nitride semiconductor layer with a composition gradient. Moreover, the refractive index becomes smaller and smaller as the composition increases. Therefore, the layers having these composition gradients can be arranged on the p-layer side according to the purpose. [Embodiment 2] A nitride semiconductor device according to Embodiment 2 of the present invention will be described below with reference to Fig. 4. 'The nitride semiconductor device according to the second embodiment of the present invention is a light-emitting device having a double-type structure.' It is formed on the substrate 丨 an active layer 7 having a multiple quantum 丼 structure, wherein the active layers 7 are- The n-side region 130 and a p-side region formed by the plurality of nitride semiconductor layers are sandwiched. As shown in the figure of the nitride semiconductor device 4 in Embodiment 2, the n-side region 丨 3 〇 includes a buffer layer 丨, an undoped GnN layer 103, and an n-type Impurity n-contact layer—the η-side first multi-layered film layer 1 containing η-type impurities, and—from the first summer I * ”— — J y KA ίΐ ί >] ψ ---- ------ ------------------ '' Ϊ · '· = f- ((.; KS) A 1 rti ^ r (:)] 〇y 207 ----- -------- Install -------- Order --------- End < please read the back; please fill in this page before paying attention to the matter) Staff of Intellectual Property Bureau of the Ministry of Economic Affairs Consumer Cooperatives Co., Ltd. Page 40 Λ7 B7 4371 03 V. Description of the Invention (The n-side second multilayer film layer 106 formed by the semiconductor semiconductor film 106a and the second nitrogen + conductor film 106b; The yttrium region 140 includes a cover layer 8 formed of a single layer or a multilayer film, and a ρ-side GnN contact layer 9 doped with Mg. Furthermore, in the embodiment of the semiconductor semiconductor device, An η electrode 12 and a p electrode η are formed on the η-side contact layer 4 and the P-side GnN contact layer 9, respectively. Further, in FIG. 4 As the ρ side cover 108, it is a multilayer film formed by stacking the first QSa and the second semiconductor film 。. In the present invention, what is used as the 44 & Blue quartz with c-plane, R-plane, and A-plane as the main surface, or an insulating substrate such as spinel (MgAi), or SlC (containing 6h, 4h, and 3c), Zn, GaAs A semiconductor substrate such as GaN. In the present invention, the buffer layer 102 is a nitride semiconductor formed by GadAli dN (d is in the range of 0 < <!£;), where A1 The smaller the ratio, the more obviously the composition and crystallinity are improved. Therefore, the buffer layer i 〇2 is preferably composed of GaN. The film thickness of the buffer layer 102 is between 0.002 and 0.005 m. It is better to adjust between 0.005 ~ 0.2 # m, and more preferably between 0.001 ~ .02 V m. If the film thickness of the buffer layer 1 〇 2 is adjusted in the above range In the circle, the crystallinity of the II semiconductor will be improved, and the crystallinity of the nitride semiconductor grown on the buffer layer 102 will be improved. The growth temperature of the buffer layer 102 Between 200 and 900 degrees C, it is best to adjust between 400 and 800 degrees C. When the growth temperature is above ---- II ----------- 1 — Order · ! III — —. ^ '* (Please read the notes on the back before filling out this page) Printed by the Consumers' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Page 41 4371 03 A7 37 Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs [Explanation of the Invention] (Within the temperature range®, the system can form a good complex crystal. Using the complex system as a seed crystal, the crystallinity of the halide compound semiconductor grown on the buffer layer 1 will be improved. Depending on the type of substrate and the growth method, the above-mentioned buffer layer 102 formed at a low temperature may be omitted. Secondly, in the second embodiment, the undoped GnN layer 103 is a layer that is not added with n-type impurities when grown. If the undoped GnN layer 103 is grown on the buffer layer 102, the crystallinity of the undoped GnN layer 103 will be good, and the growth will be made on the undoped GnN layer 103. The crystallinity of the η-side contact layer 4 and the like on the high-quality GnN layer 103 is improved. The film thickness of the undoped GnN layer 1 0 3 is more than 0,01 m, and preferably it is more than 0.5 ν m, and more preferably more than 14 m. When the film thickness is In the above range, the layers after the n-side contact layer 4 can be grown with good crystallinity. In addition, the film thickness of the undoped GnN layer 103 is not limited, and it can be appropriately adjusted in consideration of manufacturing efficiency. Next, in the second embodiment, the n-type impurity contained in the n-side contact layer 4 containing the n-type impurity has a concentration of 3 x 10 iS / cm3 or more, and more preferably 5 X I 0 " / cm3 or more. When a large amount of the above-mentioned n-type impurity is incorporated and this layer is used as the n-side contact layer, V f and the initial value can be reduced. If the impurity concentration is out of the above range, Vf will be difficult to decrease. In addition, when the A η-side contact layer 4 is formed on the undoped layer 103, it may have good I crystallinity regardless of whether or not the system has a high concentration of η-type impurities. In the present invention, although the n-type impurity of the n-side contact layer 4 has a certain upper limit, in order to hold it as a good contact layer function (please read the precautions on the back before filling this page), t -------- Order --------- Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Illness and Economics 4371 03 V. Description of the invention () Crystallinity, its concentration is best at 02! / Cm3 the following. The composition system of the n-side contact layer 4 may be composed of IneAlGai e tN (〇 幺, e + kl). The composition is not limited, but in order to obtain a nitride semiconductor layer with less crystal defects, it is made of GaN, Or, AlfGai-fN with an f-number of 0-2 or less is preferred. In addition, although the film thickness of the n-side contact layer 4 is not limited, but it is a layer for forming an η electrode, so the film thickness is 0′1 to 2〇 # m. The best is between 0.5 ~, and more preferably between 1 ~ ^ m. If the film thickness is within the above range, the resistance value can be reduced, and the forward voltage of the light-emitting element can be reduced. In addition, the n-side first multilayer film layer described later is formed into a thick film And using # 'as the contact layer, the n-side contact layer 4 can be omitted. Furthermore, in Embodiment 2, the first n-side multilayer film layer 105 is formed of a multilayer mold formed by stacking nitride semiconductor layers, and the nitride semiconductor layer system includes at least two kinds of Different from each other. Doped semiconductor layers with different bond gap energies, or two semiconductor layers with the same composition doped at mutually different n-type impurity concentrations. It is below 2 / zm, preferably below i 5 # m, more preferably below 0.9 ym. Although the lower limit is not necessarily limited, it is preferably above 0.0 5 ym. Nitrogen constituting the multilayer film Different concentrations of compound semiconductor layers can be modulated by doping. At this time, one of the layer films is in a state of no impurity, that is, it can be in an undoped state.---- I ---- -Install --- II --- Order --- ------. ^ (Please read the precautions on the back before filling this page) '' 4371 03 A7

五、發明說明() 以下首先說明的是’ ΐ“側第}多層膜層! 〇5係為一 至少由2種不同鍵隙能量之氮化物半導體層所堆積而成的 多層膜時的情況》 用以構成該η側第丨多層膜層1〇5之一鍵隙能量較大 的氮化物半導體屬105a及-鏈隙能量較小的氮化物丰導 體層105b的厚度係為100埃以下,而最好係在7〇埃以下’ 更好係調整在10〜40埃之間的範圍内。當鍵陳能量較大 的氮化物半導體I l〇5a及鍵隙能量較小的氮化物半導體 層丨05b的厚度係超過100埃以上時,則其膜厚係為彈性 寶曲界限以上的膜厚,因此膜中將會易於產生些微的縫 隙,或是產生結晶缺陷。雖然鍵隙能量較大的氮化物半導 體層105a及鍵隙能量較小的氮化物半導體層1〇5b的厚度 下限係沒有特別限制,其係只要為〖個原子層以上即可^ 但最好係如前述般係在1 〇埃以上。 經濟部智慧財產局員工消費合作社印製 条上述η側第1多層膜層1〇5係為一各層膜厚均為薄 的多層膜構造時’則構成其多層膜層的氮化物半導體層的 每一膜厚係均可在彈性臨界膜厚以下,因此,其係可成長 成為一結晶缺陷非常少的氮化物丰導體。再者,由於該多 層膜係可藉由形成於基板上之未接雜質之GnN層1 〇3及η 側接觸層4來某種程度防止產生結晶缺陷,因此,可使成 長於其上的η側弟2多層膜層1 〇 6的結晶性變好。此外, 亦有類似於ΗΕΜΤ的效果》 該鍵隙能量較大的氮化物半導體層1 〇 5 a係為一至少 含有A1的氮化物半導體,其最好係由AlgGahNtiXgs:^ 第44頁 本fcV;...尺度鸿明中;家Θ芈(CNS)AI現袼⑺0 公) 一 …… ----- A; B; 4371 Ο 五、發明說明( 所成長者。此外1然該鍵隙能量較小的氛化物半導體層 1 0)b铋只要鍵隙能量比該鍵隙能量較大的気化物半導體 層1 0 5 a者為小即可,但,f , 其係可如 AlhGa! - hN(0<hsl,g>h)、V. Description of the invention () The following is the first description of the “ΐ” side multi-layer film! 〇5 is a multilayer film formed by at least two nitride semiconductor layers with different bond gap energies ” The thickness of the nitride semiconductor 105a which has a large bond gap energy and the nitride-rich conductor layer 105b with a small chain gap energy, which constitute one of the n-side first multilayer film layers 105, is 100 angstroms or less, and It is preferably below 70 angstroms', and more preferably adjusted within a range of 10 to 40 angstroms. When the nitride semiconductor I 105a with a large bond aging energy and the nitride semiconductor layer with a small bond gap energy 丨When the thickness of 05b is more than 100 angstroms, the thickness of the film is more than the elastic treasure limit. Therefore, slight gaps or crystal defects will easily occur in the film. Although nitrogen with a large bond gap energy The lower limit of the thickness of the compound semiconductor layer 105a and the nitride semiconductor layer 105b with a small bond gap energy is not particularly limited, as long as it is at least [atomic layer] ^, but it is preferably at 10 angstroms as described above. Above. Consumer Cooperation of Intellectual Property Bureau of the Ministry of Economic Affairs When the above-mentioned η-side first multilayer film layer 105 is a multilayer film structure in which each layer has a thin film thickness, each layer thickness of the nitride semiconductor layer constituting the multilayer film layer may be Below the elastic critical film thickness, it can grow into a nitride-rich conductor with very few crystal defects. Furthermore, since the multilayer film can be formed by a GnN layer 1 0 and impurities not formed on the substrate The η-side contact layer 4 prevents the occurrence of crystal defects to some extent, so that the crystallinity of the η-side 2 multi-layer film layer 106 which is grown thereon is improved. In addition, there is also an effect similar to that of ΕΕMT. The nitride semiconductor layer 105 with a large bond gap energy is a nitride semiconductor containing at least A1, which is preferably composed of AlgGahNtiXgs: ^ page 44 of this fcV; ... the scale Hongmingzhong; home Θ 芈(CNS) AI is now 公 0) I ... ----- A; B; 4371 〇 5. Description of the invention (who grew up. In addition, the semiconductor semiconductor layer with a smaller bond gap energy 1 0) b As long as the bismuth has a smaller bond gap energy than the halide semiconductor layer 1 0 5 a having a larger bond gap energy, it is sufficient that f , Which can be such as AlhGa!-HN (0 < hsl, g > h),

InjGa卜』Ν(0<」21)之易成〇 1, 勺* :_昆EtH或3元;昆晶的氮化物 半導體,以獲致良好的社a.,、.从故& f明性。其中,1茨鍵隙能量較大的 氮化物半導體層l〇5a會晳μΛ: , . . τ九 J£i Τ #上係以未含有in的AlgGai_ gN(0<gSl)’而鍵陆能量較小的氮化物半導體層ι〇讣實質 上係以未含有乂的者為佳,其中,為獲 致一結晶性良好的多膜層,其最好係八丨混晶比為〇.3以下 的 AlgGa丨-sN(〇<g$i;^ GaN 的組合 3 此外’在將1¾ η側第i多層膜層丨〇5作為覆蓋層用, 俾使其具有光封閉層或載子封閉層之功能時,則必須自活 性層之井層成長出鍵隙能量較大的氮化物半導體層。而所 謂的键隙能量較大的氮化物半導體層係指具有較高A1混 晶比的氮化物半導體。就習知而言,若具有較高A丨混晶 比的氛化物半導體係以較厚的膜厚來形成時,則會易於產 生縫隙’進而使結晶成長非常困難。但,如本發明所述’ 若將該η側第1多層膜層1 〇 5形成多層膜層,則由於構成 多層膜層的各氮化物半導體層〇5 a,l〇 5 b)係以彈性臨界 膜厚以下的厚度來成長,因此,即使其A1混晶比稍微高 一黠’亦不會產生縫隙。據此,即可成長出一具有良好結 晶性的較高A1混晶比的層,而提高光封閉、及載子封閉 的效果’同時,對雷射元件而言,其係可降低啟始電壓, 而對LED元件而言*其係可降低vf(順向電壓)。 第45贯 ---- .................· I ' 磁InjGa Bu "N (0 <" 21) is easy to get 〇1, spoon *: _Kun EtH or 3 yuan; Kunjing's nitride semiconductor, to obtain good company a. ,,. From the old & f clarity . Among them, the nitride semiconductor layer 105a having a large 1 Å bond gap energy will have a clear μΛ:,.. Τ 九 J £ i Τ # is based on AlgGai_ gN (0 < gSl) ′ without in, and bond land energy The smaller nitride semiconductor layer ι0 讣 is preferably one which does not contain yttrium. Among them, in order to obtain a multi-crystalline layer with good crystallinity, it is preferable to have a mixed crystal ratio of 0.3 or less. AlgGa 丨 -sN (〇 < g $ i; ^ Combination of GaN 3 In addition, the i-th multilayer film layer on the 1¾ n side is used as the cover layer, so that it has a light-blocking layer or a carrier-blocking layer. In the function, a nitride semiconductor layer with a large bond gap energy must be grown from the well layer of the active layer. The so-called nitride semiconductor layer with a large bond gap energy refers to a nitride semiconductor with a higher A1 mixed crystal ratio. As far as the conventional technology is concerned, if an oxide semiconductor with a higher A 丨 mixed crystal ratio is formed with a thicker film thickness, gaps are more likely to occur, and crystal growth is very difficult. However, as the present invention claims, As described above, if the first multilayer film layer 105 on the η side is formed into a multilayer film layer, each nitride constituting the multilayer film layer 〇5 conductor layer a, l〇 5 b) based with a thickness of a critical film thickness or less elasticity to grow, and therefore, even if it is slightly higher than the mixed crystal A1 a crafty 'will not produce a gap. According to this, a layer with a high A1 mixed crystal ratio with good crystallinity can be grown, and the effect of light confinement and carrier confinement can be improved. At the same time, for the laser element, it can reduce the starting voltage For LED devices, * it can reduce vf (forward voltage). No. 45 ---- ............ I 'Magnetic

试張尺 c ?:ΡΗ· :¾ 阔家ίΐ羋(CNS);\;规·ίΐ W f請先閱讀背面之注意事項再填寫本頁) 裝--------訂---------綠 經濟部智慧財產局員Η消費合作社印製 經濟部智慧財產局員工消費合作社印製 43了1 Ο〔 λ? ________ B7___ 五、發明說明() 再者,μ隙能量較大的氮化物半導體I 1〇5a及鍵隙 能量較小的IL化物半導體層1Q5b之間的n型雜質濃度係 不相同者為佳。也就是所謂的調變摻雜,其係使其中之一 層的η型雜質濃度變小,或是為未摻入雜質的狀態,而另 一層係為同濃度,據此亦可使啟始電壓 '及等降低。 此乃是由於多層膜層中存在有低雜質漢度的層時,則該層 的移動度將會變大,此外又由於其與高雜質濃度的層同時 存在時’則可在高載子漢度的狀態形成一多層摸層。換言 之,由於同時存在有低雜質濃度、高移動度的層與高雜質 漢度、高載子濃度的層,因此高載子濃度卫移動度大的層 係可成為一覆蓋層1也因如此,吾人可推知啟始電壓及vf 係可降低。 在鍵隙能量較大的氮化物半導體層l〇5a係摻雜較多 時,其摻入該鍵隙能量較大的氮化物半導體層丨05a中的 雜質量係為id〇17/cm3〜uio2(Vcm3,最好係調整在 ixl〇1^m3〜1xl〇l9/c^的範圍之間。若其係小於 i X 1 0 /cm ,則與該鍵隙能量較小的氮化物半導體層1 〇讣 間的差將會變小,因此將很難獲致—較大載子濃度的層: 此外,當其係大於lxl〇2Q/cm3 ,則元件本身的漏電流將會 增多。另一方面,雖然該鍵隙能量較小的氮化物半導體層 之η型雜質濃度係只要比該鍵隙能量較大的氮化物半導體 層少即可’但最好是少於1/1()以上。其實最好是在未接雜 時,則可獲致一最高移動度的層,但由於膜的厚度係較 薄,因此,會有擴散自鍵隙能量較大的氮化物半導體層 第邮见 .....-_ -I ·—涛一 ^ J-· 1 · -1 ,> . J >«, · » , ...... ............. : λ-: ——-------___________ -------------^---- <請先閱讀背面之注意事項再填寫未頁) 訂---------線 A7 ---- 〆 4371 Ο 五、發明說明( l〇5a的n型雜質,而其量 別也. 糸最好在hlOH/cm3以下。作為Test ruler c?: ΡΗ ·: ¾ Wide family (ΐ 芈) (CNS); \; ·· ΐΐ W f Please read the precautions on the reverse side before filling out this page) Installation -------- Order --- ------ Member of the Intellectual Property Bureau of the Ministry of Green Economy printed by the Consumer Cooperative Cooperative. The employee of the Intellectual Property Bureau of the Ministry of Economic Affairs printed 43 1 〇 [λ? ________ B7___ V. Description of the invention () Furthermore, the μ gap energy is large. It is preferable that the n-type impurity concentration between the nitride semiconductor I 105a and the IL compound semiconductor layer 1Q5b having a smaller gap energy is different. This is the so-called modulation doping, which makes the concentration of n-type impurities in one of the layers smaller or in a state where no impurities are doped, and the other layer is the same concentration, which can also make the starting voltage ' And so on. This is because when a layer with a low impurity concentration exists in the multilayer film layer, the mobility of the layer will increase, and because it exists at the same time as a layer with a high impurity concentration, the The state of the degree forms a multilayer touch layer. In other words, since a layer with a low impurity concentration and a high mobility and a layer with a high impurity concentration and a high carrier concentration coexist, a layer system with a high carrier concentration and a large mobility can also be a covering layer 1. We can infer that the starting voltage and vf can be reduced. When the nitride semiconductor layer 105a with a large bond gap energy is doped more, the impurity amount incorporated in the nitride semiconductor layer with a larger bond gap energy 丨 05a is id〇17 / cm3 ~ uio2 (Vcm3, it is preferably adjusted in the range of ix101 × m3 ~ 1x101 / c ^. If it is less than i X 1 0 / cm, the nitride semiconductor layer 1 with a smaller bond gap energy The difference between 〇 讣 will become smaller, so it will be difficult to obtain-a layer with a larger carrier concentration: In addition, when it is greater than lxl02Q / cm3, the leakage current of the element itself will increase. On the other hand, Although the n-type impurity concentration of the nitride semiconductor layer with a smaller bond gap energy may be less than that of the nitride semiconductor layer with a larger bond gap energy ', it is preferably less than 1/1 (). In fact, most Fortunately, when it is not doped, a layer with the highest mobility can be obtained, but because the thickness of the film is thin, there will be a nitride semiconductor layer with a large diffusion gap energy from the bond .... .-_ -I · —Taoyi ^ J- · 1 · -1, >. J > «, ·», ... .............: λ -: ------------___________ ------------- ^ ---- < Please read the notes on the back before filling out the last page) Order --------- Line A7 ---- 〆4371 〇 V. Description of the invention (n-type impurity of 105a, and its amount Also. 糸 is preferably below hlOH / cm3. As

η』雜質者係可如si、Qη ”impurities can be such as si, Q

.. 甘1 S、〇等的週期表第IVB: Gan 1 S, 〇 etc. Periodic Table IVB

族’其最好係以Si、Ge、S夾祚A „ ^ t 吓為n型雜質。在該鍵隙能 量較大的氮化物半導體層1〇5a ... •、换入較少η型雜質’而 孩鍵隙能量較小的氮化物丰壤 ^ 層l05b係摻入較多η型 雜枭時,亦同樣具有上述作用。 此外,就構成η側第1多層肢a 夕增膜層105的氮化物半導體 層105a及氬化物半導體層 3 iU;ib而言’其中’對於摻入高 濃度雜質的層而言,其在厚户古 在厚度万向上’比較好的是半導體 中央郢附近的雜質濃度係較大, 货敉大叩量端部附近的雜質濃度 係較小(最好係呈無接人狀態)。更進一步而言,當多層膜 層係由摻入η型雜質Si的A1GaN及未換雜質的㈣所形 成時miGaN轉有n型雜f &,因此係作為施體 而產生電子到傳導帶’該電子係落到低電位的⑽之傳導 ^由於戎GaN結晶中係未摻入有施體雜質,因此不會受 到雜質的載子擴散。所以,電子係很容易地移動到GaN結 晶中’進而使實質的電子移動度增高。此乃類似於2次元 電子氣體的效果’其係可使電子橫向的實質電子移動度增 高’並使電阻率變小。再者,若在鍵隙能量較大的AlGaN 的中心區域摻入高濃度的η型雜質,則將可使效果加大。 亦即’由於移動於GaN中的電子的關係,因此多少會有受 到AlGaN中所含之η型雜質離子(Si)的擴散。但,若相對 於AlGaN層之厚度方向上,其兩端部係不摻雜質時,則較 不易受到Si的擴散,因此將有助於未摻雜質之GaN層之 第47頁 f琦先閱靖背φν;1意事項再填寫本 裝--------訂---------緣 經濟部智慧財產局員工消費合作社印製 « , , ——..... ,| …一--- 4371 〇3 B. 五、發明說明() 移動度的提升。 其次’係說明有關當n側第1多層膜層1 〇 5係由同一 組成之氮化物丰導體層所構成’且分別以不同濃度之η型 雜質摻入該等氮化物半導體層中的情況。 此時’用以構成η側第1多層膜層1 〇 5的氮化物半導 體並供一定的組成限制,只要是同一組成即可,而較佳材 料係可如GaN«若該„側第1多層膜層丄05係由GaN所構 成時,則可使2元混晶之GaN的成長結晶性比3元混晶還 好,並且使以後所成長的氮化物半導體之結晶性良好。 於本實施形態2中’該η側第1多層膜層1 〇5之多層 膜係由一含有τι型雜質且為GaN所形成的氮化物半導體層 l〇5a、及一 n型雜質濃度不同於該氮化物半導體層 且為GaN所形成的氮化物半導體層i〇5b所堆積構成。此 時’其中之一係可為不摻雜質者。 承上所述,利用同一組成且相互之間係以調變捧入的 方式而使其η型雜質的摻入量不同的2種氮化物半導體層 來構成η側第1多層膜層1 〇5時,亦可如同以不同鍵隙能 量且經調變摻雜的至少2種類別的層來構成η側第丨多層 膜層1 05時一樣具有相同效果。 Ν側雜質濃度係在lxl〇l7/cml1><1〇2!/cm3之間,最好 係在lxl〇iS/cm3〜lxl〇19/cm3的範圍之間。此外,於本發明 中’該η側第1多層膜層1 05的總厚度雖無特別限制,作 其係在1 000〜4000埃者為佳,而最好係在2〇〇〇〜3〇㈧埃 之間。而構成多層膜之每一層的厚度係在500埃以下者為 笫48頁 —丨_ I. - _ . „·. sM· - . ~ t --- ,ν,· Κ··« » ------- —.. 入纸鸪用家泛彳((:Ν」)Αί」格χπ;7公沒) _ (請先閱讀背面之注意事項再填寫本頁) 裝 -----訂---------祷 經濟部智慧財產局員工消費合作社印製 4371 03 A7 ________ B7__ 五、發明說明() (請先閱讀背面之注意事項再填寫本頁) 佳而取好係在2 0 〇埃以下,更好的是在丨〇 〇埃以下。又, 構成多層膜之每一層的厚度下限並無特別限制,其雖只要 係有1原子層以上即可’但最妤係在1 〇埃以上。若其膜 厚係如上所述’則即可使其在結晶性良好的情況下成長, 且可提升其發光輸出。 另外’如上述所述,由不同鍵隙能量或是同一組成但 雜質濃度不同的2種類以上之層所構成的n侧第t多層膜 層1 〇)係亦可兼作n側接觸層。此時*該η側第1多層膜 層的獏厚係在0>5〜4 ν m之間,而最好係在3 ν m 之間,更好者係在2〜2.8 /z m之間。此時的n側第1多層 膜層1 0 5的膜厚係依據2種以上之氮化物半導體層的層數 以及(或)各膜厚來加以調整。又,構成此時的η側第1多 層膜層1 的每一膜厚係可為上述範圍之薄膜層的多膜 層’此外’就全體的膜厚而言,若其係為兼具有η侧接觸 居之η側第1多層膜層1 〇 5之上述膜厚範圍時,則各膜厚 係依據超過上述範圍的2種以上氮化物半導體來加以調 整。 經濟部智慧財產局員工消費合作社印製 此外’在本實施形態2中,如第4圖所示,用以夾住 該活性層7並位於其下部的η側區域1 3 0係包含有一η侧 第2多層膜層! 06,該^側第2多層膜層1 〇6係由一含有 In的第1氮化物半導體膜106a、及一组成成份不同於該第 1氮化物半導體膜1 〇6a的第2氮化物半導體膜1 〇6b所堆 積而成。就該η側第2多層膜層1 〇6而言,其第1氮化物 半導體膜1 06a與第2氮化物半導體膜1 〇6b係最少分別形 第49頁 IHIII 1«. . .ί ,心:!中 豕d. 技烙(:.:)〇 χ :入:/ 公分: 一 -------------- 437丨 03 A7 B? 五、發明說明( 經濟部智慧財產局員工消費合作社印製 成有一層以上,合計共2層,或3層以上,最 成有2層以上’合計共4層以上者為佳3 在該η侧第2多層獏層106接合於該活性層7時接 觸於該活性層之最初層(井層、或障壁層)的層係可為第工 氮化物半導體膜106a或是第2氮化物丰導體摸!〇6b,此 時,η惻第2多層膜層1 06的堆積順序並無特別限制,又, 雖然於第4圖中η側第2多層膜層ι06係接合於該活性層 7 ’但,在η側第2多層膜層丨〇6與活性層7之間亦可設 有由其他η型氮化物半導體所形成的層。 於本實施形態2中’就該η側第2多層膜層1 〇6而言, 該第1氮化物半導體獏106a或是第2氮化物半導體膜丨〇讣 中,至少須有一方之厚度係為1〇〇埃以下,而最好是第i 氮化物半導體膜l〇6a及第2氮化物半導體膜} 〇6b兩者係 均在100埃以下,更好係在7〇埃以下,更佳者係最好在 5 0埃以下。據此,由於膜厚越薄,則該n侧第2多層膜層 1 0 6將會形成超晶格構造’因此會使該η側第2多層膜層 1 06的結晶變佳’進而提升其輸出。 承上所述’由於上述η側第1多層獏層! 〇 5與^侧第 2多屬膜層丨〇6組合’則可使發光輸出進一步提升,並使 順向電壓(Vf)進一步降低。其理由雖然不是很清楚,但 可以使成長於該n惻第2多層膜層1 0 6上之活性層的結晶 性變彳f更好係可以確定。 該第1氮化物半導體膜1 06a係為一含有In的氮化物 半導體’其係可為3元混晶的inkGai kN(〇<k<i),或是k 最好是分別形 (請先閱讀背面之王意事項再填寫本頁) 裝---( 訂---------線 經濟部智慧財產局員工消費合作社印製The group 'It is best to use Si, Ge, and S to intersect 祚 A „^ t to be n-type impurities. In this nitride semiconductor layer 105a with a large bond gap energy ... •, less η type Impurities' and nitride-rich soils with smaller bond gap energy ^ The layer 105b also has the above-mentioned effect when it is doped with more η-type dopants. In addition, it constitutes the first multilayer limb a on the η side. For the nitride semiconductor layer 105a and the argon semiconductor layer 3 iU; ib, 'where', for a layer doped with a high concentration of impurities, it is better in the thicker thickness of the thicker layer in the thick semiconductor layer near the center of the semiconductor. The impurity concentration is large, and the impurity concentration near the end of a large amount of cargo is small (preferably in a non-contact state). Furthermore, when the multilayer film is made of A1GaN doped with n-type impurity Si In the formation of plutonium without changing impurities, miGaN has n-type hetero f & therefore, electrons are generated as donors to the conduction band. 'The electron system falls to the low potential of plutonium conduction. It is doped with a donor impurity, so it will not be diffused by the carrier of the impurity. Therefore, the electron system can be easily transferred. In the GaN crystal, 'thereby increasing the substantial electron mobility. This is similar to the effect of a two-dimensional electron gas', which increases the substantial electron mobility in the transverse direction of the electrons' and reduces the resistivity. Furthermore, if the Doping a high concentration of η-type impurities in the central region of AlGaN with a large bond gap energy will increase the effect. That is, 'Because of the relationship between the electrons moving in GaN, it will be somewhat affected by the content of AlGaN. Diffusion of η-type impurity ions (Si). However, if the two ends of the AlGaN layer are not doped, they will be less susceptible to the diffusion of Si. Page 47 of the GaN layer f. First read the back of Jing φν; fill in the contents of the first issue -------- order --------- printed by the staff consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs System «,, ——....., |… I --- 4371 〇3 B. V. Description of the invention () Improvement of mobility. Secondly, it is about the first multilayer film layer on the n side 1 〇5 It is composed of a nitride-rich conductor layer of the same composition, and the nitride semiconductor layers are doped with n-type impurities of different concentrations, respectively. At this time, 'it is used to form a nitride semiconductor of the first multilayer film layer η on the η side and a certain composition limit, as long as it is the same composition, and the preferred material can be GaN When the first multilayer film 丄 05 is made of GaN, the growth crystallinity of the ternary mixed crystal GaN is better than that of the ternary mixed crystal, and the crystallinity of the nitride semiconductor grown later is good. In the second embodiment, the multilayer film of the η-side first multilayer film layer 105 is composed of a nitride semiconductor layer 105a containing τι-type impurities and formed of GaN, and an n-type impurity concentration different from The nitride semiconductor layer is formed by stacking a nitride semiconductor layer 105b made of GaN. In this case, one of them may be an undoped substance. As described above, the first multilayer film layer 1 on the η side is formed by using two kinds of nitride semiconductor layers having the same composition and different doping amounts of η-type impurities with each other. In this case, the same effect can also be obtained when the n-side multilayer film layer 105 is formed with at least two types of layers with different bond gap energies and modulated doping. The N-side impurity concentration is between lxlOl7 / cml1 > < 102! / Cm3, preferably in the range of lxlOiS / cm3 to lxlO19 / cm3. In addition, in the present invention, although the total thickness of the η-side first multilayer film layer 105 is not particularly limited, it is preferably set to be 1,000 to 4000 angstroms, and more preferably 2000 to 300. ㈧ 埃. The thickness of each layer constituting the multilayer film is less than 500 Angstroms. Page 48— 丨 _ I.-_. „·. SM ·-. ~ T ---, ν, · Κ ··« »- ----- — .. Published by the user ((: Ν ”) Αί ″ 格 χπ; 7 公 没) _ (Please read the precautions on the back before filling this page) Packing ----- Order --------- Pray printed by the Intellectual Property Bureau's Consumer Cooperatives of the Ministry of Economic Affairs 4371 03 A7 ________ B7__ V. Description of the invention () (Please read the precautions on the back before filling out this page) Below 200 Angstroms, more preferably below 100 Angstroms. In addition, the lower limit of the thickness of each layer constituting the multilayer film is not particularly limited, and it is sufficient if it is at least 1 atomic layer ', but it is most preferably at least 10 angstroms. If the film thickness is as described above, it can be grown with good crystallinity, and its luminous output can be improved. In addition, as described above, the n-side t-th multilayer film layer 1 composed of two or more layers having different bond gap energies or the same composition but different impurity concentrations may also serve as the n-side contact layer. At this time, the thickness of the first multilayer film on the η side is between 0 and 5 to 4 ν m, preferably between 3 ν m, and more preferably between 2 and 2.8 / z m. The thickness of the n-side first multilayer film layer 105 at this time is adjusted according to the number of layers of two or more kinds of nitride semiconductor layers and / or each film thickness. In addition, each of the film thicknesses constituting the first multi-layer film layer 1 on the η side at this time may be a multi-film layer that is a thin film layer in the above-mentioned range. In addition, in terms of the overall film thickness, if it has both η When the above-mentioned film thickness range of the η-side first multilayer film layer 105 on the side contact is set, each film thickness is adjusted based on two or more kinds of nitride semiconductors exceeding the above range. Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. In addition, in the second embodiment, as shown in FIG. 4, the n-side region 1 3 0 for sandwiching the active layer 7 and located on the lower side includes an n-side. The second multilayer film! 06. The second multilayer film layer 106 is composed of a first nitride semiconductor film 106a containing In and a second nitride semiconductor film having a composition different from that of the first nitride semiconductor film 106a. 1 06b was formed. With regard to the second multilayer film layer 〇6 on the η side, the first nitride semiconductor film 106a and the second nitride semiconductor film 106b are at least respectively shaped. Page 49 IHIII 1 «... :! Zhong d. Technical Branding (:. :) 〇χ: 入: / cm: 1 -------------- 437 丨 03 A7 B? V. Description of Invention (Intellectual Property Bureau, Ministry of Economic Affairs Employee consumer cooperative printed with more than one layer, a total of 2 or more, or more than 2 layers, the most is more than 2 layers, a total of 4 or more is better. 3 On the η side, the second multi-layered layer 106 is joined to the activity. When the layer 7 is in contact with the first layer (well layer or barrier layer) of the active layer, the first nitride semiconductor film 106a or the second nitride-rich conductor can be used! 〇6b, at this time, η 恻 第The stacking order of the two multilayer film layers 106 is not particularly limited. Although the second multilayer film layer ι06 on the η side is bonded to the active layer 7 ′ in FIG. 4, the second multilayer film layer on the η side 丨 〇 A layer made of another n-type nitride semiconductor may be provided between 6 and the active layer 7. In the second embodiment, as for the n-side second multilayer film layer 106, the first nitride Among the semiconductor 讣 106a or the second nitride semiconductor film, at least one of them must have a thickness of 100 angstroms or less, and the i-th nitride semiconductor film 106a and the second nitride are preferable. Semiconductor film} 〇6b Both are below 100 angstroms, more preferably below 70 angstroms, and more preferably below 50 angstroms. According to this, since the thinner the film thickness, the n-side second The multi-layered film layer 106 will form a superlattice structure 'so that the crystallization of the second multi-layered film layer 106 on the η side will be better' and further improve its output. From the above, 'Because of the first multi-layered η-side layer' The combination of 〇5 and the second multi-layer film layer on the ^ side 丨 〇6 can further increase the luminous output and further reduce the forward voltage (Vf). Although the reason is not very clear, it can make it grow n: The crystallinity of the active layer on the second multilayer film layer 106 can be determined better. The first nitride semiconductor film 106a is a nitride semiconductor containing In. Its system may be 3 YuanGai kN (〇 < k < i), or k is best to be separately (please read the matter of the king on the back before filling out this page) Pack --- (order ----- -Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs

AkK.$. rEi! 43 7^ a? ___B7 _ 發明說明() 值係在0·5以下的InkGaUkN,或是k值最好係在0.2以下 的InkGa!-kN者。而第2氮化物半導體膜1 06b只要是其組 成不同於該第1氮化物半導體膜1 〇6a即可,其並無特別 之限定’但’為使能長出結晶性良好的第2氮化物半導體 膜1 〇6b’其須係為一鍵隙能量比第1氮化物半導體膜丨06a 還大的2元混晶或3元混晶的氮化物半導體。於η側第2 爹層膜層106中,該第2氮化物半導體膜i〇6b係可為 IntnGai-mN(〇Sm<l,m<k),而為使全體能長成一結晶性良好 的多廣膜層’其最好係為GaN »因此,最佳的组合係為: 第1氮化物半導體膜1 〇6a係使用k值係在0.5以下的 inkGa卜kN,而第2氮化物半導體膜ι〇61)係使用GaN。 蒋者,於本實施形態1中,第1氮化物半導體膜106a 或第2氮化物半導體膜106b其中至少有一厚度係可不同 或同於近接的第1氮化物半導體膜1〇 6a或第2氮化物半 導體膜106b的厚度。此外’所謂膜厚度與近接之層不同 係指:當多層膜層係由複數個第1氮化物丰導體膜l〇6a 及第2氮化物半導體膜106b所構成時,該第2氮化物半 導體膜l〇6b(第1氮化物半導體膜1〇6a)的膜厚係與夾住該 第2氮化物半導體膜106b的第1氮化物半導體膜1〇6a(第 2氮化物半導體膜1 〇6b)的膜厚不同的意思。 例如,當第1氮化物半導體膜l〇6a係為InGaN,而 弟2亂化物半導體膜106b係為GaN時,位於GaN層與 GaN層之間的InGaN層的膜厚係可越接近活性層越厚,或 是越接近活性層越薄’據此’由於可使多層膜層内部之折 第51頁 ΐ-· ;ν·", (21 ; >: vr,7 — l!III!iln— 衣.----— I— (請先閱讀背面之注意事項再填寫本頁) ' 4371 03 Λ7 B? 經濟部智慧財產局員工消費合作社印製 五、發明說明( 射率變化,因此可形成折射率依序變化的層a換言之,其 實質上係與形成一具組成梯度之氮化物半導體層相同故 果。據此’對於必須形成有雷射元件般之光導波路徑的元 件而言,則即可以該多層膜層來形成導波路徑,進而可調 整雷射光的模態。 再者’上述第1氮化物半導體膜丨〇6a或第2氮化物 半導體膜l〇6b其中至少有一為第ΠΙ族元素的组成,且其 组成係可不同於近接的第i氮化物半導體膜i 〇6a或第2 氮化物半導體膜1 06b。所謂組成不同係指:當多層膜層係 由複數個第1氮化物半導體膜106a及第2氮化物半導體 膜106b所構成時,第2氮化物半導體膜106b(第i氮化物 半導體膜106a)的組成比係與夾住該第2氮化物半導體膜 l〇6b的第1氮化物半導體膜106a(第2氮化物半導體膜 l〇6b)的第III族元素组成比不相同的意思。 例如’當同一第III族元素之组成相互不同,且第1 氮化物半導體膜106a係為inGaN,而第2氮化物半導體 膜106b係為GaN時,位於GaN層與GaN層之間的inGaN 層的丨η組成係可越接近活性層越多,或是越接近活性層 越少,據此,與膜厚順次變化一樣地,將可使多層膜層内 部之折射率變化,而實質上形成一具組成梯度之氮化物半 導體層。又’隨著In組成的減少,其折射率係有變小的 傾向。 該η侧第2多層膜層1 〇6亦可與該活性層相離而設, 但最好係與該活性層相鄰而設·>與該活性層相鄰時係可使 第52頁 11t--------訂----------嫂 (請先閱讀背面之注意事項再填寫本頁) 4371 03 A7 Β7 經濟部智慧財產局員工消費合作社印製 五、發明說明( 輪出較易提升。 此外,就該n側第2多層膜層100而言,其第i氮化 物半導體膜106a與第2氮化物半導體膜i〇6b係均可不掺 雜質,或是其兩者均摻有雜質。但為使結晶性能進一步提 升,其最好係未摻雜質者較佳,次佳者係該第1氮化物半 導體膜l〇6a與第2氮化物半導體膜丨〇6b中之一方掺入^ 型雜質,亦即所謂的調變摻雜,而其次係兩者均摻雜。 當兩方均摻入n型雜質時,該第丨氮化物半導體膜 l〇6a之η型雜質濃度係可不同於該第2氮化物半導 106b之η型雜質濃度。 又,作為η型雜質者係可如Si、〇e、Sn、5等的第ιν 族、或第νι族元素,其最好係以Si、Gn來作為”雜質。 在此,所謂的未摻雜質係指刻意地不摻入雜質狀態, 例如對於由鄰接之氮化物半導體層所擴散而混入的錐質 而言1於本發明中亦屬未捧雜質。又,因擴 、的雜 質係會使層内的雜質產生梯度。 此外,當該第1氮化物半導體膜106a與(或)第2卞 物半導體膜l〇6b係摻有η型雜質時1其雜質濃度係 調整在5xl021/cm3以下’而更佳者係調整在 以下。若超過5xl〇2VCm3,則氮化物半導體層的結晶性em 會變差,反而使輸出下降。此對於調變摻雜質時的3將 1有相 同情況。 再者’就η側第2多層膜層1〇6而言,第1及第之 化物半導體膜雙方的厚度係為100埃以下,而最好係 11 仕> 7 〇 第53頁 ίίΐ (CNS)A-l m% (2]i) χ 297 ν>^ ) j --------訂-------1*·" (請先閱讀背面之泛意事項再填寫本頁) 4371 03 A? B7 經濟部智慧財產局員工消費合作社印製 五、發明說明( =下為佳,更佳者係最…〇埃以下。當單一氮化物 +導體膜的厚度…00埃以下時,氮化物半㈣單—層 的厚度係可在彈性臨界膜厚以下,相較於厚膜的情況下, 其係較可長成結晶性良好的氮化物半導體。此外,若是雙 方均在70埃以下時’ 側第2多層膜層1〇6係可為超 晶格(多層膜)結構’當在此一結晶性反好的超晶格結構之 多廣膜層上形成活性層時,侧第2多層膜層ι〇6即可 作為緩衝層用’進而可成長出一結晶性良好的活性層。 在本實施形態2中,該多重量子井構造之活性層7係 為一含有In及Ga的氮化物半導體,其係可由WGt 』(〇α<υ所形成;n型、p型均可,但,其係以不摻雜質、 以使較強鍵間發光之發光波長的半值幅縮小者為佳。而該 活性層7亦可摻入η型或p型雜質,當該活性層7摻入η 型雜質時,相較於未摻雜質的情況,其鍵間發光強度係可 更強。而當該活性層7摻入p型雜質時,波峰波長雖約可 位移到比鍵間發光之波峰波長低〇. 5 eV的能量側,但半值 幅係變大。當該'/舌性層7同時摻入η型或p型雜質時,則 該活性層7的發光強度係可比上述單獨摻入ρ型雜質時 大。值得一提的是’當形成一摻入有ρ型雜質之活性層7 時’該活性層7之導電型係可同時摻入Si等^型雜質而 使其全體變成η型。而為使能成長出一結晶性良好的活性 層,最好係不摻雜質。 該活性層7的障壁層與井層的堆積順序並無一定限 制,其係可由井層開始堆積而終於井層,或是由井層間始 第54頁 I — II . ------------- ί請先閱讀背面之注意事項再填寫本頁} 4371 03AkK. $. REi! 43 7 ^ a? ___B7 _ Description of the invention () InkGaUkN whose value is below 0.5, or InkGa! -KN whose k value is preferably below 0.2. The second nitride semiconductor film 106b may have a composition different from that of the first nitride semiconductor film 106a, and is not particularly limited. However, the second nitride semiconductor film 106b is a second nitride having good crystallinity. The semiconductor film 106b 'needs to be a two-element mixed crystal or a three-element mixed crystal nitride semiconductor having a bond gap energy larger than that of the first nitride semiconductor film 06a. In the second d side film layer 106 on the η side, the second nitride semiconductor film i〇6b system may be IntnGai-mN (〇Sm < 1, m < k), so that the whole can grow into a good crystallinity. The multi-layer film layer is preferably GaN. Therefore, the best combination system is: the first nitride semiconductor film 106a uses inkGa and kN with a k value of 0.5 or less, and the second nitride semiconductor film ι〇61) uses GaN. Jiang Zhe, in the first embodiment, at least one of the first nitride semiconductor film 106a or the second nitride semiconductor film 106b may have a different thickness from that of the first nitride semiconductor film 106a or the second nitrogen. Thickness of the compound semiconductor film 106b. In addition, the difference between the film thickness and the adjacent layer means that when the multilayer film layer is composed of a plurality of first nitride conductor films 106a and a second nitride semiconductor film 106b, the second nitride semiconductor film The thickness of 106b (first nitride semiconductor film 106a) is based on the thickness of the first nitride semiconductor film 106a (second nitride semiconductor film 106b) sandwiching the second nitride semiconductor film 106b. The meaning of the film thickness is different. For example, when the first nitride semiconductor film 106a is InGaN and the second semiconductor film 106b is GaN, the closer the film thickness of the InGaN layer between the GaN layer and the GaN layer is to the active layer, the more the Thicker, or thinner the closer to the active layer, 'according to this' can make the inside of the multilayer film fold. Page 51 ΐ-;; ν · ",(21; >: vr, 7 — l! III! Iln — 衣 .----— I— (Please read the notes on the back before filling in this page) '4371 03 Λ7 B? Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy Forming the layer a whose refractive index sequentially changes, in other words, it is essentially the same as forming a nitride semiconductor layer with a composition gradient. Accordingly, 'for a device that must form a laser-guided optical waveguide path, Then, the multilayer film layer can be used to form a guided wave path, and the mode of laser light can be adjusted. Furthermore, at least one of the first nitride semiconductor film 106a or the second nitride semiconductor film 106b is the first The composition of group II elements, and its composition system may be different from the adjacent i-th nitride The body film i 〇6a or the second nitride semiconductor film 106b. The difference in composition means that when the multilayer film layer is composed of a plurality of first nitride semiconductor films 106a and second nitride semiconductor films 106b, the second The composition ratio of the nitride semiconductor film 106b (i-th nitride semiconductor film 106a) is the same as that of the first nitride semiconductor film 106a (second nitride semiconductor film 106b) sandwiching the second nitride semiconductor film 106b. Means that the composition ratio of the Group III elements is not the same. For example, 'When the composition of the same Group III elements is different from each other, and the first nitride semiconductor film 106a is inGaN and the second nitride semiconductor film 106b is GaN, The inGaN layer of the inGaN layer located between the GaN layer and the GaN layer can be closer to the active layer, or the closer to the active layer, the less the active layer can be. Based on this, as the film thickness changes sequentially, multiple film layers can be made. The internal refractive index changes to form a nitride semiconductor layer with a composition gradient. Also, as the In composition decreases, the refractive index tends to become smaller. The second multilayer film layer on the η side 1 〇 6 It can also be provided separately from the active layer, but preferably The active layer is located next to each other > When adjacent to the active layer, it can be made on page 52 11t -------- Order ------------ 嫂 (Please read the back page first Note: Please fill out this page again) 4371 03 A7 Β7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (Rotation is easier to improve. In addition, for the n-side second multilayer film 100, its i Both the nitride semiconductor film 106a and the second nitride semiconductor film 106b may be undoped, or both of them may be doped with impurities. However, in order to further improve the crystallization performance, it is better to be undoped, and the second best is to incorporate one of the first nitride semiconductor film 106a and the second nitride semiconductor film 〇06b ^ Type impurities, so-called modulation doping, and secondly, both are doped. When both types are doped with n-type impurities, the n-type impurity concentration of the nitride semiconductor film 106a may be different from the n-type impurity concentration of the second nitride semiconductor film 106b. In addition, as the n-type impurity, elements such as Si, Oe, Sn, and Group ιν or Group ν, or the like, are preferably Si and Gn as "impurities". Here, the so-called non-doped Impurities are states that are not intentionally doped with impurities. For example, for cones mixed by diffusion from an adjacent nitride semiconductor layer, 1 is also an unsupported impurity in the present invention. In addition, impurities due to diffusion and diffusion are Gradient of impurities in the layer. In addition, when the first nitride semiconductor film 106a and / or the second halide semiconductor film 106b is doped with n-type impurities, the impurity concentration is adjusted to 5xl021 / cm3 or less. 'The better one is adjusted as follows. If it exceeds 5 × 10 2 VCm3, the crystallinity of the nitride semiconductor layer will be deteriorated, but the output will be reduced. This is the same for 3 when the dopant is adjusted. Furthermore, in the case of the second multilayer film layer η on the η side, the thicknesses of both the first and second compound semiconductor films are 100 angstroms or less, and preferably 11 gt; 7 〇 page 53 ίΐ (CNS ) Al m% (2) i) χ 297 ν > ^) j -------- Order ------- 1 * · " (Please read the general matters on the back before filling (Writing this page) 4371 03 A? B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the invention (= is better, the better is the most ... 0 Angstrom or less. When the thickness of a single nitride + conductor film ... 00 Below Angstroms, the thickness of the nitride semi-fluorene monolayer can be less than the critical elastic film thickness. Compared with thick films, it can grow into nitride semiconductors with good crystallinity. In addition, if both Below 70 Angstroms, 'the second multilayer film layer 106 on the side may have a superlattice (multilayer film) structure' When an active layer is formed on such a wide film layer with a supercrystalline structure with poor crystallinity The second multilayer film layer 〇06 can be used as a buffer layer, and an active layer with good crystallinity can be grown. In the second embodiment, the active layer 7 of the multiple quantum well structure is composed of In. And Ga nitride semiconductors, which can be formed by WGt ′ (〇α <υ; n-type and p-type are acceptable, but they are half doped, so that the light emission wavelength between the strong bonds is half the light emission wavelength It is better to reduce the amplitude. The active layer 7 can also be doped with n-type or p-type impurities. When the active layer 7 When doped with η-type impurities, compared with the case of non-doped materials, the inter-bond emission intensity can be stronger. When the active layer 7 is doped with p-type impurities, the peak wavelength can be shifted to about The emission peak wavelength is lower than the energy side of 0.5 eV, but the half-value amplitude becomes larger. When the '/ tongue layer 7 is simultaneously doped with n-type or p-type impurities, the luminous intensity of the active layer 7 is comparable. The above is large when doped with a p-type impurity alone. It is worth mentioning that 'when an active layer 7 doped with a p-type impurity is formed', the conductive type of the active layer 7 may be simultaneously doped with Si-type impurities such as Si The whole becomes an n-type. In order to grow an active layer with good crystallinity, it is preferred that it is undoped. The stacking order of the barrier layer and the well layer of the active layer 7 is not limited. It can be started from the well layer and finally the well layer, or from the well layer. Page 54 I — II. -------- ----- ί Please read the notes on the back before filling out this page} 4371 03

五、發明說明( 堆積而終於障壁層,或县 A Λ層開始堆積而終於井層。V. Description of the invention (The barrier layer was accumulated and finally, or the A Λ layer of the county began to accumulate and finally the well layer.

丼層《厚度係為1〇〇埃U 技土 下而最好係在70埃以下,更 佳者係調整在50埃以下,於 m ^ ^ βΡ 、發月中,該井層之厚度下 限並無一疋限制’但其最好作五丨拓t 、瑕好係為I原子層以上、最好係在 10埃以上。當該井層之凰廢 厚度係為100埃以上時,則輪出會 有很難提升的傾向。 另外,該障壁層的厚度係須在2〇〇〇埃以下,最好係 在500埃以下’而更好係調整在3〇〇埃以下…於本發 明中,該障壁層的原声下防#, & 叼厚度下限並铁特別限制’其只要係有1 原子層以上即可’但最好係纟! 〇埃以上。若該障壁層的 厚度係在上ic範圍之内,則輪出將可易於提升。此外,於 本發明中該活性層7的全體總厚度並無一定限制,其係 可依LED元件等的期望波長等因素,來調整障壁層與井層 的堆積廣數與堆積順序’進而據以調整該活性層7的總厚 度。 經濟部智慧財產局員工消費合作杜印製 於本實施形態2中,p側覆蓋層係用以作為一 p側多 層膜覆蓋層108’其係由一鍵隙能量較大的第3氮化物半 導體膜l〇8a '及一鍵隙能量比第3氮化物半導體膜i〇8a 小的第4氮化物半導體膜i〇8b所堆積而成,其兩者中的p 型雜質濃度係可不同、亦可相同。此外,於本發明中,p 側覆蓋層亦可由一含有p型雜質的八1^&1.1^(〇^^1)所形 成的單一層所構成。 以下係首先說明有關當p側覆蓋層係為一具有多層膜 構造(超晶格構造)之ρ側多層膜覆蓋層1 〇 8時的情況。 第55頁 4371 03The thickness of the stratum is 100 angstroms, preferably below 70 angstroms, and more preferably adjusted below 50 angstroms. At m ^ ^ βP and mid-month, the lower limit of the thickness of the well layer is There are no restrictions, but it is best to make the extension t, and the defect is more than I atomic layer, preferably more than 10 Angstroms. When the thickness of the waste layer of the well layer is more than 100 Angstroms, the rotation will tend to be difficult to improve. In addition, the thickness of the barrier layer must be 2000 angstroms or less, preferably 500 angstroms or less, and more preferably 3,000 angstroms or less. In the present invention, the original soundproofing of the barrier layer is # , & 下 Lower thickness limit and iron are particularly limited 'It only needs to have more than 1 atomic layer', but it is best to be 纟! 〇Age or more. If the thickness of the barrier layer is within the range of the upper ic, the roll-out can be easily improved. In addition, in the present invention, the total thickness of the active layer 7 is not limited. It can adjust the stacking number and order of the barrier layer and the well layer according to factors such as the desired wavelength of the LED element and so on. The total thickness of the active layer 7 is adjusted. The consumer cooperation of the Intellectual Property Bureau of the Ministry of Economic Affairs is printed in this Embodiment 2. The p-side cover layer is used as a p-side multilayer film cover layer 108 ', which is a third nitride semiconductor with a large bond gap energy. The film 108a ′ and a fourth nitride semiconductor film i08b having a bond gap energy smaller than that of the third nitride semiconductor film i08a are stacked, and the p-type impurity concentration in the two may be different. Can be the same. In addition, in the present invention, the p-side cladding layer may also be composed of a single layer formed by 11 ^ & 1.1 ^ (〇 ^^ 1) containing p-type impurities. The following will first describe the case when the p-side cover layer is a p-side multilayer film cover layer 108 having a multilayer film structure (superlattice structure). Page 4371 03

五、發明說明( 經濟部智慧財產局員工消货合作社印製 若p侧 構成琢p側多層膜覆蓋層1〇8的第 1 OSa輿第4氬化物主通城姐 钆。阀千孚體膜 亂化物+導體膜〗08b的膜厚係在1〇〇埃以下, 而最好係在7 〇埃以下,尹佳 ^ 下更佳者係碉整在50埃以下,且該 第3氮化物半導體膜i〇8a與第4氮化物主I# 币*虱化物+導體膜108b的 膜厚係可相同或是尤内必免 ^ " 多層膜構造的每一膜厚係在上 述範圍㈣H氮化物半導髗的膜厚係可在彈性臨界 膜厚以下,相較於厚膜的情況下’其係較可長成結晶性良 好:氣化物半導體。此外,由於氮化物半導體層之結晶性 變仔較好’因Λ,在添加有Ρ型雜質時,則可獲致一載子 濃度較大’且電阻率較小的?層,同時亦可使元件的vf、 啟始值降低。上述膜厚的2種類的層保為一組,並且由其 多次堆積而成一多層膜層。因此’該卩侧多層膜覆蓋層1〇8 的總膜厚係可藉由調整第3氮化物半導體膜丨〇8a與第4 氮化物半導體膜丨〇8b的各膜厚、以及調整堆積次數來加 以調整。該p側多層膜復蓋層108的總膜厚並無一定限 制’其係可在2000埃以下,而最好係在1 〇〇〇埃以下,更 佳者係調整在500埃以下,若總膜厚係在上述範圍之内 時,則可提高發光輸出,並且使順向電壓(Vf)降低。 該第3氮化物半導體膜1 〇sa係為一至少含有A1的氮 化物半導體,其最好係由六丨(1〇&1_1^(〇<11<1)所成長者。此 外,該第4氮化物半導體層105b係可由如 AlpGau pN(〇<pSl,n>p)、InrGa!-rN(〇£d)之 2 元混晶或 3 元混晶的 氤化物半導體所成長。 覆蓋層係為一超晶格構造的P侧多層膜覆蓋層 第56頁 本的·&尺a適ffl f國@灾標準(CNSM1规朽U10 «:撕公梵 . ^ · -------訂·--------续 (請先閱讀背面之泫意事項再填寫本頁) 437103 Λ7 經 濟 部 智 慧 財 產 局 消 費 合 作 杜 印 製 B7 五、發明說明() ⑽時’則結晶性係可變好’且電阻率係可降低同時亦 可使Vf降低。 若P側多廣膜覆蓋層108之第3氮化物半導體W〇Sa 與第4氛化物半導體膜嶋間的㈣雜質濃度係不相同, 其—方之雜質濃度係較大’而另-方之雜質濃度係較小 時則如同η側第1多層膜層5般地,當將鍵隙能量較大 之第3氮化物半導體膜咖的ρ型雜質濃度增大,且將 鍵隙能量較小之第4氮化物半導體膜1Q8b的ρ型雜質濃 度變小(或是不摻入雜質)時,則可使啟始電壓、vf等降 低。反之亦可’亦即將鍵隙能量較大之第3氮化物半導體 膜l〇8a的P型雜質濃度變小,而將鍵隙能量較小之第4 孔化物半導體膜l〇8b的P型雜質濃度增大。 挣入到該第3氮化物半導體膜丨〇 8 a中的雜質量係為 lxl018/em3+l〇2l/cm3 ’ 最好係調整在 lxlOl9/Cm3〜5xl02Q/cm3的範圍之間。若其係少於 1 X 1 018/cm3 ’則與該第4氮化物半導體膜! 〇8b的差將會變 小’因此’將很難獲致—載子濃度較大的層,另外,當其 係超過1X 1 〇21/cm3時’其結晶性將會變差。此外,該第4 亂化物半導链膜1 〇 8 b之p型雜質濃度係少於第3氪化物 丰導體膜108a者為佳,最好係少於1/10以上,原本最好 的是在未摻入雜質時,則可獲致一移動度較高的層,但, 由於膜厚甚薄’因此會有擴散自該第3氮化物半導體膜 108a的p型雜質,因此其量係最好在1χ 1〇2〇/cm3以下。再 者’當摻入於該鍵隙能量較大之第3氮化物半導體膜l〇8a 第57頁 (請先閱讀背面之注意事項再填寫本頁) 裝---------訂------!_線 4371 03 A7 _________ B7_______ 五、發明說明() 中的P型雜質較少,而掺入於該鍵隙能量較小之第4氮化 物半導體膜l〇8b中的p^i雜質較多時的情況亦同3 作為P型雜質者係可如Mg、Zn、Ca、Be等的週期表 第IIA族、第πβ族元素,其最好係以Mg、Ca來作為p 型雜質。 再者’於構成多層膜之氮化物半導體層中,就接入高 漠度的雜質的層而言,其在厚度方向上,比較好的是半導 禮中央部附近的雜質濃度係較大,而量端部附近的雜質濃 度係較小(最好係呈無摻入狀態),如此即可使電阻率降 低。 其次’當該p側覆蓋層係以一由含有p型錐質之 八1"&1.以((^1^1)所形成之單一層所構成時,則該?侧單 一膜覆蓋層的膜厚係在2000埃以下,而最好係在ι〇〇〇埃 以下,更佳者係調整在500〜1 00埃以下。若膜厚係在上 逑範圍之内時,則可提高發光輸出,並且使順向電壓(vf) 降低。該p側單一膜覆蓋層的組成係為AUGat. bN(〇<b<l) ° 然而’相較於上述多層膜層構造的P侧覆蓋層,該單 —膜:層的覆蓋層的結晶性係稍微差一點,但其係可藉由與 上述η側第1多層膜層1 05的組合而使其結晶性變好,同 時使啟始值以及V f降低》此外,雖然其係為單一膜,但 藉由與其他層構造的組合,即可減少元件性能低下,且由 於其係為單一膜,因此將可使製程簡化,此係有助於量 產。 第58頁 木紙ift 度琀;1}十阀拽家!準(C:Ns)A.1枧格(JO X的7公; (請先閱讀背面之注意事項再填寫本頁) 裝 I ------ T n 1- t 經濟部智慧財產局員工消費合作社印製 A7 B7 4371 03 五、發明說明( 該P側單_膜覆蓋層的p型雜質濃度係可在 lxl〇l8/cm3〜lxl〇21/cm3 ’最好係調整在 5x1〇,cm3〜5xl〇2a/cm3的範圍之間,更佳者係調整在 ^ i 0丨x 1 〇2 Vcm3的範圍之間。若雜質濃度係在上述 範圍之内時,則即可形成良好的p型膜。 其次,於本實施形態中,若摻入Mg之p惻GaN接觸 層9係為單層時,則其組成係為一不包含匕、ai的2元 混晶氮化物半導體。在單層的情況下,若假定含有ln、A!, 則與p電極11間將無法獲得良好的歐姆接觸,且發光效 率將會下降。p側接觸層9的膜厚係在〇.〇〇1〜m之 間,最好係在0 · 0 1〜〇 · 3 m之間,更佳者係在〇 〇 5〜〇 2 β ni之間。當膜厚係比0·001;ίΖιη還薄時,則將易與p型 Ga A1N覆盍層短路’而很難用以作為接觸層。為將一不同 组成之2元混晶的GaN接觸層堆積到3元混晶的GaAIN 覆蓋層之上’若其膜厚係超過〇.5 v m時,則在該p側GaN 接觸層9中將易產生晶格缺陷’而使結晶性降低。又,接 觸層的膜厚越薄,V f則越低,因此可提升發光效率。另外, 若該p側GaN接觸層9的p型雜質係為Mg時,則較易獲 得P型特性’同時也較易獲致歐姆接觸。Mg的濃度係在 Ul〇u/cm3 〜lxl021/cm3 之間,最好係在 5χ1019 /cm3〜3xl〇20/cm3之間’更佳者係在lxl〇2〇/cm3左右。若 M g的濃度係在此一範圍内,則可易於獲得一良好的p型 膜,並可使V f降低。 此外,該η電極12、及p電極π係分別形成於該η 策59頁 -------I---^--------訂----------^ (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 4371 03 Λ7 B7__ 五、發明說明() 側接觸層4、及p惻GaN接觸層9之上。該打電極丨2、及 P电極1 1的材料並牌一定限弟J,例如,該η電極^ 2係可 為W/A1,而Ρ電極1 1係可為Ni/Au。 【實施形態3】 以下係依據第5圖來說明有關本發明之實施形態3。 如第5圖所示,本發明之實施形態3之氮化物半導體 發光元件係在一藍石英基板1上形成有一緩衝層2〇2,並 在其上依序形成一第In側氮化物半導體層203、一第2n 側氮化物半導體層2 0 4、一第3 η侧氮化物半導體層2 0 5、 一活性層7、一 ρ側覆蓋層1 〇8及一 ρ側接觸層2〇8。又 在本實施形態3中,在該ρ側接觸層2〇8上方的前面上係 形成有一透光性的ρ電極10,且在該ρ電極上的部份 上形成有一銲接用的ρ墊電極1 1 ^此外,在發光元件的一 側’係將第2η側氮化物半導體層204的表面露出,而在 露出的部份上係形成有一 η電極12。 在此,於實施形態3之氮化物半導體發光元件中,如 第5圖所示,η側區域230係由緩衝層202、第U侧氮化 物半導體層203、第2η側氮化物半導體層204、及第 侧氮化物半導體層2 0 5所構成,而ρ側區域2 3 0係由P側 覆蓋層1 08及ρ侧接觸層208所構成。 值得一提的是,於實施形態3中,該ρ侧接觸層2 0 8 係由組成不同的第1氮化物半導體膜2 0 8 a及第2氣化物 半導體膜208b相互交替堆積成晶格構造,上述的2個氮 第60頁 mi Κ!ί ίΐΙίΠΓΪί |Λ] ';: ;ί: ijt (CNS)A-l m'!r (310 x :^97 ) ~ ^--------^-------- *^ (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消f合作社印製 4371 03 Λ7 B7 五、發明說明( 中,至少第1氮化物半導體膜208a係含有 p側接觸層208的上述2個氮化物车導體層 氮化物半導體膜208a係含有In,且第1氮 2〇8a及第2氮化物半導體膜2〇8b係相互交 晶格構造,因此可以形成缺陷極少、且結晶 接觸層208。據此,相較於習知由未具有晶 InGaN所形成者,其係可形成一本身的電阻 可與p電極10有良好之歐姆接觸的p侧接 明,於本實施形態3中,該P側接觸層208 所不之第1氮化物半導體膜2〇8a及第2氮 208b所構成》 表1】 第1氮化物半導體膜 第2氮化物半導體糢 - 208a 208b 1 InxGai .XN GaN 2 InxGai -ΧΝ Lilv£ai.vN(x>y) —3 InxGat .XN • —-- AlzGa丨.,NC0<z< 1、 *-- 經濟部智慧时產局員Μ消費合作社印製 化物半導體層 In。由於構成 中,至少第1 化物半導體膜 替堆積而形成 性良好的p側 格構造之單層 值係:較低,且 觸層208 。 再詳而說 係可由下表1 化物半導體膜 (請先閱讀背面之注意事項再填寫本頁) 在此,#本實施形態3中’為形成一結晶缺陷較 第1氣化物半導體膜2〇8a’表!中的InxGaixN係最 x設定為x<0‘5,更佳者係設為χ<〇 4 X, s. ^ ,^υ.4,而最佳者係 x<0‘3。 第61頁 ------- ) 氏ϊΰ 尺哎適丨丨丨屮巴 :·*!. (210 ^~297ΐν» 43 710 3 A? ------sz___ 五、發明說明() 此外,於本發明中’由於厚度越厚則在厚度方向的電 阻值就越高’因此p型接觸層的膜厚係最好在〇丨P m以 下’更佳者係在5 0 〇埃以下’而最佳者係設為2 〇 〇埃以下。 另外,用以構成該p型接觸層的第!氮化物半導體膜2〇 8a 及第2氮化物半導體膜208b的膜厚係最好分別在1〇〇埃 以下,更佳者係在70埃以下,而最佳者係在5〇埃以下。 事實上最棒的是設在10〜40埃之間。 將構成該p型接觸層的第1氣化物半導體膜2 a及 第2氮化物半導體膜208b的膜厚設在1〇〇埃以下的原因 是:當超過100埃時,各氮化物半導體層將會超過彈性彎 曲界限以上的膜厚,因此膜中會易於產生微小缝隙或是結 晶缺陷,因而無法發揮超晶格構造的效果。此外,於本發 明中,雖然該第1氮化物半導體膜2〇8a及第2氮化物半 導體膜208b的膜厚係至少在!個原子層以上即可,但最 好係如上述般地設定在1 〇埃以上。 經濟部智慧財產局員工消費合作社印製 另外,於本發明中,該第!氮化物半導體膜2〇8a及 第2氮化物半導體膜20813中係至少有一方添加有Mg等雜 貝,以使ρ側接觸層全體具有p型導電性。此外,在第^ 氮化物半導體膜208a及第2氮化物丰導體膜2〇8b雙方中 均掺入有雜質時,丨中之一的氮化物半導體層之p型雜質 濃度係較另一方氮化物半導體層之雜質濃度高(以下稱之 為調變摻雜)。 承上所述,由於該第1氮化物半導體膜2〇8a及第2 氮化物半導體膜208b之一方的雜質濃度係比另一方為 __ 第 621Γ A紙张玫坨迠坩屮 WM-m- 1 心------------------ 經濟部智慧財產局員工消費合作社印製 4371 03 a? B7 五、發明說明() 高,因此,對於雜質濃度高的一方的氮化物半導體層而 言,其係可產生較多的載子,而雜質濃度低的一方之移動 度係較濃度高的一方高。由於由第1氮化物半導體膜208a 及第2氮化物半導體膜208b所堆積而成之超晶格全體的 載子濃度與移動度均高,因此將可使P側接觸層208的電 阻值降低。所以在本實施形態3之氮化物半導體發光元件 中,對於該種p側接觸層208而言,若再利用上述調變摻 雜處理,則可降低規定電流值的順向電壓。 此外*在上述調變摻雜的情況下,摻入其中之一氮化 物半導體層中的p型雜質濃度係在Ixl〇]9/cm3〜5xl021/cm3 之間,而摻入其中另一氮化物半導體層中的P型雜質濃度 係在5x 1 0iS/cm3〜5x 1019/cm3之間,其所摻入的雜質量係最 好少於之前氬化物半導體層的量《若添加於氮化物半導體 層中的P型雜質量係超過5 xlO2〖/cm3時,則將會使晶性惡 化’並使電阻值升高,同時很難獲致良好的歐姆接觸;當 其係少於5 X 1 〇u/cm3時,則將無法獲得充分的載子濃度, 且亦會使輸出降低。 另外’於本發明中,對於該P側接觸層2 〇 8而言,其 第1氮化物半導體膜208¾與第2氮化物半導體膜208 b中 哪一方在上層均可’而與p侧覆蓋層接觸的層係亦可為其 中之任一方。然而,在本發明中,位於最上層的是含有ίη 的第1氮化物半導體膜2 0 8 a,而ρ電極1 〇係形成於該第i 氮化物半導體膜208a之上。據此,將可使p側接觸層2〇8 與P電極間的歐姆接觸電阻變小。 __ 第 63-r 卜办t ,¾ ;ί;中丨销 (2ί0 x 297¾^ ------ -----------------i 訂-------i·" {請先聞讀背面之注意事項再填寫本頁) 經 濟 部 智 慧 財 產 局 員 工 消 費 合 h 社 印 製 4371 0 3 A7 _____ B7 五、發明說明() 換言之,其乃是由於相較於第2氣化物半導體膜 2〇8b,該第1氮化物半導體膜208a係含有In成份(或較多 的ϊη成份),因此可使鍵隙縮小,進而可使構成p電極之 金屬的傳導帶下端能量準位與第1氮化物半導體膜208a 之價電子帶上端的能量準位間的差變小,所以可以使歐姆 接觸電阻變小- 又’於實施形態3之氮化物半導體發光元件中,上述 P侧覆蓋層亦可由一以AlxGai-xN(0<x幺1)所形成的層、及 一以InyGai_yN(〇^y<l)所形成的層相互堆積成一超晶格構 造。此時’構成該P側覆蓋層的每一層膜厚係最好設在彈 性彎曲界限的100埃以下’更好係設在70埃以下,最佳 者係設在50埃以下。而事實上最棒的是設在10〜4〇埃之 間。據此,由於該P側覆蓋層係具有超晶格構造,因此將 可使該P側覆蓋層的電阻值降低。又,該P側覆蓋層1 〇 8 的總厚度係取好设在1 〇 〇埃〜2 y m之間,更佳者係設在 500埃〜1仁m之間。若其膜厚係設在上述範圍内’則其即 可作為一良好的載子封閉層來使用,同時,亦可使該p侧 覆蓋層1 08的全體電阻值較為降低。 【實施形態4】 如第6A圖所示’本實施形態4之氮化物半導體發光 元件係除了在P側接觸層2 0 8中的第1氮化物丰導體膜 2〇8a與第2氮化物半導體膜208b之間加入一組成梯度層 2 08c之外,其他邵份均與實施形態3相同。在此,所謂的 第64頁 t s H (CNS)A-l (2l·: χ m ) ------------ 1 M in-----11---線 (請先閱讀背面之注意事項再填萬本頁) A7 B7 4371 03 五、發明說明() 組成样度層2 〇 8 c係指自第1氮化物半導雜膜2 〇 $ a的組成 朝甸第2氮化物半導體摸208b的組成,其係使其組成在 厚度方向慢慢地連續變化。例如,當第1氮化物半導體膜 208a係為InxGaHN,而第2氮化物半導體膜2〇8b係為 GaN時’如第6B圖所示,就該组成梯度(斜度)層208c而 言,其I η的組成比(X)係由鄭接於該第1氮化物半導體膜 208a的面向鄰接於該第2氮化物半導體膜208b的面,亦 即在厚度方向慢慢減少°又’於本實施形態4中,該組成 梯度層208c之In的組成比(x)只要係能慢慢減少即可,其 組成相對於厚度並不一定是要如同第6B圖所示般地呈直 線變化。 因為由上述所構成之本實施形態4之氮化物半導體元 件中,該第1氮化物半導體膜208a與第2氮化物半導雜 膜2 08b間之界面組成係為連績,因此在層成長時,於第1 氮化物半導體膜208 a與第2氮化物半導體膜208b間之界 面上係可防止特定元素的分凝。據此I由於可以防止特定 元素的分凝(segregation),因此可長成結晶缺陷較少的第1 氮化物半導體膜208a與第2氮化物半導禮膜208b。 就上述第1氮化物半導體膜208a係為InxGauxN,而 第2氮化物半導體膜208b係為GaN的例子而言,即是係 可防止第1氮化物半導體膜208 a與第2氮化物半導體膜 2〇8b之間in的分凝,因此可以獲致良好的結晶性。 第65頁 --------訂-----I ----線 f清先閱讀背面之>i意事項再填寫本頁) 經濟部智慧財產局員工消f合作社印製V. Description of the invention (Printed by the Consumer Goods Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, if the p-side constitutes the p-side multi-layer film covering layer 10, the first OSa and the fourth argonide main communication sister. The valve Qianfu body film Membrane + conductor film 08b has a film thickness of 100 angstroms or less, and preferably 70 angstroms or less, and a lower one is more preferably 50 angstroms or less, and the third nitride semiconductor The film thickness of the film i0a and the fourth nitride main I # coin * lice compound + conductor film 108b may be the same or especially necessary ^ " each film thickness of the multilayer film structure is in the above range ㈣H nitride The film thickness of the semiconductor can be below the critical elastic film thickness. Compared to thick films, it can grow into a good crystallinity: vapor semiconductor. In addition, the crystallinity of the nitride semiconductor layer is changed. A better 'layer' with a higher carrier concentration and a lower resistivity when P-type impurities are added is preferable, and at the same time, the vf and the initial value of the element can be reduced. The two types of layers are kept in one group, and a multilayer film is formed by stacking them multiple times. The total film thickness of the cap layer 108 can be adjusted by adjusting the thickness of each of the third nitride semiconductor film 〇08a and the fourth nitride semiconductor film 〇08b, and adjusting the number of deposition times. The p-side multilayer The total film thickness of the film cover layer 108 is not limited. It may be below 2000 angstroms, preferably below 1000 angstroms, and more preferably adjusted below 500 angstroms. If the total film thickness is below Within the above range, the light emission output can be increased and the forward voltage (Vf) can be reduced. The third nitride semiconductor film 10sa is a nitride semiconductor containing at least A1, and it is preferably composed of six 丨(10 & 1_1 ^ (〇 < 11 < 1). In addition, the fourth nitride semiconductor layer 105b can be made of, for example, AlpGau pN (〇 < pSl, n > p), InrGa! -RN ( 〇 £ d) Growth of a 2-element mixed crystal or a 3-element mixed crystal semiconductor. The covering layer is a super-lattice-structured P-side multilayer film covering layer on page 56. & State @ disaster standard (CNSM1 regulation U10 «: tear public fan. ^ · ------- order · -------- continued (Please read the intention on the back before filling this page) 437103 Λ7 Economy Intellectual Property Bureau Consumption Cooperation Du printed B7 V. Description of the invention () When the time is 'the crystallinity can be improved' and the resistivity can be reduced and Vf can be reduced. The impurity concentration between the 3 nitride semiconductor WoSa and the fourth semiconductor semiconductor film is different. The impurity concentration on one side is larger, and the impurity concentration on the other side is smaller than the n-side impurity concentration. 1 multilayer film layer 5. In general, when the third nitride semiconductor film having a large bond gap energy has a higher p-type impurity concentration, and the fourth nitride semiconductor film 1Q8b with a smaller bond gap energy has a p-type impurity. When the concentration becomes smaller (or no impurity is added), the starting voltage and vf can be reduced. The opposite is also possible. That is, the P-type impurity concentration of the third nitride semiconductor film 108a with a large bond gap energy is reduced, and the P-type impurity of the fourth porosity semiconductor film 108b with a small bond gap energy is reduced. The density increases. The amount of impurities incorporated into the third nitride semiconductor film 08a is lxl018 / em3 + l02l / cm3 ', and is preferably adjusted in a range of lxlOl9 / Cm3 to 5xl02Q / cm3. If it is less than 1 X 1 018 / cm3 ′, it is the same as the fourth nitride semiconductor film! The difference of 〇8b will become smaller, and therefore, it will be difficult to obtain a layer with a higher carrier concentration. In addition, when its system exceeds 1 × 10 2 / cm3, its crystallinity will deteriorate. In addition, it is preferable that the p-type impurity concentration of the fourth chaotic compound semiconducting chain film 108b is less than that of the third halide compound conductor film 108a, and it is more preferably less than 1/10, and the original is most preferably When no impurity is added, a layer with high mobility can be obtained. However, since the film thickness is very thin, p-type impurities diffuse from the third nitride semiconductor film 108a, so the amount is the best. It is below 1x1020 / cm3. Furthermore, when incorporated in the third nitride semiconductor film with a large bond gap energy 108a page 57 (please read the precautions on the back before filling this page) ------! _Line 4371 03 A7 _________ B7_______ 5. In the description of the invention (), there are fewer P-type impurities, and the fourth nitride semiconductor film 108b with a smaller bond gap energy has more p ^ i impurities. The same is true for those who are P-type impurities, such as Mg, Zn, Ca, Be, etc. Group IIA, π β elements of the periodic table, it is best to use Mg, Ca as p-type impurities. Furthermore, in the nitride semiconductor layer constituting the multilayer film, in terms of the layer in which a high degree of impurity is inserted, it is better in the thickness direction that the impurity concentration near the central portion of the semiconductor is larger. The impurity concentration near the end of the amount is relatively small (preferably in a non-doped state), so that the resistivity can be reduced. Secondly, when the p-side covering layer is constituted by a single layer containing p-type cone 1 " & 1. ((^ 1 ^ 1), then the? -Side single film covering layer The film thickness is less than 2000 angstroms, preferably less than 5,000 angstroms, and more preferably adjusted to 500 to 100 angstroms. If the film thickness is within the upper range, the light emission can be increased. Output and decrease the forward voltage (vf). The composition of the p-side single film cover is AUGat. BN (〇 < b < l) ° However, compared to the P-side cover of the above-mentioned multilayer film structure The crystallinity of the cover layer of this single-film: layer is slightly worse, but it can be made better by combining with the above-mentioned η-side first multilayer film layer 105, and at the same time, the initial value can be improved. In addition, although V f is reduced, in addition, although it is a single film, the combination of the structure with other layers can reduce the performance of the device, and because it is a single film, the process can be simplified, which is helpful. For mass production. Page 58 Wooden paper ift degree; 1} Ten valves pull home! Standard (C: Ns) A.1 grid (7 males of JO X; (Please read the precautions on the back before Fill in this page) I ------ T n 1- t Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 4371 03 V. Description of the invention (The P-type impurity concentration of the P-side single-film coating is It can be adjusted between lxl0l8 / cm3 ~ lxl021 / cm3 'The best range is 5x10, cm3 ~ 5xl02a / cm3, more preferably it is adjusted at ^ i 0 丨 x 1 〇2 Vcm3 If the impurity concentration is within the above range, a good p-type film can be formed. Second, in this embodiment, if the p , GaN contact layer 9 doped with Mg is a single layer, Then its composition is a two-element mixed crystal nitride semiconductor that does not contain dagger and ai. In the case of a single layer, if it is assumed to contain ln, A !, a good ohmic contact with the p electrode 11 will not be obtained, and The luminous efficiency will decrease. The film thickness of the p-side contact layer 9 is between 0.001 and m, preferably between 0 · 0 1 and 0.3 m, and more preferably between 0.05 and 0 m. ~ 〇2 β ni. When the film thickness is thinner than 0.001; ί ιι, it will be easy to short-circuit with p-type Ga A1N coating layer, and it is difficult to use it as a contact layer. In order to make a different composition 2 yuan The crystalline GaN contact layer is deposited on the ternary mixed-type GaAIN coating layer. "If the film thickness exceeds 0.5 vm, lattice defects are liable to occur in the p-side GaN contact layer 9" and crystallize. In addition, the thinner the film thickness of the contact layer is, the lower the V f is, which can improve the luminous efficiency. In addition, if the p-type impurity system of the p-side GaN contact layer 9 is Mg, it is easier to obtain a P-type Characteristics' are also more accessible to ohmic contact. The concentration of Mg is between UlOu / cm3 to lxl021 / cm3, preferably between 5x1019 / cm3 to 3xl020 / cm3 ', and the more preferable is about lx1020 / cm3. If the concentration of M g is within this range, a good p-type film can be easily obtained, and V f can be reduced. In addition, the η electrode 12 and the p electrode π are respectively formed on the η policy on page 59. -^ (Please read the notes on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 4371 03 Λ7 B7__ 5. Description of the invention () Side contact layer 4 and p 恻 GaN contact layer 9 The material combination of the electrode 2 and the P electrode 1 1 is limited to J. For example, the n electrode 2 may be W / A1, and the P electrode 1 1 may be Ni / Au. [Embodiment 3] Hereinafter, Embodiment 3 of the present invention will be described with reference to Fig. 5. As shown in FIG. 5, a nitride semiconductor light-emitting device according to Embodiment 3 of the present invention is formed with a buffer layer 202 on a blue quartz substrate 1, and an In-side nitride semiconductor layer is sequentially formed thereon. 203. A 2n-side nitride semiconductor layer 204, a 3n-side nitride semiconductor layer 205, an active layer 7, a p-side cladding layer 108, and a p-side contact layer 208. In the third embodiment, a translucent ρ electrode 10 is formed on the front surface above the ρ-side contact layer 208, and a ρ pad electrode for welding is formed on a portion of the ρ electrode. 1 1 ^ In addition, the surface of the second n-side nitride semiconductor layer 204 is exposed on one side of the light-emitting element, and an n-electrode 12 is formed on the exposed portion. Here, in the nitride semiconductor light-emitting device of Embodiment 3, as shown in FIG. 5, the n-side region 230 is composed of the buffer layer 202, the U-th nitride semiconductor layer 203, the second n-side nitride semiconductor layer 204, And p-side nitride semiconductor layer 205, and p-side region 2 30 is composed of P-side cladding layer 108 and p-side contact layer 208. It is worth mentioning that, in Embodiment 3, the p-side contact layer 2 0 8 is composed of a first nitride semiconductor film 2 8 a and a second gaseous semiconductor film 208 b which are different in composition from each other to form a lattice structure. , The above two nitrogens page 60 mi Κ! Ί ίΐΙίΠΓ | ί | Λ] ';:; ί: ijt (CNS) Al m'! R (310 x: ^ 97) ~ ^ -------- ^ -------- * ^ (Please read the precautions on the back before filling out this page) Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by the cooperative 4371 03 Λ7 B7 V. Description of the invention (medium, at least the first nitride The semiconductor film 208a is based on the above-mentioned two nitride car conductor layers including the p-side contact layer 208. The nitride semiconductor film 208a is based on In, and the first nitrogen 208a and the second nitride semiconductor film 208b are intersecting lattices. Structure, so it can form very few defects and crystalline contact layer 208. According to this, compared with the conventional one formed without crystalline InGaN, it can form a resistance that can have good ohmic contact with the p electrode 10 The p-side connection shows that in the third embodiment, the first nitride semiconductor film 208a and the second nitrogen 208b, which are not included in the P-side contact layer 208, are formed. 1] 1st nitride semiconductor film 2nd nitride semiconductor mold-208a 208b 1 InxGai .XN GaN 2 InxGai-× Ν Lilv £ ai.vN (x > y) —3 InxGat .XN • —-- AlzGa 丨., NC0 < z < 1, *-A member of the Wisdom and Time Bureau of the Ministry of Economic Affairs, M Consumer Cooperative, printed the semiconductor layer In. Due to the structure, at least the first compound semiconductor film was stacked and formed a single layer value system with a good p-side lattice structure. : Lower, and the contact layer 208. More detailed information can be obtained from the following Table 1 compound semiconductor film (please read the precautions on the back before filling in this page) Here, #This Embodiment 3 ' InxGaixN system in the first gaseous semiconductor film 208a 'table! The most x is set to x < 0'5, more preferably, it is set to χ < 〇4 X, s. ^, ^ Υ. 4, and the best The person is x < 0'3. Page 61 -------) ϊΰ ϊΰ 尺 哎 适 丨 丨 丨 屮 巴: · * !. (210 ^ ~ 297ΐν »43 710 3 A? ----- -sz ___ V. Explanation of the invention () In addition, in the present invention, 'the thicker the thickness, the higher the resistance value in the thickness direction'. Therefore, the film thickness of the p-type contact layer is preferably less than 〇 丨 P m. Donor line 50 square angstroms or less in the 'donor line and the best set to 2 billion square angstroms or less. Further, for forming the first p-type contact layer! The film thickness of the nitride semiconductor film 208a and the second nitride semiconductor film 208b is preferably 100 angstroms or less, more preferably 70 angstroms or less, and 50 angstroms or less. In fact the best is between 10 and 40 Angstroms. The reason why the thickness of the first vapor semiconductor film 2 a and the second nitride semiconductor film 208 b constituting the p-type contact layer is 100 angstroms or less is that when it exceeds 100 angstroms, each nitride semiconductor layer will Since the film thickness exceeds the elastic bending limit, minute gaps or crystal defects are easily generated in the film, and the effect of the superlattice structure cannot be exhibited. In the present invention, the thickness of the first nitride semiconductor film 208a and the second nitride semiconductor film 208b is at least! Each atomic layer or more is sufficient, but it is preferably set to 10 angstroms or more as described above. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs In addition, in the present invention, the first! At least one of the nitride semiconductor film 208a and the second nitride semiconductor film 20813 is doped with impurities such as Mg so that the entire p-side contact layer has p-type conductivity. In addition, when both the n-th nitride semiconductor film 208a and the second nitride-rich conductor film 208b are doped with impurities, the p-type impurity concentration of one of the nitride semiconductor layers is higher than that of the other nitride. The semiconductor layer has a high impurity concentration (hereinafter referred to as modulation doping). As mentioned above, the impurity concentration of one of the first nitride semiconductor film 208a and the second nitride semiconductor film 208b is higher than that of the other __ 621Γ A paper rosette WM-m- 1 Heart ------------------ Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 4371 03 a? B7 V. Description of the invention () High, For one nitride semiconductor layer, more carriers can be generated, while the mobility of the one with a lower impurity concentration is higher than the one with a higher concentration. Since the carrier density and mobility of the entire superlattice formed by the first nitride semiconductor film 208a and the second nitride semiconductor film 208b are high, the resistance value of the P-side contact layer 208 can be reduced. Therefore, in the nitride semiconductor light-emitting device according to the third embodiment, the p-side contact layer 208 can reduce the forward voltage of a predetermined current value if the modulation doping process is used again. In addition, in the case of the above-mentioned modulation doping, the p-type impurity concentration in one of the nitride semiconductor layers is between Ixl0] 9 / cm3 to 5xl021 / cm3, and the other nitride is doped therein. The concentration of P-type impurities in the semiconductor layer is between 5x10iS / cm3 ~ 5x1019 / cm3, and the impurity amount is preferably less than the amount of the previous argon semiconductor layer (if added to the nitride semiconductor layer) When the P-type impurity in the medium exceeds 5 xlO2 [/ cm3, the crystallinity will be deteriorated ', and the resistance value will be increased, and it will be difficult to obtain a good ohmic contact; when it is less than 5 X 1 〇u / At cm3, a sufficient carrier concentration will not be obtained, and the output will be reduced. In addition, in the present invention, for the P-side contact layer 208, either the first nitride semiconductor film 208¾ or the second nitride semiconductor film 208 b may be an upper layer, and the p-side contact layer 208 may be the upper layer. The contacting layer system may be any one of them. However, in the present invention, the first nitride semiconductor film 208a containing η is located on the uppermost layer, and the p-electrode 10 is formed on the i-th nitride semiconductor film 208a. This makes it possible to reduce the ohmic contact resistance between the p-side contact layer 208 and the P electrode. __ 第 63-r 办 办 t, ¾; ί; 中 丨 销 (2ί0 x 297¾ ^ ------ ----------------- i Order ---- --- i · " {Please read the precautions on the back before filling out this page) Printed by the Consumer Affairs Bureau of the Intellectual Property Bureau of the Ministry of Economic Affairs 4371 0 3 A7 _____ B7 V. Description of the invention () In other words, it is Compared with the second gaseous semiconductor film 208b, the first nitride semiconductor film 208a contains an In component (or more ϊη component), so that the bond gap can be reduced, and the metal constituting the p electrode can be further reduced. The difference between the energy level at the lower end of the conduction band and the energy level at the upper end of the valence electron band of the first nitride semiconductor film 208a is reduced, so that the ohmic contact resistance can be reduced. In the device, the P-side cladding layer may also be formed of a layer formed of AlxGai-xN (0 < x 幺 1) and a layer formed of InyGai_yN (〇 ^ y < l) to form a superlattice structure. At this time, 'the thickness of each layer constituting the P-side cover layer is preferably set to 100 angstroms or less in the elastic bending limit', more preferably 70 angstroms or less, and the most preferable is 50 angstroms or less. In fact, the best is between 10 and 40 angstroms. Accordingly, since the P-side cover layer has a superlattice structure, the resistance value of the P-side cover layer can be reduced. In addition, the total thickness of the P-side cover layer 108 is preferably set between 100 angstroms and 2 μm, and more preferably between 500 angstroms and 1 μm. If the film thickness is set within the above range, it can be used as a good carrier sealing layer, and at the same time, the overall resistance value of the p-side coating layer 108 can be reduced. [Embodiment 4] As shown in FIG. 6A, the nitride semiconductor light-emitting element of Embodiment 4 is the first nitride-rich conductor film 208a and the second nitride semiconductor except for the P-side contact layer 208. Except that a composition gradient layer 208c is added between the films 208b, other components are the same as those in the third embodiment. Here, the so-called page 64 ts H (CNS) Al (2l ·: χ m) ------------ 1 M in ----- 11 --- line (please read first Note on the back page, please fill in this page again) A7 B7 4371 03 V. Description of the invention () Composition sample layer 2 〇 8 c refers to the composition of the first nitride semiconducting film 2 〇 $ a a Chaodian second nitrogen The composition of the compound semiconductor 208b is such that its composition gradually changes continuously in the thickness direction. For example, when the first nitride semiconductor film 208a is InxGaHN and the second nitride semiconductor film 208b is GaN ', as shown in FIG. 6B, for the composition gradient (slope) layer 208c, The composition ratio (X) of I η is determined from the surface of the first nitride semiconductor film 208a connected to the surface of the second nitride semiconductor film 208b that is adjacent to the first nitride semiconductor film 208a, that is, the thickness is gradually reduced in the thickness direction. In the aspect 4, the composition ratio (x) of In in the composition gradient layer 208c is only required to be gradually reduced, and its composition with respect to the thickness does not necessarily change linearly as shown in FIG. 6B. In the nitride semiconductor device according to the fourth embodiment configured as described above, the interface composition between the first nitride semiconductor film 208a and the second nitride semiconductor film 208b is continuous, so that during layer growth At the interface between the first nitride semiconductor film 208a and the second nitride semiconductor film 208b, segregation of a specific element can be prevented. Accordingly, since segregation of a specific element can be prevented, the first nitride semiconductor film 208a and the second nitride semiconductor film 208b with less crystal defects can be grown. In the case where the first nitride semiconductor film 208a is InxGauxN and the second nitride semiconductor film 208b is GaN, the first nitride semiconductor film 208a and the second nitride semiconductor film 2 can be prevented. The segregation of in between 〇8b allows good crystallinity to be obtained. Page 65 -------- Order ----- I ---- line f clear first read the > I matter on the back and then fill out this page) printed by employees of the Intellectual Property Bureau of the Ministry of Economic Affairs

ATAT

437103 五、發明說明() 【實施形態5】 以下係有關本發明之實施形‘態5的I化物半導體元 件’其係利用丨8圖所示之模式剖面圖來加以說明。 如第8圖所示,實施形能ς认s , β «犯形慇5的虱化物半導體元件係在437103 V. Description of the invention (Embodiment 5) The following is a description of the embodiment "I5 semiconductor device of the fifth embodiment" according to the present invention, which is explained by using a schematic sectional view shown in FIG. As shown in FIG. 8, the embodiment of the lice compound semiconductor element β «

-基板!上依序堆積有-緩衝層1〇2、一未摻雜質之GaN 層m、-摻有η型雜質的η侧接觸層4、—由未換雜質 的下層3 05a與一摻有n型雜質的中間層3〇5b以及一未摻 雜質的上層305C所形成的n側第i多層膜層3〇5、一由第 !氮化物半導體膜3G6a及第2氮化物半導體膜刪所形 成的η侧第2多層膜層306、_多重量子井構造之活性層 7、-由帛3及第4氮化物半導體膜所形成的ρ側多層膜-Substrate! A buffer layer 102, an undoped GaN layer m, an n-type impurity-doped η-side contact layer 4, and a lower layer 3 05a and an n-doped layer are sequentially deposited on the top. The impurity intermediate layer 305b and an undoped upper layer 305C are formed on the n-side i-th multilayer film 305, and are formed by the first nitride semiconductor film 3G6a and the second nitride semiconductor film η-side second multilayer film layer 306, _active layer 7 of multiple quantum well structure, ρ-side multilayer film formed of ytterbium 3 and fourth nitride semiconductor film

覆蓋層108(或單一膜覆蓋層1〇8)、及一摻Mg之ρ侧GaN 接觸層9。再者’於該“則接觸層4±、以及該p側㈣ 接觸層9上係分別形成有—n電極12及一 p電極丨i。 在此,於本實施形態之氮化物半導體發光元件中,如 第5圖所示,η側區域330係由緩衝層! 〇2、未摻雜質之 GaN層103、η侧接觸層4、n側第1多層膜層1〇5、及n 侧第2多層膜層306所構成,而p側區域34〇係由p側覆 蓋層108及p側GnN接觸層9所構成3 於本實施形態S中,用以作為基板丨者係可為一以藍 石英C面或R面、A面為主面的藍石英,或是如尖晶石 (MgAl204)般的絕緣性基板,或是SiC(含有、4H、3C)、 Si、ZnO、GaAs、GaN等的半導體基板。 於本實施形態5中,該緩衝層1〇2係為一由GadA1^ ------------裝.-------訂--------> ~ (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 第66貫 本紙度达用 filg 家標準{cus)Mkk~(m7^^^ 經濟部智慧財產局員工消費合作社印製 4371 03 Λ/ ____Β7 五、發明說明() (iN(d係在〇<dsi的範圍内)所形成的氮化物半導體,其中 由於A1的比洌越小,其組成之結晶性越有明顯改善,因 此該緩衝層1 02最好係由GaN所構成。 該緩衝層102的膜厚係可在0.002〜0.5 " m之間,而 最好係調整在0.005〜0.2"m之間,而更好係在〇,〇1〜 0.02μιη之間。若該緩衝層1〇2的膜厚係調整在上述範圍 之内時’則氮化物半導體的結晶性將會變好,進而使成長 於該緩衝層1 02上的氮化物半導體的結晶性獲得改善。 該緩衝層102的成長溫度係在200〜900度C之間, 最好係調整在400〜800度C之間。當成長溫度係在上述 溫度範圍内時,則其係可形成良好的複晶,以該複晶係作 為種結晶,則成長於該緩衝層1 02上的氮化物半導體的結 晶性將會變好。 依基板之種類、以及成長方式之不同,上述以低溫所 長成之緩衝層1 02係可被省略。 其次’於實施形態5中,該未摻雜質之GnN層103 係為一於長成時未添加有η型雜質的層。若將該未摻雜質 之GnN層103成長於緩衝層1 〇2上時,則該未摻雜質之 GnN層1 03的結晶性將會很好,進而使成長於該未摻雜質 之GnN層1 03上之η側接觸層4等的結晶性變好。該未摻 雜質之GnN層1 03的膜厚係在〇.〇 1 /z m以上,而最好係 在0.5 # m以上,而更好係在1 " m以上當膜厚係在上述 範圍時’則將可使η側接觸層4以後的層能以良好之結晶 性來成長。此外,該未摻雜質之GnN層1 03的膜厚並無一 第67頁 --------I---^-------—訂---------線 I (碕先閱讀背面之达意事項再填寫本頁) 經濟部智慧时產局員工消費合作社印製 ;43 710 ^ a? --—____m _ 五、發明說明() 疋上限,其係可考量製造效率而加以適當調整。 其次’於實施形態5 [該含有η型雜質Μ n侧接觸 層4所含有义n型雜質的濃度係為3 χ丨〇丨、⑽3以上,而最 好是在5x1 Wcm3以上。若將上述n型雜質大量摻入’並 以此層作為n側接觸層時,則可降低vf及啟始值。若雜 質濃度係脫離上述範圍時,則Vf將很難下降。此外’當 該η侧接觸層4係形成於n型雜質濃度小、且結晶性良好 之未掺雜質之〇111^層103上時,則無論其係是否具有高濃 度的η型雜質,其亦可具有良好之結晶性。雖然該n側接 觸層4之n型雜質並無一定的上限,但’為使其持有作為 良好接觸層之機能,其上限濃度最好係在5 χ丨〇2! /cm3以 下。 兹π側接觸層4的組成係可由IneAiGai e-fN(〇se,〇sf, e + fs I)所構成’其組成並無—定的限定,但為獲致結晶缺 陷較少的氮化物半導體層’其係以GaN、或是f值係〇_2 以下的AlfGa卜fN者為佳。此外,雖然該n側接觸層4的 膜厚並無一定的限定,但,由於其係為一用以形成n電極 的層,因此,其膜厚係為〇. 1〜2 0 a m之間者為佳,最好 係在0.5〜1 0 " m之間,而更好係在1〜5以m之間。若其 膜淳係在上述範圍之内時’則可降低其電阻值,且可降低 發光元件的順向電壓。 此外,若後述的η側第1多層膜層3 〇 5係形成為一較 厚的膜時,則該η側接觸層4係可被省略。 其次,於實施形態5中’該η侧第1多層膜層305係 ._ 第68頁 本紙狀朗;β t關家料(CNSXKTSY—公尕) *------------ I— I ^---------!?1------4 I (請先閱讀背面之沒意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 Λ7 ____B7 五、發明說明() 由自基板側開始的一未挣雜質的下屠305a、一榜有η型雜 質的中間層305b以及一未摻雜質的上層305c等至少3層 所形成。 雖然構成該η側第1多層膜層305的各層單獨上可能 會有無法對靜電耐壓等的元件特性直接影響的情況,但, 藉由將各層組合而形成η侧第1多層膜層3 0 5,則可明顯 地可將全體元件特性 '特別是發光輸出及靜電耐壓提升。 事實上此一效果係當初在將各層堆積以製造元件時所料 想以外的事,換言之,本發明係在發現此一效果下完成。 在此,該η側第1多層膜層305係可具有上述下屠 305a〜上層305c以外的層。此外,該η侧第1多層膜層 3 0 5係可直接鄰接於活性層,或是在活性層之間存在有其 他層。 構成下層305a〜上層305c之氮化物半導體者係可為 以IngAlhGai,g.hN(0sg<l,〇Sh<l)所表示之各種组成的氣化 物半導體,而最好係由GaN所形成之组成者。另外,該n 侧第1多層膜層3 0 5的各層係可相同或是不同。 該π側第1多層膜層3 0 5的膜厚並無一定限制,其係 可為175〜12000埃,最好係為1〇〇〇〜丨〇〇〇〇埃,而更好 係為2000〜6000埃。若該n側第1多層膜層305的暎厚 係在上述範圍之内時’則有使Vf最適化以及靜電耐壓提 升的優點。 具有上述範園之膜厚的η側第1多層膜層305的膜厚 調整係可藉由調整下層305a、中間層305b、及上層3〇5c 笫69貰 本紙張尺度衿用中P!囚家標半(c>::S)a7^ (210 X :.Ό7 ) " ' — --— ί —^1 ^^1 —ί —^i n Bn V IP %ϊ In flu n 1^1 I (琦先閱讀背面之注意事項再填寫本頁) A7 4371 03 ----—-Si___- 五、發明說明() 等各層膜厚,而使該η惻第1多層膜層305的膜厚位於上 述範圍之内。 此外’於本實施形態5中,雖然用以構成該η侧第1 多層膜層305的下層305a、中間層305b、及上層305c等 各層膜厚並無一定限制,但,於本發明中,為求出各層膜 厚的最佳範圍’因此進行下述的實驗檢討。 (1) 檢討1 將下層3〇5a膜厚定為3000埃、中間層305b膜厚 定為350埃,同時使上層305c之膜厚依序變化以製造出 LED元件時’同時’針對各元件(各膜厚)測定其順向電壓、 發光輸出、及靜電耐壓特性。 其結果係表示於第9A圖及第9B圖中。 (2) 檢討2 將下層3 05a膜厚定為3 000埃、上層305c膜厚定 為50埃’同時使中間層305b之膜厚依序變化以製造出 LED元件時’同時,針對各元件(各膜厚)測定其順向電壓、 發光輸出、及靜電耐壓特性。 其結果係表示於第1 0A圖及第1 〇B圖中。 (3) 檢討3A cover layer 108 (or a single film cover layer 108), and a Mg-doped p-side GaN contact layer 9. Furthermore, on the contact layer 4 ± and the p-side ㈣ contact layer 9, n-electrodes 12 and a p-electrode 丨 i are formed respectively. Here, in the nitride semiconductor light-emitting device of this embodiment, As shown in FIG. 5, the n-side region 330 is composed of a buffer layer! 〇2, undoped GaN layer 103, n-side contact layer 4, n-side first multilayer film layer 105, and n-side first layer 2 is composed of a multilayer film layer 306, and the p-side region 34 is composed of a p-side cover layer 108 and a p-side GnN contact layer 9 3 In this embodiment S, it can be used as a substrate. Quartz C-plane, R-plane, A-plane blue quartz as the main surface, or an insulating substrate such as spinel (MgAl204), or SiC (containing, 4H, 3C), Si, ZnO, GaAs, GaN, etc. In the fifth embodiment, the buffer layer 10 is a GadA1 ^ ------------ installed. --- > ~ (Please read the notes on the back before filling out this page) The 66th paper printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs meets the filg household standard {cus) Mkk ~ (m7 ^^^ Economy Printed by the Consumer Cooperatives of the Ministry of Intellectual Property Bureau 4371 03 Λ / __ __B7 V. Description of the invention (iN (d is in the range of 0 < dsi)) nitride semiconductor, in which the smaller the ratio of A1 to 洌, the more significantly the composition of the crystallinity, so the buffer The layer 102 is preferably composed of GaN. The film thickness of the buffer layer 102 may be between 0.002 and 0.5 " m, and is preferably adjusted between 0.005 and 0.2 " m, and more preferably between 〇, 〇1 ~ 0.02μιη. If the film thickness of the buffer layer 10 is adjusted within the above range, the crystallinity of the nitride semiconductor will be improved, and the growth of the nitride layer will be further improved. The crystallinity of the nitride semiconductor is improved. The growth temperature of the buffer layer 102 is between 200 and 900 degrees C, preferably adjusted between 400 and 800 degrees C. When the growth temperature is within the above temperature range In this case, the system can form a good complex crystal, and using the complex system as a seed crystal, the crystallinity of the nitride semiconductor grown on the buffer layer 102 will be improved. Depending on the type of substrate and the growth method The difference is that the above-mentioned buffer layer 102 formed at a low temperature can be omitted. 'In Embodiment 5, the undoped GnN layer 103 is a layer which is not added with an n-type impurity when grown. If the undoped GnN layer 103 is grown on the buffer layer 1 〇 2 At this time, the crystallinity of the undoped GnN layer 103 will be good, and the crystallinity of the n-side contact layer 4 and the like grown on the undoped GnN layer 103 will be improved. The film thickness of the undoped GnN layer 103 is more than 0.01 / zm, preferably 0.5 # m or more, and more preferably 1 " m or more. When the film thickness is in the above range Time 'will allow the layers after the n-side contact layer 4 to grow with good crystallinity. In addition, the film thickness of the undoped GnN layer 103 is not one page 67 -------- I --- ^ --------------------- --Line I (碕 Read the notice on the back before filling out this page) Printed by the Consumer Cooperatives of the Wisdom and Time Bureau of the Ministry of Economic Affairs; 43 710 ^ a? --——____ m _ V. Description of the invention () 疋 Upper limit, which is The manufacturing efficiency can be considered and adjusted appropriately. Next, in Embodiment 5, [the concentration of the n-type impurity contained in the n-type impurity Mn-side contact layer 4 is 3 x 丨 〇, ⑽ 3 or more, and preferably 5 x 1 Wcm3 or more. When a large amount of the n-type impurities are incorporated and this layer is used as the n-side contact layer, vf and the initial value can be reduced. When the impurity concentration is out of the above range, it is difficult to reduce Vf. In addition, when the η-side contact layer 4 is formed on the undoped SiO 111 layer 103 having a small n-type impurity concentration and good crystallinity, whether or not the system has a high-concentration n-type impurity, it also May have good crystallinity. Although the n-type impurity of the n-side contact layer 4 does not have a certain upper limit, it is preferable that its upper limit concentration is 5 x 〇2! / Cm3 or less in order to hold its function as a good contact layer. The composition system of the π-side contact layer 4 may be composed of IneAiGai e-fN (〇se, osf, e + fs I). Its composition is not limited, but it is a nitride semiconductor layer with less crystal defects. 'It is preferably GaN or AlfGa and fN having an f-number of 0_2 or less. In addition, although the film thickness of the n-side contact layer 4 is not limited, since it is a layer for forming an n electrode, its film thickness is between 0.1 to 2 0 am Preferably, it is preferably between 0.5 and 1 0 " m, and more preferably between 1 and 5 and m. When the film is in the above range, the resistance value can be reduced and the forward voltage of the light-emitting element can be reduced. In addition, if the η-side first multilayer film layer 305 system described later is formed as a thick film, the η-side contact layer 4 system can be omitted. Next, in the fifth embodiment, 'the η side first multilayer film layer 305 series. _ Page 68 paper-like paper; β t Guan Jiali (CNSXKTSY-public) * ----------- -I— I ^ --------- !? 1 ------ 4 I (Please read the unintentional matter on the back before filling out this page) Printed by the Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs Λ7 ____B7 V. Description of the invention () It consists of at least three layers, such as a bottom layer 305a from the substrate side, an intermediate layer 305b with an n-type impurity, and an undoped upper layer 305c. Although each of the layers constituting the first η-side first multilayer film layer 305 may not directly affect element characteristics such as electrostatic withstand voltage, the η-side first multilayer film layer 30 may be formed by combining the respective layers. 5, it can obviously improve the characteristics of the entire device 'especially light output and electrostatic withstand voltage. In fact, this effect was something unexpected when the layers were stacked to manufacture the element. In other words, the present invention was completed by finding this effect. Here, the n-side first multilayer film layer 305 may include layers other than the lower layer 305a to the upper layer 305c. In addition, the first multilayer film layer 305 on the η side may be directly adjacent to the active layer, or there may be other layers between the active layers. The nitride semiconductors constituting the lower layer 305a to the upper layer 305c may be gaseous semiconductors of various compositions represented by IngAlhGai, g.hN (0sg < l, 〇Sh < l), and preferably are composed of GaN. By. In addition, each of the n-side first multilayer film layers 305 may be the same or different. The film thickness of the first multilayer film layer 305 on the π side is not limited, and it may be 175 to 12000 angstroms, preferably 10,000 to 丨 100,000 angstroms, and more preferably 2000 angstroms. ~ 6000 Angstroms. If the n-side first multilayer film layer 305 is within the above range, it has the advantages of optimizing Vf and improving the electrostatic withstand voltage. The film thickness adjustment of the η-side first multilayer film layer 305 having the above-mentioned film thickness can be adjusted by adjusting the lower layer 305a, the middle layer 305b, and the upper layer 305c. 69 (this paper size is in use) Standard half (c > :: S) a7 ^ (210 X: .Ό7) " '— --- ί — ^ 1 ^^ 1 —ί — ^ in Bn V IP% ϊ In flu n 1 ^ 1 I ( (Please read the notes on the back before filling in this page) A7 4371 03 -------- Si ___- 5. Description of the invention () and other film thicknesses, so that the film thickness of the η 恻 first multilayer film layer 305 is located above Within range. In addition, in the fifth embodiment, although the thicknesses of the respective layers such as the lower layer 305a, the intermediate layer 305b, and the upper layer 305c constituting the n-side first multilayer film layer 305 are not limited, in the present invention, it is Since the optimum range of the film thickness of each layer was determined, the following experimental review was performed. (1) Review 1 The film thickness of the lower layer 305a is set to 3000 angstroms, and the film thickness of the intermediate layer 305b is set to 350 angstroms. At the same time, the film thickness of the upper layer 305c is sequentially changed to produce LED elements 'simultaneously' for each element ( Each film thickness) was measured for its forward voltage, light emission output, and electrostatic withstand voltage characteristics. The results are shown in Figs. 9A and 9B. (2) Review 2 The film thickness of the lower layer 3 05a is set to 3 000 angstroms, and the film thickness of the upper layer 305c is set to 50 angstroms. At the same time, the film thickness of the intermediate layer 305b is sequentially changed to produce LED elements. At the same time, for each element ( Each film thickness) was measured for its forward voltage, light emission output, and electrostatic withstand voltage characteristics. The results are shown in Figures 10A and 10B. (3) Review 3

將中間層305b膜厚疋為350埃、上層305c膜厚定 為50埃,同時使下層305a之膜厚依序變化以製造出LED 第70頁 本紙張尺度適用中K 0家標坪-(CNS)A4規丨;⑵!.) X: 29?兌) ~~ ------------------ -n n n i · n n If D I 一》DJ I n n n n I (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 A7 經濟部智慧財產局員工消费合作社印毅 4371 03 B7______ 五、發明說明() 元件時’同時,針對各元件(各膜厚)測定其順向電壓、發 光輸出 '及靜電耐壓特性。 其結果係表示於第ΠΑ圖及第I1B圖中。 又’本檢討中所製作的各LED元件係除該η側第!多 層膜層3 0 5之各層膜厚以外,其他係以相同於後述實施例 34之條件來製作。另外,示於第9α圖〜第ηΒ圖的特性 係作為用以與實施例34比較的習知LED元件特性。於第 9A圖〜第1 1 B圖中,p〇係表示發光輸出,而vf係表示順 向電壓。 由上述檢討結果可知,未捧雜質之下層305a之膜厚 係為1 0 0〜1 〇 〇 〇 〇埃’最好係為5 0 〇〜8 0 〇 〇埃,更佳者係 為1000〜5000埃。如第11A圖及第iiB圖所示,雖然隨 著該未挣雜質之下層305a之膜厚的慢慢變厚,其靜電对 壓係持績上升,但,到達1 〇 〇 〇 〇埃附近,v f係急速上升; 而當膜厚變薄時,Vf係慢慢下降,但卻會使靜電耐壓的下 降增大。本案發明人發現在100埃以下時,隨著靜電耐壓 的下降,將會使良率大幅降低c· 此外’由於該下層305a係著眼於用以改善該含有η 型雜質之η侧接觸層4結晶性低下的影響,因此,其最好 係長成可達結晶性改善程度的膜厚。 掺入η型雜質之中間層305b之膜厚係為50〜1〇〇〇 埃,最好係為100〜500埃,更佳者係為15〇〜4〇〇埃。該 摻入雜質之中間層305b係用以作為使載子濃度充分、且 發光輸出較大的層’若未形成該層,則發光輸出係明顯下 第71頁 丄、带尺攻遶石〜——-----—― --^1- .^1 .^1 .1 I 9 I n If » .0^ .^1 n n m .^1 i I n- n I t i n I: n I I n 1. (請先閱讀背面之注意事項再填寫本頁) --_ Λ7 4371 Ο 3 五、發明說明(The thickness of the middle layer 305b is 350 angstroms, and the thickness of the upper layer 305c is 50 angstroms. At the same time, the film thickness of the lower layer 305a is sequentially changed to produce LEDs. ) A4 rules 丨; ⑵ !.) X: 29? Exchange) ~~ ------------------ -nnni · nn If DI I》 DJ I nnnn I (Please first Read the notes on the back and fill in this page) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Yin Yi 4371 03 B7______ V. Description of the Invention Film thickness) was measured for its forward voltage, light emission output, and electrostatic withstand voltage characteristics. The results are shown in Figure ΠA and Figure I1B. In addition, each LED element produced in this review is in addition to the η side! Except for the film thickness of each of the multi-layer film layers 305, the conditions were the same as those of Example 34 described later. The characteristics shown in Figures 9α to ηB are characteristics of a conventional LED element for comparison with Example 34. In Figs. 9A to 11B, p0 is a light emission output, and vf is a forward voltage. From the results of the above review, it can be known that the film thickness of the lower layer 305a without impurities is 100 to 100 Angstroms, preferably 50 to 80 Angstroms, and more preferably 1,000 to 5,000 Angstroms. Aye. As shown in FIG. 11A and FIG. IiB, although the film thickness of the underlayer 305a that is not earning impurities gradually increases, its static pressure-resistance performance increases, but it reaches around 1,000 angstroms. The vf system rises rapidly; when the film thickness becomes thin, the Vf system slowly decreases, but it will increase the decrease of the electrostatic withstand voltage. The inventor of the present case found that when the voltage is less than 100 angstroms, the yield will be greatly reduced as the electrostatic withstand voltage decreases. In addition, 'because the lower layer 305a focuses on improving the η-side contact layer 4 containing η-type impurities. The effect of low crystallinity is, therefore, it is desirable to grow it to a film thickness that can achieve an improvement in crystallinity. The film thickness of the intermediate layer 305b doped with n-type impurities is 50 to 100 angstroms, preferably 100 to 500 angstroms, and more preferably 150 to 4,000 angstroms. The impurity-doped intermediate layer 305b is used as a layer that has a sufficient carrier concentration and a large light emission output. 'If this layer is not formed, the light emission output will be obvious on page 71. --------------^ 1-. ^ 1. ^ 1 .1 I 9 I n If ».0 ^. ^ 1 nnm. ^ 1 i I n- n I tin I: n II n 1 (Please read the notes on the back before filling this page) --_ Λ7 4371 Ο 3 V. Description of the invention (

降。此外,如第1 〇 A圖所于,山.λ B ^由於即使膜厚薄到25埃左 右’發光輸出也只下降―點处 點點,因此,當中間層305b之 膜厚係為50埃時1發光輸出液 埘出應不會下降,所以可據以調 整其他層之膜厚。另外,如第1〇A固研一 罘1ϋΑ圖所π,當膜厚超過 1 000埃時,則發光輸出係有 w又恼下降的傾向。另一方面, 如第削圖所示1只看靜電耐壓,則中間層贱之模 厚越厚,其靜電耐壓係越好’但其厚度係小於50埃時, 靜電耐壓係大幅下降的傾向。 未摻雜質之上層305c之膜厚係為25〜1〇〇〇埃,最好 係為25〜500埃’更佳者係為25〜15〇埃。未捧雜質之上 層305C係第!多層膜層中最接近活性層者,其對漏電流 的防止係有很大的關係’而當上層3〇5c之膜厚係在。埃 以下時,漏電流係有增加的傾向。此外,如第9a圖及第 9B圖所示,若上層305c之膜厚係超過1〇〇〇埃時,則Vf 將會上升、且靜電耐壓係會下降。 承上所述,於上述中係著眼於易受到下層3〇5a〜上層 305c之各層膜厚變動而影響的元件特性,若下層3〇5a、 中間層·? 〇 5 b、及上層3 0 5 C相互組合時,則所有元件特性 係大致均一變好,但為使發光輸出及靜電耐壓變得更好, 以及滿足較鬲的要求規格’則可將各膜厚以上述範圍規 定,據此即可使發光輸出變得更好,同時可進一步提升產 品的信賴性。 此外’為獲致最佳效果,該第1多層膜層之各層膜厚 係可依據因發光波長種類而變化的活性層組成、電極' led ----------- 裝--------訂---------地* (請先閱讀背面之注意事項再填寫本頁) 經濟耶智慧財產局員工消費合作社印製 第72頁 M!:.張尺度鸡)H f 現A (2丨0 >197 4371 03 A7 R7 繾濟部%慧財產局員x消費合作社印製 五、發明說明( 元件形狀等種種條件加以適當調整。各層膜厚之組合的性 能係可藉由將上述範圍的膜厚之適當組合,而使其比習知 者還具有良好的發光輸出、及靜電耐壓。 用以構成上述第1多層膜層之各層的組成係可以 IngAlhGai.g_hN(OSg<l,〇sh<i)來表示’且各層之組成係可 相同或不同,其中In、A1的比例係越小越好,最好的是 由GaN來形成。 摻入上述第1多層膜層之中間層3〇5b中的η型雜質 濃度並無一定限制,但其係可為3 X 1 018/cm3,最好係調整 在5xl〇iS/cm3。而n型雜質濃度上限亦無一定限制,但其 最好係在5χ 1021/cm3以下,俾使結晶性不至產生惡化。若 第1多層膜層之中間層305b的雜質濃度係在上述範圍 時,則將可使發光輸出提升,同時亦可使V f下降。 作為η型雜質者係可如s丨,Ge、se、δ、〇等的週期 表第IVB族、及第VIB族,其最好係以si、Ge、s來作為 n型雜質。 另外,對於該第1多層膜層3〇5的界面而言,若在不 姑礙每一層及元件之機能的範圍下,其係、可兼具有兩方的 層。 其次,於本實施形態5中’該n側第2多層膜層3〇6 係由-含有In的第1氮化物半導體膜3〇6a、及一組成成 份不同於該第1氮化物半導體膜306a的第2氮化物半導 ^膜觀所堆積而成。此外,該第1氮化物半導體膜3〇6a 或是第2氣化物半導體膜3〇6b巾,至少須有—方之厚度 第73頁 i請先閱讀背面之汰意事項再填寫本頁}drop. In addition, as shown in FIG. 10A, since the light emission output of the mountain .λ B ^ decreases even if the film thickness is as thin as about 25 Angstroms—point by point, when the film thickness of the intermediate layer 305b is 50 Angstroms 1 The luminous output liquid should not fall out, so the film thickness of other layers can be adjusted accordingly. In addition, as shown in Figure 10A and 1A of solid research, when the film thickness exceeds 1,000 angstroms, the light output tends to decrease w. On the other hand, as shown in the first drawing, only the electrostatic withstand voltage is looked at. The thicker the intermediate layer, the thicker the mold thickness, the better the electrostatic withstand voltage system. However, when the thickness is less than 50 Angstroms, the electrostatic withstand voltage system drops significantly. Propensity. The film thickness of the undoped upper layer 305c is 25 to 1,000 angstroms, preferably 25 to 500 angstroms, and more preferably 25 to 150 angstroms. The top layer 305C is not holding impurities! The closest to the active layer in the multilayer film has a great relationship with the prevention of leakage current ', and when the film thickness of the upper layer 305c lies. Below Angstrom, the leakage current tends to increase. In addition, as shown in Figs. 9a and 9B, if the film thickness of the upper layer 305c exceeds 1,000 angstroms, Vf will increase and the electrostatic withstand voltage system will decrease. As mentioned above, in the above, the focus is on element characteristics that are susceptible to changes in the film thickness of each of the lower layer 305a to the upper layer 305c. If the lower layer 305a, the intermediate layer ?? 5b, and the upper layer 305 When C is combined with each other, the characteristics of all the elements are improved substantially uniformly. However, in order to improve the light emission output and the electrostatic withstand voltage and to meet the more demanding specifications, the thickness of each film can be specified within the above range. That can make the light output better, and at the same time can further improve the reliability of the product. In addition, 'to obtain the best effect, the film thickness of each layer of the first multilayer film layer can be changed according to the type of light emitting wavelength of the active layer composition and electrode' led ----------- equipment --- ----- Order --------- Floor * (Please read the notes on the back before filling out this page) Printed on page 72 by the Economic and Intellectual Property Bureau Staff Consumer Cooperative M!:. ) H f Now A (2 丨 0 > 197 4371 03 A7 R7 Member of the Ministry of Health and Human Services Bureau x Printed by Consumer Cooperatives V. Description of the invention (elements and other conditions should be adjusted appropriately. The performance of the combination of the film thickness of each layer is The film thickness in the above range can be appropriately combined to have a better light output and electrostatic withstand voltage than those skilled in the art. The composition of each layer constituting the first multilayer film layer can be IngAlhGai.g_hN (OSg < 1, 0sh < i) to represent 'and the composition of each layer can be the same or different, where the ratio of In, A1 is as small as possible, and it is best to be formed of GaN. Incorporating the first multilayer The concentration of the η-type impurity in the intermediate layer 305b of the film layer is not limited, but it can be 3 X 1 018 / cm3, and it is preferably adjusted to 5xl iS / cm3. The upper limit of the n-type impurity concentration is not limited, but it is preferably below 5 × 1021 / cm3, so that crystallinity does not deteriorate. If the impurity concentration of the intermediate layer 305b of the first multilayer film layer is When it is in the above range, the luminous output can be increased, and V f can also be decreased. As the n-type impurity, it can be group IVB and VIB of the periodic table such as s 丨, Ge, se, δ, 〇, etc. For the n-type impurity, si, Ge, and s are preferred as the n-type impurity. In addition, for the interface of the first multilayer film layer 305, if it does not hinder the function of each layer and element, This system may have both layers. Second, in the fifth embodiment, the second multilayer film layer 3 on the n side is composed of a first nitride semiconductor film 306a containing In, and The composition of the second nitride semiconductor film is different from that of the first nitride semiconductor film 306a. In addition, the first nitride semiconductor film 306a or the second vapor semiconductor film 306b is deposited. Towel, at least-the thickness of the square page 73 i Please read the notice on the back before filling in this page}

it n n n n n』_OJ u n I 4371 03 A7 五、發明說明( 係為100埃以下,而最好是第i氮化物半導體膜3〇6a及 第2氮化物半導體模306b兩者係均在1〇〇埃以下’更好 係在70埃以下,更佳者係最好在5〇埃以下。由於膜厚越 薄,則多層膜層會形成超晶格構造,因此會使多層膜層的 結晶變佳’進而提升其輸出。 由於該第1氮化物半導體膜3 06a或是第2氮化物半 導體膜306b中至少一方之厚度係為丨〇〇埃以下時,即可 使薄膜層在彈性臨界膜厚以下,而使結晶變好,進而使得 堆積在其上的第1氮化物半導體膜306a或是第2氮化物 半導體膜306b之結晶性變好,也使得多層摸層全體之結 晶性變好,所以可以提升元件的輸出。 此外,若該第1氮化物半導體膜306a或是第2氣化 物半導體膜3 06b之厚度係均在1 〇〇埃以下時,則其係均 可在氮化物半導體單一層之彈性臨界膜厚以下,此相較於 以厚膜成長、或是該第1氮化物半導體膜3〇6a或是第2 氮化物半導體膜306b中之一方的厚度係在1〇〇埃以下時 的情況’其係可成長出結晶性良好的氤化物半導體。此 外’若兩者均在70埃以下時,則n側第2多屠膜層3〇6 係成為超晶格結構’若將活性層成長於該結晶性良好的多 層膜構造上時,則該η側第2多層膜層306係可作為緩衝 層用,進而使活性層能以更好的結晶性來成長。 於本實施形態5中’該η側區域3 3 0中係若包各上述 η側第1多層膜層305與η側第2多層膜層3〇6之組合, 則即可提升發光輸出、以及降低Vf =其原因難然不是很清 ---- — _ 4 ill 'i< ^ -i: fii (CN^i)A.l (請先閱讀背面之注意事項再填寫本頁) 裝---I----訂---------^ 經濟邹智慧財產局員工消費合作社印" 經蒉部智慧財產局員工消費合作社印製 4371 03 Α7 Β7 五、發明說明() 楚,但其係可使成長於η惻第2多層膜層3 0 6上的活性居 结晶性變好。 再者,η側第2多層膜層306之第1氮化物半導體膜 306a或第2氮化物半導體膜306b其中至少有一厚度係可 不同或同於近接的第1氮化物半導體糢306a或第2氛化 物半導體膜306b的厚度。但乃以第1氮化物半導體膜3〇6a 或第2氮化物半導體膜306b其中至少有一厚度係不同於 近接的第1氮化物半導體膜306a或第2氮化物半導禮膜 306b的厚度者為佳。 此外’所謂膜厚度與近接之層不同係指:當多層膜層 係由複數個第1氮化物半導體膜3 〇6 a及第2氮化物半導 體膜306b所構成時,該第2氮化物半導體膜3〇6b(第1氮 化物半導體膜306a)的膜厚係與夾住該第2氮化物半導體 膜3 06b的第1氮化物半導體膜3 〇6a(第2氮化物半導體膜 306b)的膜厚不相同的意思。 例如,當第!氮化物半導體膜3〇6a係為inGaN,而 第2氮化物半導體膜3〇6b係為GaN時,位於層與 GaN廣之間的InGaN層的膜厚係可越接近活性層越厚,或 是越接近活性層越薄,據此1由於可使多層膜層内部之折 射率變化,因此可形成折射率依序變化的層。換言之,其 實質上係與形成一具組成梯度之氮化物半導體層相同效 果。據此’對於必須形成有雷射元件般之光導波路徑的元 件而S,則即可以1¾多層膜層來形成導波路徑,進而可調 整雷射光的模態。 第7S貰 本紙烺尺度igffl t 固円家β芈(CNS)A:] & 丨-------------------------------------- ----------- --------訂---------0 (請先閱讀背面之注意事項再填寫本頁) 4371 03 Λ7 —__ — I ι β7 五、發明說明() 再者’上述第!氮化物半導體膜306a或第2氮化物 半導體膜306b其中至少有一為同一第Π1族元素的組成, 且其組成係可不同或同於近接的第1氮化物半導體膜306a 或第2氮化物半導體膜306b。但乃以第1氮化物半導體膜 3〇6a或第2氮化物半導體膜3〇6b其中至少有一為同一第 111族元素的組成,其组成係不同於近接的第1氮化物半導 體膜306a或第2氮化物半導體膜306b者為佳。 所謂組成不同係指:當多層膜層係由複數個第1氮化 物半導體膜306a及第2氮化物半導體膜306b所構成時, 第2氮化物半導體膜(第ι氮化物半導體膜)之第ΠΙ族元素 的組成比係與夹住該第2氮化物半導體膜之第1氮化物半 導體膜(第2氮化物半導體膜)的第πι族元素組成比不相同 的意思^ 例如’當同一第Πΐ族元素之組成相互不同,且第! 氮化物半導體膜306a係為InGaN,而第2氮化物半導體 膜3 06b係為GaN時,位於GaN層與GaN層之間的InGaN 層的In组成係可越接近活性層越多,或是越接近活性層 越少’據此’將可使多層膜層内部之折射率變化,而實質 上形成一具組成梯度之氮化物半導體層。又,隨著In組 成的減少,其折射率係有變小的傾向。 如第8圖所示,用以夾住該活性層7並位於其下部的 η側氮化物半導體層中係包含有一 η側第2多層膜層306, 該η側第2多層膜層306係由一含有In的第1氮化物半 導體膜306a、及一组成成份不同於該第1氮化物半導體膜 第76頁 本中闷內家標準(CNSM.1 ^格 <21(^297 公》> — (請先閱讀背面之注辛?事項再填寫本頁} 裝--------訂---------的' 經濟部智慧財產局員工消費合作社印製 4371 03 A: ------B7__ 五、發明說明() 3 06a的第2氮化物半導體膜306b所堆積而成。就該n側 第2多屠模層3〇6而言,其第1氮化物半導體膜3〇6a與 第2氮化物半導體膜3 〇6b係最少分別形成有—層以上, 合計共2層,或3層以上,最好是分別形成有2層以上, 合計共4層以上者為佳。 該η側第2多層膜層306亦可與該活性層相離而設, 但最好係與該活性層相鄰而設。與該活性層相鄰時係可使 輸出較易提升。 在該η側第2多層膜層3 0 6接合於該活性層7時,接 觸於該活性層之最初層(井層、或障壁層)的層係可為第1 氮化物半導體膜306a或是第2氮化物半導體膜3〇补,此 時’ η侧第2多層膜層3 0 6的堆積順序並無特別限制。又, 雖然於第8圖中η側第2多層膜層306係接合於該活性層 7,但,在η側第2多層膜層306與活性層7之間亦可設 有由其他η型氮化物半導體所形成的層。 經濟部智慧时產局員工消費合作社印製 該第1氮化物半導體膜306a係為一含有Ιη的氮化物 半導體,其係可為3元混晶的inkGai kN(〇<k<1),或是k 值係在0.5以下的inkGai-kN,或是k值最好係在〇 2以下 的IiuGa^N者。而第2氮化物半導體膜3〇6b只要是其組 成不同於該第1氮化物半導體膜3〇6a即可,其並無特別 之限疋但,為使旎長出結晶性良好的第2氮化物半導體 膜3 06b其肩係為一鍵隙能量比第t氮化物半導體膜& 還大的2元混晶或3元混晶的InmGaumN㈣m<1,m<k),而 最好係S GaN。若其係為GaN時,則可成長出一全體結晶 第77頁 本紙依反度適用中κ·; a家;十 ----------------------------------------— 經濟部智慧財產局Μ工消費合作社印製 4371 03 __it nnnnn ”_OJ un I 4371 03 A7 V. Description of the invention (It is 100 Angstroms or less, and it is preferable that the i-th nitride semiconductor film 306a and the second nitride semiconductor mold 306b are both 100 Angstroms. The following 'better is less than 70 angstroms, and more preferably less than 50 angstroms. The thinner the film thickness, the more the multi-layered film layer will form a superlattice structure, which will improve the crystallinity of the multi-layered film layer.' When the thickness of at least one of the first nitride semiconductor film 306a or the second nitride semiconductor film 306b is less than or equal to 100 angstroms, the thin film layer can be made less than the elastic critical film thickness. The crystallinity is improved, and the crystallinity of the first nitride semiconductor film 306a or the second nitride semiconductor film 306b deposited thereon is also improved, and the crystallinity of the entire multilayer layer is improved, so it can be improved. The output of the device. In addition, if the thickness of the first nitride semiconductor film 306a or the second vapor semiconductor film 306b is less than 100 angstroms, the elasticity of the single nitride semiconductor film 306a or the second gaseous semiconductor film 306b is all within a single layer of the nitride semiconductor. Below the critical film thickness compared to When a thick film is grown, or when the thickness of one of the first nitride semiconductor film 306a or the second nitride semiconductor film 306b is 100 angstroms or less, it can grow into a crystal with good crystallinity. A halide semiconductor. In addition, if both are below 70 angstroms, the n-side second multi-layer film layer 306 is a superlattice structure. If the active layer is grown on the multilayer structure with good crystallinity In this case, the η-side second multilayer film layer 306 can be used as a buffer layer, so that the active layer can be grown with better crystallinity. In the fifth embodiment, the η-side region 3 3 0 should be Including the combination of the first η-side first multilayer film layer 305 and the η-side second multilayer film layer 306, the luminous output can be increased, and Vf can be reduced. The reason is not clear. ---- 4 ill 'i < ^ -i: fii (CN ^ i) Al (Please read the notes on the back before filling out this page) Install --- I ---- Order --------- ^ Economy Zou Printed by the Intellectual Property Bureau's Consumer Cooperatives " Printed by the Ministry of Economic Affairs and Intellectual Property Bureau's Consumer Cooperatives' printed 4371 03 Α7 Β7 V. Invention Description () Chu, but it can grow in η 于The active multilayer crystallinity on the second multilayer film layer 306 is improved. In addition, at least one of the first nitride semiconductor film 306a or the second nitride semiconductor film 306b of the second multilayer film layer 306 on the η side may be at least one thickness. The thickness of the first nitride semiconductor film 306a or the second nitride semiconductor film 306b is different or the same as that of the first nitride semiconductor film 306a or the second nitride semiconductor film 306b. However, at least one of the thicknesses of the first nitride semiconductor film 306a or the second nitride semiconductor film 306b is different. It is preferable that the thickness of the first nitride semiconductor film 306a or the second nitride semiconductor film 306b is close to each other. In addition, the difference between the film thickness and the adjacent layer means that when the multilayer film layer is composed of a plurality of first nitride semiconductor films 3 06a and a second nitride semiconductor film 306b, the second nitride semiconductor film The film thickness of 306b (the first nitride semiconductor film 306a) is based on the thickness of the first nitride semiconductor film 306b (the second nitride semiconductor film 306b) sandwiching the second nitride semiconductor film 306b. Different meaning. For example, when the first! When the nitride semiconductor film 306a is inGaN and the second nitride semiconductor film 306b is GaN, the film thickness of the InGaN layer between the layer and the GaN can be closer to the thickness of the active layer, or The thinner the closer to the active layer, the more the refractive index inside the multilayer film layer can be changed, so that a layer whose refractive index changes sequentially can be formed. In other words, it has substantially the same effect as forming a nitride semiconductor layer with a composition gradient. According to this', for a component that must form a laser-guided optical waveguide path, S, it is possible to form a waveguide path with 1¾ layers, thereby adjusting the mode of the laser light. The 7S paper scale igffl t Gujia β 芈 (CNS) A:] & 丨 ---------------------------- ---------- ----------- -------- Order --------- 0 (Please read the notes on the back before filling (This page) 4371 03 Λ7 —__ — I ι β7 V. Description of the invention () Furthermore, 'the above! At least one of the nitride semiconductor film 306a or the second nitride semiconductor film 306b is composed of the same Group 1 element, and the composition may be different or the same as that of the first nitride semiconductor film 306a or the second nitride semiconductor film in close proximity. 306b. However, at least one of the first nitride semiconductor film 306a or the second nitride semiconductor film 306b is composed of the same Group 111 element, and the composition is different from that of the first nitride semiconductor film 306a or the first nitride semiconductor film 306a. The 2 nitride semiconductor film 306b is preferable. The difference in composition means that when the multilayer film layer is composed of a plurality of first nitride semiconductor films 306a and second nitride semiconductor films 306b, the second nitride semiconductor film (the first nitride semiconductor film) The composition ratio of the group element has a different meaning from the composition ratio of the group π element of the first nitride semiconductor film (second nitride semiconductor film) sandwiching the second nitride semiconductor film ^ For example, 'When the same group Πΐ The composition of the elements is different from each other, and the first! When the nitride semiconductor film 306a is made of InGaN and the second nitride semiconductor film 306b is made of GaN, the In composition system of the InGaN layer located between the GaN layer and the GaN layer can be closer to the active layer, or closer to the active layer. The fewer active layers 'according to this', the refractive index inside the multilayer film layer can be changed, and a nitride semiconductor layer with a composition gradient can be formed substantially. As the composition of In decreases, the refractive index tends to decrease. As shown in FIG. 8, the n-side nitride semiconductor layer for sandwiching the active layer 7 and located below the active layer 7 includes an n-side second multilayer film layer 306. The n-side second multilayer film layer 306 is composed of A first nitride semiconductor film 306a containing In and a composition different from that of the first nitride semiconductor film on page 76 (CNSM.1 ^ Grid < 21 (^ 297) > — (Please read the note on the back? Matters before filling out this page} —————————————————————— Printed by the Consumers ’Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 4371 03 A : ------ B7__ 5. Description of the invention () 3 The second nitride semiconductor film 306b of 06a is deposited. As far as the n-side second multi-layer mold layer 306 is concerned, its first nitride is The semiconductor film 3 06a and the second nitride semiconductor film 3 0 6b are each formed with at least one layer or more, a total of two layers, or three or more layers, preferably two or more layers, and a total of four or more layers. The η-side second multilayer film layer 306 may also be provided separately from the active layer, but it is preferably provided adjacent to the active layer. When the active layer is adjacent to the active layer, the output can be easily improved. . When the second multilayer film layer 3 0 6 on the η side is bonded to the active layer 7, the layer contacting the initial layer (well layer or barrier layer) of the active layer may be the first nitride semiconductor film 306 a or In the second nitride semiconductor film 30, the order in which the η-side second multilayer film 306 is stacked is not particularly limited. In addition, although the η-side second multilayer film 306 is bonded to FIG. 8 This active layer 7 is, however, a layer formed of another n-type nitride semiconductor may be provided between the second multilayer film layer 306 on the n-side and the active layer 7. This is printed by the Consumer Cooperative of the Intellectual Property Office of the Ministry of Economic Affairs. The first nitride semiconductor film 306a is a nitride semiconductor containing 1 η, which may be a ternary mixed crystal inkGai kN (0 < k < 1), or an inkGai-kN with a k value of 0.5 or less. Or, the k value is preferably IiuGa ^ N below 0. The second nitride semiconductor film 306b is not limited as long as its composition is different from that of the first nitride semiconductor film 306a. However, in order for the second nitride semiconductor film 3 06b with good crystallinity to grow, its shoulder is a bond gap energy ratio t-th nitride semiconductor. & InmGaumN㈣m < 1, m < k), which is a larger 2- or 3-ternary mixed crystal, and is preferably S GaN. If it is GaN, a whole crystal can be grown. Inversion is applicable κ; a home; ten --------------------------------------- -— Printed by the Intellectual Property Bureau of the Ministry of Economy, M Industrial Consumer Cooperative, 4371 03 __

AT ____ B7 __ 五、發明說明() 性良好的多層膜層。因此,較佳的組合係為:第1氮化物 半導雜膜306a係使用InkGa|-kN(〇<k<l) ’而第2氮化物半 導體膜I06b係使用InmGa卜mN(0sm<l,m<k)或GaN;最佳 的组合係為:第I氮化物半導體膜306a係使用k值係在 0.5以下的ink(3a卜kN ’而第2氮化物半導體膜1 〇6b係使 用 GaN 〇 此外’該第1氮化物半導體膜3 06a與第2氮化物半 導體膜306b係均可不摻雜質,或是其兩者均摻有n型雜 質,或是只其中之一摻雜質(調變摻雜)。但為使結晶性能 進一步提升,其最好係未摻雜質者較佳,次佳者係調變摻 雜,叫其次係兩者均摻雜。當兩方均摻入η型雜質時,爷 第1氮化物半導體膜306a之η型雜質濃度係可不同於該 第2氮化物半導體膜3〇6b之η型雜質渡度。 又’作為η型雜質者係可如si、Ge、Sn、S等的第ϊν 族、或第νι族元素,其最好係以Sl、Sn來作為η型雜質。 =外,當掺有η型雜質時,其雜質濃度係最好調整^在 Sxl021/cm3以下,而更佳者係調整在5x〗〇2a/cm3以下。若 超過5xl〇2Vcm3,則氮化物半導體層的結晶性將會變差右 反而使輸出下降。此對於調變摻雜質時的亦有相同=況。 在本實施形態5中,該多重量子井構造之活性層^係 為一含有In及Ga的氮化物半導體,其係可由匕⑴㈨ 』(叱a<1}所形成;n型、p型均可,但,其係以不樓雜3質&1_ 以使較強鍵間發光之發光波長的半值幅線小者為佳。而該 活性層7亦可換入n型或p型雜質。當該活性層7挣入二 _ 第 781 -------------------------------------- ί請先閱讀背面之沒意事項再填寫本頁) . I I ----II 丨-*-11---111 —--緩 437103 Λ7 B7 五、發明說明( 型雜質時’相較於未掺雜質的情況,其鍵間發光強度係可 更強。而當該活性層7摻入p型雜質時,波峰波長雖約可 位移到比鍵間發光之波峰波長低〇.5eV的能量側’但半值 幅係變大。當該活性層7同時摻入n型或p型雜質時,則 該活性層7的發光強度係可比上述單獨摻入p型雜質時 大。值得-提的i,當形成一摻入有p型雜質的活性層7 時,該活性層7之導電型係可同時摻入以等n型雜質而 使其全體變成η型。而為使能成長出一结晶性良好的活性 層,最好係不掺雜質。 該活性層7的障壁層與井層的堆積順序並無一定限 制,其係可由井層開始堆積而終於井層,或是由井層開始 堆積而終於障壁層,或是由障壁^始堆積而終於^ 層,或是由障壁層開始堆積而終於井層。井層之厚度係為 埃以下’而最好係在70埃以下,更佳者係調整在% 埃以下。力本發明中’該井屬之厚度下限並無—定限制, 但其最好係為1原子層以上、最好係在1〇埃以上。當該 丼層之厚度係Jb 1 00埃以上時’則輸出會有很難提升的傾 向。 另外,該障壁層的厚度係須在2000埃以下’最好係 在500埃以下,而更好係調整在3〇〇埃以下。又,於本發 明中,該障壁層的厚度下限並無特別限制,其只要係有' 原子廣以上即可’但最好…0埃以上。若該障壁層的 厚度係在上述範圍之内’則輸出將可易於提升。此外,於 本發明中,該活性層7的全體總厚度並無一定限制,其係 第79頁 私纸張尺度达川中内囤安位孕(CNS)/V丨規格(幻()X 297公. (請先閲讀背面之注意事項再填寫本頁) 装---------訂---------線 經濟部智慧財產局員工消费合作社印絜 經濟部智慧財產局員工消費合作社印製 4371 〇3 -—---- Q7 五、發明說明() 可丨衣led元件等的期望波長等因素,來調整障壁層與井層 的堆積層數與堆積順序,進而據以調整該活性層7的總厚 度。 於本實施形態5中,p側覆蓋層I 〇8係由一鍵隙能量 較大的第3氮化物半導體膜、及一鍵隙能量比第3氮化物 半導體膜小的第4氮化物半導體膜所堆積而成,其兩者中 的P型雜質濃度係可不同、亦可相同。此外,於本發明中, P側覆蓋層亦可由—含有P型雜質的AlbGai.bN(0^bSl)所 形成的單一層所構成。 以下係首先說明有關當p側覆蓋層1 〇8係為一具有多 層膜構造(超晶格構造)之p側多層膜覆蓋層時的情況。 構成m p惻多層膜覆蓋層1 0 8的第3氮化物半導體膜 與第4氮化物半導體膜的膜厚係在丨〇〇埃以下,而最好係 在70埃以下’更佳者係調整在50埃以下,且該第3氮化 物半導體膜與第4氮化物半導體膜的膜厚係可相同或是不 同。右多層膜構造的每—膜厚係在上述範圍内時,則每一 氮化物半導體的膜厚係可在彈性臨界膜厚以下,相較於厚 膜的情況下,其係較可長成結晶性反好的氣化物半導體。 此外,由於氮化物半導體層之結晶性變得較好,因此’在 添加有P型雜質時,則可獲致一載子濃度較大,且電阻率 較小的P層,同時亦可使元件的Vf、啟始值降低^上述膜 厚的2種類的層係為_組,並且由其多次堆積而成—多層 膜層。因此,該P側多層膜覆蓋層1 08的總膜厚係可藉由 調整第3氮化物半導體膜與帛4氮化物半導體膜的各膜 ____ 第30頁 人5k人J艾W 中网丨I幻伞(CNS)A:1. ,:¾ --------------—_____ — — — — — — — —— — — — 裝-------—訂-------I i (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 、A371 03 A7 ------ -- 五、發明說明() 厚、以及凋整堆積次數來加以調整。該p侧多層獏覆蓋層 108的總獏厚並無一定限制,其係可在2〇〇〇埃以下’而最 好係在1000埃以下,更佳者係調整在5〇〇埃以下,若總 膜厚係在上述範圍之内時,則可提高發光輸出’並且使順 向電壓(Vf)降低。 該第3氮化物半導體膜係為一至少含有A1的氮化物 半導體,其最好係由AlnGaunNCtKnSl)所成長者。此外, 該第4氮化物半導體層係可由如AlpGai.pN(0<pSl,n>p)、 IruGa^rNiO^d)之2元混晶或3元混晶的氮化物半導體所 成長。若p側覆蓋層1 08係為一超晶格構造的p側多層膜 覆蓋層1 0 8時1則结晶性係可變好,且電阻率係可降低, 同時亦可使Vf降低。 若P側多層膜覆蓋層108之第3氮化物半導體膜與第 4氮化物半導體膜間的p型雜質濃度係不相同,其一方之 雜質濃度係較大,而另一方之雜質濃度係較小時,則如同 η側覆蓋層般地,當將鍵隙能量較大之第3氮化物半導體 膜的Ρ型雜質濃度增大,且將键隙能量較小之第4氬化物 半導體膜的ρ型雜質濃度變小時,則可使啟始電壓、Vf 等降低。反之亦可,亦即將鍵隙能量較大之第3氮化物半 導體膜的p型雜質濃度變小,而將键隙能量較小之第4氮 化物半導體膜的p型雜質濃度增大。 摻入到該第3氮化物半導體膜中的雜質量係為 lx 1018/cm3~lxl〇2,/cm3 ’ 最 好 係 調整在 lxl019/cm3〜5xl02()/cm3的範圍之間。若其係少於 晃'81ΈΓ -mi1·', 標半仪格(2川 χ 297 公茇〉~ · ~~一 11--— — — — —----------訂----11--- *5^ I (請先閱讀背面之立意事項再填寫本頁) Α7 4371 Ο 3 五、發明說明( 1 X 1 Ο 18 / c m3,貝|J 班該笛 4 — 〗興飞弟4氧化物半導體膜的差將會變小, 因此’將很難獲致—載子 '.違 我丁屬度較大的層,另外,當其係超 過1 ;< 1 021 / c m3時,其砝曰, 可再、口阳性將會變差。此外,該第4氮化 物半導體膜之ρ型雜質濃度係少於第3氮化物半導體膜者 為佳,最好係少於ln〇以上。原本最好的是在未摻入雜質 時’則可獲致-移動度較高的層,但,由於膜厚甚薄,因 此會有擴散自冑第3氮化物半導體㈣ρ型雜質1此其 量係最好在lxl 〇20/cm;以下。再者,當摻入於該鍵隙能量 較大〈第3氮化物半導體膜中的p型雜質較少,而摻入於 筑鍵隙能量較小之第4氮化物半導體膜中的P型雜質較多 時的情況亦同。 作為P型雜質者係可如Mg、Zn、Ca、Be等的週期表 第IIA族、第IIB族元素,其最好係以Mg、Ca來作為p 型雜質。 再者,於構成多層膜之氮化物半導體層中,就摻入高 濃度的雜質的層而言,其在厚度方向上,比較好的是半導 體中央部附近的雜質濃度係較大,而量端部附近的雜質濃 度係較小(最好係呈無摻入狀態),如此即可使電阻率降 低。 其次’當該p侧覆蓋層1 08係以一由含有p型雜質之 AUGayNiOSbU)所形成之單一層所構成時,則該p側單 一膜覆蓋層的膜厚係在2 0 0 〇埃以下,而最好係在1 〇 〇 〇埃 以下’更佳者係調整在5 0 0〜1 〇 〇埃以下。若膜厚係在上 述範圍之内時’則可提高發光輸出’並且使順向電壓(Vf) 第82頁AT ____ B7 __ 5. Description of the invention () Multi-layer film with good properties. Therefore, a preferred combination is that the first nitride semiconductor film 306a uses InkGa | -kN (0 < k < l) 'and the second nitride semiconductor film I06b uses InmGa and mN (0sm < l M < k) or GaN; The best combination is: the first nitride semiconductor film 306a uses an ink (3a bkN 'with a k value of 0.5 or less, and the second nitride semiconductor film 106b uses GaN. 〇 In addition, both the first nitride semiconductor film 3 06a and the second nitride semiconductor film 306b are non-doped, or both of them are doped with n-type impurities, or only one of them is doped (tuned). (Variable doping). However, in order to further improve the crystallization performance, it is better to be undoped, and the second best is to modulate the doping, and the second is to do both. When both are doped with η In the case of the n-type impurity, the n-type impurity concentration of the first nitride semiconductor film 306a may be different from that of the n-type impurity of the second nitride semiconductor film 306b. Also, as the n-type impurity, it may be si, Ge, Sn, S and other group ϊν or νι group elements, it is best to use Sl, Sn as η-type impurities. = In addition, when doped with η-type impurities, its impurities The degree is best adjusted below Sxl021 / cm3, and the better is adjusted below 5x0 2a / cm3. If it exceeds 5xl02Vcm3, the crystallinity of the nitride semiconductor layer will be deteriorated to the right and the output will be decreased. The same applies to the case of modulating the dopant. In the fifth embodiment, the active layer of the multiple quantum well structure is a nitride semiconductor containing In and Ga. (叱 a < 1} formed; both n-type and p-type are acceptable, but it is better to use a non-complex 3 quality & 1_ to make the half-value amplitude line of the emission wavelength of the stronger bond light smaller. And the active layer 7 can also be replaced with n-type or p-type impurities. When the active layer 7 earns two__781 ----------------------- --------------- ί Please read the unintentional matter on the back before filling out this page). II ---- II 丨-*-11 --- 111 —-- Slow 437103 Λ7 B7 V. Description of the invention (In the case of type impurities, the luminous intensity between the bonds can be stronger than that in the case of undoped materials. When the active layer 7 is doped with p-type impurities, the peak wavelength can be shifted to about 0.5eV energy side lower than the peak wavelength of the inter-bond emission peak, but its half-value amplitude is Large. When the active layer 7 is doped with n-type or p-type impurities at the same time, the luminous intensity of the active layer 7 can be greater than that when the p-type impurities are doped alone. It is worth mentioning that when forming a doped with When the active layer 7 is a p-type impurity, the conductive type of the active layer 7 can be doped with n-type impurities at the same time to make the whole into an n-type. It is best to grow an active layer with good crystallinity. Department is not doped. The stacking order of the barrier layer and the well layer of the active layer 7 is not limited, and it can start from the well layer and finally the well layer, or from the well layer to the barrier layer, or from the barrier ^ ^ Layer, or from the barrier layer began to accumulate and finally the well layer. The thickness of the well layer is less than or equal to 70 Angstroms, and preferably is less than or equal to 70 Angstroms, and more preferably, it is adjusted to less than or equal to Angstroms. In the present invention, the lower limit of the thickness of the well is not limited, but it is preferably at least 1 atomic layer, more preferably at least 10 angstroms. When the thickness of the plutonium layer is more than Jb 100 Angstroms', the output tends to be difficult to improve. In addition, the thickness of the barrier layer must be 2,000 angstroms or less, preferably 500 angstroms or less, and more preferably 300 angstroms or less. Further, in the present invention, the lower limit of the thickness of the barrier layer is not particularly limited, and it is sufficient if it is 'above the atomic width', but it is preferably ... 0 angstrom or more. If the thickness of the barrier layer is within the above range ', the output can be easily improved. In addition, in the present invention, the total thickness of the active layer 7 is not limited in any way, and it is a private paper standard on the page 79 that meets the Chuanzhongchi Ansi (CNS) / V 丨 specifications (Magic () X 297) (Please read the precautions on the back before filling out this page) Install --------- Order --------- Employee Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by employee consumer cooperatives 4371 〇3 --------- Q7 V. Description of the invention () The factors such as the expected wavelength of led components can be adjusted to adjust the number of stacking layers and stacking layers of the barrier layer and the well layer. The total thickness of the active layer 7 is adjusted. In the fifth embodiment, the p-side cladding layer I 08 is composed of a third nitride semiconductor film having a large bond gap energy, and a third nitride having a bond gap energy ratio. The fourth nitride semiconductor film with a small semiconductor film is stacked, and the P-type impurity concentration in the two may be different or the same. In addition, in the present invention, the P-side cladding layer may also contain P-type impurities. Is composed of a single layer formed by AlbGai.bN (0 ^ bSl). The following is the first explanation about when the p-side cover layer 1 08 is a A case where a p-side multilayer film cover layer having a multilayer film structure (superlattice structure) is included. The film thickness of the third nitride semiconductor film and the fourth nitride semiconductor film constituting the mp 恻 multilayer film cover layer 108 is between It is less than or equal to 70 Angstroms, and preferably is less than or equal to 70 Angstroms, and more preferably is adjusted to less than 50 Angstroms, and the film thickness of the third nitride semiconductor film and the fourth nitride semiconductor film may be the same or different. When each film thickness of the right multilayer film structure is within the above range, the film thickness of each nitride semiconductor can be below the elastic critical film thickness, and it can grow into a crystal compared to the case of a thick film. In addition, since the nitride semiconductor layer has better crystallinity, when P-type impurities are added, P with a higher carrier concentration and lower resistivity can be obtained. At the same time, the Vf and the initial value of the device can be reduced. The two types of layer systems with the above film thicknesses are _groups, and they are stacked multiple times—multilayer film layers. Therefore, the P-side multilayer film cover layer The total film thickness of 1 08 can be adjusted by adjusting the third nitride semiconductor film and 帛 4. Each film of a compound semiconductor film ____ page 30 people 5k people J Ai W China Net 丨 I Parasol (CNS) A: 1.,: ¾ ----------------_____ — — — — — — — — — — — — Install -------— Order ------- I i (Please read the precautions on the back before filling out this page) Staff Consumption of Intellectual Property Bureau, Ministry of Economic Affairs Printed by the cooperative, A371 03 A7 -------V. Description of the invention () Thickness, and the number of accumulating piles can be adjusted. The total thickness of the p-side multilayer concrete cover 108 is not limited. It can be less than 2000 Angstroms ', and preferably 1,000 Angstroms or less, more preferably, it is adjusted below 5,000 Angstroms. If the total film thickness is within the above range, the luminous output can be increased' and Reduce the forward voltage (Vf). The third nitride semiconductor film is a nitride semiconductor containing at least A1, and it is preferably grown from AlnGaunNCtKnSl). In addition, the fourth nitride semiconductor layer can be grown from a binary or ternary mixed-type nitride semiconductor such as AlpGai.pN (0 < pSl, n > p), IruGa ^ rNiO ^ d). If the p-side cladding layer 108 is a p-side multi-layer film with a superlattice structure, the cladding layer may be improved, the resistivity may be reduced, and Vf may be reduced. If the p-type impurity concentration between the third nitride semiconductor film and the fourth nitride semiconductor film of the P-side multilayer film cover layer 108 is different, the impurity concentration of one of them is larger and the impurity concentration of the other is smaller. When the p-type impurity concentration of the third nitride semiconductor film having a large bond gap energy is increased, and the p-type of the fourth argon semiconductor film having a small bond gap energy is the same as that of the n-side cladding layer, When the impurity concentration becomes smaller, the starting voltage and Vf can be reduced. Conversely, the p-type impurity concentration of the third nitride semiconductor film having a large bond gap energy is reduced, and the p-type impurity concentration of the fourth nitride semiconductor film having a small bond gap energy is increased. The impurity amount to be incorporated in the third nitride semiconductor film is lx 1018 / cm3 to lxl02, / cm3 ', and it is preferably adjusted to be in a range of lxl019 / cm3 to 5xl02 () / cm3. If it is less than Akira '81 ΈΓ -mi1 · ', the standard half-scale (2 Chuan χ 297 Gong 茇) ~ · ~ ~-11-— — — — —---------- order- --- 11 --- * 5 ^ I (Please read the intentions on the back before filling in this page) Α7 4371 Ο 3 V. Description of the invention (1 X 1 Ο 18 / c m3, Bei | J Banque Flute 4 — 〖Xingfeidi 4 oxide semiconductor film will become smaller, so 'it will be difficult to obtain-carriers'. The layer with a larger degree of violation, in addition, when its system exceeds 1; < 1 021 / When c m3, the weight may be deteriorated. In addition, the p-type impurity concentration of the fourth nitride semiconductor film is preferably less than that of the third nitride semiconductor film, and is preferably less than Above ln〇. Originally, it is best to obtain a layer with higher mobility when no impurity is added, but since the film thickness is very thin, it will diffuse from the third nitride semiconductor p-type impurity 1 The amount is preferably lxl020 / cm; or less. Furthermore, when the energy of the bond gap is larger, the p-type impurity in the third nitride semiconductor film is less, and the bond gap is added. P-type in the fourth nitride semiconductor film with low energy The same is true when there are many impurities. Those who are P-type impurities can be Group IIA and Group IIB elements of the periodic table such as Mg, Zn, Ca, Be, etc., and it is best to use Mg and Ca as p-type impurities. Moreover, in a nitride semiconductor layer constituting a multilayer film, a layer doped with a high concentration of impurities is better in the thickness direction because the impurity concentration near the central portion of the semiconductor is larger, and the amount The impurity concentration near the end is small (preferably in a non-doped state), so that the resistivity can be reduced. Secondly, when the p-side cover layer 1 08 is made of AUGayNiOSbU containing p-type impurities, When the formed single layer is formed, the film thickness of the p-side single film cover layer is less than 2000 angstroms, and preferably it is less than 1,000 angstroms. Less than 100 angstroms. If the film thickness is within the above range, 'the luminous output can be increased' and the forward voltage (Vf) can be increased.

.纸張尺度遇用 ill (cInS)AI (請先閱讀背*之注意事項再填寫本頁) . III--11 1111----i _ 經濟郤智慧財產局員工消費合作社印製 437103 A7 B7 五、發明說明( 降低。該P倒單一膜覆蓋層108的組成係為AUGai-bN(OSbSl) 〇 然而’相較於上述多層膜層構造的p倒覆蓋層,該單 一摸層的覆蓋層的結晶性係稍微差一點,但其係可藉由與 上述η側第1多層膜層3〇5的組合而使其結晶性變好’同 時使啟始值以及降低。此外,雖然其係為單一膜,佴 藉由與其他層構造的組合,即可減少元件性能低下,且由 於其係為單一媒,因此將可使製程簡化,此係有助於量 產。 該P側單一膜覆蓋層108的p型雜質濃度係可在 lxl0ls/cmJ〜lxi〇21/c nr 最好係 調 整在 (請先閱讀背面之江意事項再填窵本頁) 經濟部智慧財產局員工消費合作社印製.Ill (cInS) AI is used for paper scale (please read the precautions on the back before filling this page). III--11 1111 ---- i _ Printed by the Economic but Intellectual Property Bureau Employee Consumption Cooperative 437103 A7 B7 V. Description of the invention (decreased. The composition of the P single film cover layer 108 is AUGai-bN (OSbSl). However, compared to the p layer cover of the above-mentioned multilayer film structure, The crystallinity is slightly worse, but the crystallinity can be improved by the combination with the first multilayer film 305 on the η side, and at the same time, the initial value and the decrease can be achieved. In addition, although it is single The film can be combined with other layer structures to reduce the performance of the device, and because it is a single medium, the process can be simplified, which is helpful for mass production. The P-side single film cover layer 108 The concentration of the p-type impurity can be adjusted at lxl0ls / cmJ ~ lxi〇21 / c nr (It is best to read it on the back of the page and then fill out this page) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs

SxloU/cm·5〜5xl〇2Vcm3的範圍之間,更佳者係調整在 5xl〇l9/cm3〜lxl〇20/cm3的範圍之間。若雜質濃度係在上述 範圍之内時,則即可形成良好的p型膜。 其次,於本實施形態5中,若掺入Mg之p側GaN接 觸層9係為單層時,則其組成係為一不包含In、A1的2 元混晶氮化物半導體°在單層的情泥下,若假定含有In、 Al,則與p電極11間將無法獲得良好的歐姆接觸,立發 光效率將會下降。P側接觸層9的膜厚係在0.001〜〇_5Vm 之間,最好係在0.0 1〜0.3 # m之間,更佳者係在〇. 〇 5〜 0.2gm之間。當膜厚係比〇.〇〇ι#ηι還薄時,則將易與p 型GaAlN覆蓋層短路’而很難用以作為接觸層。為將一不 同组成之2元混晶的GaN接觸層堆積到3元混晶的GaA1N 覆蓋層之上’备其膜厚係超過0 · 5以m時,則在該p侧GaN 第83頁 裝--------訂-------線 Λ7SxloU / cm · 5 to 5xl02Vcm3, more preferably, it is adjusted to a range of 5xl109 / cm3 to lxl20 / cm3. When the impurity concentration is within the above range, a good p-type film can be formed. Next, in the fifth embodiment, if the p-side GaN contact layer 9 doped with Mg is a single layer, its composition is a binary mixed crystal nitride semiconductor that does not include In and A1. In this case, if it is assumed that In and Al are contained, good ohmic contact with the p electrode 11 will not be obtained, and the vertical luminous efficiency will decrease. The film thickness of the P-side contact layer 9 is between 0.001 and 0-5 Vm, preferably between 0.0 1 and 0.3 #m, and more preferably between 0.05 and 0.2 gm. When the film thickness is thinner than 〇〇〇ι # ηι, it is easy to short-circuit with the p-type GaAlN coating layer 'and it is difficult to use it as a contact layer. In order to deposit a ternary mixed crystal GaN contact layer with a different composition on the ternary mixed crystal GaA1N cover layer, if the thickness of the GaN contact layer exceeds 0.5 mm, the p-side GaN is installed on page 83. -------- Order ------- line Λ7

經清鄯智慧財產局員工消費合作社印製 五、發明說明() 接觸層9中將易產生晶格缺陷,而使結晶性降低。又,接 觸層的.模厚越薄’ V f則越低,因此可提升發光效率。另外, 若該P側GaN接觸層9的p型雜質係為Mg時,則較易獲 得P型特性’同時也較易獲致歐姆接觸。Mg的濃度係在 1X l〇1S/cm3〜ixl〇n/cm3 之間,最好係在 5xl〇19 /cm3~3M〇2Q/cm3之間,更佳者係在ιχ 1〇2〇/cm3左右。若 Mg的濃度係在此一範圍内,則可易於獲得一良好的p型 膜’並可使Vf降低。 此外’該η電極12 '及p電極π係分別形成於該η 惻接觸層4、及ρ側GaN接觸層9之上。.該^電極12、及 ρ電極1 1的材料並無一定限制,例如,該η電極12係可 為W/A1 ’而ρ電極u係可為Ni/Au α 【實施形態6】 以下係說明有關本發明之實施形態6之氮化物半導 體。 本實施形態6的氮化物半導體係為一具有^型多層膜 廣及13¾多層膜層的氮化物半導體,其基本構造係與實施 形態1相同,為說明上之方便,請參考第1圖所示。 本實施形態6的氮化物半導體係在一藍石英基板1上 依序堆積有—由GaN所形成的第1緩衝層2、一未摻雜質 之 Gajsj展 - W 3、一摻Si之GaN所形成的η側接觸層4 ' -未捧雜暂—Printed by Qinghua Intellectual Property Bureau's Consumer Cooperatives V. Description of Invention () Lattice defects will easily occur in the contact layer 9 and crystallinity will decrease. The thinner the thickness of the contact layer is, the lower the V f is, so that the luminous efficiency can be improved. In addition, if the p-type impurity system of the P-side GaN contact layer 9 is Mg, it is easier to obtain P-type characteristics' and it is easier to obtain ohmic contact. The concentration of Mg is between 1 × 10S / cm3 and ixl0n / cm3, preferably between 5x1019 / cm3 and 3M〇2Q / cm3, and more preferably between ιχ 1〇2〇 / cm3 about. If the concentration of Mg is within this range, a good p-type film 'can be easily obtained and Vf can be reduced. In addition, the η electrode 12 ′ and the p electrode π are formed on the η 恻 contact layer 4 and the p-side GaN contact layer 9, respectively. The materials of the ^ electrode 12 and the ρ electrode 11 are not limited. For example, the η electrode 12 system may be W / A1 ′ and the ρ electrode u system may be Ni / Au α. [Embodiment 6] The following description is provided. A nitride semiconductor according to a sixth embodiment of the present invention. The nitride semiconductor system of the sixth embodiment is a nitride semiconductor having a ^ -type multilayer film and a 13¾ multilayer film. The basic structure is the same as that of the first embodiment. For convenience of explanation, please refer to FIG. 1 . The nitride semiconductor of this sixth embodiment is sequentially stacked on a blue quartz substrate 1-a first buffer layer formed of GaN 2, an undoped Gajsj exhibition-W 3, a Si-doped GaN The formation of the η-side contact layer 4 '

GaN層5、一 η側多層膜層g、一由inGaN/GaN 所形成的文+ 多重量子井構造之活性層7、一 p側多層膜層8、 (靖先閱讀背面之注意事項再填寫本頁} L I— D I— n n &*OJ I I I ^ip I . 經濟部智慧財產局員工消費合作杜印製 4371 03 五、發明說明() 及一摻Mg之GaN所形成的p惻接觸層9 ,其中’構成上 述η惻多層膜層6、及p側多層膜層s的各氮化物半導體 之組成、及(或)η惻與ρ側層數係不同於實施形態丨3此外, 就實施形態6的氮化物半導體而言,其係可利用實施形態 1〜5中所述之各種的多層膜層來作為其η惻多層膜層6 及Ρ側多層膜層8。 在此,於第1圖中,η型氮化物半導體之11型多層膜 層係設有1層,且Ρ型氮化物半導體之ρ型多層膜層亦設 有〗層,然而,對η惻區域及ρ側區域而言,其亦可分別 設有2層的多層膜層。例如,若上述未摻雜質之層5 係由一以未摻雜質之氮化物半導體所形成的下層、—以摻 有η型雜質之氮化物半導體的中間層、以及一未摻雜質之 氮化物半導體所形成的上層所構成時,則可使發光輸出、 Vf及靜電耐壓更好。在η側區域係有2種η型多層膜層 時,該2種η型多層膜層中的任一層層數係越多於ρ型多 層膜層之層數越好。 首先’係針對多層獏層來說明。 於本實施形態6中’η型多層膜層6係至少由兩種以 上之組成不相同的氮化物半嗶體所構成,其組成最好係為 InzGai_zN(0Q<i)[第i氮化物半導體膜],或是inpGai. pNtOcpd)!;第2氮化物半導體膜]等兩種類的組成。 該第1氮化物半導體膜之較佳組成係為上述用以表示 該第1氮化物半導體膜之化學式中的z值越小’其結晶性 越好’而其最好係為z值為〇的GaN。 第8S育 .......... 丨- ----------Μ 〜_____ --------... 紙V••义屮 Μη 备..:卜.节(cMS)A 丨悦格(?1ϋ " ------—_—一 - - - - - ------* - 1 1 I I !—^· — —------咸 {請先閱讀背面之注意事項再填寫本頁) 4371 03 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明( 此外’孩第2氮化物半導體膜之較佳組成係為上述用 以表示該第2氮化物半導體膜之化學式中,p值在〇 5以 下的InpCJai-PN,而其最好係為P值在0.1以下的InpGa丨. PN « 於本發明中,該第丨氮化物半導體膜與第2氮化物半 導體膜之最佳的組合係為:帛丨氮化物半導體膜係使用GaN layer 5, an η-side multilayer film g, an active layer made of inGaN / GaN + multiple quantum well structure 7, a p-side multilayer film 8, (Jing first read the precautions on the back and fill out this PAGE} LI— DI— nn & * OJ III ^ ip I. Consumer cooperation of Intellectual Property Bureau of the Ministry of Economic Affairs Du printed 4371 03 V. Description of the invention () and a p 恻 contact layer formed of Mg-doped GaN 9, Among them, the composition of each nitride semiconductor constituting the η 恻 multilayer film layer 6 and the p-side multilayer film layer s, and / or the number of ηρ and ρ-side layers are different from those of Embodiment 3, and Embodiment 6 For the nitride semiconductor, various multilayer films described in Embodiments 1 to 5 can be used as the η 恻 multilayer film 6 and the P-side multilayer film 8. Here, in FIG. 1 The 11-type multilayer film layer of the η-type nitride semiconductor is provided with 1 layer, and the ρ-type multilayer film layer of the P-type nitride semiconductor is also provided with a layer. However, for the η 恻 region and the ρ-side region, the It is also possible to provide two layers of multi-layer film respectively. For example, if the above-mentioned undoped layer 5 is made of an undoped nitride When the lower layer formed by an object semiconductor, an intermediate layer doped with an n-type impurity-doped nitride semiconductor, and an upper layer formed with an undoped nitride semiconductor, the light-emitting output, Vf, and electrostatic resistance can be made. The pressure is better. When there are 2 types of η-type multilayer films in the η side region, the more the number of layers of any of the 2 types of η-type multilayer films is better than the number of layers of the ρ-type multilayer film. First, ' The description is made with reference to a multi-layer plutonium layer. In the sixth embodiment, the 'η-type multi-layer film layer 6 is composed of at least two kinds of nitride semi-beep bodies with different compositions, and its composition is preferably InzGai_zN (0Q < i) [i-th nitride semiconductor film], or inpGai. pNtOcpd) !; 2nd nitride semiconductor film] and other two types of composition. The preferred composition of the first nitride semiconductor film is that the smaller the z value in the chemical formula of the first nitride semiconductor film described above is, the better the crystallinity is, and the more preferable the z value is zero. GaN. The 8th education ......... 丨----------- Μ ~ _____ --------... Paper V •• 义 屮 Μη Prepare .. :: B. Section (cMS) A 丨 格格 (? 1ϋ " ------—_— 一----------- *-1 1 II! — ^ · — —--- --- Xian {Please read the notes on the back before filling out this page) 4371 03 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (In addition, the composition of the second nitride semiconductor film is better In the above chemical formula used to indicate the second nitride semiconductor film, the InpCJai-PN with a p value of 0 or less is preferably InpGa with a P value of 0.1 or less. PN «In the present invention, the The best combination of the first nitride semiconductor film and the second nitride semiconductor film is: 帛 丨 Nitride semiconductor film is used

GaN,而第2氮化物半導體膜係使用p值係在〇 5以下的 IripGai.pN。 此外,就η側多層膜層6而言,其第丨氮化物半導體 膜與第2氮化物半導體膜係最少分別形成有一層以上,合 计共2層丨3層以上,而最好是分別形成有2層以上,合 計共4層,更好是分別形成有7層以上,合計纟14層以 上者。 第1氮化物半等體膜與第2氮化物半導體膜的堆積層 數上限雖無特別限制,但以5⑽層以下者為佳。若超過500 廣’則將會很費堆積時間,且使操作繁複,進而使元件特 性微微降低。 構成,玄η侧义層膜層6的單—氮化物半導體層之膜厚 並雖無特別限H最好使2種類之氮化物半導體層中 1種類的單一氮化物半導體層膜厚在⑽埃以下而GaN, and the second nitride semiconductor film system uses IripGai.pN having a p-value of 0.5 or less. In addition, for the η-side multilayer film layer 6, the first nitride semiconductor film and the second nitride semiconductor film system are each formed with at least one layer or more and a total of 2 layers and 3 or more layers, and it is preferably formed separately. Two or more layers, a total of four layers, more preferably seven or more layers, and a total of 14 or more layers. Although the upper limit of the number of the stacked layers of the first nitride semi-isospheric film and the second nitride semiconductor film is not particularly limited, it is preferably 5 layers or less. If it exceeds 500, it will take a long time to pile up, complicate the operation, and further reduce the component characteristics slightly. The thickness of the single-nitride semiconductor layer of the xenon-side sense layer film layer 6 is not particularly limited. It is preferable that the thickness of the single nitride semiconductor layer of one kind among the two types of nitride semiconductor layers be within Angstroms Following

最好係在70埃以下Α祛,s L 為佳更佳者係最好在5 0埃以下。 因為構成該η側多廢腔a £ „ 夕增膜層6的單一氮化物半導體層之 膜厚越薄則會使多層膜居ά 增膜廣成為超晶格構造,進而使多層膜 層的結晶性變好’所以可以提升輸出。 第86頁It is best to be less than 70 Angstroms, and it is better to have s L less than 50 Angstroms. Because the thickness of the single nitride semiconductor layer constituting the n-side multi-waste cavity a £ „increases the thickness of the single nitride semiconductor layer 6 to increase the thickness of the multilayer film into a superlattice structure, and further crystallizes the multilayer film layer. Sex is better 'so you can boost the output. Page 86

公J ------------^c--------訂----------1^· . (請先閱讀背面之注意事項再填寫本頁)Public J ------------ ^ c -------- Order --------- 1 ^.. (Please read the notes on the back before filling in this page)

4371 〇3 五、發明說明( 若該η側多層膜層6係由第1氮化物半導體獏與第2 氮化物半導體膜構成時,若其中至少係須有一膜厚係在 1 00埃以下,而最好係在70埃以下為佳’更佳者係最好在 50埃以下。 若第1氮化物半導體膜與第2氮化物半導體獏中至少 有一摸厚係在i 00埃以下時’則單一的氮化物半導體膜係 均可在彈性臨界膜厚以下,而使其具有良好之結晶。當在 此~結晶性良好的氮化物半導體層上再形成一彈性臨界 摸厚以下的氮化物半導體時,則可使結晶性更為良好。據 此’即可使第1氮化物半導體膜與第2氮化物半導體膜以 良好的結晶性來堆積,進而使n型多層膜層6全體之結晶 性變好。由於η型多層膜層6全體之結晶性變好,因此可 以it升元件的發光輸出。 該第1氮化物半導體膜及第2氮化物半導體膜兩者的 膜厚係最好均在100埃以下,而最好係在7〇埃以下為佳, 更佳者係最好在5 0埃以下。 右邊η型多層膜層6之第1氮化物半導體膜及第2氮 化物半導體膜兩者的膜厚係均在1 00埃以下,則單一的氮 化物半導體層膜厚即可在彈性臨界膜厚以下,相較於厚膜 勺清/兄下,其係較可長成結晶性良好的氮化物半導體。 ,此外’若是該η型多層膜層6之第1氮化物半導體膜 及第2氣化物半導體膜雙方均在7〇埃以下時,則多層膜 層係可為超晶格結構’當在此一結晶性良好的超晶格結構 之多層模層上形成活性層時,該多層膜層即可作為緩衝層 n t tt n n n n n t » I n I <請先閱讀背面之注意事項再填寫本頁) 經濟耶智慧財產局員工消費合作杜印絜 A7 , 4371 03 五、發明說明( 用,進而可成長出―結晶性良好的活性層。 該η型多層膜層 又〜厚度雖無一定限制,乜以 〜10000埃為佳’更好佴点h c . — 保為25〜5000埃,最佳者是25〜 1 000埃。若膜厚係在上诚铲1 上述I…内時,則可使 好,並可提升元件的輪出。 文 該η側多層膜層6的形成位置並無一定限制,其係可 與該活…相臨而設,或是與該活性層7相離而設:作 最好係與該活性層相鄰而設。 當該11側多屠膜層6係與該活性層7相臨而設時,則 =活性層7之最初層之井層(或障壁層)相接的氮化物半 導“係可為構成該η側多層膜層6之第丨氮化物半導體 膜或是第2氮化物半導體膜。 田此J…口,这第1氮化物半 導:膜及第2氮化物半導體膜的堆積順序並無—定限•卜 換s之’其係可由帛!氮化物半導體膜開始堆積而秣於第 1氮化物半導體膜;或是由帛,氛化物半導體膜開始堆積 而終於第2氮化物半導體摸;或是由第2氮化物半導體膜 開始堆積而終於第1氮化物半導體膜:或是由帛2氮化物 半導體膜開始堆積而終於第2氮化物半導體摸。 於第丨圖中,該η侧多層膜層6雖與該活性層7相鄰 而設’但該η側多層膜層6亦可與該活性層7相離而咬, 此時’如上所述’在該η側多層膜層6與活性層7之間係 可形成一由其他η型氮化物半導體所構成的層。 於本實施形態6中,用以構成該η側多層膜層6的單 —的氮化物半導體廣’例如上述第丨及第2氮化物半導體 第88頁 (: ;Ν5)Λ'ί ί'^10 ^ ---97 ί ¥ ------------ 装--------訂·---------I (請先閱讀背面之注意事項再填寫本頁> 經濟部智慧財產局員工消費合作杜印製 〆 4371 〇3 Λ7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明( 層係可不摻入雜質’或是摻入η型雜質。 入報it實施形態6中,所謂的未摻雜質係指刻意地不挣 入雜質狀態,例如對於由都接之氮化物半參 混入的雜質…於本發財亦屬未摻㈣體層所擴散而 而混入的雜㈣…”屬未摻雜質。又’因擴教 0雜質係會使層内的雜質產生梯度。 :構成該„侧多層膜層6的單一的氮化物半導體層係 與以2氮化物半導制時,則第丨氮化物半導體膜 约椽;ir虱化物半導體膜兩者係均可不掺锥f,或是其兩者 均接1 η型雜質,或是只其中_方掺雜質。 一當該第1氮化物半導體膜與第2氮化物半導體膜中之 ;〆入η型錐質1而使相鄰兩方之氮化 型雜質不同時,亦 千h滑中η Ρ所明的碉父摻雜,則可使輸出易於提 开。 、卜田邊第1氮化物半導體膜與第2氮化物半導體 ,@万均接入η型雜質時’則相部的單一氮化物半導趙層 心間的雜質濃度係可不同或是相同,但以不同者為佳。 .吏其”有反好結晶I生’其最好是未接雜質者,其次 序:調:择雜’其次為兩者均掺雜^ 田以第1氮化物半導體膜與第2氮化物半導體膜 均接入11裂雜質時,雜質渡度係不限哪-層為高。 接入η型雜質時的雜質濃度並無一定限制,但,最好 係 5x l〇h/cm3 w γ ’更佳者係1 X 1 Ο2G/Cm3以下,而最佳者 係調整在5x1〜以下。若其係超過WW,則會 使氮化物本堞_ a ,, 層的結晶性變差,反而會使輸出降低。此 本紙張尺& —----- I. n If 一OJ» 1_ *1- I f (請先閱讀背面之主意事項再填寫本頁) (210 43 7 I 〇34371 〇3 5. Description of the invention (If the η-side multilayer film 6 is composed of a first nitride semiconductor film and a second nitride semiconductor film, if at least one of them has a film thickness of less than 100 angstroms, and It is better to be below 70 angstroms, and even better is to be below 50 angstroms. If at least one of the first nitride semiconductor film and the second nitride semiconductor ytterbium is below i 00 angstroms, it is single. All of the nitride semiconductor film systems are below the critical elastic film thickness, so that they have good crystallinity. When a nitride semiconductor layer with a good crystallinity is formed below this nitride semiconductor layer, The crystallinity can be further improved. According to this, the first nitride semiconductor film and the second nitride semiconductor film can be deposited with good crystallinity, and the crystallinity of the entire n-type multilayer film layer 6 can be improved. Since the crystallinity of the entire η-type multilayer film layer 6 is improved, it is possible to increase the light output of the device. The thickness of both the first nitride semiconductor film and the second nitride semiconductor film is preferably 100 angstroms. Below, and preferably below 70 angstroms It is better that the best is less than 50 angstroms. The thicknesses of the first nitride semiconductor film and the second nitride semiconductor film of the right η-type multilayer film 6 are both 100 angstroms or less. The film thickness of the nitride semiconductor layer can be less than the critical elastic film thickness. Compared with the thick film, it can grow into a nitride semiconductor with good crystallinity. In addition, if it is the n-type multilayer film When both the first nitride semiconductor film and the second gaseous semiconductor film of layer 6 are less than 70 angstroms, the multilayer film layer system may have a superlattice structure. When an active layer is formed on a multi-layer mold layer, the multi-layer film layer can serve as a buffer layer. Nt tt nnnnnt »I n I < Please read the precautions on the back before filling out this page) Economic and Intellectual Property Bureau Employee Consumption Cooperation Du Yin 絜A7, 4371 03 V. Description of the invention (Use, and then can grow-active layer with good crystallinity. The η-type multilayer film layer has a thickness of ~~, although there is no certain limit, it is better to ~ 10000 angstroms', better hc . — 25 to 5000 angstroms, the best is 25 to 1 00 0 angstroms. If the film thickness is within the above I ... of the shovel 1, it can be improved, and the rotation of the element can be improved. The formation position of the η-side multilayer film layer 6 is not limited. Adjacent to the activity ... or separated from the active layer 7: It is best to be located adjacent to the active layer. When the 11-side multi-layer film layer 6 is in phase with the active layer 7 When it is set, then the nitride semiconductor that is connected to the well layer (or barrier layer) of the first layer of the active layer 7 may be the first nitride semiconductor film or the first nitride semiconductor film constituting the n-side multilayer film layer 6. 2Nitride semiconductor film. This is the J ... mouth, the first nitride semiconductor: the stacking order of the film and the second nitride semiconductor film is not limited. The nitride semiconductor film begins to accumulate and is deposited on the first nitride semiconductor film; or, the aluminized semiconductor film begins to accumulate and finally reaches the second nitride semiconductor; or the second nitride semiconductor film begins to accumulate and finally reaches the first 1 Nitride semiconductor film: Or, the second nitride semiconductor film is finally deposited from the hafnium 2 nitride semiconductor film. In the figure, although the η-side multilayer film layer 6 is provided adjacent to the active layer 7, the η-side multilayer film layer 6 may be separated from the active layer 7 and bite. At this time, as described above, 'A layer composed of another n-type nitride semiconductor may be formed between the n-side multilayer film layer 6 and the active layer 7. In the sixth embodiment, the single-nitride semiconductor used to form the n-side multilayer film layer 6 is, for example, the first and second nitride semiconductors described above, page 88 (:; N5) Λ'ί ί ^ 10 ^ --- 97 ί ¥ ------------ Outfit -------- Order · --------- I (Please read the precautions on the back first Fill out this page > Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs for Consumer Consumption Du printed 〆4371 〇3 Λ7 B7 Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Impurities. In the sixth embodiment of the report, the so-called undoped substance refers to the state of not deliberately earning impurities, for example, for impurities that are mixed with semi-parallel nitrides ... Diffusion and mixed impurities ... "are undoped. Also," due to the diffusion of 0 impurity system, the impurity in the layer will have a gradient.: The single nitride semiconductor layer system constituting the "multilayer film layer 6" and In the case of 2-nitride semiconducting, the nitride semiconductor film is about 椽; both iride compound semiconductor films can be doped with f, or both of them can be connected to 1 η type Or only the dopant. When the first nitride semiconductor film and the second nitride semiconductor film are intercalated with n-type cone 1 and the two adjacent nitride-type impurities are different, It is also possible to make the output easier to uncover by the dopant doped by η P in the h-slide. When the first nitride semiconductor film and the second nitride semiconductor are put on the edge, when @ 万 Both are connected to n-type impurities, then The impurity concentration of the single nitride semiconductor layer in the phase part may be different or the same, but the difference is better. It is best to have an impurity that is not crystallized, secondly Sequence: Tuning: Selecting impurities. Secondly, doping both. When Tian Yi's first nitride semiconductor film and the second nitride semiconductor film are connected to 11-split impurities, the impurity fertility is not limited to which layer is high. The impurity concentration when n-type impurities are inserted is not limited, but it is preferably 5x l0h / cm3 w γ 'The better is 1 X 1 〇2G / Cm3 or less, and the best is adjusted to 5x1 ~ If it exceeds WW, the crystallinity of the nitride layer will decrease, but the output will be reduced. This paper rule & —----- I . If If OJ »1_ * 1- I f (Please read the idea on the back before filling this page) (210 43 7 I 〇3

五、發明說明( 點對於調變摻雜亦同。 於本發明中,作為η型雜質者係可如Si、Ge、Sn、S 等的第IV族、或第νι族元素,其最好係以si、Gn來作 為η型雜質。 以下’係針對ρ型多層膜層8來作說明。 於本實施形態6中,ρ型多層膜層8係可至少由兩種 以上之組成不相同的氮化物半導體所構成,而其组成最好 係為ΙηχΟ&1.χΝ(〇<χ<η[第3氮化物半導體膜],或是V. Description of the invention (The point is the same for the modulation doping. In the present invention, those who are n-type impurities may be Group IV or Group ν elements such as Si, Ge, Sn, S, etc., which are preferably Si and Gn are used as η-type impurities. The following description will be made with reference to the p-type multilayer film layer 8. In the sixth embodiment, the p-type multilayer film layer 8 may be composed of at least two kinds of nitrogen having different compositions. Compound semiconductor, and its composition is preferably 1ηχΟ & 1.χΝ (〇 < χ < η [3 nitride semiconductor film], or

InyGaUyN((^y<1)[第4氮化物半導體膜]等的兩種類的組 成。 該第3氮化物半導體膜之較佳組成係為上述用以表示 該第3氮化物半導體膜之化學式中,χ值在〇5以下的InyGaUyN ((^ y < 1) [fourth nitride semiconductor film] and other two types of compositions. A preferred composition of the third nitride semiconductor film is the above-mentioned chemical formula for the third nitride semiconductor film. With χ value below 0

AlxGai.xN»若X值超過〇.5時’則結晶姓將會惡化,進而 易產生缝隙。 該第4氮化物半導體膜之較佳組成係為上述用以表示 4第4氮化物半導體膜之化學式中的y值最好係為〇的AlxGai.xN »If the value of X exceeds 0.5, the crystal surname will deteriorate, and gaps will easily occur. A preferred composition of the fourth nitride semiconductor film is as described above. The y value in the chemical formula of the fourth nitride semiconductor film is preferably 0.

GaN。當y值係為〇時,則可易於形成—結晶姓良好的多 層膜層。 於本實施形態6中,該第3氮化物半導體膜與第4氣 化物半導體膜之最佳的組合係為:第3氮化物半導體膜係 使用χ值係在·0·5以下的A“Ga】』,而第4氮化物半導體 膜係使用GaN。 此外,就P型多層膜層8而言,其第3氮化物半導體 膜與第4氮化物半導體膜係最少分別形成有一層以上’合 第90頁 ί請先閲讀背面之;ΐ意^項再填寫本頁)GaN. When the y value is 0, it can be easily formed-a multi-layered film with a good crystal surname. In the sixth embodiment, the optimal combination system of the third nitride semiconductor film and the fourth gaseous semiconductor film is that the third nitride semiconductor film system uses A "Ga whose χ value system is · 0 · 5 or less ] ", And the fourth nitride semiconductor film is GaN. In addition, in the case of the P-type multilayer film 8, the third nitride semiconductor film and the fourth nitride semiconductor film are formed with at least one layer each. (Page 90, please read the back; please fill in the ^ items before filling in this page)

裝---------訂---I-----線 J 經濟部智慧財產局員工消費合作社印製 43 71 0 3 A7 B7 五、發明說明( 計共2層或3層以上, 而最好是分別形成有2層以上,合 計共4層者。 第3氮化物半導雜脫也w 膜與第4氮化物半導體膜的堆積層 數上限雖無特別限制, 考量堆積時間等的製程以及元件 特性’其係以丨〇〇層以下者為佳。 該P型多層膜層8之總厚度雖無一定限制,但以Μ 〜10000埃為佳,更好杈 又野係為25〜5000埃,最佳者是25〜 ί 〇〇〇埃。若膜厚係在上诚趑閉α , 仗上述範圍 < 内時,則可使結晶性變 好,並可提升元件的輸出。 此外,於本發明中,對於膜厚係在上述範圍内之?型 多層膜層8而T,其膜厚越薄,則元件之Vf與啟始值會 有越容易降低的傾向。 構成該p型多層膜層8的單一氣化物半導禮層之膜厚 並雖無特別限制’但,最好使2種類之氮化物半導體層中 至少有一 1種類的單一氮化物半導體層膜厚在1〇〇埃以 下,而最好係在70埃以下為佳’更佳者係最好在5〇埃以 下。 因為構成該p型多層膜層8的單一氬化物半導體層之 膜厚越薄則會使多層膜層成為超晶格構造,進而使多層膜 層的結晶性變好,所以可在添加p型雜質時獲得一載子濃 度較大 '電阻率較小的P層’同時亦可使元件之V f與啟 始值易於降低,據此,即可以低消耗電力來獲致一良好的 發光輸出。 若該P型多層膜層8係由第3氮化物半導體膜與第4 第91頁 (淆先閱讀背面之注意事項再填寫本頁)--------- Order --- I ----- Line J Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 43 71 0 3 A7 B7 V. Description of the invention (total 2 or 3 layers Above, it is preferable to form two or more layers each, and a total of four layers are formed. The third nitride semiconductor doped layer also has no upper limit on the maximum number of stacked layers of the film and the fourth nitride semiconductor film. And other characteristics of the process and element characteristics' It is better to be less than 〇OO layer. Although the total thickness of the P-type multilayer film layer 8 is not necessarily limited, it is preferably M ~ 10000 angstroms, more preferably 25 ~ 5000 angstroms, the best is 25 ~ ί〇〇〇angstrom. If the film thickness is within the upper limit α, if the above range is within the range, the crystallinity will be improved, and the output of the device will be improved In addition, in the present invention, as for the? -Type multilayer film 8 whose film thickness is within the above range, the thinner the film thickness, the easier it is for the Vf and the initial value of the device to be lowered. Although the film thickness of a single gaseous semiconducting layer of the p-type multilayer film 8 is not particularly limited, it is preferable that at least two of the two types of nitride semiconductor layers be present. The thickness of a single type of single nitride semiconductor layer is 100 angstroms or less, and preferably 70 angstroms or less, and more preferably 50 angstroms or less. Because the p-type multilayer film 8 The thinner the thickness of a single argon semiconductor layer is, the more the multilayer film becomes a superlattice structure, and the crystallinity of the multilayer film becomes better. Therefore, when a p-type impurity is added, a larger carrier concentration is obtained At the same time, the P layer with a lower rate can also easily reduce the V f and the initial value of the device, so that a good light output can be obtained with low power consumption. If the P-type multilayer film layer 8 Nitride semiconductor film and page 4 of 91 (confused read the precautions on the back before filling this page)

- I II ----訂. — — 1! I I I 經濟部智慧財產局員工消費合作社印製 _I__^ 經濟部智慧財產局員工消費合作杜印製 Γ 4371 03 Α7 ____Β7 五、發明說明() 亂化物半導體膜構成時,若其中至少係須有一膜厚係在 100埃以下’而最好係在70埃以下為佳,更佳者係最好在 50埃以下。 若第3氮化物半導體膜與第4氮化物半導體膜中至少 有-膜厚係在⑽埃以下時’則單一的氮化物半導體膜係 均可在彈性臨界膜厚以下,而使其具有良好之結晶〃當在 此-結晶性良好的氮化物半導體層上再形成一彈性臨界 膜厚以下的氛化物半導體時,則可使結晶性更為良好。據 此,即可使第3氮化物半導體膜與第4氮化物半導體膜以 良好的結晶性來堆積,進而丨p型多層膜層8全體之結晶 性變好。由於p型多層膜層8全體之結晶性變好,因此可 以提升元件的發光輸出。 該第3氛化物半導體膜及第4氮化物半導趙膜兩者的 膜厚係最好均在100埃以下,而最好係在7〇埃以下為佳, 更佳者係最好在50埃以下。 若該P型多層膜層8之第3氮化物半導體膜及第4氮 化物半導體膜兩者的膜厚係均在1〇〇埃以下,則單一的氮 化物半導體層膜厚即可在彈性臨界膜厚以下,相較於厚膜 的情況下,其係較可長成結晶性良好的氮化物半導體。 此外,若是該p型多層膜層8之第3氮化物半導體膜 及第4氣化物半導體膜雙方均在7〇埃以下時,則多層膜 層係可為超晶格結構’且其結晶性亦變好,同時亦可使元 件《Vf與啟始值易於降低,進而可提升發光輸出。 該P型多層膜層8的形成位置並無一定限制,其係可 第92頁 ;:; >!- κ ; ; λ.;-------------------------------------------------- ------------ . I I I I I — I '—ItlIi — — (請先閱讀背面之注意事項再填寫本頁) 43 71 03 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明() 與該活性層7相臨而設’或是與該活性層7相離而設,但 該P側多層膜層8最好係與該活性層7相鄰而設。 當該ρ型多層膜居8係與該活性層7相臨而設時,則 與該活性層7之最初層之井層(或障壁層)相接的氮化物半 導體層係可為構成該P型多層膜層8之第3氮化物半導體 膜或是第4氮化物半導體膜。由此可知,該第3氮化物半 導體膜及弟4氮化物半導體膜的堆積順序並無一定限制。 換言足,其係可由第3氮化物半導體膜開始堆積而終於第 3氮化物半導體膜;或是由第3氮化物半導體膜開始堆積 而終於第4氮化物半導體膜;或是由第4氮化物半導體膜 開始堆積而終於第3氮化物半導體膜;或是由第4氮化物 半導體膜開始堆積而終於第4氮化物半導體膜。 於第1圖中,該p型多層膜層8雖與該活性層7相鄰 而設,但該p型多層膜層8亦可與該活性層7相離而設, 此時,如上所述,在該p型多層膜層8與活性層7之間係 可形成一由其他p型氮化物半導體所構成的層。 於本實施形態6中,上述第3及第4氮化物半導禮層 中係可不摻入雜質,或是只其中之一摻入p型雜質,或是 兩方同時摻入p型雜質。 當構成P型多層膜層8之第3氮化物半導體膜與第4 氮化物半導禮膜兩方均未摻入雜質時,p型多層膜層8的 膜厚係最好在0.1“以下,而更好者係纟7〇〇埃以下, 最佳者係纟500埃以下β若其膜厚係比〇,一厚時,則 活性層中將很難進行正孔法八,因此會使發光輸出降低。 第93頁 ------— II--- ^--------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 4371 03 A7 B7 五、發明說明() 此外若其膜厚係超過〇.丨以m時,則未摻雜質層的電阻質 將會增高。 此外’當該第3氮化物半導體膜與第4氮化物半導體 膜中之一方摻入P型雜質,亦即所謂的調變摻雜,則可使 輸出易於提升。又,當進行,變摻雜時,將可易於獲得一 載子濃度較高的0層β 此外,當該第3氮化物半導體膜與第4氮化物半導體 膜兩方均摻入ρ型雜質時,相較於其中一方未摻時的情 況由於其係可使載子濃度提高,因此可使v f降低。在 通第3虱化物半導體膜與第4氮化物半導體膜兩方均摻入 P型雜質肖’相鄰的單-氮化物半導體層之間的雜質濃度 .係可不同或是相同,但以不同者為佳。 於本實施形態6中,作為摻入P型多層膜層8之ρ型 •物者係可如Mg, Zn、Ca、Be、Cd等的週期表第ΠΑ族、 弟 IIB族分本 4 β 、 其最好係以Mg、Be來作為ρ型雜質。 P &雜質時1其雜質濃度最好係' 1 X 1 022/cm3以 下’更佳者係5 X 1 02 G / 3 ,, , /cm以下。若其係超過1 X 1 0 /cm3 ’ 則會使氮化物半導 狄 ’ 層的結晶性變差,反而會使發光輸出 降低。P哲 ‘資的漢度之下限雖無一定限制,但最好係 5xl〇l6/cm3 以上。 以下係針對第彳@ & 围所示之η型多層膜層6與P型多層 腰層8以外之其仙勒山 、形成元件構造的各層來作說明,但本發 明並不限於此。 ,作為基板1者係可為一以藍石英C面或汉面、Α 第94頁 --- —-I II ---- Order. — — 1! III Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs _I __ ^ Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Γ 4371 03 Α7 ____ Β7 V. Description of the invention () In the formation of a compound semiconductor film, if at least one of them is required to have a film thickness of 100 angstroms or less, it is preferably 70 angstroms or less, and more preferably 50 angstroms or less. If at least the third nitride semiconductor film and the fourth nitride semiconductor film have a film thickness of less than ⑽ angstrom ', then a single nitride semiconductor film system can be less than the elastic critical film thickness, so that it has a good Crystallization: When a nitride semiconductor layer with an elastic critical film thickness or less is formed on the nitride semiconductor layer with good crystallinity, the crystallinity can be further improved. Accordingly, the third nitride semiconductor film and the fourth nitride semiconductor film can be deposited with good crystallinity, and the crystallinity of the entire p-type multilayer film layer 8 can be improved. Since the crystallinity of the entire p-type multilayer film layer 8 is improved, the light emission output of the device can be improved. The film thickness of both the third semiconductor film and the fourth nitride semiconductor film is preferably 100 angstroms or less, preferably 70 angstroms or less, and more preferably 50 angstroms or less. Egypt below. If the thicknesses of both the third nitride semiconductor film and the fourth nitride semiconductor film of the P-type multilayer film layer 8 are 100 angstroms or less, the film thickness of a single nitride semiconductor layer may be at the elastic limit. The film thickness is less than that of a thick film, and it can grow into a nitride semiconductor with good crystallinity. In addition, if both the third nitride semiconductor film and the fourth gaseous semiconductor film of the p-type multilayer film layer 8 are less than 70 angstroms, the multilayer film layer system may have a superlattice structure and its crystallinity may also be For the better, at the same time, the element "Vf and the initial value can be easily reduced, thereby improving the light output. The formation position of the P-type multilayer film layer 8 is not limited, and it can be page 92 ;: >!-Κ; λ .; ---------------- ---------------------------------- ------------. IIIII — I '—ItlIi — — (Please read the precautions on the back before filling out this page) 43 71 03 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention () Adjacent to the active layer 7' or It is provided separately from the active layer 7, but the P-side multilayer film layer 8 is preferably provided adjacent to the active layer 7. When the p-type multilayer film is arranged adjacent to the active layer 7, the nitride semiconductor layer system connected to the well layer (or the barrier layer) of the first layer of the active layer 7 may constitute the P The third nitride semiconductor film or the fourth nitride semiconductor film of the type multilayer film 8. From this, it is understood that the order of deposition of the third nitride semiconductor film and the fourth nitride semiconductor film is not necessarily limited. In other words, it can start with the third nitride semiconductor film and finally the third nitride semiconductor film; or start with the third nitride semiconductor film and finally the fourth nitride semiconductor film; or the fourth nitride The semiconductor film starts to deposit and finally becomes the third nitride semiconductor film; or the fourth nitride semiconductor film starts to deposit and finally reaches the fourth nitride semiconductor film. In FIG. 1, although the p-type multilayer film layer 8 is provided adjacent to the active layer 7, the p-type multilayer film layer 8 may be provided separately from the active layer 7. At this time, as described above A layer composed of other p-type nitride semiconductors can be formed between the p-type multilayer film layer 8 and the active layer 7. In the sixth embodiment, the third and fourth nitride semiconducting layers may be doped with no impurities, or only one of them may be doped with p-type impurities, or both of them may be doped with p-type impurities simultaneously. When neither the third nitride semiconductor film nor the fourth nitride semiconductor film constituting the P-type multilayer film layer 8 is doped with impurities, the thickness of the p-type multilayer film layer 8 is preferably 0.1 "or less, The better is less than 700 Angstroms, and the best is less than 500 Angstroms. If the film thickness is greater than 0 and one is thick, it will be difficult to perform the positive hole method in the active layer, so it will emit light. Output is reduced. Page 93 -------- II --- ^ -------- Order --------- line (Please read the precautions on the back before filling this page) 4371 03 A7 B7 5. Description of the invention () In addition, if the film thickness exceeds 0.1 μm, the resistance of the undoped layer will increase. In addition, when the third nitride semiconductor film and the fourth nitride semiconductor film One of the nitride semiconductor films is doped with P-type impurities, that is, so-called modulation doping, which can easily improve the output. Moreover, when the doping is performed, a high carrier concentration can be easily obtained. 0 layer β In addition, when both the third nitride semiconductor film and the fourth nitride semiconductor film are doped with ρ-type impurities, the carrier concentration can be improved compared to the case where one of them is not doped. Therefore, vf can be reduced. The impurity concentration between the adjacent single-nitride semiconductor layers is doped with P-type impurities in both the third lice compound semiconductor film and the fourth nitride semiconductor film. The difference can be different. Or it is the same, but it is better to be different. In the sixth embodiment, as the ρ-type material substance incorporated in the P-type multilayer film 8 may be Mg, Zn, Ca, Be, Cd, etc. Group ΠA and IIB group 4 β, it is best to use Mg, Be as the ρ-type impurity. P & impurity 1 the impurity concentration is best '1 X 1 022 / cm3 or less', which is better 5 X 1 02 G / 3,,, / cm or less. If it exceeds 1 X 1 0 / cm3 ', the crystallinity of the nitride semiconductor layer will be deteriorated, and the luminous output will be reduced. P Zhe Although there is no certain limit on the lower limit of the Han degree of the asset, it is preferably 5x10l6 / cm3 or more. The following is for the η-type multilayer film layer 6 and the P-type multi-layer waist layer 8 shown in @@ amp The Xianle Mountain and the layers forming the element structure will be described, but the present invention is not limited thereto. The substrate 1 may be a blue quartz C-plane or a Han-plane. --- -

• di) X (請先閱續背面之注意事項再填寫本頁) 裝• di) X (please read the precautions on the back side before filling out this page)

n 一—eJk. >^i I 經濟部智韃財產局員Η消費合作社印製 經濟部智慧財產局員工消費合作杜印製 V*' 43 710 3 A7 —________B:_________ — 五、發明說明()n 一 —eJk. > ^ i I Printed by the Intellectual Property Office of the Ministry of Economic Affairs and printed by the Consumer Cooperative Cooperative Produced by the Intellectual Property Office of the Ministry of Economic Affairs and printed by the employee. V * '43 710 3 A7 —________ B: _________ — 5. Description of the invention ()

面為主面的藍石英,或是如尖晶石(MgAl2〇4)般的絕緣性 基板’或是 SiC(含有 6H、4H、3C)、Si、ZnO、GaAs、GaN 等的半導體基板。 作為緩衝層2者係為一由(}adAi1-dN(d係在Odd的 範圍内)所形成的氮化物半導體,其中A1的比例越小’其 組成之結晶性越有明顯改善,因此該緩衝層2最好係由 GaN所構成 該緩衝層2的膜厚係在0.002〜〇.5仁m之間,而最好 係調整在0.005〜0.2以m之間,而更好係在0.01〜0.02 /i m之間。若該緩衝層2的膜厚係調整在上述範圍之内時* 則氮化物半導體的結晶性將會變好,進而使成長於該缓衝 廣2上的氮化物半導體的結晶性獲得改善^ 該緩衝層2的成長溫度係在2〇〇〜900度C之間’最 好保調整在400〜800度c之間。當成長溫度係在上述溫 度範圍内時’則其係可形成良好的複晶,以該複晶係作為 種結晶’則成長於該緩衝層2上的氮化物半導體的結晶性 將會變好》此外’依基板之種類、以及成長方式之不同, 上述以低溫所長成之緩衝層2係可被省略。 其次’作為未摻雜質之GnN層3者係可利用比成長 該緩衝層2時還高的溫度來加以成長,例如9〇〇〜11〇〇度 C ;其係可由 InfAlgGau-gNiO^^Osg, f+gsi)所構成,其组 成雖無一定的限定’但為獲致結晶缺陷較少的氮化物半導 趙層’其係以GaN、或是g值係〇 2以下的AlgGai—gN者 為佳》此外’其膜厚並無一定限制,但其係以比緩衝層還 第95頁 f 沔?;}中 Η 闷家:¾準(CNSM1 --------------------------------- I--------訂---------嫂' (請先Μ讀背面之注意ί項再填寫本頁) 4371 〇3 A7 -----gL___ 五、發明說明() 厚的膜厚來成長,通常係在O.Iym以上。 用以作為一由按S i雜質之GaN所形成之η侧接觸層 4者係與未摻雜質之GnN層3 —樣,其係可由InfAlgGai f-gN(〇sf,〇sg,f+gu)所構成’其組成雖無一定的限定,但 為獲致結晶缺陷較少的氮化物半導體層,其係以GaN、或 疋g值係0.2以下的AlgGai-gN者為佳。此外,雖然該n 側接觸層4的膜厚並無一定的限定,但,由於其係為一用 以形成η電極的層,因此,其膜厚係為lj[zrn以上為佳。 此外,為不使氮化物半導體之結晶性惡化,其η型雜質濃 度係最好以高濃度摻入較佳,其範圍係為1 χ丨〇丨s/cm3以 上,5xl021/cm3 以下。 作為未摻雜質之GaN層5者係與上述一樣,其係可由 InfAlgGa卜f.gN(C^f,0Sg,f+gSl)所構成,其組成雖無一定的 限疋’但為獲致結晶缺陷較少的氮化物半導體層,其係以 G aN、或是g值係0.2以下的A1 g Ga 1 ·、或是f值係〇 · 1 以下的InfGaI_fN者為佳。由於該未摻雜質之GaN層5之 長成係與在該摻入高濃度雜質之η側接觸層4上長成一直 接活係層者不同’故可使基礎之結晶性變好,因此可使之 後成長的η型多層膜層6易於成長,並且亦可使形成在其 上的活性層易於成長,進而使結晶性變好。由此可知,當 將一摻入鬲濃度雜質之η側接觸層4堆積在該未捧雜質之 GnN層3上,其次,依序堆積未摻雜質之GaN層5 、n 型多層膜層6時’則可使LED元件的Vf降低。此外,當 η型多層膜層ό係未摻雜質時,該未摻雜質之GaN層5係 第96頁 —〜---------------- (請先閱讀背面之注意事項再填寫本頁) 裝---- 訂---------姨 經濟部智慧財產局員工消費合作社印製 37103 Λ: B7 經濟部智慧財產局員工消費合作社印製 五、發明說明( 可被省略。 另外,於本實施形態6中,亦可將上述未摻雜質之 _層5改成實施形,態5 一樣,係由一未摻雜質的下層 3〇5a與-掺_ η型雜質的中間層3〇5b、〃及一未摻雜質 的上層305c所形成的多層膜層β 其中,該多層膜層係自基板侧開始,至少分別由一未 摻雜質的下層305a與一摻有„型雜質的 及-未接雜質的上屠一 3層所形成1層"膜層中 亦可具有上述下層305a〜上層305c以外的層。此外,該 多層膜層係可直接與活性層接觸’或是其間設有其他層。 構成下層305a〜上層305c之氮化物半導體者係可為 以叱h<1)所表示之各種組成的氣化 物丰導體,而最好係由GaN所形成之組成者β另外,多層 膜層的各層係可相同或是不同》 該多層膜層的膜厚並無一定限制,其係可為175〜 12000埃’最好係為1000〜1 0000埃,而更好係為2〇〇〇〜 6〇〇〇埃。若該多層膜層的膜厚係在上述範圍之内時,則有 使V f最適化以及靜電耐壓提升的優點。 具有上述範圍之膜厚的多層膜層的膜厚調整係可藉 由調整下層305a、中間層305b、及上層305c等各層膜厚, 而使該多層膜層的膜厚位於上述範園之内。 此外,雖然用以構成該多層膜層的下層3 0 5 a、中間層 3 05b '及上層305c等各層膜厚並無一定限制,但,由於 其在多層膜層中所堆積的位置不同而對元件性能的各種 第97頁 t--------訂---------線. (請先閱讀背面之注意事項再填笃本頁) 本纸张尺度玷丨丨i十肖技 ΐίί; 7- (CJNS;A4 (2:The main surface is blue quartz, or an insulating substrate such as spinel (MgAl204), or a semiconductor substrate such as SiC (containing 6H, 4H, 3C), Si, ZnO, GaAs, GaN, or the like. The buffer layer 2 is a nitride semiconductor formed by (} adAi1-dN (d is in the range of Odd). The smaller the proportion of A1, the more significantly the crystallinity of its composition is improved. The layer 2 is preferably composed of GaN. The film thickness of the buffer layer 2 is between 0.002 and 0.5 mm, and it is preferably adjusted between 0.005 and 0.2 to m, and more preferably between 0.01 and 0.02. / im. If the film thickness of the buffer layer 2 is adjusted within the above range *, the crystallinity of the nitride semiconductor will be improved, and the crystal of the nitride semiconductor grown on the buffer layer 2 will be improved. Improved performance ^ The growth temperature of the buffer layer 2 is between 2000 and 900 degrees C. 'It is best to adjust between 400 and 800 degrees C. When the growth temperature is within the above temperature range, it is A good complex crystal can be formed, and using the complex system as a seed crystal, the crystallinity of the nitride semiconductor grown on the buffer layer 2 will be improved. Moreover, depending on the type of the substrate and the growth method, the above The buffer layer 2 formed at a low temperature can be omitted. Secondly, as the undoped GnN layer 3 It can be grown at a higher temperature than when the buffer layer 2 is grown, for example, 900 ~ 1100 ° C; it can be composed of InfAlgGau-gNiO ^^ Osg, f + gsi), although its composition is not A certain limit 'but to obtain a nitride semiconductor layer with fewer crystal defects' is preferably GaN or AlgGai-gN with a g value of 0 or less "In addition,' the film thickness is not limited, But it is more than the buffer layer on page 95 f 沔?;} Η 闷 Η:: 准 (CNSM1 ------------------------- -------- I -------- Order --------- 嫂 '(Please read the note on the back before filling in this page) 4371 〇3 A7- --- gL___ 5. Description of the invention () Thick film thickness to grow, usually above O. Iym. Used as a η-side contact layer 4 made of GaN based on Si impurities and un-doped The quality of the GnN layer 3 is the same, it can be composed of InfAlgGai f-gN (0sf, 0sg, f + gu) 'Although the composition is not limited, but to obtain a nitride semiconductor layer with less crystal defects, It is preferably GaN or AlgGai-gN with a 疋 g value of 0.2 or less. In addition, although the film thickness of the n-side contact layer 4 is smaller than Certainly limited, but since it is a layer for forming an η electrode, its film thickness is preferably lj [zrn or more. In addition, in order not to deteriorate the crystallinity of a nitride semiconductor, its η-type impurity The concentration is preferably doped at a high concentration, and its range is more than 1 χ 丨 〇 丨 s / cm3 and less than 5xl021 / cm3. The undoped GaN layer 5 is the same as the above, and it can be made by InfAlgGa. It is composed of f.gN (C ^ f, 0Sg, f + gSl), although its composition is not limited, but in order to obtain a nitride semiconductor layer with less crystal defects, it is based on G aN or g value It is preferably A1 g Ga 1 · that is 0.2 or less, or InfGaI_fN that has an f-number of 0.1 or less. Since the growth system of the undoped GaN layer 5 is different from that of a direct active system layer formed on the η-side contact layer 4 doped with a high concentration of impurities, the basic crystallinity can be improved, so The n-type multilayer film layer 6 to be grown later can be easily grown, and the active layer formed thereon can also be easily grown, thereby further improving the crystallinity. It can be seen from this that when a η-side contact layer 4 doped with an erbium-concentration impurity is deposited on the unsupported impurity GnN layer 3, next, an undoped GaN layer 5 and an n-type multilayer film 6 are sequentially deposited. When ', the Vf of the LED element can be reduced. In addition, when the n-type multilayer film is undoped, the undoped GaN layer 5 is page 96 — ~ ---------------- (please first (Please read the notes on the back and fill in this page again.) Packing ---- Order --------- Printed by Employee Consumption Cooperative of Intellectual Property Bureau of Ministry of Economic Affairs 37103 Λ: Printed by Employee Consumption Cooperative of Intellectual Property Bureau of Ministry of Economic Affairs V. Description of the invention (can be omitted. In addition, in the sixth embodiment, the undoped layer 5 can also be changed into an implementation form. The state 5 is the same as that of the undoped lower layer 3. 5a and-doped _-type impurity intermediate layer 305b, ytterbium and an undoped upper layer 305c formed of a multilayer film β, wherein the multilayer film layer starts from the substrate side, at least by an undoped The lower layer 305a of impurities and a three-layer upper layer doped with a “type impurity and-unconnected impurities” may include a layer other than the lower layer 305a to the upper layer 305c. In addition, the multilayer The film layer can be in direct contact with the active layer, or other layers can be placed in between. The nitride semiconductor that constitutes the lower layer 305a to the upper layer 305c can be represented by 叱 h < 1) Gas-rich conductors of various compositions are preferably those composed of GaN. In addition, each layer of the multilayer film may be the same or different. The thickness of the multilayer film is not limited. It is 175 to 12000 angstroms', preferably 1,000 to 10,000 angstroms, and more preferably 2000 to 6,000 angstroms. If the thickness of the multilayer film is within the above range, then It has the advantages of optimizing V f and improving the electrostatic withstand voltage. The film thickness adjustment of the multilayer film layer having the film thickness in the above range can be adjusted by adjusting the film thickness of each layer such as the lower layer 305a, the intermediate layer 305b, and the upper layer 305c. The film thickness of the multilayer film layer is within the above-mentioned range. In addition, although the film thicknesses of the lower layer 3 05 a, the intermediate layer 3 05b ′, and the upper layer 305 c constituting the multilayer film layer are not limited, but because The stacking position in the multilayer film is different and the performance of the device is different. Page ----------------------------. Fill out this page) The paper size 玷 丨 丨 十 肖 技 ΐίί- 7- (CJNS; A4 (2:

;rV Λ7 Β7 五、發明說明( 寺f也,沈有不同影響,因此’為清楚明瞭有關各層對元件 性能的影響’則可將其中任2層的膜厚加以固並使剩 下:1層的膜厚作;^段性變化,並將特性良好的膜厚範圍 測疋出’以進_步藉由各屠間的調整來特定出模厚的範 圍。 雖然多層膜層的各層也有可能不會對各靜電射整產 生直接影響’ ,藉由各層的組合而形成多潛膜層時,即 可使各種元件之全體特性變好1時,特別可使發光輸出 及靜電耐壓明顯變好。 未摻雜質之下層305a之膜厚係可為1〇〇〜1〇〇〇〇埃, 最好係為500〜S000埃,更佳者係為丨〇〇〇〜5〇〇〇埃。雖 乂隨著β未摻雜質之下層3 〇 5 a之獏厚的慢慢變厚,其靜 電耐壓係持續上升’但,到達i 〇〇〇〇埃附近,vf係急速上 升’而當膜厚變薄時’ Vf係慢慢下降,但卻會使靜電耐壓 的下降増大》本案發明人發現在1〇〇埃以下時’隨著靜電 耐壓的下降,將會使良率大幅降低。此外,由於該下層3〇5a 係著眼於用以改善該含有n型雜質側接觸層4結晶性 低下的影響’因此’其最好係長成可達結晶性改善程度的 膜厚。 摻入η型雜質之中間層3〇5b之膜厚係為5〇〜1〇〇〇 埃最好係為100〜500埃’更佳者係為15〇〜4〇〇埃。該 摻入雜質之中間層305b係用以作為使載子濃度充分、且 發光輸出較大的層,若未形成該層,則發光輸出係明顯下 降。此外,當膜厚超過丨〇〇〇埃時’則發光輸出係有大幅 1 (Cr-;〇)Ai ( ;(〇 y vf;7 (請先閱讀背面之注意事項再填寫本頁) 裝--------訂---------線 經濟部智慧財產局員Η消費合作杜印製RV Λ7 Β7 V. Description of the invention (Temple f also, Shen has different effects, so 'to clearly understand the impact of the various layers on the performance of the element', the film thickness of any two layers can be consolidated and the rest: 1 layer The thickness of the film is changed step by step, and the range of the film thickness with good characteristics is measured. In order to further specify the range of the mold thickness through the adjustment of each cell. Although the layers of the multilayer film may not be It will have a direct effect on each electrostatic shot. When a multi-latent film layer is formed by the combination of various layers, the overall characteristics of various elements can be improved by 1, especially when the light output and electrostatic withstand voltage are significantly improved. The film thickness of the undoped lower layer 305a may be from 100 to 10,000 angstroms, preferably from 500 to 10,000 angstroms, and more preferably from 5,000 to 5,000 angstroms. Although乂 As the thickness of the underlying layer 3 β5 a of β-doped material gradually thickens, its electrostatic withstand voltage system continues to increase 'but, when it reaches the vicinity of i 〇〇〇angstrom, vf system rises rapidly' and when the film When the thickness becomes thinner, the Vf system gradually decreases, but the electrostatic withstand voltage decreases greatly. When the temperature is below 〇〇 ', the yield will be greatly reduced as the electrostatic withstand voltage decreases. In addition, the lower layer 305a focuses on improving the crystallinity of the n-type impurity-containing contact layer 4 'So' it is best to grow to a film thickness that can improve the crystallinity. The film thickness of the intermediate layer 305b doped with η-type impurities is 50 to 100 angstroms, and preferably 100 to 500 angstroms. 'More preferably, it is 15 to 400 angstroms. The impurity-doped intermediate layer 305b is used as a layer having a sufficient carrier concentration and a large light output. If this layer is not formed, the light output system is Significantly decreased. In addition, when the film thickness exceeds 丨 〇〇〇〇 ', then the light output is significantly 1 (Cr-; 〇) Ai (; (〇y vf; 7 (Please read the precautions on the back before filling in this page ) Packing -------- Order --------- Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs

五、發明說明(5. Description of the invention (

下降的傾向。另一士二 W ,右只看靜電耐壓,則中間層305b :膜:越厚,其靜電耐壓係越好,但其厚度係小於 時,靜電耐壓係大幅下降的傾向。 疾 未摻雜質(上層3G5e之膜厚係為25〜埃最好 係為_ 500埃’更佳者係為25〜i5q埃。未捧雜質之上 層30W係多層膜層中接觸或最接近活性層者,其對漏電 流的防止係有很大的關係,而當上廣3仏之膜厚係在乃 埃以下時漏電流係有增加的傾向。此外’如第9八圖及 第9B圖所示,若上層3Q5e之膜厚係超過埃時,則 Vf將會上升、且靜電耐壓係會下降。 承上所述,於上述中係著眼於易受到下層305a〜上層 305c之各層膜厚變動而影響的元件特性,若下層3〇5&、 中間層305b、及上層305c相互組合時,則所有元件特性 係大致均一變好,但為使發光輸出及靜電耐壓變得更好, 以及滿足較高的要求規格,則可將各膜厚以上述範圍規 定’據此即可使發光輸出變得更好,同時可進一步提升產 品的信賴性。 此外’為獲致最佳效果,該多層膜層之各層膜厚係可 依據因發光波長種類而變化的活性層組成、電極、LED元 件形狀等種種條件加以適當調整。各層膜厚之組合的性能 係可藉由將上述範圍的膜厚之適當組合,而使其比習知者 還具有良好的發光輸出、及靜電耐壓。 用以構成上述多層膜層之各層305a,305b,305c的组 成係可以111„1八11„〇3 1_„1-1^(〇€111<1,0幺11<1)來表示,且各層之 第99頁 {請先閲讀背面之沒意事項再填寫本頁) 裝--------訂---一---— ·線 經濟部智婪財產局員工消費合作社印製 4371 〇3 A7 B7 經濟部智慧財產局員工消費合作社印製 •2*、發明說明( 組成係可相同或不同,其中ϊη、A1的比例係越小越好, 最好的是由GaN來形成。 掺入上述第1多層膜層之中間層305b中的η塑雜質 濃度並無一定限制’但其係可為3 X 1 〇 18 / c m3 ’最好係調整 在5χ I 018/cm3 »而η型雜質濃度上限亦無一定限制’但其 最好係在5x 1021/Cm3以下,俾使結晶性不至產生惡化。若 多層膜層之中間層305b的雜質濃度係在上述範圍時,則 將可使發光輸出提升,同時亦可使Vf下降。 作為η型雜質者係可如Si、Ge、Se、S、0等的遇期 表第IVB族 '及第VIB族,其最妤係以Si、Ge、S來作為 η型雜質》 另外’對於該多層膜層的界面而言’若在不妨礙每一 層及元件之機能的範圍下,其係可兼具有兩方的層。 其次,作為活性層7者係可為一至少含有In的氮化 物半導體’最好係為一含有由lnjGai_jN(0幻<1)所形成之 井層的單一量子井層構造、或是多重量子井層構造者。 該活性層7的障壁層與井層的堆積順序並無一定限 制,其係可由井層開始堆積而終於井層,或是由井層開始 堆積而終於障壁層,或是由障壁層開始堆積而終於障壁 層,或是由障壁層開始堆積而終於井層。丼層之厚度係為 _埃以下’而最好係在70埃以下,更佳者係調整在5〇 埃以下。當該并層之厚度係》1〇〇埃以上時,則輸出會有 很難提升的傾向。另外’該障壁層的厚度係須纟300埃以 下,最好係在250埃以T ’而更好係調整在200埃以下。 第100育 - -----------51--------訂----1-----線 (請先閱讀背面之注意事項再填寫本頁) 4371 0 3 A; __B7 五、發明說明() 其次,與上述一樣’作為摻入Mg之p型GaN接觸層 9者係可由In#丨sGa卜㈠N(0<f,〇Sg’ f+d)所構成,其組成 雖無一定的限定’但為獲致結晶缺陷較少的氮化物半導趙 層、以及使其易與電極間有良好的歐姆接觸,其係以 GaN者為佳。 此外,本發明中所使用之n電極及P電極係並無一定 限制,其係可為習知的電極’或是實施例中所述之電極。 【實施例】 以下係有關本發明之具禮實施例之說明,但’本發明 之具體實施例並不限於下述。 【實施例1】 實施例1係第1圖所示之本發明之實施形態1所相關 連的實施例。 於本實施例1中,係先將一由藍石英(C面)所形成的 基板1放置在一 MOVPE的反應容器中,並通以氫氣,且 使該基板之溫度上升到1 050度C,據以進行基板之潔淨 處理,之後,再於其上形成以下各層。又,該基板1除以 藍石英C面為主面之外,其亦可為一以藍石英R面、Α面 為主面的藍石英,或是如尖晶石(MgAl2〇4)般的絕緣性基 板,或是 SiC(含有 6H、4H、3C)、Si、ZnO、GaAs、GaN 等的半導體基板。 第101頁 <請先閱撗背面之注意事項再填寫本頁) 裝--------訂--------- 經濟部智慧財產局員工消費合作社印製 4371〇3 依基板之種類、以及成長方式之不同,上迷 之第1緩衝層2係可被省略 A7 五、發明說明() (第1緩衝層2) 接著,使溫度下降到5 10度C,並使用 凡用加虱氣的載子 氣體 '加氨的原料氣體、及TMG(三甲鎵),α # }以在基板1上 成長出一由GaN所形成、膜厚為200埃的 $ w層2。此外, 以低溫所長成 (第2緩衝層3) 在成長出該缓衝層2後’則只停止供應tmg,並使溫 度回升到1 050度C»當溫度到達1 050度c時,則使用加 有TMG的原料氣體、及氨氣,以成長出—由未掺雜質+ GaN所形成、膜厚為1/zm的第2緩衝層3。第2緩衝層3 係利用比之前成長的第丨緩衝層2時還高的溫度来加以成 長,例如 900〜! 100 度 C;其係可由 InxAlyGai x yN(hx,ky, χ+y^i)所構成,其組成雖無一定的限定,但為獲致結晶缺 陷較少的氮化物半導體層,其係以GaN、或是y值係〇 2 以下的AlyGaUyN者為佳。此外,其膜厚並無一定限制, 但其係以比緩衝層還厚的膜厚來成長,通常係在 以上。 (η側接觸層 其次,將溫度維持在1050度C,並同樣使用加有ΤΜ(} 的原料氣體、氨氣、以及加有矽捷氣體之雜質氣體,以長 成—挣入si濃度為5xic^/cm3、膜厚為以m、由GaN所 第102頁 (請先閱讀背面之注意事項再填寫本頁) 裂--------訂---------^ 經濟部智慧財產局員工消費合作社印製 4371 Ο 3Declining tendency. On the other hand, if you only look at the electrostatic withstand voltage on the right, the intermediate layer 305b: The thicker the film, the better the electrostatic withstand voltage system. However, when the thickness is smaller, the electrostatic withstand voltage system tends to decrease significantly. Undoped (The film thickness of the upper layer 3G5e is 25 to 50 angstroms, preferably _500 angstroms. More preferably, it is 25 to 5 angstroms. The upper layer of unsupported impurities is in contact with or closest to the activity in the 30W multilayer film layer. The layered layer has a great relationship with the prevention of leakage current, and the leakage current tends to increase when the film thickness of Shangguang 3 仏 is below Nai Ang. In addition, as shown in Figure 9 and Figure 9B As shown, if the film thickness of the upper layer 3Q5e exceeds Angstrom, Vf will increase and the electrostatic withstand voltage system will decrease. As mentioned above, the above system focuses on the film thickness of each layer susceptible to the lower layer 305a to the upper layer 305c. Element characteristics affected by changes, if the lower layer 305 & middle layer 305b, and upper layer 305c are combined with each other, all of the device characteristics will be substantially uniform, but in order to make the light output and electrostatic withstand voltage better, and To meet the higher requirements specifications, each film thickness can be specified in the above range. 'This can make the light output better, and at the same time can further improve the reliability of the product. In addition,' for the best results, the multilayer film The thickness of each layer can be determined by the type of wavelength Various conditions such as varying active layer composition, electrode, LED element shape, etc., are appropriately adjusted. The performance of the combination of the film thicknesses of each layer can be made to be better than that of a known person by appropriately combining the film thicknesses in the above ranges. Luminous output and electrostatic withstand voltage. The composition of each of the layers 305a, 305b, and 305c used to form the above-mentioned multi-layered film layer can be 111 „1 八 11„ 〇3 1_ „1-1 ^ (〇 € 111 < 1,0 幺 11 < 1) to indicate, and page 99 of each layer {please read the unintentional matter on the back before filling in this page). Printed by the Consumer Cooperative of the Property Bureau 4371 〇3 A7 B7 Printed by the Consumer Cooperative of the Intellectual Property Office of the Ministry of Economic Affairs • 2 *, Description of the invention (The composition can be the same or different, where the ratio of ϊη and A1 is as small as possible, the best It is formed by GaN. The η-plastic impurity concentration doped in the intermediate layer 305b of the first multilayer film layer is not limited, but it can be 3 X 1 0 18 / c m3 'It is best adjusted to 5χ I 018 / cm3 »and the upper limit of the η-type impurity concentration is not limited, but it is preferably below 5x 1021 / Cm3, 俾The crystallinity does not deteriorate. If the impurity concentration of the intermediate layer 305b of the multilayer film is in the above range, the luminous output can be improved, and Vf can be reduced. As the n-type impurity, it can be Si, Ge, etc. Group IVB 'and Group VIB of the schedule table of Zn, Se, S, 0, etc., the most important of which is Si, Ge, S as n-type impurities "In addition," for the interface of the multilayer film layer "if As long as the function of each layer and element is not impaired, it may have both layers. Secondly, the active layer 7 may be a nitride semiconductor containing at least In. It is preferable that the active layer is a semiconductor containing lnjGai_jN. (0 Magic < 1) A single quantum well layer structure or a multiple quantum well layer structure of the well layer formed. The stacking order of the barrier layer and the well layer of the active layer 7 is not limited, and it can start from the well layer and finally the well layer, or from the well layer and finally the barrier layer, or from the barrier layer and finally The barrier layer, or the accumulation of the barrier layer, and finally the well layer. The thickness of the sacrificial layer is _Angle or less', preferably 70 Angstrom or less, and more preferably 50 Angstrom or less. When the thickness of the layer is greater than 100 Angstroms, the output tends to be difficult to improve. In addition, the thickness of the barrier layer should be less than 300 angstroms, preferably 250 angstroms to T ', and more preferably 200 angstroms or less. 100th ------------ 51 -------- Order ---- 1 ----- Line (Please read the precautions on the back before filling this page) 4371 0 3 A; __B7 V. Description of the invention () Secondly, as above, as the p-type GaN contact layer doped with Mg, 9 can be determined by In # 丨 sGabu㈠N (0 < f, 0Sg 'f + d). Although its composition is not limited, it is preferably GaN in order to obtain a nitride semiconductor layer with fewer crystal defects and to make it easy to have good ohmic contact with the electrode. In addition, the n-electrode and P-electrode systems used in the present invention are not limited, and they can be conventional electrodes' or the electrodes described in the examples. [Embodiment] The following is a description of a courtesy embodiment of the present invention, but the specific embodiment of the present invention is not limited to the following. [Embodiment 1] Embodiment 1 is an embodiment related to Embodiment 1 of the present invention shown in Fig. 1. In this embodiment 1, a substrate 1 formed of blue quartz (C surface) is first placed in a MOVPE reaction vessel, and hydrogen gas is passed through to raise the temperature of the substrate to 1 050 degrees C. Based on this, the substrate is cleaned, and then the following layers are formed thereon. In addition, in addition to the blue quartz C plane as the main surface, the substrate 1 may also be a blue quartz with blue quartz R plane and A plane as the main plane, or a spinel (MgAl204) Insulating substrates, or semiconductor substrates such as SiC (containing 6H, 4H, 3C), Si, ZnO, GaAs, GaN, etc. Page 101 < Please read the notes on the back of the page before filling out this page) -------- Order --------- Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 4371〇3 Depending on the type of substrate and the growth method, the first buffer layer 2 of the above can be omitted. A. V. Description of the invention () (First buffer layer 2) Next, reduce the temperature to 5 10 ° C and use Where the lice-laden carrier gas, the ammonia-added raw material gas, and TMG (trimethylgallium), α #} grows on the substrate 1 a $ w layer 2 made of GaN and having a film thickness of 200 angstroms. In addition, when grown at a low temperature (the second buffer layer 3), after growing the buffer layer 2 ', only the supply of tmg is stopped, and the temperature is returned to 1 050 degrees C. When the temperature reaches 1 050 degrees c, use The TMG source gas and ammonia gas are added to grow a second buffer layer 3 made of undoped + GaN and having a film thickness of 1 / zm. The second buffer layer 3 is grown at a higher temperature than that of the previously grown second buffer layer 2, such as 900 ~! 100 ° C; it can be composed of InxAlyGai x yN (hx, ky, χ + y ^ i). Although its composition is not limited, in order to obtain a nitride semiconductor layer with less crystal defects, it is based on GaN, Or AlyGaUyN with a y value of 0 or less is preferred. In addition, the film thickness is not limited, but it is grown with a film thickness thicker than that of the buffer layer, and is usually more than the above. (The η-side contact layer is followed by maintaining the temperature at 1050 ° C, and also using a raw material gas with TM (}, ammonia gas, and an impurity gas with silicon gas to grow into a earning si concentration of 5xic ^ / cm3, film thickness is in m, by GaN Page 102 (Please read the precautions on the back before filling in this page) Crack -------- Order --------- ^ Economy Printed by the Ministry of Intellectual Property Bureau's Consumer Cooperatives 4371 Ο 3

五、發明說明( 經濟部智慧財產局員工消費合作杜印製 印(CNSMi ϋ 形成的η側接觸層4。該η侧接觸層4係與該第2緩衝層 J 樣’係可由 InxAlyGai-x.yN(OSx,〇:iy,χ + yu)所構成 其组成雖無一定的限定,但為獲致結晶缺陷較少的氮化物 半導體層,其係以GaN、或是y值係0.2以下的八丨^〜n 者為佳。此外,其膜厚並無一定限制,但為形成— 、 η電極 層,故其膜厚係最好在1 g m以上。此外,為不使氮化物 半導體之結晶性惡化,其η型雜質濃度係最好以高濃度摻 入較佳’其範圍係為1 Χ 1 o1 8/cm3以上,1 〇21/(;仿3以下 (第3緩衝層5) 其次,停止供應矽烷氣體,溫度係同樣設為1〇5〇度 C,據以成長出一厚度為i 00埃、由未摻雜質之所形 成的第3緩衝層5。第3緩衝層5者係與上述一樣,其係 亦可由InxAlyGat.x.yNNSx.OSy,x + 0i)所構成,其组成雖 無一定的限定,但為獲致結晶缺陷較少的氦化物半導體 層,其係以GaN、或是y值係0.2以下的AlyGa] yN、或是 X值係〇.1以下的InxGai—xN者為佳。由於該第3緩衝層5 之長成係與在該摻入高濃度雜質之η侧接觸層4上長成— 直接活性層者不同,敁可使基礎之結晶性變好,因此可使 之後成長的氮化物半導體易於成長。據此,若將一挣入* 濃度雜質之η側接觸層4堆積在該未推雜質之層1 上,其次再將未摻雜質的第3緩衝層5堆積於其上而形曰成 一 3層構造時,則可使LED元件的Vf降低。此外,當打 側多層膜層6係未摻雜質時,該未摻雜質的第3緩衝層5 3ίί 103 頁 Λ··,·* ·- d Μ ----------- --------^---------έΐϊ' (跨先閱璜背面之11意事項再填寫本頁) Λ7 U方.f生層7 ) 其次: V 43 71 0 3 __________D7__ 五、發明說明() 係可被省略。 (η側多層膜層6) 其次’係將溫度設為800度C,並使用TMG、ΤΜΙ、 及氧氣、據以成長出一厚度為25埃' 由未摻雜質之 Ino.tnGaowN所形成的第!氮化物半導體膜,接著使溫度 提升,並在其上成長出一厚度為25埃、由GaN所形成的 第2氮化物半導體膜。之後,反覆操作,並以第1+第2 的順序相互堆積而形成一具有各丨〇層超晶格構造、膜厚 為500埃的η侧多廣膜層。 成長出一膜厚為200埃、由未摻雜質之GaN 所形成的障壁層’接著將溫度設為8〇〇度c,益使用tmG、 ΤΜί、及氨氣、據以成長出一厚度為30埃、由未摻雜質之 In〇.4Ga“N所形成的井層。之後,再以障壁+井+障壁+ 井+…障壁的順序來相互堆積成5層的障壁層及4層的 井層’據以成長出—由膜厚為1120埃之多重量子井構造 所構成的居性層7。該活性層7雖是由障壁層開始堆積’ 其堆積順序亦可由井層開始而終於井層,或是由井層開始 而終於障壁層’或是由障壁層開始而終於井層’其堆積順 序並拽一疋限制。井層之厚度係4 1 〇〇埃以下’而最好係 在7〇埃以下,更佳者係調整在50埃以下^•當該井層之厚 又係為1 0 0埃以上時,則輸出會有很難提升的傾向。另外’ ------------ --------訂---------綠 <請先閱讀背面之沒意事項再填寫本頁) 經濟部智慧財產局員工消f合作社印製 43 71 經濟部智慧財產局員工消費合作社印製 Λ7 B7 五、發明說明() 該障壁層的厚度係須在300埃以下,最好係在250埃以 下’而更好係調整在200埃以下。 (P側多層膜層8) 其次,使用TMG、TMA、氨氣、以及Cp2Mg,據以成 長出一摻濃度為5xl0ls/cm3Mg雜質、厚度為25埃、由p 型Al0.Q5Ga().95N所形成的第3氮化物半導體膜,接著,停 止使用Cp2Mg ' TMA,而成長出一厚度為25埃、由未摻 雜質之GaN所形成的第4氮化物半導體膜。之後,反覆操 作’並以第3 +第4的順序相互堆積而形成一具有各4層 超晶格構造、膜厚為200埃的p側多層膜層8。 (P側接觸層9) 接著,將溫度設為1050度C,並使用TMG、氨氣、 以及CpsMg’據以成長出一摻濃度為1 X i〇20/cm3Mg雜質、 厚度為700埃、由p型GaN所形成的p側接觸層9。該p 型接觸層 9 係可由 InxAlyGa[-x-yN(〇sx,C^y,χ + ρΐ;)所構 成,其组成雖無一定的限定,但為獲致結晶缺陷較少的氮 化物半導體層、以及使其易與Ρ型電極間有良好的歐姆接 觸’其係以GaN者為佳。 在反應完成後,則使溫度下降到室溫,並在氮氣環境 中將晶圓置於反應容器中,而在7〇〇度c下進行潔淨處 理’進而使P型層之電阻降低》 在完成潔淨處理後,則自反應容器中將晶圓取出,並 __ 第105頁 ^j\r (Γ:Ν^).νϊ^ΰΓ^ΰ)'; 297 ν'-^ΙΓ)" *'.…------ (請先閱讀背面之沒意事項再填寫本頁) 裝--------訂----I----線 A7 4371〇3 B7 五、發明說明() 在最上層的P侧接觸層9表面上形成一規定形狀的光革圖 樣,接著於RIE(反應性離子蝕刻)裝置中,自p侧接觸層 側進行蝕刻’進而使第1圖所示之n侧接觸層4的表面露 出。 在蝕刻之後,再約於最上層的ρ側接觸層的全面上形 成一厚度為200埃、含Ni及Au的透光性ρ型電極1〇 ; 以及在該ρ電極10上形成一焊接用、厚度為〇·5#ιη'由 Au所形成的ρ墊電極1 1 ^此外,藉由蝕刻所露出的^側 接觸層4的表面係形成有一含有W及Α1的η電極12,據 以構成一 LED元件。 LED元件在順向電塵20mA時,其係顯示520nm的純 綠色光,且其Vf係只有3.2 V,相較於習知多量子丼構造 的LED元件,其Vf係降低0.8V,而輸出係提高2倍。因 此,只要以1 0mA即可獲得與習知LED元件大致相同的特 性。 經濟部智慧財產局員工消費合作钍印製 於本實施例中,用以構成n側多層膜層的第2氮化物 半導體膜雖以 GaN構成,但,其亦可由其他的 InxAlyGai-x.yNiOSxjSy, X十ySl)所構成,最好的是1n的組 成比第1氮化物半導體膜還小的InGaN。此外,第4氮化 物半導體膜雖以GaN構成,但’其亦可由其他的 InxAlyGa丨…yN(OSx,〇sy,χ + ρΐ)所構成’最好的是A1的组 成比第3氮化物半導體膜還小的AlGaN。V. Description of the invention (Industrial consumer cooperation of the Intellectual Property Bureau of the Ministry of Economic Affairs, Du printed and printed (CNSMi 的 η-side contact layer 4 formed. The η-side contact layer 4 and the second buffer layer J-like 'system can be InxAlyGai-x. Although the composition of yN (OSx, 〇: iy, χ + yu) is not limited, in order to obtain a nitride semiconductor layer with less crystal defects, it is GaN or an y value of 0.2 or less. ^ ~ N is better. In addition, the film thickness is not limited, but in order to form a-, η electrode layer, its film thickness is preferably 1 gm or more. In addition, in order not to deteriorate the crystallinity of the nitride semiconductor The η-type impurity concentration is preferably blended at a high concentration. The range is 1 × 1 o1 8 / cm3 or more, 1 〇21 / (; imitation 3 or less (third buffer layer 5). Second, supply is stopped. The temperature of the silane gas is also set to 1050 ° C, so that a third buffer layer 5 formed of an undoped material having a thickness of 100 angstroms is grown. The third buffer layer 5 is the same as the above. Similarly, its system can also be composed of InxAlyGat.x.yNNSx.OSy, x + 0i). Although its composition is not limited, in order to obtain crystal defects, The less helium semiconductor layer is preferably GaN, or AlyGa] yN with a y value of 0.2 or less, or InxGai-xN with an X value of 0.1 or less. Because of the length of the third buffer layer 5, The system is different from the direct active layer grown on the η-side contact layer 4 doped with a high concentration of impurities. Rhenium can improve the crystallinity of the base, and thus can easily grow nitride semiconductors. If the η-side contact layer 4 earning * concentration of impurities is stacked on the layer 1 that is not pushed by impurities, and then an un-doped third buffer layer 5 is stacked thereon to form a three-layer structure Vf of the LED element can be reduced. In addition, when the multi-layered film layer 6 on the side is undoped, the undoped third buffer layer 5 3 ί 103 pages Λ ··, · * ·-d Μ ----------- -------- ^ --------- έΐϊ '(Read the 11 items on the back of the book before filling in this page) Λ7 U square .f 生 层 7) Second: V 43 71 0 3 __________D7__ 5. The description of the invention () can be omitted. (η side multilayer film 6) Secondly, the temperature is set to 800 ° C, and TMG, TMI, And oxygen to grow a thickness Is 25 Angstroms' of the first nitride semiconductor film formed of undoped Ino.tnGaowN, and then the temperature is increased, and a second nitride semiconductor of Angstrom thickness 25 Angstroms is grown thereon. After that, the operation is repeated and stacked in the order of 1 + 2 to form an η-side multi-wide film layer having a superlattice structure of each layer and a film thickness of 500 angstroms. A 200 angstrom barrier layer formed of undoped GaN is grown, and the temperature is set to 800 ° C. Using tmG, Τί, and ammonia, a thickness of 30 Angstroms, well layers formed of undoped In.4Ga "N. After that, 5 barrier layers and 4 barrier layers are stacked on each other in the order of barrier wall + well + barrier wall + well + ... barrier wall. The well layer 'has grown from it—the habitual layer 7 composed of a multiple quantum well structure with a film thickness of 1120 angstroms. Although the active layer 7 starts to accumulate from the barrier layer', the accumulation sequence can also start from the well layer and finally the well Layer, or start from the well layer and finally the barrier layer 'or start from the barrier layer and finally the well layer' its stacking sequence and drag limit. The thickness of the well layer is less than 4 100 Angstroms', and it is preferably 70. Below Angstrom, the better is adjusted below 50 Angstrom ^ • When the thickness of the well layer is more than 100 Angstrom, the output will tend to be difficult to improve. In addition, '-------- ---- -------- Order --------- Green < Please read the unintentional matter on the back before filling in this page) 43 71 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Λ7 B7 V. Description of the invention () The thickness of the barrier layer must be less than 300 angstroms, preferably 250 angstroms', and better adjusted to 200 angstroms or less. (P-side multilayer film 8) Next, TMG, TMA, ammonia, and Cp2Mg were used to grow a dopant with a concentration of 5 × 10 ls / cm3Mg, a thickness of 25 angstroms, and a p-type Al0.Q5Ga (). 95N After forming the third nitride semiconductor film, the use of Cp2Mg 'TMA is stopped, and a fourth nitride semiconductor film formed of undoped GaN with a thickness of 25 angstroms is grown. After that, the operation is repeated and the The 3rd + 4th layers are stacked on each other in order to form a p-side multilayer film layer 8 having four superlattice structures and a film thickness of 200 angstroms. (P-side contact layer 9) Next, the temperature is set to 1050 ° C. And using TMG, ammonia, and CpsMg 'to grow a p-side contact layer 9 made of p-type GaN with an impurity concentration of 1 × 1020 / cm3Mg and a thickness of 700 angstroms. The p-type contact Layer 9 can be composed of InxAlyGa [-x-yN (0sx, C ^ y, χ + ρΐ;), although its composition is not limited, However, in order to obtain a nitride semiconductor layer with less crystal defects and to make it easy to have good ohmic contact with the P-type electrode, it is preferably GaN. After the reaction is completed, the temperature is lowered to room temperature, and The wafer is placed in a reaction container in a nitrogen environment, and the cleaning process is performed at 700 ° C to further reduce the resistance of the P-type layer. After the cleaning process is completed, the wafer is taken out of the reaction container. And __ page 105 ^ j \ r (Γ: Ν ^). Νϊ ^ ϊΓ ^ ΰ) '; 297 ν'-^ ΙΓ) " * '....------ (Please read the first Please fill in this page again if you are not interested) Install -------- Order ---- I ---- line A7 4371〇3 B7 V. Description of the invention () On the surface of the top P-side contact layer 9 A light leather pattern having a predetermined shape is formed, and then the surface of the n-side contact layer 4 shown in FIG. 1 is exposed by etching on the p-side contact layer side in a RIE (reactive ion etching) device. After the etching, a light-transmissive p-type electrode 10 having a thickness of 200 angstroms and containing Ni and Au is formed over the entire surface of the p-side contact layer of the uppermost layer; and a soldering, The thickness of the pad electrode 1 1 is formed by Au. In addition, the surface of the side contact layer 4 exposed by etching is formed with an η electrode 12 containing W and A1 to form a LED components. When the LED element is 20 mA forward, it displays pure green light at 520 nm, and its Vf is only 3.2 V. Compared with the conventional multi-quantum-chirped LED element, its Vf is reduced by 0.8 V, and the output is increased. 2 times. Therefore, it is possible to obtain substantially the same characteristics as those of the conventional LED element with only 10 mA. The consumer cooperation of the Intellectual Property Bureau of the Ministry of Economic Affairs is printed in this embodiment. Although the second nitride semiconductor film used to form the n-side multilayer film is made of GaN, it can also be made of other InxAlyGai-x.yNiOSxjSy, It is preferable that the composition is 1 x InS, which has a composition of 1 n smaller than that of the first nitride semiconductor film. In addition, although the fourth nitride semiconductor film is made of GaN, 'it may be made of other InxAlyGa 丨 ... yN (OSx, osy, χ + ρΐ)'. The composition ratio of A1 is the third nitride semiconductor. The film is also small AlGaN.

此外,就習知LED元件的構造而言,其亦可在一由 GaN所形成的第1緩衝層上依序形成一由未摻雜質之GaN 第 1061 —— ——— ·>’ ^ : —·__———*.·..一-. _·* —'·— y !ϊ; Γ: 1--¾ 'j. ;;;Λ (·; \J3) .V] ;u κ, (;]〇 χ ·:;)7 ^·ί;:') 437103 經濟部智慧財產局員工消費合作41印製 A7 一 —_ B7___ 五、發明說明() 所形成的第2緩衝層、一由摻入S1之GaN所形成的η侧 接觸層、一由與實施例1相同之多量子丼構造所形成的活 性層、一由掺入Mg之單一 Al〇.iGa〇.9N、以及一由摻入Mg 之GaN所形成的ρ侧接觸層。 【實施例2】 實施例2所述之L E D元件係如第2圖所示。相對於 實施例1而言,本實施例之LED元件係未成長第3緩衝層 5,且ρ側多層膜層係未具有超晶格結構,其係為一摻入 有濃度5xlOi9/cm3的Mg、膜厚為200埃、由ρ型Ai〇 IGa()9N 層所形成的ρ側覆蓋層1 0 8 ’除此之外均與實施例_ 1相同。 相對於相同的2 0 m A,其V f係只有3 .3 V,而輪出係提高 1.8 倍。 【實施例3】 相對於實施例I而言,其係在成長n側多層膜層6時, 只有第2氮化物半導體膜係由摻入Si、濃度為lxi〇18/cm3 的GaN所形成。此外ρ側多層膜層係未具有超晶格結構, 其係為一捧入濃度為5xl〇19/cm3的Τνίσ 的Mg、膜厚為2〇〇埃、 由ρ型Al0,!Ga〇.gN層所形成的ρ側箝¥ a , P側覆蓋層1 〇 8,除此之外 均與實施例1相同。據此,則可猶秘丄& 獲致大致與實施例2相同 特性的LED元件。 第107耳 成张尺.¾適 ίΠ 屮 Κ !Λ:絮標if (CNS)A-l ;:].}& (2J0^< 297~ — III----f H --------訂·一 -----^ (請先閱讀背面之注意事項再填寫本頁) 4371 0 3 經濟部智慧財產局員工消費合作社印製 Λ7 B7 五、發明說明() 【實施例4】 相對於實施例1而言’其係在成長η側多層膜層6時, 第1氮化物半導體膜係由摻入Si、濃度為lxl〇is/cm3的 Ino.tnGao.97所形成;而第2氮化物半導體膜係由摻入Si、 濃度為5xl〇ls/em3的GaN所形成。此外p側多層膜層係 未具有超晶格結構,其係為—由摻入濃度為5 χ丨〇! 9/cm3的 Mg、p型Al〇jGao.gN層所形成的p侧覆蓋層1〇8,除此之 外均與實施例1相同。相對於相同的2〇mA ’其vf係只有 3,4V,而輸出相較於習知LED元件係提高i 5倍以上。 【實施例5】 相對於實施例1而言,本實施例所製成之LED元件 係未成長第3緩衝.層5,且成長p側多層膜層8時,第4 氮化物半導體膜係為一摻入有濃度lxl〇19/cm3的Mg、由p 型GaN層所形成者,除此之外均與實施例i相同。據此, 則可獲致大致與實施例丨相同特性的L E D元件。 【實施例6】 相對於實施例1而言’本實施例所製成之則元件 係未成長第3緩衝層5 ’且成長P側多層膜層8時,第3 氮化物半導體膜係為-膜厚& 25 &、且由未掺雜質之In addition, as far as the structure of the conventional LED element is concerned, it can also sequentially form an undoped GaN 1061 on a first buffer layer formed of GaN. —— —— > '^ : — · __——— *. · .. 一-. _ · * — '· — Y! Ϊ; Γ: 1--¾' j. ;;; Λ (·; \ J3) .V]; u κ, (;) 〇 × · :;) 7 ^ · ί;: ') 437103 Employees' Cooperation in Intellectual Property Bureau of the Ministry of Economic Affairs 41 Printed A7 I-_ B7___ V. Description of the Invention (2) The second buffer layer, An η-side contact layer formed of GaN doped with S1, an active layer formed of the same multi-quantum erbium structure as in Example 1, a single AlO.iGa0.99N doped with Mg, and an A p-side contact layer formed of Mg-doped GaN. [Embodiment 2] The LED device described in Embodiment 2 is shown in FIG. Compared with Example 1, the LED element of this example does not grow the third buffer layer 5, and the multilayer ρ-side multilayer film does not have a superlattice structure, which is a Mg doped with a concentration of 5xlOi9 / cm3. The p-side cover layer 1 0 8 ′ having a film thickness of 200 angstroms and a p-type AioIGa () 9N layer was the same as that of Example_1. Compared to the same 20 m A, the V f series is only 3.3 V, and the wheel output series is increased by 1.8 times. [Example 3] Compared with Example I, when the n-side multilayer film 6 was grown, only the second nitride semiconductor film was formed of GaN doped with Si and having a concentration of lxi018 / cm3. In addition, the ρ-side multilayer film system does not have a superlattice structure. It is a Mg with a concentration of 5x1019 / cm3 of Τνίσ, a film thickness of 200 angstroms, and a ρ-type Al0,! Ga〇.gN The p-side clamps formed by the layers are the same as those of the first embodiment except for the P-side cover layer 108. According to this, it is possible to obtain an LED element having substantially the same characteristics as that of the second embodiment. The 107th ear is a ruler. ¾ ίΠ 屮 Κ! Λ: 标 标 if (CNS) Al;:].} &Amp; (2J0 ^ < 297 ~ — III ---- f H ------ --Order · One ----- ^ (Please read the notes on the back before filling out this page) 4371 0 3 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Λ7 B7 V. Description of the invention () [Example 4] Compared with Example 1, when it is grown on the η-side multilayer film layer 6, the first nitride semiconductor film is formed of Ino.tnGao.97 doped with Si and having a concentration of 1 × 10is / cm3; and 2Nitride semiconductor film system is formed of GaN doped with Si at a concentration of 5 × 10 ls / em3. In addition, the p-side multilayer film system does not have a superlattice structure, which is based on the doping concentration of 5 χ 丨 〇 The p-side cover layer 10 formed by the Mg, p-type AlOjGao.gN layer at 9 / cm3 is the same as in Example 1. Except for the same 20mA, its vf series is only 3 , 4V, and the output is 5 times higher than that of the conventional LED element system. [Embodiment 5] Compared to Embodiment 1, the LED element made in this embodiment does not grow a third buffer. Layer 5 When the p-side multilayer film 8 is grown, the fourth nitride half The body film is formed of a p-type GaN layer doped with Mg with a concentration of lx1019 / cm3, and is the same as that of Example i. According to this, the same characteristics as those of Example 丨 can be obtained [Embodiment 6] Compared with Embodiment 1, "the element made in this embodiment is the third buffer layer 5 without growing the third buffer layer 5" and the third nitride semiconductor is grown when the P-side multilayer film layer 8 is grown. The film system is-film thickness & 25 &

Al〇.Q5Ga"5N所形& ;而第4氮化物半導體膜係為一膜厚 為25埃、且由未摻雜質之GaN層所形成者,且其係相互 堆積而成一總膜厚為i 00埃的層,除此之外均相同。據此’ 第108頁 {猜先閲讀背面之注意事項再填窵本頁) -------—訂---ill — —--β, 4371 03 五、發明說明() 則可獲致大致與實施例4相同特性的led元件。 【實施例7】 相對於實施例1而言,係在成長n側多層膜層6時, 先成長出由未拆雜質之Infl.〇3Ga0 9?N所形成、膜厚為5 埃的第丨氮化物半導體膜;其次再成長出一未拆雜質々 GaN所形成、膜厚為25埃的第2氮化物半導體膜。接著, 成長出膜厚為45埃之未折雜質的“"山“ 97n層;# 〜再成長出一膜厚為25埃之未拆雜質的層;之後名 成長出一膜厚為40埃之未拆雜質的In"3(}aQ 97N層。矛 亡所述,其係只使該第1氮化物半導體膜每層減少5埃贫 厚度直至減少到5埃為止’據此,以第^層十第2層辦 順序相互堆積而形成—且 ' ,、有各1 0層 < 超晶格構造、總脖 厚為525埃的n侧多層膜層。 广卜,同樣相對於實施例1,係在成長P侧多屠膜眉 :時,成長出—掺入有濃度為5χΐ〜、呦、膜厚為 40埃、由p型Ah η ^ . Q5 a〇 95N所形成之第3氮化物半導雜 膜,其次,再形成—膜厚 為25埃、且由未摻雜質之GaiAl〇.Q5Ga " 5N &; and the fourth nitride semiconductor film is a film thickness of 25 angstroms, and is formed of an undoped GaN layer, and they are stacked on each other to form a total film thickness The layer is i 00 angstroms and is otherwise the same. Based on this' page 108 (Guess to read the notes on the back before filling out this page) --------- Order --- ill ----- β, 4371 03 V. Description of the invention () can be obtained A led element having approximately the same characteristics as in Example 4. [Embodiment 7] Compared with Embodiment 1, when growing the n-side multilayer film layer 6, the first layer formed of Infl. 03Ga0 9? N with unremoved impurities and a film thickness of 5 Angstroms was grown first. A nitride semiconductor film; secondly, a second nitride semiconductor film formed of unremoved impurity GaN and having a thickness of 25 angstroms was grown. Next, a "" mountain" 97n layer with a film thickness of 45 angstroms and unfolded impurities was grown; and a layer of 25 angstroms with unremoved impurities was grown; after that, a film thickness of 40 angstroms was grown. In " 3 (} aQ 97N layer of unremoved impurities. As mentioned in the description, it only reduces the thickness of each layer of the first nitride semiconductor film by 5 angstroms to 5 angstroms. The layer 10 and the second layer are stacked on top of each other in sequence—and, there are 10 layers of each < superlattice structure, and a total thickness of 525 Angstroms of n-side multilayers. It is grown on the P side of the multi-skinned membrane eyebrow: at the time, it grows out-doped with a third nitride formed at a concentration of 5xη ~, 浓度, a film thickness of 40 angstroms, and formed by p-type Ah η ^. Semiconducting Miscellaneous Film, Secondly, Re-formed-25 Angstroms Thick, Made of Undoped Gai

經濟部智慧时產局員工消費合作社印W 所形成的第4氮化物半導 泽體膜後’再形成-摻入相同 濃度足Mg、厚度為 带成一膜厚A 6 PSA1〇05Ga°95N層;之後再 形成一膜厚為25埃的去认此 3氮化物丰劣肖 摻雜質之GaN I °其係只使該第 J氮化物+導體膜每層 埃為止,據此,以第3居 '埃的厚度,直至減少到2( ψ j, x . 與第4層相互交替堆積的順序而 形成一具有各有5層The 4th nitride semiconducting body film formed by the consumer cooperative of the Wisdom and Time Bureau of the Ministry of Economic Affairs is printed again-doped with the same concentration of sufficient Mg and a thickness of A 6 PSA1005Ga ° 95N; Then, a film thickness of 25 angstroms is formed to recognize the GaN I doped with 3 nitrides. The system only makes the Jth nitride + conductor film per angstrom. Based on this, the third 'Angle thickness until reduced to 2 (ψ j, x. And the 4th layer alternately stacked in order to form a layer with 5 layers each

^ 0日格構造、總膜厚為275埃的F^ 0-Rig structure with a total film thickness of 275 F

,4371 03 五、發明說明( 惻多層膜層。 除上述外,装,ύ 、也係與實施例1所述之L E D元件相同, 而據此即可獲致一血由 興實施例1所述特性大致相同的元件。 再者,於本實施你丨φ β Λ ^ 1J中係針對第i氮化物半導體膜之膜厚做 變換,然而若對於笛 τ ’弟2氮化物半導體膜之獏厚做變換時亦 可獲得同樣效果。舲认 丄 此外,於本實施例中係針對構成ρ側多 層膜層8的第3氮化物半導體膜之膜厚做變換,然而若對 於第4氛化物半導體膜之膜厚做變換時亦可獲得同樣效 果。 【實施例8】 相對於實施例1而言,係在成長η侧多層膜層6時, 先成長出一由未拆雜質之In0.〇3Ga0.97N所形成、膜厚為 25埃的第1氮化物半導體膜;其次再成長出一未拆雜質之 GaN所形成 '膜厚為25埃的第2氮化物半導體膜。接著, 成長出一 In組成比稍微增加、膜厚為25埃的InGaN層; 其次再成長出一膜厚為25埃之未拆雜質的GaN層;之後 再成長出一膜厚為25埃之未拆雜質的GaN層。承上所 述 其係使該第1氮化物半導體膜每層的In组成比慢慢 增加’直至第1層係為In().3Ga〇.7N為止,並以第1層+第 2層的順序相互堆積而形成一具有各10層之超晶格構 造、總膜厚為500埃的η側多層膜層。 另外’同樣相對於實施例1,係在成長ρ侧多層膜層 8時,成長出一摻入有濃度為5xlOl9/cm3的Mg、膜厚為 第110育 @:f. (CNS)A-i {210χ^·ί7 ) ™ I n n » —1 ϋ n n n I^OJI n «I St If t— I n t {請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 4371 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明() 25埃、由P型Al0 〇5Ga0 95N所形成之第3氮化物半導體 膜;其次,再形成一膜厚為25埃、由未摻雜質之GaN所 形成的第4氮化物半導體膜;之後’再形成一摻入相同濃 度之Mg、且A1组成比稍微增加、厚度為25埃的p型AIGaN 層;之後再形成一膜厚為25埃的未摻雜質之GaN層。其 係使該第3氮化物半導體膜每層的A1組成比慢慢增加, 直至第3層係為Al0.2Ga0.8N為止,並以第3層與第4層相 互交替堆積的順序而形成一具有各有4層、總膜厚為200 埃的P側多層膜層- 除上述外,其他係與實施例1所述之LED元件相同, 而據此即可獲致一與實施例1所述特性大致相同的元件β 再者’於本實施例中係針對第1氮化物丰導體膜之第ΠΙ 族元素組成做變換,然而若將第2氮化物半導體膜作為3 元混晶、4元混晶的氮化物半導體,並使其第ΙΠ族元素组 成做變換時亦可獲得同樣效果。此外,於本實施例中係針 對構成ρ側多層膜層8的第3氮化物半導體膜之第III族 元素組成做變換,然而若將第4氮化物半導體膜作為3元 混晶、4元混晶的氮化物半導體,並使其第in族元素组成 做變換時亦可獲得同樣效果。 【實施例9】 相對於實施例7而言,係使ρ侧多層膜層8不具多層 膜層構造,而是成長出一摻入有濃度為5x1ο1 9/Cm3的Mg、 膜厚為200埃、由ρ型AU,iGa0.9N層所形成ρ側覆蓋層 第111頁 "一 一- __ _____ _ ^^1 ^^1 ^^1 ^^1 n H1 —' ^1« ^^1 ^^1 ^^1 ^^1 ^1* ^1· —^i f ^^1 t 1 n i κι - - - -1 - li 1 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 4371 03 a: B7 五、發明說明() 1 8,除此之外,所製成的LED元件均與實施例7 —樣,而 所獲得的LED元件係大致具有與實施例2相等的待性。 【實施例10】 相對於實施例8而言,係使P側多層膜層8不具多層 膜層構造,而是成長出一摻入有濃度為5xl019/cm3的Mg、 膜厚為200埃、由ρ型Alo.tGao.gN層所形成p側覆蓋層 1 8,除此之外,所製成的LED元件均與實施例8 —樣,而 所獲得的LED元件係大致具有與實施例2相等的特性。 【實施例1 1】 相對於實施例8而言,用以構成η侧多層膜層之第1 氮化物半導體膜的In組成係與實施例8所述反向,同時, 用以構成p側多層膜層之第3氮化物半導體膜的A1組成 亦與實施例8所述反向。也就是說,第1氮化物半導體膜 的In組成係越接近活性層越少,而第3氮化物半導體膜 的A1組成係越遠離活性層越少,除此之外,所製成的[ED 元件均與實施例8 —樣,而所獲得的LED元件係大致具有 與實施例8相等的特性。 【實施例12】 相對於實施例1而言,本實施例所製成之LED元件 係在成長η侧多層膜層6時,先成長出—由未拆雜質之 In〇_2Ga() 所形成、膜厚為25埃的第1氮化物半導體膜; 第112頁 .代平(CMS>A1 規格(+vi〇X37 公# ) ----------- ^ -------f 訂--------- (請先閱讀背面之注意事項再填寫本頁) 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 43 71 0 3 A7 -------B7_ 五、發明說明() 其次再成長出一由未拆雜質之Ino.wGaowN所形成'膜厚 為25埃的第2氮化物半導體膜,除此之外’所製成的LED 元件均與實施例1 一樣,而所獲得的LED元件係大致具有 與實施例1相等的特性。 【實施例1 3】 相對於實施例1而言,本實施例所製成之LED元件 係在成長p側多層膜層8時,先成長出一膜厚為25埃、 由掺入Mg之p型Alo.wGao.wN所形成之第3氮化物半導 體膜;其次,再形成一膜厚為25埃 '且由未摻雜質之 InuGaQjN所形成的第4氮化物半導體膜,除此之外,所 製成的LED元件均與實施例1 一樣,而所獲得的LED元 件係大致具有與實拖例1相等的特性。 【實施例1 4】 相對於實施例1而言1本實施例所製成之LED元件 係在成長n 多層膜層6日# ’先成長出—由未拆雜質之 所形成、膜厚為鳩埃的第丄氮化物半導體 膜;其次再成長出一由未拆雜質之_戶斤形成、膜厚為 Μ埃的第2氮化物半導體膜’亦即’相對於實施例【而言, 除第丨氮化物半導體膜係為200埃之外,所製成的咖 兀件均與實施例! 一樣’而所獲得的咖元件係大致具有 與實施例1相等的特性。 第113頁 ------------ ^--------訂---------^ {請先閱讀背面之注意事項再填寫本頁) 4371 0 3 A7 __B7____ 五、 經濟部智慧財產局員工消費合作社印?si 發明說明() 【實施例1 5】 相對於實施例1而言,本實施例所製成之L E D元件 係在成長p側多層膜層8時,先成長出一膜厚為200埃、 且由挣入Mg之p型Al0.05Gao.95N所形成之第3氮化物半 導體膜;除此之外,所製成的LED元件均與實施例1 一樣, 而所獲得的LED元件係大致具有與實施例1相等的特性。 【實施例1 6】 如第3圖所示,本發明之實施例16中的氮化物半導 體元件係為一在p侧區域8 0與η側區域7 〇之間存在有一 活性層的雷射二極體。 本實施例16之雷射二極體係藉由在—80/im厚的 GaN基板5〇上分別形成下述各層所製造出。 (1) 3βιη厚、由摻入有Si之GaN所形成的η型GaN 層52 ; (2) 〇-1 β m 厚的 InD1Ga。9N 層 53 : (J) 由InxGa〗-xN/n型GaN所形成之超晶格構造的η 側覆蓋層5 4 ; (4) (5) (6) (7) (8) 3pm厚、由摻入有Si之η型GaN光導層55; 由In0.4Ga0.6N/In0.02Ga〇.9sN之多重量子井構造 的活性層5 6 ; 2〇〇埃厚' 摻入有Mg之Al〇.2Ga〇.8N層57: 〇_l/zm厚,由摻入有Mg之P型GaN光導層58; 由AlyGai_yN/p型GaN所形成之超晶格構造的p 第1U頁 2\Γι 本如、尺+;艾通用屮圏因.4.¾準(ΟΪ^ΑΪ^ΙΓΤΐίϊο". Λ; 4371 03 五、發明說明() 侧覆蓋層5 9 ; (9) 〇‘〇5#m厚、由捧入有…之P型GaN接觸層 60 ^ 其中,該η側覆蓋層54係由一厚度為25埃、摻入有 Si之GaN膜、以及一厚度為25埃、未摻雜質之mAh·小 膜各240層所相互交替構成,其全體係呈n型的導電性。 在此,就該^侧覆蓋層54而言,該未摻雜質之Inx(}ai.xN 膜中的In組成係越接近活性層越多,其中χ值係在〇丨〜 0.3的範圍内順序變化,而使該η側覆蓋層54的組成形成 梯度3 此外’該活性層5 6係分別由4個厚度為2 〇埃、摻入 有Si的Ino.uGaQbN井層、以及厚度為5〇埃、摻入有Si 的InowGaG.wN障壁層相互交替堆積而成。 而’該P惻覆蓋層59係由一厚度為25埃、摻入有Mg 之GaN膜、以及一厚度為25埃、未摻雜質之AlyGaiyN 膜各12 0層所相互交替構成,其全體係呈p型的導電性。 在此’就該p側覆蓋層59而言,該未摻雜質之AlyGai-yN 膜中的A1組成係越接近活性層趣少,其中丫值係在〇丨〜 0 2的範圍内順序變化’而使該p惻覆蓋屠$ 9的組成形成 梯度。' 於本實施例16中,其係在形成上述(υ〜(9)的各層猿’ 利用蝕刻的方式形成一寬3"m、長450"m的山脊形狀’ 並在該P型接觸層60上形成一由Ni/Au所構成的P 則電 極6卜同時在山脊之一側的n型GaN層上形成一由Ti/Al 第115頁 w :.ά (請先閱讀背面之注意事項再填寫本頁) 裝4,371 03 V. Description of the invention (恻 Multi-layer film. In addition to the above, the device is also the same as the LED element described in Example 1, and according to this, the characteristics described in Example 1 can be obtained. The same components are used. In addition, in this implementation, φ β Λ ^ 1J is used to convert the thickness of the i-th nitride semiconductor film. However, if the thickness of the π ′ 2 nitride semiconductor film is changed, The same effect can also be obtained. In addition, in this embodiment, the thickness of the third nitride semiconductor film constituting the ρ-side multilayer film layer 8 is changed. However, if the thickness of the fourth nitride semiconductor film is changed, The same effect can also be obtained when the thickness is changed. [Embodiment 8] Compared with Embodiment 1, when the η-side multilayer film layer 6 is grown, an In0.03Ga0.97N non-removed impurity is first grown. The first nitride semiconductor film with a thickness of 25 angstroms was formed; secondly, a second nitride semiconductor film with a thickness of 25 angstroms was formed by forming GaN without removing impurities. Next, an In composition ratio was slightly grown. Increase the InGaN layer with a thickness of 25 angstroms; A non-removed impurity GaN layer having a thickness of 25 angstroms; a non-removed impurity GaN layer having a thickness of 25 angstroms is then grown. According to the foregoing description, the In composition of each layer of the first nitride semiconductor film The ratio gradually increases until the first layer is In (). 3Ga〇7N, and they are stacked on each other in the order of the first layer + the second layer to form a superlattice structure with a total film thickness of 10 layers. The η-side multilayer film layer is 500 angstroms. In addition, the same as in Example 1, when the ρ-side multilayer film layer 8 was grown, a Mg doped with a concentration of 5 × 1019 / cm3 was grown, and the film thickness was 110th. @ : F. (CNS) Ai {210χ ^ · ί7) ™ I nn »—1 ϋ nnn I ^ OJI n« I St If t— I nt {Please read the precautions on the back before filling this page) Wisdom of the Ministry of Economy Printed by the Consumer Cooperative of the Property Bureau 4371 A7 B7 Printed by the Consumer Cooperative of the Intellectual Property Office of the Ministry of Economy A fourth nitride semiconductor film with a thickness of 25 angstroms and formed of undoped GaN; and then a 'doped with the same concentration A p-type AIGaN layer with a Mg and A1 composition ratio slightly increased and a thickness of 25 angstroms; an undoped GaN layer with a film thickness of 25 angstroms is then formed. The system gradually increases the A1 composition ratio of each layer of the third nitride semiconductor film until the third layer is Al0.2Ga0.8N, and forms a layer in which the third layer and the fourth layer are alternately stacked. P-side multilayer film with 4 layers each with a total film thickness of 200 Angstroms-Except for the above, the other is the same as the LED element described in Example 1, and according to this, a characteristic similar to that described in Example 1 can be obtained Approximately the same element β, and 'in this embodiment, the composition of the group III element of the first nitride-rich conductor film is changed. However, if the second nitride semiconductor film is used as a ternary mixed crystal and a quaternary mixed crystal, The same effect can also be obtained when a nitride semiconductor is used, and the composition of the group III element is changed. In addition, in this embodiment, the group III element composition of the third nitride semiconductor film constituting the ρ-side multilayer film layer 8 is changed. However, if the fourth nitride semiconductor film is used as a ternary mixed crystal and a quaternary mixed crystal, The same effect can also be obtained when a crystalline nitride semiconductor is changed and its in-group element composition is changed. [Example 9] Compared with Example 7, the ρ-side multilayer film 8 does not have a multilayer film structure, but grows a Mg doped with a concentration of 5x1ο 1 9 / Cm3, a film thickness of 200 angstroms, P-side cladding layer formed by p-type AU, iGa0.9N layer p. 111 " One-One-__ _____ _ ^^ 1 ^^ 1 ^^ 1 ^^ 1 n H1 — '^ 1 «^^ 1 ^^ 1 ^^ 1 ^^ 1 ^ 1 * ^ 1 · — ^ if ^^ 1 t 1 ni κι----1-li 1 (Please read the notes on the back before filling this page) Employees of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Consumer Cooperative 4371 03 a: B7 V. Description of the invention () 18, except that the manufactured LED elements are the same as in Example 7, and the obtained LED elements are roughly the same as in Example 2. Equal treatment. [Example 10] Compared with Example 8, the P-side multilayer film layer 8 does not have a multilayer film structure, but grows a Mg doped with a concentration of 5xl019 / cm3, a film thickness of 200 angstroms, The p-side covering layer 18 formed by the p-type Alo.tGao.gN layer is the same as that of Example 8 except that the obtained LED elements are substantially the same as those of Example 2. Characteristics. [Embodiment 1 1] Compared to Embodiment 8, the In composition system of the first nitride semiconductor film used to form the η-side multilayer film is the reverse of that described in Embodiment 8, and is used to form the p-side multilayer. The A1 composition of the third nitride semiconductor film of the film layer is also opposite to that described in Example 8. That is, the closer the In composition system of the first nitride semiconductor film is to the active layer, the less the A1 composition system of the third nitride semiconductor film is to be far from the active layer. In addition, the produced [ED The elements are the same as those in the embodiment 8, and the obtained LED elements have substantially the same characteristics as those in the embodiment 8. [Embodiment 12] Compared with Embodiment 1, the LED element made in this embodiment grows first when growing the η-side multilayer film layer 6-formed by In0_2Ga () without removing the impurities. The first nitride semiconductor film with a film thickness of 25 angstroms; page 112. Daiping (CMS & A1 specification (+ vi〇X37 公 #) ----------- ^ ----- --f Order --------- (Please read the notes on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 43 71 0 3 A7 ------- B7_ 5 2. Description of the invention () Secondly, a second nitride semiconductor film with a thickness of 25 angstroms formed by Ino.wGaowN with unremoved impurities was grown, and the LED elements made in addition to this were the same as in Example 1. The same, and the obtained LED element system has approximately the same characteristics as in Example 1. [Example 1 3] Compared with Example 1, the LED element made in this example has a multi-layered p-layer film. At 8 o'clock, a third nitride semiconductor film with a film thickness of 25 angstroms and formed of p-type Alo.wGao.wN doped with Mg was first grown; secondly, a film thickness of 25 angstroms' was formed, and the film was formed with no Impurity of In Except for the fourth nitride semiconductor film formed by uGaQjN, the manufactured LED elements are the same as those in Example 1, and the obtained LED elements have approximately the same characteristics as those in Example 1. [Example 1 4] Compared with Example 1, 1 The LED element made in this example grows n multilayer film layers on the 6th # 'grow out first — formed by unremoved impurities, the film thickness is the first丄 Nitride semiconductor film; Secondly, a second nitride semiconductor film formed of unremoved impurities and a film thickness of M Angstroms, that is, relative to the embodiment [except for the first nitride The semiconductor film system is other than 200 angstroms, and the manufactured components are the same as in the embodiment! The obtained component system has approximately the same characteristics as in embodiment 1. Page 113 ----- ----- ^ -------- Order --------- ^ {Please read the notes on the back before filling this page) 4371 0 3 A7 __B7____ V. Intellectual Property Bureau of the Ministry of Economic Affairs Employee consumer cooperative seal? si Description of the invention () [Example 1 5] Compared with Example 1, when the LED element manufactured in this example grows the p-side multilayer film layer 8, a film thickness of 200 angstroms is grown first, and The third nitride semiconductor film formed from p-type Al0.05Gao.95N earning Mg; other than that, the manufactured LED elements are the same as those in Example 1, and the obtained LED elements are roughly Example 1 has equivalent characteristics. [Embodiment 1 6] As shown in FIG. 3, the nitride semiconductor device in Embodiment 16 of the present invention is a laser 2 having an active layer between a p-side region 80 and an n-side region 70. Polar body. The laser diode system of this embodiment 16 is manufactured by forming the following layers on a GaN substrate 50 of -80 / im thickness, respectively. (1) η-type GaN layer 52 which is 3βιη thick and is made of GaN doped with Si; (2) InD1Ga which is 0-1βm thick. 9N layer 53: (J) η-side cover layer 5 4 of superlattice structure formed of InxGa-xN / n-type GaN; (4) (5) (6) (7) (8) 3pm thick, formed by Si-doped n-type GaN light-guiding layer 55; active layer 56 composed of multiple quantum wells of In0.4Ga0.6N / In0.02Ga0.9sN; 200 Angstroms thick; Al doped with Mg. 2Ga〇.8N layer 57: 〇_1 / zm thick, p-type GaN light guide layer 58 doped with Mg; p of superlattice structure formed by AlyGai_yN / p-type GaN p. , ++; 艾 总 屮 圏 屮 圏. 4.¾¾ (ΟΪ ^ ΑΪ ^ ΙΓΤΐίϊο ".Λ; 4371 03 V. Description of the invention () Side cover 5 9; (9) 〇′〇5 # m 厚 、 由A P-type GaN contact layer 60 of ... is formed, wherein the n-side cover layer 54 is composed of a 25 Angstrom thickness GaN film doped with Si, and a 25 Angstrom undoped mAh · The 240 layers of the small film are alternately constituted by each other, and the whole system has n-type conductivity. Here, as for the ^ -side cover layer 54, the composition of In in the undoped Inx (} ai.xN film The closer the system is to the active layer, the more the χ value is sequentially changed in the range of 0 to 0.3, so that the composition shape of the n-side cover layer 54 Gradient 3 In addition, the active layer 56 is composed of 4 Ino.uGaQbN well layers doped with Si, and InowGaG.wN barrier layers doped with Si, with a thickness of 50 Å. The 'P 恻 coating layer 59 consists of a 12-layer layer of 25 angstroms, a GaN film doped with Mg, and an undoped AlyGaiyN film of 25 angstroms. , The whole system has p-type conductivity. Here, as far as the p-side cover layer 59, the closer the A1 composition in the undoped AlyGai-yN film is to the active layer, the less interesting, where the y value is In the range of 0 ~~ 2, the composition changes sequentially, so that the composition of the p 恻 covering layer $ 9 forms a gradient. In this embodiment 16, it is used in each layer of apes forming the above (υ ~ (9)). The etching method forms a ridge shape with a width of " m and a length of 450 " and a P-type contact layer 60 formed of Ni / Au. The electrode 6b is an n-type on one side of the ridge. Ti / Al formed on the GaN layer Page 115 w: .ά (Please read the precautions on the back before filling this page)

n 1 .1 n ·1 It I ·1 I 經濟部智慧財產局R工消費合作社印". 4371n 1 .1 n · 1 It I · 1 I Printed by R Industrial Consumer Cooperative, Intellectual Property Bureau, Ministry of Economic Affairs ". 4371

.J A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明() 所構成的η側電極。 此外,就實施例I ό之雷射二極體而言,該山脊的兩 端面係形成2對的Ti〇2/Si0;!’以使兩端面的反射係數係為 50%。 對於利用上述所製成的半導體雷射二極體而言,其係 可在室溫、小啟始值電流下獲致連續發振功效。 承上所述,若即使多層膜層係與活性層分離,亦能或 的與實施例丨6所示者相同效果。 【實施例1 7】 實施例ί 7係第4圖所示之實施形態2所相關連的實 施例。 於本實施例中’係先將—由藍石英(c面)所形成的基 板1放置在一 MOVPE的反應容器中,並通以氫氣,且使 該基板之溫度上升到1 050度C,據以進行基板之潔淨處 理。 (缓衝層102) 接著,使溫度下降到5 10度c ,並使用加氫氣的載子 氣體、加氨的原料氣體、及TMG(三甲鎵),以在基板1上 成長出一由GaN所形成、膜厚為15〇埃的緩衝層1〇2。 (未摻雜質之GaN層103) 在成長出該緩衝層1〇2後,則只停止供應tmG,並使 第116頁 -------------------— ------------^--------訂---------線 I (請先閱讀背面之注意事項再填寫本頁) Α7 43 71 0 c 五、發明說明() 溫度回升到1㈣度c。當溫度到達時,則同樣 使用加有TMG的原料氣體' 及氨氣,以成長出一由未挣 雜質之_所形成、膜厚為1.5 一未接雜質GaN層103 (η側接觸層4) 其次’將溫度維持在1050度c,並同樣使用加有 TMG的原料氣體、氨氣、以及加有矽烷氣體之雜質氣體, 以長成一膜厚為2.25W m、由摻有y濃度為4 5xl〇l8/cm3 之GaN所形成的η側接觸層4。 (η惻第1多層膜層1〇5) 其次,停止供應矽虼氣體,溫度係同樣設為1〇5〇度 C’使用TMG'氨氣,據以成長出一厚度為乃埃、未摻 雜質的GaN層,接著,纟同樣溫度下,並追加供應梦燒氣 體,以長出一厚度為25埃、挣有Si濃度為45xl〇^cm3 的GaN層。據此,以形成一由厚度為乃埃、未摻雜質的 GaN層所構成的A層、以及一由厚度為25埃 '摻有si雜 質之GaN層所構成的B層所形成的層組,接著,使該層 組堆積25層而使厚度成為25 00埃,進而成長出一具有超 晶格結構的η側第1多層膜層1 〇 5。 (η側第2多層膜層106) 其次’在同樣的溫度下’成長出一膜厚為4〇埃、由 未慘雜質之GaN所形成的第2氮化物半導體膜i〇6b :之 第117頁 (C:NS)AS 297 (請先閱讀背面之注意事項再填寫本頁) ιt--------訂---------線 經濟部智慧財產局員工消費合作社印製 4371 0 3 經濟部智慧財產局員工消費合作社印製 B7 五、發明說明() 後’再將溫度設為8〇0度c,並使用TMG、TMI、及氨氣、 據以成長出一厚度為20埃' 由未摻雜質之In〇 uGau 所形成的第I氮化物半導體膜丨06a。之後,反覆操作,並 以第2 +第1的順序相互堆積各1 〇層,且最後係成長出一 膜厚為40埃、由未摻雜質之GaN所形成的第2氮化物半 導體膜106b之超晶格構造、膜厚為640埃的η侧第2多 層膜層。 (活性層7) 其次,成長出一膜厚為200埃、由未摻雜質之GaN 所形成的障壁層,接著將溫度設為800度C’並使用TMG、 TMI、及氨氣 '據以成長出一厚度為30埃、由未摻雜質之 In〇.4Ga〇.6N所形成的井層。之後’再以障壁十井+障壁+ 井+ ....+障壁的順序來相互堆積成5層的障壁層及4層的 井層,據以成長出一由膜厚為1120埃之多重量子井構造 所構成的活性層7。 (P側多層膜覆蓋層108) 其次,將溫度設為1 050度C 1並使用TMG、TMA、 氨氣、以及CP2Mg,據以成長出一厚度為40埃' 由摻有 Mg雜質濃度為lxl020/cm3之P型Al〇.2Ga0.sN所形成的第 3氮化物半導體膜108a,接著,將溫度設為800度C,並 使用TMG、TMI、氨氣、以及cP2m§ ’據以成長出一厚度 為25埃、由掺有Mg雜質濃度為1x10 /cm3之P型 笫118赏 _____ _ ____n_ -- 一一二·.’" " " L~ 一〜._ <請先閱讀背面之注意事項再填寫本頁) -1 --------訂--------- 43 7 ί 03 Α7 ____Β7 五、發明說明() A【〇. (π G a 〇. 〇9 7 N所形成的第4氮化物半導體膜ί 〇 8 b。之後, 反覆操作’並以第3 +第4的順序相互堆積而形成—具有 各5層’且最後係成長出一膜厚為4〇埃、由未摻雜質之 GaN所形成的第3氮化物半導體膜ί 〇8a之超晶格構造、 膜厚為365埃的p側多層膜復蓋層 (P側接觸層9) 接著,將溫度設為1〇5〇度C,並使用TMG、氨氣、 以及Cpa Mg,據以成長出一厚度為700埃、由摻有Mg雜 質濃度為1 X 1 〇20/cm3之p型GaN所形成的p側接觸層9。 在反應完成後,則使溫度下降到室溫,並在氮氣環境 中將晶圓置於反應容器中,而在700度C下進行潔淨處 埋’進而使P型層之電阻降低。 在完成潔淨處理後,則自反應容器中將晶圓取出*並 在最上層的P側接觸層9表面上形成一規定形狀的光罩圖 樣’接著於RIE(反應性離子蝕刻)裝置中,自p側接觸層 側進行蝕刻,進而使第4圖所示之η側接觸層4的表面露 出。 在蝕刻之後,再約於最上層的Ρ側接觸層的全面上形 成—厚度為200埃、含Ni及Au的透光性Ρ電極10 ;以 及在該ρ電極10上形成一焊接用、厚度為〇,5"m'由Au 所形成的ρ |電極1 1。此外,藉由蚀刻所露出的η側接觸 層4的表面係形成有—含有w及八1的η電極12’據以構 led元件 第119頁 (請先閱讀背面之注意事項再填寫本頁) 裝--------訂·--I-----線 經濟部智慧时產局員工消費合作社印製 成 ;* 43 71 0 3 Λ7 β: 五、發明說明() LED元件在順向電壓20mA時’其係顯示52〇nm的純 綠色光’且其Vf係只有3.5V,相較於習知多量子井構造 的LED元件,其Vf係降低1.0V,而輸出係提高2倍以上。 因此,只要以1 0mA即可獲得與習知LED元件大致相同的 特性。 此外,就習知LED元件的構造而言,其亦可在—由 GaN所形成的第i緩衝層上依序形成—由未摻雜質之GaN 所形成的第2緩衝層、一由摻入Si之GaN所形成的n側 接觸層、一由與實施例相同之多量子井構造所形成的 活性層、一由摻入Mg之單一 A1〇 1(^〇州層、以及一由摻 入Mg之GaN所形成的p側接觸層。 【實施例1 8】 相對於實施例1 7,本實施例中所製成的LED元件係 如下述般地改變活性層7,其他則與其相同。 (活性層7) 經濟部智慧財產局員工消费合作钍印製 (請先閱讀背面之注意事項再填寫本頁) 其次,成長出一膜厚為250埃、由未摻雜質之 斤形成的障壁層,接著將溫度設為度c,並使用tmg、 TMI、及氨氣、據以成長出—厚度為3〇埃、由未摻雜質之 hMGauN所形成的井層3之後,再以障壁+井+障壁+ 井+ ·..·+障壁的順序來相互堆積成7層的障壁層及6層的 丼層,據以成長出一由膜厚為193〇埃之多重量子井構造 所構成的活性層7。 ___ 第 120 買 +、'.坎用山 m (CNS).-V1 irn ------....---- 4371 03 Λ8 Β8 C8 D8 穴、申外1專利範圍 據此所獲得的LED元件在順向電壓20mA時,係顯示 f .上太 I (請先閣讀背面之注意事項再填寫本頁) 4 7〇nm的純青色光,同時具有與實施例丨7所示之相同效 果。 【實施例1 9】 相對於實施例丨7,本實施例中所製成的LED元件係 如下述般地改變活性層7 ’其他則與其相同。 (活性層7).J A7 B7 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the invention () η-side electrode. In addition, in the case of the laser diode of Example 1, the two end surfaces of the ridge form two pairs of Ti02 / Si0 ;! 'so that the reflection coefficient of the two end surfaces is 50%. For the semiconductor laser diode made by the above method, it can obtain continuous vibration effect at room temperature and a small initial value current. As mentioned above, if the multilayer film is separated from the active layer, the same effect as that shown in Example 6 can be achieved. [Embodiment 1 7] Embodiment 7 is an embodiment related to Embodiment 2 shown in Fig. 4. In this embodiment, 'the substrate 1 formed of blue quartz (c-plane) was first placed in a MOVPE reaction vessel, and hydrogen was passed through, and the temperature of the substrate was raised to 1 050 degrees C. According to In order to clean the substrate. (Buffer layer 102) Next, the temperature is lowered to 5-10 degrees c, and a carrier gas containing hydrogen, a raw material gas containing ammonia, and TMG (trimethylgallium) are used to grow a substrate made of GaN on the substrate 1. A buffer layer 102 having a thickness of 15 angstroms was formed. (Undoped GaN layer 103) After the buffer layer 10 is grown, only the supply of tmG is stopped, and the 116th page is opened. -— ------------ ^ -------- Order --------- Line I (Please read the notes on the back before filling this page) Α7 43 71 0 c 5. Description of the invention () The temperature rises to 1 ° c. When the temperature is reached, the raw material gas with TMG 'and ammonia gas are also used to grow a GaN layer 103 (n-side contact layer 4) formed of _ formed by unearned impurities and having a film thickness of 1.5. Secondly, the temperature was maintained at 1050 ° C, and the same was used to add TMG source gas, ammonia gas, and silane gas impurity gas to grow into a film thickness of 2.25W m, and the concentration of y mixed with 4 5xl Η side contact layer 4 made of GaN / cm3. (η 恻 First multi-layer film layer 105) Next, the supply of silicon hafnium gas is stopped, and the temperature is also set to 1050 ° C. TMG 'ammonia gas is used to grow a thickness of Nai, without doping. The impurity GaN layer is then additionally supplied with a dream firing gas at the same temperature to grow a GaN layer having a thickness of 25 angstroms and a Si concentration of 45 × 10 cm 3. According to this, a layer group formed by forming a layer A consisting of a GaN layer having a thickness of Angstroms and an undoped GaN layer, and a layer B consisting of a GaN layer having a thickness of 25 Angstroms doped with si impurities is formed Next, the layer group was stacked with 25 layers to have a thickness of 25 00 angstroms, and a n-side first multilayer film layer 105 having a superlattice structure was grown. (Second multilayer film layer 106 on the η side) Next, a second nitride semiconductor film i06b having a film thickness of 40 angstroms and formed of GaN without any impurities is grown at the same temperature: 117th Page (C: NS) AS 297 (Please read the precautions on the back before filling in this page) ιt -------- Order --------- Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs System 4371 0 3 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs B7 5. After the description of the invention ('), set the temperature to 800 ° C, and use TMG, TMI, and ammonia to grow a thickness. It is 20 angstroms' of the first nitride semiconductor film 06a formed of undoped InOuGau. After that, the operation was repeated, and 10 layers were stacked on each other in the order of 2 + 1, and finally a second nitride semiconductor film 106b formed of undoped GaN with a thickness of 40 angstroms was grown. The second multilayer film with a superlattice structure and a film thickness of 640 angstroms. (Active layer 7) Next, a 200 angstrom barrier layer formed of undoped GaN was grown, and the temperature was set to 800 ° C and TMG, TMI, and ammonia were used. A well layer having a thickness of 30 angstroms and formed of undoped In 0.4 Ga 0.6 N was grown. After that, in the order of the ten barriers of the barrier + the barrier + the well + .... + the barrier, five barrier layers and four well layers were stacked on each other to grow a multiple quantum with a film thickness of 1120 angstroms. Active structure 7 composed of well structure. (P-side multilayer film cover layer 108) Next, the temperature is set to 1 050 degrees C 1 and TMG, TMA, ammonia, and CP2Mg are used to grow a thickness of 40 angstroms. 'Mg doped impurity concentration is 1xl020 / cm3 of the third nitride semiconductor film 108a formed by P-type Al0.2Ga0.sN, and then set the temperature to 800 ° C, and use TMG, TMI, ammonia, and cP2m§ to grow a A thickness of 25 angstroms and a P-type 笫 118 with a Mg impurity concentration of 1x10 / cm3 _____ _ ____n_-one or two. '&Quot; " " L ~ one ~ ._ < Please read first Note on the back, please fill out this page) -1 -------- Order --------- 43 7 ί 03 Α7 ____ Β7 V. Description of the invention () A [〇. (Π G a 〇 〇9 7N formed a fourth nitride semiconductor film 〇8b. After that, it is repeatedly formed and stacked in the order of 3 + 4-with 5 layers each, and finally a film is grown. A p-side multilayer film covering layer (P-side contact layer 9) having a thickness of 40 angstroms and a third nitride semiconductor film formed by undoped GaN with a superlattice structure of 〇8a and a thickness of 365 angstroms ) Next, set the temperature to 105 Degree C, and using TMG, ammonia, and Cpa Mg, a p-side contact layer 9 was formed with a thickness of 700 angstroms and doped with p-type GaN doped with Mg impurity concentration 1 X 1 020 / cm3. After the reaction is completed, the temperature is lowered to room temperature, and the wafer is placed in a reaction container in a nitrogen environment, and buried in a clean place at 700 ° C to further reduce the resistance of the P-type layer. After the cleaning process, the wafer is taken out from the reaction container * and a mask pattern of a predetermined shape is formed on the surface of the uppermost P-side contact layer 9 '. Then in a RIE (reactive ion etching) device, from the p-side The contact layer is etched to expose the surface of the η-side contact layer 4 shown in Figure 4. After etching, it is formed over the entire P-side contact layer on the uppermost layer—200 angstroms in thickness, containing Ni and Au light-transmitting P electrode 10; and a p-electrode 11 formed by Au with a thickness of 0,5 " m 'for welding is formed on the p-electrode 10. In addition, the n-side exposed by etching The surface of the contact layer 4 is formed with an η electrode 12 ′ containing w and eight 1 to form a led element. Please read the precautions on the back before filling out this page.) -------- Order · I ----- Printed by the Consumer Cooperatives of the Wisdom and Time Bureau of the Ministry of Economic Affairs; * 43 71 0 3 Λ7 β: 5. Description of the invention () When the forward voltage of the LED element is 20mA, it “shows pure green light of 52nm” and its Vf is only 3.5V. Compared with the conventional multi-quantum-well LED element, its Vf is reduced by 1.0V, while output is increased by more than 2 times. Therefore, it is only necessary to obtain a characteristic substantially the same as that of a conventional LED element at 10 mA. In addition, as far as the structure of the conventional LED element is concerned, it can also be formed sequentially—on an i-th buffer layer formed of GaN—a second buffer layer formed of undoped GaN, An n-side contact layer formed of GaN of Si, an active layer formed of the same multi-quantum well structure as in the embodiment, a single A101 (^ 0 state layer) doped with Mg, and a Mg doped layer P-side contact layer made of GaN. [Example 1 8] Compared with Example 17, the LED element manufactured in this example changes the active layer 7 as follows, and the other is the same. (Active Layer 7) Printed by the consumer cooperation agreement of the Intellectual Property Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling this page) Secondly, grow a barrier layer with a thickness of 250 angstroms and formed by undoped catties Then set the temperature to degree c, and use tmg, TMI, and ammonia to grow out of it—well layer 3 with a thickness of 30 angstroms and formed of undoped hMGauN, and then use barrier + well + Barrier + well + ... + + the order of the barriers are stacked on each other into 7 layers of barrier walls and 6 layers of sacral layers, thereby growing a membrane Active layer 7 composed of a multiple quantum well structure with a thickness of 193.0 Angstroms. ___ 120th buy +, '.Cannon Mountain m (CNS) .- V1 irn ------....---- 4371 03 Λ8 Β8 C8 D8 hole, Shenwai 1 patent scope The LED element obtained based on this will display f. Shangtai I (please read the precautions on the back before filling out this page) 4 7 〇nm pure cyan light, and at the same time have the same effect as shown in Example 丨 7. [Example 1 9] Compared to Example 丨 7, the LED element made in this example changes the activity as follows Layer 7 'is otherwise the same. (Active layer 7)

其八’成長出一膜厚為250埃、由未掺雜質之GaN 所开y H的障壁層’接著將溫度設為8 00度C,並使用TMG、 TMI、及身洛 4由 久氧乳 '據以成長出一厚度為30埃、由未摻雜質之 In〇 3GaQ 7N所形成的井層。之後,再以陳壁+井+障壁+ …’ τ障壁的順序來相互堆積成6層的障壁層及5層的 |1 ’據以成長出一由膜厚為1650埃之多重量子井構造 所構成的活性層7 ^ 據此所獲得的LED元件在順向電壓20mA時,係顯示 經濟部皆慧时是场員工消費合作社印紫 4 7 0 n m的純青色光’同時具有與實施例1 7所示之相同效 果。 【實施例2 〇 ] 相封於實施例丨7,本實施例中所製成的LED元件係 如下述般地改變活性層7,其他則與其相同。 ___ 第121頁 4371 03 Λ 8 88 C8 D8 經.濟部皙慧財是局員工;rt費合作社印製 六、申請專利範圍 (活性層7) 其次’成長出一膜厚為250埃、由未摻雜質之GaN 所形成的障壁層’接著將溫度設為8 〇〇度C,並使用TMG、 TMI、及氨氣、據以成長出一厚度為3〇埃、由未摻雜質之 InmGao.^N所形成的丼層。之後,再以障壁+井+障壁 +井+…+障壁的順序來相互堆積成7層的障壁層及6層 的井層’據以成長出一由膜厚為1 930埃之多重量子井構 造所構成的活性層7 3 據此所獲得的LED元件在順向電壓20mA時,係顯示 5〇〇nm的青綠色光,同時具有與實施例1 7所示之相同效 果。 【實施例2 1】 相對於實施例1 7,本實施例中所製成的LED元件係 如下述般地改變活性層7,其他則與其相同, (活性層7) 其次’成長出一膜厚為250埃、由未掺雜質之GaN 所形成的障壁層’接著將溫度設為800度C,並使用TMG、 TMI及氨氣、據以成長出一厚度為3〇埃、由未掺雜質之 In〇.35Ga〇.65N所形成的井層。之後,再以障壁+井+障壁 +井+…· +障壁的順序來相互堆積成4層的障壁層及3層 的井層,據以成長出一由膜厚為1090埃之多重量子井構 造所構成的活性潛7。 第122頁 」^卜㈣料心.(^了“格(2!0Χ297^Τ~---- ' 裝 ί 訂 (請先閎讀背面之注意事項再填寫衣頁} 4371 0 3 ^Eighth 'grow a barrier layer with a thickness of 250 angstroms and y H opened by undoped GaN', then set the temperature to 800 ° C, and use TMG, TMI, and Shenluo4 'According to this, a well layer with a thickness of 30 angstroms and formed by undoped InO3GaQ 7N was grown. Then, in the order of Chenbi + well + barrier +… 'τ barrier, 6 barrier layers and 5 | 1' were stacked on each other to grow a multiple quantum well structure with a film thickness of 1650 angstroms. The active layer 7 is composed. The obtained LED element at this time has a forward voltage of 20 mA, which shows that the Ministry of Economic Affairs is wise. The staff consumer cooperative printed a purple 4 7 0 nm pure cyan light. Shows the same effect. [Embodiment 2] The LED element produced in this embodiment is sealed in the same manner as in Embodiment 7 and the active layer 7 is changed as described below, and the others are the same. ___ Page 121 4371 03 Λ 8 88 C8 D8 Ministry of Finance and Economics is an employee of the Bureau; rt fee printed by the cooperative 6. Scope of patent application (active layer 7) Secondly, a film thickness of 250 angstroms, grown The barrier layer formed by doped GaN is then set to a temperature of 800 ° C, and TMG, TMI, and ammonia are used to grow a thickness of 30 angstroms from an undoped InmGao. . ^ N layer Then, in the order of barrier wall + well + barrier wall + well + ... + barrier wall, 7 layers of barrier layers and 6 layers of well layers were stacked on each other to grow a multiple quantum well structure with a film thickness of 1 930 The active layer 7 3 thus constituted obtained an LED element exhibiting a 500-nm cyan light at a forward voltage of 20 mA, and had the same effect as that shown in Example 17 at the same time. [Example 2 1] Compared to Example 17, the LED element made in this example changes the active layer 7 as follows, and the other is the same. (Active layer 7) Secondly, a film thickness is grown. A barrier layer of 250 angstroms made of undoped GaN is then set to 800 ° C, and TMG, TMI, and ammonia are used to grow a 30 angstrom thick, non-doped GaN The well layer formed by In.35Ga.65N. Then, in the order of barrier wall + well + barrier wall + well + ... · + barrier wall, four barrier layers and three well layers are stacked on each other, thereby growing a multiple quantum well structure with a film thickness of 1090 Angstrom The active latent 7. P.122 ^ ^ ㈣㈣ 料 心. (^ 了 "格 (2! 0Χ297 ^ Τ ~ ---- 装 ((Please read the precautions on the back before filling in the clothes page) 4371 0 3 ^

CS 六、申請專利範圍 據此所獲得的LED元件在順向電壓20mA時,係顯示 5 OOnm的音綠色光,同時具有與實施例1 7所示之相同效 果。 【實施例2 2】 相對於實施例1 7,本實施例中所製成的LED元件係 未成長出η侧第2多層膜層6,其他則與其相同。 據此所獲得之LED元件的元件特性及發光輸出係較 實施例1 7所示者微低,但,比習知之LED元件之發光輸 出還好。 【實施例2 3】 相對於實施例1 7,本實施例中所製成的LED元件係 如下述般地改變p側多層膜覆蓋層8,其他則與其相同。 (p側單一膜覆蓋滑1 8) 經濟部智.¾財產局S工消#合作社印製 ,#衣i-(請先閱讀背面之注意事項再填寫本頁) 在溫度為1050度C之下,使用TMG、TMA、氨氣、 以及Cp2Mg,據以成長出一厚度為3 00埃、由摻有Mg雜 質濃度為lx l〇2i)/cm3之p型Al〇.]6Ga〇.S4N所形成的p惻單 一膜覆蓋層。 本實施例中所獲得的LED元件中所長成的覆蓋層雖 不是超晶格,而是單一的層,但藉由與其他層的組合,其 雖比實施例 1所示者稍微差,但其亦能大致獲致相同效 果。此外,相較於多層膜層,單一層之製程係較為簡單。 第123頁 .才.¾佐尺度㈡ ) λ ….為公芹) 43 71 0 οCS 6. Scope of patent application The LED element obtained in this way displays a green sound of 500 nm at a forward voltage of 20 mA and has the same effect as that shown in Example 17 at the same time. [Example 2 2] Compared with Example 17, the LED element manufactured in this example did not grow the second multi-layer film layer 6 on the η side, and the others were the same. The element characteristics and light-emitting output of the LED element thus obtained are slightly lower than those shown in Example 17 but are better than the light-emitting output of the conventional LED element. [Example 2 3] Compared with Example 17, the LED element manufactured in this example was changed in the p-side multilayer film cover layer 8 as described below, and the others were the same. (Single film cover slip on the p side 1 8) Ministry of Economic Affairs. ¾ Property Bureau S Gong Consumer #cooperative society printing, # 衣 i- (Please read the precautions on the back before filling this page) Under the temperature of 1050 degrees C Using TMG, TMA, ammonia, and Cp2Mg, a thickness of 300 angstroms was grown from p-type AlO.] 6Ga〇.S4N doped with Mg impurity concentration of 1 × 10 2i) / cm3. P 恻 single membrane overlay. Although the cover layer formed in the LED element obtained in this embodiment is not a superlattice, but a single layer, it is slightly inferior to the one shown in Example 1 in combination with other layers, but its The same effect can be obtained. In addition, compared to multiple layers, the manufacturing process for a single layer is simpler. Page 123. Only. ¾ Dimension ㈡) λ… for the celery) 43 71 0 ο

AS Β8 CS DS 六、申請專利範圍 【實施例2 4】 相對於實施例1 7,本實施例φ所製成的L E D元件係 如下述般地改變η側第1多層膜覆蓋層1 〇5,其他則與其 相同。 (η側多層膜層1〇5) 形成一由厚度為2 00埃、未摻雜質的GaN層所構成的 A層、以及一由厚度為25埃、摻有Si雜質、濃度為 lxl0】8/cm3的Alo.iGao.gN層所構成的B層’據以形成一由 A層、B層所構成的層組’接著,使該層组堆積2 0層而使 厚度成為2500埃,進而成長出一 η側第1多層膜層1〇5。 據此所獲得之LED元件係大致具有與實施例1 7相等 的特性,其係具有良好的效果。 【實施例2 5】 相對於實施例1 7,本實施例中所製成的LED元件係 如下述般地改變η側接觸層4 ,其他則與其相同。 (η側接觸層4) 在溫度為1 050度C之下,使用&有TMG的原料氣體、 氣氣、以及加有我氣體之雜質氣體,以長成—膜厚為έ 卩m、由摻有Si濃度為4518 3 - ^ xt .5X10 /cm足GaN所形成的r 側接觸層4 » 據此所獲得之LED元杜技丄杜H 士上电 疋件係大致具有與實施例1 7相等 t请先Μ讀背面之注意事項為填寫本胃) 裝 經濟部智慧时—局Μ工消骨合作钍印製 第124頁 木心、尺汶这It]中闵阐京4华(rNS ) 丨^: 34 ϋ abcd 經濟部智慧財雇局員工消費合作社印¾ 六、申請專利範圍 的特性,其係具有良好的效果。 【實施例2 6】 實施例26係第5圖所示之實施形態3所相關連的實 施例。 於本實施例26中,係先將一由兹石英(C面)所形成的 基板1放置在一的反應容器中,且以氫氣將孩容器中的氣 體置換,之後,一邊通以氫氣,一邊使該基板之溫度上升 到1 0 5 0度C,據以進行基板之潔淨處理。又,該基板1 除以藍石英C面為主面之外,其亦可為一以藍石英R面、 A面為主面的藍石英,或是如尖晶石(]VigAl2〇4)般的絕緣 性基板,或是 SiC(含有 6H、4H、3C)、Si、ZnO、GaAs、 GaN等的半導體基板。 (緩衝層202) 接著,使溫度下降到510度c,並使用加氫氣的載子 氣體、加氨的原料氣體、及TMg(三曱鎵),以在基板i上 成長出一由GaN所形成、膜厚為2〇〇埃的緩衝層2〇2。 (第1 η側氮化物半導體層2 0 3) 在成長出該緩衝層2〇2後,則只停止供應TMG,並使 溫度回升到l〇5qc。當溫度到達丨㈣度 使用加有ΤΜϋ的原料氣體、及 ^ t ^ ^ 成長出一膜厚為5 # m、由未摻雜質之GaN所形成的 1 n側虱化物丰導體 第12S頁 ——— - _—...... i: ;.·ί5· { 'ηυχ2·)Ί^-^: I —i: 1- I— I - - = ^ J "".-° (請先閱讀背面之注意Ϋ項再填寫夂頁) 43 7 1 〇 A8 l B8 C3AS Β8 CS DS 6. Scope of patent application [Example 2 4] Compared with Example 17, the LED element made in this example φ changes the first multi-layer film covering layer 1 on the η side as follows, Others are the same. (η-side multilayer film layer 105) An A layer composed of a 200 Angstrom undoped GaN layer and a 25 Angstrom thick Si-doped impurity at a concentration of 1 × 10 are formed. 8 layer B / cm3 of Alo.iGao.gN layer 'forms a layer group consisting of layer A and layer B', and then 20 layers of this layer group are stacked to a thickness of 2500 angstroms, and then grow A first multi-layer film layer 105 on the n side is obtained. The LED element thus obtained had approximately the same characteristics as those of Example 17 and had a good effect. [Example 2 5] Compared with Example 17, the LED element manufactured in this example was changed in the n-side contact layer 4 as described below, and the others were the same. (η-side contact layer 4) At a temperature of 1 050 ° C, using & a raw material gas with TMG, a gas, and an impurity gas added with our gas, grow to a film thickness of έm, from The r-side contact layer formed by doping GaN with a Si concentration of 4518 3-^ xt .5X10 / cm is sufficient. 4 »The LED element technology obtained by this method is roughly the same as in Example 1 7 Equal t, please read the notes on the back to fill in the stomach.) When loading the wisdom of the Ministry of Economics-printed by the Bureau of Labor and Industrial Cooperation, page 124. Mu Xin, Chi Wen It] Zhongmin Zhangjing 4 Hua (rNS)丨 ^: 34 ϋ abcd Printed by the Consumer Finance Cooperative of the Smart Finance and Employment Bureau of the Ministry of Economic Affairs Ⅵ. The characteristics of the scope of patent application have a good effect. [Embodiment 2 6] Embodiment 26 is an embodiment related to Embodiment 3 shown in Fig. 5. In this Example 26, a substrate 1 formed of a quartzite (C surface) is first placed in a reaction container, and the gas in the container is replaced with hydrogen, and then, while hydrogen is passed through, The temperature of the substrate was raised to 105 ° C, and the substrate was cleaned. In addition, in addition to the blue quartz C-plane as the main surface, the substrate 1 may also be a blue quartz with blue-silica R-plane and A-plane as the main surface, or like spinel (] VigAl204). Insulating substrate, or semiconductor substrates such as SiC (containing 6H, 4H, 3C), Si, ZnO, GaAs, GaN, etc. (Buffer layer 202) Next, the temperature is lowered to 510 ° C, and a carrier gas containing hydrogen, a raw material gas containing ammonia, and TMg (triallium gallium) are used to grow a substrate made of GaN on the substrate i. And a buffer layer 200 with a film thickness of 200 angstroms. (The first n-side nitride semiconductor layer 203) After the buffer layer 205 is grown, only the supply of TMG is stopped, and the temperature is returned to 105 Qc. When the temperature is reached, the raw material gas added with TMϋ is used, and ^ t ^ ^ grows to a thickness of 5 # m and a 1 n side lice compound conductor made of un-doped GaN. Page 12S — ——-_—...... i:;. · Ί5 · {'ηυχ2 ·) Ί ^-^: I —i: 1- I— I--= ^ J " " .- ° ( (Please read the note on the back before filling in the title page) 43 7 1 〇A8 l B8 C3

-—___ DS 六、申請專利範圍 $ ,-0J。第1 n惻氮化物半導體層2〇3係利用比之前成長的 '衝層-0 2時還间的溫度來加以成長,例如9 〇 〇〜丨1 〇 〇度 、除可由GaN形成外,亦可由Ir^AlyGai… X + ys0所構成’而為能獲致一結晶缺陷較少的氮化物丰導 m層’其係以GaN形成者為佳 '或是y值係,〇 2以下的 A1yGa“yN形成者為佳a此外,其係可以比緩衝層還厚的 厚來成長’ it常係纟〇W上。由於該層—般係為 :為摻雜質層,因此其性質係接近於真性半導體;其電阻 率雖比0_2Q.Cm大’但若摻入比第2η側氮化物半導體層 還^ I的Si、Ge等η型雜質時’其係可作為使電卩且率下 降的層。 (第2η側氮化物半導體層2〇4) 其次’將溫度設為1〇5〇度C,使用TMG、氨氣,據 以成長出一厚度為20埃、未摻雜質的GaN層,接著,追 加供應矽烷氣體’以長出一厚度為20埃、摻有Si濃度為 lxl〇19/cm3的GaN層,接著停止摻入Si,而成長出一厚度 為2〇埃、未挣雜質的GaN層=> 據此’以形成一由厚度為 20埃、未摻雜質的GaN層所構成的A層、以及一由厚度 為20埃、掺有Si雜質之GaN層所構成的B層所形成的層 組’接著,使該層组堆積,進而形成一厚度為1 y m,且 由調變摻雜之GaN層所形成的第2n側氮化物半導體層 2〇4 〇 ---I - I 1 - ---- ---訂 (請先閡讀背面之注意事項再填寫本頁) _____s 第 126 頁 43 7丨 ϋ。 Λ 8 Β8 CS D8 六、申請專利範圍 (第3η側氮化物半導體層205) 其次’停止供應矽烷氣體’溫度係同樣設為I 05〇度 C’據以成長出一厚度為100埤、由未摻雜質之GaN所形 成的第3n側氮化物半導體層205 3第3ιι側氮化物半導體 層205係與上述一樣’其係除可由GaN所形成外1亦可由 InxAlyGai-x-yN(〇<x,〇sy,χ + yu)所構成,其组成雖無一定 的限定’但為獲致結晶缺陷較少的氮化物半導體層,其係 最好為GaN、或是y值係0.2以下的AlyGu '或是χ 值係0.1以下的InxGai-xN者為佳。若其係由InGaN所構 成時,在其上形成一含A1之氮化物半導體的情況下(則 防止該含A1之氮化物半導體中產生縫隙。 (活性層7) 其次,將溫度設為800度C,並以氮氣來代替載子氣 體,同時使用TMG、TMI、及氨氣、以成長出—厚度為3〇 埃、由未摻雜質之In“Ga() όΝ所形成的層,據此而形成一 具有單一量子井層構造的活性層7。 (Ρ側多層膜層1 〇 8)-—___ DS VI. Patent application scope $, -0J. The first n 恻 nitride semiconductor layer 203 is grown by using a temperature that is longer than that of the previously-formed 'punch layer-0 2', for example, 900-1000 °. In addition to being formed of GaN, It can be composed of Ir ^ AlyGai ... X + ys0 'and can obtain a nitride-rich m-layer with less crystal defects, which is preferably formed by GaN' or a y value, A1yGa "yN below 0 2 It is better to form a. In addition, it can be grown thicker than the buffer layer. It is usually on 纟 0W. Because this layer is generally: a doped layer, its properties are close to true semiconductors ; Although the resistivity is larger than 0_2Q.Cm ', but if doped with η-type impurities such as Si and Ge that are more than 1 n side nitride semiconductor layer, it can be used as a layer that reduces the electrical conductivity and the rate. 2nd side nitride semiconductor layer 204) Next, set the temperature to 1050 ° C and use TMG and ammonia gas to grow an undoped GaN layer with a thickness of 20 angstroms, and then, Additional supply of silane gas' to grow a GaN layer with a thickness of 20 angstroms and a doped Si concentration of 1 × 1019 / cm3, and then stop doping Si to grow a thickness 20 Angstrom, Unearthed GaN Layer = > Based on this, a layer A consisting of a 20 Angstrom undoped GaN layer and a Si layer doped with Si with a thickness of 20 Angstroms are formed. Layer group formed by B layer composed of impurity GaN layer 'Then, the layer group is stacked to form a 2n-side nitride semiconductor layer having a thickness of 1 μm and formed by a modulation-doped GaN layer 2〇4 〇 --- I-I 1----- --- Order (please read the notes on the back before filling this page) _____s Page 126 43 7 丨 ϋ. Λ 8 Β8 CS D8 VI. Patent application scope (3η-side nitride semiconductor layer 205) Secondly, the temperature of 'stop supply of silane gas' is also set to I 05 ° C' to grow a thickness of 100 埤 and formed of undoped GaN The 3n-side nitride semiconductor layer 205 is the same as the above, except that it can be formed of GaN. 1 It can also be made of InxAlyGai-x-yN (0 < x, 〇sy, χ + yu), the composition is not limited, but in order to obtain a nitride semiconductor layer with less crystal defects, its system is preferably GaN or a y value of 0.2 AlyGu 'or InxGai-xN with a χ value of 0.1 or less is preferred. If it is composed of InGaN, if a nitride semiconductor containing A1 is formed thereon (then prevent the nitrogen containing A1) (Active layer 7) Next, set the temperature to 800 ° C and replace the carrier gas with nitrogen, and use TMG, TMI, and ammonia to grow—thickness of 30 angstroms, An active layer 7 having a single quantum well layer structure is formed from a layer formed by undoped In "Ga () Ν. (P-side multilayer film layer 108)

其次,將溫度提升到1〇5〇度C,並使用TMg、tma、 氣氣、以及Cp^Mg,據以成長出一厚度為2〇埃、由摻濃 度為lxl〇2VCm3的Mg雜質之p型A1〇 |Ga〇9N所形成的 層’接著,使用TMG '氨氣、以及Cp2Mg,而成長出—厚 度為20埃、由#濃度為lxl〇19/cm3的雜質之ρ型以N 第127頁 木:?'汝广·:丨適用屮阄阑丨墙今:) Λ4.6.3 ( 43 710,: B8Secondly, the temperature was raised to 105 ° C, and TMg, tma, gas, and Cp ^ Mg were used to grow a p with a thickness of 20 angstroms and an impurity concentration of lxl02VCm3. The layer formed by type A1O | Ga〇9N 'was then grown using TMG' ammonia gas and Cp2Mg—a thickness of 20 angstroms and a ρ-type of impurities with a concentration of 1xl019 / cm3 in the concentration of N # 127 Page wood:? 'Ru Guang ·: 丨 Applicable 屮 阄 丨 Wall today :) Λ4.6.3 (43 710 ,: B8

‘ 、 CS II _ ___一 六、申請專利範圍 所形成的層。之後,反覆操作,並以同樣的順序相互堆積 而形成一具超晶格層、總膜厚為〇.8 M m的P側覆蓋層。 ---------衣-- (請先閱讀背面之注意+^項再填寫本頁) (P側接觸層208) 接著’將溫度設為800度c’以成長出一厚度為30 埃、由未摻雜質之InQ.iGa〇.9N所形成的第1氮化物半導體 膜,接著,停止供應TMI ,以成長出一厚度為30埃、由 摻Mg雜質濃度為1 X 1 〇20/cm3之GaN所形成的第2氮化物 半導體膜。之後,反覆操作,並以同樣的順序相互堆積而 形成一總膜厚為6 0 0埃的p側接觸層2 0 8。 在反應完成後,則使溫度下降到室溫’並在氮氣環境 中將晶圓置於反應容器中,而在700度C下進行潔淨處 理,進而使P型各層之電阻降低。 在完成潔淨處理後,則自反應容器中將晶圓取出,並 在最上層的p側接觸層2 08表面上形成一規定形狀的光罩 圖樣,接著於RIE(反應性離子蝕刻)裝置中,自p侧接觸 層側進行蝕刻,進而使第5圖所示之第2n側氮化物半導 體層204的表面露出。 Μ濟部智慧財447員工消#合作社印製 在姓刻之後’再約於最上層的p側接觸層的全面上形 成一厚度為2〇〇埃、含m及Au的透光性p電極ι〇;以 及在該p電極1〇上形成一焊接用、厚度為〇 、由Au 所形成的P墊電極1 1。此外,藉由蝕刻所露出的第2 η側 氮化物半導體層204的表面係形成有一含有w及A1的η 電極12,最後,如第5圖所示,形成一用以保護ρ電極 未紙# 尺度d ( rNS ) /,4¾格(--------------------------- Λ 8 4371 Ο g D8 ...... I … 六、申請專利範圍 1 0、由Si〇2所構成的絕緣膜I 2,之後利用畫線器將晶圓 分離成350 正方的LED元件。 LED元件在順向電壓20mA時,其係顯示52〇nm的纯 綠色光,且其Vf係為3.2V,在20mA時,其係可使Vf 下降0.2〜0‘3V,同時亦可使輪出提高1〇% ^此外,製造 出10 0個實施例2 ό所示之l E D元件,而在順向電壓為 20mA時,測定其Vf ’結果顯示該等元件之vf係均分体 在3.2〜3.3 V之間,其係極為集中。 【實施例2 7】 相對於實施例26,本實施例中所製成的LED元件係 在成長p側接觸層時,使未摻雜質之I n Q」G a 〇. 9 N層、以及 摻Mg雜質、濃度為1 x 1 之GaN的堆積順序相反, 其他則與實施例2 6相同。 【實施例2 8】 相對於實施例26,本實施例中所製成的LED元件係 在成長P侧接觸層時,使第2氮化物半導體的組成係為一 InQ.Q5Ga〇.9 5N層,其他則與實施例26相同。 【實施例29】 相對於實施例26,本實施例中所製成的LED元件係 在成長p側接觸層時’使第2氮化物半導趙膜係為一摻 Mg雜質、濃度為lxl〇2<)/cm3之In〇 〇5Ga〇 95N層’其他則 第129頁 A見銀尺度4用中网阎家嘌苹(CNS ) Λ4ΐ^*. ( 210 ./297公4 ) (請先閱讀背面之泛意事項再填寫太頁} 裝 、1Τ 經濟部智-財4局8;工"#合作社印製 4371 AS B8 CS D8 申請專利範圍 與實施例26相同 【實施例3 0】 相對於實施例26,本脊、* γ丨士 2 實施例中所鲅成的LED元件係 在成長P側接觸層時,使M _ _第-氮化物半導體膜係為一摻 Cm'之 In〇 ()5Ga〇.95N 層,其他則‘, CS II _ ___ one six, the layer formed by the scope of patent application. Thereafter, it was repeatedly operated and stacked in the same order to form a P-side cover layer having a superlattice layer and a total film thickness of 0.8 M m. --------- Clothing-(Please read the note on the back + ^ before filling this page) (P-side contact layer 208) Then 'Set the temperature to 800 degrees c' to grow a thickness of 30 angstroms, the first nitride semiconductor film formed of undoped InQ.iGa 0.9N, and then the supply of TMI was stopped to grow a thickness of 30 angstroms and the concentration of Mg doped impurities to 1 X 1 〇 A second nitride semiconductor film formed of GaN at 20 / cm3. Thereafter, it is repeatedly operated and stacked on each other in the same order to form a p-side contact layer 208 having a total film thickness of 600 angstroms. After the reaction is completed, the temperature is lowered to room temperature ', and the wafer is placed in a reaction container in a nitrogen atmosphere, and clean processing is performed at 700 ° C, thereby reducing the resistance of each P-type layer. After the cleaning process is completed, the wafer is taken out of the reaction container, and a mask pattern of a predetermined shape is formed on the surface of the p-side contact layer 20 08 at the uppermost layer, and then in a RIE (reactive ion etching) device, Etching is performed from the p-side contact layer side, and the surface of the 2n-side nitride semiconductor layer 204 shown in FIG. 5 is further exposed. M 济 部 智慧 财 447 员 消 # Cooperative prints a 'transparent p-electrode' with a thickness of 200 angstroms and containing m and Au on the entire surface of the p-side contact layer after the last name engraving. 〇; and on the p-electrode 10 is formed a solder, a thickness of 0, P pad electrode 11 made of Au. In addition, the surface of the second η-side nitride semiconductor layer 204 exposed by etching is formed with an η electrode 12 containing w and A1. Finally, as shown in FIG. 5, a ρ electrode is not formed to protect the electrode # Scale d (rNS) /, 4¾ divisions (--------------------------- Λ 8 4371 〇 g D8 ...... I … 6. The scope of patent application is 10, and the insulating film I 2 composed of Si0 2 is used to separate the wafer into 350 square LED elements by using a line drawing device. When the forward voltage of the LED element is 20 mA, it displays 52 〇nm pure green light, and its Vf is 3.2V, at 20mA, it can reduce Vf by 0.2 ~ 0'3V, and can also improve the rotation rate by 10% ^ In addition, 100 implementations were manufactured The ED element shown in Example 2 was measured at a forward voltage of 20 mA, and the Vf 'was measured. The results show that the vf of these elements are evenly divided between 3.2 and 3.3 V, which is extremely concentrated. 2 7] Compared to Example 26, when the p-side contact layer is grown in the LED element manufactured in this example, an undoped I n Q ″ G a 0.9 N layer and Mg doped impurities are added. The stacking order of GaN with a concentration of 1 x 1 is reversed. Others are the same as those in Example 2 6. [Example 2 8] Compared to Example 26, when the P-side contact layer is grown in the LED element manufactured in this example, the composition system of the second nitride semiconductor is An InQ.Q5Ga0. 9 5N layer, and the other are the same as in Example 26. [Example 29] Compared to Example 26, the LED element made in this example is grown when the p-side contact layer is grown. 2Nitride semiconducting film is a layer of Mg doped impurity with a concentration of lxl02 <) / cm3 of an In005Ga〇95N layer. 'Others, page 129A. See silver scale 4 for use in China Net Yan Jiapu Ping (CNS) Λ4ΐ ^ *. (210 ./297 公 4) (Please read the general meanings on the back before filling in the page) Equipment, 1T Intellectual-Finance 4 Bureau of the Ministry of Economic Affairs 8; 工 "# Cooperative Printing 4371 AS B8 CS D8 The scope of the applied patent is the same as that of Example 26. [Example 3 0] Compared with Example 26, the ridge, * γ 丨 Shi 2 The LED element formed in the example is M___ when the P-side contact layer is grown. The -nitride semiconductor film is a Cm'-doped In〇 () 5Ga0.95N layer, the others are

Mg雜質、濃度為 與實施例26相同 【實施例3 1】 相對於實施例26’本實施例中所製成的咖元件係 f成長?側接觸層時,對第1氛化物半導體膜掺入…雜 資、濃度為1Xl〇l9/Cm3 ’其他則與實施例26相同。 【實施例3 2】 相料實施例26,本實施例中所製成的咖元件係 成長P側接觸層208時,以—由捧Mg雜質濃度為I X 1 Π- 0 / 3、 代 Crn义InQ!Ga"N所形成之第!氮化物半導體膜來 『替由未摻雜質之In〇 |Ga"N所形成之第工氮化物半導體 '、同時以一由摻Mg雜質濃度為ixi〇"/cm3之GaN所形 成又第2氮化物半導體膜來代替由摻有Mg雜質、濃度為 1 X 1〇2〇 , 3 Cin之GaN所形成之第2氮化物半導體膜,並且使 5二第1氮化物半導體膜係位於最上層,其他則與實施例2 6 相同。 ---------裝--------訂------级 (請先閱讀背面之注意事項再填寫本頁) 木& 第130頁 两家焓净·((:NS ) Α4現格(210;<州公 437Ϊ 03 _Mg impurities and concentrations are the same as those in Example 26. [Example 3 1] Compared to Example 26 ’, the growth of the coffee element system f produced in this example? In the case of the side contact layer, the first semiconductor semiconductor film was doped with a dopant, a concentration of 1 × 1019 / Cm3, and the others were the same as those in Example 26. [Example 3 2] According to Example 26, when the coffee element produced in this example grows the P-side contact layer 208, the Mg impurity concentration is IX 1 Π- 0/3, and Crn is substituted. The first formed by InQ! Ga " N! A nitride semiconductor film is formed of "the first nitride semiconductor formed of an undoped InO | Ga " N", and at the same time, it is formed of an GaN-doped GaN with an impurity concentration of ixi〇 " / cm3. 2 nitride semiconductor film instead of the second nitride semiconductor film formed of GaN doped with Mg impurities and a concentration of 1 X 1020,3 Cin, and the first nitride semiconductor film system may be located at the uppermost layer Others are the same as those in Embodiment 2 6. --------- Equipment -------- Order ------ Class (Please read the notes on the back before filling this page) Wood & Page 130 Two Enthalpy Nets · ((: NS) Α4 is present (210; < State Public 437Ϊ 03 _

DS 六、申請專利範園 【實施例3 3】 相對於實施洲26,本實施例中所製成的LED元件係 除P侧接觸層2 0 8係以下述方式成長之外,其他則與實施 例26相同, 亦即,將溫度設為800度c’以成長出一厚度為30 埃、由未慘雜質之In〇. 〖Ga〇.9N所形成的第1氮化物半導體 膜’接著,慢慢減少TMI,以使組成在厚度方向上由 InojGao.gN慢慢變化為GaN,而形成一組成梯度層,至TMl 減少到0後,據以成長出一厚度為30埃、由掺Mg雜質濃 度為1 X 1 02Q/cm3之GaN所形成的第2氮化物半導體膜。 之後,再慢慢增加TMI,以使组成在厚度方向上由GaN慢 慢變化為Gao.gN,而形成一組成梯度層,以成長出— 厚度為30埃、由未摻雜質之In〇1Ga〇.9N所形成的第1氮 化物半導體膜。反覆進行上述操作,而使該第1氮化物半 導體膜及第2氮化物半導體膜相互堆積各1〇層,據以成 長出P側接觸層2 0 8。 相較於習知LED元件,上述實施例27〜33所述之 LED元件係與實施例26 —樣,均具有良好的發光特性。 此外’就習知由InGaN所形成的p側接觸層而言, 由於InGaN在波長較短的區域下,其光的吸收較大,因此 會使該p側接觸層係顯現黃色,且會使在活性層所產生的 光波長向長波長側位移。然而,由於本發明之p側接觸層 係為超晶格結構’其相較習知由單層之In(3aN所形成的p 側接觸層而s ’其短波長之光的吸收率係可變小。所以, 第131頁 本.从代KJt丨中 W 闼京掠嗥(了-------------------------------------------- ---------1裝-------訂-----線 {請先閔讀背面之注意事項再填寫本頁} 03 Λ8 B8 CS TJ8 以 六、申請專利範圍 本發明之P側接觸層係可防止向長波長側位移,同時, 可提升光的透過率, 第7圖係對一由GaN及InGaN所形成之本發明的超 晶格結構多層膜而言,其相對於波長之光透過率的圖形。 該多層膜係由一 GaN(2〇埃)及InGaN(2〇埃)相互堆積 回、且糝有Mg雜質、具有載子濃度為4xl〇IS/cm3的ρ型 層。此外,在第7圖中亦表示有單層Ino.^GamN所形成 (膜厚0 · 1 2 4 m)的習知例的光透過率。如第7圖所示,本 發明之超晶格结構的多層膜相較於習知單層膜,其係在 400nm附近’光的透過率有明顯不同,由圖明顯可知,本 發明之超晶格結構的多層膜在4〇〇nm附近,光的透過率係 明顯較好。此外’第7圖中所示之本發明之超晶格結構的 多層膜與習知單層膜的各電阻率p係均為〇.5。另 外,第7圖中所示的透過率係為以藍石英基板之光的透過 率為100%時的相對值。 【實施例3 4】 實施例3 4係第8圖所示之實施形態5所相關連的實 施例。 於本實施例中,係先將一由藍石英(C面)所形成的基 板1放置在一 MOVPE的反應容器中’並通以氫氣,且使 該基板之溫度上升到1 0 5 0度c,據以進行基板之潔淨處 理。 第132頁 木:y.烺尺.‘ί逍用中㈤μ?·家樣肀(cns:) ---------t ^-------、玎------Φ (請先閱讀背面之沒意事項再填寫^頁) 經濟部智',4財4.局3工湞費合作社印製 ..2Π公疫DS VI. Patent Application Fan Garden [Example 3 3] Compared with the implementation of State 26, the LED elements made in this example are in addition to the P-side contact layer 208, which grows in the following manner, and the others are related to the implementation. Example 26 is the same, that is, the temperature is set to 800 degrees c 'to grow a first nitride semiconductor film formed of In0. [Ga0.9N] with a thickness of 30 angstroms and then, slowly Slowly reduce TMI so that the composition gradually changes from InojGao.gN to GaN in the thickness direction to form a composition gradient layer. After TMl is reduced to 0, a thickness of 30 angstroms is grown from the Mg-doped impurity concentration. A second nitride semiconductor film formed of GaN of 1 X 1 02Q / cm3. After that, the TMI was gradually increased so that the composition gradually changed from GaN to Gao.gN in the thickness direction, and a composition gradient layer was formed to grow out-a thickness of 30 angstroms and an undoped InO1Ga The first nitride semiconductor film formed by 0.9N. By repeating the above operation, 10 layers of the first nitride semiconductor film and the second nitride semiconductor film were deposited on each other, thereby growing a P-side contact layer 208. Compared with the conventional LED elements, the LED elements described in Examples 27 to 33 are the same as those in Example 26, and all have good light emitting characteristics. In addition, in the case of the conventional p-side contact layer formed of InGaN, since InGaN has a large light absorption in a region with a short wavelength, the p-side contact layer system will appear yellow, and The wavelength of light generated by the active layer is shifted toward the long wavelength side. However, since the p-side contact layer of the present invention has a superlattice structure, it has a shorter absorptivity of light at a shorter wavelength than the conventional p-side contact layer formed by a single layer of In (3aN). Small. So, page 131. From the generation of KJt 丨 W 闼 京 闼 嗥 (Let's ----------------------------- --------------- --------- 1 installed ------- ordered ----- line {Please read the precautions on the back first Fill in this page} 03 Λ8 B8 CS TJ8 6. The scope of the patent application The P-side contact layer system of the present invention can prevent the shift to the long wavelength side, and at the same time, it can improve the light transmittance. Figure 7 shows a comparison between GaN and InGaN. For the formed multi-layer film of the superlattice structure of the present invention, the pattern of light transmittance with respect to wavelength. The multi-layer film is formed by stacking GaN (20 angstrom) and InGaN (20 angstrom) on each other, and It contains Mg impurities and has a ρ-type layer with a carrier concentration of 4 × 10 IS / cm3. In addition, Figure 7 also shows the habit of a single layer of Ino. ^ GamN (film thickness 0 · 1 2 4 m). Known light transmittance. As shown in FIG. 7, compared with the conventional single-layer film, the multilayer film of the superlattice structure of the present invention has a thickness of 400 nm. 'The transmittance of light is significantly different, and it is clear from the figure that the multilayer film of the superlattice structure of the present invention is near 400 nm, and the transmittance of light is significantly better. In addition, the example shown in FIG. 7 Each resistivity p of the multilayer film of the invention and the conventional single-layer film is 0.5. In addition, the transmittance shown in FIG. 7 is the transmittance of light on a blue quartz substrate. Relative value at 100%. [Embodiment 3 4] Embodiment 3 4 is an embodiment related to Embodiment 5 shown in Fig. 8. In this embodiment, a blue quartz (C-plane) ) The formed substrate 1 is placed in a MOVPE reaction vessel ', and hydrogen is passed through, and the temperature of the substrate is raised to 105 ° C, so that the substrate is cleaned. Page 132 wood: y.烺 Ruler. 'Ί 用 用 中 ㈤μ? · 家 样 肀 (cns :) --------- t ^ -------, 玎 ------ Φ (Please read the back first Please fill in the ^ page of the unintended matters) Ministry of Economic Affairs', 4 fortune 4. Bureau for printing 3 labor cooperatives printed 2. Public epidemic

Λ 8 m cs DS 4371 03 六、申請專利範圍 (緩衝層102) 接著’使溫度下降到510度C’並使用加氫氣的載子 氣體、加氨的原料氣體、及TMG(三甲鎵),以在基板i上 成長出一由GaN所形成、膜厚為150埃的緩衝層1〇2。 (未摻雜質之GaN層1〇3) 在成長出該緩衝層1 〇 2後,則只停止供應τ μ G ,並使 溫度回升到1 0 5 〇度C »當溫度到達1 0 5 0度C時,則同樣 使用加有TMG的原料氣體、及氨氣,以成長出一由未摻 雜質之GaN所形成'膜厚為i.5/zm的未掺雜質GaN層103 (η側接觸層4) 其次’將溫度維持在1〇5〇度c,並同樣使用加有TMG 的原料氣體、氨氣、以及加有矽烷氣體之雜質氣體’以長 成一膜厚為2.254m '由摻有si濃度為4.5xl018/cm3之 GaN所形成的η側接觸層4。 (η側第1多層膜層3 0 5) 其次’停止供應矽烷氣體’溫度係同樣設為1 05〇度 C,使用TMG、氨氣,據以成長出_厚度為2〇〇〇埃、由 未摻雜質之GaN所形成的下層305a,接著,在同樣溫度 下’並追加供應矽烷氣體’以長出_厚度為3 〇〇埃、由摻 有Si濃度為4.5xl0I8/cm3之GaN所形成的中間層305b, 接著’’、停止供應ί夕燒氣體’並在同樣溫度下,成長出一 第133頁 丨虼β尺度遺;::.卜阁闺家裙Λ;. ( C.N‘- ) Λ八i.M )一 * — (請先閱讀背面之注意事項再填寫本頁) —*裝. 訂 "-.部智慧財是局,肖工消費合作社印製 43 7 1 〇3 Λ8 B8 C8 D8 六、申請專利範圍 厚度為50埃、由未摻雜質之GaN所形成的上層305c。據 此,而形成一總膜厚為2 3 5 0埃、由3層所構成的η側第1 多層摸層3 0 5。 (η侧第2多層摸層3 0 6 ) 其次,在同樣的溫度下,成長出一膜厚為40埃、由 未摻雜質之GaN所形成的第2氮化物半導體膜;之後,再 將溫度設為800度C,並使用TMG、TMI、及氨氣 '據以 成長出一厚度為20埃、由未掺雜質之In〇.13Ga〇.87N所形 成的第1氮化物半導體膜。之後,反覆操作,並以第2 + 第1的順序相互堆積各1 〇層,且最後係成長出一摸厚為 40埃、由未掺雜質之GaN所形成的第2氮化物半導體膜1 之超晶格構造、據以成長出一總膜厚為640埃的η側第2 多層膜層3 06。 (活性層7) 其次,成長出一膜厚為200埃、由未摻雜質之GaN 所形成的障壁層,接著將溫度設為8 00度C,並使用TMG、 TMI、及氨氣、據以成長出一厚度為30埃、由未摻雜質之 In0 4Ga0 6N所形成的井層。之後,再以障壁+井+障壁+ 丼+ ....+障壁的順序來相互堆積成5層的障壁層及4層的 井層,據以成長出一由膜厚為1120埃之多重量子井構造 所構成的活性層7。 第134頁 本紙炫尺度中家樣夂(CNS ) Λ 格(210;,」::'.'7公发) ----------- •士心--n _ _ _ T n _ n In ί_ : Ί -- (請先閡讀背面之注意事項再填寫本頁) ^齐^智^^是局只工消費合作社印製Λ 8 m cs DS 4371 03 VI. Patent application scope (buffer layer 102) Then 'lower the temperature to 510 degrees C' and use a carrier gas with hydrogen, a raw material gas with ammonia, and TMG (trimethylgallium) to A buffer layer 102 formed of GaN and having a film thickness of 150 angstroms is grown on the substrate i. (Un-doped GaN layer 103) After the buffer layer 10 is grown, the supply of τ μ G is stopped and the temperature is raised back to 105 ° C. When the temperature reaches 1050 In the case of degree C, the raw material gas added with TMG and ammonia gas are also used to grow an undoped GaN layer 103 formed by undoped GaN with a film thickness of i.5 / zm (n side Contact layer 4) Secondly, 'maintain the temperature at 1050 ° C, and also use TMG-added source gas, ammonia gas, and silane-containing impurity gas' to grow into a film thickness of 2.254m. There is an n-side contact layer 4 formed of GaN having a si concentration of 4.5 × 1018 / cm3. (The first multilayer film layer on the η side is 3 0 5) Next, the temperature of 'stop supply of silane gas' is also set to 1050 ° C, and TMG and ammonia gas are used to grow out. The thickness is 2000 angstroms. The lower layer 305a made of undoped GaN is then grown at the same temperature 'with additional supply of silane gas' to a thickness of 300 angstroms and formed of GaN doped with a Si concentration of 4.5x10I8 / cm3 Middle layer 305b, and then `` stop supplying the 夕 Xiu gas '' and grow at the same temperature to a page 133 虼 β scale remnants :: .. BU Ge Guijia skirt Λ ;. (CN'-) Λ 八 iM) One * — (Please read the precautions on the back before filling in this page) — * Packing. Order "-. Ministry of Intellectual Property and Finance Bureau, printed by Xiaogong Consumer Cooperative 43 7 1 〇3 Λ8 B8 C8 D8 6. The scope of the patent application is an upper layer 305c with a thickness of 50 Angstroms and formed of undoped GaN. Based on this, a first multi-layered layer 305 on the η side consisting of 3 layers with a total film thickness of 2 3 50 angstroms is formed. (Second multi-layer layer 3 0 6 on the η side) Next, at the same temperature, a second nitride semiconductor film with a film thickness of 40 angstroms and formed of undoped GaN is grown; The temperature was set to 800 ° C, and a first nitride semiconductor film formed of undoped InO.13Ga0.87N with a thickness of 20 angstroms was grown using TMG, TMI, and ammonia gas. After that, iterative operation is repeated, and 10 layers are stacked on each other in the order of 2 + 1 and finally a second nitride semiconductor film 1 of 40 angstrom thickness and formed of undoped GaN is grown. Based on the superlattice structure, a second multilayer film 306 on the η side with a total film thickness of 640 angstroms is grown. (Active layer 7) Next, a 200 angstrom barrier layer formed of undoped GaN was grown, and the temperature was set to 800 ° C, and TMG, TMI, and ammonia were used. A well layer formed by undoped In0 4Ga0 6N is grown to a thickness of 30 angstroms. Then, in the order of barrier wall + well + barrier wall + 丼 + .... + barrier wall, five barrier layers and four well layers are stacked on each other, thereby growing a multiple quantum with a film thickness of 1120 angstroms. Active structure 7 composed of well structure. Page 134 Chinese style 夂 (CNS) Λ grid (210 ;, '' :: '.' 7 public hair) in the paper scale ----------- Shixin --n _ _ _ T n _ n In ί_: Ί-(Please read the precautions on the back before filling out this page) ^ 齐 ^ 智 ^^ It is printed by the Bureau ’s Consumer Cooperative

4371 03 | DS 經濟部智慧5:凌局員工消費合作社印製 六、申請專利乾圍 (P側多層膜覆蓋層1 08) 其次,將溫度設為1 050度C,並使用TMG、TMA、 氨氣、以及CpsMg,據以成長出~厚度為40埃、由掺有 Mg雜質濃度為lxl〇20/cm3之P型Al0.2Ga0 SN所形成的第 3氮化物半導體膜,接著,將溫度設為8〇〇度c,並使用 TMG、TMI、氨氣、以及CpnMg,據以成長出一厚度為25 埃、由摻有Mg雜質濃度為lxl〇2t)/Cm3之p型Al〇.03Ga〇 097N 所形成的第4氮化物半導體膜=之後,反覆操作,並以第 3 +第4的順序相互堆積而形成一具有各5層,且最後係 成長出一膜厚為40埃、由未摻雜質之〇aN所形成的第3 氮化物半導體膜之超晶格構造、據以形成一總膜厚為365 埃的p側多層膜f蓋層1 0 8。 (P側接觸層9) 接著,將溫度設為1 050度C,並使用TMG、氨氣、 以及CpsMg ’據以成長出一厚度為700埃、由摻有Mg雜 質濃度為lxl02Q/cm3之p型GaN所形成的p側接觸層9。 在反應完成後,則使溫度下降到室溫,並在氬氣環境 中將晶圓置於反應容器中,而在700度C下進行潔淨處 理’進而使P型層之電阻降低。 在完成潔淨處理後’則自反應容器中將晶圓取出,並 在最上層的p側接觸層9表面上形成一規定形狀的光罩圖 樣’接著於RIE(反應性離子蝕刻)裝置中,自p侧接觸層 側進行蝕刻,進而使第8圖所示之η側接觸層4的表面露 第135頁 If, ^ ( 2Ϊ0Χ 207^1 *〜〜' _———~ (請先閱讀背面之炷意事項再填寫本s ) • in « ^^—-1 44371 03 | DS Wisdom 5 of the Ministry of Economic Affairs: Printed by the Consumer Council of Lingju. 6. Patent application for dry enclosure (P side multi-layer film covering layer 1 08). Second, set the temperature to 1 050 ° C and use TMG, TMA, ammonia. Gas and CpsMg, a third nitride semiconductor film with a thickness of 40 angstroms and a P-type Al0.2Ga0 SN doped with Mg impurity concentration of 1 × 1020 / cm3 is grown, and then the temperature is set to 800 ° C, and using TMG, TMI, ammonia, and CpnMg to grow a p-type Al.03Ga〇097N with a thickness of 25 angstroms, doped with Mg impurity concentration lxl02t) / Cm3 After the fourth nitride semiconductor film is formed, it is repeatedly operated and stacked in the order of 3 + 4 to form a layer with 5 layers each, and finally grows a film thickness of 40 angstroms from an undoped layer. The super-lattice structure of the third nitride semiconductor film formed by ZnOaN forms a p-side multilayer film f cap layer 108 with a total film thickness of 365 angstroms. (P-side contact layer 9) Next, set the temperature to 1 050 ° C, and use TMG, ammonia, and CpsMg 'to grow a p with a thickness of 700 angstroms and a concentration of lxl02Q / cm3 doped with Mg impurities. A p-side contact layer 9 formed of a type GaN. After the reaction is completed, the temperature is lowered to room temperature, and the wafer is placed in a reaction container in an argon atmosphere, and clean processing is performed at 700 ° C to further reduce the resistance of the P-type layer. After the cleaning process is completed, the wafer is taken out of the reaction container, and a mask pattern of a predetermined shape is formed on the surface of the p-side contact layer 9 on the uppermost layer. The p-side contact layer is etched, so that the surface of the η-side contact layer 4 shown in FIG. 8 is exposed. If, ^ (2Ϊ0 × 207 ^ 1 * ~~ '_———— ~ (Please read the back Please fill in this matter s) • in «^^ —- 1 4

,1T Α8 Β8 C8 D8 ^3 71 〇 3 .—- κ、申請專利範圍 出。 在轴刻之後’再約於最上層的ρ侧接觸層的王面上开V 成—厚度為200埃、含Ni及Au的透光性ρ電極10,以 及在該ρ電極10上形成一焊接用、厚度為0,)izm、由Au 所形成的P塾電極ί 1。此外 > 藉由缺刻所露出的n侧接觸 層4的表面係形成有一含有W及A丨的n電極12 ’據以構 成~ LED元件。 LED元件在順向電壓20mA時,其係顯示520nm的純 綠色光,且其V f係只有3.5 V,相較於習知多量子井構造 的LED元件,其Vf係降低1.0V,而輸出係提高2倍以上。 因此’只要以1 0mA即可獲得與習知LED元件大致相同的 特性。此外,若從η層及p層上的各電極反向地慢慢加電 壓,來測定上述所得之LED元件的靜電耐壓時,其結果係 比習知還好1.5倍。 此外,就習知LED元件的構造而言,其亦可在一由 GaM所形成的第1緩衝層上依序形成—由未摻雜質之 所形成的第2緩衝層、一由接入^之GaN所形成的n側 接觸層、一由與實施例12相同之多量子井構造所形成的 活性層、一由接入Mg之單一 A1〇 iGa〇9N層、以及一由挣 入Mg之GaN所形成的p側接觸層。 【實施例3 5】 相對於實施例34,太昝& / , 土 α… 本實施例中所製成的LED元件係 如下述般地改變活性屏 印7 ’其他則與其相同。 _______ ___ _ 筇 136頁 本紙队 υ ❿ —---------------------------- n m If n n I n !. 1 --- - n n T - n ϋ <1- I t 0¾--3 ^ {請先閱讀背面之注意事項再填寫,各頁) Μ·"部智";財Α局員工消费合作社印製 A8 4371 03 ?s8 ____ D8____ 六、申請專利範圍 (活性層7) 其次,成長出一獏厚為250埃、由未掺雜質之GaN 所形成的障壁層’接著將溫度設為800度C’並使用TMG ' T Ml、及氨氣、據以成長出一厚度為30埃、由未摻雜質之 InQ.3Ga〇 ;?N所形成的井層=之後,再以障壁+丼+障壁+ 井+ 障壁的順序來相互堆積成7層的障壁層及6層的 井層,據以成長出一由膜厚為1 93 0埃之多重量子井構造 所構成的活性層7。 據此所獲彳寸的LED元件在順向電塾20mA時,係顯示 470nm的純青色光,同時具有與實施例34所示之相同效 果》 【實施例3 6】 相對於實施例34,本實施例中所製成的LED元件係 如下述般地改變活性層7,其他則與其相同。 (活性層7) 其次’成長出一膜厚為25〇埃' 由未摻雜質之GaN 所形成的障壁層,接著將溫度設為8〇〇度c,並使用TMg、 TMI、及氨氣、據以成長出一厚度為3〇埃' 由未摻雜質之 InuGauN所形成的井層。之後,再以障壁+丼+障壁+ 井+…·+障壁的順序來相互堆積成6層的障壁層及5層的 井層,據以成長出一由膜厚為165〇埃之多重量子井構造 所構成的活性層7。 第137頁 適用十㈣國宋標率(( 210X 297^^7一~ -------------- 4371 as, 1T Α8 Β8 C8 D8 ^ 3 71 〇 3 .—- κ, patent application scope. After the shaft engraving, the V-shaped contact surface of the uppermost p-side contact layer is further formed with a thickness of 200 angstroms, a translucent p-electrode 10 containing Ni and Au, and a weld is formed on the p-electrode 10 The thickness of the electrode is 0, and the thickness is izm. The P 塾 electrode formed by Au is 1. In addition, an n-electrode 12 'containing W and A 丨 is formed on the surface of the n-side contact layer 4 exposed by the notch to constitute ~ an LED element. When the forward voltage of the LED element is 20 mA, it displays pure green light at 520 nm, and its V f is only 3.5 V. Compared to the conventional multi-quantum-well LED element, its Vf is reduced by 1.0 V, and the output is increased. 2 times more. Therefore, as long as it is 10 mA, the characteristics similar to those of the conventional LED element can be obtained. In addition, when the voltage on each of the electrodes on the η layer and the p layer was slowly applied in the reverse direction to measure the electrostatic withstand voltage of the LED element obtained as described above, the result was 1.5 times better than conventional. In addition, as far as the structure of the conventional LED element is concerned, it can also be sequentially formed on a first buffer layer formed of GaM—a second buffer layer formed of an undoped substance, N-side contact layer formed of GaN, an active layer formed of the same multiple quantum well structure as in Example 12, a single A10iGa09N layer connected to Mg, and a GaN earned from Mg The p-side contact layer formed. [Example 3 5] Compared with Example 34, Taiji & / α ... The LED element manufactured in this example is the same as the active screen 7 ′ except that the active screen 7 is changed as follows. _______ ___ _ 页 Page 136 paper team υ ❿ ------------------------------ nm If nn I n!. 1 --- -nn T-n ϋ < 1- I t 0¾--3 ^ {Please read the precautions on the back before filling in each page) Μ · " 部 智 " Printed by AA Employee Consumption Cooperative, A8 4371 03? S8 ____ D8____ VI. Patent application scope (active layer 7) Secondly, grow a barrier layer of 250 angstroms thick and made of undoped GaN. Then set the temperature to 800 ° C and use TMG 'T Ml and ammonia gas, according to which a thickness of 30 Angstroms and an undoped InQ.3Ga〇;? N formed well layer =, and then the barrier + 丼 + barrier + well + barrier In this order, 7 barrier layers and 6 well layers are stacked on top of each other to grow an active layer 7 composed of a multiple quantum well structure with a thickness of 1,930 angstroms. According to the obtained LED device, when it is 20 mA forward, it displays pure cyan light of 470 nm and has the same effect as that shown in Example 34. [Example 3 6] Compared with Example 34, this The LED element manufactured in the example is changed in the active layer 7 as described below, and the others are the same. (Active layer 7) Next, 'grow a barrier layer with a thickness of 25 Angstroms' formed of undoped GaN, and then set the temperature to 800 ° C, using TMg, TMI, and ammonia According to this, a well layer formed by undoped InuGauN with a thickness of 30 angstroms is grown. After that, 6 barrier layers and 5 well layers were stacked on each other in the order of barrier wall + 丼 + barrier wall + well + ... · + barrier wall, thereby growing a multiple quantum well with a film thickness of 1650 angstroms. The active layer 7 is formed. Page 137 Applicable to the standard rate of the Song Dynasty ((210X 297 ^^ 7 一 ~ -------------- 4371 as

〇 BS C8 '---〜__ D8 六' 申請專利範圍 據此所獲得的LED元件在順向電壓20mA時,係顯示 nm的純青色光’同時具有與實施例34所示之相同效 果。 " 【實施例3 7】 相對於實施例3 4 ’本實施例中所製成的LED元件係 如下述般地改變活性層7,其他則與其相同。 (活性層7) 其次,成長出一膜厚為250埃、由未摻雜質之GaN 所形成的障壁層,接著將溫度設為8 〇〇度c,並使用TMG、 ΤΜί、及氨氣、據以成長出一厚度為30埃、由未摻雜質之 InmGa〇.65N所形成的井層。之後,再以障壁+井十障壁 τ井+…+障壁的順序來相互堆積成7層的障壁層及6層 的井層,據以成長出一由膜厚為1 930埃之多重量子井構 造所構成的活性層7。 據此所獲得的LED元件在順向電壓20mA時,係顯示 5OOnm的音綠色光,同時具有與實施例34所示之相同效 果。 【實施例3 8】 相對於實施例3 4,本實施例中所製成的LED元件係 如下述般地改變活性層7,其他則與其相同。 第138頁 --------_裳-------訂-------球 (請先閱讀背面之注意事項再填寫支頁) , ->1··^. ·., „ ------------- — 3ο〇 BS C8 '--- ~ __ D8 Six' Patent Application Scope The LED element thus obtained exhibits a pure cyan light of nm at a forward voltage of 20 mA and has the same effect as that shown in Example 34. [Example 3 7] Compared with Example 3 4 ', the LED element manufactured in this example was changed in the active layer 7 as described below, and the others were the same. (Active layer 7) Next, a barrier layer of 250 angstroms thick and made of undoped GaN was grown, and the temperature was set to 800 ° C, and TMG, Τί, and ammonia gas were used. Based on this, a well layer with a thickness of 30 angstroms and formed by undoped InmGa 0.65N is grown. After that, 7 barrier walls and 6 well layers were stacked in the order of barrier wall + well 10 barrier wall τ well + ... + barrier wall, thereby growing a multiple quantum well structure with a film thickness of 1 930 angstroms. Constituted active layer 7. The LED element thus obtained exhibited a tone-green light of 500 nm at a forward voltage of 20 mA, and had the same effect as that shown in Example 34. [Embodiment 3 8] Compared with Embodiment 34, the LED element manufactured in this embodiment changes the active layer 7 as described below, and the others are the same. Page 138 --------_ Shang ------- Order ------- Ball (Please read the notes on the back before filling in the support page),-> 1 · ^ .., „------------- — 3ο

ABCD 經濟祁智慧时走场Μ工;«骨合作社印製 六、申請專利範園 (活性層7) 其次,成長出一摸厚為250埃' 由未捧雜質之GaN 所形成的障壁層’接著將溫度設為8 00度C,並使用TMG、 TMI、及氨氣、據以成長出一厚度為30埃、由未摻雜質之 In0.35GaQ.65N所形成的井層。之後’再以障壁十丼+障壁 +井+ ..·· +障壁的順序來相互堆積成4層的障壁層及3層 的井層,據以成長出一由膜厚為1090埃之多重量子井構 造所構成的活性層7。 據此所獲得的LED元件在順向電壓20mA時,係顯示 50Onm的音綠色光,同時具有與實施例34所示之相同效 果。 【實施例39】 相對於實施例34 ’本實施例中所製成的[ED元件係 未成長出η側第2多層膜層3 0 6,其他則與其相同c ^據此所獲得之LED元件的元件特性及發光輸出係較 實施例34所示者微低,但,其靜電耐譽係約與實施例^ 一樣好。 【實施例4 〇 ] 相對於實施例34,本實施例中所製成的LED元件係 如下述般地改變p側多層膜覆蓋層1〇8,其他則與其相 同。 第139頁 本线张尺度適用ϋ (請先閱讀背面之;i意Ϋ項再填寫本頁} -裝· 訂. 經濟部智慧財產局員工消費合作社印f ^371 03 A/ ---------_B7______ 五、發明說明() (P側單—膜覆蓋層18) 在溫度為1050度C之下,使用TMG、TMA、氨氣、 ^及CpzMg,據以成長出一厚度為300埃、由摻有Mg雜 質濃度為lx l〇2〇/cm3之p型ai〇 [6〇a{) 84n所形成的p側單 嘴覆蓋層1 8。 本實施例中所獲得的LED元件中所長成的覆蓋層雖 不 玟 疋超晶格’而是單一的層,但藉由與其他層的組合,其 離比實施例2 7所示者稍微差’但其亦能大致獲致相同效 取。此外,相較於多層膜層,單一層之製程係較為簡單。 【實施例4 1】 相對於實施例34,本實施例中所製成的LED元件係 如下述般地改變n側第i多層膜覆蓋層3〇5之各膜厚,其 他則與其相同。 (η側多層膜層305) 其认,停止供應矽烷氣體,溫度係同樣設為丨〇 5 〇度 使用TMG、氣氣,據以成長出—厚度為3〇〇〇埃、由 未摻雜質之GaN所形成的下層305a,接著,在同樣溫度 下’並追加供應麥境氣體,以長出—厚度為3〇〇埃、由挣 有Si濃度為UxlWcm3之GaN所形成的中間層3〇5b, 接著,只停止供應矽烷氣體,並在同樣溫度下,成長出一 厚度為50埃、由未摻雜質之GaN所形成的上層3〇5^據 此,而形成-總膜厚為3350埃、丨3層所構成的n側第里ABCD Economics and Wisdom in the Field of Wisdom; «Printed by Bone Cooperatives 6. Patent Application Park (Active Layer 7) Secondly, a thickness of 250 Angstroms' is grown. 'Barrier layer formed by GaN with unsupported impurities' followed by The temperature was set to 800 ° C, and TMG, TMI, and ammonia gas were used to grow a well layer formed of undoped In0.35GaQ.65N with a thickness of 30 angstroms. After that, in the order of the barriers ten barriers + barriers + wells +... + Barriers, 4 barrier layers and 3 well layers were stacked on each other, and a multiple quantum with a film thickness of 1090 angstroms was grown. Active structure 7 composed of well structure. The LED element thus obtained exhibited a tone-green light of 50 nm at a forward voltage of 20 mA, and had the same effect as that shown in Example 34. [Embodiment 39] Compared to Embodiment 34, [the ED element produced in this embodiment has not grown the η-side second multilayer film 3 306, and the other is the same c ^ The LED element obtained accordingly The device characteristics and light-emitting output are slightly lower than those shown in Example 34, but the electrostatic resistance is about as good as that in Example ^. [Example 4] Compared with Example 34, the LED element manufactured in this example changed the p-side multilayer film cover layer 108 as described below, and the others were the same. Page 139 Applicable scales of this line (please read the first; i) and then fill out this page}-binding and ordering. Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs f ^ 371 03 A / ----- ----_ B7______ 5. Description of the invention () (P side single-film cover layer 18) Under the temperature of 1050 degrees C, using TMG, TMA, ammonia, ^ and CpzMg, a thickness of 300 is grown A p-side single-nozzle cover layer 18 formed of p-type aio [6oa {) 84n doped with Mg impurity concentration of 1 × 10 2 / cm3. Although the cover layer formed in the LED element obtained in this embodiment is not a superlattice but a single layer, its combination with other layers is slightly worse than those shown in Examples 2 and 7. 'But it can also achieve roughly the same effect. In addition, compared to multiple layers, the manufacturing process for a single layer is simpler. [Example 4 1] Compared to Example 34, the LED element manufactured in this example changed the thickness of each of the n-th i-th multilayer film cover layers 305 in the following manner, and the others were the same. (η-side multilayer film 305) It is believed that the supply of silane gas is stopped, and the temperature is also set to 0,500 ° C. TMG and gas are used to grow out of it—thickness of 3,000 angstroms, from an undoped material The lower layer 305a formed by GaN, and then, at the same temperature, an additional supply of wheat gas was grown to grow-a thickness of 300 angstroms and an intermediate layer 3005b formed of GaN with a Si concentration of UxlWcm3. Then, only the supply of silane gas was stopped, and at the same temperature, an upper layer 305 having a thickness of 50 angstroms and formed of undoped GaN was grown. Based on this, a total film thickness of 3350 angstroms was formed. , 丨 3 layers on the n side

第 140T -裝-------訂------ 先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員Η消費合作社印¾ 4371〇3 A7 ________B7 _—. 五、發明說明() 多層膜層305。 據此所獲得之LED元件係大致具有與實施例34相等 的特性,其係具有良好的效果。 【實施例42】 相對於實施例4 1,本實施例中所製成的LED元件係 如下述般地改變n側第i多層膜覆蓋層305,其他則與實 施例4 1相同。 (η側多層膜層3〇5) 亦即,下層305a係為一厚度為3000埃、由未摻雜質 之AluGauN所形成,中間層3〇5b係為一厚度為3〇〇埃、 由摻有Si濃度為4 5χ 1〇u/cm3之lGa〇 9n所形成,此 外上層305c係為一厚度為50埃、由未摻雜質之 Al〇. i Gao.所形成。據此所獲得之lED元件係大致具有 與實施例41相等的特性,其係具有良好的效果》 【比較例1 ] 相對於實施例34,本比較例中所製成的LED元件係 未形成有用以構成η侧第1多層膜覆蓋層3 05之由未摻雜 質之GaN所形成的下層305a,其他則與其相同。 據此所獲得之LED元件相較於實施例34,其靜電耐 壓係明顯下降,且有關漏電流與Vf之特性亦呈無法完全 滿足的值。 第141頁 ^一-------- -I ---- ----I I . I I i ί I I 訂- _ιι!ιλ' I (锖先閱讀背面之注意事項再填寫本頁) 4371 03 A7 經濟部智慧財產局員工消費合作社印製 R7 五、發明說明() 【比較例2】 相對於實施例34,本比較例中所製成的LED元件係 未形成有用以構成n側第1多層糢覆蓋層3〇5之由摻Si 雜質之GaN所形成的中間層3〇5b ’其他則與其相同。 據此所獲得之LED元件相較於實施例34,其發光輸 出與靜電耐壓係大幅下降,且其他的特性亦呈無法完全滿 足的值。 【比較例3】 相對於實施例34,本比較例中所製成的LED元件係 未形成有用以構成n側第i多層膜覆蓋層3〇5之由未摻雜 質之GaN所形成的上層3〇5c ’其他則與其相同。 據此所獲得之LED元件相較於實施例34,其漏電流 係增加’且其他的特性亦呈無法完全滿足的值。 【實施例43】 實施例43係為實施形態6所相關連的實施例。 (基板1) 先將一由藍石英(c面)所形成的基板1放置在一 MOVPE的反應容器中,並通以氫氣,且使該基板之溫度 上升到1 0 5 0度C,據以進行基板之潔淨處理。 _____ 第 142 頁 不紙 丨: (請先閱讀背面之注意事項再填寫本頁) --------訂------- - 71 0 3 a: _____ _B7__ 五、發明說明() (緩衝層2) 接著’使溫度下降到510度C ’並使用加氫氣的載子 氣體、加氨的原料氣體、及TMG(三甲鎵),以在基板丨上 成長出一膜厚為200埃、由GaN所形成的緩衝層^又, 依基板之種類、以及成長方式之不同,上述以低溫所長成 之緩衝層2係可被省略。 (未摻雜質之GaN層3) 在成長出該緩衝層2後’則只停止供應TMG,並使溫 度回升到1 0 5 0度C。當溫度到達1 0 5 〇度c時,則同樣使 用加有TMG的原料氣體、及氨氣,以成長出一由未摻雜 質之GaN所形成、膜厚為lgm的未摻雜質GaN層3 (η側接觸層4) 其次’將溫度维持在1050度C,並同樣使用加有TMG 的原料氣體、氨氣、以及加有矽蚝氣體之雜質氣體,以長 成膜厚為3/zm、由挣有Si濃度為3xl〇19/cm3之GaN所 形成的η側接觸層。 (未#雜質之GaN層5) 其次,停止供應矽烷氣體,溫度係同樣設為1050度 C ’據以成長出一厚度為100埃之未摻雜質的GaN層。 第143頁 (請先閱讀背面之注意事項再填寫本頁) -裝 一5, ·111111. 經濟部智慧財產局員工消費合作社印製 V 〇3 A7 B7 五、發明說明() (η塑多層膜層6) 其次’將溫度設為800度c,並使用TMG、ΤΜΙ '及 氨氣、據以成長出一厚度為25埃、由未摻雜質之 In0.〇3Ga〇.97N所形成的第2氮化物半導體膜,接著,使溫 度上升,並在其上成長出一膜厚為25埃、由未摻雜質之 GaN所形成的第1氮化物半導體膜;之後,,反覆操作, 並以第2 +第1的順序相互堆積各1〇層,以形成一具有超 晶格構造' 膜厚為5 00埃的η型多層膜層。 (活性層7) 其次,成長出一膜厚為200埃、由未摻雜質之GaN 所形成的障壁層’接著將溫度設為800度C,並使用TMG、 TMI、及氨氣、據以成長出一厚度為30埃、由未摻雜質之 In〇,4Ga〇.6N所形成的井層。之後,再以障壁+井+障壁+ 井+ ·...+障壁的順序來相互堆積成5層的障壁層及4層的 井層’據以成長出一由膜厚為1120埃之多重量子井構造 所構成的活性層7。 經濟部智韃財產局員工消費合作社印製 ------------裝--------1Τ_ <請先閱讀背面之注意事項再填寫本頁) (P型多層膜層8) 其次,使用TMG、TMA、氨氣、以及Cp2Mg,據以成 長出一厚度為40埃、由摻有Mg雜質濃度為5xl0i9/cm3 之P型Al〇.iGa〇.9N所形成的第3氮化物半導體膜,接著’ 停止使用TMA、及CpaMg,據以成長出一厚度為25埃、 由未摻雜質之GaN所形成的第4氮化物半導體膜。之後, _______ .人屮國 g 家準(C'NS)A1 梘格 Ui(jx297 公尨) ™ ~ 一 蛵濟邹智慧財產局員工消費合作钍印製 ^ 437103 Λ7 _____ Β7 五、發明說明() 反覆操作,並以第3+第4的順序相互堆積而形成—具有 各4層,以形成一具超晶格構造、膜厚為200埃的P型多 層膜層8。 (p侧接觸層9) 接著,將溫度設為1050度C,並使用TMG、氨氣、 以及Cp2Mg,據以成長出一厚度為700埃、由摻有雜 質濃度為i x 1 〇20/cm3之P型GaN所形成的p側接觸層9。 在反應完成後’則使溫度了降到室溫’並在氮氣環境 中將晶圓置於反應容器中’而在700度C下進行潔淨處 理,進而使P螌層之電阻降低。 在完成潔淨處理後’則自反應容器十將晶圓取出,並 在最上層的P侧接觸層9表面上形成一規定形狀的光罩圖 樣,接著於RIE(反應性離子蝕刻)裝置中’自P侧接觸層 側進行蝕刻,進而使第1圖所示之n侧接觸層4的表面露 出β 在蝕刻之後,再約於最上層的ρ側接觸層的全面上形 成一厚度為200埃、含Ni及Au的透光性Ρ電極1〇 ;以 及在該ρ電極10上形成一焊接用、厚度為由Au 所形成的P墊電極1 1 ^此外,藉由蝕刻所露出的η側接觸 層4的表面係形成有一含有w及Α1的η電極12,據以構 成一LED元件。 LED元件在順向電壓20mA時,其係顯示52〇nm的純 綠色光’且其Vf係只有3 5V,相較於習知多量子井構造 第145頁 K.JV. — — — — — —--- 丨 I . -----J — 訂·--丨 II I--% (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印裝 4371 03 A7 _ B7__ 五、發明說明() 的LED元件’其vf係降低0.5 V,而輸出係提高2倍以上。 因此,只要以I 0mA即可獲得與習知LED元件大致相同的 特性。此外,相較於習知LED元件’據此所獲得的元件之 靜電耐壓係約為習知的1 ·2倍以上。 此外,就習知LED元件的構造而言,其亦可在一由 GaN所形成的第1緩衝層上依序形成一由未摻雜質之GaN 所形成的第2緩衝層、一由摻入Si之GaN所形成的n側 接觸層、一由與實施例12相同之多量子井構造所形成的 活性層、一由摻入Mg之單一 Al〇. | Ga〇.9N層、以及一由摻 入Mg之GaN所形成的p側接觸層。 【實施例44】 相對於實施例43而言’本實施例所製成的LED元件 係在成長η型多層膜層6時,只有第1氮化物半導體膜係 由摻入Si、濃度為lxl 〇ls/cm3的GaN所形成,其他則與 實施例43相同’據此所獲得的LED元件係具有約與實施 例43相同等的良好元件特性。 【實施例45】 相對於實施例43而言,本實施例所製成的LED元件 係在成長η侧多層膜層6時,第2氛化物半導體膜係由摻 入h、濃度為1 10l*/cm3的In〇 〇3Ga〇 ”所形成:而第1氮 化物半導體膜係由摻入Si、濃度為5xl〇u/cm3的GaN所 形成,除此之外均與實施例43相同。據此所獲得的咖 _ 第U6肓 本紙诋尺度適用中 ---------Hi --------訂----------破 (請先閱讀背面之注意事項再填寫本頁) 4371 ϋ3 Λ7 Β7 經濟部智慧財產局員工消費合作社印製 五、發明說明() 元件係在20mA下,其vf係為3.4V,而輸出相較於習知 LED元件係可提高i 5倍以上。此外,其靜電耐壓係與實 施例43相同。 【實施例46】 相對於實施例43而言,本實施例所製成之LED元件 係在成長p侧多層膜層8時’係成長出一摻入有漢度 lxl〇19/cm3的Mg、由p型GaN層所形成的第4氮化物半 導體層,除此之外均與實施例43相同。據此,則可獲致 大致與實施例43相同特性的LED元件。 【實施例47】 相對於實施例43而言,本實施例所製成之LED元件 係在成長P側多層膜層8時’使而第3氛化物半導體膜係 為-膜厚為25埃、且由未摻雜質之A丨"sGa"5N所形成 者,而第4氮化物半導體膜係為一膜厚為25埃、且由未 摻雜質之GaN層所形成者;同時以其各2層相互堆積而成 -總膜厚A 1〇〇埃的層,除此之外均相同。據此,則可獲 致大致與實施例43相同特性的LED元件。 【實施例4 8】 相對於實施例43而言,本實施例所製成之LED元件 係將該未掺雜質之GaN層5變成-多層膜層,並將下列各 層以下述方式來進行變更,其他則與實施例43相同。 _______ 第U7肓 本紙技 Λ:]/丨丨屮 . .1, -ff~~({ \Γ〇\"' |Τ^,, ----— - —------- ----- —II-----11 I I I -----I I I I {請先閱讀背面之注意事項再填寫本頁) 4371 ϋ 〇 Α7 Β7 五、發明說明() (η側接觸層4) 其次,將溫度維持在Ϊ 050度C,並同樣使用加有 TMG的原料氣體、氨氣、以及加有矽烷氣體之雜質氣體, 以長成一膜厚為2·25μπ1、由摻有Si濃度為6xl〇u/cm3 之GaN所形成的^側接觸層。 (多層膜層) 其次,停止供應矽烷氣體,溫度係同樣設為1 〇5〇度 C ’使用TMG、氨氣,據以成長出一厚度為2〇〇〇埃、由 未接雜質之GaN所形成的下層305a,接著,在同樣溫度 下,並追加供應矽烷氣體,以長出一厚度為3〇〇埃、由摻 有Si濃度為6xl〇18/cm··之GaN所形成的中間層3〇5b,接 著’只停止供應矽烷氣體,並在同樣溫度下,成長出一厚 度為5〇埃、由未摻雜質之GaN所形成的上層305c。據此, 而形成一總膜厚為2350埃、由3層所構成的多層膜層a (n型多層膜層6) 其次,在同樣的溫度下,成長出一膜厚為4〇埃、由未 接雜質之GaN所形成的第1氮化物半導體膜:之後,再將 溫度設為800度C,並使用TMG、TMI、及氨氣、據以成 長出一厚度為20埃、由未摻雜質之in〇.〇2Ga〇.98N所形成 的第2氮化物半導體膜。之後,反覆操作,並以第1+第 2的順序相互堆積各廣’且最後係成長出一膜厚為 埃、由未摻雜質之GaN所形成的第1氮化物半導體膜1 -------- 〜 第U8頁 度制丨 t a 1¾ tm- Tcks)Aum (210 χ — ---一 (請先閱讀背面之注意事項再填寫本頁) -1 --------' I------- 羥濟部智慧財產局員工消費合作钍印製 經濟部智慧財產局員工消費合作社印製 A37^ 03 A7 ______ 五、發明說明() 之超晶格構造、據以成長出一總膜厚為64〇埃的n型多層 膜層6。 (P型多層膜層8) 其次,將溫度設為1 050度C,並使用TMG、TMA、氨 氣、以及Cp2Mg,據以成長出一厚度為40埃、由摻有Mg 雜質濃度為5xl019/cm3之p型Al0.2Ga〇.sN所形成的第3 氮化物半導體膜,接著,將溫度設為800度C,並使用 TMG、TMI、氨氣、以及Cp2Mg’據以成長出一厚度為25 埃、由摻有Mg雜質漢度為5xlOl9/cm3之ρ型Al〇.〇2Ga〇.〇98N 所形成的第4氮化物半導體膜。之後,反覆操作,並以第 3 +第4的順序相互堆積而形成一具有各5層,且最後係 成長出一膜厚為40埃、由未掺雜質之GaN所形成的第3 氣化物半導體膜之超晶格構造 '據以形成一總膜厚為 埃的p型多層膜覆蓋層。 據此所獲得的LED元件係大致與實施例43之發光輸 出及Vf相同,此外’若從n層及p層上的各電極反向地 慢慢加電壓,來測定上述所得之LED元件的靜電耐壓時, 其結果係比習知還们.5倍’同時其靜電对壓係比實施例 43還好。 雖然於上述實施例中’係利用LED元件之氛化物半 導體發光元件來作說明,但,本發明並不只限於led元 件’其係可適用於雷射二極體元件等的其他發光元件。 再者’本發明本發明並不只限於發光元件,其亦可 第 -------------^--------訂---------線 I (請先閱讀背面之注t事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 4371 03 A7 __B7_ 五、發明說明() 適用於由氮化物半導體所構成之太陽電池、光感測器等的 受光元件,或是電晶體、高功率元件等的電子元件等。 综上所述,對於氮化物半導體元件,特別是對於氮 化物半導體發光元件而言,本發明係可以較低的電流來獲 得與習知LED元件相同或以上的輸出,同時亦可提升發光 輸出。 此外,由上述可知,本發明係可提供一使靜電耐壓 提高,同時可使信賴性提升的氮化物半導體元件,並且可 使適用的應用產品範圍擴大。 另外,本發明並不只限適用於發光元件,其亦可適 用於利用氮化物半導體所形成的所有電子元件。 第150貰 --------------------訂---------線-- (請先閱讀背面之注意事項再填寫本頁)Article 140T-Install ------- Order ------ Please read the notes on the back before filling this page) Member of the Intellectual Property Bureau of the Ministry of Economic Affairs 印 Consumer Cooperative Press ¾ 4371〇3 A7 ________B7 _--. V. Invention Description () Multi-layer film 305. The LED element thus obtained had substantially the same characteristics as those of Example 34, and it had a good effect. [Embodiment 42] Compared with Embodiment 41, the LED element manufactured in this embodiment changes the n-th i-th multilayer film cover layer 305 as follows, and the other parts are the same as those in Embodiment 41. (η-side multilayer film layer 305) That is, the lower layer 305a is a layer with a thickness of 3000 angstroms and is formed of undoped AluGauN, and the intermediate layer 305b is a layer with a thickness of 300 angstroms and is There is 1GaO9n with a Si concentration of 4 5χ 10u / cm3. In addition, the upper layer 305c is formed by an undoped AlO.i Gao. With a thickness of 50 angstroms. The LED element system thus obtained has approximately the same characteristics as in Example 41, and it has a good effect. [Comparative Example 1] Compared to Example 34, the LED element system produced in this comparative example is not useful. The lower layer 305a made of undoped GaN which constitutes the first multilayer film cover layer 305 on the η side is the same as the others. Compared with Example 34, the obtained LED element has a significantly lower electrostatic withstand voltage, and the characteristics of the leakage current and Vf also show unsatisfactory values. Page 141 ^ 一 -------- -I ---- ---- II. II i ί II Order-_ιι! Ιλ 'I (锖 Please read the precautions on the back before filling this page) 4371 03 A7 Printed by the Consumer Property Cooperative of the Intellectual Property Bureau of the Ministry of Economics R7. 5. Description of the invention () [Comparative Example 2] Compared to Example 34, the LED elements made in this comparative example are not formed to form the n-side first The intermediate layer 3005b of the multilayer die cover layer 305 formed of Si-doped GaN is otherwise the same. Compared with Example 34, the LED element obtained in this way had a significantly lower light-emitting output and electrostatic withstand voltage, and other characteristics also showed values that could not be fully satisfied. [Comparative Example 3] Compared to Example 34, the LED element fabricated in this comparative example did not form an upper layer made of undoped GaN to constitute the n-th i-th multilayer film cover layer 3005. 305c 'Others are the same. Compared with Example 34, the LED element obtained according to this has an increased leakage current and other characteristics have values that cannot be fully satisfied. [Embodiment 43] Embodiment 43 is an embodiment related to Embodiment 6. (Substrate 1) First, a substrate 1 formed of blue quartz (c-plane) is placed in a MOVPE reaction vessel, and hydrogen gas is passed through, and the temperature of the substrate is raised to 105 ° C. Clean the substrate. _____ Page 142 is not paper 丨: (Please read the precautions on the back before filling this page) -------- Order --------71 0 3 a: _____ _B7__ V. Description of the invention ( ) (Buffer layer 2) Then 'lower the temperature to 510 ° C' and use a hydrogen-added carrier gas, ammonia-added source gas, and TMG (trimethylgallium) to grow a film thickness of 200 on the substrate The buffer layer 2 made of GaN may be omitted depending on the type of substrate and the growth method. (Undoped GaN layer 3) After growing the buffer layer 2 ', only the supply of TMG is stopped, and the temperature is returned to 105 ° C. When the temperature reaches 1050 ° C, the raw material gas added with TMG and ammonia gas are also used to grow an undoped GaN layer formed of undoped GaN and having a film thickness of lgm. 3 (η-side contact layer 4) Secondly, maintain the temperature at 1050 ° C, and also use TMG as raw material gas, ammonia gas, and impurity gas with silicon oyster gas to grow to a film thickness of 3 / zm An n-side contact layer formed of GaN having a Si concentration of 3 × 10 19 / cm 3. (Un-doped GaN layer 5) Next, the supply of silane gas is stopped, and the temperature is also set to 1050 degrees C 'to grow an undoped GaN layer with a thickness of 100 angstroms. Page 143 (Please read the precautions on the back before filling out this page)-Install a 5, · 111111. Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 〇3 A7 B7 V. Description of the invention () (η-plastic multilayer film Layer 6) Next, 'set the temperature to 800 ° C, and use TMG, TIM' and ammonia gas to grow a layer of 25 angstroms thick, formed of undoped In0.〇3Ga〇.97N 2 nitride semiconductor film, then, the temperature is increased, and a first nitride semiconductor film formed of undoped GaN with a thickness of 25 angstroms is grown thereon; In the 2nd + 1st order, 10 layers are stacked on each other to form an n-type multilayer film having a superlattice structure with a film thickness of 500 angstroms. (Active layer 7) Next, a 200 angstrom barrier layer formed of undoped GaN is grown. Then, the temperature is set to 800 ° C, and TMG, TMI, and ammonia are used. A well layer with a thickness of 30 angstroms and formed by undoped In0,4Ga0.6N was grown. Then, in the order of barrier wall + well + barrier wall + well + · ... + barrier wall, 5 layers of barrier layers and 4 layers of well layers were stacked on each other to grow a multiple quantum with a film thickness of 1120 angstroms. Active structure 7 composed of well structure. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs ------------ Installation -------- 1T_ < Please read the precautions on the back before filling this page) (Type P Multi-layer film layer 8) Secondly, using TMG, TMA, ammonia, and Cp2Mg, a thickness of 40 angstroms was formed, and the P-type AlO.iGa 0.9.9N doped with Mg impurity concentration 5x10i9 / cm3 Then, the third nitride semiconductor film was stopped using TMA and CpaMg, and a fourth nitride semiconductor film formed of undoped GaN was grown to a thickness of 25 angstroms. After that, _______. People's Republic of China Family Standard (C'NS) A1 Ui (jx297 public) ™ ~ Printed by the Consumer Cooperation of Employees and Intellectual Property Bureau ^ 437103 Λ7 _____ Β7 V. Description of Invention () Repeatedly operate and form each other in the order of 3 + 4-having 4 layers each to form a P-type multilayer film 8 with a superlattice structure and a film thickness of 200 angstroms. (P-side contact layer 9) Next, the temperature was set to 1050 ° C, and TMG, ammonia, and Cp2Mg were used to grow a thickness of 700 angstroms and an impurity concentration of ix 1 020 / cm3. A p-side contact layer 9 formed of P-type GaN. After completion of the reaction, 'the temperature is lowered to room temperature' and the wafer is placed in a reaction container in a nitrogen atmosphere ', and the process is cleaned at 700 ° C, thereby reducing the resistance of the P 螌 layer. After the cleaning process is completed, the wafer is taken out from the reaction container 10, and a mask pattern of a predetermined shape is formed on the surface of the uppermost P-side contact layer 9, and then in a RIE (reactive ion etching) device. The P-side contact layer is etched to further expose β on the surface of the n-side contact layer 4 shown in FIG. 1. After the etching, a thickness of 200 angstroms, including A light-transmitting P electrode 10 of Ni and Au; and a p-pad electrode 1 1 formed of Au for welding and having a thickness of Au formed on the p-electrode 10 ^ In addition, the η-side contact layer 4 exposed by etching An n-electrode 12 containing w and A1 is formed on the surface of the surface to form an LED element. At a forward voltage of 20mA, the LED element displays pure green light at 52nm and its Vf is only 35V, compared to the conventional multiple quantum well structure. Page 145 K.JV. — — — — — —- -丨 I. ----- J — Order ·-丨 II I-% (Please read the notes on the back before filling this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 4371 03 A7 _ B7__ V. Description of the invention The LED element of () has a vf reduction of 0.5 V and an output increase of more than 2 times. Therefore, as long as I 0 mA, almost the same characteristics as those of the conventional LED element can be obtained. In addition, the electrostatic withstand voltage of the element obtained based on the conventional LED element 'is about 1.2 times or more than that of the conventional LED element. In addition, as far as the structure of the conventional LED element is concerned, it can also sequentially form a first buffer layer made of GaN, a second buffer layer made of undoped GaN, and a An n-side contact layer formed of GaN of Si, an active layer formed of the same multiple quantum well structure as in Example 12, a single AlO. | Ga〇.9N layer doped with Mg, and a doped layer P-side contact layer formed of GaN and Mg. [Example 44] Compared with Example 43, when the LED element made in this example was grown with an η-type multilayer film 6, only the first nitride semiconductor film was made of Si with a concentration of lxl. 1 s / cm3 is formed of GaN, and the other parts are the same as those of Example 43. The LED element thus obtained has approximately the same excellent device characteristics as those of Example 43. [Example 45] Compared with Example 43, when the LED element made in this example was grown with the η-side multilayer film layer 6, the second semiconductor semiconductor film was doped with h at a concentration of 110 l * / cm3 of In〇03Ga〇 ": The first nitride semiconductor film is formed by doping Si with a concentration of 5x10u / cm3, except that it is the same as Example 43. According to this The obtained coffee _ No. U6 肓 this paper 诋 standard is applicable --------- Hi -------- order ---------- broken (please read the note on the back first Please fill in this page again) 4371 ϋ3 Λ7 Β7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the invention () The component is under 20mA, and its vf is 3.4V. Compared with the conventional LED components, the output is Increase i by 5 times or more. In addition, the electrostatic withstand voltage is the same as that of Example 43. [Example 46] Compared with Example 43, the LED element made in this example has a multi-layered p-layer 8 on the p-side. The "Ti" system is the same as that of Example 43 except that a fourth nitride semiconductor layer doped with Mg of Hanx lx1019 / cm3 and formed of a p-type GaN layer is used. An LED element having substantially the same characteristics as in Example 43 was obtained. [Example 47] Compared with Example 43, the LED element made in this example was grown when the P-side multilayer film layer 8 was grown and the third atmosphere was formed. The compound semiconductor film is a film with a thickness of 25 angstroms and formed of undoped A " sGa " 5N, and the fourth nitride semiconductor film is a film with a thickness of 25 angstroms and is made of undoped An impurity GaN layer is formed at the same time, and each of the two layers is stacked on top of each other-a layer with a total film thickness A of 100 angstroms, other than that is the same. Based on this, it can be obtained substantially the same as Example 43 Characteristics of the LED element. [Example 4 8] Compared to Example 43, the LED element made in this example is to change the undoped GaN layer 5 into a multi-layer film layer, and the following layers are described as follows The method is changed, and the others are the same as those in Embodiment 43. _______ U7 肓 paper technique Λ:] / 丨 丨 屮. .1, -ff ~~ ({\ Γ〇 \ " '| Τ ^ ,,- ------------ ----- —II ----- 11 III ----- IIII {Please read the notes on the back before filling this page) 4371 ϋ 〇Α7 Β7 V. Description of the invention () (η-side contact layer 4) Next, the temperature was maintained at Ϊ 050 ° C, and a source gas with TMG, ammonia gas, and an impurity gas with silane gas were also used to grow into a film thickness of 2.25 μπ1. A side contact layer formed of GaN doped with a Si concentration of 6 × 10u / cm3. (Multi-layer film layer) Secondly, stop supplying silane gas, and set the temperature to 1050 ° C. Using TMG and ammonia gas, a GaN layer with a thickness of 2000 angstroms and unconnected impurities is grown. The formed lower layer 305a is then additionally supplied with silane gas at the same temperature to grow an intermediate layer 3 having a thickness of 300 angstroms and doped with GaN having a Si concentration of 6 × 1018 / cm ·· 〇5b, and then 'only stop the supply of silane gas, and at the same temperature, grow an upper layer 305c with an undoped GaN thickness of 50 angstroms. Based on this, a multilayer film layer (n-type multilayer film layer 6) consisting of 3 layers with a total film thickness of 2350 angstroms was formed. Next, at the same temperature, a film thickness of 40 angstroms was grown. The first nitride semiconductor film formed of GaN without impurities: After that, the temperature is set to 800 ° C, and TMG, TMI, and ammonia gas are used to grow a thickness of 20 angstroms from the undoped The second nitride semiconductor film formed by indium 0.02 Ga 0.098 N. After that, the operation is repeated, and the first and second layers are stacked on each other in the order of 1 + 2, and finally a first nitride semiconductor film 1 made of undoped GaN is formed with a film thickness of Angstroms --- ----- ~ U8 page system 丨 ta 1¾ tm- Tcks) Aum (210 χ — --- One (Please read the precautions on the back before filling this page) -1 -------- 'I ------- Consumption cooperation of employees of the Intellectual Property Bureau of the Ministry of Hydrogenation 钍 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A37 ^ 03 A7 ______ V. Description of the invention () An n-type multilayer film 6 having a total film thickness of 64 Å is grown. (P-type multilayer film 8) Next, set the temperature to 1 050 ° C and use TMG, TMA, ammonia, and Cp2Mg. A third nitride semiconductor film is grown to a thickness of 40 angstroms and formed of p-type Al0.2Ga.sN doped with Mg impurity concentration 5xl019 / cm3. Next, the temperature is set to 800 ° C and used. Based on TMG, TMI, ammonia, and Cp2Mg ', a fourth nitride formed with a thickness of 25 angstroms and formed from a p-type Al.〇2Ga〇.〇98N doped with Mg impurity Han 5x1019 / cm3. Semiconductor film After that, the operation is repeated and stacked in the order of 3 + 4 to form a third gaseous semiconductor having 5 layers each, and finally growing to a thickness of 40 angstroms and formed of undoped GaN. The superlattice structure of the film 'is used to form a p-type multilayer film cover layer with a total film thickness of Angstrom. The LED element obtained based thereon is approximately the same as the light output and Vf of Example 43, and it is' if When the electrodes on the p-layer and the p-layer were slowly applied with voltage in the opposite direction to measure the electrostatic withstand voltage of the LED element obtained above, the result was more than conventional. At the same time, the electrostatic pressure-resistance ratio was 43 Although in the above-mentioned embodiment, "the semiconductor semiconductor light-emitting element using LED elements is described, the present invention is not limited to LED elements." It is applicable to other light-emitting elements such as laser diode elements. Moreover, the present invention is not limited to the light-emitting element, it can also be ------------- ^ -------- order --------- Line I (Please read the note on the back before filling out this page) Printed by the Intellectual Property Bureau Employee Consumer Cooperative of the Ministry of Economic Affairs 4371 03 A7 __B7_ V Explanation of the invention () Applicable to light-receiving elements such as solar cells and light sensors composed of nitride semiconductors, or electronic components such as transistors and high-power elements. In summary, for nitride semiconductor elements In particular, for a nitride semiconductor light-emitting element, the present invention can obtain the same or more output as a conventional LED element at a lower current, and at the same time, the light-emitting output can be improved. In addition, as can be seen from the above, the present invention can provide a nitride semiconductor device which can improve the electrostatic withstand voltage and at the same time improve the reliability, and can expand the range of applicable products. In addition, the present invention is not limited to a light-emitting device, and can be applied to all electronic devices formed using a nitride semiconductor. Article 150 贳 -------------------- Order --------- Line-(Please read the precautions on the back before filling this page)

Claims (1)

4371 03 第88103785號專利申請案;申請專利範圍中文修正本f年ι月修正 申請專利範圍 補充 經濟部智慧財產局員工消費合作社印製 1· 一種氮化物半導體元件,其係具有一活性層,其中該: 性層係介於一含有複數個氮化物半導體層之n側區域 及一含有複數個氮化物半導體層之p側區域之間’其特 徵在於: 該η側區域中至少有—個氬化物半導體層係為η側 多層膜層,而該η側多層膜層係由一含有Ιη之第1氣 化物半導體膜、及一組成係不同於該第1 I化物半導體 膜的第2氮化物半導體膜所堆積而成; 該第I氮化物半導體膜與第2氮化物半導體膜中至 少有一方的膜厚係在1 〇 〇埃以下。 2. 如申請專利範圍第1項所述之氮化物半導體元件,其中 上述之第1氮化物半導體膜係由InxGa!.xN(0&lt;x&lt;l)所構 成;而該第2氮化物半導體膜係由InyGauNCOSycl,y&lt;x) 所構成。 3. 如申請專利範圍第1項或第2項所述之氮化物半導體元 件’其+上述之第1氮化物半導體膜或第2氮化物半導 體膜中至少有一方的膜厚係不同於近接的第1氣化物 半導體膜或第2氬化物半導體膜之膜厚° 4. 如申請專利範圍第丨項或第2項所述之氮化物半導體元 件’其中上述之第1氣化物半導體膜或第2氣化物半導 體膜中至少有一方的ΙΠ族元素組成係不同於近接的第 .4 -ti' 本名· 有I 無申 更先 〜-C閲 讀 背 &amp; 實彳 是]1 U 之 注 意 事 翁 訂 線 第 151T 本紙張尺度適用中國國家標準(CNS)A4規格(2〗〇 X 297公慧〉 ------ d37l03 六、申請專利範圍 1氮化物半導體膜或第2氮化物半導體膜之同_ ΙΠ族 元素组成。 5. 如申請專利範圍第1項所述之氮化物半導體元件,其 中,該η側多層膜層係鄰接於活性層。 6. 如申請專利範圍第1項所述之氮化物半導體元件,其 中,該第I氮化物半導體膜與第2氮化物半導體膜係未 摻雜質* 7. 如申請專利範圍第1項所述之氮化物半導體元件,其 中,第t氮化物半導體膜或第2氮化物半導體膜中的任 一方係摻有η型雜質。 8. 如申請專利範圍第I項所述之氮化物半導體元件,其 中,第1氮化物半導體膜與第2氮化物半導體膜中係均 摻有η型雜質》 經濟部智慧財產局員Η消費合作社印製4371 03 Patent Application No. 88103785; Chinese Patent Application Scope Amendment Chinese Patent Application Facts Amended in F. The patent application scope is supplemented by the Intellectual Property Office of the Ministry of Economic Affairs, and printed by a consumer cooperative. 1. A nitride semiconductor device with an active layer, of which The sexual layer is between an n-side region containing a plurality of nitride semiconductor layers and a p-side region containing a plurality of nitride semiconductor layers. It is characterized in that: at least one argon compound is present in the n-side region The semiconductor layer system is an η-side multilayer film layer, and the η-side multilayer film layer is composed of a first gaseous semiconductor film containing 1η, and a second nitride semiconductor film having a composition different from that of the first semiconductor compound. The thickness of at least one of the first nitride semiconductor film and the second nitride semiconductor film is 100 angstroms or less. 2. The nitride semiconductor device according to item 1 of the scope of the patent application, wherein the first nitride semiconductor film is composed of InxGa! .XN (0 &lt; x &lt;l); and the second nitride semiconductor film It consists of InyGauNCOSycl, y &lt; x). 3. As for the nitride semiconductor device described in item 1 or 2 of the scope of the patent application, at least one of the above-mentioned first nitride semiconductor film or second nitride semiconductor film has a film thickness that is different from that of the adjacent one. Film thickness of the first gaseous semiconductor film or the second argon semiconductor film ° 4. The nitride semiconductor element described in the item 丨 or 2 of the scope of the patent application, wherein the first gaseous semiconductor film or the second gaseous semiconductor film described above At least one of the gaseous semiconductor film has a group III element composition that is different from that of the nearest .4 -ti 'real name · I have no application first ~ -C reading back &amp; it is true] 1 U of caution Line No. 151T This paper standard is applicable to Chinese National Standard (CNS) A4 specifications (2) 0X 297 Gonghui ---- d37l03 VI. Patent application scope 1 Same as nitride semiconductor film or second nitride semiconductor film _ III element composition. 5. The nitride semiconductor device according to item 1 of the scope of patent application, wherein the η-side multilayer film layer is adjacent to the active layer. 6. The nitrogen according to item 1 of the scope of patent application. Compound semiconductor element, in which The first nitride semiconductor film and the second nitride semiconductor film are undoped * 7. The nitride semiconductor device according to item 1 of the patent application scope, wherein the t-th nitride semiconductor film or the second nitride Either of the semiconductor films is doped with n-type impurities. 8. The nitride semiconductor device according to item I of the patent application scope, wherein both the first nitride semiconductor film and the second nitride semiconductor film are doped. η-type impurity Printed by Consumer Property Cooperative, Member of Intellectual Property Bureau, Ministry of Economic Affairs A8 BS C8 D8 (請先閱讀背面之注意事項再填寫本頁) 9. 如申請專利範圍第1項所述之氮化物半導禮元件,其 中’該ρ側區域中的一氮化物半導體層係為ρ側多層膜 層’而該ρ侧多層膜層係由一含有Α丨之第3氮化物半 導體膜、及一組成係不同於該第3氮化物半導體膜的第 4氮化物半導體膜所堆積而成;而該第3氮化物半導體 膜與第4氮化物半導體膜中至少有一方的膜厚係在1 00 第152頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公查) 4371 0 3 8888 ABCD 4ν\ ” /V* · ηπ f Μ ¾ 六、申請專利範圍 埃以下。 &lt;請先間讀背面之注意事項再填寫本頁) 1 0.如申請專利範圍第9項所述之氮化物半導體元件,其中 上述之第3氮化物半導體膜係由AUGahNftXaSl)所構 成;而該第4氮化物半導體膜係由InbGai.bN(0&lt;b&lt;l,b&lt;a) 所構成。 1 1 如申請專利範圍第9項所述之氮化物半導體元件1其 中上述之第3氮化物半導體膜或第4氮化物半導體膜中 至少有一方的摸厚係不同於近接的第3氮化物半導體 膜或第4氮化物半導體膜之膜厚。 1 2 .如申請專利範圍第9項所述之氮化物半導體元件,其 中上述之第3氣化物半導體膜或第4氣化物半導體膜中 至少有一方的III族元素組成係不同於近接的第3氮化 物半導體膜或第4氮化物半導體膜之同一 in族元素組 成。 經濟部智慧財產局員工消费合作社印製 1 3 .如申請專利範圍第9項所述之氮化物半導體元件,其 中’該ρ側多層摸層係鄰接於活性層。 1 4 _如申請專利範圍第9項所述之氮化物半導體元件,其 中,該第3氮化物半導體膜與第4氮化物半導體膜係未 摻雜質。 第153貰 本紙張尺度適用中國國家標準(CNS)A4規格(210 χ 297公爱〉 A8 B8 C8 D8 437103 申請專利範圍 (請先閱讀背面之注意事項再填寫本頁) 1 5 .如申請專利範圍第9項所述之氮化物半導體元件,其 中,第3氮化物半導體膜或第4氮化物半導體膜中的任 一方係摻有p型雜質》 1 6.如申請專利範圍第9項所述之氮化物半導體元件,其 中,該第3氮化物半導體膜與第4氮化物半導體膜中係 均摻有p型雜質。 1 7. —種氮化物半導體元件,其係具有一活性層,其中該活 性層係介於一含有複數個氮化物半導體層之η惻區域 及一含有複數個氮化物丰導體層之ρ侧區域之間,其特 徵在於: 經濟部智慧財產局員工消費合作社印製 該η側區域中至少有一個氮化物半導體層係為η側 第1多層膜層,而該η側第1多層膜層係至少由分別摻 入不同濃度之η型雜質,且各自具有不同鍵隙能量的2 種氮化物半導體膜所堆積而成,一方摻入η型雜質而另 一方則不摻入,且由各自具有不同鍵隙能量的2種氮化 物半導體膜所堆積而成; 該ρ側區域中至少有一個氮化物半導體層係為ρ側 多層膜覆蓋層,而該Ρ側多層膜覆蓋層係由分別至少一 方摻入不同濃度之ρ型雜質,且各自具有不同鍵隙能量 的第3、第4氮化物半導體膜所堆積而成;又, 該活性層係為一由InaGa 1 _aN(0Sa&lt; 1)所形成的包含 第154頁 本紙張尺度適用中國國家標準(CNS)A4規格(210x 297公釐) 4371 03 A8B8C8D8A8 BS C8 D8 (Please read the precautions on the back before filling out this page) 9. The nitride semiconductor device described in item 1 of the patent application scope, where 'a nitride semiconductor layer in the ρ side region Is a ρ-side multilayer film layer, and the ρ-side multilayer film layer is stacked by a third nitride semiconductor film containing A1 and a fourth nitride semiconductor film having a composition different from that of the third nitride semiconductor film. The thickness of at least one of the third nitride semiconductor film and the fourth nitride semiconductor film is 100 on page 152. This paper is in accordance with China National Standard (CNS) A4 (210 X 297) ) 4371 0 3 8888 ABCD 4ν \ ”/ V * · ηπ f Μ ¾ 6. The scope of patent application is less than Angstrom. &Lt; Please read the precautions on the back before filling in this page) 1 0.If the scope of patent application is item 9 In the nitride semiconductor device, the third nitride semiconductor film is composed of AUGahNftXaSl); and the fourth nitride semiconductor film is composed of InbGai.bN (0 &lt; b &lt; l, b &lt; a) 1 1 The nitride half as described in item 9 of the scope of patent application The bulk element 1 has a thickness of at least one of the third nitride semiconductor film or the fourth nitride semiconductor film different from that of the third nitride semiconductor film or the fourth nitride semiconductor film in close proximity. 1 2 The nitride semiconductor device according to item 9 of the scope of the patent application, wherein at least one of the third gaseous semiconductor film or the fourth gaseous semiconductor film has a group III element composition different from that of the adjacent third nitride. The semiconductor film or the 4th nitride semiconductor film is composed of the same in group elements. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 1 3. The nitride semiconductor element as described in item 9 of the scope of patent application, where 'the ρ side is multilayered The layer is adjacent to the active layer. 1 4 _ The nitride semiconductor device according to item 9 of the scope of patent application, wherein the third nitride semiconductor film and the fourth nitride semiconductor film are undoped. 153纸张 This paper size is applicable to China National Standard (CNS) A4 specifications (210 χ 297 public love) A8 B8 C8 D8 437103 Patent application scope (please read the precautions on the back before filling this page) 1 5. The nitride semiconductor device according to item 9 of the scope of the patent application, wherein either the third nitride semiconductor film or the fourth nitride semiconductor film is doped with a p-type impurity "1 6. If a patent is applied The nitride semiconductor device according to item 9, wherein the third nitride semiconductor film and the fourth nitride semiconductor film are doped with a p-type impurity. 1 7. A nitride semiconductor device having An active layer, which is between an η 一 region containing a plurality of nitride semiconductor layers and a p-side region containing a plurality of nitride-rich conductor layers, and is characterized by: employees of the Intellectual Property Bureau of the Ministry of Economic Affairs At least one nitride semiconductor layer in the η-side region printed by the consumer cooperative is the η-side first multi-layer film layer, and the η-side first multi-layer film layer is formed by at least doping η-type impurities with different concentrations, and each Two nitride semiconductor films with different bond gap energies are stacked, one is doped with n-type impurities and the other is not doped, and two nitride semiconductor films with different bond gap energies are stacked. At least one nitride semiconductor layer in the ρ-side region is a ρ-side multilayer film cover layer, and the P-side multilayer film cover layer is doped with at least one of the p-type impurities of different concentrations and each has a different bond gap energy. The third and fourth nitride semiconductor films are stacked; and the active layer is formed by InaGa 1 _aN (0Sa &lt; 1) and contains page 154. The paper standard is applicable to Chinese National Standard (CNS) A4. Specifications (210x 297 mm) 4371 03 A8B8C8D8 經濟部智慧財產局員工消費合作社印製 六、申請專利範圍 多重量子井構造或軍一量子井構造° 1 8. —種氮化物半導禮元件’其係具有一活性層,其中该活 性層係介於一含有複數個氮化物半導體層之η側區域 及一含有複數個氮化物半導體層之ρ側區域之間,其特 徵在於: 該η側區域中至少有一個氮化物半導體層係為η惻 第1多層膜層,而该η侧第1多層膜層係至少由分別摻 入不同濃度之η蜜雜質’且具有相同组成的2種氮化物 半導體膜所堆積而成’一方摻入η型雜質而另一方則不 摻入,且由具有相同組成的2種氮化物半導體膜所堆積 而成: 該ρ側區域中至少有一個氮化物丰導體層係為ρ侧 多層膜覆蓋層,而該Ρ側多層膜覆蓋層係由分別至少一 方摻入不同濃度之Ρ型雜質,且各自具有不同鍵隙能量 的第3、第4氮化物半導體膜所堆積而成;又, 玆活性層係為一甴InaGa^NCOSacI)所形成的包含 多重量子丼構造或單一量予井構造。 1 9 ·如申請專利範圍第1 7項或第1 8項所述之氮化物半導體 元件,其令,該第3氮化物半導體膜與第4氮化物半導 體膜中係分別摻有不同濃度的ρ型雜質。 20.如申請專利範圍第1 7項或第1 8項所述之氮化物半導體 元件,其中,該第3氮化物半導體膜與第4氮化物半導 _ 第 1551___ -______ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) &lt;請先閱讀背面之注意事項再填寫本頁) 二--I - .1 I I I I &lt; — — — — — — — — I » fflIlllllllllllllljlllli V..4371 03 A8 B8 C8 D8 經濟部智慧財產局員工消費合作社印製 六、申請專利範圍 體膜中係掺有相同濃度的P型雜質a 21,種氮化物半導體元件,其係具有—活性層,其中該活 性層係介於一含有複數個氮化物半導體層之^側區域 及一含有複數個氮化物半導體層之p側區域之間,其特 徵在於: ”該η侧區域中至少有—個氣化物半導體層係為“則 第1多層膜層,而該η侧第!多層膜層係 …漠…型雜質,且具有相同組成的;:= 半導體膜所堆積而成,一方摻入η型雜質而另一方則不 摻入,且由具有相同組成的2種氣化物半寧體膜所堆積 而成; 。。該&quot;,!區域中至少有一個氣化物半導艘層係為ρ惻 早一膜覆蓋層,而該Ρ側單一膜覆蓋層係由至少一方本 有Ρ型雜質之AlbGawNtOsbsi)所形成;又 該活性層係為一由InaGasa_a&lt;i)所形成的包含 多重量子丼構造或單一量子丼構造。 22·如申請專利範圍第18項或第21J員所逑之氣化物半導體 元件’其中’該η側第!多層膜屠係由分別摻入不同濃 度之η型雜質之GaN所形成的2種氣化物半導體膜所 堆積而成》 23. -種氮化物半導體元件’其係具有一活性層,其中該 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公餐_ 活 第156頁 II I--I — — — — —--~.|1_--I----------I (請先閲讀背面之注意事項再填寫本頁) 4371 03 A8B8C8D8 ll: ·- ”.卜—f' j 經濟部智慧財產局員工消費合作社印製 、申請專利範圍 性層係介於一含有複數個氮化物半導體層之η側區域 及一含有複數個氮化物半導體層之ρ側區域之間,其特 徵在於: 該η側區域中至少有一個氮化物半導體層係為η側 第1多層膜層,而該η侧第I多層膜層係至少由分別掺 入不同濃度之η型雜質,ϋ具有不同鍵隙能量的2種氮 化物半導體膜所堆積而成,一方摻入η型雜.質而另一方 則不摻入,且由具有不同鍵隙能量的2種氮化物半導體 膜所堆積而成; 該ρ侧區域中至少有一個氮化物半導體層係為ρ側 單一膜覆蓋層,而該Ρ側單一膜覆蓋層係由至少一方含 有Ρ型雜質之AIbGa丨.bNtOSbSl)所形成;又, 該活性層係為一由I n a G a i - a N (0 S a &lt; 1)所形成的包含 多重量子井構造或單一量子井構造。 24.如申請專利範圍第1 7項所述之氮化物半導體元件,其 中,該η側第1多層膜層與活性層之間係更設有一 η侧 第2多層膜層,其中該η側第2多層膜層係由一含有In 之第1氮化物半導體膜' 及一组成不同於該第1氮化物 半導體膜的第2氮化物半導體膜所堆積而成。 2 5 .如申請專利範圍第I 7項所述之氮化物半導體元件*其 中,該η惻第I多層膜層與基板側之間係設有一含有η 型雜質的η側接觸層。 第157頁 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) --.11---訂 *--------線 — A8B8C8D8Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. 6. The scope of patent applications for multiple quantum well structures or military-quantum well structures. 1 8. —A kind of nitride semi-conductor element 'which has an active layer, where the active layer is Between an n-side region containing a plurality of nitride semiconductor layers and a p-side region containing a plurality of nitride semiconductor layers, characterized in that at least one nitride semiconductor layer in the n-side region is η 恻A first multilayer film layer, and the n-side first multilayer film layer is formed by adding at least two kinds of nitride semiconductor films of the same composition with different concentrations of n honey impurities, and one side is doped with n-type impurities The other side is not doped and is formed by stacking two kinds of nitride semiconductor films with the same composition: at least one nitride-rich conductor layer in the ρ-side region is a ρ-side multilayer film cover layer, and the P The side multilayer film cover layer is formed by stacking at least one of the third and fourth nitride semiconductor films doped with different concentrations of P-type impurities and each having a different bond gap energy; The system consists of a single InaGa ^ NCOSacI), which contains multiple quantum pseudo structures or single-quantity pre-well structures. 1 9 · The nitride semiconductor device according to item 17 or item 18 of the scope of the patent application, wherein the third nitride semiconductor film and the fourth nitride semiconductor film are respectively doped with ρ of different concentrations. Type impurities. 20. The nitride semiconductor device according to item 17 or item 18 in the scope of patent application, wherein the third nitride semiconductor film and the fourth nitride semiconductor are _ No. 1551___ -______ This paper size is applicable to China Standard (CNS) A4 specification (210 X 297 mm) &lt; Please read the precautions on the back before filling out this page) II --I-.1 IIII &lt; — — — — — — — — I »fflIlllllllllllllllljlllli V. .4371 03 A8 B8 C8 D8 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 6. Patent application. The body film is doped with P-type impurities a 21, a kind of nitride semiconductor element, which has an active layer. The active layer is between a ^ -side region containing a plurality of nitride semiconductor layers and a p-side region containing a plurality of nitride semiconductor layers, and is characterized in that: "There is at least one gas in the η-side region. The compound semiconductor layer is "then the first multilayer film layer, and the η side is the first!" Multi-layer film is a type of indifferent ... and has the same composition;: = semiconductor film is deposited, one side is doped with n-type impurities and the other is not doped, and is composed of two kinds of gaseous compounds with the same composition Ning body film is piled up;. . In the &quot;,! Area, at least one gaseous semiconductor semiconducting layer is ρ 恻 early a film cover layer, and the P-side single film cover layer is formed by at least one AlbGawNtOsbsi) which has P-type impurities; The active layer is a multiple quantum pseudo structure or a single quantum pseudo structure formed by InaGasa_a &lt; i). 22 · As for the gaseous semiconductor device ′ in item 18 of the scope of patent application or member 21J, among which ′ is on the η side! The multilayer film is formed by stacking two kinds of gaseous semiconductor films formed of GaN doped with different concentrations of η-type impurities, respectively. 23.-A kind of nitride semiconductor element 'It has an active layer, in which the paper Standards are applicable to China National Standard (CNS) A4 specifications (210 X 297 Meals _ Live Page 156 II I--I — — — — —-~. | 1 _-- I ---------- I (Please read the precautions on the back before filling this page) 4371 03 A8B8C8D8 ll: ·-”. Bu—f 'j Printed by the Intellectual Property Bureau Staff Consumer Cooperatives of the Ministry of Economy, the scope of patent application is between one and plural Between the η-side region of each nitride semiconductor layer and a ρ-side region containing a plurality of nitride semiconductor layers, it is characterized in that at least one nitride semiconductor layer in the η-side region is a η-side first multilayer film layer And the η-side first multilayer film layer is formed by stacking at least two kinds of nitride semiconductor films doped with different concentrations of n-type impurities and having different bond gap energies, and one side is doped with n-type impurities. The other side is not doped and consists of two nitrides with different bond gap energies Semiconductor film is deposited; at least one nitride semiconductor layer in the p-side region is a p-side single film cover layer, and the p-side single film cover layer is made of at least one AIbGa 丨 .bNtOSbSl containing a P-type impurity) The active layer is a multi-quantum well structure or a single quantum well structure formed by I na G ai-an N (0 S &lt; 1). The nitride semiconductor device according to the item, wherein an η-side second multilayer film layer is further provided between the η-side first multilayer film layer and the active layer, wherein the η-side second multilayer film layer is composed of The first nitride semiconductor film 'and a second nitride semiconductor film having a composition different from that of the first nitride semiconductor film are deposited. 2 5. The nitride semiconductor device according to item I 7 of the scope of patent application * Among them, an η-side contact layer containing η-type impurities is provided between the η 恻 I multi-layer film layer and the substrate side. Page 157 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ) (Please read the notes on the back before filling this page) -. 11 --- Order * -------- Line — A8B8C8D8 4371〇3 六、申請專利範圍 26.如申請專利範圍第25項所述之氮化物半導體元件,其 中,該η側接觸層係形成於/未摻雜質之GaN層上。 2 7.如中請專利範圍第2 6項所述之氮化物半導體元件,其 中,該未摻雜質之GaN層係形成於一由低溫成長之 GadAlhdNCOcdsi)所形成的缓衝層上’且於上述p倒多 層膜覆蓋層或是p側單一覆置層上更形成有一含有Mg 之P型雜質的p側GaN接觸層。 2 8. —種氮化物半導體元件,其係具有一活性層’其中該活 性層係介於一由複數個氮化物半導體層所構成之η側 區域 '及一含有ρ型接觸層且具有複數個氮化物半举體 層之Ρ側區域之間,其特徵在於: 該Ρ型接觸層係具有一由組成相異之第1及第2氮 化物半導體膜所依序堆積而成的超晶格構造,且上述2 個氮化物半唪體膜中,至少其中之第〖氮化物半導鱧膜 係含有In。 21如申凊專利範圍第2 8項所逑之氮化物半導趙元件,其 中,於該第1氮化物半導體膜與第2氮化物半導體膜之 間係形成有一组成係從該第丨氮化物半導體膜之组成 —--- ------- ---Γ---—訂-------ί 線 {請先閱讀背面之注幸?事項再填寫本頁) 經 濟 部 智 慧 財 A 局 員 連續變化到該第2氮化物丰導體膜之組成的組成梯度 層。4371〇6. Patent application scope 26. The nitride semiconductor device according to item 25 of the patent application scope, wherein the n-side contact layer is formed on an undoped GaN layer. 2 7. The nitride semiconductor device according to item 26 of the patent scope, wherein the undoped GaN layer is formed on a buffer layer formed of GadAlhdNCOcdsi) grown at a low temperature, and A p-side GaN contact layer containing a P-type impurity of Mg is further formed on the p-layer multilayer film covering layer or the p-side single covering layer. 2 8. A nitride semiconductor device having an active layer 'wherein the active layer is interposed between an n-side region composed of a plurality of nitride semiconductor layers' and a p-type contact layer having a plurality of Between the P-side regions of the nitride half-lift layer, the P-type contact layer has a superlattice structure formed by sequentially stacking first and second nitride semiconductor films with different compositions. In addition, at least one of the nitride nitride semiconductor films includes In. 21 A nitride semiconductor device as described in claim 28 of the patent scope, wherein a composition is formed between the first nitride semiconductor film and the second nitride semiconductor film. The composition of semiconductor film ----- ------- --- Γ ----- order ------- ί line {Please read the note on the back first? Please fill in this page again for details.) Bureau of Intellectual Property, Ministry of Economic Affairs, Intellectual Property, Bureau A continuously changed to the composition gradient layer of the composition of the second nitride-rich conductor film. - — _ ____ - .... ^ 本紙張尺度適用令國®家標準(CNSM4規格(210 X 297公爱)— 4371 〇3 -------- 六、申請專利範圍 J〇.如申請專利範圍第28項或第29項所述之氮化物半導體 元件’其中’該第1氮化物半導體膜與第2氮化物半導 體膜係分別含有In,其中該第1氣化物半導體膜中的ln 含有量係大於該第2氮化物半導體膜中的〖η含有量。 3 1.如申請專利範圍第28項或第29項所述之氮化物半導體 元件’其中該第1氮化物半導體膜係由InxGa^xN所構 成;而該第2氮化物半導體膜係由AiyGai.yN(OSy&lt;l)所 構成。 2 -如申請專利範圍第2 8項所述之氮化物半導體元件,其 中’該第1氮化物半導體膜與第2氮化物半導體膜中的 一方係摻有p型雜質,而另一方係未摻有p型雜質a 經濟部智慧財產局員工消費合作社印製 私 日修止 A8 B8 C8 D8 f請先閱讚背面之注意事項再填罵本頁&gt; 3 j .如申請專利範圍第2 8項所述之氮化物半導體元件,其 中,該第1氮化物半導體膜與第2氮化物半導體膜中的 一方係捧有濃度在1 X 1 〇 19/cm3〜5X〗021 /cm3之間的p例 雜質:而另一方所摻濃度係在ί X 1 〇 U/c m3〜5 χ丨〇 1 9/(^3 之間’且其掺入量係比前者之氮化物半導體膜所掺之 型雜質還少。 34·如申請專利範圍第28項所述之氮化物半導體元件, 其 中’該第1氮化物半導體膜係形成於最表面,且形成於 笫 t59T 本紙張尺度適用_國國家標準(CNS)A4規格(210 X 297公釐) 4371 03 AS B8 C8 D8-— _ ____-.... ^ This paper size applies the national standard (CNSM4 specification (210 X 297 public love) — 4371 〇3 -------- VI. Patent application scope J〇. The nitride semiconductor device according to item 28 or item 29 of the scope of the patent application, wherein the first nitride semiconductor film and the second nitride semiconductor film each contain In, and ln in the first vapor semiconductor film The content is greater than the content of [η] in the second nitride semiconductor film. 3 1. The nitride semiconductor device according to item 28 or 29 of the scope of patent application, wherein the first nitride semiconductor film is composed of InxGa ^ xN; and the second nitride semiconductor film is composed of AiyGai.yN (OSy &lt; l). 2-A nitride semiconductor device as described in item 28 of the scope of the patent application, wherein 'the first One of the nitride semiconductor film and the second nitride semiconductor film is doped with a p-type impurity, and the other is not doped with a p-type impuritya Printed on a private day by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 f Please read the notes on the back of the like before filling in this page &gt; 3 j. If you apply The nitride semiconductor device according to Item 28, wherein one of the first nitride semiconductor film and the second nitride semiconductor film has a concentration of 1 X 1 〇19 / cm3 to 5X〗 021 / p example impurities between cm3: while the other side is doped at a concentration of ί X 1 〇U / c m3 ~ 5 χ 丨 〇1 9 / (^ 3 'and its doping amount is higher than the former nitride semiconductor The film contains less type impurities. 34. The nitride semiconductor device as described in item 28 of the scope of application for patent, wherein 'the first nitride semiconductor film is formed on the outermost surface and is formed on 笫 t59T. This paper is applicable to this paper. _China National Standard (CNS) A4 Specification (210 X 297 mm) 4371 03 AS B8 C8 D8 六、申請專利範圍 最表面的第1氮化物半導體膜係鄰接有一 p側電極。 (請先閱讀背面之注意事項再填寫本頁) 3 5 .如申請專利範圍第34項所述之氮化物半導體元件,其 中,該第1氮化物半導體膜中的P型雜質濃度係大於上 述第2氮化物半導體膜》 3 6 ·如申諳專利範圍第2 8項所述之氮化物半導體元件,其 中,該活性層與p型接觸層之間係設有一由含有A〖之 氮化物半導體所形成的p型覆蓋層》 37.如申請專利範圍第36項所述之氮化物半導體元件,其 中’該P型覆蓋層係具有由一以AlxGahXN(0&lt;xSl)所構 成的層 '以及一以InyGai_yN(0&lt;ySl)所構成的層相互交 替堆積而成的超晶格構造。 3 8. —種氣化物半導體元件’其係具有一活性層,其中該活 性層係介於一含有複數個氮化物半導體層之η側區域 及一含有複數個氮化物半導體層之Ρ側區域之間,其特 經濟部智慧財產局員Μ消費合作社印製 徵在於: 該η惻區域中至少有一個氮化物半導體層係為η側 第1多層膜層’而該η惻第i多層膜層係以一由未摻雜 質之氮化物半導體膜所形成之下層 '一由掺入η型雜質 之氮化物半導體膜所形成之中間層、及一由未摻雜質之 氮化物半導體膜所形成之上層等至少3層依序堆積而 | -- _____ 第 160Ί&quot; 本紙張尺ϋϋΤϋ家標準(CNS)A4規格(21〇 x撕公爱) 437103 A8 B8 C8 D8 &gt; : 申請專利範圍 成, 〈請先閱讀背面之注意事項再填寫本頁) 該P惻區域中至少有一個氮化物半導體層係為P側 .多層膜覆蓋層,而該P側多層膜覆蓋層係由分別掺入不 同濃度之P型雜質,且各自具有不同鍵隙能量的第3、 第4氮化物半導體膜所堆積而成:又, 該活性層係為一由InaGa I -aN(0Sa&lt; 1)所形成的包含 多重量子丼構造或單一量子井構造》 39. 如申請專利範圍第38項所述之氮化物半導體元件,其 中,該第3氮化物半導體膜中的ρ型雜質濃度係不同於 第4氮化物半導體膜中的ρ型雜質濃度。 40. 如申請專利範圍第3 8項所述之氮化物半導體元件,其 中,該第3氮化物半導體膜中的ρ型雜質濃度係同於第 4氮化物半導體膜中的ρ型雜質濃度= 經濟部智慧財產局員工消費合作社印製 4 1. 一種氮化物半導體元件,其係具有一活性層,其中該活 性層係介於一含有複數個氮化物半導體層之η側區域 及一含有複數個氮化物半導體層之Ρ側區域之間,其特 徵在於: 該η侧區域中至少有一個氮化物半導體層係為η側 第1多層膜層,而該η侧第1多層膜層係以一由未摻雜 質之氮化物半導體膜所形成之下層、一由摻入η型雜質 之氮化物半導體膜所形成之中間層、及一由未摻雜質之 第161頁 本紙張尺度適用中國國家標準(CNS)A4規格(21CU 297公釐) 4371 03六、申請專利範圍 A8 B8 C8 D8 % 經濟部智慧財產局員工消費合作社印製 氛化物半導體膜所形成之上層等至少3層依序堆積而 成: 該p側區域中至少有一個氮化物半導體看係為p侧 單一膜覆蓋層,而該p側單一膜覆蓋層係由含有p型雜 質之AUGa卜bN(OSbSl)所形成:又, 該活性層係為一由InaGa〖.aN(0Sa&lt; 1)所形成的多重 量子丼構造。 42.如申請專利範圍第38項或第39項所述之氮化物半導體 元件,其中’該η側第1多層膜層係以—膜厚為1〇〇〜 1 0000埃’且由未摻雜質之氮化物半導體糢所形成之下 層、一膜厚為50〜10 00埃,且由摻入^型雜質之氮化 物半導體膜所形成之中間層、及一膜厚為25〜1〇〇〇 埃,且由未摻雜質之氮化物半導體膜所形成之上廣所構 成ΰ 43_如申請專利範圍第38項所述之氮化物半導體元件,其 中,該η側第1多層膜層與活性層之間係更設有一 η側 第2多層膜層’該η側第2多層膜層係由一含有^之 第1氮化物半導體膜、及一組成不同於該第1氮化物半 導體膜的第2氮化物半導體膜所堆積而成。 44.如申請專利範園第3 8項所述之氮化物半導體元件,其 中’該η側第1多層膜層與基板之間係設有—含有η型 ______ 第162耳 本紙張尺发避用t賴家標準(CNS:&gt;A4規格⑵〇 χ 297公爱- { ^ . —.-------------- (請先閱讀背面之注意事項再填寫本頁) 71 03 Α8 Β8 C8 D86. Scope of patent application The first surface of the first nitride semiconductor film is adjacent to a p-side electrode. (Please read the precautions on the back before filling this page) 3 5. The nitride semiconductor device described in item 34 of the scope of patent application, wherein the concentration of P-type impurities in the first nitride semiconductor film is greater than the above-mentioned 2 Nitride semiconductor film "3 6 · The nitride semiconductor device according to item 28 of the patent application scope, wherein between the active layer and the p-type contact layer is a nitride semiconductor "P-type cover layer formed" 37. The nitride semiconductor device as described in item 36 of the scope of patent application, wherein the "P-type cover layer has a layer composed of AlxGahXN (0 &lt; xSl)" and an A superlattice structure in which layers composed of InyGai_yN (0 &lt; ySl) are alternately stacked. 3 8. —A kind of gaseous semiconductor device 'has an active layer, wherein the active layer is between an n-side region containing a plurality of nitride semiconductor layers and a p-side region containing a plurality of nitride semiconductor layers. In the meantime, a member of the Consumer Property Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs printed: At least one nitride semiconductor layer in the η 恻 region is the η-side first multi-layer film layer, and the η 恻 -th multi-layer film layer is based on A lower layer formed of an undoped nitride semiconductor film, an intermediate layer formed of a nitride semiconductor film doped with an n-type impurity, and an upper layer formed of an undoped nitride semiconductor film Wait for at least 3 layers to pile up in sequence |-_____ No. 160Ί &quot; This paper size is standard (CNS) A4 specification (21〇x tear public love) 437103 A8 B8 C8 D8 &gt;: The scope of patent application is completed, <Please first Read the notes on the back and fill in this page) At least one nitride semiconductor layer in the P 恻 region is the P side. The multilayer film cover layer, and the P side multilayer film cover layer is doped by P-types with different concentrations. Impurities, And the third and fourth nitride semiconductor films each having a different bond gap energy are stacked: Also, the active layer is a multiple quantum rhenium structure formed by InaGa I -aN (0Sa &lt; 1) or a single Quantum Well Structure "39. The nitride semiconductor device according to item 38 of the scope of application for a patent, wherein the p-type impurity concentration in the third nitride semiconductor film is different from the p-type impurity in the fourth nitride semiconductor film. concentration. 40. The nitride semiconductor device according to item 38 of the scope of patent application, wherein the p-type impurity concentration in the third nitride semiconductor film is the same as the p-type impurity concentration in the fourth nitride semiconductor film = economical Printed by the Ministry of Intellectual Property Bureau's Consumer Cooperatives 4 1. A nitride semiconductor device having an active layer, wherein the active layer is located between an n-side region containing a plurality of nitride semiconductor layers and a layer containing a plurality of nitrogen The P-side region of the compound semiconductor layer is characterized in that at least one nitride semiconductor layer in the η-side region is an η-side first multilayer film layer, and the η-side first multilayer film layer is The lower layer formed by a doped nitride semiconductor film, an intermediate layer formed by a nitride semiconductor film doped with an n-type impurity, and an undoped page 161. This paper applies Chinese national standards ( CNS) A4 specification (21CU 297 mm) 4371 03 VI. Patent application scope A8 B8 C8 D8% At least 3 layers including the upper layer formed by the printed semiconductor semiconductor film produced by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Sequentially stacked: at least one nitride semiconductor in the p-side region is considered to be a p-side single film cover layer, and the p-side single film cover layer is formed of AUGabN (OSbSl) containing p-type impurities: In addition, the active layer is a multiple quantum erbium structure formed by InaGa [.aN (0Sa &lt; 1). 42. The nitride semiconductor device according to item 38 or item 39 of the scope of the patent application, wherein the first multilayer film layer on the η side is a film thickness of 100 to 10,000 angstroms and is undoped A lower layer formed by a high-quality nitride semiconductor mold, a film thickness of 50 to 100 Angstroms, and an intermediate layer formed of a nitride semiconductor film doped with ^ -type impurities, and a film thickness of 25 to 100 Angstrom, and is composed of an undoped nitride semiconductor film. 43_ The nitride semiconductor device according to item 38 of the scope of patent application, wherein the n-side first multilayer film layer and the active layer An inter-layer second multilayer film layer is further provided between the layers. The n-layer second multilayer film layer is composed of a first nitride semiconductor film containing ^ and a first nitride semiconductor film having a composition different from that of the first nitride semiconductor film. 2Nitride semiconductor film is deposited. 44. The nitride semiconductor device according to item 38 of the patent application park, wherein 'the η side first multilayer film layer is provided between the substrate and the substrate—including η type ______ 162 ear paper ruler Use the Lai Family Standard (CNS: &gt; A4 Specification ⑵〇χ 297 公 爱-{^. —.-------------- (Please read the precautions on the back before filling this page ) 71 03 Α8 Β8 C8 D8 六 經濟部智慧財產局員工消費合作社印製 申請專利範圍 雜質之η側接觸層。 4 5 .如申請專利範圍第4 4項所述之氮化物半導體元件,其 中,該η惻接觸層係形成於/未摻雜質之GaN層上。 46.如申請專利範圍第45項所述之氮化物半導體元件,其 中,該未摻雜質之GaN層係形成於一由低溫成長之 GadAh.dNfCKdSl)所形成的緩衝層上,且於上述p側多 層膜覆蓋層或是ρ側單一覆念·層上更形成有一含有Mg 之P型雜質的P側GaN接觸層。 47·—種氮化物半導體元件,其係具有一活性層,其中該活 性層係介於一含有複數個氮化物半導體層之η側區域 及一含有複數個氮化物半導體層之Ρ侧區域之間,其特 徵在於: 該η側區域中至少有一個氮化物半導體層係為一由 複數個氮化物半導體膜所堆積而成的η型多層膜層; 該ρ侧區域中至少有一個氮化物半導體層係為一由 複數個氮化物半導體膜所堆積而成的ρ型多層膜層:且 構成該η型多層膜層的組成係不同於禅成該Ρ型多 層膜層的組成。 4 8. —種氮化物半導體元件,其係具有一活性層,其中該活 性層係介於一含有複數個氮化物半導體層之η側區域 第163頁 本紙張尺度適用+國國家標準(CNS)A4規格(210 χ 297公釐) -----------— II ^---------訂---------線 &lt;請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員1消费合作社印製 4371 03 —----- 六、申請專利範圍 及一含有複數個氮化物半導體層之p側區蜮之間,其特 徵在於: 該η側區域中至少有一個氮化物半導體層係為一由 複數個氮化物半導體膜所堆積而成的η型多層膜層: 該Ρ側區域中至少有一個氮化物半導體層係為一由 複數個氮化物半導體膜所堆積而成的ρ型多層膜層;1 構成該η型多層膜層之氮化物半導體膜的堆積層數 係不同於構成該Ρ型多層膜層之氮化物半導體膜的堆 積層數。 49· 一種氮化物半導體元件,其係具有一活性層,其中該活 性層係介於一含有複數個氮化物半導體層之η側區域 及一含有複數個氮化物半導體層之ρ側區域之間,其特 徵在於: 該η側區域中至少有一個氮化物半導體層係為一由 複數個氮化物半導體膜所堆積而成的η型多層膜層: 該ρ侧區域中至少有一個氮化物半導體層保為—由 複數個氮化物半導體膜所堆積而成的ρ型多層膜層;且 構成該η型多層膜層的組成係不同於構成該ρ型多 層膜層的組成,並且構成該η型多層膜層之氮化物半導 體膜的堆積層數係不同於構成該Ρ型多層膜層之氮化 物半導體膜的堆積層數。 5 〇.如申請專利範圍第4 7〜4 9項中之任一項所述之氮化物 3Ρ164Τ 本紙張尺度適用中國國家標準(CNS&gt;A4規格(210 X 297公釐) ! ! ^---·-----訂·--------線 (請先閱讀背面之注意事項再填寫本頁)6. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Scope of patent application η side contact layer of impurities. 4 5. The nitride semiconductor device according to item 44 of the scope of patent application, wherein the η 恻 contact layer is formed on an undoped GaN layer. 46. The nitride semiconductor device according to item 45 of the scope of patent application, wherein the undoped GaN layer is formed on a buffer layer formed of GadAh.dNfCKdSl) grown at a low temperature, and the p A P-side GaN contact layer containing a P-type impurity of Mg is formed on the side multilayer film cover layer or the p-side single layer. 47. A nitride semiconductor device having an active layer, wherein the active layer is between an n-side region containing a plurality of nitride semiconductor layers and a p-side region containing a plurality of nitride semiconductor layers , Characterized in that: at least one nitride semiconductor layer in the n-side region is an n-type multilayer film layer formed by stacking a plurality of nitride semiconductor films; and at least one nitride semiconductor layer in the p-side region It is a p-type multilayer film layer formed by stacking a plurality of nitride semiconductor films: and the composition system of the n-type multilayer film layer is different from the composition of the P-type multilayer film layer. 4 8. —A nitride semiconductor device having an active layer, wherein the active layer is located in an n-side region containing a plurality of nitride semiconductor layers. Page 163 Applicable to paper standards + National Standards (CNS) A4 specification (210 χ 297 mm) ------------- II ^ --------- Order --------- line &lt; please read the back Note: Please fill in this page again.) Member of the Intellectual Property Bureau of the Ministry of Economic Affairs 1 Printed by Consumer Cooperative 4371 03 ------- 6. The scope of patent application and a p-side region 蜮 containing a plurality of nitride semiconductor layers is characterized by : At least one nitride semiconductor layer in the η-side region is an η-type multilayer film formed by stacking a plurality of nitride semiconductor films: at least one nitride semiconductor layer in the P-side region is The p-type multilayer film layer formed by stacking a plurality of nitride semiconductor films; 1 The number of stacked layers of the nitride semiconductor film constituting the n-type multilayer film layer is different from that of the nitride semiconductor film constituting the p-type multilayer film layer Stacked layers. 49. A nitride semiconductor device having an active layer, wherein the active layer is interposed between an n-side region containing a plurality of nitride semiconductor layers and a p-side region containing a plurality of nitride semiconductor layers, It is characterized in that at least one nitride semiconductor layer in the n-side region is an n-type multilayer film layer formed by stacking a plurality of nitride semiconductor films: at least one nitride semiconductor layer in the p-side region Is-a p-type multilayer film layer formed by stacking a plurality of nitride semiconductor films; and a composition system constituting the n-type multilayer film layer is different from a composition constituting the p-type multilayer film layer, and constitutes the n-type multilayer film The number of stacked nitride semiconductor films is different from the number of stacked nitride semiconductor films constituting the P-type multilayer film. 5 〇 The nitride 3P164T as described in any one of the scope of patent application No. 4 7 ~ 4 9 The paper size is applicable to Chinese national standard (CNS &gt; A4 specification (210 X 297 mm)! ^ --- · ----- Order · -------- Line (Please read the precautions on the back before filling this page) ά37ί 03, 六、申請專利範圍 半導體元件,其中,構成該Ρ型多層膜層之氮化物半導 體膜的堆積層數係少於構成該η型多層膜層之氮化物 半導體膜的堆積層數》 5 1.如申請專利範圍第47項所述之氮化物半導體元件,其 中,該η型多層膜層係含有 AUGahNCOSzCl)、及 InpGahpNttXpcl);而該ρ型多層膜層係含有AlxGa丨. x N (0 &lt; X &lt; 1)、及 I n y G a!. y N (0 S y &lt; 1)。 5 2 ·如申請專利範圍第4 7項所述之氮化物半導體元件,其 中,該P型多層膜層與(或)n型多層膜層係以調變摻雜 的方式形成&quot; -------------'--.--I--訂·---I----- {請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 笫165頁 本紙張尺度適用中國國家標準(CNS&gt;A4規袼(210 * 297公釐〉ά37ί 03, VI. Patent application semiconductor devices, in which the number of stacked layers of the nitride semiconductor film constituting the P-type multilayer film layer is less than the number of stacked layers of the nitride semiconductor film that constitutes the n-type multilayer film layer "5 1. The nitride semiconductor device according to item 47 of the application, wherein the n-type multilayer film layer contains AUGahNCOSzCl) and InpGahpNttXpcl); and the p-type multilayer film layer contains AlxGa 丨. X N (0 &lt; X &lt; 1), and I ny G a !. y N (0 S y &lt; 1). 5 2 · The nitride semiconductor device according to item 47 of the scope of patent application, wherein the P-type multilayer film layer and / or the n-type multilayer film layer are formed by means of modulation doping &quot; --- ----------'--.-- I--Order · --- I ----- {Please read the notes on the back before filling out this page) Staff Consumption of Intellectual Property Bureau, Ministry of Economic Affairs Cooperative printed 165 pages This paper size applies to Chinese national standards (CNS &gt; A4 regulations (210 * 297 mm>
TW88103785A 1998-03-12 1999-03-11 Nitride semicondcutor device TW437103B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP6023398 1998-03-12
JP16145298A JP3680558B2 (en) 1998-05-25 1998-05-25 Nitride semiconductor device
JP28434598 1998-10-06
JP32628198 1998-11-17
JP34876298 1998-12-08

Publications (1)

Publication Number Publication Date
TW437103B true TW437103B (en) 2001-05-28

Family

ID=27523558

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88103785A TW437103B (en) 1998-03-12 1999-03-11 Nitride semicondcutor device

Country Status (1)

Country Link
TW (1) TW437103B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400821B (en) * 2008-03-14 2013-07-01 Sony Corp Gan-based semiconductor light-emitting element, light-emitting element assembly, light-emitting apparatus, method of manufacturing gan-based semiconductor light-emitting element, and image display apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400821B (en) * 2008-03-14 2013-07-01 Sony Corp Gan-based semiconductor light-emitting element, light-emitting element assembly, light-emitting apparatus, method of manufacturing gan-based semiconductor light-emitting element, and image display apparatus

Similar Documents

Publication Publication Date Title
TW478178B (en) Nitride semiconductor device
US6657234B1 (en) Nitride semiconductor device
TWI283935B (en) Group III nitride compound semiconductor light emitting device
JP3656456B2 (en) Nitride semiconductor device
US6906352B2 (en) Group III nitride LED with undoped cladding layer and multiple quantum well
US7947994B2 (en) Nitride semiconductor device
JP3424629B2 (en) Nitride semiconductor device
JP4816434B2 (en) Nitride semiconductor device
TW419872B (en) Nitride semiconductor laser device
JP5352248B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP3427265B2 (en) Nitride semiconductor device
JP4629178B2 (en) Nitride semiconductor device
JP3680558B2 (en) Nitride semiconductor device
CA2434675A1 (en) Group iii nitride led with undoped cladding layer
JP3460641B2 (en) Nitride semiconductor device
TWI242297B (en) The III group nitrides compounds for luminescent device of semiconductor
JP2008294188A (en) Semiconductor light emitting device and method of manufacturing the same
JP4815732B2 (en) Nitride semiconductor device
JP2006332125A (en) Semiconductor element
TW437103B (en) Nitride semicondcutor device
JP3271661B2 (en) Nitride semiconductor device
JP2003179260A (en) Nitride semiconductor element
USRE46589E1 (en) Group III nitride LED with undoped cladding layer and multiple quantum well
CN116995169B (en) LED epitaxial wafer, preparation method thereof and LED
JP2000082843A (en) Gallium nitride compound semiconductor element

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent