TW415009B - Two-stage fabrication method of void free dielectrics - Google Patents

Two-stage fabrication method of void free dielectrics Download PDF

Info

Publication number
TW415009B
TW415009B TW88106267A TW88106267A TW415009B TW 415009 B TW415009 B TW 415009B TW 88106267 A TW88106267 A TW 88106267A TW 88106267 A TW88106267 A TW 88106267A TW 415009 B TW415009 B TW 415009B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
layer
semiconductor
semiconductor substrate
dielectric
Prior art date
Application number
TW88106267A
Other languages
Chinese (zh)
Inventor
Huang-Huei Wu
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW88106267A priority Critical patent/TW415009B/en
Application granted granted Critical
Publication of TW415009B publication Critical patent/TW415009B/en

Links

Abstract

This invention relates to a two-stage fabrication method of void free dielectrics. The present invention is different from the prior art, which directly forms a dielectric layer on a surface with semiconductor structures, in that two dielectric layers are employed to cover on the surface of the semiconductor structures. The two dielectric layers, i.e., the upper dielectric layer and the lower dielectric layer are used to cover a substrate having a plurality of structures formed thereon. The lower dielectric layer is substantially uniform to cover the structures. The deposition rate of the upper dielectric layer on the surface and the sidewall of the structures is relatively low to prevent the formation of overhang such that a void can be not be produced. With such a process, the lower and the upper dielectric layers are void-free dielectric layers.

Description

415009 五、發明說明(1) 5-1發明領域: 本發明係有關於介電質層的形成方法,特別是有關於 利用兩段式形成來產生無孔隙(v〇id free)介電質層的方 法0 5-2發明背景: 在積體電路的製程中,介電質材料是一種用途很廣的 材料,其用途至少有覆蓋半導體結構、形成保護層和形成 内介電層(interlayer dielectric, ILD)。當然,每—個 介電質層所使用的介電質材料都是取決於該介電質的用途 在 都是形 於半導 至少包 平坦化 然地, 此很有 間隙1 3 15的上 介電質 大多數的習 成在半導體 體底材1 0上 括閘極、電 、微影I虫刻 由於在部份 可能在介電 的位置β另 表面1 6通常 層1 5的穩定 底材10 的半導 極與内 等程序 的半導 質層15 外,半 是平坦 中’如第一圖 的表面11上, 體結構12。可 連線。當介電 會被應用來處 體結構1 2之間 t形成孔隙1 4 導體底材10的 化的,藉以確 並覆蓋 能的半 質層15 理介電 會出現 ’特別 表面11 保半導 介電質層15 所有已存在 導體結構1 2 形成後,像 質層1 5。顯 間隙1 3 ,因 是在對應至lj 與介電質層 體結構12與 415009 五、發明說明(2) 由於介電質層15的材料與形成方法都取決於介電質層 1 5的用途,因此孔隙1 4往往是不能藉由改變介電質層1 5的 材料與形成方法來消除的。一個重要的例子是内介電層( inter-level dielectric, ILD),一 般而言由於四氧乙基 矽(tetraethyl-〇rthossilicate,TEOS)的階梯覆蓋性( step-coverage)較矽烷(SiH4)佳,而且攙入硼、磷等可以 有效降低玻璃轉移溫度(glass transition temperature ),因此内介電層通常是以硼磷四氧乙基矽(b〇r〇ph〇sph tetraethy卜orthossi 1 icate,BPTE0S )所形成的。但受限 於删4四氧乙基石夕的熱流動性,往往會在半導體結構1 2之 間形成孔隙14,特別是當間隙13的深寬比(aspect)大時。 而在隨後的接觸(contact)製程中,孔隙14的存在會導致 不同接觸之間的不正常短路等缺陷。 根據上述的討論,如何形成無孔隙的介電質層是積體 電路製程中一個重要的課題。特別是如 的内介電層以防止因孔隙所引發的不正常短…孔隙 5 - 3發明目的及概述: 本發明的主要目地是提出 方法。 本方法進一步的目地是提 來形成無孔隙介電質層的方法 —種形成無孔隙介電質層的 出一種利用兩階段形成程序415009 V. Description of the invention (1) 5-1 Field of the invention: The present invention relates to a method for forming a dielectric layer, and more particularly to the use of two-stage formation to generate a void free dielectric layer. Method 0 5-2 Background of the Invention: In the manufacturing process of integrated circuits, a dielectric material is a material with a wide range of uses, at least for covering semiconductor structures, forming protective layers, and forming interlayer dielectric (interlayer dielectric, ILD). Of course, the dielectric material used in each dielectric layer depends on the use of the dielectric. The dielectric material is shaped like a semiconductor and at least flattened. This has a gap of 1 3 15 Most of the electrical quality is used to include the gate, electricity, and lithography on the substrate 10 of the semiconductor body. Since it may be at a dielectric position in some parts, the other surface is 1, and the stable layer is usually a layer of 15. 10 The semiconducting electrode and the semiconducting layer 15 of the inner and outer procedures are semi-flat, as shown on the surface 11 of the first figure, and the body structure 12. Can be connected. When the dielectric will be applied to form a void between the body structure 12 and the conductor substrate 10, the semi-massive layer to confirm and cover the energy 15 physical dielectric will appear 'special surface 11 semi-conducting dielectric After the electro-mass layer 15 is formed, all the existing conductor structures 12 are formed, and the photo-mass layer 15 is formed. The apparent gap 1 3 is because it corresponds to lj and the dielectric layer structure 12 and 415009. V. Description of the invention (2) Since the material and the forming method of the dielectric layer 15 depend on the purpose of the dielectric layer 15 Therefore, the pores 14 cannot be eliminated by changing the material and forming method of the dielectric layer 15. An important example is the inter-level dielectric (ILD). Generally, the step-coverage of tetraethyl-〇rthossilicate (TEOS) is better than that of silane (SiH4). Moreover, the incorporation of boron, phosphorus, etc. can effectively reduce the glass transition temperature. Therefore, the internal dielectric layer is usually boron phosphorus tetraoxyethyl silicon (orthossi 1 icate, BPTE0S). ). However, due to the thermal fluidity of the tetraoxoethoxylate, pores 14 are often formed between the semiconductor structures 12, especially when the aspect ratio of the gap 13 is large. In the subsequent contact process, the existence of the pores 14 may cause defects such as abnormal short circuits between different contacts. According to the above discussion, how to form a non-porous dielectric layer is an important issue in the fabrication of integrated circuits. In particular, an inner dielectric layer such as is used to prevent abnormal shortness caused by pores ... pores 5-3 Purpose and Summary of the Invention: The main purpose of the present invention is to propose a method. A further purpose of this method is to provide a method for forming a non-porous dielectric layer--a method for forming a non-porous dielectric layer--a method using a two-stage formation process

415009 五、發明說明(3) 此外,本方法的一個特別目地是提出一種利用兩段式 沉積分別形成蝴磷石夕玻璃層和四氧乙基石夕層,進而形成無 孔隙内介電層的方法。 二了洋田說明本發明的目地,—種藉由兩階段形成來 製造無孔隙介電質層的方法被提出。t亥方法至少包括下列 的步驟· 连种成一些半導體元件在一半導體底材中,該半 導體底材的表面通常是已平坦化的。 ^ 一,形成多數個半導體結構在半導體底材的表面之 上’在各半導體結構之間存在有多數個間隙。 古a础形成第—介電質層在半導體底材上,並覆蓋所 整刭佶装:結# ’第一介電質層的厚度與形成過程必需調 整到使其為一均勻覆蓋的介電質層。 二八思ΐ第:介電質層上形成-第二介電質層。該第 Ζ& 、戎半導體結構上方與該半導體結構側壁之沉 孔隙^ i t而低到使得其不會形成任何孔隙。因此形成415009 V. Description of the invention (3) In addition, a special purpose of this method is to propose a method for forming a butterfly phosphate glass layer and a tetraoxoethyl stone layer by two-stage deposition, thereby forming a non-porous dielectric layer . Yoda explained the purpose of the present invention, and a method for manufacturing a non-porous dielectric layer by two-stage formation was proposed. The tH method includes at least the following steps: Continuously seeding some semiconductor elements in a semiconductor substrate, the surface of the semiconductor substrate is usually flattened. ^ First, forming a plurality of semiconductor structures above the surface of the semiconductor substrate ′ There are a plurality of gaps between the semiconductor structures. Ancient foundations form the first dielectric layer on the semiconductor substrate and cover the entire assembly: the junction and the thickness of the first dielectric layer must be adjusted to form a uniformly covered dielectric. Stratum. 28th thought: the second dielectric layer is formed on the dielectric layer. The pores ^ i t above the Zr semiconductor structure and the sidewalls of the semiconductor structure are so low that they do not form any pores. Thus formed

Lit 效地消除,而形成無孔隙的介電質層。 例至+勺L的特別目地是以下面的實施例所說日月,該實施 例至少包括下列的步驟: 個半U體=*:半導體底材,在此半導體底材中存在多數 多數個半導體結構在半導體底材的表面之上 在义广導體結構之間存在有多數個間隙。 (3)使用電渡化學氣相沉積法(plasraa enhancedLit is effectively eliminated to form a non-porous dielectric layer. The special purpose of the example to + spoon L is the sun and moon described in the following embodiment. This embodiment includes at least the following steps: U and a half U body = *: semiconductor substrate, in which there are most and most semiconductors. The structure has a plurality of gaps between Yoshihiro conductor structures above the surface of the semiconductor substrate. (3) using electrochemical chemical vapor deposition (plasraa enhanced

第6頁 415009 五、發明說明(4) chemical vapor deposition,PECVD )形成一厚度約為 1500埃到4000的四氧乙基梦層在此半導體底材上並覆蓋所 有的半導體結構β (4)使用常壓化學氣相沉積法(atmospheric pressure chemical vapor deposition, APCVD)在四氧乙 基矽層上形成一厚度約為8000埃到12000埃的硼磷四氧乙 基矽層。 5-4圖式簡單說明: 第顯示了習知技術中’在介f質層中形成? L I5宋 的機制; 第二A圖到第二B圖顯示了本發明之一實施例的橫截 面圖;和 第三A圖到第三C圖顯示了本發明之另一實施例的橫 截面圖。 主要部份之代表符號: 10 半導體底材 11 表面 12 半導體結構 13 間隙 14 孔隙Page 6 415009 V. Description of the invention (4) Chemical vapor deposition (PECVD) forms a tetraoxyethyl dream layer with a thickness of about 1500 angstroms to 4000 on this semiconductor substrate and covers all semiconductor structures β (4) Use Atmospheric pressure chemical vapor deposition (APCVD) forms a borophosphotetraoxyethyl silicon layer with a thickness of about 8000 angstroms to 12,000 angstroms on the tetraoxyethyl silicon layer. 5-4 Schematic illustration: Section 1 shows the formation of 'in the mesogenic layer' in the conventional technique? L I5 Song mechanism; Figures A to B show cross-sections of one embodiment of the present invention; and Figures A to C show cross-sections of another embodiment of the present invention Illustration. Symbols of main parts: 10 semiconductor substrate 11 surface 12 semiconductor structure 13 gap 14 pore

五、發明說明 415009V. Description of the invention

15 16 20 21 22 23 24 25 30 31 32 33 34 35 36 介電質層 上表面 半導體底材 表面 半導體結構 第一介電質層 間隙 第二介電質層 半導體底材 表面 半導體結構 間隙 四氧乙基矽層 硼磷矽玻離層 頂表面 明 5 - 5發明§羊細說 p勺:11第二A圖所巾’多數個半導體結構22係形成在 已包含多數個半導體元件的半導體底材20之上,而且在半 導體結構22之間也存在多數個間隙24。可能的半導體元 至少包括閘極、隔離層、源極與汲極,而可能的半導體結 構22至少包括内連線、電極和金氧半電晶體。此外,半導15 16 20 21 22 23 24 25 30 31 32 33 34 35 36 Dielectric layer upper surface semiconductor substrate surface semiconductor structure first dielectric layer gap second dielectric layer semiconductor substrate surface semiconductor structure gap tetraoxane The top surface of the base silicon layer borophosphosilicate glass ionospheric layer is 5-5 inventions § Sheep details p spoon: 11 The second A picture shows the majority of semiconductor structures 22 is formed on the semiconductor substrate that already contains the majority of semiconductor elements 20 There are also a plurality of gaps 24 between the semiconductor structures 22. A possible semiconductor element includes at least a gate, an isolation layer, a source, and a drain, and a possible semiconductor structure 22 includes at least an interconnect, an electrode, and a metal-oxide semiconductor transistor. In addition, semiconducting

第8頁 415009 五、發明說明(6) 體底材2 0的表面2 1通常是已被平坦化的以確保半導體結構 2 2的穩定性’特別是在多層結構中更必須作平坦化處理。 接下來,在半導體底材2〇的表面21上形成第一介電質 層23,在此第一介電質層23也覆蓋了所有的半導體結構2 2 。必需注意的是第一介電質層2 3的厚度必需足夠薄以有效 防止突懸(overhang)的形成,這個厚度的上限是取決於間 隙24的深寬比。因此第一介電質層23通常為一均勻覆蓋的 介電質層’而且一般是以化學氣相沉積法所形成的。 然後參照第二B圖,形成第二介電質層2 5在第一介電 質層23之上’並填滿所有的間隙24。第二介電質層25的材 料與製程必需使得第二介電質層25在半導體結構22上方與 半導體結構2 2侧壁之沉積速率比,足夠低到不會形成任何 的孔隙。因此’間隙24完全為第一介電質層22和第二介電 質層25所填滿,並且無孔隙的介電質層也形成在半導體底 材20之上。當然大多數的情形下,第二介電質層25是以化 學氣相沉積法所形成。 本發明一個重要且特別的應用是内介電層。在習知製 程中内介電層通常是用能降低玻璃轉移溫度的硼磷四氧乙 ,矽所形成。無論如何,當硼磷四氧乙基矽層被用來覆蓋 、不均勻的表面時,往往會在硼磷四氧乙基矽層中形成孔 隙,而使得隨後的金屬栓塞等製程發生短路等瑕疵。為了 2除這些缺失’本發明被應用來以兩階段沉積形成無孔洞 的内介電層。 第一,如第三A圖所示,形成多數個半導體結構32在Page 8 415009 V. Description of the invention (6) The surface 2 1 of the body substrate 20 is usually planarized to ensure the stability of the semiconductor structure 2 2 ′, especially in a multilayer structure, it must be planarized. Next, a first dielectric layer 23 is formed on the surface 21 of the semiconductor substrate 20, where the first dielectric layer 23 also covers all the semiconductor structures 2 2. It must be noted that the thickness of the first dielectric layer 23 must be sufficiently thin to effectively prevent the formation of overhangs. The upper limit of this thickness depends on the aspect ratio of the gap 24. Therefore, the first dielectric layer 23 is usually a uniformly covered dielectric layer 'and is generally formed by a chemical vapor deposition method. Then referring to the second B diagram, a second dielectric layer 25 is formed on the first dielectric layer 23 'and fills all the gaps 24. The material and process of the second dielectric layer 25 must be such that the ratio of the deposition rate of the second dielectric layer 25 above the semiconductor structure 22 to the sidewalls of the semiconductor structure 22 is sufficiently low to not form any pores. Therefore, the 'gap 24 is completely filled with the first dielectric layer 22 and the second dielectric layer 25, and a non-porous dielectric layer is also formed on the semiconductor substrate 20. Of course, in most cases, the second dielectric layer 25 is formed by a chemical vapor deposition method. An important and particular application of the present invention is an internal dielectric layer. In the conventional process, the internal dielectric layer is usually formed by using boron phosphorus tetraoxoethane and silicon which can reduce the glass transition temperature. In any case, when the borophosphotetraoxyethyl silicon layer is used to cover an uneven surface, pores are often formed in the borophosphotetraoxyethyl silicon layer, which causes defects such as short circuits in subsequent processes such as metal plugs. . In order to eliminate these defects', the present invention is applied to form a void-free inner dielectric layer in two stages of deposition. First, as shown in FIG. 3A, a plurality of semiconductor structures 32 are formed.

第9頁 415008Page 9 415008

已包含多數個半導體元件的半導體底材3〇上,在半導體鈇 構32相互之間也存在多數個間隙33。可能的半導體元件^ 少包括閘極、隔離層、源極與汲極,而可能的半導體结構 32至少包括内連線、電極和金氧半電晶體。此外,半導體 底材30的表面31通常是已平坦化的,藉以確保半導體結構 32的穩定性。 第一,如第二B圖所示,形成四氧乙基矽層34在表面 31之上並覆蓋住所有的半導體結構32。四氧乙基矽層34是 以電漿化學氣相沉積法在2_ 2托耳的壓力及41 〇 t的溫度下 所形成的’其厚度約為1 5 0 0埃到4 〇 〇 〇埃。值得注意的是由 於四氧乙基矽層34的厚度是薄到可以有效減少突懸的形成 ,因此在四氧乙基矽層3 4中不會有任何的孔隙。當然,四 氧乙基紗層34貫際的厚度基本上是取決於間隙33的深寬比 第三’如第三C圖所示’形成硼磷矽玻離層35在四氧 乙基石夕層3 4之上,删填石夕玻離層3 5的厚度必需高於每一個 半導體結構3 2的高度。在此實施例中,硼磷矽玻離層3 5是 以常壓化學氣相沉積法在1大氣壓的壓力及4 3 〇 °c到4 5 0 t: 的溫度下所形成的,其典型厚度大約為8 〇 〇 〇埃到1 2 0 0 0埃 。再者’硼麟矽玻璃層35中爛所占的重量百分比約為4.4 %到5 % ’而磷所占的百分比約為3 · 4 %到3. 6 %。值得注 意的是硼磷矽玻璃層35在半導體結構32之上方與半導體結 構3 2之側壁之沉積速率比’必需較同厚度之棚填四氧乙基 石夕層的沉積速率比還來得小。因此雖然在習知的内介電層On the semiconductor substrate 30 which already includes a plurality of semiconductor elements, there are also a plurality of gaps 33 between the semiconductor structures 32. The possible semiconductor elements ^ rarely include a gate, an isolation layer, a source, and a drain, and the possible semiconductor structure 32 includes at least interconnects, electrodes, and metal-oxide semiconductors. In addition, the surface 31 of the semiconductor substrate 30 is usually planarized, thereby ensuring the stability of the semiconductor structure 32. First, as shown in FIG. 2B, a tetraoxyethyl silicon layer 34 is formed on the surface 31 and covers all the semiconductor structures 32. The tetraoxyethyl silicon layer 34 is formed by a plasma chemical vapor deposition method at a pressure of 2-2 Torr and a temperature of 4100 t, and has a thickness of about 15,000 angstroms to 4,000 angstroms. It is worth noting that because the thickness of the tetraoxyethyl silicon layer 34 is thin enough to effectively reduce the formation of overhangs, there will not be any pores in the tetraoxyethyl silicon layer 34. Of course, the thickness of the tetraoxyethyl yarn layer 34 is basically determined by the aspect ratio of the gap 33. The third 'as shown in the third C figure' forms a borophosphosilicate glass separation layer 35 in the tetraoxyethyl stone layer. Above 3 4, the thickness of the cut-off layer 30 5 must be higher than the height of each semiconductor structure 32. In this embodiment, the borophosphosilicate glass delamination layer 35 is formed by atmospheric pressure chemical vapor deposition method at a pressure of 1 atmosphere and a temperature of 4 300 ° C to 4 5 0 t: Approximately 8000 angstroms to 12,000 angstroms. Furthermore, the weight percentage of rotten borosilicate glass layer 35 is about 4.4% to 5%, and the percentage of phosphorus is about 3.4% to 3.6%. It is worth noting that the deposition rate ratio of the borophosphosilicate glass layer 35 above the semiconductor structure 32 and the sidewalls of the semiconductor structure 32 must be smaller than the deposition rate ratio of the shed-filled tetraoxetane layer of the same thickness. So although in the conventional inner dielectric layer

第10頁 415009 五、發明說明(8) 製程t,硼磷四氧乙基矽層 磷矽玻璃層3 5中突懸的形成 間隙33的硼磷矽玻璃層35是 全為四氧乙基矽層34與硼磷 氧乙基矽層34與硼磷矽玻璃 的内介電層。另外,由於内 之間,因此硼磷矽玻璃層3 5 坦化的處理 。 以上所述僅為本發明之 施例僅係用來說明而非用以 在不脫離本發明之實質内容 實施’此等變化應仍屬本發 疇係由以下之申請專利範圍 中會出現突懸與孔隙,但在蝴 可以有效的房止並進而使填入 無孔隙的》因此,間隙3 3係完 矽玻璃層3 5所填滿的,並且四 層3 5二者可共同形成一無孔隙 介電層是位於兩層相鄰的結構 的頂表面3 6通常也必需家以平 二個較佳實施例而已,這些實 限定本發明之申請專利範圍。 的範疇内仍可予以便化而加以 明之範圍。因此,本發明之範 所界定。Page 10 415009 V. Description of the invention (8) In the process t, the borophosphosilicate glass layer 35 which is suspended in the borophosphotetraoxyethyl silicon layer phosphosilicate glass layer 35 to form the gap 33 is all tetraoxyethyl silicon The layer 34 and the borophospho oxyethyl silicon layer 34 and the inner dielectric layer of the borophosphosilicate glass. In addition, because of the inner space, the borophosphosilicate glass layer 3 5 is treated in a frank manner. The above description is only an example of the present invention and is only used for illustration and not for implementation without departing from the substance of the present invention. 'These changes should still belong to the scope of this invention. And voids, but in the butterfly can effectively stop and then fill the non-porosity. Therefore, the gap 3 3 is filled with the silica glass layer 35, and the four layers 3 5 can form a non-porosity together. The dielectric layer is located on the top surface 36 of the two adjacent structures. Usually, the two preferred embodiments are only flat, which really limits the scope of the patent application of the present invention. The scope of the scope can still be clarified. Therefore, the scope of the present invention is defined.

Claims (1)

415009 六、申請專利範圍 1 . 一種兩段式形成無孔隙介電質層的方法,該方法至少包 括: 提供一半導體底材中; 形成多數個半導體結構在該半導體底材的表面上,在 此有多數個間隙介於各半導體結構之間; 形成一第一介電質層在該半導體底材上並覆蓋所有的 該半導體結構’該第一介電質層的厚度係足夠薄而使得該 第一介電質層中不存在任何孔隙;和 形成一第一介電質層在該第一介電質層之上,使得該 多數個間隙皆被該第一介電質層與該第二介電質層所填滿 2.如申請專利範圍第1項之方法,該第二介電質層在該半 導體結構上方與該半導體結構側壁之沉積速率比’必需低 到使得其不會形成任何孔隙。 3,一種以兩段式沉積形成無孔隙之内介電層的方法,該方 法至少包括: 提供一半導體底材中; 形成多數個半導體結構在該半導體底材的表面上,在 有多數個間隙介於各半導體結構之間; 諛積一四氧乙基矽層在該半導體底材上並覆蓋所有的 ^午導體結構,該四氧乙基矽層是一均勻覆蓋的介電質層 ,和415009 VI. Scope of patent application 1. A two-stage method for forming a non-porous dielectric layer, the method at least comprises: providing a semiconductor substrate; forming a plurality of semiconductor structures on the surface of the semiconductor substrate, here There are a plurality of gaps between the semiconductor structures; a first dielectric layer is formed on the semiconductor substrate and covers all the semiconductor structures; the thickness of the first dielectric layer is thin enough that the first dielectric layer There is no void in a dielectric layer; and a first dielectric layer is formed on the first dielectric layer, so that the plurality of gaps are both by the first dielectric layer and the second dielectric The dielectric layer is filled 2. As in the method of claim 1 of the patent application, the deposition rate of the second dielectric layer above the semiconductor structure and the sidewall of the semiconductor structure must be low enough so that it does not form any pores . 3. A method for forming a non-porous inner dielectric layer by two-stage deposition, the method at least comprising: providing a semiconductor substrate; forming a plurality of semiconductor structures on the surface of the semiconductor substrate, and having a plurality of gaps Interposed between each semiconductor structure; a tetraoxyethyl silicon layer is deposited on the semiconductor substrate and covers all of the semiconductor structure, the tetraoxyethyl silicon layer is a uniformly covered dielectric layer, and 第12頁 415009 六、申請專利範圍 形成一硼磷矽玻璃層在該四氧乙基矽層之上,使得該 多數個間隙皆被該四氧乙基矽層層與該硼磷矽玻璃層所填 滿。 4, 如申請專利範圍第3項之方法,其中上述之四氧乙基矽 層係以電漿化學氣相沉積法在2. 2托耳的壓力及41 0 °C的溫 度下所形成。 5. 如申請專利範圍第3項之方法,其中上述之四氧乙基矽 層的厚度約為1 5 0 0埃到4 0 0 0埃。 6·如申請專利範圍第3項之方法,其中上述之硼磷矽玻璃 層係以常壓化學氣相沉積法在1大氣壓的壓力及43〇 〇c到 4 5 0 °C的溫度下所形成。 7.如申請專利範圍第3項之方法,其中上述之硼磷矽玻璃 中蝴所占的重量百分比約為4,4%到5%,而磷所占的百分 比約為3 4 %到3. 6 %。 8 ·如申請專利範圍第3項之方法,其中上述之硼磷矽玻璃 層的厚度約為8000埃到1 2000埃。 • °申請專利範圍第3項之方法,該硼嶙矽玻璃層在該半 導體結構之上方與該半導體結構之側壁之沉積速率比,必Page 12 415009 VI. The scope of the patent application forms a borophosphosilicate glass layer on the tetraoxyethyl silicon layer, so that the majority of the gaps are covered by the tetraoxyethyl silicon layer and the borophosphosilicate glass layer. Fill up. 4. The method according to item 3 of the patent application, wherein the above-mentioned tetraoxyethyl silicon layer is formed by a plasma chemical vapor deposition method at a pressure of 2.2 Torr and a temperature of 41 0 ° C. 5. The method according to item 3 of the patent application, wherein the thickness of the above-mentioned tetraoxyethyl silicon layer is about 15 Angstroms to 4 Angstroms. 6. The method according to item 3 of the patent application, wherein the borophosphosilicate glass layer is formed by atmospheric pressure chemical vapor deposition at a pressure of 1 atmosphere and a temperature of 4300c to 450 ° C. . 7. The method of claim 3, wherein the weight percentage of the butterfly in the above borophosphosilicate glass is about 4,4% to 5%, and the percentage of phosphorus is about 34% to 3. 6%. 8. The method of claim 3, wherein the thickness of the above borophosphosilicate glass layer is about 8000 angstroms to 12,000 angstroms. • The method of applying for item 3 of the patent scope, the ratio of the deposition rate of the borosilicate glass layer above the semiconductor structure to the sidewall of the semiconductor structure must be 第13頁 415009Page 13 415009 第14頁Page 14
TW88106267A 1999-04-20 1999-04-20 Two-stage fabrication method of void free dielectrics TW415009B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88106267A TW415009B (en) 1999-04-20 1999-04-20 Two-stage fabrication method of void free dielectrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88106267A TW415009B (en) 1999-04-20 1999-04-20 Two-stage fabrication method of void free dielectrics

Publications (1)

Publication Number Publication Date
TW415009B true TW415009B (en) 2000-12-11

Family

ID=21640362

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88106267A TW415009B (en) 1999-04-20 1999-04-20 Two-stage fabrication method of void free dielectrics

Country Status (1)

Country Link
TW (1) TW415009B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569183B2 (en) 2010-03-01 2013-10-29 Fairchild Semiconductor Corporation Low temperature dielectric flow using microwaves

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569183B2 (en) 2010-03-01 2013-10-29 Fairchild Semiconductor Corporation Low temperature dielectric flow using microwaves

Similar Documents

Publication Publication Date Title
US5721156A (en) Method of manufacturing a semiconductor device with a planarized integrated circuit
JP3712356B2 (en) Film-forming method and semiconductor device manufacturing method
KR100624566B1 (en) semiconductor device with flowable dielectric on capacitor and method for fabricating the same
US6077754A (en) Methods of forming a silicon nitride film, a capacitor dielectric layer and a capacitor
US6114186A (en) Hydrogen silsesquioxane thin films for low capacitance structures in integrated circuits
JPH0786190A (en) Method and device for forming film
US8957519B2 (en) Structure and metallization process for advanced technology nodes
US5168343A (en) Semiconductor integrated circuit device having improved trench isolation
JP4168397B2 (en) Boron doped titanium nitride layer for high aspect ratio semiconductor devices
EP1037276A1 (en) Method for forming a porous silicon dioxide film
JP2004517467A (en) Method for forming a premetal dielectric film on a semiconductor substrate
JP2004253791A (en) Insulation film and semiconductor device using same
JP2010199349A (en) Method for fabricating semiconductor device
US6455400B1 (en) Semiconductor processing methods of forming silicon layers
US7320945B2 (en) Gradient low k material
TW415009B (en) Two-stage fabrication method of void free dielectrics
US6492282B1 (en) Integrated circuits and manufacturing methods
US20030209805A1 (en) Flourine doped SiO2 film and method of fabrication
US5963837A (en) Method of planarizing the semiconductor structure
KR19990063743A (en) Capped Interlayer Insulation for Chemical Mechanical Polishing
JP2659600B2 (en) Method for manufacturing semiconductor device
JP2550508B2 (en) Semiconductor device and manufacturing method thereof
US20050255704A1 (en) Stacked dielectric layer suppressing electrostatic charge buildup and method of fabricating the same
KR100588636B1 (en) Method for manufacturing inter-metal dielectric layer of the semiconductor device
KR100644046B1 (en) Method for manufacturing the capacitor of semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees