TW412858B - Input buffer of integrated circuit - Google Patents
Input buffer of integrated circuit Download PDFInfo
- Publication number
- TW412858B TW412858B TW87101136A TW87101136A TW412858B TW 412858 B TW412858 B TW 412858B TW 87101136 A TW87101136 A TW 87101136A TW 87101136 A TW87101136 A TW 87101136A TW 412858 B TW412858 B TW 412858B
- Authority
- TW
- Taiwan
- Prior art keywords
- input
- buffer
- terminal
- mos transistor
- voltage
- Prior art date
Links
Landscapes
- Logic Circuits (AREA)
Abstract
Description
---I 412S58 A7 ---I 412S58 A7 經濟部中央標隼局貝工消費合作社印聚 ------- B7 、發明説明(1 ) 如美國專利 4,475,050(Noufer)、5,304,867(Moiris) 及5,355,033(jang)中所提,在積體電路中輸入緩衝器電 路的設計是為大眾所熟悉。此輸入緩衝器是使用來接收 服從邏輯技術’例如,TTL、LVTTL、SSTL及GTL, 之電性特性的一輸入信號。而上述邏輯技術的電杈特性 是不同於積體電路中内電路的電性特性。 輸入緩衝器應該具有簡單的設計、最小的時間延 遲’低功率損耗及到外部雜訊有高的容忍度。此外,輸 入緩衝器的操作特性應該不會隨著半導體處理參數、電 源供應電壓及溫度而改變。 CMOS積體電路中的標準輸入緩衝器通當為一含有 或不含有滯後現象的簡單CMOS反相器(史密斯觸發器) 如第1圖所示,或者為一微分放大器如第2圖所示。如 第1圖所示’ CMOS反相器具有一跳脫點或臨介點,而 在此跳脫點上輸入信號的電壓準位會促使輸出從一第一 邏輯狀態電位準位跳到一第二邏輯狀態電位準位或是從 一第二邏輯狀態電位準位跳到一第一邏輯狀態電位準 位。而此跳脫點可藉由輸入緩衝器中電晶的適當設計 來依政,以便使此跳脫點能對應於輪入信號之可能 電壓擺幅的中心點。 在第1圖中的CMOS反相器一般為較快的方法,因 為輸入緩衝器是藉由強迫NMOS或PMOS電晶體導通, 以及使另一電晶體不導羞控制此上述兩,電晶體(NMOS 和PMOS)。而此技術的有效電路J故大是非.常大的。在第1 3 本紙張尺度適用中國國家標率(CNS> A4規格(2丨〇><297公釐) (諳先聞讀_背面之注意事項再填寫本頁) i k--1' 丁 · --5 經濟部中央標準局員工消費合作杜印製 412858 A7 "... B7 五、發明説明(2) 圖中之CMOS反相器的跳脫點是依電源供應電壓及處理 參數來決定的。而上述電源供應電壓源及處理參數會改 變CMOS反相器的跳脫點約近乎Q^V。雖然此範圍對邏 輯技術,如LVTTL,是可掩受的,但是對於SSTL則是 無法接從的。 第2圖中的微分放大器輸入緩衝器將輸入信號的電 壓準位和一參考電壓Vref做一比較。如此輸入信號的電 壓在一比參考電壓vref大的電壓及一比參考電壓vref低 的電壓間做轉換,則輸出會在第一邏輯狀態(0)及第二邏 輯狀態(1)間做轉換。因為參考電壓vref可被精確地設計 成不會對半導體處理參數、電源供應電壓及溫度的改變 具有敏感性,故跳脫點能被精確地控制。 為了對結合有一史密斯觸發器的CMOS反相器有更 進一步詳細的_指述,請參考第1圖。上述輸入信號被供 應到輸入端INext。一般輸入端INext 為一半導體晶片的 輸入墊,並且連接到做為輸入信號來源的外部電路。N 通道金氧半導體(NMOS)電晶體N1和N2以及P通道金氧 半導體(PMOS)電晶體P2和P3構成CMOS反相器。上述 NMOS電晶體N1和N2的閘極與PMOS電晶體P2和P3 的閘極是連接到輸入端INEX1— PMOS電晶體P1是用來 起動(activate)及解除起動(deactivate)上述CMOS反相 器。在使能(enable)端上的一使能信號是連接到該PMOS 電晶體pi的閘極。如果此使能信號是處於第一邏輯狀能 (0),則會促使PM0S電晶體P1導通及使NMOS電晶體 4 ---------.4--------- --訂--------SI - - (請先閱#背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準{ CNS ) A4規格(210X297公釐) A7 B7 ^12858 五、發明説明(3) (請先閱諛背面之注意事項再填寫本頁) N3停止導通’因而起動該CMOS反相器。但是’如果使 能信號是處於第二邏輯狀態(1),則將使得PM0S電晶體 P1停止導通及使得NMOS電晶體N3導通,因此解除對 CMOS反相器的起動’並使輸出變成第一邏輯狀態(〇)。 經濟部中央標隼局負工消費合作社印製 當CMOS反相器被起動以及輸入信號開始從一低電 壓準位或第一邏輯狀態(0)轉移到一高電壓準位或第二邏 輯狀態(1)時,NMOS電晶體N1和N2會開始導通以及 PMOS電晶體P2和P3會開始停止導通°一旦輸入信號到 達跳脫點,NMOS電晶體N1和N2和PMOS電晶體P1 和P2—樣具有相同的導通’此時輸出接近於中間範圍° 輪入信號繼續處於第二邏輯狀態(1)。當附著在輸出端 〇UTint上的負載電容經由電晶體N1和N2放電時’在輸 出端OUTint上的電麼準位將接近於該低供應電塵源的電 壓準位。相反地,輸入信號開始從一高電壓準位或第二 邏輯狀態(1)轉移到一低電廢準位或第一邏輯狀態(〇) 時* NMOS電晶想N1和N2會開始停止導通以及PMOS 電晶體P2和P3會開始導通。當輸入信號通過跳脫點時’ NMOS電晶體N1和N2與PMOS電晶艘P1和P2 —樣具 有相同的導通,此時輸出接近於中間範圍。輸入信號繼 續處於第一邏輯狀態(0)。在輸出端OUTint上的負載電容 會經由PMOS電晶體P2和P3充電到該高供應電壓源的 電壓準位。 跳脫點可被修改以提供輸入信號從第一邏輯狀態(〇) 到第二邏輯狀態(1)及從第二邏輯狀態(〇)到第一邏輯狀 本紙張尺度適用中國國家榡準(CNS ) A4現格(2ί〇Χ29·7公釐〉 經濟部中央標準局貝工消費合作社印聚 412Su8 五、發明説明(4) 態(1)之跳脫準位的滯後現象或變化^上述滯後可由 NMOS電晶體N4或PMOS電晶P4來建立,而上述所提 電晶體可任意地加入電路中以便調整所需的滯後現象。 當在輸入端INext上的輸入信號處於第二邏輯狀態(j) 及在輸出端OUTint上的輸出信號處於第一邏輯狀態 時,PMOS電晶體P4完全導通(pm〇S電晶體P4的閘極 到源極電壓相等於負的高供應電壓p當輸入信號iNext 從第二邏輯狀態(1)變化到第一邏輯狀態(〇)時,nmos 電晶體N1和N2開始導通,此時在串聯電晶體pi、p2、 P3、N1及N2之汲極到源極路徑上會有電流流通因為 PMOS電晶體P4完全導通,所以基本上PMOS電晶體 P2、P3及P4的共同節點會連接到低供應電壓源。此共 同節點為PMOS電晶體P3的源極,結果PMOS電晶體P3 維持在一非導通的狀態。當輸入信號繼績朝第一邏輯狀 態(0)下降時,PMOS電晶艎Ρ2開始導通,並開始將 PMOS電晶體P2、P3及P4的共同節點電位從低供應電 壓準位提升到高供應電壓準位^ PMOS電晶體P2和P4 尺寸的比率為可使得當輸入信號到達信號攞幅的中間範 圍時,PMOS電晶體P3導通的值(大約高供應電壓準位 的1/2)。只要PMOS電晶體P3完全導通,在輸出端〇UTint 上的輸出信號馬上開始從第一邏輯狀態(〇)上升到第二邏 輯狀態(1)。在此時,PMOS電晶體P4開始停止導通,而 PMOS電晶體P3導通。此會造成正回授,因而使得輸出 信號會較快速上升到第二邏輯狀態(1)。因為PMOS電晶 6 本紙張尺度適用中國國家標準{ CNS M4規格U丨0X297公釐) ----------,衣--^-------訂------1% I (請先閱沐背面之注意事項再填寫本頁) 412858 A7 B7 經濟部中央標準局員工消費合作社印裝 五、發明说明(5) 體P4的動作,所以比如果沒有pm〇S電晶體P4之呈現, 輸入信號從第二邏輯狀態(1)到第一邏輯狀態(〇)的轉移 要更遠,亦即緩衝器的跳脫點對於從第二邏輯狀態(1)到 第一邏輯狀態(0)之轉移較從第一邏輯狀態(〇)到第二邏 輯狀態(1)之轉移來說為一較低值。PMOS電晶艘^P2和 P4的幾何比率可控制滯後現象的程度。 針對整個對稱及滯後調整可任意加入NMOS電晶體 N4。當在輸入端lNext上的輸入信號處於一第一邏輯狀態 (0) 及在輸出端〇UTint上的輸出信號是處於第二邏輯狀態 (1) 時,NMOS電晶體N4則會完全導通(PMOS電晶體的 閘極到源極電壓Vgs相等於低供應電壓準位)〇當輸入信 號INext由第一邏輯狀態(〇)變化到第二邏輯狀態(1)時, NMOS電得體N1和N2開始導通,所以在串聯電晶體 PI、P2、P3、N1和N2之汲極到源極路徑上的電流會 增加。因為NMOS電晶體N4為完全導通,所以基本上 NMOS電晶體N2、N1和N4的共同節點連接到高供應電 壓源。此共同節點為NMOS電晶體N1的源極,結果NMOS 電晶體N1維持不導通。當輸入信號繼續朝第二邏輯狀態 (1)上升時,NMOS電晶體N2開始快速導通及開始使得 NMOS電晶體N2、N1和N4的共同節點從高供應電壓準 位朝低供應電壓準位轉移。而NMOS電晶體N2和N4之 尺寸比率為當輸入信號已達到信號擺幅的中間範圍(約 高供應電壓準位的1/2)時,可使得NMOS電晶體N1導通 的值。當NMOS電晶體N1 —導通時,在輸出端〇UTint 7 本紙張尺度適用中國國家標隼(〇奶)八4洗格(2〗0><297公釐> ---------' --„-------訂,------的 1 - (#先閲填背面之ii'意事項再填寫本頁} 經濟部中央樣牟局員工消費合作社印製 五、發明説明(6) 上的輸出信號會開始從第二邏輯狀態(1)下降到第一邏輯 狀態(0)。在此時NOMS電晶體N4開始停止導通,且NMOS 電晶體N1導通。此會造成正回授’因而造成輸出信號會 較快下降到第一邏輯狀態(〇)。因為NMOS電晶體N4的 動作,所以比如果沒有NMOS電晶艘N4 ’輸入信號從第 一邏輯狀態(〇)到第二邏輯狀態(1)的轉移要更遠,亦即緩 衝器的跳脫點對於從第一邏輯狀態(〇)到第二邏輯狀態(1) 之轉移較從第二邏輯狀態(1)到第一邏輯狀態(0)之轉移 來說為一較低值。NMOS電晶體N2和N4的幾何比率可 控制滯後現象的程度。 參考第2圖以便了解<微分輸入緩衝器的操作。 PMOS電晶體P1對NMOS電晶體N3的幾何比相等於 PMOS電晶體P2對NMOS電晶體N4的幾何比(pi : N3=P2 : N4)。參考電壓源Vref經由NMOS電晶體N1連 接到NMOS電晶體N3的閘極,然而輸入信號是經由 NMOS電晶體N2耦接到NMOS電晶體N4的閘極。參考 電壓源Vref強迫NMOS電晶體Ν3成為導通,並為PMOS 電晶體P1建立一偏壓點。選擇PMOS電晶體P1對NMOS 電晶體N3的幾何比以使得偏壓點位於高供應電壓和低 供應電壓之間的中間範圍。PMOS電晶體P1和P2之閘 極的共同連接會使此偏壓點轉移到包含有PMOS電晶體 P2和NMOS電晶髖N4之電路的區段》當在輸入端INext 上的輸入信號相等於參考電壓源Vref的準位時,輸出端 OUTint處於偏壓點。此會在參考電壓源準位和緩衝器的 8 本紙張尺度適用中國國家標準(CNS) A4規格(2丨〇>< 297公着) 1^1 ^^^1 m» ^^^1 ^n— n^i In I ^— - _l m. 1-*— --a,.· > J (請先閱挤背面之注*攀項再填寫本頁) 412858 A7 B7 經濟部中央標準局貝工消费合作社印策 五、發明説明(7) 跳脫點之間建立緊密關係。如果在輸入端INext上的輸入 信號在第一邏輯狀態(〇)和第二邏輯狀態(1)之間轉移 時,在輸出端〇UTint上的輸出信號將會在由參考電壓源 vref所建立的偏壓點上做切換。 NMOS電晶體N1和N2可確保在電壓參考源V'ref及輸 入端INext上的任何雜訊儘可能變成共同模式(common mode)。也可將NMOS電晶體N1和N2到高供應電壓源 解耦合至某程度。 在使能(enable)端上的一使能信號是連接到PMOS電 晶體P3的閘極。如果使能信號處於第一邏輯狀能(〇),此 將造成PMOS電晶體P1導通,因而起動CMOS反相器。 但是,如果使能信號處於第二邏輯狀態(1),此將造成 PMOS電晶體P1停止導通,因而解除對CMOS反相器的 導通。 PMOS電晶體P4是以平行方式連接到PMOS電晶體 P2 e PMOS電晶體P4的閘極是連接到反相器Ir的輸出端 OUTint。PMOS電晶體P4藉由有效改變PMOS電晶體P2 對NMOS電晶體N4之幾何比提供回授以產生滯後現 象。 本發明之第一目的在於提供一位於積體電路中可接 收如TTL、LVTTL、SSTL或GTL之標準電性特性電壓 準位或獨一設計特性電壓準位的一輸入信號、緩衝此輸 入信號以及將此輸入信號轉換成為一内部電路可接受之 一輸出信號的一輸入緩衝器。 9 (請先閲説背面之注意事項再填寫本頁) i 丁‘ -6 本紙張尺度適用中國國家榡準(CNS ) A4^ ( 2丨〇 X 297公釐) A7 B7 4I2S58 五、發明説明(8) 本發明之第二目的在於提供一輸入緩衝器,而在此 輸入緩衝器中輸入信號的臨界跳脫點上將造成輸出信號 在一第一邏輯狀態和一第二邏輯狀態間改變。 本發明之第三目的在於提供一輸入緩衝器,而在此 輸入緩衝器中臨界跳脫點是藉由一調整電壓所決定,且 可免除受半導體處理參數、電源供應電壓及操作溫度之 改變的影嚮。 為了完成上述本發明之目的,一輸入緩衝器電路具 有一連接到輸入/輸出墊上的輸入端,而上述輸入/輸出墊 是連接到可產生輸入信號的外部電路。上述緩衝器輸出 端是耦接到内部電路以將輸出信號轉送到内部電路。一 電壓調整端是耦接到一電壓調整電路,此電壓調整電路 可修改電壓準位特性跳脫點,而在此跳脫點上輸出信號 會在第一邏輯狀態和第二邏輯狀態間做轉換》 輸入緩衝器具有一第一導通形態的第一 MOS電晶 體。此第一導通形態的第一 MOS電晶體具有一連接到輸 入端的閘極、連接到緩衝器輸出端的汲極及連接到低供 應電壓源的源極。輸入緩衝器具有一第二導通形態的第 一 MOS電晶體。此第二導通形態的第一 MOS電晶饉具 有一連接到輸入端的閘極、連接到緩衝器輸出端的汲 極、及連接到高供應電壓源的源極。該輸入緩衝器具有 一第一導通形態的第二MOS電晶體。此第一導通形態的 第二MOS電晶體具有一連接到輸入端的閘極、連接到緩 衝器輸出端的汲極、及源極。該輸入緩衝器具有一第二 本紙張尺度適用中國國家梂率(CMS > A4規格《2丨〇 X 297公釐) 請 先 閱 背 之 注 項 再 經濟部中央標準局負工消費合作社印製 412858 Α7 Β7 經濟部中央標準局負工消費合作社印聚 五、發明説明(9) 導通形態的第二MOS電晶體。此第二導通形態的第二 MOS電晶醴具有一連接到輸入端的閘極及連接到緩衝器 輪出端的汲極。該輸入緩衝器具有一第一導通形態的第 三MOS電晶》此第一導通形態的第三MOS電晶具有一 連接到電壓調整端的閘極、連接到第一導體形態之第二 MOS電晶體的源極、及連接到低電源供應的源極。該輸 入緩衝器具有一第二導通形態的第三MOS電晶體。此第 二導通形態的第三MOS電晶體具有一連接到電壓調整端 的閘極、連接到第二導通形態之第;MOS電晶體的没 極、及連接到高電源供應的源極。 電壓調整電路由一按比例減少功率之複本輪:入緩衝 器電路、一放大器及一代表積體電路之内部電路反相器 閘極所構成》放大器具有一耦接到複表扁^緩衝器電路 之緩衝器輪出端的非反相春及一連接到上述複本輸入緩 器電路的電壓調整端及其他輸入緩衝器電路之電壓調整 端的輸出端。代表該内電路之反相器閘極具有一連接到 一反相器輸出端及該放大器反相端的一反相器輸入端。 連接反相器輸入端到反相器輸出端會造成在放大器之反 相端上的電壓準位針對該反相器閘極而被設定成一反相 器臨界準位。 為讓本發明之上述目的、特徵、和優點能更明顯易 懂’下文特舉一較佳實施例,並配合所附囷式,作詳細 說明如下: 圈式之簡單說明: 11 ---------取—„------if-------1 Ί I t (請先閱請背面之〕江意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)八4錄(210x297公们 412858 A7 經濟部中央標準局員工消費合作社印聚 B7五、發明説明(ίο) 第1圖係顯示用以說明昔知技術之一 CMOS反相器 輸入緩衝器的示意圖; 第2圖係顯示用以說明昔知技術之一微分CMOS輸 入缓衝器的示意圖; 第3圖係顯示用以說明依據本發明之具有一調整跳 脫點之CMOS反相器輸入緩衝器電路的示意圖; 第4圖係顯示用以說明依據本發明CMOS反相器輸 入緩衝器之輸入電壓和輸出電壓的轉移特性圖; 第5圖係顯示本發明一第一實施例之電壓調整電路 的不意圖, 第6圖係顯示本發明中用於CMOS反相器輸入緩衝 器電路之一第一高供應電壓調整電路的示意圖: 第7圖係顯示本發明中用於CMOS反相器輸入緩衝 器電路之一第二高供應電壓調整電路的示意圖: 第8圖係顯示本發明中用於CMOS反相器輸入緩衝 器電路之一使能電路的示意圖; 第9圖係顯示本發明之結合滯後現象之一 CMOS反 相器輸入緩衝器電路的示意圖;以及 第10圖係顯示本發明之結合滯後現象之一 CMOS反 相器輸入緩衝器電路的示意圖。 圖式之簡單說明: P1-P型通道MOS電晶體、P2〜P型通道MOS電晶 體、P3~P型通道MOS電晶體、P4〜P型通道MOS電晶 體、N卜N型通道M0S電晶體、N2~N型通道M0S電晶 12 ---------知衣-----^--訂-------% I - ► (請先閲I背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS > A4規格(2〗0XW7公釐) 娌濟部中央標準局貝工消贽合作社印袋 41£858_b7__五、發明说明(11 ) 體、N3〜N型通道MOS電晶體、N4〜N型通道MOS電晶 體、INext〜輸入端、〇UTjnt〜輸出端' ENABLE~使能 端、High Supply〜高供應端、Low Supply〜低供應端、 Vrcf~參考電壓、1广内部反相器閘極、Qi和Q3〜NMOS 電晶體、Q2和Q4〜PMOS電晶體、Q5〜NMOS電晶體、 Q6〜PMOS電晶體、Vadj〜調整電壓電路、〜輸出高電 壓準位、Vu〜輸入低電壓準位、Vth。〜臨界跳脫點、 BUF1〜反相器輸入緩衝器電路、Vreg〜電壓調整器、 Q9〜PMOS電晶體、Q10〜PMOS電晶,艘、Q11〜NMOS電 晶體、Q12-NMOS電晶體、Q13~PMOS電晶體、DIB〜 複本輸入緩衝器電路、OP〜放大器、SCG〜抽樣CMOS閘 極。 實施例: 參考第第3圖以便討論輸入緩衝器電路的操作。輸 入端是連接到NMOS電晶體Q1和Q3以及PMOS電晶體 Q2和Q4的閘極。輸入端是經由一輸入/輸出墊連接到可 提供一輸入信號的外部電路,而此輸入信號具有服從特 性電壓準位技術,如TTL、LVTTL、SSTL及GTL,的 電性特性電壓準位β PMOS電晶體Q2的源極是連接到高供應電壓源。 PMOS電晶體Q2和Q4的汲極是連接在一起,並且連接 到輸出端及NMOS電晶體Q1和Q3的汲極。輸出端是連 接到積體電路的内部電路。NMOS電晶體Q1的源極是 連接到低供應電壓源。 13 (請先閱填背面之注^^項再填寫本頁) 訂 本紙張尺度適用中國國家標準(CNS > A4規格(210X297公釐) 412858 A7 經濟部中央樣準局員工消費合作社印製 B7五、發明説明(12 ) PMOS電晶體Q4的源極是連接到PMOS電晶體Q6 的汲極,而PMOS電晶體Q6的源極是連接到高供應電壓 源。NMOS電晶體Q3的源極是連接到NMOS電晶體Q5 的汲極。NMOS電晶體Q5的源極是連接到低供應電壓 源。 NMOS電晶體Q5和PMOS電晶體Q6的閘極是連接 在一起,並且連接到一調整電壓電路Vadj » 上述調整電壓電路Vadj提供一電壓,而此電壓是靠 近高供應電壓源和低供應電壓源之電壓準位間的中間範 圍》在此情況下,PMOS電晶體Q6和NMOS電晶體Q5 會導通到某一程度,而此程度是由上述調整電壓電路Vadj 的電壓準位所決定。因為調整電壓電路Vadj的電壓準位 大約在高供應電壓源和低供應電壓源之電壓準位間的中 間範圍具有一操作範圍,而在此操作範圍中可同時控制 PMOS電晶體Q6和NMOS電晶體Q5的導通,所以此基 本狀況提供緩衝器跳脫點之最一般化的調整。 PMOS電晶體Q6和NMOS電晶體Q5的幾何比PMOS 電晶體Q4和NMOS電晶體Q3比大,以使PMOS電晶艎 Q6和NMOS電晶體Q5在輸入緩衝器電路的之操作中維 持在線性或“電阻”區域。 表示PMOS電晶體Q6和NMOS電晶體Q5之操作的 方程式為: Ids=K* {(Vgs_Vt)* VdsK1/2)* VDS2} 其中 14--- I 412S58 A7 --- I 412S58 A7 Printed and gathered by the Shellfish Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs --- B7, invention description (1) such as US patents 4,475,050 (Noufer), 5,304,867 (Moiris) As mentioned in 5,355,033 (jang), the design of input buffer circuits in integrated circuits is familiar to the public. This input buffer is an input signal that is used to receive electrical characteristics that are subject to logic techniques, such as TTL, LVTTL, SSTL, and GTL. The electrical characteristics of the above-mentioned logic technology are different from the electrical characteristics of the internal circuits in the integrated circuit. The input buffer should have a simple design, minimal time delay, low power loss, and high tolerance to external noise. In addition, the operating characteristics of the input buffer should not change with semiconductor processing parameters, power supply voltage, and temperature. The standard input buffer in a CMOS integrated circuit is usually a simple CMOS inverter (Smith's flip-flop) with or without hysteresis, as shown in Figure 1, or a differential amplifier, as shown in Figure 2. As shown in Figure 1, the CMOS inverter has a trip point or a temporary point, and the voltage level of the input signal at this trip point will cause the output to jump from a first logic state potential level to a second The logic state potential level jumps from a second logic state potential level to a first logic state potential level. This trip point can be governed by the proper design of the transistor in the input buffer, so that this trip point can correspond to the center point of the possible voltage swing of the turn-in signal. The CMOS inverter in Figure 1 is generally a faster method, because the input buffer is controlled by forcing the NMOS or PMOS transistor to turn on, and the other transistor is not controlled to control these two. The transistor (NMOS And PMOS). And the effective circuit J of this technology is very large. Very large. In the 13th paper scale, China's national standard rate (CNS > A4 specification (2 丨 〇 > < 297mm)) (谙 First read and read _ notes on the back before filling out this page) i k--1 ' Ding --5 Consumption cooperation between employees of the Central Bureau of Standards of the Ministry of Economic Affairs, printed 412858 A7 " ... B7 V. Description of the invention (2) The trip point of the CMOS inverter in the picture is based on the power supply voltage and processing parameters The above mentioned power supply voltage source and processing parameters will change the trip point of the CMOS inverter by approximately Q ^ V. Although this range is tolerable for logic technologies such as LVTTL, it is for SSTL It cannot be accessed. The differential amplifier input buffer in Figure 2 compares the voltage level of the input signal with a reference voltage Vref. In this way, the voltage of the input signal is a voltage greater than the reference voltage vref and a voltage greater than the reference voltage When the voltage between vref is low, the output will be switched between the first logic state (0) and the second logic state (1). Because the reference voltage vref can be precisely designed so that it does not affect the semiconductor processing parameters and power supply. Sensitive to changes in voltage and temperature Therefore, the trip point can be accurately controlled. For a more detailed description of the CMOS inverter with a Smith trigger, please refer to Figure 1. The above input signal is supplied to the input terminal INext. General input terminal INext is an input pad for a semiconductor chip and is connected to an external circuit as an input signal source. N-channel metal-oxide-semiconductor (NMOS) transistors N1 and N2 and P-channel metal-oxide-semiconductor (PMOS) transistors P2 and P3 form a CMOS Inverter. The gates of the NMOS transistors N1 and N2 and the gates of the PMOS transistors P2 and P3 are connected to the input terminal INEX1. The PMOS transistor P1 is used to activate and deactivate the CMOS. Inverter. An enable signal on the enable terminal is the gate connected to the PMOS transistor pi. If this enable signal is at the first logic state enable (0), it will cause the PM0S power Crystal P1 is turned on and NMOS transistor 4 is turned on ---------. 4 --------- --Order -------- SI--(Please read ## 的Note: Please fill in this page again.) This paper size applies to Chinese National Standard {CNS) A4 specification (210X297 mm) A7 B7 ^ 12858 V. Description of the invention (3) (Please read the precautions on the back of the page before filling out this page) N3 Stop Conduction ’and start the CMOS inverter. But 'if the enable signal is in the second logic state (1), the PM0S transistor P1 will stop conducting and the NMOS transistor N3 will be turned on, so the start of the CMOS inverter is cancelled' and the output becomes the first logic Status (〇). Printed by the Central Bureau of Standards, Ministry of Economic Affairs and Consumer Cooperatives when the CMOS inverter is activated and the input signal starts to transition from a low voltage level or a first logic state (0) to a high voltage level or a second logic state ( 1), NMOS transistors N1 and N2 will begin to conduct and PMOS transistors P2 and P3 will begin to cease to conduct. Once the input signal reaches the trip point, NMOS transistors N1 and N2 and PMOS transistors P1 and P2-all have the same At this time, the output is close to the middle range. The turn-in signal continues to be in the second logic state (1). When the load capacitor attached to the output terminal OUTint is discharged via the transistors N1 and N2, the voltage level at the output terminal OUTint will be close to the voltage level of the low-supply electric dust source. Conversely, when the input signal starts to transition from a high voltage level or a second logic state (1) to a low power waste level or a first logic state (0) * NMOS transistors think that N1 and N2 will start to stop conducting and The PMOS transistors P2 and P3 will start conducting. When the input signal passes through the trip point, the NMOS transistors N1 and N2 have the same continuity with the PMOS transistors P1 and P2. At this time, the output is close to the middle range. The input signal continues to be in the first logic state (0). The load capacitor on the output OUTint is charged to the voltage level of the high supply voltage source via the PMOS transistors P2 and P3. The trip point can be modified to provide the input signal from the first logic state (〇) to the second logic state (1) and from the second logic state (〇) to the first logic state. This paper applies the Chinese National Standard (CNS) ) A4 is present (2ί29 × 7mm)> The Central Standards Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, India Poly 412Su8 V. Description of the invention (4) Hysteresis or change of the state of departure (1) ^ The above lag can be determined by NMOS transistor N4 or PMOS transistor P4 is established, and the transistor mentioned above can be arbitrarily added to the circuit to adjust the required hysteresis. When the input signal at the input terminal INext is in the second logic state (j) and When the output signal at the output terminal OUTint is in the first logic state, the PMOS transistor P4 is completely turned on (the gate-to-source voltage of the pMOS transistor P4 is equal to the negative high supply voltage p when the input signal iNext is changed from the second When the logic state (1) changes to the first logic state (0), the nmos transistors N1 and N2 start conducting. At this time, there will be a path from the drain to source of the series transistors pi, p2, P3, N1, and N2. Current flows because PMOS transistor P4 is fully turned on So basically the common node of PMOS transistor P2, P3 and P4 will be connected to the low supply voltage source. This common node is the source of PMOS transistor P3. As a result, PMOS transistor P3 is maintained in a non-conducting state. When input When the signal performance decreases toward the first logic state (0), the PMOS transistor 艎 Ρ2 starts to conduct and starts to increase the common node potential of the PMOS transistor P2, P3, and P4 from a low supply voltage level to a high supply voltage level. ^ The ratio of the PMOS transistor P2 and P4 sizes is such that when the input signal reaches the middle range of the signal amplitude, the PMOS transistor P3 is turned on (about 1/2 of the high supply voltage level). As long as the PMOS transistor P3 Completely on, the output signal on the output terminal OUTint immediately starts to rise from the first logic state (0) to the second logic state (1). At this time, the PMOS transistor P4 starts to stop conducting, and the PMOS transistor P3 is turned on .This will cause positive feedback, which will cause the output signal to rise to the second logic state quickly (1). Because the PMOS transistor 6 paper size applies to the Chinese national standard {CNS M4 specification U 丨 0X297 mm) --- -------,clothes- -^ ------- Order ------ 1% I (Please read the notes on the back of Mu before filling out this page) 412858 A7 B7 Printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs (5) The action of the body P4 is farther than the transition of the input signal from the second logic state (1) to the first logic state (〇) than if there is no pMOS transistor P4, that is, the buffer The trip point is a lower value for the transition from the second logic state (1) to the first logic state (0) than the transition from the first logic state (0) to the second logic state (1). The geometric ratio of PMOS transistors P2 and P4 can control the degree of hysteresis. For the entire symmetry and hysteresis adjustment, NMOS transistor N4 can be added arbitrarily. When the input signal on the input terminal lNext is in a first logic state (0) and the output signal on the output terminal OUTint is in a second logic state (1), the NMOS transistor N4 will be completely turned on (PMOS circuit The gate-to-source voltage Vgs of the crystal is equal to the low supply voltage level.) When the input signal INext changes from the first logic state (0) to the second logic state (1), the NMOS electrical sources N1 and N2 start conducting, So the current in the drain-to-source path of the series transistors PI, P2, P3, N1 and N2 will increase. Since the NMOS transistor N4 is fully on, basically the common node of the NMOS transistors N2, N1 and N4 is connected to a high supply voltage source. This common node is the source of the NMOS transistor N1. As a result, the NMOS transistor N1 remains non-conductive. When the input signal continues to rise toward the second logic state (1), the NMOS transistor N2 starts to conduct quickly and starts to make the common node of the NMOS transistor N2, N1 and N4 shift from the high supply voltage level to the low supply voltage level. The size ratio of the NMOS transistors N2 and N4 is a value that can make the NMOS transistor N1 turn on when the input signal has reached the middle range of the signal swing (about 1/2 of the high supply voltage level). When the NMOS transistor N1 is turned on, at the output terminal UTint 7 This paper size is applicable to the Chinese national standard 〇 (〇 奶) 8 4 wash grid (2) 0 > < 297 mm > ------- -'-„------- Order, ------ of 1-(#Please read the ii's on the back and fill in this page first.} The fifth, invention description (6), the output signal will start to fall from the second logic state (1) to the first logic state (0). At this time, the NOMS transistor N4 starts to stop conducting, and the NMOS transistor N1 is conducting. This will cause a positive feedback ', which will cause the output signal to fall to the first logic state quickly (0). Because of the action of the NMOS transistor N4, the input signal is lower than the first logic state if there is no NMOS transistor N4 ( 〇) The transition to the second logical state (1) is farther, that is, the jump point of the buffer is for the transition from the first logical state (0) to the second logical state (1) than the second logical state ( 1) The transition to the first logic state (0) is a lower value. The geometric ratio of NMOS transistors N2 and N4 can control the degree of hysteresis. Reference Figure 2 to understand the operation of the differential input buffer. The geometric ratio of PMOS transistor P1 to NMOS transistor N3 is equal to the geometric ratio of PMOS transistor P2 to NMOS transistor N4 (pi: N3 = P2: N4). Reference The voltage source Vref is connected to the gate of NMOS transistor N3 via NMOS transistor N1, but the input signal is coupled to the gate of NMOS transistor N4 via NMOS transistor N2. The reference voltage source Vref forces NMOS transistor N3 to be turned on, A bias point is established for PMOS transistor P1. The geometric ratio of PMOS transistor P1 to NMOS transistor N3 is selected so that the bias point is in the middle range between high and low supply voltages. PMOS transistors P1 and P2 The common connection of the gates will cause this bias point to be transferred to the section containing the circuit of the PMOS transistor P2 and the NMOS transistor N4. When the input signal at the input terminal INext is equal to the level of the reference voltage source Vref At the time, the output terminal OUTint is at the bias point. This will be based on the reference voltage source level and the 8 paper sizes of the buffer to the Chinese National Standard (CNS) A4 specification (2 丨 〇 > < 297) by 1 ^ 1 ^^^ 1 m »^^^ 1 ^ n— n ^ i In I ^ —-_l m 1-* — --a,. · ≫ J (please read the note on the back of the page first and then fill in this page before filling in this page) 412858 A7 B7 Printing policy of the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs ) A close relationship is established between the trip points. If the input signal at the input terminal INext transitions between the first logic state (0) and the second logic state (1), the output signal at the output terminal OUTt will It will switch at the bias point established by the reference voltage source vref. The NMOS transistors N1 and N2 can ensure that any noise on the voltage reference source V'ref and the input terminal INext becomes as common mode as possible. It is also possible to decouple the NMOS transistors N1 and N2 to a high supply voltage source to some extent. An enable signal on the enable terminal is connected to the gate of the PMOS transistor P3. If the enable signal is at the first logic state (0), this will cause the PMOS transistor P1 to be turned on, thus starting the CMOS inverter. However, if the enable signal is in the second logic state (1), this will cause the PMOS transistor P1 to stop conducting, thus releasing the CMOS inverter. The PMOS transistor P4 is connected in parallel to the PMOS transistor P2 e. The gate of the PMOS transistor P4 is connected to the output terminal OUTint of the inverter Ir. The PMOS transistor P4 provides feedback by effectively changing the geometric ratio of the PMOS transistor P2 to the NMOS transistor N4 to generate a hysteresis phenomenon. A first object of the present invention is to provide an input signal in a integrated circuit that can receive a standard electrical characteristic voltage level such as TTL, LVTTL, SSTL, or GTL or a unique design characteristic voltage level, buffer the input signal, and The input signal is converted into an input buffer that an internal circuit can accept an output signal. 9 (Please read the notes on the back before filling this page) i Ding '-6 This paper size is applicable to China National Standards (CNS) A4 ^ (2 丨 〇X 297 mm) A7 B7 4I2S58 V. Description of the invention ( 8) A second object of the present invention is to provide an input buffer, and the critical trip point of the input signal in the input buffer will cause the output signal to change between a first logic state and a second logic state. A third object of the present invention is to provide an input buffer, and the critical trip point in the input buffer is determined by an adjustment voltage, and can be exempt from changes in semiconductor processing parameters, power supply voltage, and operating temperature. Shadow direction. To accomplish the above-mentioned object of the present invention, an input buffer circuit has an input terminal connected to an input / output pad, and the input / output pad is connected to an external circuit capable of generating an input signal. The buffer output terminal is coupled to an internal circuit to forward the output signal to the internal circuit. A voltage adjustment terminal is coupled to a voltage adjustment circuit. This voltage adjustment circuit can modify the voltage level characteristic trip point. At this trip point, the output signal will switch between the first logic state and the second logic state. 》 The input buffer has a first MOS transistor with a first on-state. The first MOS transistor in this first conduction mode has a gate connected to an input terminal, a drain connected to a buffer output terminal, and a source connected to a low supply voltage source. The input buffer has a first MOS transistor with a second on-state. The first MOS transistor of the second conduction mode has a gate connected to an input terminal, a drain connected to a buffer output terminal, and a source connected to a high supply voltage source. The input buffer has a second MOS transistor with a first on-state. The second MOS transistor in the first conduction mode has a gate connected to the input terminal, a drain connected to the output terminal of the buffer, and a source. This input buffer has a second paper size applicable to China's national standard (CMS > A4 specification "2 丨 〇X 297mm) Please read the note below and print it by the Central Standards Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 412858 Α7 Β7 Printed by the Central Bureau of Standards, Ministry of Economic Affairs, Consumer Cooperatives, V. Invention Description (9) The second MOS transistor in the conduction mode. The second MOS transistor of the second conduction mode has a gate connected to the input terminal and a drain connected to the output terminal of the buffer wheel. The input buffer has a third MOS transistor in a first conduction mode. The third MOS transistor in the first conduction mode has a gate connected to a voltage adjustment terminal and a second MOS transistor connected to a first conductor. Source, and source connected to a low power supply. The input buffer has a third MOS transistor with a second conduction mode. The third MOS transistor of the second conduction mode has a gate connected to the voltage adjustment terminal, a gate connected to the second conduction mode, an anode of the MOS transistor, and a source connected to a high power supply. The voltage adjustment circuit consists of a replica wheel that reduces power proportionally: a buffer circuit, an amplifier, and an internal circuit inverter gate representing the integrated circuit.The amplifier has a buffer circuit coupled to a complex meter. The non-inverting spring at the output end of the buffer wheel and an output end connected to the voltage adjustment end of the replica input retarder circuit and the voltage adjustment end of other input buffer circuits. The inverter gate representing the internal circuit has an inverter input terminal connected to an inverter output terminal and the amplifier inverter terminal. Connecting the inverter input to the inverter output causes the voltage level on the inverting terminal of the amplifier to be set to an inverter critical level for the inverter gate. In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below, and in conjunction with the attached formula, a detailed description is as follows: A brief description of the circle type: 11 ---- ----- Take — „------ if ------- 1 Ί I t (please read the matter on the back first) and then fill out this page) The paper size is applicable to Chinese national standards ( CNS) Record 8 (210x297, 412858 A7, Consumers' Cooperative of the Central Standards Bureau, Ministry of Economic Affairs, Printed Collection B7, V7. Invention Description (ίο) Figure 1 shows the CMOS inverter input buffer used to explain one of the known technologies. Schematic diagram; Figure 2 shows a schematic diagram of a differential CMOS input buffer used to explain one of the prior art; Figure 3 shows a CMOS inverter input buffer with an adjusted trip point according to the present invention Schematic diagram of the circuit; FIG. 4 is a diagram illustrating the transfer characteristics of the input voltage and output voltage of the input buffer of the CMOS inverter according to the present invention; and FIG. 5 is a diagram illustrating the voltage adjustment circuit of a first embodiment of the present invention It is not intended, and FIG. 6 shows the CMOS inverter output used in the present invention. Schematic diagram of the first high-supply voltage adjustment circuit of one of the input buffer circuits: FIG. 7 shows a schematic diagram of the second high-supply voltage adjustment circuit for the input buffer circuit of the CMOS inverter in the present invention: FIG. 8 FIG. 9 is a schematic diagram showing an enabling circuit for a CMOS inverter input buffer circuit in the present invention; FIG. 9 is a schematic diagram showing a CMOS inverter input buffer circuit in combination with a hysteresis according to the present invention; and FIG. 10 It is a schematic diagram showing a CMOS inverter input buffer circuit combining one of the hysteresis phenomena of the present invention. Brief description of the drawings: P1-P channel MOS transistor, P2 ~ P channel MOS transistor, P3 ~ P channel MOS transistor, P4 ~ P-channel MOS transistor, N-channel N-channel M0S transistor, N2-N-channel M0S transistor 12 --------- 知 衣 ----- ^- Order -------% I-► (Please read the notes on the back of I before filling out this page) This paper size applies to Chinese national standards (CNS > A4 specifications (2〗 0XW7 mm) Central Ministry of Economic Affairs Printed bag of the British Bureau of Labor Standards Cooperative Co., Ltd. 41 £ 858_b7__V. Description of the invention (11) Body, N3 ~ N channel MOS Transistor, N4 ~ N-channel MOS transistor, INext ~ Input, OUTjnt ~ Output, 'ENABLE ~ Enable, High Supply ~ High Supply, Low Supply ~ Low Supply, Vrcf ~ Reference Voltage, 1W Internal inverter gate, Qi and Q3 ~ NMOS transistors, Q2 and Q4 ~ PMOS transistors, Q5 ~ NMOS transistors, Q6 ~ PMOS transistors, Vadj ~ adjust voltage circuit, ~ Output high voltage level, Vu ~ Enter the low voltage level, Vth. ~ Critical trip point, BUF1 ~ Inverter input buffer circuit, Vreg ~ Voltage regulator, Q9 ~ PMOS transistor, Q10 ~ PMOS transistor, ship, Q11 ~ NMOS transistor, Q12-NMOS transistor, Q13 ~ PMOS transistor, DIB ~ replica input buffer circuit, OP ~ amplifier, SCG ~ sampling CMOS gate. Embodiment: Refer to FIG. 3 to discuss the operation of the input buffer circuit. The inputs are the gates connected to the NMOS transistors Q1 and Q3 and the PMOS transistors Q2 and Q4. The input terminal is connected to an external circuit that can provide an input signal via an input / output pad. The input signal is subject to characteristic voltage level technologies, such as TTL, LVTTL, SSTL, and GTL. Electrical characteristic voltage level β PMOS The source of transistor Q2 is connected to a high supply voltage source. The drains of the PMOS transistors Q2 and Q4 are connected together and connected to the output and the drains of the NMOS transistors Q1 and Q3. The output is an internal circuit connected to the integrated circuit. The source of the NMOS transistor Q1 is connected to a low supply voltage source. 13 (Please read the note ^^ on the back of the page before filling this page) The paper size of the edition is applicable to the Chinese national standard (CNS > A4 size (210X297 mm) 412858 A7 Printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs V. Description of the invention (12) The source of the PMOS transistor Q4 is connected to the drain of the PMOS transistor Q6, and the source of the PMOS transistor Q6 is connected to a high supply voltage source. The source of the NMOS transistor Q3 is connected To the drain of the NMOS transistor Q5. The source of the NMOS transistor Q5 is connected to a low supply voltage source. The gates of the NMOS transistor Q5 and the PMOS transistor Q6 are connected together and connected to a regulating voltage circuit Vadj » The above adjustment voltage circuit Vadj provides a voltage, and this voltage is close to the middle range between the voltage levels of the high supply voltage source and the low supply voltage source. In this case, the PMOS transistor Q6 and the NMOS transistor Q5 will be turned on A certain degree, and this degree is determined by the voltage level of the above-mentioned adjustment voltage circuit Vadj. Because the voltage level of the adjustment voltage circuit Vadj is about the middle range between the voltage levels of the high supply voltage source and the low supply voltage source Has an operating range, in which the conduction of PMOS transistor Q6 and NMOS transistor Q5 can be controlled at the same time, so this basic condition provides the most general adjustment of the buffer trip point. PMOS transistor Q6 and NMOS transistor The geometry of the crystal Q5 is larger than that of the PMOS transistor Q4 and the NMOS transistor Q3, so that the PMOS transistor Q6 and the NMOS transistor Q5 are maintained in a linear or "resistive" region during the operation of the input buffer circuit. It indicates that the PMOS transistor The operation equation of crystal Q6 and NMOS transistor Q5 is: Ids = K * {(Vgs_Vt) * VdsK1 / 2) * VDS2} where 14
----------^----訂一------1 r r (請先閱讀背面之注意事項再填寫本頁J 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29?公釐) 經濟部中央標準局員工消費合作社印裝 412858 at B7 五 '發明説明(13 )---------- ^ ---- Order one ------ 1 rr (Please read the notes on the back before filling in this page J This paper size applies to China National Standard (CNS) A4 specifications (210X29? Mm) Printed by the Consumers Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 412858 at B7 Five 'Invention Description (13)
Ids :經由電晶體之汲極到源極電流; K :為與遷移率、閘極電容及電晶體大小有關的常數; Vgs :為電晶艘之閘極到源極間的電壓;Ids: current from drain to source of transistor; K: constants related to mobility, gate capacitance and transistor size; Vgs: voltage from gate to source of transistor;
Vt .為電晶想之閘極到源極間的電麗’此電壓可使電晶 體開始導通;以及 :Vt. Is the voltage between the gate and the source of the transistor. This voltage will start the transistor to conduct; and:
Vds ‘為電晶艘之没極到源極間的電壓。 對於汲極到源極電壓VDS為小值時,上述方程式可 視為線性,因此每一電晶趙的有效電阻為: R = i_^os_) , R=K*<V〇S~VT) 其中R :電阻電晶體 在針對輸入緩衝器電路之跳脫點上,因為閛極和汲 極將位於相同的電位,所以PMOS電晶體Q2和Q4以及 NMOS電晶體Q1和Q3處於飽和狀態。對於次微米場效 電晶體處理’速度飽和主導電晶體的飽和特性,因此汲 極到源極電流為閘極到源極電壓VGS的線性函數或為下 式:。Vds ‘is the voltage from the electrode to the source of the transistor. When the drain-to-source voltage VDS is small, the above equation can be regarded as linear, so the effective resistance of each transistor is: R = i_ ^ os_), R = K * < V〇S ~ VT) where R: The resistance transistor is at the trip point for the input buffer circuit. Because the 閛 and drain electrodes will be at the same potential, the PMOS transistors Q2 and Q4 and the NMOS transistors Q1 and Q3 are in a saturated state. For sub-micron field effect transistor processing, the saturation characteristics of the main conductive crystal are saturated, so the drain-to-source current is a linear function of the gate-to-source voltage VGS or is:
Ids=K*(Vgs-Vt) 其中K為飽和增益常數 NMOS電晶體Q3的源極和NMOS電晶體Q5串聯。 因為基本上NMOS電晶體Q5為一電阻(以R5來代表), NMOS電晶體Q5會以與汲極電流成比例的量減少NMOS 電晶體之閘極到源極電壓VGS。NMOS電晶體Q3之液極 15 本紙張尺度適用中國國家標準(CNS > A4規格(2丨0·〆297公釐) ^------, I 訂------% t (請先閱諫背'6之洼意事項再填寫本頁) 412858 A7 B7 五、發明説明(14 ) 到源極電流的函數為Ids = K * (Vgs-Vt) where K is the saturation gain constant. The source of NMOS transistor Q3 is connected in series with NMOS transistor Q5. Because the NMOS transistor Q5 is basically a resistor (represented by R5), the NMOS transistor Q5 will reduce the gate-to-source voltage VGS of the NMOS transistor by an amount proportional to the drain current. NMOS transistor Q3 liquid electrode 15 This paper size applies to Chinese national standards (CNS > A4 size (2 丨 0 · 〆297mm) ^ ------, I order ------% t ( (Please read the meaning of "6" before filling out this page) 412858 A7 B7 V. Description of the invention (14) The function of the source current is
Iq3DS=Kq3*(Vq3GS-R5Iq3DS-Vq3T) I〇n κΦIq3DS = Kq3 * (Vq3GS-R5Iq3DS-Vq3T) I〇n κΦ
QJGS -v,QJGS -v,
QiTl NMOS電晶體Q5之電阻R5的結果會減少NMOS電晶體 Q3的有效增益因素如下: ΚΦ ΚΦ 經濟部中央標準局員工消費合作社印装 NMOS電晶體的操作為依據標準飽和電流方程式 增益因素KQ3藉由NMOS電晶體Q5之電阻R5來控 制的範圍是由NMOS電晶體Q5的電阻R5值所決定。當 NMOS電晶體Q5幾乎不導通而使得NMOS電晶體Q5的 電阻R5非常大時,NMOS電晶體Q3的有效增益常數 為: 且會幾乎接近零。如果NMOS電晶體Q5之電阻R5值和 針對NOMS電晶體Q3之有效增益KQ3值比較為近乎零 時,則NMOS電晶體Q3會產生最大有效增益KQ3。在此 狀況中,增益常數會等於針對NMOS電晶體Q3本身之 KQ3 »為了使NMOS電晶體Q5之電阻R5值相對於針對 NMOS電晶體Q3之KQ3之增益常數可被忽略,則和NMOS 電晶體Q3比較的話NMOS電晶體Q5具有大的寬度對長 度的比β而寬度對長度比不應是無限的。對於NMOS電 16 本纸張尺度適用中國國家標準{ CNS ) A4規格(210X297公釐) ^^^1 υ κι— ^^^^1 mu I L at IV 一 令 、-· - - (請先閱t#.背面之注意事項再填寫本頁) A7 B7The result of the resistance R5 of QiTl NMOS transistor Q5 will reduce the effective gain factor of NMOS transistor Q3 as follows: ΚΦ ΚΦ The operation of printing NMOS transistors by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs is based on the standard saturation current equation gain factor KQ3 by The range controlled by the resistance R5 of the NMOS transistor Q5 is determined by the value of the resistance R5 of the NMOS transistor Q5. When the NMOS transistor Q5 is hardly turned on and the resistance R5 of the NMOS transistor Q5 is very large, the effective gain constant of the NMOS transistor Q3 is: and it will be almost zero. If the value of the resistance R5 of the NMOS transistor Q5 and the effective gain KQ3 of the NOMS transistor Q3 are close to zero, the NMOS transistor Q3 will produce the maximum effective gain KQ3. In this case, the gain constant will be equal to KQ3 for the NMOS transistor Q3 itself. »In order to make the value of the resistance R5 of the NMOS transistor Q5 relative to the gain constant of KQ3 for the NMOS transistor Q3 negligible, then the NMOS transistor Q3 In comparison, the NMOS transistor Q5 has a large width-to-length ratio β and the width-to-length ratio should not be infinite. For NMOS, the paper size of this paper applies the Chinese National Standard {CNS) A4 specification (210X297 mm) ^^^ 1 υ κι— ^^^^ 1 mu IL at IV one order,-·--(Please read t first #. Note on the back then fill out this page) A7 B7
五、發明説明(15) 晶體Q3和NMOS電晶體Q5之實際範圍增益Kq3可從 0(NMOS電晶體不導通)到〇.66KQ3(NMOS電晶體Q5導 通)。 因此,NMOS電晶體Q5之電阻R5的整個效應將會 改變NMOS電晶體Q3之增益常數Kq3 β因為NM〇;s電晶 體Q1和NMOS電晶體Q5之電阻R5是以平行方式連接 於緩衝器電路中,所以其增益增加為: PMOS電晶體Q4的源極串聯於pmo'S電晶體Q6 »因為 PMOS電晶體Q6基本上為一電阻(以R6來代表),PMOS 電晶想會以和没極電流成比例的量來減少PMOS電晶體 Q4之閘極到源極電壓VGS。而PMOS電晶體Q4和Q6之 增益KQ6的分析是和上述NMOS電晶想Q3和Q5是一樣 的。因此’ NMOS電晶體Q6之電阻R6的整體效應將會 改變PMOS電晶體Q4的增益常數KQ4。因為PMOS電晶 體Q2和PMOS電晶體Q6之電阻R6在緩衝器電路中是以 平行方式連接,所以其增益增加為:KQ. IV. Description of the invention (15) The actual range gain Kq3 of the crystal Q3 and the NMOS transistor Q5 can be from 0 (the NMOS transistor is not conducting) to 0.666 KQ3 (the NMOS transistor Q5 is conducting). Therefore, the entire effect of the resistor R5 of the NMOS transistor Q5 will change the gain constant Kq3 β of the NMOS transistor Q3 because of NM〇; Therefore, the gain is increased as follows: The source of the PMOS transistor Q4 is connected in series with the pmo'S transistor Q6 »Because the PMOS transistor Q6 is basically a resistor (represented by R6), the PMOS transistor is expected to be proportional to the electrodeless current To reduce the gate-to-source voltage VGS of the PMOS transistor Q4. The analysis of the gain KQ6 of the PMOS transistors Q4 and Q6 is the same as that of the above NMOS transistor Q3 and Q5. Therefore, the overall effect of the resistance R6 of the NMOS transistor Q6 will change the gain constant KQ4 of the PMOS transistor Q4. Because the resistance R6 of the PMOS transistor Q2 and the PMOS transistor Q6 is connected in parallel in the buffer circuit, the gain is increased as: KQ. I
K{Q (#先聞諫背面之注意事項再填寫本頁) 訂” ίέ 經濟部中央標準局貝工消費合作社印製 {«?事,W [wq 現在討論跳脫點的計算,對於一簡單CMOS反相器,4 中對於NMOS電晶體和PMOS電晶體之臨界電壓VT相I 於高供應電壓源(Vcc)是小的,利用NMOS電晶艘考 PMOS電晶體增益常數來計算跳脫點其表示式子如下: 本紙張尺度適用中國國家椟準(CNS ) Α4規格(2丨0 X 297公釐) 412858 A7 B7 五、發明説明(16) (剛K {Q (#Xianwen 谏 Notes on the back of the page before filling out this page) Order "ίέ Printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs {«? 事, W [wq Now discuss the calculation of the trip point, for a simple In CMOS inverter, the critical voltage VT phase I of NMOS transistor and PMOS transistor in I is small at high supply voltage source (Vcc). Use the NMOS transistor to test the gain constant of the PMOS transistor to calculate the trip point. The expression is as follows: This paper size applies to China National Standards (CNS) Α4 specifications (2 丨 0 X 297 mm) 412858 A7 B7 V. Description of the invention (16) (rigid
KsKs
Vc ~(KN^KF) 其中 經濟部中央標準局貝工消費合作社印製 v(trip>為CMOS反相器之跳脫點電壓; KNg CMOS反相器之NMOS電晶體的增益常數; KP為CMOS反相器之PMOS電晶體的增益常數。 除了有效增益常數取代上述增益常數外,相同方程 式將應用到發明之輸入緩衝器。計算則成為: V(trip)__K.{Q\HQiRS}_ (^L «5} + K.{QlllQ*tl^ 如同上述設計的例子,如果NMOS電晶體Q1和 PMOS電晶體Q2設計成具有和K同值的增益常數Κφ* KQ2,以及NMOS電晶體Q3和PMOS電晶體Q4設計成 具有和2K同值的增益常數KQ3和KQ4。相對於2K值, 所設計之NMOS電晶體Q5和PMOS電晶體Q6的電阻值 R5和R6是可忽略的。如果這些值取代於上述函數中, 則NMOS電晶體和PMOS電晶體的調整範圍是相等的, 其範圍如下: Κ < K{Qu/QUtS}<3* Κ ^ < K{Q2//QAR6} < 3 * ^ 因此v(trip)/vcc的調整範圍可表示如下: l./4<V(trip)/Vcc<3/4 此將提供比大部分介面電路所需更寬的調整帶。由 於事實上具有非零臨界電壓和實際裝置的尺寸,上述調 整帶自然會較窄。此調整帶不會比高供應電壓源Vcc的 18 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ---------X-----訂------i ί -- (請先聞资背面之注意事項再填寫本頁) 412858 A7 經濟部中央標準局貝工消費合作社印装 B7 五、發明説明(17) 25%大》通常一個好的設計會使由NMOS電晶體Q1和 PMOS電晶體Q2所形成的反相器具有一接近於介面規格 之設計值‘的跳脫點,並且使用來自NMOS電晶體Q3和 Q5及PMOS電晶體Q4和Q6之調整值來做小的調整。此 將電路對調整電壓源Vadj的敏感減到最小,及使^整電 壓源Vadj的雜訊邊緣為最大。 現參考第4圖以便了解調整電壓如何影嚮輸入信號 之電壓準位的轉換特性及輸出信號的電壓準位。第4囷 係表示出在垂直轴上輸出信號和水平轴上輸入信號的電 壓準位圖。當輸入信號的電壓準位處於低電壓準位(第一 電壓準位(0))乂„時,,輸出的電壓準位處於高電壓準位(第 二電壓準位(lDV^。當輸入信號的電壓準位上升到臨界 跳脫點Vth。的準位,輸出信號的電壓準位將快速改變成 為低電壓準位(第一邏輯準位(〇)) »輸入信號的電壓將繼 續上升到高電壓準位(第二邏輯狀態(l))Vih。臨界電壓準 位VthO和電壓準位Vih間以及電壓準位Vii和臨界電展準 位VthQ間的差別決定輸入緩衝器電路的雜訊邊限。 因為半導體處理參數、電源供應電壓或溫度的改 變,臨界跳脫點VthG可能不會剛好在電性特性技術,如 TTL、LVTTL、SSTL和GTL,所需之臨界跳脫點上。 為了補償在臨界跳脫點VthC的位移,可將調整電壓調低 一些以便位移該臨界跳脫點到電壓準位Vthl,或者將調 整電壓調高一些以便位移該臨界跳脫點到電壓準位 Vth2。 19 ---------^-----^——訂------t — I ' {請先聞请背面之洼意事項再填寫本頁) 本紙張尺度適用中國國家標隼(CNS ) A4洗格(210X297公釐) 412858 A7 B7 經濟部中央樣準局貝工消费合作社印装 五、發明説明(18 ) 第5圈係顯不出電麼調整電路,而此電磨調整電路 可針對複數個輸入緩衝器電路提供調整電壓Vadj如第3 圖所示《第3圓中的一複本輸入緩衝器電路具有連接到 一參考電磨源Vref的輸入’其中此圖已按比例縮小以使 電路的DC電源為最小》參考電壓源vrCf可以位於具有輸 入緩衝器(如第3囷所示)的積體電路的内部或外部。此參 考電壓源是相等於第3圓中輸入緩衝器之所期望的跳脫 點,且被設計成與半導體處理參數、電源供應電壓和溫 度之變化無關。複本輸入緩衝器(duplicate input buffer) 電路DIB的輸出是連接到放大器〇p的非反相輸入(+)。 放大器的反相輸入(-)則是連接到一抽樣CMOS閉極 (sample CMOS gate)SCG,而此CMOS閘極被適當排列以 使DC功率為最小並且其輸入連接到其本身輸出《此抽樣 CMOS閘極為積體電路之複本内部電路,而上述積體電 路具有一如第3圖所示的輸入緩衝電路。藉由將該抽樣 CMOS電路的輸入連接到抽樣CMOS反相器的輸出,在 放大器之反相輸入上的電壓被設定為内部電路的臨界電 壓。 放大器的輸出成為調整電壓Vadj且連接到第3闽中 複數個輸入緩衝器電路。放大器的輸出也是連接到該複 本輸入緩衝器的調整電壓Vadj。 ( 第3圖中之複本輸入緩衝器電路的輸出將被設定成 為内部閘極的臨界電壓。由第3圖中複本輸入緩衝器電 路到放大器之回授將會使該調整電壓經常被設定,如此 20 本紙張尺度適用中國國家榡準(CNS )八4規格U10X297公釐) ---------^--^----^—訂-------^ 1 -' (請先聞请背面之)i·意事項再填寫本頁) 412858 A7 B7 五、發明説明(19) 第3圖之複本輸入緩衝電路的輸出電壓會處於内部閘極 之臨界電壓。 現在參考第6囷和第7囷係顯示出本發明之CMOS 反相器輸入緩衝器電路之高供應電壓調整電路。本發明 之反相器輸入緩衝器電路BUF1可具有一電源供'應電壓 源,而此電源供應電壓源比必須能成為内部電路之介面 之值還大。如果電源供應電壓源足夠大,輸入緩衝器電 路BUF1將會消耗過多功率。為解決此問題,一 PMOS 電晶體被放置於電源供應電壓源(高供應電壓)和輸入緩 衝器電路BUF1之高供應電壓端之間(如第6圖所示 PMOS電晶體Q9會被視同一二極體來連接,如此在輸入 緩衝器電路BUF1的高供應電壓端的電壓為電源供應電 壓源之值,且比PMOS電晶體Q9的臨界電壓VT小。 如果在輸入緩衝器電路之高供應電壓端的電壓準位 比PMOS電晶體Q9之臨界電壓VT大,則一電壓調整器 Vreg將會被放置於輸入緩衝器電器BUF1之高供應電壓端 及電源供應電壓源(高供應電壓)之間(如第7圇所示^此 電壓調整器將產生較低電壓LowerV以供應給輸入緩衝 電路BUF1的高供應電壓端。 現參考第8圖以探討用來控制本發明中輸入緩衝器 電路BUF1之起動的一使能電路。PMOS電晶體Q10被 擺置在高供應電壓和輸入緩衝器電路BUF1之高供應電 壓端之間。在使能(enable)端上的使能信號是連接到 PMOS電晶體的閘極》 21 本紙張尺度適用中國國家揉準(CNS ) A4現格(210X297公釐) 經濟部中央標準局員工消費合作社印製 412858 A7 B7 五、發明説明(20 ) NMOS電晶體Q11之汲極是連接到輸入緩衝路BUF1 的輸出端,而其源極是連接到低供應電壓,及其閘極是 連接到使能(enable)端。 如果使能端是處於第一邏輯狀態(0),則會造成PMOS 電晶體Q10導通,因而起動輸入緩衝器BUF1且使NMOS 電晶體Q11進入到一非導通狀態。但是,如果使能信號 是處於第二邏輯狀態(1),則會促使PMOS電晶體Q10停 止導通,因而解除CMOS反相器的起動,以及使NMOS 電晶體Q11導通,因而有效將輸出端連接到低供應電 壓。 第9圖表示出第一形態的滯後調整》輸入緩衝器電 路BUF1之輸出端是連接到NMOS電晶體Q12和PMOS 電晶體Q13的源極及内部反相器閘極h的輸入^ NMOS 電晶體Q12的源極是連接到低供應電壓源,而PMOS電 晶體Q13的源極是連接到高供應電壓源。内部反相器h 之輸出是連接到NMOS電晶體Q12和PMOS電晶體Q13 的閘極。 如果輸出端是處於第一邏輯狀態(0),則到内部反相 器II的輸出是處於第二邏輯狀態(1),因而造成NMOS電 晶體Q12導通進而有效地使輸出端處於低供應電壓。當 輸入緩衝器電路BUF1的輸入開始從第二邏輯狀態(1)變 化到第一邏輯狀態(〇)時,輸入緩衝器電路BUF1將開始 提升在輸出端的電壓。此將造成内部反相器改變狀態, 因而開始中止NMOS電晶體的導通而PMOS電晶體則開 22 , 於-----r I 訂-------% I -」 (請先閱療背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS )八4規格(210X297公釐) 412858 A7 經濟部中央標率局員工消費合作社印製 B7 五、發明説明(21 ) 始導通〇此會造成一正回授以使得該内部反相器進入到 第一邏輯狀態(〇)及使輸出快速成為第二邏輯狀態(1)。此 變化是發生在一電壓準位,而此電壓準位與調整電壓Vadj 所決定之電壓準位是不同的。 如果輸入緩衝器電路BUF1的輸入是處於第二邏輯 狀態(0)及正要改變成為第二邏輯準位時,滯後動作是和 上面所述一樣的,但為不同的方向。輸出準位是由NOMS 電晶趙Q12和PMOS電晶體Q13的幾何所決定。 現參考第10圖中結合有滞後現象之輸入緩衝器電路 的另一結構。NMOS電晶體Ql、Q3和Q5以及PMOS 電晶體Q2、Q4和Q6構成如第3圖之輸入緩衝器電路》 NMOS電晶體Q7是連接於NMOS電晶體Q3和Q5之共 同節點以及高供應電壓源之間》當在輸入端上的輸入信 號是處於第一邏輯狀態(0)及輸出是處於第二邏輯狀態(1) 時,NMOS電晶體Q7是處於導通,因而在NMOS電晶 體Q3和Q5間的共同節點上會接上高供應電壓源。當在 輸入端上的輸入信號開始從第一邏輯狀態(0)改變成第二 邏輯狀態(1)時.,NMOS電晶體Q1開始導埠,因而降低 在輸出上的電壓。因為NMOS電晶體Q3的源極是處於高 供應電壓準位,所以NMOS電晶體保持截止。此和第1 圖所述略微相似會修改由調整電壓Vadj所建立之反相器 \ 的跳脫點。 PMOS電晶體Q8是連接於PMOS電晶體Q4和Q6間 的共同節點及高供應電壓源之間。當在輸入端上的輸入 23 H - ! HI- I I : —^^1 - - In HTP 1 - -- - 一eJ--, - (請先閱請背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標率(〇^)八4規潘(210><297公嫠) 41S858 A7 B7 五、發明説明(22 ) 信號是處於第二邏輯狀態(1)及輸出是處於第一邏輯狀態 (0)時,PMOS電晶體Q8導通,因而使得位於PMOS電 晶體Q4和Q6間的共同節點會接上低供應電壓源。當在 輸入端上的輸入信號開始從第二邏輯狀態(1)變成第一邏 輯狀態時,PMOS電晶體Q2開始導通,因而提升在輸出 上的電壓。因為PMOS電晶體之源極是處於低供應電壓 源,所以PMOS電晶體Q4會保留截止。此和第1圖所述 略微相似會修改由調整電壓Vadj所建立之反相器的跳脫 點。 滯後現象是由NMOS電晶體Q3和Q7之幾何比率以 及PMOS電晶體Q4和Q8之幾何比率所控制。 雖然本發明巳以一較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習此項技術者,在不脫離本發 明之精神和範圍内,當5"做各種之更動與潤飾,而本發 明之保護範圍當視後附之申請專利範圍所界定者為準。 ^^^^1 m^— mu ^^^1 ί ^p^pf ^^^^1 m 一 -」 i (諳先閲请背面之1注意事項再填寫本頁) 經濟部中央樣率局員工消費合作社印装 本紙浪尺度適用中國國家標準(CNS ) A4说格(210X297公釐)Vc ~ (KN ^ KF) where v (trip > is the trip point voltage of the CMOS inverter printed by Shelley Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs; KNg is the gain constant of the NMOS transistor of the CMOS inverter; KP is the CMOS The gain constant of the PMOS transistor of the inverter. In addition to the effective gain constant replacing the above gain constant, the same equation will be applied to the input buffer of the invention. The calculation becomes: V (trip) __ K. {Q \ HQiRS} _ (^ L «5} + K. {QlllQ * tl ^ As in the design example above, if NMOS transistor Q1 and PMOS transistor Q2 are designed to have a gain constant κφ * KQ2 of the same value as K, and NMOS transistor Q3 and PMOS transistor The crystal Q4 is designed to have gain constants KQ3 and KQ4 of the same value as 2K. With respect to the 2K value, the resistance values R5 and R6 of the designed NMOS transistor Q5 and PMOS transistor Q6 are negligible. If these values are substituted for the above In the function, the adjustment range of the NMOS transistor and the PMOS transistor is equal, and the range is as follows: κ < K {Qu / QUtS} < 3 * κ ^ < K {Q2 // QAR6} < 3 * ^ So the adjustment range of v (trip) / vcc can be expressed as follows: l./4<V(trip)/Vcc<3/4 This will provide more than most The circuit requires a wider adjustment band. Due to the fact that it has a non-zero critical voltage and the size of the actual device, the above adjustment band will naturally be narrower. This adjustment band will not be larger than the high supply voltage source Vcc 18 This paper size is suitable for China National Standard (CNS) A4 Specification (210X297mm) --------- X ----- Order ------ i ί-(Please read the notes on the back of the asset before filling in this Page) 412858 A7 Printed by B7 Consumers Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the Invention (17) 25% Large> Generally, a good design will make an inverting device formed by NMOS transistor Q1 and PMOS transistor Q2 There is a trip point close to the design value of the interface specifications, and small adjustments are made using the adjustment values from NMOS transistors Q3 and Q5 and PMOS transistors Q4 and Q6. This reduces the sensitivity of the circuit to the adjustment voltage source Vadj To the minimum, and to maximize the noise edge of the voltage source Vadj. Now refer to Figure 4 to understand how the adjustment voltage affects the conversion characteristics of the voltage level of the input signal and the voltage level of the output signal. Section 4 Indicates the output signal on the vertical axis and the input signal on the horizontal axis Voltage level map of the digital signal. When the voltage level of the input signal is at a low voltage level (first voltage level (0)) 乂 „, the output voltage level is at a high voltage level (second voltage level (LDV ^. When the voltage level of the input signal rises to the critical trip point Vth. Level, the voltage level of the output signal will quickly change to the low voltage level (the first logic level (0)) »The voltage of the input signal will continue to rise to the high voltage level (the second logic state (l)) Vih. The difference between the threshold voltage level VthO and the voltage level Vih and between the voltage level Vii and the threshold level VthQ determines the noise margin of the input buffer circuit. Because of changes in semiconductor processing parameters, power supply voltage, or temperature, the critical trip point VthG may not be exactly at the critical trip point required by electrical characteristics such as TTL, LVTTL, SSTL, and GTL. In order to compensate the displacement at the critical trip point VthC, the adjustment voltage can be lowered to shift the critical trip point to the voltage level Vthl, or the adjustment voltage can be adjusted to be higher to shift the critical trip point to the voltage level Vth2. . 19 --------- ^ ----- ^ —— Order ------ t — I '{Please read the ins and outs on the back before filling out this page) This paper size applies to China National Standards (CNS) A4 Washing (210X297 mm) 412858 A7 B7 Printed by the Central Bureau of Standards, Ministry of Economic Affairs, Shellfish Consumer Cooperative, Co., Ltd. 5. Description of the Invention (18) Does the 5th circle show that there is no power adjustment circuit, and this The electric grinder adjustment circuit can provide the adjustment voltage Vadj for a plurality of input buffer circuits as shown in Fig. 3 "A duplicate input buffer circuit in the third circle has an input connected to a reference electric grinder source Vref. Scale down to minimize the DC power supply of the circuit. The reference voltage source vrCf can be located inside or outside the integrated circuit with an input buffer (as shown in Figure 3). This reference voltage source is equivalent to the expected trip point of the input buffer in the third circle, and is designed to be independent of changes in semiconductor processing parameters, power supply voltage, and temperature. The output of the duplicate input buffer circuit DIB is a non-inverting input (+) connected to the amplifier op. The inverting input (-) of the amplifier is connected to a sample CMOS gate SCG, and the CMOS gate is properly arranged to minimize DC power and its input is connected to its own output The gate is a duplicated internal circuit of the integrated circuit, and the integrated circuit has an input buffer circuit as shown in FIG. 3. By connecting the input of the sampling CMOS circuit to the output of the sampling CMOS inverter, the voltage on the inverting input of the amplifier is set to the critical voltage of the internal circuit. The output of the amplifier becomes the regulated voltage Vadj and is connected to a plurality of input buffer circuits in the third circuit. The output of the amplifier is also the regulated voltage Vadj connected to the replica input buffer. (The output of the replica input buffer circuit in Figure 3 will be set to the threshold voltage of the internal gate. The feedback from the replica input buffer circuit in Figure 3 to the amplifier will often set the adjustment voltage, so 20 This paper size is applicable to China National Standards (CNS) 8-4 specification U10X297 mm) --------- ^-^ ---- ^-Order ------- ^ 1-' (Please read this first and then on the back) i. Matters before filling out this page) 412858 A7 B7 V. Description of the invention (19) The output voltage of the replica input buffer circuit in Figure 3 will be at the threshold voltage of the internal gate. Referring now to the 6th and 7th series, a high supply voltage adjustment circuit of the CMOS inverter input buffer circuit of the present invention is shown. The inverter input buffer circuit BUF1 of the present invention may have a power supply for a voltage source, and the power supply voltage source is larger than a value that must be an interface of the internal circuit. If the power supply voltage source is large enough, the input buffer circuit BUF1 will consume excessive power. To solve this problem, a PMOS transistor is placed between the power supply voltage source (high supply voltage) and the high supply voltage terminal of the input buffer circuit BUF1 (as shown in Figure 6, the PMOS transistor Q9 will be considered the same The diode is connected so that the voltage at the high supply voltage terminal of the input buffer circuit BUF1 is the value of the power supply voltage source and is smaller than the threshold voltage VT of the PMOS transistor Q9. If the voltage at the high supply voltage terminal of the input buffer circuit is The voltage level is greater than the threshold voltage VT of the PMOS transistor Q9, then a voltage regulator Vreg will be placed between the high supply voltage terminal of the input buffer appliance BUF1 and the power supply voltage source (high supply voltage) (such as the first As shown in Figure 7: This voltage regulator will generate a lower voltage, LowerV, to supply the high supply voltage terminal of the input buffer circuit BUF1. Referring to FIG. 8 to discuss a method for controlling the start of the input buffer circuit BUF1 in the present invention. Enable circuit. PMOS transistor Q10 is placed between the high supply voltage and the high supply voltage terminal of the input buffer circuit BUF1. The enable signal on the enable terminal is connected to "Gate of PMOS transistor" 21 This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 412858 A7 B7 V. Description of invention (20) NMOS transistor The drain of Q11 is connected to the output of the input buffer circuit BUF1, and its source is connected to the low supply voltage, and its gate is connected to the enable. If the enable is in the first logic state (0), it will cause the PMOS transistor Q10 to be turned on, so the input buffer BUF1 is started and the NMOS transistor Q11 is brought into a non-conducting state. However, if the enable signal is in the second logic state (1), it will The PMOS transistor Q10 is stopped to be turned on, thereby cancelling the start of the CMOS inverter, and the NMOS transistor Q11 is turned on, thereby effectively connecting the output terminal to a low supply voltage. The ninth chart shows the hysteresis adjustment of the first form. Input buffer The output terminal of the inverter circuit BUF1 is connected to the source of the NMOS transistor Q12 and the PMOS transistor Q13 and the input of the internal inverter gate h. The source of the NMOS transistor Q12 is connected to a low supply voltage source. The source of the PMOS transistor Q13 is connected to a high supply voltage source. The output of the internal inverter h is connected to the gate of the NMOS transistor Q12 and the PMOS transistor Q13. If the output terminal is in the first logic state (0) , The output to the internal inverter II is in the second logic state (1), which causes the NMOS transistor Q12 to be turned on, thereby effectively putting the output at a low supply voltage. When the input of the input buffer circuit BUF1 starts from the second When the logic state (1) changes to the first logic state (0), the input buffer circuit BUF1 will start to boost the voltage at the output terminal. This will cause the internal inverter to change state, so the on-state of the NMOS transistor will be suspended and the PMOS transistor will be turned on. Order at --- r I ----% I-'' (Please read first Note on the back of the treatment, please fill in this page again) This paper size is applicable to China National Standard (CNS) 8 4 specifications (210X297 mm) 412858 A7 Printed by the Consumer Standards Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs B7 V. Description of invention (21) Turning on this will cause a positive feedback so that the internal inverter enters the first logic state (0) and the output quickly becomes the second logic state (1). This change occurs at a voltage level, which is different from the voltage level determined by the adjustment voltage Vadj. If the input of the input buffer circuit BUF1 is in the second logic state (0) and is about to change to the second logic level, the hysteresis action is the same as described above, but in a different direction. The output level is determined by the geometry of the NOMS transistor Q12 and the PMOS transistor Q13. Reference is now made to Fig. 10 for another structure of an input buffer circuit incorporating hysteresis. The NMOS transistors Q1, Q3, and Q5 and the PMOS transistors Q2, Q4, and Q6 form the input buffer circuit as shown in Figure 3. "The NMOS transistor Q7 is connected to the common node of the NMOS transistors Q3 and Q5 and a high-voltage supply source. "When the input signal on the input terminal is in the first logic state (0) and the output is in the second logic state (1), the NMOS transistor Q7 is on, so between the NMOS transistors Q3 and Q5 A high supply voltage source is connected to the common node. When the input signal on the input terminal starts to change from the first logic state (0) to the second logic state (1), the NMOS transistor Q1 starts to conduct the port, thereby reducing the voltage on the output. Because the source of the NMOS transistor Q3 is at a high supply voltage level, the NMOS transistor remains off. This is slightly similar to that described in Figure 1 and will modify the trip point of the inverter \ established by the adjustment voltage Vadj. The PMOS transistor Q8 is connected between a common node between the PMOS transistors Q4 and Q6 and a high supply voltage source. When inputting 23 H-! HI- II on the input side:-^^ 1--In HTP 1---One eJ--,-(Please read the notes on the back before filling this page) This paper The scale is applicable to China's national standard rate (〇 ^), eight-four gauges (210 > < 297 gong) 41S858 A7 B7 V. Description of the invention (22) The signal is in the second logic state (1) and the output is in the first logic state In the state (0), the PMOS transistor Q8 is turned on, so that the common node between the PMOS transistor Q4 and Q6 will be connected to a low supply voltage source. When the input signal on the input terminal starts to change from the second logic state (1) to the first logic state, the PMOS transistor Q2 starts to conduct, thereby increasing the voltage on the output. Because the source of the PMOS transistor is at a low supply voltage source, the PMOS transistor Q4 will remain off. This is slightly similar to that described in Figure 1 and will modify the trip point of the inverter established by adjusting the voltage Vadj. Hysteresis is controlled by the geometric ratio of the NMOS transistors Q3 and Q7 and the geometric ratio of the PMOS transistors Q4 and Q8. Although the present invention is disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art can make various modifications and retouches without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application. ^^^^ 1 m ^ — mu ^^^ 1 ί ^ p ^ pf ^^^^ 1 m 1-"i (谙 Please read the 1 notes on the back before filling out this page) Staff of the Central Sample Rate Bureau of the Ministry of Economic Affairs The scale of the printed paper of the consumer cooperative is applicable to the Chinese National Standard (CNS) A4 standard (210X297 mm)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW87101136A TW412858B (en) | 1998-01-26 | 1998-01-26 | Input buffer of integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW87101136A TW412858B (en) | 1998-01-26 | 1998-01-26 | Input buffer of integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
TW412858B true TW412858B (en) | 2000-11-21 |
Family
ID=21629417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW87101136A TW412858B (en) | 1998-01-26 | 1998-01-26 | Input buffer of integrated circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW412858B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9048249B2 (en) | 2013-02-05 | 2015-06-02 | Novatek Microelectronics Corp. | Integrated circuit chip with high speed input and output pins directly coupled to common node |
-
1998
- 1998-01-26 TW TW87101136A patent/TW412858B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9048249B2 (en) | 2013-02-05 | 2015-06-02 | Novatek Microelectronics Corp. | Integrated circuit chip with high speed input and output pins directly coupled to common node |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6335633B1 (en) | Adjustable, full CMOS input buffer for TTL, CMOS, or low swing input protocols | |
TW392161B (en) | Internal voltage generating circuit | |
JPH07297678A (en) | Cmos termination resistance circuit | |
US5719525A (en) | Enhanced voltage tracking circuit for high voltage tolerant buffers | |
JP3916502B2 (en) | Output circuit | |
US5021730A (en) | Voltage to current converter with extended dynamic range | |
US20020008543A1 (en) | Load capacitance measuring circuit and output buffer adaptive to wide range of load capacitance | |
US6181157B1 (en) | Resistor mirror | |
US10198014B2 (en) | Low leakage low dropout regulator with high bandwidth and power supply rejection | |
JP4518321B2 (en) | Data transmission apparatus and reception apparatus | |
TW412858B (en) | Input buffer of integrated circuit | |
US5929673A (en) | Ultra low current power-up signal switching circuit | |
JPH05265578A (en) | Switchable voltage generator and operational amplifier | |
TW567585B (en) | Integrated circuit | |
JP7085911B2 (en) | Comparator and oscillator circuit | |
CN105720962B (en) | The method of switching circuit and control switching | |
TW317029B (en) | ||
JPH088481B2 (en) | CMOS input buffer circuit | |
KR100206929B1 (en) | Variable delay circuit for semiconductor memory apparatus | |
TW469697B (en) | Complementary current mode driver | |
TW307955B (en) | ||
TW466392B (en) | Current compensating bias generator and method therefor | |
US4794282A (en) | TTL to CMOS voltage level translator | |
US6114872A (en) | Differential input circuit | |
JP7097749B2 (en) | Level shift circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |