TW416126B - Manufacturing method for integrating metal silicide and self-aligned contact - Google Patents

Manufacturing method for integrating metal silicide and self-aligned contact Download PDF

Info

Publication number
TW416126B
TW416126B TW88110214A TW88110214A TW416126B TW 416126 B TW416126 B TW 416126B TW 88110214 A TW88110214 A TW 88110214A TW 88110214 A TW88110214 A TW 88110214A TW 416126 B TW416126 B TW 416126B
Authority
TW
Taiwan
Prior art keywords
layer
manufacturing
patent application
scope
item
Prior art date
Application number
TW88110214A
Other languages
Chinese (zh)
Inventor
Jen-Ming Huang
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW88110214A priority Critical patent/TW416126B/en
Application granted granted Critical
Publication of TW416126B publication Critical patent/TW416126B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

There is disclosed a manufacturing method for integrating metal silicide and self-aligned contact, used in embedded dynamic random access memory. The method first forms a first gate whose top layer has a hard mask layer and whose two sides has a first insulating space layer, and a first source/drain region. Then, there is formed a first covering layer whose material is different from that of the first insulating space layer, so as to cover the memory cell region. Next, there are defined a second gate whose two sides have a second insulating space layer in the logic circuit region, and a second source/drain region. Then, there is formed a metal silicide layer on the surface of the second gate and the second source/drain region. Subsequently, a second covering layer is formed to cover the logic circuit region. Then, the first insulating space layer of the first gate and the mask layer are used as a mask to define a first covering layer, thereby forming a self-aligned contact exposing the first source/drain region. Accordingly, it is able to form the gate and source/drain of metal silicide in the logic circuit region, and also form the self-aligned contact in the memory cell region.

Description

416126 五、發明說明(1) 本發明係有關於一種半導體記憶裝置(semi conductor memory device)的製造方法,特別是有關於一種用於嵌入 式(embedded)動態隨機存取記憶體(dynamic random access memory ; DRAM)之整合金屬矽化物與自我對準接觸 窗的製造方法。 習知邏輯(logic)裝置與記憶(memory)裝置係分別被 形成於不同的晶片,然後再設置於一電路板上。由於形成 於不同晶片的記憶裝置與邏輯裝置的構造,無法確保其高 速性,因此’ 一種將I」故ϋ與邏輯裝置混合設置於同一 晶片上的裝置被予以提出,此種裝置即所謂的與Λ式JL導 想記憶裝置,例如eRAM(embedded Random Access Memory)裝置。 一般而言,邏輯電路係要求高執行速度,記憶裝置則 要求高密度’然而隨著半導體裝置尺寸的不斷縮小,要求 在嵌入式半導體記憶裝置中同時達到高執行速度之邏輯電 路以及高密度之記憶裝置顯然日趨困難。 有鑑於此,本發明提供一種_半導體記憶裝置 (semiconductor memory device)的製造方法,其将擻在 於整合金屬…與自我對準接觸窗V製方:,其其在= 路區域形成金屬矽化物閘極和源/汲極,以提高執行速 度’同時在記—憶盤展无區域ϋ自我對準接觸窗,以縮小 記1寒^草*^7面~積一-提…高 根據上述,本發明提供一種用於嵌入式(embedded)動 ,隨機存取記憶體之整合金屬矽化物與自我對準接觸窗的 ____. 五、發明說明(2) 製造方法,其首先係在記憶體單元區域形成一頂層具有硬 罩幕層且兩側具有第一絕緣間隔層之第一閘極,以及一第-一源/汲極區。然後形成一與第一絕緣間隔層不同材料之 第一覆蓋層,以覆蓋記憶體單元區域。其次,在邏輯電路 區域定義一兩側具有第二絕緣間隔層之第二閘極,以及一 第二源/汲極區。接著在第二閘極及第二源/汲極區表面形 成金屬矽化物層,隨之,形成第二覆蓋層以覆蓋邏輯電路 區域,然後,以第一閘極之第一絕緣間隔層及硬罩幕層為 罩幕,定義第一覆蓋層以形成露出第一源/汲極區之自我 對準接觸窗。如此不僅可在邏輯電路區域形成金屬矽化物 閘極和源/汲極,同時也在記憶體單元區域形成自我對準 接觸窗。 以下配合圖式以及較佳實施例以說明本發明。 圖式簡單說明 第1圖至第11圖為根據本發明較佳實施例之嵌入式動 態隨機存取記憶體的製造流程剖面圖。 [符號之說明] 100〜半導體基底;150、152、154〜源極/汲極; G1-G5-閘極;160a、160b〜氮化物間隔層;139~氮化物襯 墊層;170~氧化物覆蓋層;180、1 82、184、186〜源極/汲 極;G7~閘極;188a、188b〜氧化物間隔層;120〜金屬矽化 物;210〜氮氧化物襯墊層;220〜氧化物覆蓋層;230、 232〜接觸孔;240、242〜導電材料墊;254〜複晶矽插塞; 2 70 '275〜金屬插塞;Ο電容;280~金屬内連線。 Ι·Π·Γ 第6頁 άΑ31Ζβ-----: 五、發明説明(3) 實施例 以下利用第1至第11圖之嵌入式動態隨機存取記憶體 的製造流程剖面圖來說明本發明之實施例。 首先,如第1圖所示’定義一具有記憶體單元區域如 動態隨機存取記憶體(⑽am)區及一邏輯電路區域之基底, 其中,第1圖顯示半導體基底如矽基底形成有複數個淺 溝槽隔離元件STI(shallow trench isolation),其用以 隔離出主動區。然後以使用η型半導體石夕基底為例,以離 子植入方式在碎基底100中之主動區植入Ρ型離子,例如蝴 離子’以形成ρ井區。 其次,依據第1至5圖之步驟進行半導體製程,以於第 5圖之記憶體單元區域中,形成一具有硬罩幕層138之閑極 G1-G5,以及兩側之絕緣間隔層160b及源/汲極區1 5〇、 152、154。然後形成一與絕緣間隔層160b不同材料之覆蓋 層170,以覆蓋記憶體單元區域,如以下所述》 首先請參見第1圖所示之刳面,其先利用乾式或濕式 熱氧化法於矽基底1〇〇表面生長一氧化層110,再依序利用 化學氣相沈積法(CVD)全面性沈積一複晶矽層112和氧化層 11 4 ’其中氧化層11 4為選擇性步驟。然後利用微影製程定 義一圖案化光阻120,如先塗佈一層光阻,經曝光顯影後 形成一圖案化光阻120於邏輯電路區域表面。 接著依據第2圖’其定義出在邏輯電路區域之絕緣層 11 〇和導電層11 2。如以圖案化光阻1 20為罩幕,利用餘刻 步驟’如非等向性之乾蝕刻製程去除位於DRAM區表面之氧416126 V. Description of the invention (1) The present invention relates to a method for manufacturing a semi-conductor memory device, and more particularly to a method for embedded dynamic random access memory. DRAM) integrated metal silicide and self-aligned contact window manufacturing method. The conventional logic device and the memory device are respectively formed on different chips and then set on a circuit board. Due to the structure of the memory device and logic device formed on different chips, the high-speed performance cannot be ensured. Therefore, a device that mixes I ”and logic devices on the same chip has been proposed. Such a device is called a AND A Λ-type JL memory device, such as an eRAM (embedded random access memory) device. Generally speaking, logic circuits require high execution speed, and memory devices require high density. However, as the size of semiconductor devices continues to shrink, logic circuits with high execution speed and high-density memory are required in embedded semiconductor memory devices. Obviously, installation is becoming increasingly difficult. In view of this, the present invention provides a method for manufacturing a semiconductor memory device, which will consist of integrating metal ... and a self-aligned contact window V-form: which forms a metal silicide gate in a road area. Poles and source / drain electrodes to improve execution speed. At the same time, there is no area in the memory-mepan exhibition, self-aligning the contact window to reduce the memory. The invention provides an integrated metal silicide and self-aligned contact window for embedded mobile and random access memory. __ 5. Description of the invention (2) Manufacturing method, which is firstly in the memory cell area A first gate having a hard mask layer on the top layer and a first insulating spacer layer on both sides is formed, and a first-first source / drain region. A first cover layer of a different material from the first insulating spacer layer is then formed to cover the memory cell area. Second, a second gate having a second insulating spacer layer on both sides and a second source / drain region are defined in the logic circuit region. Then, a metal silicide layer is formed on the surface of the second gate and the second source / drain region, and then a second cover layer is formed to cover the logic circuit area. Then, the first insulating spacer layer and the hard The mask layer is a mask and defines a first cover layer to form a self-aligned contact window exposing the first source / drain region. This not only forms metal silicide gates and source / drain electrodes in the logic circuit area, but also forms self-aligned contact windows in the memory cell area. The invention is described below with reference to the drawings and preferred embodiments. Brief Description of the Drawings Figs. 1 to 11 are cross-sectional views of a manufacturing process of an embedded dynamic random access memory according to a preferred embodiment of the present invention. [Explanation of symbols] 100 ~ semiconductor substrate; 150, 152, 154 ~ source / drain; G1-G5-gate; 160a, 160b ~ nitride spacer layer; 139 ~ nitride liner layer; 170 ~ oxide Cover layer; 180, 180, 184, 186 ~ source / drain; G7 ~ gate; 188a, 188b ~ oxide spacer; 120 ~ metal silicide; 210 ~ nitrogen oxide liner; 220 ~ oxide 230, 232 ~ contact holes; 240, 242 ~ conductive material pads; 254 ~ polycrystalline silicon plugs; 2 70'275 ~ metal plugs; 0 capacitors; 280 ~ metal interconnects. Ι · Π · Γ Page 6άΑ31Zβ -----: V. Description of the Invention (3) Example The following uses the manufacturing flow sectional view of the embedded dynamic random access memory of FIGS. 1 to 11 to explain the present invention. Of an embodiment. First, as shown in FIG. 1, a substrate having a memory cell region such as a dynamic random access memory (⑽am) region and a logic circuit region is defined. Among them, FIG. 1 shows that a semiconductor substrate such as a silicon substrate is formed with a plurality of substrates. Shallow trench isolation (STI) is used to isolate the active area. Then, taking an n-type semiconductor stone substrate as an example, P-type ions, such as butterfly ions, are implanted into the active region in the broken substrate 100 by ion implantation to form a p-well region. Secondly, the semiconductor process is performed according to the steps of FIGS. 1 to 5 to form a free electrode G1-G5 with a hard mask layer 138 in the memory cell region of FIG. 5 and insulating spacers 160b and Source / drain regions 150, 152, 154. Then, a cover layer 170 of a different material from the insulating spacer layer 160b is formed to cover the memory cell area, as described below. First, please refer to the surface shown in FIG. 1, which first uses a dry or wet thermal oxidation method on An oxide layer 110 is grown on the surface of the silicon substrate 100, and then a chemical vapor deposition (CVD) method is used to comprehensively deposit a polycrystalline silicon layer 112 and an oxide layer 11 4 ′. The oxide layer 114 is an optional step. Then, a lithographic process is used to define a patterned photoresist 120. If a photoresist is coated first, a patterned photoresist 120 is formed on the surface of the logic circuit area after exposure and development. Then, according to Fig. 2 ', the insulating layer 11 0 and the conductive layer 112 in the logic circuit area are defined. For example, using a patterned photoresist 1 20 as a mask, use the remaining step ’such as an anisotropic dry etching process to remove oxygen located on the surface of the DRAM area.

五蝴----η 化屠110、複晶碎廣Π2、和氧化層114。隨之,除去圖案 化光阻120。 接著’依據第3圖,全面性形成絕緣層130、導電層 132/134、緩衝層136及硬罩幕層138。例如,先利用乾式、 或濕式熱氧化法於矽基底100表面生長一氧化層130,再依 序利用化學氣相沈積法(C V D )全面性沈積一複晶石夕層1 3 2, 矽化鎢層134 ’氧化層136,以及氮化矽層138,其中矽化 鎢層134和氧化層114為選擇性步驟。 然後依據第4圖,定義在記憶體單元區域之絕緣層 130、導電層132/134、緩衝層136及硬罩幕層138以形成閘 極Gl、G2、G3、G4、G5。例如,先利用微影製程定義一圖 案化光阻140,如塗佈一層光阻,經曝光顯影後形成一圖 案化光阻140於DR AM區域表面。接著,以圖案化光阻140為 罩幕’利用餘刻步驟’如非等向性之乾蝕刻製程去除位於 部分DRAM區表面暴露之氧化層130、複晶矽層132、矽化鎢 層134、氧化層1 36、和氮化矽層138,形成閘極Gl、G2、 G3、G4、G5。隨之,除去圖案化光阻14〇。 接績,依據第5圖’於閘極g 1至G5兩側形成一絕緣間 隔層160b及源/汲極區150、152、154。然後形成一與絕緣 間隔層160b不同材料之覆蓋層〗7〇,以覆蓋DRAM區域。例 如’先利用化學氣相沈積製程順應性沈積一氮化矽層,經 回餘刻步驟而於閘極G1至G5兩側形成氮化矽間隔層160b, 以及於邏輯電路區域之側壁形成另一氮化矽間隔層16〇a, 其中’另透過離子植入步驟可於閘極^至65兩侧形成源/Five butterflies-η chemical slaughter 110, polycrystalline fragment II, and oxide layer 114. Accordingly, the patterned photoresist 120 is removed. Next, according to FIG. 3, an insulating layer 130, a conductive layer 132/134, a buffer layer 136, and a hard cover curtain layer 138 are comprehensively formed. For example, a dry or wet thermal oxidation method is used to grow an oxide layer 130 on the surface of the silicon substrate 100, and then a chemical vapor deposition (CVD) method is used to comprehensively deposit a polycrystalline silicon layer 1 3 2 and tungsten silicide. The layers 134 ', the oxide layer 136, and the silicon nitride layer 138, wherein the tungsten silicide layer 134 and the oxide layer 114 are selective steps. Then according to Fig. 4, the insulating layer 130, the conductive layer 132/134, the buffer layer 136, and the hard mask layer 138 are defined in the memory cell area to form the gate electrodes G1, G2, G3, G4, and G5. For example, a patterned photoresist 140 is first defined by a lithography process. For example, a layer of photoresist is coated, and a patterned photoresist 140 is formed on the surface of the DR AM region after exposure and development. Then, the patterned photoresist 140 is used as a mask to “remove the step” such as an anisotropic dry etching process to remove the exposed oxide layer 130, the polycrystalline silicon layer 132, the tungsten silicide layer 134, and the oxide layer located on the surface of a part of the DRAM area. The layers 136 and the silicon nitride layer 138 form gates G1, G2, G3, G4, and G5. Accordingly, the patterned photoresist 14 is removed. Successively, according to Fig. 5 ', an insulating spacer 160b and source / drain regions 150, 152, 154 are formed on both sides of the gates g1 to G5. Then, a cover layer 70 of a different material from the insulating spacer layer 160b is formed to cover the DRAM area. For example, 'a silicon nitride layer is conformally deposited using a chemical vapor deposition process, and a silicon nitride spacer layer 160b is formed on both sides of the gate electrodes G1 to G5 through a back-etching step, and another side wall of the logic circuit region is formed. The silicon nitride spacer layer 16a, wherein a source /

第8頁 五、發明說明(5) 汲極區150、152、154,或者可透過兩次離子植入步驟以 及選擇以氮化矽間隔層1 60b為罩幕而形成具有淡摻雜區之 源/汲極。接著全面形成一襯墊層1 39,例如以化學氣相沈 積製程,順應性沈積一氮化矽襯墊層139於前述各層表 ' 面,其中,氮化矽襯墊層139為選擇性步驟。 然後,形成一與絕緣間隔層1 6Oa、1 60b不同材料之覆 蓋層1 70 ’以覆蓋DRAM區域。例如利用化學氣相沈積製程 沈積一氧化層以覆蓋邏輯電路區域和DRAM區域,然後經平 坦化步驟如化學機械研磨製程或回蝕刻步驟,使氧化層 1 7 0平坦化。 其次’請參見第6圖,在邏輯電路區域定義一閘極 G 7,以及兩侧之絕緣間隔層1 8 8 a及源/汲極區1 8 0、1 8 2、 184 、 186 。 例如利用微影製程及钱刻步驟依序去除位在邏輯電路 區域之導電層132/134及緩衝層136及硬罩幕層138,接著 定義絕緣層110和導電層112以形成閘極G7。 然後於閘極G7兩側形成絕緣間隔層188a及源/没極區 1 8 0、1 8 2、1 8 4、18 6。例如,先利用化學氣相沈積製程順 應性沈積一氧化層,經回姓刻步驟而於閘極G7兩側形成氧 化物間隔層18 8 a,以及於記憶單元區域之側壁形成另一氧 化物間隔層1 88b ’其中,另透過離子植入步驟可於閘極G7 兩側形成源/沒極區180、182、184、186,或者可透過兩 次離子植入步驟’並選擇以氧化物間隔層188a為罩幕,形 成具有淡摻雜區之源/汲極區。Page 8 V. Description of the invention (5) Drain regions 150, 152, 154, or a source with lightly doped regions can be formed through two ion implantation steps and selection of silicon nitride spacer layer 160b as a mask / Drain. Then, a pad layer 139 is formed in an all-round manner. For example, in a chemical vapor deposition process, a silicon nitride pad layer 139 is compliantly deposited on the surfaces of the foregoing layers. The silicon nitride pad layer 139 is an optional step. Then, a capping layer 1 70 'of a different material from the insulating spacers 16Oa, 1 60b is formed to cover the DRAM area. For example, an oxide layer is deposited using a chemical vapor deposition process to cover the logic circuit area and the DRAM area, and then the oxide layer 170 is planarized by a planarization step such as a chemical mechanical polishing process or an etch-back step. Secondly, please refer to FIG. 6, a gate G 7 is defined in a logic circuit area, and insulating spacer layers 1 8 8 a and source / drain regions 1 8 0, 1 8 2, 184, 186 are defined on both sides. For example, the lithography process and the money engraving step are used to sequentially remove the conductive layers 132/134, the buffer layer 136, and the hard mask layer 138 located in the logic circuit area, and then define the insulating layer 110 and the conductive layer 112 to form the gate G7. Then, an insulating spacer layer 188a and source / inverted regions 1 0 0, 1 8 2, 1 8 4, and 18 6 are formed on both sides of the gate G7. For example, firstly, an oxide layer is compliantly deposited using a chemical vapor deposition process, and an oxide spacer layer 18 8 a is formed on both sides of the gate G7 through the step of engraving, and another oxide spacer is formed on the sidewall of the memory cell region. Layer 1 88b 'wherein, source / inverted regions 180, 182, 184, 186 can be formed on both sides of the gate G7 through an ion implantation step, or through two ion implantation steps' and an oxide spacer layer is selected 188a is a mask, forming a source / drain region with a lightly doped region.

4^6126 五、發明說明(6) 接著’請參見第7圖,利用金屬矽化物製程在閘極 188a及源/汲極區ι80、182、184、ι86表面形成金屬矽化 物層2 0 0。 例如’先全面性形成一金屬層,以覆蓋記憶體單元區-域之覆蓋層170表面以及邏輯電路區域之閘極188&、源/汲 極區180、182、184、186和淺溝槽隔離區(STI)表面,如 以直流(DC)磁控濺鍍製程全面性沈積一具有良好氧吸能力 之金屬層’如金屬鈦、鈷或鉑層,在此以金屬鈦層為例, 其特性為在適當之溫度下’能與矽產生反應形成矽化鈦, 並藉由交互擴散形成低阻值之化合物,因此,在矽和鈦介 面間可形成良好之歐姆接觸。 因此’於沈積金屬層之後,首先係實施一第一熱製 程’如快速熱退火製程(RTP) ’溫度約介於6〇〇°c至650°C 之間。經由此熱退火步驟,鈦和複晶矽閘極G7及源/汲極 ,180、182、184、186表面形成矽化鈦化合物2〇〇。接 著’利用選擇性蝕刻如濕蝕刻製程除去剩餘未與矽反應之 金屬鈦層,其次,實施一第二熱製程’如快速熱退火製程 (RTP) ’溫度約介於goo t至9〇〇。匸之間^經由此熱退火步 驟’在複晶矽閘極G7及源/汲極區1 80、182、184、186表 面之梦化鈦化合物200的阻值可以降低。 然後請參見第8至10圖之半導體製程步驟,以於第“ 圈中’全面性形成襯墊絕緣層21〇及與其不同材料之覆蓋 層220 ’以覆蓋記憶體單元區域和邏輯電路區域,經平坦 化後’在記憶體單元區域形成一穿過覆蓋層丨7〇而與源極/4 ^ 6126 5. Description of the invention (6) Next, referring to FIG. 7, a metal silicide layer 2 0 0 is formed on the surface of the gate 188a and the source / drain regions ι80, 182, 184, and ι86 using a metal silicide process. For example, 'a metal layer is formed comprehensively to cover the surface of the cover layer 170 of the memory cell region-domain and the gate 188 & of the logic circuit region, the source / drain regions 180, 182, 184, 186, and shallow trench isolation. Area (STI) surface, for example, a direct current (DC) magnetron sputtering process is used to fully deposit a metal layer with good oxygen absorption capacity, such as a metal titanium, cobalt or platinum layer. Here, a titanium metal layer is used as an example. In order to be able to react with silicon to form titanium silicide at an appropriate temperature, and to form a low-resistance compound by cross-diffusion, a good ohmic contact can be formed between the silicon and titanium interfaces. Therefore, after the metal layer is deposited, a first thermal process such as a rapid thermal annealing process (RTP) is first performed. The temperature is about 600 ° C to 650 ° C. After this thermal annealing step, the titanium silicide compound 200 is formed on the surfaces of the titanium, the polycrystalline silicon gate G7, and the source / drain electrodes 180, 182, 184, and 186. Then, a selective etching process, such as a wet etching process, is used to remove the remaining titanium metal layer that has not reacted with silicon. Second, a second thermal process, such as a rapid thermal annealing process (RTP), is performed, and the temperature is about goot to 900. Between ^ Through this thermal annealing step, the resistance of the dream titanium compound 200 on the surface of the polycrystalline silicon gate G7 and the source / drain regions 180, 182, 184, and 186 can be reduced. Then, please refer to the semiconductor process steps in FIGS. 8 to 10, in the “circle” to comprehensively form the pad insulation layer 21 and the cover layer 220 of a different material to cover the memory cell area and the logic circuit area. After planarization, a through-layer is formed in the memory cell area and the source /

第10頁 61P.fi_ 五、發明說明(7) ^ 汲極區152、154電性連接的導電材料墊24〇、242,例如摻 雜質複晶石夕材料塾,如下所述。 首先依據第8圖之剖面,先全面性形成一氮氧化矽層 210和覆蓋層220以覆蓋dram區域和邏輯電路區域。例如以 化學氣相沈積製程,先順應性沈積一氮氧化矽襯墊層2 i 〇 於前述各層表面,其中’氮氧化矽襯墊層21〇為選擇性步 驟。然後,利用高密度電漿沈積製程(HDp)沈積一氧化層 220以覆蓋邏輯電路區域*DRAM區域。 _接著請參見第9圖’對氮氧化矽層210和覆蓋層220進 ,平坦化步驟’如化學機械研磨製程或回蝕刻步驟,使覆 蓋層220與記憶單元區域之覆蓋層17〇平坦化。 其次在DRAM區域’利用微影製程及蝕刻步驟並以絕緣 間隔層_160b及硬罩幕層138為罩幕,及利用氮化矽襯墊層 1 3 9。進行蝕刻終點偵測,定義覆蓋層丨7 〇以形成露出源/汲 極區152、154之自我對準接觸窗230、232。 接著請參閱第10圖’形成一導電材料墊240、242,例 如摻雜質複晶矽材料墊’其填入自我對準接觸窗23〇、232 而與源沒極區1 5 2、1 5 4電性連接。 接著請參閱第11圖,完成後續嵌入式動態隨機存取記 憶體之製程。例如形成一與導電材料墊240電性連接之導 電層252,以作為位元線BL,舉例而言,可先全面性形成 絕緣層2 5 0,如以低壓化學氣相沈積法構成的氧化層。 然後,選擇性蝕刻上述絕緣層250以形成露出上述導電材 料墊240b的位元線接觸孔。緊接著,在上述接觸孔形成例Page 10 61P.fi_ V. Description of the invention (7) ^ The pad regions 152, 154 are electrically connected to the conductive material pads 24, 242, such as doped dopedite material, as described below. First, according to the cross-section of FIG. 8, a silicon nitride oxide layer 210 and a cover layer 220 are comprehensively formed to cover the ram area and the logic circuit area. For example, in a chemical vapor deposition process, a silicon oxynitride liner layer 2 i 0 is first conformally deposited on the surfaces of the foregoing layers, and the 'silicon oxynitride liner layer 21o is a selective step. Then, a high density plasma deposition process (HDp) is used to deposit an oxide layer 220 to cover the logic circuit area * DRAM area. _ Next, please refer to FIG. 9 'for planarizing the silicon oxynitride layer 210 and the cover layer 220, such as a chemical mechanical polishing process or an etch-back step, to planarize the cover layer 220 and the cover layer 17 of the memory cell region. Secondly, in the DRAM region ', a lithography process and an etching step are used, and an insulating spacer layer 160b and a hard mask layer 138 are used as a mask, and a silicon nitride liner layer is used. Etch end point detection is performed, and a cover layer is defined to form self-aligned contact windows 230, 232 exposing the source / drain regions 152, 154. Next, please refer to FIG. 10 'form a conductive material pad 240, 242, such as a doped polycrystalline silicon material pad', which is filled with self-aligned contact windows 23 and 232, and is connected to the source and terminal regions 1 5 2, 1 5 4 Electrical connection. Then refer to Figure 11 to complete the subsequent process of embedded dynamic random access memory. For example, a conductive layer 252 electrically connected to the conductive material pad 240 is used as the bit line BL. For example, an insulating layer 250 can be formed comprehensively, such as an oxide layer formed by a low-pressure chemical vapor deposition method. . Then, the insulating layer 250 is selectively etched to form a bit line contact hole exposing the conductive material pad 240b. Next, in the above-mentioned contact hole formation example

Μ ΨΛ «Λ 1 τη \ <Λ I 如複晶矽/矽化鎢所構成的導電層2 52,以當作位元線BL。 然後,全面性形成絕緣層256,以覆蓋絕緣層25〇和作 為位元線BL之導電層252。然後在記憶體單元區域形成一 穿過絕緣層256、250而與導電材料墊242電性連接的電容 器C其中,電容器C 一般係包括複晶石夕構成的插塞254和 下電極266 ’二氧化矽層/氮化矽層/二氧化矽層(〇N〇)所構 成的介電質層264 ;以及複晶矽層所構成的上電極262。 接著’在電容器C完成後,全面性形成厚絕緣層26〇, 例如可選擇以化學氣相沈積製程沈積一氧化層26〇後再 予以平坦化。然後利用氮氧化矽襯墊層2丨〇進行蝕刻終點 偵測,以微影製程和乾蝕刻步驟定義上述絕緣層26()、' 256、250、220和170,用以形成露出源極/汲極186的金屬 梦化物層表面的接觸孔,以及露出閘極以的矽化鎢層丨34 表面的接觸孔。接著,分別在邏輯電路區域形成一與源極 /汲極之一186電性連接的接觸插塞27(),和一與閘極G1的 矽化鎢層134表面電性連接的接觸插塞275 ,例如由金屬鎢 構成之接觸插塞。其次,於絕緣層26〇表面定義形成一金 屬内連線280 ’其電性連接鎢插塞270、275。 本發明所改善之效果包括如下。 (1) 整j在邏輯電路區域之金屬矽化物遛栽和在記憶Μ ΨΛ «Λ 1 τη \ < Λ I is a conductive layer 2 52 composed of polycrystalline silicon / tungsten silicide to be used as a bit line BL. Then, the insulating layer 256 is formed comprehensively to cover the insulating layer 25 and the conductive layer 252 as the bit line BL. A capacitor C is then formed in the memory cell area through the insulating layers 256, 250 and electrically connected to the conductive material pad 242. The capacitor C generally includes a plug 254 composed of polycrystalline stone and a lower electrode 266 '. A dielectric layer 264 composed of a silicon layer / a silicon nitride layer / a silicon dioxide layer (ON); and an upper electrode 262 composed of a polycrystalline silicon layer. Next, after the capacitor C is completed, a thick insulating layer 26 is formed comprehensively. For example, a chemical vapor deposition process may be used to deposit an oxide layer 26 and then planarize it. Then, the silicon nitride oxide liner layer 2 is used for end-of-etch detection. The above-mentioned insulating layers 26 (), '256, 250, 220, and 170 are defined by a lithography process and a dry etching step to form an exposed source / drain. The contact hole on the surface of the metal dream layer of the electrode 186 and the contact hole on the surface of the tungsten silicide layer exposed from the gate. Next, a contact plug 27 () electrically connected to one of the source / drain electrodes 186 and a contact plug 275 electrically connected to the surface of the tungsten silicide layer 134 of the gate G1 are formed in the logic circuit area, respectively. For example, contact plugs made of metal tungsten. Next, a metal interconnect 280 'is defined on the surface of the insulating layer 26, and is electrically connected to the tungsten plugs 270 and 275. The effects improved by the present invention include the following. (1) Metal silicides in the logic circuit area and memory

第12頁 體單元區域之自—我對準接觸窗遭程,可同時使邏輯電路具 有較高之執行-速度…,一I贫 (2) 在邏輟需要分別形 成不同厚度之閉極氮北層。 五'發明說明(9) (3 )在^^電^遲r減需要分別形 成不同寬度之閘極間隔層。 (4) 在邏輯電路區域和記憶箪元區域之源/没極可依需 要分別形成不同之淡摻雜區。 (5) 在邏輯雷路區域和記椅嚴元區域可依需要分別形 $ = 料、厚度之襯塾層Γ以作為定義金過接觸、孔、自 ^對準接觸孔之蝕刻停止層,以防止過度蝕刻之現象發 ΠΕ — Ϊ Ϊ本發明已以較佳實施例揭露如上,缺i A 限尺本發明,任何熟習此項技 …、其並非用以 當視後附之申請專利範者=本發明之保護“Page 12 The self-alignment of the contact area of the body cell area can make the logic circuit have a higher execution-speed at the same time .... (1) It is necessary to form closed polar nitrogen at different thicknesses in the logic drop. Floor. The description of the fifth invention (9) (3) It is necessary to form gate spacers of different widths at the time of delay. (4) In the logic circuit region and the memory cell region, different lightly doped regions may be formed respectively as required. (5) In the area of the logical mine road and the area of the chair, the lining layer Γ of material and thickness can be separately formed as the etch stop layer that defines the gold over-contact, hole, and self-aligned contact hole. To prevent the phenomenon of overetching. Π — 较佳 Ϊ The present invention has been disclosed in the preferred embodiment as above. Without the i A limiter of the present invention, anyone who is familiar with this technology ... is not intended to be used as a patent application attached to the attached = Protection of the invention "

Claims (1)

六、申請專利範圍 1· 一種整合金屬碎化物與自戒 法,其包括下列步驟: 、準接觸窗之製造方 底 a)定義一具有記憶體單元區 域和邏輯電路區域之基 (b)在該記憶體單元區域形成—ts & β β # &战 頂層具有硬罩幕層且 兩側具有第一絕緣間隔層之第一閘極,以及一第一源〆汲 極區, (c) 形成一與該第一絕緣間隔層不同材料之一第一覆 蓋層,以覆蓋該記憶體單元區域; (d) 在該邏輯電路區域形成一兩侧具有一第二絕緣間 隔層之第二閘極’以及一第二源/没極區; (e) 在該第"一問極及第二源/沒極區表面形成金屬碎化 物層; (f) 形成一第二覆蓋層以覆蓋該邏輯電路區域;及 (g) 以該第一閘極之第一絕緣間隔層及硬罩幕層為罩 幕’定義該第一覆蓋層以形成露出該第一源/汲極區之自 我對準接觸窗。 2.如申請專利範圍第1項所述之製造方法,其中於步 驟(b),該記憶體單元區域之第一閘極頂層包括氮化矽硬 罩幕層。 3_如申請專利範圍第2項所述之製造方法,其中於步 驟(b),該記憶體單元區域之第〆閘極兩側包括一氮化矽 間隔層。 4.如申請專利範圍第3項所述之製造方法,其令於步 61266. Scope of Patent Application 1. An integrated metal fragmentation and self-discipline method, which includes the following steps: 1. Manufacturing of the quasi-contact window a) Define a base with a memory cell area and a logic circuit area (b) in the memory Body unit region formation-ts & β β # & war gate top layer with hard cover and first insulation spacer on both sides, and a first source / drain region, (c) forming a A first covering layer of a different material from the first insulating spacer layer to cover the memory cell region; (d) forming a second gate electrode having a second insulating spacer layer on both sides of the logic circuit region; and A second source / dead region; (e) forming a metal debris layer on the surface of the first and second source / dead regions; (f) forming a second cover layer to cover the logic circuit region And (g) using the first insulating spacer layer of the first gate electrode and the hard mask layer as a mask to define the first cover layer to form a self-aligned contact window exposing the first source / drain region. 2. The manufacturing method according to item 1 of the scope of patent application, wherein in step (b), the first gate top layer of the memory cell region includes a silicon nitride hard mask curtain layer. 3_ The manufacturing method as described in item 2 of the patent application scope, wherein in step (b), both sides of the third gate of the memory cell region include a silicon nitride spacer layer. 4. The manufacturing method described in item 3 of the scope of patent application, which is executed in step 6126. 驟(c),該第一覆蓋層為氧化層。 5·如申請專利範圍第1項所述之製造方法,其中於步 驟(b)’更包括順應性形成一襯蛰唐之步驟。 * 6. 如申請專利範圍第5項所述之製造方法,其中於步 驟(b ),該襯墊層為氤化矽層。 7. 如申請專利範圍第1項所述之製造方法,其中於步 驟(d),該邏輯電路區域之第二閘極兩側包括—氧化物& 隔層。 8. 如申請專利範圍第7項所述之製造方法,其中於步 称(e) ’該金屬妙化物層為;b夕化然層。 9. 如申請專利範圍第8項所述之製造方法,其中於步 驟(e) ’更包括順應性形成一襯蛰層之步驟。 10. 如申請專利範園第9項所述之製造方法,其中於步 棘(e) ’該襯塾層為氮氧化妙層。 11·如申請專利範圍第10項所述之製造方法,其中於 步驟(f),該第二覆蓋層為高密度電漿氧化層。 12. —種整合金屬矽化物與自我對準接觸窗之製造方 法’適用於一具有記憶體單元區域和邏輯電路區域之基 底,其包括下列步驟: Ca)在該邏輯電路區域形成一第一絕緣層和一第一導 電層; (b)全面性形成一第二絕緣層、一第二導電層及一硬 罩幕層; (Ο定義該第二絕緣層、第二導電層、及硬罩幕層,Step (c), the first covering layer is an oxide layer. 5. The manufacturing method as described in item 1 of the scope of patent application, wherein step (b) 'further includes a step of forming a lining according to compliance. * 6. The manufacturing method as described in item 5 of the scope of patent application, wherein in step (b), the pad layer is a siliconized silicon layer. 7. The manufacturing method according to item 1 of the scope of patent application, wherein in step (d), both sides of the second gate electrode of the logic circuit region include an oxide & barrier layer. 8. The manufacturing method as described in item 7 of the scope of patent application, wherein in step (e) ′, the metal oxide layer is; b. 9. The manufacturing method according to item 8 of the scope of patent application, wherein step (e) 'further includes a step of forming a lining layer conformably. 10. The manufacturing method according to item 9 of the patent application park, wherein in step (e) ′, the liner layer is an oxynitride layer. 11. The manufacturing method according to item 10 of the scope of patent application, wherein in step (f), the second covering layer is a high-density plasma oxide layer. 12. —A method for manufacturing a metal silicide and a self-aligned contact window 'is applicable to a substrate having a memory cell region and a logic circuit region, and includes the following steps: Ca) forming a first insulation in the logic circuit region Layer and a first conductive layer; (b) comprehensively forming a second insulating layer, a second conductive layer, and a hard mask layer; (0) defining the second insulating layer, the second conductive layer, and the hard mask layer layer, 416126416126 六'申請專利範圍 以在該記憶體單元區域形成一第一閘極; (d)於該第一閘極兩侧形成一第一絕緣間隔層及 源/ >及極區, C e)形成一與該第一絕緣間隔層不同材料之第二絕緣 層,以覆蓋該記憶體單元區域; CO去除在該邏輯電路區域留下之該第二絕緣層、 二導電層及硬罩幕層,並定義該第一絕緣層和第一 以形成一第二閘極; β (g)於該第二閘極兩側形成第二絕緣間隔層及第二源/ (h) 在該第二閘極及第二源/汲極區表面形成金屬妙化 物層; (i) 形成一第四絕緣層以覆蓋該邏輯電路區域·,及 (j) 以該第一絕緣間隔層及硬罩幕層為罩幕,定義第 三絕緣層以形成露出第一源/汲極區之自我對準接觸窗。 13·如申請專利範圍第12項所述之製造方法,其中於 步驟(a) ’該第一絕緣層為氧化層’該第一導電層為複晶 矽層。 14.如申請專利範圍第13項所述之製造方法,其中於 步驟(b) ’該第二絕緣層為氧化層’該第二導電層為複晶 石夕層,該硬罩幕層為氮化;5夕層。 15·如申請專利範圍第14項所述之製造方法’其中於 步驟(d) ’該第一絕緣間隔層為氮化石夕間隔層。 16.如申請專利範圍第15項所述之製造方法’其中於Six 'application for patent scope to form a first gate electrode in the memory cell area; (d) forming a first insulating spacer layer and source / > and pole regions on both sides of the first gate electrode, C e) formation A second insulation layer of a different material from the first insulation spacer layer to cover the memory cell area; the CO removes the second insulation layer, the two conductive layers and the hard cover curtain layer left in the logic circuit area, and Define the first insulating layer and the first to form a second gate; β (g) form a second insulating spacer and a second source on both sides of the second gate / (h) between the second gate and A metal oxide layer is formed on the surface of the second source / drain region; (i) a fourth insulating layer is formed to cover the logic circuit area; and (j) the first insulating spacer layer and the hard mask layer are used as the mask A third insulating layer is defined to form a self-aligned contact window exposing the first source / drain region. 13. The manufacturing method according to item 12 of the scope of patent application, wherein in step (a) 'the first insulating layer is an oxide layer' and the first conductive layer is a polycrystalline silicon layer. 14. The manufacturing method according to item 13 of the scope of patent application, wherein in step (b), 'the second insulating layer is an oxide layer', the second conductive layer is a polycrystalline stone layer, and the hard mask layer is nitrogen. Transformation; 5th floor. 15. The manufacturing method according to item 14 of the scope of the patent application, wherein in step (d), the first insulating spacer layer is a nitride nitride spacer layer. 16. The manufacturing method described in item 15 of the scope of patent application, wherein 416126 六、申請專利範圍 步驟(d),更包括順應性沈積一氮化矽襯墊層之步騾。 1 7.如申請專利範圍第1 6項所述之製造方法,其中於 步驟(e),該第三絕緣層為氧化層。 18. 如申請專利範圍第17項所述之製造方法,其中於 步驟(g ),該第二絕緣間隔層為氧化矽間隔層。 19. 如申請專利範圍第18項所述之製造方法,其中於 步驟(g ),更包括順應性沈積一氮氧化矽襯墊層之步驟。 20. 如申請專利範圍第19項所述之製造方法,其中於 步驟(i ),該第四絕緣層為氧化矽層。416126 VI. Scope of Patent Application Step (d) further includes the step of compliantly depositing a silicon nitride liner layer. 17. The manufacturing method as described in item 16 of the scope of patent application, wherein in step (e), the third insulating layer is an oxide layer. 18. The manufacturing method according to item 17 of the scope of patent application, wherein in step (g), the second insulating spacer layer is a silicon oxide spacer layer. 19. The manufacturing method according to item 18 of the scope of patent application, wherein the step (g) further comprises a step of compliantly depositing a silicon nitride oxide liner layer. 20. The manufacturing method according to item 19 of the scope of patent application, wherein in step (i), the fourth insulating layer is a silicon oxide layer. 第17頁Page 17
TW88110214A 1999-06-17 1999-06-17 Manufacturing method for integrating metal silicide and self-aligned contact TW416126B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88110214A TW416126B (en) 1999-06-17 1999-06-17 Manufacturing method for integrating metal silicide and self-aligned contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88110214A TW416126B (en) 1999-06-17 1999-06-17 Manufacturing method for integrating metal silicide and self-aligned contact

Publications (1)

Publication Number Publication Date
TW416126B true TW416126B (en) 2000-12-21

Family

ID=21641172

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88110214A TW416126B (en) 1999-06-17 1999-06-17 Manufacturing method for integrating metal silicide and self-aligned contact

Country Status (1)

Country Link
TW (1) TW416126B (en)

Similar Documents

Publication Publication Date Title
US6326270B1 (en) Methods of forming integrated circuit memory devices using masking layers to inhibit overetching of impurity regions and conductive lines
US5677557A (en) Method for forming buried plug contacts on semiconductor integrated circuits
KR100768642B1 (en) Semiconductor device and method for producing the same
US20050093147A1 (en) Structure for reducing leakage currents and high contact resistance for embedded memory and method for making same
US20030013253A1 (en) Optimized flash memory cell
JP3563530B2 (en) Semiconductor integrated circuit device
US7524756B2 (en) Process of forming a semiconductor assembly having a contact structure and contact liner
KR970003953A (en) Highly Integrated DRAM Cells and Manufacturing Method Thereof
JP2000114471A (en) Semiconductor device and manufacture thereof
KR20080114735A (en) Silicided nonvolatile memory and method of making same
US6211012B1 (en) Method of fabricating an ETOX flash memory
JP2006041276A (en) Semiconductor device and its manufacturing method
JP4751705B2 (en) Manufacturing method of semiconductor device
JP2001257325A (en) Semiconductor memory and its manufacturing method
JP2001044433A (en) Manufacture of semiconductor element
US6815762B2 (en) Semiconductor integrated circuit device and process for manufacturing the same including spacers on bit lines
JPH1187529A (en) Integrated circuit contact
JP3963629B2 (en) Semiconductor device and manufacturing method thereof
US5960280A (en) Method of fabricating a fin/cavity capacitor structure for DRAM cell
US20040195607A1 (en) Method of reducing erosion of a nitride gate cap layer during reactive ion etch of nitride liner layer for bit line contact of DRAM device
US6569735B2 (en) Manufacturing method for isolation on non-volatile memory
TW416126B (en) Manufacturing method for integrating metal silicide and self-aligned contact
US7179744B2 (en) Method for fabricating semiconductor device
KR100403329B1 (en) A method for forming a bit line of a semiconductor device
US20020197801A1 (en) Method for forming a single wiring level for transistors with planar and vertical gates on the same substrate

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent