TW410153B - Methods for estimating a broadband ultrasound attenuation value and a corresponding value of a member - Google Patents

Methods for estimating a broadband ultrasound attenuation value and a corresponding value of a member Download PDF

Info

Publication number
TW410153B
TW410153B TW088113936A TW88113936A TW410153B TW 410153 B TW410153 B TW 410153B TW 088113936 A TW088113936 A TW 088113936A TW 88113936 A TW88113936 A TW 88113936A TW 410153 B TW410153 B TW 410153B
Authority
TW
Taiwan
Prior art keywords
patent application
item
component
scope
sound
Prior art date
Application number
TW088113936A
Other languages
English (en)
Inventor
Jeffrey H Goll
Joe P Buhler
Original Assignee
Metra Biosystems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metra Biosystems Inc filed Critical Metra Biosystems Inc
Application granted granted Critical
Publication of TW410153B publication Critical patent/TW410153B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0875Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of bone

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Rheumatology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

經濟部智慧財產局負工消費合作社印製 •'7.路 R7 五、發明說明() 將爲αΝ。 本發明實施例的說明預計僅爲案例且熟習本項技術人 士作許多變化及修正後顯而易知的。所有此變化及修正意 欲在後附申請專利範圍之本發明範圍內。 [元件符號說明] 410153 A7 11 波型產生器 12 傳送轉換器 13 轉換器 14 放大器 15 處理器 16 主體部份 21 微處理機 22 數位/類比轉換器 23 記憶體 24 記憶體 25 數位/類比轉換器 26 放大器 27 單位 221 激發體 222 傳送器 223 媒介物 224 接收器 -------I!---装---1 — ! — — 訂---------線 — (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用t國國家標準<CNS)A4規格(210 X 2耵公釐) 41015¾ B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(/ ) 技術領域 本發明係有關一種用於骨骼聲響分析的裝置及方法, 且更特別有關將包含暫態聲響測量之聲響測量轉換爲相同 的寬頻超音波衰減(BUA)測量,及根據相同之寬頻超音波 衰減測量之特別測量單位之校準測量的裝置及方法。 背景技術 各種利用聲響技術之骨骼特徵測量的方法已知被用來 確認病人是否有處理骨骼狀況及疾病的需要。許多聲響技 術通常在超音波頻率下利用第一(傳輸)轉換器將聲響訊號 從第一外部位置提供至主體,及位於利害關係之骨骼之對 側的第二外部位置的第二(接收)轉換器來接收第一轉換器 經由骨骼及干預軟組織所傳輸的訊號(轉換器通常經由諸如 水或水凝膠的適當液體而被耦合至主體)。 通常被引用的骨骼聲響特性之一稱爲寬頻超音波衰減 (BUA),通常被引用的頻率範圍大約爲300至7〇0仟赫。 寬頻超音波衰減被定義爲經由足根部而被傳輸之能量的線 性對數振幅對頻率的斜率。寬頻超音波衰減測量通常是由 接收轉換器中因進行測量中之骨骼所傳輸之寬頻聲響脈衝 所製造之訊號的富利葉轉換所實施。被接收之訊號的富利 葉成份通常與經由已知媒介或被假設之頻譜衰減特性所測 量之對應成份成比例關係,使其可導出骨骼衰減對頻率之 斜率。已知骨骼擁有高頻優先衰減的效果-已知當骨骼 逐漸可滲透時此優先衰減會降低,因此,寬頻超音波衰減 同樣地因更多可滲透的骨骼而降低。寬頻超音波衰減測量 3 - (請先Μ讀背面之注意事項再填筅本頁) ί 兮° r 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局貝工消費合作社印製 410153 at _______B7_____ 五、發明說明(之) 通常遭遇許多缺點,包含經由骨骼之多重路徑之傳輸及接 收聲響轉換器之間的聲響所傳輸之被接收訊號的污染。舉 例而言*給定測量之寬頻超音波衰減結果可能視所使用之 裝置及視所使用之時域記錄,如果可能的話,以資料被使 用之視窗功能,被用來估計斜率之頻率範圍及方法,及被 用來校準之方法的長度及部份而定。 如以下更詳細討論之被接收波型的早期部份可能更具 被測量主件的代表性。再者,因爲實證資料將寬頻超音波 衰減値連繫至骨骼情況,所以其可預期將有關被接收訊號 之早期或其他短暫部份所作成之測量轉換爲理想情況下可 能利用寬頻超音波衰減技術作成之相同測量及引用以寬頻 超音波衰減相同物型式的結果。 對於臨床用途而言,不論是以一個或一個以上之測量 單位所作成的測量’被測量及被引用的特性都必須於整個 人口樣本及個人測量兩者有高度的重製性。 爲了監控測量的可靠性及重製性,已提供不同之品質 標準來模擬骨骼的衰減特質,亦即高頻的優先衰減性。一 種需要製造模型足根結構的標準類型,諸如環氧樹脂光子 ’有時充塡如鎢粉或玻璃豆之另一物質的微粒,且有時被 溫度控制。已知這些標準無法重製及應用。已知現行技術 的另一標準類型爲可模擬衰減性骨骼之光譜效應,但不能 解釋諸如轉換器感應至接觸效應的整個系統之機械面的電 子標準。 發明槪要 4 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 一---*— — — 1 —---裝·!-----訂--------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 41015? A7 ___B7__ 五、發明說明(;) 在較佳實施例中,本發明提供一個測量對應骨骼之寬 頻超音波衰減値的方法。此方法擁有提供一個擁有與骨骸 隔離關係之一對轉換器之超音波資料收發器的裝置’其中 該對之第一轉換器被耦合至訊號產生器’以提供擁有分配 於整個頻率範圍的能量’且此對之第二轉換器接收沿著包 含構件之路徑傳播之聲響脈衝所產生的聲響訊號。此裝置 同時也擁有可與第二轉換器通訊以提供聲響測量値的訊號 處理器,此測量表示至少光譜之一或構件的暫時組件,一 直到由第二轉換器接收之訊號之全量。本發明實施例提供 之方法之連續步驟包含測量以組件使用裝置產生的第一波 形hsubjm⑴及以校準媒介使用裝置產生的第二波形heal⑴,及 從hsubj„tWS生之聲響測量値的値。對於寬頻超音波衰減的 任何値而言,濾波器Fm被界定,使得Fm之頻率反應爲以 斜率之對數線性依序地對應著寬頻超音波衰減15使得從將 濾波器Fm應用至第二波形hm⑴產生之波形計算出之聲響 測量値可匹配之從hsubj«t⑴衍生之m値被決定出。 滿足以上情況之m値的決定可在不同案例基礎下被實 施,或更佳地藉由決定聲響測量及m値之夠大組之m之間 關係,使得查找表或如多項關係之近似功能關係可被運用 〇 爲符合本發明實施例所衍生之寬頻超音波衰減値因爲 貢獻hsub^w之變異的裝置這些面同時也表現於中而達 成了特殊裝置之校準。 爲符合本發明之另一實施例,轉換函數Fm可爲Fm(f) 5 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 1 i I ll^illllla - -------訂-- - -----I J. {請先閱讀背面之注意事項再填寫本頁)
五、發明說明(W A7 B7 410153 經濟部智慧財產局員工消費合作杜印製 = AemV_W(f)的型式,其中a爲常數,炉⑴爲特定的相 位轉換函數,且W(f)爲特定窗函數。 圖式簡單說明 藉由以下附圖及附帶之詳細說明可更容易了解本發明 ,其中: 圖1爲顯示符合本發明較佳實施例中使用之系統的一 般組件圖; 圖2爲顯示圖1系統的實施圖: 圖3A_C顯示健康骨骼,骨質疏鬆之骨骼,及水校準 案例中被接收之典型波訊號的比較。 圖4A提供顯示反應@由圖1系統產生且經由擁有實 質多孔之骨骼傳送之激發波型之圖1之轉換器的被儲存輸 出圖,及適當地劃出符合本發明較佳實施例之UBIs計算 圖4B提供有關圖4A圖型之Burg光譜估計函數圖。 圖5A提供顯示反應出由圖1系統產生且經由低正常 品質之骨骼傳送之激發波型之圖1之轉換器的被儲存輸出 圖,及適當地劃出根據本發明較佳實施例之超音波骨骼指 標的計算。 圖5B提供有關圖5A圖型之Burg光譜估計函數圖。 圖6A提供顯示反應出由圖1系統產生且經由非常低 正常品質之骨骼傳送之激發波型之圖1之轉換器的被儲存 輸出圖,及適當地劃出根據本發明較佳實施例之超音波骨 骼指標的計算。 -------;----------------訂· — 一1· ^^ (請先閲讀背面之注意事項再堉寫本頁) 本紙張尺度適用令國國家標準(CNS)A4規格(210 X 297公釐) 41 4i〇i^3 __B7_ 五、發明說明(t ) 圖6B提供有關圖6A圖型之Burg光譜估計函數圖。 圖7及8分別爲一位46歲健康女性之跟骨之兩維區域 的超音波骨豁指標-4b及超音波骨豁指標_5c的表面圖;及 圖9爲顯示根據本發明較佳實施例爲了達到從一個或 一個以上超音波骨骼指標的測量估計骨骼完整之其他測量 目的之超音波分析系統的圖示模型。 特定實施例之詳細說明 在名爲”利用光譜及暫時訊號成份之最大功能做骨骼超 音波分析之裝置及方法的美國專利號第5,720,290(“Buhler 專利”)中,在此附上其拷貝且藉如物證A之參考合倂,可 實行在此揭露之本發明系統。 一般安排,訊號產生,及訊號處理 圖1爲顯示於Buhler專利中說明且可符合本發明較佳 實施例中使用之系統類型的一般組件圖。在此系統中,波 型是藉由波型產生器11所產生的,且被傳送至項目12的 傳送轉換器Ττ。轉換器Ττ以聲響方式被耦合至目標的主 體16且製造了被傳送進入主體16且特別是進入主體內之 骨骼的聲響波。項目Π的轉換器TR同時也以聲響方式被 耦合至主體16且經由骨骼及主體接收由其他事物之聲響波 傳送之效應產生的訊號。任何經由主體傳送及接收之聲響 訊號成份可一起被歸於此說明及附帶申請專利範圍中的”聲 響資料收發器” β轉換器TR的輸出藉由放大器14而被放大 且被處理器15所處理。處理器15分析轉換器7^的輸出, 且可做成骨骼情況的決定性反射且提供輸出。 7 本紙張尺度適用申國國家標準(CNS)A4規格(210 X 297公釐〉 (請先閱讀背面之注意事項再填寫本頁) --裝------—訂*--------線钱 經濟部智慧財產局員工消費合作社印製 410153 經濟部智慧財產局具工消費合作社印製 B7 五、發明說明(έ ) 圖2爲顯示圖1系統的運作圖。舉例而言,主體可爲 最接近跟骨的區域。當圖1之組件可於已知現行技術水準 方式之類比成份中被實行時’其可便利的使用數位運作。 於是,處理器15及波型產生器11可被實現於包含控制轉 換器TR輸出的處理及被用於激發轉換器Ττ之波型的產生 的單位27中。此波型可被儲存於項目24中之記憶體1中 之數位型式,且於被提供至放大器26及轉換器Ττ之前經 由數位對類比轉換器25的運作而被微處理機21控制。同 樣地,接收轉換器TR的輸出由放大器14供應至類比對數 位轉換器22且此被數位化之輸出被儲存於項目23的記憶 體2中。然後此被儲存之輸出被提供指示骨骼情況之資料 輸出的微處理機21所處理。 在系統之更進一步實施例中,圖2之實施例(或圖1之 完全或部份類比運用)被用來處理符合任何一個或一個以上 不同程序之TR&被儲存輸出以提供指示骨骼情況的資料輸 出。爲符合某些實施例,指示骨骼情況的資料輸出包含吾 人稱爲”超音波骨骼指標”(UBI)的數字。我們實行的每一不 同程序可導致不同的超音波骨骼指標,且各種超音波骨骼 指標類型可被例如超音波骨骼指標-2,超音波骨骼指標-3 等等的數値字尾來辨識。Buhler專利中詳細地說明了經由 超音波骨骼指標-2至超音波骨骼指標-8的程序。爲了連接 被使用之一般訊號處理技術(但不是超音波骨骼測試內容中 特定的使用)’下列參考是相關的:30oualem Boashash的時 間頻率訊號分析(Wiley,1的2)(特別是有關即時頻率分析; 8 本紙張尺度適用t國國家標準(CNS)A4規格(210 X 297公釐) (猜先閲讀背面之注意事項再填寫本頁) 43^--------^---------線. 經濟部智慧財產局負工消費合作社印製 A7 -削 153-^- 五、發明說明(T ) 特別見第2章,第43-73頁)及Richard Shiavi的應用統計 訊號分析介紹(Irwin,1991)(特別是有關Burg光譜估計; 特別見第369-373頁)。這些內容在此以參考文獻方式合倂 〇 此程序依不同的超音波輸入反應於一方面擁有相當少 孔及可連接骨骼及另一方面擁有相對多孔及不可連接骨骼 的優點。Buhler專利中說明的各種超音波骨骼指標與本發 明有關且將於以下說明之。
超音波骨骼指標-2。爲了符合超音波骨骼指標-2,TR 的被儲存輸出是經由離散富利葉轉換來運作的。然後計算 產生之頻率成份之對數加權線性加總;此加總爲超音波骨 骼指標-2。此加權被選來將從相同個體採取之連續測量的 差異最小化及從不同個體採取之連續測量的差異最大化, 所以此函數扮演了決定骨骼之非連接及多孔範圍的判別式 〇 超音波骨骼指標-3。超音波骨骼指標-3程序使用了 TR 被儲存輸出的Hilbert包絡:HUben包絡提供了做爲時間 函數之被接收波型能量內容的測量。有關健康骨骼之被接 收波型中低頻訊號之較大優勢會使其擁有較有關相對多孔 之被接收波型爲長之持續期間。於是,爲了符合超音波骨 骼指標-3,Hilbert包絡被檢驗能量持續期間。 超音波骨骼指標-4。超音波骨骼指標-4程序使用了 TR 被儲存輸出的自我迴歸移動平均(ARMA)光譜估計函數。在 一實施例中,超音波骨骼指標-4使用了 TR被儲存輸出的 9 本紙張足度適用中國國家標準(CNS〉A4規格(210 X 297公釐) — ΙΊ !'------ -裝-----—II 訂·------— 線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作杜印製 410^53_Z_ 五、發明說明($ )
Burg光譜估計函數;Burg函數提供了估計能量對被接收波 型頻率的繪圖。圖型爲健康及相對多孔骨骼之間的判別式 。超音波骨骼指標-4爲對數(sdf)對f函數之斜率(dB/MHz) 的估計。一般而言,負斜率越陡,骨骼越健康。超音波骨 骼指標-4b爲僅參考圖上兩點斜率的估計,第一點發生於 第一個波峰,且第二點發生在高於400仟赫茲的頻率。 超音波骨骼指標-5。超音波骨骼指標-5程序使用了有 關被接收波型之較早部份期間之即時頻率的測量。一實施 例使用了 Hilbert頻率函數。在不被經由多重路徑於傳送及 接收轉換器間之聲響傳送所污染的分析,被接收波型之較 早部份期間可更具主體,特別是骨骼的代表性基於被接 收波型之較早部份期間的分析可參考圖4Α-Β,圖5Α_Β及 圖6Α-Β來討論《如已教過Boashash的圖24,一訊號通常 可以下型式表示: f(t)=a(t)e㈣ (1) 已知現行技術水準中a(t)表示訊號的包絡’且0⑴爲 訊號的頻率函數。特別是,訊號函數行爲的分解可成爲利 用Hilbert轉換(Boashash,第26頁)之方程式(1)的型式, 如於訊號主要沿著激發源之中央頻率軌跡處很適當,接著 包絡a⑴可被歸於Hilbert包絡且頻率函數可被歸於Hilbert 頻率函數。做爲時間函數的包絡及頻率函數因爲激發的暫 時特性及骨骼反應的特性而有所不同,且其不健康及健康 骨骼案例的値可分別由圖4A中之數値242及243及圖6A 中之數値262及263來表示。對於健康骨骼而言’在被接 10 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) IΙΊ I I ^--— II ~ i ί J I I I — — — — — — ί - 气 j (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消费合作社印製 _410153_B7 _ 五、發明說明(7 ) 收波型之較早部份期間(3或4微秒),其很少變化且主要的 頻率相對很低。對於相對多孔骨骼而言,則其有相當的變 化且主要的頻率相對很高β此變化可根據任何現行技術水 準中熟知之各種方法中來量化。做爲可替代或除此之外以 時間來測量Hilbert頻率函數的變化,其可能決定前述之被 接收突發之早期階段的主頻率;在此區域中,不良骨骼擁 有較高的主頻率。吾人將此主要頻率及時間區段的期間分 別稱爲”主要早期頻率”及”主要早期期間”。決定此頻率或 期間的方法之一爲計算此區域中之Hilbert函數然後決定整 個期間之Hilbert相位對時間的平均斜率。另一方式爲,此 區域中之主要頻率的測量可直接從良好成果之樣本波型式 資料來估計。超音波骨骼指標-5c爲利用第一實質峰之每一 側邊上的兩點之期間的估計β此實施例中的兩點被決定做 爲時間爲零時之第二導數的位置(反射點)。一半期間被估 計爲這兩點曲線切線的截距。超音波骨骼指標-5c値爲微秒 表示對應整個期間。 超音波骨骼指標-5d爲微秒表示對應第一及第二實質 峰間之隔離値的兩倍。應注意可從根據波型振幅定標度於 零交叉點之波型斜率來決定正弦或接近正弦波型的期間。 超音波骨骼指標-5f提供了對應的指標,其被定義爲(27: A) /(dy/dt),其中A爲第一及第二實質峰間之峰頂-峰底的 振幅,且dy/dt爲位於這些峰之間零交叉點之波型的斜率 〇 另一實施例運用了早期主要頻率的其他測量,其全部 本紙張尺度適用中國國家標準(CNS>A4規格(210 X 297公釐) I I*— i — — — — — -nil--—訂--I---I--j (請先w讀背面之注意事項再填寫本頁) 410153 A7 B7 _ 五、發明說明(β ) 均於本發明範疇內。 超音波骨骼指標-6。超音波骨骼指標-6使用了 TR被儲 存輸出的短期富利葉轉換以較Hilbert轉換更詳細地來檢驗 整個期間之被接收波型的不同光譜內容。頻率指數可以類 似超音波骨骼指標_2之型式來計算。此指數之暫時變化可 被用來計算類似超音波骨骼指標-5之型式的不同指標。 超音波骨骼指標-7。超音波骨骼指標-7使用了 TR被儲 存輸出的富利葉轉換來製造容許相位對頻率繪圖的資料; 此圖的斜率爲速度的測量(爲頻率函數)。頻率速度的變化( 或其時間領域相似物,群組延遲)是離散的,其可根據任一 不同方法而被量化。在相對多孔的骨骼中,則相對較少離 散情形;在相對少孔的骨骼中,則相對較多離散情形。 超音波骨骼指標-8。超音波骨骼指標-8程序是在不良 骨骼製造寬頻訊號,而健康骨骼較具有選擇性地通過相對 低頻之認知前提的邏輯下。於是,超音波骨骼指標-8牽涉 到(I)針對此段說明及以下申請專利範圍目的之有關環繞低 頻光譜峰之100仟赫茲光譜能量的”窄頻能量”,及(ii)針對 此段說明及以下申請專利範圍目的之有關0至1000仟赫茲 全光譜能量的”寬頻能量”的決定。超音波骨骼指標-8爲窄 頻能量對寬頻能量的正常化比例。 如Buhler專利中說明,上述之超音波骨骼指標僅爲閩 述,其他之超音波骨骼指標或超音波骨骼指標的結合則可 被使用。 如現行應用所說明的可獲得及顯示上述超音波骨骼指 12 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) ill—--!-!!1--裝.------ 訂—!線 — V (請先閱讀背面之注意事項再1!^本頁) 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 410153 A7 ___B7 五、發明說明(Π ) 標或其他之骨骼完整的各種測量空間圖。 藉由任何導出關於物體骨骼之眾多位置之超音波診斷 資料可達成空間的製圖。這些可無限制地包含以機械式或 電子式來掃瞄骨骼之聲響資料收發器。爲符合本發明之各 種實施例,空間製圖可具有優點地被用於各種目的,無限 制地包含: (a) 界定如特殊診斷用途區域之骨骼邊緣的目標骨骼之 可界定特色的一個或一個以上之”接合區域”; (b) 界定如眾所周知之特殊診斷用途區域之環繞超音波 骨骼指標參數之特定區域之診斷測量之形勢幾何學之可界 定特色的一個或一個以上之”接合區域”; (c) 決定使用於特殊診斷用途之界定區域之上骨骼/下骨 骼轉變,亦即骨骼邊緣;及 (d) 運用形勢幾何學訊號或空間圖本身之幾何特色做爲 一個或一個以上之診斷測量。因此,例如爲了符合本發明 實施例之診斷目的,可運用特殊超音波骨骼指標域的曲度 來做爲空間函數。 圖7及8分別爲分別爲一位46歲健康女性之跟骨之兩 維區域的超音波骨骼指標-4b及超音波骨骼指標-5c的表面 圖。在這些圖中,軸右邊被標示”行”近似於足根至腳趾的 軸,有著位於原點的最足根位置(亦即朝向足根背部)。(在 此圖及隨後的圖上,被呈現的區域可能未必包含根骨的最 近邊緣)。被標示”列”的軸是垂直於”行”軸,也有著位於原 點的最足根位置(亦即朝向足根背部)。這兩個軸被辨識關 13 111 — ΙΜΙΙΙΙΙΪ — · 1111--I . I-------/1 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準<CNS)A4規格(210 X 297公釐) 經濟部智慧財產局具工消費合作社印製 __410153_b7_ 五、發明說明(p ) 於圖1及2之轉換器配對Ττ及TR的座標。轉換器配對可 被如Buhler專利之圖16之支架166彼此相對地固定配置 ,使得超音波脈衝可沿著路徑經由根骨從轉換器Ττ被傳送 至轉換器TR且以Biihler專利中說明的方式被處理。以給 定區域中之兩個轉換器可決定適切的超音波骨骼指標。接 著轉換器被移至相對骨骼之一系列不同位置使其允許整個 接合區域之超音波骨骼指標値之集合的決定。(然而,轉換 器被裝置及被移動的特殊方式並不是本發明的一部份)。因 此,此二軸(行及列)可辨識相對於目標足部轉換器配對的 位置。最後,垂直軸顯示針對每個位置決定之適切的超音 波骨骼指標値。 在此說明之方法及裝置可於本發明之範疇內有效地被 應用,可提供骨骼品質破壞的早期指示而可於特定位置上 藉由骨骼品質測量的單獨値來提供。所有上述技術,不論 是單獨或結合方式,均可被用於決定目標骨骼多孔改變的 傾向,已知應用於現行技術水準之個人一般技巧的臨床硏 究方法。 從超音波骨骼指標測量的寬頻超音波衰減估計 我們接著討論從如超音波骨骼指標-5f之超音波骨骼指 標測量來決定寬頻超音波衰減或另外之寬頻超音波衰減相 等物的估計。當此後說明之方法提供寬頻超音波衰減估計 時,此估計被預期對使用者有臨床上的用途且並不隱喻超 音波骨骼指標測量會受相同的限制及超音波骨骼指標測量 在特定性及敏感性上具有與生倶來的缺陷。 本紙張尺度適用中國國家標準(CNS)A4規格<210 X 297公釐) I ! Ί —------ ^ ----I I I I ^--I-----I, ^ (請先閱讀背面之注意事項再壙寫本頁) 經濟部智慧財產局員工消費合作社印製 410153 A7 _B7__ 五、發明說明(〇 ) —般而言,符合本發明之系統可被製如圖9所示。在 此圖中,Tx(項目222)表示傳送器(電子加轉換器);rx(項 目224)表示接收器(電子加轉換器)。媒介物(項目223)爲轉 換器之間的測試物質或物體。激發體(項目221)爲通常類似 脈衝的激發函數。爲了此說明的目的,激發體可被視爲傳 送器函數的一部份。如圖9所示做爲系統之時間t函數的 響應h⑴可被寫爲 h(t) = hTX(t)*hMedium(t)*hRx(t) (1) 其中星號[*]表不盤旋,且hTX(t),hwedium⑴及ilRX(t)爲 分別關於傳送器,媒介物及接收器的分離脈衝響應。 爲符合本發明之實施例,傳送器輸出可被應用至兩種 媒介物的任何一個: (1) 如可至多呈現低水準之依頻衰減及速度離散之水或 其他液體或固體媒介物的校準媒介物:及 (2) 如人體足根之測試媒介物。 在個別案例中,被測量之訊號可表示爲校準訊號hcal 及測試訊號htest,其以方程式(1)表示可爲: heal⑴=hTx(t)*hca| Medium⑴*hnx(t) (2) htest(t) = hTX(t)*htest Medium⑴*hRX(t) (3) 當校準媒介物是水或其他聲響中性物(亦及無損失或無 離散)或近似中性物時,heal⑴〜;亦即訊號於無扭 曲下承受了簡單時間延遲(乘上時間to)。 應注意的是轉換器及測試媒介物之間的接觸效應被隱 含於htest中,且格子中的均隱含於hcal Medium中。對於第一 15 I ! — — — — — — —— · 1 I I I I I I ^ ---— — — — — — I ^ (請先M11背面之注意事項再埔寫本頁) 本紙張尺度適用_國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 410153 五、發明說明(吟) 階而言,這些效應可被忽略。 現在要說明符合本發明實施例將超音波骨骼指標測量 轉換爲寬頻超音波衰減値的程序β此轉換得目的可有效地 提供臨床資料以比較骨骼多孔性之相關寬頻超音波衰減値 及臨床値。因此若如預期的,例如測試物體的的臨床結果 就可以寬頻超音波衰減値來表示。除此之外,被給定轉換 至寬頻超音波衰減的程序可完成裝置的校準。 現在參考圖3A-C,波型Α說明可從利用健康骨骼做 爲媒介物之一部份之接收器Rx獲得的訊號。第一循環或 第二的近似期間30爲~3至4微秒(不健康骨骼爲〜2至2.5 微秒)。波型B說明利用骨質疏鬆骨骼的對應訊號,顯示較 波型A爲短的第一循環。波型C說明典型水校準訊號。第 一少許的循環期間爲1.5至2微秒。此測量超音波骨骼指 標-5f可藉由估計接近第一正峰(圖3A中的P)的頻率(及期 間)而導出的。 對應訊號A及其超音波骨骼指標_5f値的寬頻超音波 衰減估計値可被導出如下。首先,假設提供由轉換函數Fm 所定義的饗應hfilter⑴之濾波器之假定族擁有以下型式
Fm(f) = Aemfej“f)W(f) (4) 其中,m表示對數線性振幅函數之(負)斜率,且更特 別的是, m=-(BUA*lnl0)/20,其中In爲中性對數; A爲常數; φ(ί)爲相位轉換函數:且 16 本紙張尺度適用_國國家標準(CNS)A4規格(210 X 297公釐) 1!!:--— — — — — — I I I ! I 訂---—--1 I n (請先閱讀背面之注意事項再埔寫本頁> 410153 A7 B7____ 五、發明說明(π〉 W(f)爲若有必要可呈現來調整訊號處理加工物(如鈴聲 )的(倍數的)窗函數。 函數hfilt„(t)可經由標準反富利葉轉換從Fm(f)來決定 〇 在此的討論可被一般化至其他轉換,如訊號處理之現 行技術水準中爲人所知的技巧,且此一般化於附帶申請專 利範圍中被提出申請時均於本發明之範疇內。 此構想是藉由找出函數hfilt„system⑴及計算對應此函數 hfilt„system⑴之聲響測量來發現寬頻超音波衰減及任何如超 音波骨骼指標-5f之特定聲響測量之間關係的寬頻超音波衰 減多重値,其中, hmtersystem(t) = hTX(t)*hfilter(t)*hRX(t) (5) 藉由重複特定數目寬頻超音波衰減値的處理,寬頻超 音波衰減及聲響測量之間導出的一致性可以査找表或近似 如多項式函數的函數關係來表示。接著藉由應用查找表之 函數關係至從hsubjeet(t)計算而得之聲響測量來決定被給定 hsubjeyt)的寬頻超音波衰減値。舉例而言,藉由配適上述 程序可導出給定儀器之線性斜率及截距,所以可發現任何 參數UBI-5b,UBI-5c,UBI-5d及UBIdf之間的關係爲實 質線性的。接著僅藉由應用界定對應關係之斜率及截距可 達成給定超音波骨骼指標値及寬頻超音波衰減之間的轉換 〇 可替代的是,藉由找出Π1値使得hfiltersystem(t) = hTX(t)*hfilter(trhRX⑴於某些前述時間區段期間提供 17 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -1 * ---I !訂--I--- ---' 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 -410153-22-- 五、發明說明(β) hsubjeet⑴的最佳配適可導出對應任何單一測量hsubject⑴的寬 頻超音波衰減値。在此案例中’方程式4中之其他參數也 必須被例如用非線性最小平方技術來找出最適解。 相位轉換函數P (f)可被視爲常數。此等於假設沒有離 散且時間零點被重新定義使得以固定延遲從Tx至RX來移 除剩餘之線性相位函數。可替代的是,0(f)可被視爲第二 階可對應物體媒介物中之離散量的二次函數。最後’當相 位無法單獨被得知時,最小相位濾波器被頻率性挑選來製 作身體系統之相位而可被特定化。同樣地,吾人可最初設 定W(f)=l。在有毒加工物的千擾事件中,吾人可於此後建 立適當的窗子W(f)以降低此加工物的效應,如眾所周知之 訊號處理之現行技術水準中的技巧。 應注意的是,因爲healinedium=5(t-t。)爲以水或其他近乎 中性聲響媒介物校準的極佳近似値,所以hfi心system⑴= hcal(t)*hfilt„(t)爲相同之近似値。此方法假設如水之校準媒 介物擁有實質頻率獨立的衰減且實質地免於接合頻率範圍 中的離散。然而,可利用以上說明關係來處理擁有其他聲 響特質之其他校準媒介物來迅速修改此方法。 當上述方法被應用時,可發現有關忽略接觸效應及媒 介物聲響中性假設的不充分正確性可能會導致不同儀器之 間差異的過度估計。爲符合本發明實施例,可藉由說明實 際可被補償之被導出差異分數之實證多重折疊因子α的介 紹來提供過度估計或其他效應的補償。因此,如果兩儀器 被預測有Ν個寬頻超音波衰減不同,則儀器校準後的差異 本紙張尺度適用中國國家標準(CNS)A4規格(210 X297公釐) I I ^------!裝--------灯…-------線,4 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局負工消費合作社印製 •'7.路 R7 五、發明說明() 將爲αΝ。 本發明實施例的說明預計僅爲案例且熟習本項技術人 士作許多變化及修正後顯而易知的。所有此變化及修正意 欲在後附申請專利範圍之本發明範圍內。 [元件符號說明] 410153 A7 11 波型產生器 12 傳送轉換器 13 轉換器 14 放大器 15 處理器 16 主體部份 21 微處理機 22 數位/類比轉換器 23 記憶體 24 記憶體 25 數位/類比轉換器 26 放大器 27 單位 221 激發體 222 傳送器 223 媒介物 224 接收器 -------I!---装---1 — ! — — 訂---------線 — (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用t國國家標準<CNS)A4規格(210 X 2耵公釐)

Claims (1)

  1. 經濟部智慧財產局員工消費合作社印製 Α8 BS C8 D8 、申請專利範圍 I〜種估計構件之寬頻超音波衰減(BUA)値的方法,此 方法包含: (a) 從特定聲響測量之許多値創造映射至許多對應之寬 胃超音波衰減値,此測量表示至少光譜之一或構件的暫時 糸且件’〜直到經由構件接收之聲響訊號之全量; (b) 經由構件測量由聲響訊號之傳送產生之波型 hsubject(t); (c) 以特定之聲響測量之型式特徵化該波型hsubjeet(t); (d) 結合特定聲響値對應之寬頻超音波衰減値之波型 匕叫⑽⑴以符合映射。 2. 根據申請專利範圍第1項的方法,其中,映射的步 '驟考慮到被用來導出聲響訊號之系統的特性。 3. 根據申請專利範圍第1項的方法,其中,聲響測量 包含一構件,—直到經由構件接收之聲響訊號之全量。 4·一種估計構件之寬頻超音波衰減値的方法,此方法 包含: (a)提供一裝置,此裝置包含: ⑴—個擁有一對轉換器的音波資料收發器,其中此對 之第一轉換器提供擁有分配於整個頻率範圍的聲響脈衝, 且此對之第二轉換器接收沿著包含構件之路徑傳播之聲響 脈衝所產生的聲響訊號; ⑴)可與第二轉換器通訊以提供聲響測量値的訊號處理 器,此聲響測量表示至少光譜之一或構件的暫時組件,一 直到由第二轉換器接收之訊號之全量; _____I____ 本紙浪尺度逋用中國Η家揉牟(CNS ) A4规格(210X29?公釐) ---------装------訂------味Η • 遍 (請先閲讀背面之注意事項再填寫本頁) A8 BB C8 D8 經濟部智慧財產局員工消費合作社印製 410153 六、申請專利範圍 (b) 將許多寬頻超音波衰減値的每一個與濾波器反應函 數hfilter⑴結合一起; (c) 以校準媒介物及每個濾波器反應函數之裝置的使用 所獲得的訊號迴旋,以獲得可特徵化濾波器及系統結合的 許多函數; (d) 評估每個可特徵化濾波器及系統結合的許多函數之 特定聲響測量,以導出對應每個寬頻超音波衰減値的特定 聲響測量値; (e) 以構件來測量由裝置使用產生之波型hsubje(:t(t); ⑴以特定之聲響測量之型式特徵化波型hsubjeet(t); (g)結合特定聲響値對應之寬頻超音波衰減値之波型 hsubjeet(t)。 5. 根據申請專利範圍第4項的方法,其中,每個濾波 器反應函數hfmdt)爲轉換函數Fm的富利葉轉換,轉換函 數擁有型式爲: Fm(f)= AemfeJi4(0W(f) A爲任意常數; 史⑴爲特定的相位轉換函數;及 W(f)爲特定窗函數。 6. 根據申請專利範圍第5項的方法,其中,窗函數等 於1。 7. 根據申請專利範圍第4項的方法,其中,校準媒介 物於整個特定頻率範圍中擁有實質頻率獨立的衰減。 8. 根據申請專利範圍第4項的方法,其中,校準媒介 , i (請先Μ讀背面之注意事項再填寫本頁) -*· i3
    本紙張尺度逍用肀國國家揉率(CNS ) A4規格(210X297公釐) 經濟部智慧財產局員工消費合作社印製 B8 C8410153_' 六、申請專利範圍 物爲水。 9. 根據申請專利範圍第4項的方法,其中,校準媒介 物爲固體。 10. 根據申請專利範圍第1項的方法,更進一步包含編 輯聲響測量及寬頻超音波衰減値之相關値表的步驟。 11. 根據申請專利範圍第1項的方法,更進一步包含配 適聲響測量値及寬頻超音波衰減値之間之函數關係的步驟 〇 12. 根據申請專利範圍第11項的方法,其中,函數關 係爲多項式關係。 13. 根據申請專利範圍第11項的方法,其中,函數關 係爲線性關係。 14. 根據申請專利範圍第11項的方法,更進一步包含 將實證修正應用至聲響測量値及寬頻超音波衰減値之間之 函數關係。 15. 根據申請專利範圍第1項的方法,其中,聲響測量 爲暫時聲響測量。 16. 根據申請專利範圍第1項的方法,其中,聲響測量 爲超音波骨骼指標。 Π.—種估計對應構件之寬頻超音波衰減之m値的方 法,此方法包含: (a)提供一裝置,此裝置包含: ⑴一個擁有與構件隔離關係之一對轉換器的超音波資 料收發器,其中此對之第一轉換器被耦合至訊號產生器以 --1.--Γ—-----裝------訂------線._ (請先閣讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家揉準(CNS ) A4说格(210X297公釐) A8 B8 C8 D8 六、申請專利範圍 提供擁有分配於整個頻率範圍的聲響脈衝,且此對之第二 轉換器接收沿著包含構件之路徑傳播之聲響脈衝所產生的 聲響訊號; (Π)可與第二轉換器通訊以提供聲響測量値的訊號處理 器’此聲響測量表示至少光譜之一或構件的暫時組件,一 直到由第二轉換器接收之訊號之全量; (b)以構件來測量由裝置使用產生之第—波型hsubjeet(t) 及以校準媒介物來測量由裝置使用產生之第二波型 hsubject(t), (C)從hsubjeet⑴導出聲響測量値; ⑷找出許多 m 値的 hfiltersystem(t) = hfi丨ter(t)*heal(t); (e) 結合每個聲響測量値及m値,以產生實質相同 hf"tersystem(〇,及 (f) 以波型hsubjeet⑴來結合每個聲響測量値及m値。 18_根據申請專利範圍第π項的方法,其中,hfMur(t) 爲轉換函數Fm的富利葉轉換,轉換函數擁有型式爲: A爲任意常數; 炉⑴爲特定的相位轉換函數;及 W(f)爲特定窗函數^ I9·根據申請專利範圍第IS項的方法,其中,窗函數 等於1 〇 本紙張尺度逋用中國B家檩率(CNS ) A4规格(210X297公釐) . I -- (請先閲讀背面之注意事項再4寫本頁) ,** 經濟部智慧財產局員工消費合作社印製
TW088113936A 1998-09-10 1999-08-16 Methods for estimating a broadband ultrasound attenuation value and a corresponding value of a member TW410153B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/150,914 US5947902A (en) 1996-09-27 1998-09-10 Apparatus and method for calibration of an ultrasound transmission probe

Publications (1)

Publication Number Publication Date
TW410153B true TW410153B (en) 2000-11-01

Family

ID=22536531

Family Applications (1)

Application Number Title Priority Date Filing Date
TW088113936A TW410153B (en) 1998-09-10 1999-08-16 Methods for estimating a broadband ultrasound attenuation value and a corresponding value of a member

Country Status (5)

Country Link
US (2) US5947902A (zh)
EP (1) EP1112026A1 (zh)
JP (1) JP2002524181A (zh)
TW (1) TW410153B (zh)
WO (1) WO2000015115A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137389A1 (de) * 2001-07-31 2003-02-13 Giesecke & Devrient Gmbh Verfahren und Vorrichtung zum Prüfen von dünnem Material
US20040064047A1 (en) * 2002-07-19 2004-04-01 Alfred E. Mann Institute For Biomedical Engineering At The University Of Optimization of excitation waveform for nonlinear transmit-receive systems
JP4312494B2 (ja) * 2003-04-16 2009-08-12 古野電気株式会社 超音波骨密度測定装置、超音波測定装置、及び超音波測定方法
DE102008027367B4 (de) * 2008-06-09 2015-01-29 Siebo Hicken Vorrichtung zur Messung der Ultraschallabstrahlung von Ultraschallgeräten
US10716476B2 (en) * 2014-10-07 2020-07-21 Nanyang Technological University Methods to improve axial resolution in optical coherence tomography

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042489A (en) * 1988-05-11 1991-08-27 Lunar Corporation Ultrasonic densitometer device and method
US5720290A (en) * 1993-04-07 1998-02-24 Metra Biosystems, Inc. Apparatus and method for acoustic analysis of bone using optimized functions of spectral and temporal signal components
US5391199A (en) * 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
GB9502448D0 (en) * 1995-02-08 1995-03-29 Mccue Plc Simulation of bone in ultrasonic assessment apparatus
US5755228A (en) * 1995-06-07 1998-05-26 Hologic, Inc. Equipment and method for calibration and quality assurance of an ultrasonic bone anaylsis apparatus
EP0963177B1 (en) * 1996-09-27 2004-03-03 Metra Biosystems, Inc. Ultrasonic waveform assay for bone assessment using values mapped over a region

Also Published As

Publication number Publication date
US5947902A (en) 1999-09-07
US6086536A (en) 2000-07-11
EP1112026A1 (en) 2001-07-04
WO2000015115A1 (en) 2000-03-23
JP2002524181A (ja) 2002-08-06

Similar Documents

Publication Publication Date Title
Pinton et al. Sources of image degradation in fundamental and harmonic ultrasound imaging using nonlinear, full-wave simulations
Mast Empirical relationships between acoustic parameters in human soft tissues
Mast et al. Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall
US5372142A (en) Cochlear response audiometer
EP0963177B1 (en) Ultrasonic waveform assay for bone assessment using values mapped over a region
Dei et al. The impact of model-based clutter suppression on cluttered, aberrated wavefronts
Kim et al. Attenuation estimation using spectral cross-correlation
Radulescu et al. Calibration of ultrasonic hydrophone probes up to 100 MHz using time gating frequency analysis and finite amplitude waves
Zhang et al. Acoustic nonlinearity parameter tomography for biological specimens via measurements of the second harmonics
TW410153B (en) Methods for estimating a broadband ultrasound attenuation value and a corresponding value of a member
WO2020190410A1 (en) Quantitative ultrasound using fundamental and harmonic signals
Laugier et al. Specular reflector noise: effect and correction for in vivo attenuation estimation
Omari et al. Signal to noise ratio comparisons for ultrasound attenuation slope estimation algorithms
Amin Ultrasonic attenuation estimation for tissue characterization
Fatemi et al. Characteristics of the audio sound generated by ultrasound imaging systems
JP2017063926A (ja) 超音波受信信号補正装置、超音波測定装置及び超音波受信信号補正方法
US5730135A (en) Ultrasonic bone diagnostic apparatus and method
Gittins et al. The leicester doppler phantom—A digital electronic phantom for ultrasound pulsed doppler system testing
Harris Pressure pulse distortion by hydrophones due to diminished low frequency response
Drexl et al. Low-frequency modulated quadratic and cubic distortion product otoacoustic emissions in humans
Xu Local measurement of the pulse wave velocity using Doppler ultrasound
Chen et al. Measurements of acoustic dispersion on calcaneus using spilt spectrum processing technique
Robinson Computer spectral analysis of ultrasonic A-mode echoes
Huang Principles of sonoelasticity imaging and its applications in hard tumor detection
Wear Frequency dependence of average phase shift from human calcaneus in vitro

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees