TW406056B - Integrated steam methane reforming process for producing carbon monoxide - Google Patents

Integrated steam methane reforming process for producing carbon monoxide Download PDF

Info

Publication number
TW406056B
TW406056B TW085104200A TW85104200A TW406056B TW 406056 B TW406056 B TW 406056B TW 085104200 A TW085104200 A TW 085104200A TW 85104200 A TW85104200 A TW 85104200A TW 406056 B TW406056 B TW 406056B
Authority
TW
Taiwan
Prior art keywords
water
stream
reactor
hydrogen
rich
Prior art date
Application number
TW085104200A
Other languages
Chinese (zh)
Inventor
Jeffrey Raymond Hufton
Shivaji Sircar
William Frederick Baade
Joseph Michael Abrardo
Madhu Anand
Original Assignee
Air Prod & Chem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/624,148 external-priority patent/US6328945B1/en
Application filed by Air Prod & Chem filed Critical Air Prod & Chem
Application granted granted Critical
Publication of TW406056B publication Critical patent/TW406056B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Abstract

A process for producing carbon monoxide (CO) by reforming methane and steam in the presence of a reforming catalyst to produce a reformate product enriched in CO, carbon dioxide (CO2) and hydrogen. CO2 in the reformate is shifted to CO in an integrated sorption enhanced reaction (SER) cycle which employs a series of cyclic steps to facilitate reaction of CO2 and hydrogen at high conversion and to produce a CO-enriched product obtained at reactor feed pressure and at essentially constant flow rate. A series of adsorbent regeneration steps including depressurization, purging and product pressurization are used to desorb water which is selectively adsorbed by the adsorbent during the shift reaction and to prepare the reactor for a subsequent process cycle.

Description

406056 A7 B7 五、發明説明(1 ) 相關申請案的相互參照 本申請案是1995年4月10日提出的美國專利申請案 號〇8/419,317之部分連續申請案,該案之說明書及申請 專利範圍被參考合倂於本案而且當作本申請案的一部份。 發明的技術領域 本發明爲一種生產一氧化碳(CO)的方法,其爲在一 種重組催化劑的存在下藉著重組甲烷和蒸汽生產一種富含 一氧化碳、二氧化碳和氫的重組產品。於該經濃縮重組產 品中的二氧化碳(C02)在一種整合性吸附增強反應(SER) 循環中被轉化成CO,該整合性吸附增強反應循環使用一 連串循環步驟進行逆水煤氣轉化反應以將C 〇 2轉化成 CO、部份地分離轉化反應產物混合物以回收一種富含一 氧化碳的物流和準備該些SER反應器供後續的SER方法循 環。 發明的背景 經濟部中央揉準局貝工消費合作社印製 一氧化碳的生產典型地爲在高溫度催化重組一種有蒸 汽的烴進料’和可選擇性地,二氧化碳。該反應在一種蒸 汽甲烷重組器(SMR)中進行,該重組器包含被裝在一種 裝滿催化劑小管的爐中。離開重組器的合成氣依照在下列 的反應中被建立的平衡而包含一氧化碳(CO)以及氫、二 氧化碳(co2) '蒸汽和未被轉化的甲烷。 ch4 + h20 <--> 3H2 + CO 蒸汽重組 83. 3.10,000 (請先閲讀背面之注^^項再填寫本頁) 本紙張尺度適用中國國家橾準(CNS > A4規格(210X297公釐) 經濟部中央樣準局員工消費合作社印製 406056 a? _B7__ 五、發明説明(2 ) H2〇 + CO <--> H2 + C〇2 水煤氣轉化 CH4 + C〇2 <--> 2H2 + 2C0 C〇2 重組 上述的反應通常在高溫度(800-1000 °C)和高壓力 (5-30大氣壓)中進行,其中該些反應物與一種以鎳爲基 礎的催化劑接觸。這些反應受到熱力學控制。因此,重組 流出物的成分將決定於包括壓力、溫度 '反應器進料裡的 蒸汽/甲烷莫耳比和反應器進料裡的二氧化碳濃度的許多 變數。當SMR反應使用一種不含C02而含有3:1水/甲烷 莫耳比的進料混合物在850 °C和25大氣壓中進行的時候, 典型的SMR流出物成分(莫耳分率)含有75% H2,13% CO,8.5% C〇2和5.5 % CH4。該SMR流出物經過一連 串的反應和分離操作以回收高純度的氫產品(99.9 +莫爾 % )或高純度的C 0產品(9 9 . 5 +莫爾% )。 商業的SMR工廠生產的一氧化碳典型地被用於經由 光氣化學生產異氰酸酯和聚碳酸酯。另外,用來生產羰氧 醇的某些方法需要用到一種1:1氫對一氧化碳的合成氣。 在此些S M R方法階段所形成的副產品氫和流出蒸汽可能 有燃料價値,但是可能未被當做產品。 如工業界中被廣爲人知地,於重組器原料之內注入 C02和藉由降低SMR原料裡蒸汽對烴的比率可以生產高 一氧化碳含量的合成氣。藉由再循環產生而且分離自合成 氣或回收自火爐煙道氣的C02或自外面來源輸入額外的 C02進入原料之內可以進一步提高SMR原料中C02的濃 度。具有高C02對甲烷比率和減少蒸汽量的SMR原料抑406056 A7 B7 V. Description of the invention (1) Cross-reference to related applications This application is part of a serial application of US Patent Application No. 08 / 419,317, filed on April 10, 1995. The description of the case and the patent application The scope is incorporated by reference into this case and is considered a part of this application. Technical Field of the Invention The present invention is a method for producing carbon monoxide (CO), which is to produce a recombinant product rich in carbon monoxide, carbon dioxide and hydrogen by recombining methane and steam in the presence of a recombination catalyst. The carbon dioxide (C02) in the concentrated reconstituted product is converted to CO in an integrated adsorption enhancement reaction (SER) cycle, which uses a series of cyclic steps to perform a reverse water gas conversion reaction to convert CO 2 Convert to CO, partially separate the reaction product mixture to recover a carbon monoxide-rich stream and prepare the SER reactors for subsequent SER process cycles. Background of the invention Printed by the Central Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, the production of carbon monoxide is typically a catalytic reforming of a steamed hydrocarbon feed ' and optionally, carbon dioxide, at high temperatures. The reaction is carried out in a steam methane reformer (SMR), which comprises a furnace filled in a small tube filled with catalyst. The syngas leaving the reformer contains carbon monoxide (CO) and hydrogen, carbon dioxide (co2) 'steam and unconverted methane in accordance with the equilibrium established in the following reactions. ch4 + h20 <-> 3H2 + CO steam reorganization 83. 3.10,000 (please read the note on the back ^^ before filling out this page) This paper size applies to China National Standard (CNS > A4 size (210X297 (Mm) Printed by the Consumer Cooperatives of the Central Procurement Bureau of the Ministry of Economic Affairs 406056 a? _B7__ V. Description of the invention (2) H2〇 + CO <-> H2 + C〇2 Water gas conversion CH4 + C〇2 <- -> 2H2 + 2C0 C〇2 Recombination The above reactions are usually carried out at high temperature (800-1000 ° C) and high pressure (5-30 atmospheres), where the reactants are contacted with a nickel-based catalyst These reactions are thermodynamically controlled. Therefore, the composition of the reconstituted effluent will depend on many variables including pressure, temperature, steam / methane mole ratio in the reactor feed, and carbon dioxide concentration in the reactor feed. When the SMR reaction A typical SMR effluent composition (mol fraction) containing 75% H2 when using a feed mixture containing no CO2 and a 3: 1 water / methane molar ratio at 850 ° C and 25 atmospheres, 13 % CO, 8.5% CO2 and 5.5% CH4. The SMR effluent undergoes a series of reaction And separation operations to recover high purity hydrogen products (99.9 + mole%) or high purity CO products (99.5% + mole%). Carbon monoxide produced by commercial SMR plants is typically used via phosgene Chemical production of isocyanates and polycarbonates. In addition, some methods for the production of carbonyloxy alcohols require a 1: 1 hydrogen-to-carbon monoxide synthesis gas. By-product hydrogen and effluent steam formed during these SMR process stages may be Fuel prices are high, but may not be considered as products. As is widely known in the industry, injecting CO2 into the reformer feedstock and reducing the steam-to-hydrocarbon ratio in the SMR feedstock can produce syngas with high carbon monoxide content. By C02 produced by recycling and separated from synthesis gas or recovered from furnace flue gas or additional C02 input from outside sources into the feedstock can further increase the concentration of C02 in the SMR feedstock. Has a high C02 to methane ratio and reduces steam volume SMR raw materials

I -4- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 813.10,000 I-' ϋ I f 1 I n n n 11111·ν (請先閲讀背面之注$項再填寫本頁) 經濟部中央標準局貝工消費合作社印11 406056 A7 一 B7 五、發明説明(3 ) 制水煤氣轉化反應從C0產生額外的h2而且在極端的反應 條件之下將會使反應倒過來而自H2產生額外的C0。在 SMR原料裡一些C02也會與甲烷反應以產生具有低 H2/CO比的共生氣體。 在傳統的SMR方法中所生產c〇的數量受到反應熱力 學限制,其中相對地低的C 0轉化率(〜1 〇 - 1 5 % )使得回收 所需要的C 0產品必需相當的分離努力。已知有很多的先 前技藝SMR方法用於生產合成氣,其利用多種分離循環 以從典型地包含氫、一氧化碳、C02和甲烷的混合氣之 SMR重組流出物中回收所需要的一氧化碳產品。 美國專利3 , 9 8 6,8 4 9揭示一種如圖1所描述之以轉化 水和一種例如天然氣的甲烷來源成爲氫產品的SMR方 法。甲烷和水經由管線1被導入一個傳統的SMR反應器2 之內,而且在重組條件之下反應以生產富含氫的重組氣物 流3。物流3被導入冷凝器4之內以在250-350 °C中間溫度 生產蒸汽和經冷卻的重組氣物流6。該經冷卻的重組氣接 著被導入水煤氣轉化反應器7(高溫度轉化反應器,單獨或 與一個低溫度轉化反應器組合)以藉由使CO與H20依照 反應式(CO + H2〇 <--> C〇2 + H2)將重組氣物流6 裡一部分的CO轉化成氫。 當氫是被需要產品的時候,上述的轉化反應在全部的 方法裡扮演一種關鍵性的角色,因爲在分離重組產品混合 物以生產實質上純氫之前該轉化反應增加了重組產品混合 物裡的氫濃度和量。藉著與冷凝器9裡的冷卻水進行間接 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 83.3.10,000 ----------^------、11------·ν (請先閲讀背面之注意Ϋ項再填寫本頁) 經濟部十央標準局貝工消費合作社印製 406056 A7 __B7 五、發明説明(4 ) 熱交換,轉化反應器流出物8被進一步冷卻到接近周圍溫 度(25-5〇°C),於其中相當量的水自重組氣中經由管線 10被冷凝而且移除。最後,離開冷凝器的物流11被導入 一個氫壓力增減吸附單元(H2-PSA)之內以經由物流14 生產純氫和可於重組器中當做燃料的廢氣物流13。 美國專利4, 171,206揭示一種如圖2所描述的SMR 方法用於轉化水和一種例如天然氣的甲烷來源以同時地生 產一種高純度氫產品和高純度C Ο 2產品。甲烷和水經由管 線21被導入一個傳統的SMR反應器22之內,而且在重組 條件之下反應以生產重組氣物流23。 物流23被導入冷凝器24之內以生產在中間溫度250-350 °C經冷卻的重組氣物流26和凝液物流(未編號)》該 被冷卻的重組氣然後被導入水煤氣轉化反應器27之內以 將在重組氣物流26裡的一部分CO轉化成氫。藉著與冷凝 器2 9裡的冷卻水進行間接的熱交換,轉化反應器流出物 28被進一步地冷卻到接近周圍溫度(25-50 °C),其中相 當量的水從重組氣中被冷凝而且經由管線30被移除。最 後’離開冷凝器29的重組氣物流31被導入C02眞空增減 吸附(VSA)單元32之內’於其中該重組氣被分離以提供 —實質上純粹的C02產品物流35。來自C〇2 VSA單元 32的廢氣經由管線34被導入H2-PSA單元38之內並且被 分離以生產一實質上純粹的氫物流37和可於重組器22中 當做燃料的廢氣物流36。C02 VSA單元32和H2-PSA單 元36被整合以獲得最大的分離效率。 -6- 本紙張尺度適用中國圃家標準(CNS ) M規格(21〇><297公釐) 83.3.10,000 ^1. I I n I fi I I 1 ^ I 11 I ^ (請先閲讀背面之注意事項再填寫本頁} 經濟部中央標準局貝工消費合作社印策 40605b a? _B7 五、發明説明(5 ) 一個傳統的SMR方法被描述在圖3,於其中水和一種 甲烷來源經由管線41被導入一個傳統的SMR反應器42之 內而且在重組條件之下反應以生產重組氣物流43。物流 43被導入一個含有一種物理化學溶劑(physicochemical solvent) 的 C〇2 吸收 / 汽提器 44 之內 ,該溶 劑將C02自預先冷卻的SMR流出物移除以提供含有實質 上純C〇2的物流45和C02耗竭的重組氣物流46,該物流 46被導入熱增減吸附單元47之內以除去水和剩餘的C02 並經由管線4 8從吸附單元4 7被排出。水和CO 2耗竭的物 流49被導入極冷冷箱50之內以生產實質上純粹的氫物流 51、實質上純粹的C0物流53和可於重組器42中當做燃 料含有未反應甲烷的廢棄物流52。 另外的一個傳統SMR方法被描述於圖4,其中水和一 種甲烷來源經由管線61被導入一個傳統的SMR反應器62 之內而且在重組條件之下反應以生產重組氣物流63。物 流63被導入一個含有一種物理化學溶劑的C02吸收/汽提 器44之內,該溶劑將C〇2自預先冷卻的SMR流出物移除 以提供一個富含C02的物流65,該物流65可能經由壓縮 機66被壓縮而且當做C02進料經由管線67被再導入SMR 反應器62之內。C〇2耗竭的重組氣物流68經由管線71離 開TSA單元69並被導入極冷冷箱72之內以生產實質上純 粹的氫物流73、實質上純粹的C0物流75和可於重組器 62中當做燃料含有未反應甲烷的廢棄物流74。I -4- This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210X297 mm) 813.10,000 I- 'ϋ I f 1 I nnn 11111 · ν (Please read the note on the back before filling this page) Printed by the Central Standards Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, 11 406056 A7, B7 V. Description of the invention (3) The water-to-gas conversion reaction generates additional h2 from C0 and under extreme reaction conditions, the reaction will be reversed and generated from H2 Extra C0. Some C02 in the SMR feedstock will also react with methane to produce a symbiotic gas with a low H2 / CO ratio. The amount of co produced in the traditional SMR method is limited by the thermodynamics of the reaction, where the relatively low CO conversion (~ 10-15%) makes recovery of the Co product necessary for considerable separation effort. Many prior art SMR processes are known for the production of syngas, which utilize multiple separation cycles to recover the desired carbon monoxide product from a SMR reconstituted effluent typically containing a mixture of hydrogen, carbon monoxide, CO2 and methane. U.S. Patent Nos. 3, 998, 8 and 9 disclose an SMR method as described in Fig. 1 for converting water and a source of methane such as natural gas into hydrogen products. Methane and water are directed into a conventional SMR reactor 2 via line 1 and reacted under recombination conditions to produce a hydrogen-rich recombined gas stream 3. Stream 3 is directed into condenser 4 to produce steam and cooled reformed gas stream 6 at an intermediate temperature of 250-350 ° C. The cooled reformed gas is then introduced into a water gas conversion reactor 7 (high temperature conversion reactor, alone or in combination with a low temperature conversion reactor) to make CO and H20 according to the reaction formula (CO + H2 0 <- -> Co2 + H2) converts part of the CO in the reformed gas stream 6 to hydrogen. When hydrogen is the desired product, the conversion reaction described above plays a key role in all methods, because the conversion reaction increases the hydrogen concentration in the recombinant product mixture before separating the recombinant product mixture to produce substantially pure hydrogen. And amount. By indirect with the cooling water in the condenser 9, the paper size applies the Chinese National Standard (CNS) A4 specification (210 × 297 mm) 83.3.10,000 ---------- ^ ------ 、 11 ------ · ν (Please read the note on the back first and then fill out this page) Printed by the Shiyang Standard Bureau of the Ministry of Economic Affairs and printed by the Shellfish Consumer Cooperative 406056 A7 __B7 V. Description of the invention (4) Heat exchange, conversion reaction The reactor effluent 8 is further cooled to near ambient temperature (25-50 ° C.), where a considerable amount of water is condensed from the reformed gas via line 10 and removed. Finally, the stream 11 leaving the condenser is introduced into a hydrogen pressure increase / decrease adsorption unit (H2-PSA) to produce pure hydrogen via the stream 14 and an exhaust gas stream 13 which can be used as fuel in the reformer. U.S. Patent 4,171,206 discloses an SMR method as described in Figure 2 for converting water and a methane source such as natural gas to produce a high purity hydrogen product and a high purity CO 2 product simultaneously. Methane and water are introduced into a conventional SMR reactor 22 via a line 21 and are reacted under recombination conditions to produce a recombined gas stream 23. Stream 23 is introduced into condenser 24 to produce cooled recombined gas stream 26 and condensate stream (not numbered) at an intermediate temperature of 250-350 ° C. The cooled recombined gas is then introduced into water gas conversion reactor 27. Internally, a portion of the CO in the reformed gas stream 26 is converted to hydrogen. By indirect heat exchange with the cooling water in the condenser 29, the conversion reactor effluent 28 is further cooled to near ambient temperature (25-50 ° C), in which a considerable amount of water is condensed from the reformed gas And it is removed via line 30. Finally, the recombined gas stream 31 exiting the condenser 29 is directed into a CO 2 air addition / subtraction (VSA) unit 32 ′ where the recombined gas is separated to provide a substantially pure CO 2 product stream 35. The exhaust gas from the CO2 VSA unit 32 is directed into the H2-PSA unit 38 via line 34 and is separated to produce a substantially pure hydrogen stream 37 and an exhaust gas stream 36 that can be used as fuel in the reformer 22. The C02 VSA unit 32 and the H2-PSA unit 36 are integrated for maximum separation efficiency. -6- This paper size applies the Chinese Garden Standard (CNS) M specification (21〇 > < 297 mm) 83.3.10,000 ^ 1. II n I fi II 1 ^ I 11 I ^ (Please read the Matters needing attention to fill out this page again} Instruction 40605b a? _B7 of the Central Bureau of Standards of the Ministry of Economic Affairs of the Bayer Consumer Cooperative V. Description of the invention (5) A traditional SMR method is depicted in Figure 3, in which water and a source of methane are passed through the pipeline 41 It is introduced into a conventional SMR reactor 42 and reacts under recombination conditions to produce a recombined gas stream 43. The stream 43 is introduced into a CO2 absorber / stripper 44 containing a physical chemical solvent. In this solvent, CO 2 is removed from the pre-cooled SMR effluent to provide a stream 45 containing substantially pure CO 2 and a CO 2 depleted recombined gas stream 46, which is introduced into a thermal increase or decrease adsorption unit 47 to The water and remaining CO 2 are removed and discharged from the adsorption unit 47 via line 48. The water and CO 2 depleted stream 49 is directed into the cryogenic cold box 50 to produce a substantially pure hydrogen stream 51, a substantially pure C0 Logistics 53 and Available in Reorganizer 42 It is used as fuel to contain unreacted methane waste stream 52. Another conventional SMR method is depicted in Figure 4 where water and a methane source are directed via line 61 into a traditional SMR reactor 62 and under recombination conditions The reaction produces a reformed gas stream 63. Stream 63 is directed into a CO2 absorber / striker 44 containing a physicochemical solvent that removes CO2 from a pre-cooled SMR effluent to provide a CO2-rich The stream 65 may be compressed via the compressor 66 and reintroduced into the SMR reactor 62 as a C02 feed via line 67. The C02 depleted reformed gas stream 68 leaves the TSA unit 69 via line 71 and is It is introduced into the cryogenic cold box 72 to produce a substantially pure hydrogen stream 73, a substantially pure CO stream 75, and a waste stream 74 that can be used as fuel in the reformer 62 to contain unreacted methane.

美國專利4,915, 711揭示如圖5所描述的一種SMR 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 83.3.10,000 I I II —I—- I 訂— — I 1'" (請先Η讀背面之注意事項再填寫本頁) 經濟部t央標準局員工消費合作社印聚 406056_^_五、發明説明(6 ) 方法。水和一種甲烷來源經由管線81被導入一個傳統的 SMR反應器82之內而且在重組條件之下反應以生產重組 氣物流83。另外,一個C02物流也能被導入重組器之內 以增加CO生產。物流8 3被導入冷凝器84之內以生產在中 間溫度3 0 ° - 1 2 0 °C的水凝液蒸汽8 5和經冷卻的重組氣物 流86。該經冷卻的重組氣接著被導入CO-VSA87之內, 於其中該重組氣被分離以提供一實質上純粹的CO產品物 流88和可於重組器82中當做燃料的廢氣物流89。 另一個SMR方法被描述於圖6,於其中水和一種甲烷 來源經由管線91被導入一個傳統的SMR反應器92之內而 且在重組條件之下反應以生產重組氣物流9 3。 物流93被導入冷凝器94之內以生產在中間溫度30° -1 2 0 °C的水凝液蒸汽9 5和經冷卻的重組氣物流9 6。該經 冷卻的重組氣接著被導入CO-VSA97之內,於其中該重 組氣被分離以提供一實質上純粹的C02產品物流98,而 藉由使CO-VSA廢氣物流流經管線99進入一種傳統的聚 合物薄膜100之內以進一步處理廢氣物流99並提供廢氣物 流101,該物流101經由壓縮機103被壓縮而且當做額外 的原料經由管線104被導入SMR反應器92之內。 圖7描述了生產實質上純粹的CO和實質上純粹的氫之 另一個SMR方法。水和一種甲烷來源經由管線111被導 入一個傳統的SMR反應器112之內而且在重組條件之下 反應以生產重組氣物流113。物流113被導入冷凝器114 之內以生產經冷卻的重組氣物流116,該物流116被導入 (請先閲讀背面之注意Ϋ項再填寫本頁) 裝_ ,1Τ h· : 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3.10,000 406056 A7 B7 五、發明説明(7 ) 水煤氣轉化反應器1 1 7之內以轉化一部分的水和重組氣物 流116成爲氫。該富含氫的重組氣127通過冷凝器128以 除去水而且水耗竭的物流129進入H2-PSA單元130之內 以提供可於重組器112中當做燃料的廢物物流132和實質 上純粹的氫物流131。打開閥117a之後一部分的重組氣 能因而流入管線118。此重組氣被導入冷凝器119之內以 在經管線121進入CO-VSA 122之前冷卻氣體而且移除 水分,於其中重組氣被分離以提供實質上純粹的CO物流 123和CO耗竭的物流124,後者可選擇性地被壓縮機或 鼓風機125壓縮而後與管線129合倂以進入112-P S A 1 3 0 ° 熟於蒸汽甲烷重組技藝的人士正致力於尋找改良的重 組方法,其中所需要C 0產品的轉化被最大化。而且,一 種促進C Ο 2和氫反應以形成C Ο和水〔逆水煤氣轉化反應〕 的方法將會非常合乎業界需求。不幸地,沒有已知先前技 藝SMR方法整合能將存在於SMR重組氣物流裡的C02和 經濟部中央標準局負工消費合作社印製 氫轉化成C Ο和水。該逆水煤氣轉化反應在溫度8 0 0 °C時 爲熱力學地不宜而且溫度典型地需要超過1〇〇〇 °C才能獲 得適度的C02轉化成CO。因此,該逆水煤氣轉化反應還 沒有被成功地整合進入SMR方法之內並用於生產CO。 而且,進行同時反應和吸附處理步騾的先前技藝方法 尙未達成商業的成功,因爲產物流率未能維持充份的固定 而且相較於不希望得到的反應產物、未反應的原料和沖洗 液而言被需要產品的存在濃度過低。工業界正在尋找方法 -9- 83.3.10,000 (請先閲讀背面之注意事項再填寫本頁) Λ 本紙張尺度適用中國國家梯準(CNS ) Α4規格(210Χ297公釐) 406056 經濟部中央樣準局貝工消費合作社印製 A7 ___B7____五、發明説明(8 ) 藉由增加整體方法生產力或藉由增加被導入後續的分離單 元進料物流的產品混合物之CO莫耳分率來改良一般的 SMR方法以生產CO。 發明槪要總結 本發明爲一種生產一氧化碳(CO)的方法,其爲在一 種重組催化劑的存在下藉著重組甲烷和蒸汽生產一種富含 一氧化碳、二氧化碳(C〇2)和氫的重組氣。於該經濃縮 重組氣中的C02在一種整合性吸附增強反應(SER)循環 中被轉化成CO,該整合性吸附增強反應循環使用在複數 反應器中進行的一連串循環步驟以影響一種轉化反應將 C02轉化成CO、一種將轉化反應產品混合物分離形成一 種富含C 0的產品物流以及準備S E R反應器供後續的S E R 方法循環。 本案申請的方法克服了跟先前技藝方法有關的問題, 後者於重組甲烷與水成爲一氧化碳時典型地遭遇到生產一 種包含未轉化成所要CO產品的過量C02之重組氣,其必 須從重組氣經由昂貴的分離循環而被分離出來。而且,本 案申請的方法克服了與逆水煤氣轉化反應有關的熱力學限 制,於該反應C02和氫被轉化成CO和水。 申請人的發明解決了這些問題,本發明在從反應器重 組氣分離出所需要的CO之前將存在於反應器重組氣裡的 二氧化碳轉化成額外的CO,因而大大地減少與分離循環 有關的成本。這個技術上的改進得以實現在於使用一種吸 10- 本紙張又度適用中國國家橾準(CNS ) A4規格(210X297公釐) 83.3.10,000 I. I —I— n r - I II I I 訂— — I I I、 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印裝 406056 五、發明説明(9 ) 附增強反應(SER)循環,其允許逆水煤氣的進行在25〇-3 5 0 °C的溫和溫度和5 - 3 0大氣壓的壓力下有著高c 〇 2到 C0轉化率。 申請人的方法整合一種SER方法,其在複數反應器裡 進行一連串的循環步驟將C〇2轉化成C0而且將轉化氣體 產品混合物分離成一種經濃縮的C0物流。每個反應器包 含一種轉化催化劑和一種水吸附劑的摻和劑,於其中水從 反應區在轉化反應條件之下被物理吸附而被選擇性地移除 藉此將反應平衡改變朝向形成所要的C 0。藉由依照一預 定的計時序列利用一連串的沖洗和解壓步驟被吸附的水被 從吸附劑分離出來。因此,申請人之整合於所申請方法的 SER方法表現了一種全新的循環以同時地獲得C02到C0 的高轉化率、生產經濃縮的C0流出物物流、有效率地自 吸附劑脫吸附水以及準備每個反應器以供下一個方法循 環。 申請人申請的方法整合一種SER循環以提供獨特的機 會反應存在於SMR流出物的C02和氫以在進行任何程序 分離步驟之前形成額外的C0。因爲C0產品是以高濃度存 在而且大部份典型地於傳統SMR方法的分離步驟階段被 移除的C02已經被轉化成所需要的C0產品,所以分離單 元的大小被大大地減少了。 申請人方法之生產C0的一般具體實施例考慮到使一 種含有甲烷和水的原料在一蒸汽甲烷重組催化劑的存在下 於溫度範圍從700 °C到1000 °C和壓力範圍從2到50大氣 -11 - 本紙張尺度適用中國國家揉準(CNS ) A4«^ ( 210X297公釐) 83.3.10,000 —.— — I— I 裝 11 n I n ^ 111 Is, (請先閲讀背面之注意事項再填寫本頁) 406G56 經濟部中央標準局貝工消費合作社印策 五、發明説明(10 ) 壓中進行反應以形成包含氫、一氧化碳、二氧化碳和未反 應原料的一種重組氣。 一般具體實施例的第二個步驟考慮到將水從該重組氣 移除以形成水耗竭的重組氣而且將該水耗竭的重組氣加熱 到溫度範圍從2 0 0 °到5 0 0 °C以形成水耗竭的受熱重組 氣。一般具體實施例的第三個步驟包含將該水耗竭的受熱 重組氣導入複數反應器之內,該些反應器依照下列的步驟 以預定的計時序列操作,該些步驟於每個反應器裡皆被循 環進行: (1) 於第一壓力下、於含有水吸附劑和水煤氣轉化催 化劑的一摻和劑的第一個反應器裡、在足以將二氧 化碳和氫轉化成一氧化碳並且將水吸附在吸附劑上 的反應條件下、使該水耗竭的受熱重組氣進行反應 而且排出一種富含CO的物流; (2) 藉由排出一種包含未反應的原料、一氧化碳和水 的混合物而將該第一個反應器逆流地解壓到第二壓 力; (3) 在該第二壓力、以對該吸附劑呈弱吸附的一沖洗 流體逆流地沖洗該第一個反應器,而自該吸附劑將 水去吸附且排出一種包含未反應的原料、一氧化碳 和水的混合物; (4) 在該第二壓力、以一種不含氫和二氧化碳且富含 CO的沖洗流體逆流地沖洗該第一個反應器而去吸 附該弱吸附沖洗流體並且排出一種包含該弱吸附沖 -12- 本紙張尺度適用中國國家^準(CNS ) A4规格(210X297公釐) 83.3.10,000 I I I f i 111 n n n n —.11 (請先閲讀背面之注^^項再填寫本頁) 406056 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(11) 洗流體'一氧化碳和水的混合物;和 (5)在該第一個反應器開始另一個方法循環之前、以 該富含C0的沖洗流體將該第一個反應器從該第二 壓力逆流地加壓到第一壓力。 在一般的具體實施例之下亦可能進行額外的步驟。舉 例來說,步驟(1)之富含C0的物流可使用傳統的技術被 分離以形成一種包含C0的物流和一種C0耗竭的物流。該 C0耗竭的物流能被分離以形成一種富含氫的廢氣物流和 一種氫耗竭富含二氧化碳的再循環物流,其中部分再循環 物流能被再循環至重組器。或者’在步驟(1)之後步驟(2) 之前該第一個反應器可在第一壓力被以一種弱吸附沖洗流 體逆流地沖洗,而從該反應器取出包含未反應的原料、一 氧化碳和水的一種混合物出。這種混合物能當做進料而被 再循環到該SER反應器。最後,一種額外的二氧化碳來源 可在進行步驟(1)到步驟(5)之前被導入水耗竭的受熱重 組氣物流之內。 於申請人之生產C0和氫的方法之另一具體實施例 中,考慮到使一種含有甲烷和水的原料在一種蒸汽甲烷重 組催化劑的存在下於溫度範圍從7 0 0 °C到1 0 0 0 °C和壓力 範圍從2到5 0大氣壓中進行反應以形成包含氫、一氧化 碳、二氧化碳和未反應原料的一種重組氣。 該另一具體實施例的第二個步驟考慮到將該重組氣冷 卻到一範圍從200°到500 °C的溫度以形成一種被冷卻的 重組氣而且將該被冷卻的重組氣分成第一物流和第二物 -13- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83.3.10,000 (請先閱讀背面之注意事項再填寫本f ) 装.U.S. Patent 4,915,711 discloses an SMR as described in FIG. 5. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 × 297 mm) 83.3.10,000 II II —I—- I Order — — I 1 '" ( Please read the notes on the back before filling out this page) Printed by the Consumers' Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 406056 _ ^ _ V. Description of the Invention (6) Method. Water and a methane source are directed into a conventional SMR reactor 82 via line 81 and reacted under recombination conditions to produce a recombined gas stream 83. In addition, a C02 stream can also be introduced into the reformer to increase CO production. Stream 8 3 is directed into condenser 84 to produce a condensate vapor 85 and a cooled recombined gas stream 86 at an intermediate temperature 30 °-120 ° C. The cooled reformed gas is then directed into CO-VSA 87, where the reformed gas is separated to provide a substantially pure CO product stream 88 and an exhaust gas stream 89 that can be used as fuel in the reformer 82. Another SMR process is depicted in Figure 6 where water and a methane source are introduced into a conventional SMR reactor 92 via line 91 and reacted under recombination conditions to produce a recombined gas stream 93. Stream 93 is introduced into condenser 94 to produce a condensate vapor 95 and a cooled reformed gas stream 96 at an intermediate temperature of 30 ° to 120 ° C. The cooled recombined gas is then introduced into CO-VSA97, where the recombined gas is separated to provide a substantially pure CO2 product stream 98, and the CO-VSA exhaust stream is passed through line 99 into a traditional The polymer film 100 further processes the exhaust gas stream 99 and provides an exhaust gas stream 101 which is compressed via a compressor 103 and is introduced into the SMR reactor 92 as additional raw material via a line 104. Figure 7 illustrates another SMR process for producing substantially pure CO and substantially pure hydrogen. Water and a methane source are directed into a conventional SMR reactor 112 via line 111 and reacted under recombination conditions to produce a recombined gas stream 113. The logistics 113 is introduced into the condenser 114 to produce the cooled recombined gas stream 116, which is imported (please read the note on the back before filling this page). _ , 1Τ h ·: This paper size applies to China National Standard (CNS) A4 specification (210X297 mm) 83. 3.10,000 406056 A7 B7 V. Description of the invention (7) The water gas conversion reactor 1 1 7 is used to convert part of the water and reformed gas stream 116 to hydrogen. The hydrogen-rich reformed gas 127 passes through the condenser 128 to remove water and the water-depleted stream 129 enters the H2-PSA unit 130 to provide a waste stream 132 and a substantially pure hydrogen stream that can be used as fuel in the reformer 112. 131. A portion of the reformed gas can then flow into line 118 after valve 117a is opened. This reformed gas is introduced into condenser 119 to cool the gas and remove moisture before entering CO-VSA 122 via line 121, where the reformed gas is separated to provide a substantially pure CO stream 123 and a CO depleted stream 124, The latter can be optionally compressed by a compressor or blower 125 and then combined with pipeline 129 to enter 112-PSA 1 3 0 ° People familiar with steam methane recombination techniques are working to find improved recombination methods, which require C 0 products Conversions are maximized. Moreover, a method that promotes the reaction between C02 and hydrogen to form C0 and water [reverse water gas conversion reaction] would be very desirable in the industry. Unfortunately, there is no known prior art SMR method integration capable of converting CO 2 existing in SMR reformed gas logistics and printed hydrogen produced by the Central Standards Bureau of the Ministry of Economic Affairs and Consumer Cooperatives into CO and water. This reverse water gas conversion reaction is thermodynamically unsuitable at a temperature of 800 ° C and the temperature typically needs to exceed 1000 ° C to obtain a moderate conversion of CO to CO. Therefore, this backwater gas conversion reaction has not been successfully integrated into the SMR process and used to produce CO. Moreover, the prior art methods of performing simultaneous reaction and adsorption treatment steps have not achieved commercial success because the product flow rate has not been maintained adequately and compared to undesired reaction products, unreacted raw materials, and rinses The presence of the required product is too low. The industry is looking for a method-9- 83.3.10,000 (Please read the notes on the back before filling out this page) Λ This paper size is applicable to China National Standard (CNS) Α4 size (210 × 297 mm) 406056 Central Bureau of Standards, Ministry of Economic Affairs Printed by Shelley Consumer Cooperative A7 ___B7____ V. Invention Description (8) Improve the general SMR method by increasing the overall method productivity or by increasing the CO Molar fraction of the product mixture that is introduced into the feed stream of the subsequent separation unit To produce CO. Summary of the Invention The present invention is a method for producing carbon monoxide (CO), which is a method for producing a recombination gas rich in carbon monoxide, carbon dioxide (CO2) and hydrogen by recombining methane and steam in the presence of a recombination catalyst. The CO 2 in the concentrated recombined gas is converted to CO in an integrated adsorption enhanced reaction (SER) cycle. The integrated adsorption enhanced reaction cycle uses a series of cyclic steps in a plurality of reactors to affect a conversion reaction. CO2 is converted to CO, a conversion reaction product mixture is separated to form a CO-rich product stream, and a SER reactor is prepared for subsequent SER process cycles. The method applied in this case overcomes the problems associated with previous techniques, which typically encountered when recombining methane and water to carbon monoxide produce a recombined gas that contains excess C02 that has not been converted to the desired CO product, which must be passed from the recombined gas through expensive The separation cycle is separated. Moreover, the method of the present application overcomes the thermodynamic limitations associated with backwater gas conversion reactions, in which CO2 and hydrogen are converted into CO and water. The applicant's invention solves these problems. The present invention converts the carbon dioxide present in the reactor reformed gas into additional CO before separating the required CO from the reactor reformed gas, thereby greatly reducing the costs associated with the separation cycle. This technical improvement is achieved by using a kind of suction 10- this paper is also applicable to China National Standard (CNS) A4 specification (210X297 mm) 83.3.10,000 I. I —I— nr-I II II Order — — III (Please read the notes on the back before filling this page) Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 406056 V. Description of the invention (9) With enhanced response (SER) cycle, which allows the backwater gas to be carried out at 25- With a mild temperature of 350 ° C and a pressure of 5-30 atmospheres, it has a high conversion of CO 2 to CO. Applicant's method integrates a SER process that performs a series of cyclic steps in a plurality of reactors to convert CO to CO and to separate the converted gas product mixture into a concentrated CO stream. Each reactor contains a conversion catalyst and a water-adsorbent admixture in which water is physically adsorbed from the reaction zone under the conversion reaction conditions and is selectively removed thereby changing the reaction equilibrium to form the desired C 0. Water absorbed by a series of flushing and decompressing steps is separated from the adsorbent according to a predetermined timing sequence. Therefore, the applicant's SER method, which is integrated with the applied method, represents a completely new cycle to simultaneously achieve high conversions from C02 to C0, produce a concentrated CO effluent stream, efficiently desorb water from the adsorbent, and Prepare each reactor for the next method cycle. Applicant's method integrates a SER cycle to provide a unique opportunity to react to CO 2 and hydrogen present in the SMR effluent to form additional CO before performing any procedural separation steps. Because the C0 product is present at high concentrations and most of the C02, which is typically removed during the separation step of a conventional SMR method, has been converted to the desired C0 product, the size of the separation unit is greatly reduced. The general embodiment of the applicant's method for the production of CO takes into account the use of a feedstock containing methane and water in the presence of a steam methane reforming catalyst at a temperature range from 700 ° C to 1000 ° C and a pressure range from 2 to 50 11-This paper size applies to China National Standards (CNS) A4 «^ (210X297 mm) 83.3.10,000 —. — — I— I Pack 11 n I n ^ 111 Is, (Please read the notes on the back before filling (In this page) 406G56 The Central Standards Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, Co., Ltd. 5. Description of the invention (10) The reaction is carried out under pressure to form a reformed gas containing hydrogen, carbon monoxide, carbon dioxide and unreacted raw materials. The second step of the general embodiment considers removing water from the reformed gas to form a water-depleted reformed gas and heating the water-depleted reformed gas to a temperature ranging from 200 ° to 50 ° C. Water depleted heated reformed gas is formed. The third step of the general embodiment includes introducing the water-depleted heated reformed gas into a plurality of reactors. The reactors operate in a predetermined timing sequence according to the following steps. These steps are in each reactor. It is circulated: (1) Under the first pressure, in a first reactor containing a water adsorbent and a blender of a water gas conversion catalyst, in a reactor sufficient to convert carbon dioxide and hydrogen into carbon monoxide and adsorb water Under the reaction conditions on the agent, the water-depleted heated reformed gas is reacted and a CO-rich stream is discharged; (2) the first one is discharged by discharging a mixture containing unreacted raw materials, carbon monoxide and water The reactor is decompressed countercurrently to a second pressure; (3) at the second pressure, the first reactor is flushed countercurrently with a flushing fluid that weakly adsorbs the adsorbent, and water is desorbed from the adsorbent And discharge a mixture containing unreacted raw materials, carbon monoxide and water; (4) countercurrent with a flushing fluid that is free of hydrogen and carbon dioxide and rich in CO at the second pressure Flush the first reactor to desorb the weakly adsorbed flushing fluid and discharge a kind containing the weakly adsorbed flush -12- This paper size applies to China National Standard (CNS) A4 specification (210X297 mm) 83.3.10,000 III fi 111 nnnn —.11 (Please read the note ^^ on the back before filling out this page) 406056 A7 B7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (11) Washing fluid 'a mixture of carbon monoxide and water; and (5) Before the first reactor begins another method cycle, pressurize the first reactor countercurrently from the second pressure to the first pressure with the CO-rich flushing fluid. Additional steps may also be performed under general specific embodiments. For example, the CO-rich stream of step (1) can be separated using conventional techniques to form a CO-containing stream and a CO-depleted stream. The CO-depleted stream can be separated to form a hydrogen-rich exhaust gas stream and a hydrogen-depleted carbon dioxide-rich recycle stream, a portion of which can be recycled to the reformer. Or 'After step (1) and before step (2), the first reactor may be flushed countercurrently with a weakly adsorbed flushing fluid at a first pressure, and the unreacted raw material, carbon monoxide and water may be taken out of the reactor. Out of a mixture. This mixture can be recycled to the SER reactor as a feed. Finally, an additional source of carbon dioxide can be introduced into the water-depleted heated gas stream before performing steps (1) through (5). In another specific embodiment of the applicant's method for producing CO and hydrogen, it is considered to make a feedstock containing methane and water in the presence of a steam methane reforming catalyst in a temperature range from 7 0 ° C to 1 0 0 The reaction is carried out at 0 ° C and pressure ranging from 2 to 50 atmospheres to form a reformed gas containing hydrogen, carbon monoxide, carbon dioxide and unreacted raw materials. The second step of this another embodiment considers cooling the reformed gas to a temperature ranging from 200 ° to 500 ° C to form a cooled reformed gas and dividing the cooled reformed gas into a first stream And the second thing-13- This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 83.3.10,000 (Please read the precautions on the back before filling in this f).

,1T y 406056 A7 B7 經濟部中央標準局員工消費合作杜印製 五、發明説明(12) 流。第三個步驟考慮到使該第一物流在足以形成一種富含 氫第一物流的反應條件之下接觸一種水煤氣轉化催化劑’ 冷卻該富含氫第一物流以形成一種冷卻的富含氫第一物 流,並且分離該冷卻的富含氫第一物流以形成一種氫產品 物流和一種氫耗竭物流。 該另一具體實施例的第四個步驟考慮到將水從該第二 物流移除以形成水耗竭的第二物流,而且加熱該水耗竭的 第二物流至一範圍從200°到500 °C的溫度以形成水耗竭 的受熱第二物流。該另一具體實施例的第五個步驟包含將 該水耗竭的受熱第二物流導入複數反應器之內,該些反應 器依照下列的步驟以預定的計時序列操作,該些步驟於每 個反應器裡皆被循環進行: (1 )於第一壓力、於含有水吸附劑和水煤氣轉化催化 劑的一摻和劑的第一個反應器裡、在足以將二氧化 碳和氫轉化成一氧化碳並且將水吸附在吸附劑上的 反應條件下、使該水耗竭的受熱第二物流進行反應 而且排出一種富含CO的物流; (2)藉由排出一包含未反應的原料、一氧化碳和水的 混合物,而將該第一個反應器逆流地解壓到第二壓 力; (3 )在該第二壓力、以一對該吸附劑呈弱吸附的沖洗 流體逆流地沖洗該第一個反應器而自該吸附劑將水 去吸附,而且排出一種包含未反應的原料 '一氧化 碳和水的混合物; -14- -----------裝-- (請先Μ讀背面之注意事項再填寫本頁) 、1Τ 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 83. 3.10,000 406056 at B7 經濟部中央標準局員工消費合作社印製 五、發明説明(13) (4) 在該第二壓力、以一不含氫和二氧化碳且富含C0 的沖洗流體逆流地沖洗該第一個反應器以去吸附該 弱吸附沖洗流體,且排出一種包含該弱吸附沖洗流 體、一氧化碳和水的混合物;和 (5) 在第一個反應器開始另一個方法循環之前,以該 富含C0的沖洗流體將該第一個反應器從第二壓力 逆流地加壓到第一壓力。 該另一具體實施例的第六個且是最後的步驟考慮到分 離步驟(1)之富含C0的物流,以形成一種包含C0的物流 和一種C0耗竭的物流,壓縮該C0耗竭的物流,而且在該 第三個步驟之冷卻的富含氫第一物流被分離成一種氫產品 物流和一種氫耗竭的物流之前,將該被壓縮的C0耗竭的 物流與該冷卻的富含氫第一物流合倂。 在該另一具體實施例之下亦可能進行額外的步驟。舉 例來說,在步驟(1)之後步驟(2)之前該第一個反應器可 在第一壓力被以一種弱吸附沖洗流體逆流地沖洗,且從該 反應器取出包含未反應的原料、一氧化碳和水的一種混合 物。 進行依照該一般和另一具體實施例的蒸汽甲烷重組反 應所適用的催化劑包括傳統的蒸汽甲烷重組和預重組催化 劑,例如鎳-氧化鋁、鎳-鎂氧化鋁和貴金屬催化劑。 如該一般和另一具體實施例所陳述地,SER循環考慮 到在複數反應器裡進行一連串的循環步驟,該些反應器含 有一種轉化催化劑和一種水吸附劑的摻和劑。該轉化催化 -15- (請先閲讀背面之注意事項再填寫本頁) A3 、vs Γ 本紙張尺度適用中國國家揉準(CNS ) A4規格(210X297公釐) 83.3.10,000, 1T y 406056 A7 B7 Printed by the Consumer Co-operation of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of Invention (12) Stream. The third step allows for contacting the first stream with a water gas conversion catalyst under reaction conditions sufficient to form a hydrogen-rich first stream. 'Cooling the hydrogen-rich first stream to form a cooled hydrogen-rich first stream. Stream, and the cooled hydrogen-rich first stream is separated to form a hydrogen product stream and a hydrogen depleted stream. The fourth step of this another embodiment considers removing water from the second stream to form a water depleted second stream, and heating the water depleted second stream to a range from 200 ° to 500 ° C Temperature to form a heated second stream of water depletion. The fifth step of the other specific embodiment includes introducing the water-depleted heated second stream into a plurality of reactors, which are operated in a predetermined timing sequence according to the following steps, which are performed in each reaction The reactors are all circulated: (1) at the first pressure, in the first reactor containing a water adsorbent and a blender of water gas conversion catalyst, in a reactor sufficient to convert carbon dioxide and hydrogen into carbon monoxide and adsorb water Under the reaction conditions on the adsorbent, the water-depleted heated second stream is reacted and a CO-rich stream is discharged; (2) by discharging a mixture containing unreacted raw materials, carbon monoxide, and water, The first reactor is decompressed countercurrently to a second pressure; (3) at the second pressure, the first reactor is flushed countercurrently with a flushing fluid that is weakly adsorbed to the adsorbent, and the first reactor is flushed from the adsorbent Water is desorbed, and a mixture containing unreacted raw materials' carbon monoxide and water is discharged; -14- ----------- pack-(please read the precautions on the back before filling this page) 1T Zhang scale is applicable to China National Standard (CNS) A4 specification (210X297 mm) 83. 3.10,000 406056 at B7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (13) (4) Under this second pressure, Flush the first reactor countercurrently with a hydrogen- and carbon dioxide-free flushing fluid rich in CO to desorb the weakly-adsorbed flushing fluid, and discharge a mixture containing the weakly-adsorbed flushing fluid, carbon monoxide, and water; and ( 5) Before the first reactor starts another method cycle, the first reactor is counter-pressurized from the second pressure to the first pressure with the CO-rich flushing fluid. The sixth and final step of this another embodiment considers the CO-rich stream of the separation step (1) to form a CO-containing stream and a CO-depleted stream, compressing the CO-depleted stream, And before the cooled hydrogen-rich first stream of the third step is separated into a hydrogen product stream and a hydrogen-depleted stream, the compressed CO-depleted stream and the cooled hydrogen-rich first stream are separated Together. Additional steps may be performed under this another specific embodiment. For example, after step (1) and before step (2), the first reactor may be flushed countercurrently with a weakly adsorbed flushing fluid at a first pressure, and unreacted raw materials including carbon monoxide may be removed from the reactor. And water. Suitable catalysts for carrying out the steam methane reforming reaction according to this general and another embodiment include conventional steam methane reforming and pre-reforming catalysts, such as nickel-alumina, nickel-magnesium alumina, and precious metal catalysts. As stated in this general and another specific embodiment, the SER cycle allows for a series of cycling steps in a plurality of reactors that contain a conversion catalyst and a water-adsorbent admixture. The conversion catalyst -15- (Please read the precautions on the back before filling this page) A3, vs Γ This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) 83.3.10,000

A7 B7 經濟部中央榡準局貝工消費合作社印掣 五、發明説明(14 ) (1997年11月修正) 劑和水吸附劑的摻和劑包含5-95重量%的吸附劑和95-5重 量%的催化劑。適當的水吸附劑包括那些選自由沸石、氧 化鋁或矽膠組成之群。適當的水煤氣轉化催化劑包括那些 選自由鐵-鉻高溫轉化催化劑、銅/鋅氧化物低溫轉化催化 劑和銅/鋅氧化物中溫轉化催化劑組成之群。 於閱讀發明的詳細描述時將變得更淸楚地,藉由利用 一新穎連串的反應、吸附和去吸附步驟以將存在於SMR重 組氣的C02轉化成C0而且在進料壓力及相對地固定的流率 下分離和收集經大大地濃縮的C0,申請人的方法克服了 與先前技藝方法有關的問題。這個結果的達成部份在於申 請人料想不到的在開始另一個SER循環之前使用一種C0或 富含C0的反應產物來沖洗該些SER反應器而且來加壓該些 反應器至反應壓力。 一般熟於此項技藝的人士將會預期到在開始反應步驟 之前使用逆水煤氣轉化反應的一種產品來沖洗和加壓SER 反應器將會不佳地將平衡常數改變朝向形成C02和氫;申 請人發現使用產品氣體代替C02或氫或另一種沖洗流體來 沖洗該些SER反應器提供了 一高度有效率的方法,於其中 一富含C0的物流能在進料壓力及相對地固定的流率下被 收集。 圖示的簡要描述 圖1舉例說明依照美國專利3,986,849的一種蒸汽甲烷 重組(SMR)方法,其中SMR反應器重組氣藉由利用一種高 溫度轉化(HTS)反應器和一種氫壓力增減吸附(H2-PSA)單 -16- 本纸用中國國家標準(CNS ) A4規格(210X297公釐) -----_-----I 裝------訂一^-----線 (請先閱讀背面之注-^項再填寫本頁) A7 B7 40$056 五、發明説明(15 ) (1997年11月修正) 元被進一步反應而且分離以提供一種高純度氫產品。 圖2舉例說明依照美國專利4,171,206的一SMR方法, 其中SMR反應器重組氣藉由利用一 HTS反應器和一C02-VSA和H2-PSA單元的整合被進一步反應而且分離以提供一 實質上純粹的二氧化碳物流和一實質上純粹的氫物流。 圖3舉例說明一種先前技藝SMR方法,其利用一 C02吸 收/汽提器將重組氣物流之C02移除,之後重組氣物流被 導入一變溫吸附(TS A )單元以進一步移除其中之水及二氧 化碳,之後在一個極冷冷箱中進行最後分離以生產一實質 上純粹的氫物流、一實質上純粹的C0物流和一含有甲烷 和C0的廢氣物流,該廢氣能被用作重組器的燃料。 圖4舉例說明依圖3的一改良方法,其中一C〇2吸收/汽 提器被用來將重組氣物流在被導入TSA單元之前將其C02 移除,以自重組氣進一步移除其水及C〇2。所分離C02的 一部分被壓縮和再循環進入SMR以供進一步轉化成氫和 C0。 圖5舉例說明一種先前技藝SMR方法以生產實質上純 粹的C0,其中SMR重組氣被冷凝以除去水,之後該重組氣 被於一種CO-VS A中分離以提供一種實質上純粹的C〇產品 和一種能被再循環用作重組器燃料的廢氣物流。 圖6舉例說明依照圖5的一種改良方法,其中從coys A回收 的廢氣 物流與一種選 擇透過 的聚合薄膜接觸以提 供一種能被再循環用作重組器燃料的廢氣物流及一種富含 C〇2的物流,該富含C02的物流被壓縮而且再導入SMR反 -17- ( CNS ) A4^m ( 210X297^# ) -----;-----—裝------訂------,--線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局貝工消费合作社印製A7 B7 Imprint of the Shellfish Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of the Invention (14) (Amended in November 1997) The admixture of the agent and the water adsorbent contains 5-95% by weight of the adsorbent and 95-5 % By weight of catalyst. Suitable water adsorbents include those selected from the group consisting of zeolite, alumina, or silicone. Suitable water gas conversion catalysts include those selected from the group consisting of iron-chromium high temperature conversion catalysts, copper / zinc oxide low temperature conversion catalysts and copper / zinc oxide medium temperature conversion catalysts. It will become clearer when reading the detailed description of the invention, by utilizing a novel series of reaction, adsorption and desorption steps to convert C02 present in the SMR reformed gas into C0 and at the feed pressure and relatively The separation and collection of greatly concentrated CO at a fixed flow rate, the applicant's method overcomes the problems associated with prior art methods. This result was achieved in part because the applicant unexpectedly flushed the SER reactors with a CO or CO-rich reaction product and pressurized the reactors to reaction pressure before commencing another SER cycle. Those skilled in the art will generally expect that flushing and pressurizing the SER reactor with a product that is a reverse water gas shift reaction before commencing the reaction step will poorly change the equilibrium constants to form CO 2 and hydrogen; the applicant It was found that using product gas instead of CO 2 or hydrogen or another flushing fluid to flush these SER reactors provided a highly efficient method in which a CO-rich stream could be fed at a feed pressure and a relatively constant flow rate Be collected. Brief Description of the Figures Figure 1 illustrates a steam methane reforming (SMR) process in accordance with US Patent 3,986,849, in which the SMR reactor reformed gas is utilized by utilizing a high temperature conversion (HTS) reactor and a hydrogen pressure increase adsorption (H2) -PSA) 单 -16- This paper uses Chinese National Standard (CNS) A4 specification (210X297 mm) -----_----- I Pack -------- Order one ^ ----- (Please read the Note- ^ item on the back before filling this page) A7 B7 40 $ 056 V. Description of Invention (15) (Amended in November 1997) The element was further reacted and separated to provide a high-purity hydrogen product. Figure 2 illustrates an SMR method according to U.S. Patent No. 4,171,206, in which the SMR reactor reformed gas is further reacted and separated by using the integration of a HTS reactor and a C02-VSA and H2-PSA unit to provide a A substantially pure carbon dioxide stream and a substantially pure hydrogen stream. Figure 3 illustrates a prior art SMR method that uses a C02 absorber / stripper to remove the C02 of the recombined gas stream, after which the recombined gas stream is introduced into a temperature swing adsorption (TS A) unit to further remove water and Carbon dioxide, followed by final separation in an ultra-cold cold box to produce a substantially pure hydrogen stream, a substantially pure CO stream, and an exhaust stream containing methane and CO, which can be used as fuel for a reformer . Figure 4 illustrates an improved method according to Figure 3, in which a CO2 absorber / stripper is used to remove the CO2 of the reformed gas stream before it is introduced into the TSA unit to further remove its water from the reformed gas. And Co2. A portion of the separated CO 2 is compressed and recycled into the SMR for further conversion to hydrogen and CO. Figure 5 illustrates a prior art SMR method to produce substantially pure CO, where the SMR reformed gas is condensed to remove water, after which the reformed gas is separated in a CO-VS A to provide a substantially pure CO product And an exhaust gas stream that can be recycled for use as a reformer fuel. FIG. 6 illustrates an improved method according to FIG. 5 in which the exhaust gas stream recovered from coys A is contacted with a selectively permeable polymeric film to provide an exhaust gas stream that can be recycled for use as a reformer fuel and a CO2-rich Logistics, the C02-rich logistics is compressed and re-imported into SMR anti-17- (CNS) A4 ^ m (210X297 ^ #) -----; ------- installation ------ order ------,-Line (Please read the notes on the back before filling out this page) Printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs

經濟部中央標率局負工消費合作社印製 應器以供進一步轉化成CO和氫。 圖7舉例說明一種先前技藝SMR方法,其中SMR反應 器重組氣被分離成一種被導入HTS反應器的第一物流和一 種第二物流,該第二物流被導入CO-VSA以生產一種實質 上純粹的C0產品和一種C0耗竭的物流,該C0耗竭的物流 與HTS反應器的流出物結合而且在一種H2-PSA單元中被分 離以提供一種實質上純粹的氫產品。 圖8舉例說明本案生產C0之SMR方法的一般具體實施 例,其中甲烷和水在一催化劑的存在下反應形成包含二氧 化碳、一氧化碳和氫的一重組產品。該方法整合一吸附增 強反應(SER)循環以進一步轉化SMR反應器中形成的二氧 化碳成爲額外的一氧化碳而且將水從反應混合物移除以進 一步將受平衡控制的反應導向形成C0。該SER循環使用一 連串的循環步驟進行於SER循環中形成的產品混合物之分 離而且準備該等SER反應器以用於後續的方法循環。 圖9舉例說明本案申請生產一種實質上純粹的C0物流 和一種實質上純粹的氫物流之SMR方法的另一具體實施 例,其中甲烷和水在一種催化劑的存在下反應形成包含二 氧化碳、一氧化碳和氫的一種重組產品。該方法整合一種 高溫轉化反應器以提高氫生產以及一種吸附增強反應(SER) 循環以進一步轉化SMR反應器中形成的二氧化碳成爲額外 的一氧化碳而且將水從反應混合物移除以進一步將受平衡 控制的反應導向形成C0。該SER循環使用一連串循環的步 驟進行於SER循環中形成的產品混合物之分離而且準備該 -18- Ϊ4九烺尺度適用中國國家標隼(CNS ) A4規格(210X297公釐> ϋ-^i—— 11 In I I nI (請先閲讀背面之注意事項再填寫本頁) 訂 線 86. 11· 3 年...The Central Standards Bureau of the Ministry of Economic Affairs printed the reactors for further conversion into CO and hydrogen. Figure 7 illustrates a prior art SMR process in which the SMR reactor recombined gas is separated into a first stream and a second stream that are introduced into an HTS reactor, which is introduced into the CO-VSA to produce a substantially pure The CO product and a CO depleted stream are combined with the effluent of the HTS reactor and separated in an H2-PSA unit to provide a substantially pure hydrogen product. Fig. 8 illustrates a general specific embodiment of the SMR method for producing CO in this case, in which methane and water are reacted in the presence of a catalyst to form a reconstituted product comprising carbon dioxide, carbon monoxide and hydrogen. This method integrates an adsorption enhancement reaction (SER) cycle to further convert the carbon dioxide formed in the SMR reactor into additional carbon monoxide and remove water from the reaction mixture to further direct the equilibrium-controlled reaction to form CO. The SER cycle uses a series of cycling steps to separate the product mixture formed in the SER cycle and prepares the SER reactors for subsequent process cycles. FIG. 9 illustrates another specific embodiment of the SMR method applied to produce a substantially pure CO stream and a substantially pure hydrogen stream, in which methane and water are reacted in the presence of a catalyst to form carbon dioxide, carbon monoxide, and hydrogen. A reorganized product. The method integrates a high temperature conversion reactor to increase hydrogen production and an adsorption enhancement reaction (SER) cycle to further convert the carbon dioxide formed in the SMR reactor into additional carbon monoxide and remove water from the reaction mixture to further control the equilibrium controlled The reaction is directed to form CO. The SER cycle uses a series of cyclic steps to separate the product mixture formed in the SER cycle and prepare the -18-Ϊ4 nine-nine scales applicable to China National Standard (CNS) A4 specifications (210X297 mm > ϋ- ^ i— — 11 In II nI (Please read the notes on the back before filling this page) Thread 86. 11 · 3 years ...

Jj: A7 B7 (1997年11月修正) 五、發明説明(π) 些SER反應器供後續的方法循環。 圖號說明 4,9,24,29,84,94,119,114,128,206,606,610,804 冷凝器 7,27,117,802 轉化反應器 66,103,125,808 壓縮機 100,502 薄膜 42,62,82,92,112,204,604 蒸汽甲烷重組器 331,360,731,760 泵 208,212,612,616 乾燥機,加熱機 210,333,614,733 儲存槽 301,302,601,602 SER反應器 317,335,717,735 分離器 發明的詳細描述 申請人現在將討論其生產一氧化碳(CO)之方法的進二 步細節,較先前技藝方法而言本方法提供了很多的利益。 特定而言,較大重組器原料到CO產品的轉化被達到;一 種更濃縮的反應產品被獲得,其獲得能僅使用一種傳統的 SMR方法而不需利用申請人的SER循環,其細節將於下文 討論,而且本案申請的方法能在比先前技藝方法更不苛刻 的條件下操作因爲高轉化率C02和氫的獲得在於移除一種 反應產物而不是藉由提高反應器溫度。 申請人方法的一般具體實施例被描述於圖8,其舉例 說明一種方法流程圖,該流程圖描述蒸汽甲烷重組器 204,冷凝器206,乾燥機208,進料加熱器212,SER反應 器301和302 ;很多控制閥;歧管A到E ;栗331和360 ;分離 器317和3 3 5 ;和調節容器210和33 3。參照圖8,例如甲烷 或天然氣的一種烴原料在一個容器(未顯示)裡被使用一種 業界熟知的吸附劑脫硫。該經脫硫的烴原料和蒸汽混合以 形成一種由物流203表示的混合重組器 -19- 本认I尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ----------—裝--------訂一r-----線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標隼局員工消费合作社印製 A7 B7 經濟部中央揉隼局員工消费合作社印裝 五、發明説明(18) 原料。原料203在預熱器(未顯示)裡被預熱並且導入 SMR重組器204之內。此重組器在業界被廣爲人知並且 藉由燃燒燃料和空氣(未顯示)的一種混合物而被加熱。 該重組器典型地操作在8 0 0 °到1 0 〇 〇 °c的溫度和5到3 〇 大氣壓的壓力並且生產一種以乾重計由大約73 %氫' 13%C0、9%C02和5%甲烷所組成的重組氣。該重組氣經 由管線2 0 5被送到冷凝器2 0 6,於其中氣體溫度被降低而 且氣體裡的一些水被冷凝而移除。該氣體經由管線207流 到乾燥機2 0 8,於其中流出物流經一種水吸附劑床而被乾 燥。這些乾燥機單元在工業界被廣爲人知而且能在熱或壓 力增減模態被操作。該乾燥氣體經由管線2 0 9被輸送到調 節容器210(可選擇的),於其中流體經由管線211被輸送 到加熱器212以形成一種水耗竭的受熱重組氣物流之後被 送到岐管A之內。圖8的其餘部分表現該SER方法,其中 水耗竭的受熱重組氣將在循環操作的複數反應器裡進行一 種轉化反應以將重組氣裡的C02和氫經由逆水煤氣轉化反 應轉化成CO和水而且回收一種富含CO的產品》 歧管A與支線輸入管3 1 1和3 2 1流道相通,支線輸入 管311和321連接至反應器301和302的輸入端。管線 3 1 1和3 2 1分別地裝備有閥3 1 1 a和3 2 1 a。適當閥的開啓 允許該受壓縮的水耗竭的受熱重組氣流經歧管A而進入被 選定而開始時即置於流道中的反應器之內。因此,藉由打 開閥3 1 1 a而關閉閥32 1 a,重組氣能從歧管A經由管線 3 1 1而流入反應器301。 -20- (請先閲讀背面之注意事項再填寫本頁) 裝. ,ιτ Λ 本紙張尺度適用中國困家標準(CNS ) A4規格(210X297公釐) 83.3.10,000 406056 經濟部中央標率局員工消費合作社印製 五、發明説明(I9) 反應器3 0 1和3 0 2的輸出端分別地連接到管線3 4 0和 35〇,其分別皆裝備有控制閥316a和326a。管線340和 3 5 〇經由管線3 1 6和3 2 6操作地連接到歧管E,經由管線 316和326 —種富含CO的物流自反應器301和302排出而 能被收集在分離器317。分離器317能由包括CO-VSA單 元或傳統蒸餾系統的任何傳統分離系統所組成。該高純度 CO產品能經由管線318而被收集,而且殘餘物能經由管 線3!9而被收集以供用作燃料或再循環。因此,藉由打開 適當的閥316a或326a,該富含CO的混合物自對應的反 應器經由管線340和315或管線350和326而流入歧管E 以進入分離器317之內。 反應器3〇1和3〇2操作地連接到管線311和321,其 分別與管線313和323流道相通。管線313和323分別裝 備有控制閥313a和323a,這些管線與歧管B流道相通。 歧管B能在分別地打開閥313a或323a時經由管線313和 323而與反應器301和302流道相通。歧管B也與連接到 管線362的泵360流道相通,該管線362與物流207合 倂。 歧管C與反應器301和3〇2經由管線314和324流道 相通,該管線3 1 4和3 2 4分別地裝備有閥3 1 4 a和3 2 4 a。 來自反應器301和302的再生流出物經由管線314和324 流入歧管C以供分離器335分離成富含水的產品物流336 和包含弱吸附沖洗流體的物流334,該物流334能被導入 儲存槽333(可選擇的)供以後的使用。 -21 - (請先閲讀背面之注意事項再填寫本頁) ---澤 言 4; 本紙張尺度適用中國國家梯準(CNS ) A4規格(210X297公釐) 83.3.10,000 經濟部中央橾準局貝工消費合作社印製 A7 --406&B6---- 五、發明説明(2〇) 歧管D被連接到泵331,其經由管線330和332接受 各種不同的程序流體。該些程序流體通過管線330或332 而且經由泵331被加壓。該些受壓的流體可能通過歧管 D,而該歧管D經由管線315和325分別地與反應器301 和3 0 2流道相通。管線3 1 5和3 2 5與歧管D的連接方式使 得從歧管D進入反應器3 0 1和3 0 2的流動物流能被控制。 而且,弱吸附沖洗流體能以打開閥3 3 2 a經由管線3 3 2或 藉由輸入弱吸附沖洗流體經由管線330而被輸送到泵 3 3 1» 圖8表現的幾個具體實施例的S E R循環的操作將會被 解釋於一個任意選定的循環,該循環如表1所示有八個各 爲十分鐘的階段。雖然不限於此,圖8所示的SER方法使 用反應器3 0 1和3 0 2,其以依照一預定計時序列的循環操 作。其他的安排可能使用較少的或較多的反應器和連結的 歧管和開關閥,選擇性地可使用泵的中斷或不連續(使用 空轉)操作。其他的安排可能藉由個別步驟的適當排序或 方法循環的階段而使用多於二個反應器。 依照圖8的一般具體實施例,每一個反應器30 1和 3 0 2皆進行四個階段的反應/吸附步驟,被稱爲吸附反應 步驟(sorpreaction step),解壓步驟的階段,沖洗I步 驟的階段,沖洗II步驟的階段,和加壓步驟的階段。如表 1所示,每一個反應器301和302在啓始時所採取的步驟 皆緩慢進行以使得二個反應器至少其中一個在整個方法循 環階段都能夠進行該吸附反應步驟。圖8所描述本發明的 -22- 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨0X297公釐) 83.3.10,〇〇〇 (請先閲讀背面之注意事項再填寫本頁) -裝.Jj: A7 B7 (Amended in November 1997) 5. Description of the invention (π) These SER reactors are used for subsequent method cycles. Drawing number description 4,9,24,29,84,94,119,114,128,206,606,610,804 Condenser 7,27,117,802 Conversion reactor 66,103,125,808 Compressor 100,502 Membrane 42,62,82,92 , 112,204,604 Steam methane reformer 331, 360,731,760 Pump 208,212,612,616 Dryer, heater 210,333,614,733 Storage tank 301,302,601,602 SER reactor 317,335,717,735 Detailed description of the separator invention The applicant will now discuss its method of producing carbon monoxide (CO) Further details, this method provides a lot of benefits compared to previous techniques. In particular, the conversion of larger recombiner raw materials to CO products is achieved; a more concentrated reaction product is obtained, which can be obtained using only a traditional SMR method without using the applicant's SER cycle, details of which will be Discussed below, and the method of the present application can be operated under less severe conditions than prior art methods because the high conversion of CO 2 and hydrogen is obtained by removing a reaction product rather than by increasing the reactor temperature. A general specific embodiment of the Applicant's method is depicted in FIG. 8 and illustrates a method flow diagram describing a steam methane reformer 204, condenser 206, dryer 208, feed heater 212, SER reactor 301 And 302; many control valves; manifolds A to E; pumps 331 and 360; separators 317 and 3 3 5; and regulating vessels 210 and 33 3. Referring to Fig. 8, a hydrocarbon feedstock such as methane or natural gas is desulfurized in a container (not shown) using a well-known adsorbent. The desulfurized hydrocarbon feedstock is mixed with steam to form a hybrid recombiner represented by the logistics 203-19. This I standard is applicable to China National Standard (CNS) A4 specification (210X297 mm) -------- --- Installation -------- Order a r ----- line (please read the notes on the back before filling this page) Printed by the Consumer Standards Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs A7 B7 Central of the Ministry of Economic Affairs Printing of employees' cooperatives in the Bureau of Venezuela 5. V. Invention description (18) Raw materials. The raw material 203 is preheated in a preheater (not shown) and introduced into the SMR reformer 204. This reformer is well known in the industry and is heated by burning a mixture of fuel and air (not shown). The reformer is typically operated at a temperature of 800 ° to 1000 ° C and a pressure of 5 to 30 atmospheres and produces a dry weight of approximately 73% hydrogen '13% CO, 9% CO2 and 5 % Methane recombination gas. The reformed gas is sent to condenser 206 through line 205 where the temperature of the gas is reduced and some of the water in the gas is condensed and removed. The gas flows to dryer 208 via line 207, where the effluent stream is dried through a bed of water adsorbent. These dryer units are widely known in the industry and can be operated in thermal or pressure increase and decrease modes. The dry gas is sent to the conditioning vessel 210 (optional) via line 209, where the fluid is sent to the heater 212 via line 211 to form a water-depleted heated reformed gas stream and then sent to manifold A. Inside. The rest of FIG. 8 represents the SER process, in which the water-depleted heated reformed gas is subjected to a conversion reaction in a cyclically operated multiple reactor to convert CO 2 and hydrogen in the reformed gas into CO and water via a reverse water gas conversion reaction and Recovering a product rich in CO. Manifold A communicates with the branch line input pipes 3 1 1 and 3 2 1. Branch line input pipes 311 and 321 are connected to the input ends of reactors 301 and 302. Lines 3 1 1 and 3 2 1 are equipped with valves 3 1 1 a and 3 2 1 a, respectively. The opening of a suitable valve allows the compressed, water-depleted, heated recombined gas stream to pass through manifold A into a reactor that is selected to be placed in the flow path at the outset. Therefore, by opening the valve 3 1 1 a and closing the valve 32 1 a, the reformed gas can flow from the manifold A into the reactor 301 through the line 3 1 1. -20- (Please read the precautions on the reverse side before filling out this page).. Ιτ Λ This paper size applies to China Standard for Household Standards (CNS) A4 (210X297 mm) 83.3.10,000 406056 Staff of Central Standards Bureau, Ministry of Economic Affairs Printed by the Consumer Cooperative V. Description of the Invention (I9) The outputs of the reactors 301 and 302 are connected to the pipelines 340 and 350 respectively, and they are each equipped with control valves 316a and 326a. Lines 340 and 35.0 are operatively connected to manifold E via lines 3 1 6 and 3 2 6 and are discharged from reactors 301 and 302 via lines 316 and 326-a CO-rich stream that can be collected in separator 317 . The separator 317 can be composed of any conventional separation system including a CO-VSA unit or a conventional distillation system. This high purity CO product can be collected via line 318, and the residue can be collected via line 3! 9 for use as fuel or for recycling. Thus, by opening the appropriate valve 316a or 326a, the CO-rich mixture flows from the corresponding reactor into manifold E through lines 340 and 315 or lines 350 and 326 into the separator 317. Reactors 301 and 302 are operatively connected to lines 311 and 321, which communicate with the flow channels of lines 313 and 323, respectively. Lines 313 and 323 are equipped with control valves 313a and 323a, respectively, and these lines communicate with the manifold B flow path. The manifold B can communicate with the flow paths of the reactors 301 and 302 through the lines 313 and 323 when the valves 313a or 323a are opened respectively. Manifold B also communicates with the flow channel of pump 360 connected to line 362, which is combined with stream 207. Manifold C communicates with reactors 301 and 302 via flow lines of lines 314 and 324, which lines 3 1 4 and 3 2 4 are equipped with valves 3 1 4 a and 3 2 4 a, respectively. The regenerated effluent from reactors 301 and 302 flows into manifold C via lines 314 and 324 for separation by separator 335 into a water-rich product stream 336 and a stream 334 containing weakly adsorbed flushing fluid, which stream 334 can be directed to storage The slot 333 (optional) is for later use. -21-(Please read the notes on the back before filling out this page) --- Zeyan 4; This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) 83.3.10,000 Central Bureau of Standards, Ministry of Economic Affairs Printed by Shelley Consumer Cooperative A7-406 & B6-5. Description of the Invention (20) The manifold D is connected to a pump 331, which receives various program fluids via lines 330 and 332. These process fluids are pressurized through line 330 or 332 and via pump 331. These pressurized fluids may pass through manifold D, which is in communication with reactors 301 and 302 flow channels via lines 315 and 325, respectively. The manner in which lines 3 1 5 and 3 2 5 are connected to manifold D allows the flow of fluid from manifold D into reactors 3 0 1 and 30 2 to be controlled. Moreover, the weakly adsorbed flushing fluid can be delivered to the pump 3 3 1 by opening the valve 3 3 2 a via line 3 3 2 or by inputting the weakly adsorbed flushing fluid through line 330. »SER of several embodiments shown in FIG. 8 The operation of the loop will be explained in an arbitrarily selected loop. The loop has eight stages of ten minutes each as shown in Table 1. Although not limited to this, the SER method shown in FIG. 8 uses the reactors 301 and 302, which operate in a loop according to a predetermined timing sequence. Other arrangements may use fewer or more reactors and connected manifolds and on-off valves, optionally with interrupted or discontinuous (using idling) operation of the pump. Other arrangements may use more than two reactors by proper sequencing of individual steps or stages of the process cycle. According to the general embodiment of FIG. 8, each of the reactors 301 and 302 performs a four-stage reaction / adsorption step, which is called a adsorption reaction step, a stage of a decompression step, and a step of washing the I step. Phase, phase of the rinse II step, and phase of the pressurization step. As shown in Table 1, the steps taken at the beginning of each of the reactors 301 and 302 were performed slowly to enable at least one of the two reactors to carry out the adsorption reaction step throughout the process cycle. The paper size of the present invention described in Figure 8-22 is applicable to the Chinese National Standard (CNS) A4 specification (2 丨 0X297 mm) 83.3.10, 〇〇〇 (Please read the precautions on the back before filling this page)- Installed.

.1T .V----- 406056 A7 B7 五、發明説明(21 ) 操作主要地包括下列的步驟序列:在實施下列步驟時,第 一壓力範圍爲從2到50大氣壓,而第二壓力範圍爲從 0 . 0 5到2大氣壓。 --I - -------k 裝-- (請先閲讀背面之注意事項再填寫本頁).1T .V ----- 406056 A7 B7 V. Description of the Invention (21) The operation mainly includes the following sequence of steps: When performing the following steps, the first pressure range is from 2 to 50 atmospheres, and the second pressure range From 0. 5 to 2 atmospheres. --I-------- k pack-(Please read the precautions on the back before filling this page)

、1T 'ν 經濟部中央標準局員工消費合作社印製 23 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 83.3.10,000 A7406056_£ 五、發明説明(22 ) 經濟部中央標準局員工消費合作社印製 囊uooououoouo π 雲U0003300U0U I 雲U300U3U0U0U 麗 UUUUOUUOUOU 鑛取為εε #csfnjCNrn名l-HfnsI—tfo 一撇 οοοο ο寸-οε^赵銮盛 02^ 0^01¾¾^¾ 2-0匿義 麵φ § 態¾ ㈣M^¥a υοουυουοουου 000丨 0卜 _M^uouuuoouooou 0S9 ilMts UOUUUOU0OO0U 09·0ς 0Mfe@υοουυουουυου os-o 寸 襲 π_麗 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3.10,000 -----------.—裝— (請先閲讀背面之注意事項再填寫本頁)1.1T 'ν Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs 23 This paper size applies to the Chinese National Standard (CNS) A4 specification (210 × 297 mm) 83.3.10,000 A7406056_ £ 5. Description of the invention (22) Employees of the Central Bureau of Standards of the Ministry of Economic Affairs Consumption cooperative prints ooooououoouo π cloud U0003300U0U I cloud U300U3U0U0U li UUUUOUUOUOU ore is taken as εε #csfnjCNrn name l-HfnsI-tfo apostrophe οοοο οinch-οε ^ 赵 銮 盛 02 ^ 0 ^ 01¾¾ ^ ¾ 2-0 State ¾ ^ M ^ ¥ a υοουυουοουου 000 丨 0 Bu _M ^ uouuuoouooou 0S9 ilMts UOUUUOU0OO0U 09 · 0ς 0Mfe @ υοουυουουυου os-o Inch π_ Li this paper standard applies to the Chinese national standard (CN210) 297 A4 specifications . 3.10,000 -----------.— install— (Please read the precautions on the back before filling this page)

•IX 經濟部中央橾準局員工消費合作社印製 aii6G56 A7 _B7_ 五、發明説明(23) (a)吸附反應--該水耗竭的受熱重組氣(原料)在第〜 預定壓力通過含有一種轉化催化劑和吸附劑的摻和劑之反 應器,該吸附劑對水有優先選擇性,於其中一種富含C0 的物流從反應器被排出。水被該吸附劑選擇性地吸附,而 且反應器裡形成一個反應物質傳遞區(RMTZ),當更多的 原料通過該反應器時該傳遞區朝向反應器的出口或排放端 移動。該RMTZ前緣的吸附劑實質上沒有被吸附的水而該 R Μ T Z後緣的吸附劑則是依局部條件與水達成平衡。該吸 附反應步驟一直繼續直到反應器裡的吸附劑實質上被水飽 和。換句話說,一旦吸附RMTZ已經到達反應器流出物端 或消失時吸附反應步驟即結束。該富含C0的物流從反應 器被排出。 (b )解壓--藉由排出包含未反應的原料、C0和水的一 種混合物該反應器被逆流地解壓到第二預定壓力。該解壓 步驟繼續到反應器到達第二預定壓力。 (c) 沖洗I--該反應器在第二壓力被使用一種弱吸附 沖洗流體逆流地沖洗以自該吸附劑將水去吸附,而且一種 包含該弱吸附沖洗流體、未反應的原料、部分C 0和部分 水的混合物自該反應器被排出。 (d) 沖洗II--該反應器在第二壓力被使用一種不含 C〇2和氫而富含C0的沖洗流體逆流地沖洗以去吸附該弱 吸附沖洗流體,而且一種包含該弱吸附沖洗流體、C0和 水的混合物自該反應器被排出。 (e) 加壓--在開始另一循環之前反應器被以富含c〇的 -25- —-i I n 11 [I 訂"~1-^ (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家揉準(CNS ) A4規格(210X297公釐) 83. 3.10,000 406056 經濟部中央揉準局員工消費合作社印裝 五、發明説明(24) 沖洗流體從第二壓力逆流地加壓到第一壓力。 在上述的操作循環階段那些閥的位置也被列在表1。 指示顯示一指定的閥爲開著的而"C"代表一指定的閥 爲關著的。在一個完整的方法循環階段反應器301內進行 的操作序列步驟將會於下文被無遺漏地被描述其細節以使 連續程序的操作得以被完全了解。依照表1的相同步驟序 列在反應器3 0 2裡以緩慢的序列進行。 再一次地,參照圖8揭示的具體實施例和在表1指定 的序列階段和閥位置,反應器3〇1進行了吸附反應步驟的 四個序列階段。儲存在儲存槽21〇(可選擇的)中的原料, 藉由打開閥311a和316a而關閉閥313a、314a和315a 而被導入反應器301,藉此允許原料流過歧管A,管線 3 11而進入反應器301,該反應器301含有一種被需要的 轉化催化劑和水選擇性吸附劑的摻和劑。 該吸附反應繼續直到反應器301實質上被吸附的水加 以飽和。水被選擇性地吸附到該吸附劑之上而且反應物質 傳遞區(RMTZ)在反應器301裡面形成,該傳遞區隨著更 多原料通過而朝向反應器301的排放端移動。當MTZ到 達反應器流出端或在某預設定點消失的時候,該吸附反應 即完成。 一種富含CO的物流經由管線340和316離開反應器 301的排放端而且流入歧管E以供收集於分離器317之 內。可選擇性地,分離器317裡的混合物能被例如壓力增 減吸附、眞空增減吸附、熱增減吸附或蒸餾或冷凝的傳統 -26- -----------^-- (請先閲讀背面之注^^項再填寫本頁) •^ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83.3.10,000 經濟部中央標準局員工消費合作社印製 406056 g 五、發明説明(25 ) 技術分離以形成一種物流,該物流包含經由管線318被從 分離器317排出之實質上純粹的CO而該混合物殘餘的成 分經由管線3 1 9被排出。 該方法進行一種解壓步驟的階段,於其中反應器301 藉由自反應器301的輸入端排出包含未反應的原料、CO 和水的混合物而被逆流地解壓到第二預定壓力。閥313a 被打開而閥3 11a和3 14a被關閉以允許混合物經過管線 311和313進入歧管B而且與泵360流道相通。該混合物 離開泵360的排放端經過管線362以供使用當做燃料(未 顯示)或再循環進入管線2 0 7以當做後續方法循環的原 料。該解壓步驟繼續直到反應器到達第二預定壓力。 然後反應器301接受沖洗I步驟的階段。反應器301 在第二壓力被用弱吸附沖洗流體逆流地沖洗。在打開閥 3l4a和3l5a而保持閥325a和332a在關閉位置之後,來 自外部來源的弱吸附沖洗流體經由管線3 3 0通過泵3 3 1而 在第二壓力離開泵3 3 1以經由歧管D、管線3 1 5和管線 34〇進入反應器301的出口端。一種包含弱吸附沖洗流 體、未反應的原料'CO和水的混合物從反應器301經由 管線311、管線314和歧管C被排出並且收集在分離器 3 3 5。該混合物可能被用當做燃料,被排放以供本方法以 外使用或在分離器335裡被分離以形成一種弱吸附沖洗流 體的物流和一種富含水的物流336。該弱吸附沖洗流體的 一部分可能被輸送經由管線334進入儲存槽333中以供未 來使用。應要求時經由打開閥3 3 2 a,該弱吸附沖洗流體 -27- (請先閲讀背面之注意事項再填寫本頁) -裝. 訂 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) 83.3.10,000 經濟部中央標隼局員工消費合作社印製 ^06056 at ___B7__五、發明説明(26 ) 可能經由管線3 3 2和3 3 0被輸入泵3 3 1以供後續的方法循 環使用。 然後反應器301接受沖洗II步驟的階段,於其中反應 器3〇1被一種不含氫和co2而富含CO的流體逆流地沖 洗。在打開閥314a和315a而保持閥325a和332a在關閉 位置之後,來自外部來源的富含CO的沖洗流體經由管線 330通過泵331而在第二壓力離開泵331以經由歧管D ' 管線315和管線340進入反應器301的出口端。一種包含 弱吸附沖洗流體、水和富含CO的沖洗流體的混合物從反 應器3 Ο 1經由管線3 1 1、管線3 1 4和歧管C被排出並且收 集在分離器3 3 5。該混合物可能被用當做燃料或被排放以 供本方法以外使用。 該方法循環的最後步驟包括一種單一序列的加壓步 驟,於其中反應器301被一種富含CO的沖洗流體或高純 度的CO產品物流318在反應器裡開始另一方法循環之前 逆流地自第二壓力加壓到第一壓力。特定而言,在打開閥 315a 而保持閥 311a,313a, 314a,325a 和 332a 在關 閉位置之後,該富含CO的沖洗流體經由管線330通過泵 331而在第二壓力離開泵331以經由歧管D、管線315和 管線340進入反應器301的出口端。當反應器301到達第 一壓力之後本步驟即結束。 依照列於表1的上述步驟本方法進行著額外的循環。 儘管該些序列階段被描述爲等長,其並非必要或必需。時 間的設定取決於可允許最大氣體流率、閥和管線大小和所 -28- (請先聞讀背面之注意事項再填寫本萸> ,裝· 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3.1〇,〇〇〇 經濟部中央標準局員工消費合作社印製 406056五、發明説明(27) 使用吸附劑的性質。交互的程序可能被使用以建立每一種 循環步驟的期間。舉例來說,例如反應器流出物成分分析 的業界熟知的其他技術可能被用以決定某一特別步驟的終 點。 一般具體實施例的幾種變化可能被測試以滿足每個工 廠的特別需要。舉例來說,歧管E的富含CO物流能在分 離器317被分離以形成一種包含實質上純粹的CO物流 318和一種CO耗竭的物流501。物流501能被導入一種 傳統的聚合薄膜502以形成一種富含氫的廢氣物流503和 一種能被再循環進入SMR反應器204的氫耗竭富含二氧 化碳的再循環物流5 0 4。 _ 或者,每個反應可能在第一壓力用一種弱吸附沖洗流 體在吸附反應步驟和解壓步驟之間進行額外的逆流沖洗步 驟而排出一種包含未反應的原料、CO和水的混合物,該 混合物能被當做進料經由歧管B、泵3 6 0和管線3 6 2再循 環到該些SER反應器。而且,在進行SER循環之前額外的 C02可能被加入水耗竭的受熱重組氣物流209以平衡該轉 化反應中C 0 2和氫的化學計量。 申請人方法的另一具體實施例被描述於圖9,其舉例 說明一種方法流程圖,該流程圖描述蒸汽甲烷重組器 604、轉化反應器802、氫PSA單元806、壓縮機808、 冷凝器6 0 6,6 10和8 0 4、乾燥機6 12,進料加熱器 6 1 6 ' S E R反應器6 0 1和6 0 2 ;很多控制閥;歧管A到E ; 泵731和760 ;分離器717和735 ;和調節容器614和 -29- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83.3.10,000 A7 B7 經濟部中央標準局貝工消費合作社印裝 五、發明説明(28) 733。參照圖9,一種例如甲烷或天然氣的烴原料在一個 容器(未顯示)裡被使用一種業界熟知的吸附劑脫硫。該 經脫硫的烴原料和蒸汽混合以形成一種由物流603表示的 混合重組器原料。原料603在預熱器(未顯示)裡被預熱並 且導入SMR重組器6〇4之內。此重組器在業界被廣爲人 知並且藉由燃燒燃料和空氣(未顯示)的一種混合物而被 加熱。該重組器典型地操作在8 0 0 °到1 0 0 0 °C的溫度和5 到3 0大氣壓的壓力並且生產一種以乾重計由大約7 3 % 氫、13%CO、9%C〇2和5%甲烷所組成的重組氣。該重組 氣經由管線6 〇 5被送到冷凝器6 0 6,於其中氣體溫度被降 低至200°到500 °C。該氣體被分成流過管線801的第一 物流和流過冷凝器6 1 0的第二物流。該受冷卻的重組氣通 過管線801流過轉化反應器802於其中CO和水被轉化成 氫。該離開轉化反應器的富含氫物流803在冷凝器804裡 被冷卻到3 0 °到1 2 0 °C,於其中大量的水被冷凝移除。該 水耗竭富含氫的物流805被送到氫PSA 806以生產一種 高純度氫物流807和一種廢棄物流。進入冷凝器610的該 第二物流被冷卻到周圍溫度,而且水被冷凝移除。氣體經 由管線611流到乾燥機612,於其中流出物經過一個水吸 附劑床而被乾燥。這些乾燥機單元在工業界被廣爲人知而 且能被操作在熱或壓力增減模態。該實質上乾燥的氣體被 輸送經由管線6 13進入調節容器6 14,其中流體被輸送經 由管線615進入加熱器616以形成水耗竭的受熱重組氣物 流而被導入歧管A。圖9的其餘部分表現SER方法,其中 -30- (請先閲讀背面之注意^項再填寫本頁) -裝- *11- 本紙張尺度適用中國國家揉準(CNS ) A4规格(210X297公釐) 83. 3.10,000 406056 A7 B7 經濟部中央標準局貝工消費合作社印製 五、發明説明(29) 水耗竭的受熱重組氣將在循環操作的複數反應器裡進行一 種轉化反應以將重組氣裡的C 0 2和氫經由逆水煤氣轉化反 應轉化成C0和水而且回收一種富含C0的產品。 歧管A與支線輸入管711和721流道相通,支線輸入 管711和721連接至反應器601和602的輸入端。管線 711和721分別地裝備有閥711a和721a。適當閥的開啓 允許該受壓縮的水耗竭的受熱重組氣流經歧管A而進入被 選定而開始時即置於流道中的反應器之內。因此,藉由打 開閥71 la而關閉閥721a,重組氣能從歧管A經由管線 7 1 1而流入反應器6 0 1。 反應器6 0 1和6 0 2的輸出端分別地連接到管線7 4 0和 750,其分別皆裝備有控制閥716a和726a »管線740和 750經由管線716和726操作地連接到歧管E,經由管線 716和726 —種富含CO的物流自反應器601和602排出而 能被收集在分離器717。分離器717能由包括CO-VSA單 元或傳統蒸餾系統的任何傳統分離系統所組成。該高純度 CO產品能經由管線718而被收集,而該CO耗竭的物流 7 19在壓縮機或鼓風機808被壓縮而且與管線805結合而 被導入氫PSA 806。因此,藉由打開適當的閥716a或 7 2 6 a,該富含C 0的混合物自對應的反應器經由管線7 4 0 和716或管線750和726而流入歧管E以進入分離器717 之內。 反應器601和602操作地連接到管線711和721,其 分別與管線7 1 3和7 2 3流道相通。.管線7 1 3和7 2 3分別裝 -31 - —.1 —— I I I I I I I I 訂^ (請先閲讀背面之注^^項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83.3.10,000 經濟部中央樣準局負工消費合作社印裝 406056 b;五、發明説明(3〇) 備有控制閥713a和723a,這些管線與歧管b流道相通。 歧管B能在分別地打開閥7 1 3 a或7 2 3 a時經由管線7〗3和 723而與反應器601和602流道相通。歧管b也與連接到 管線7 6 2的泵7 6 0流道相通,該管線7 6 2與物流6 1 1合 倂。 歧管C與反應器601和602經由管線714和724流道 相通,該管線714和724分別地裝備有閥714a和724a。 來自反應器601和6〇2的再生流出物經由管線714和724 流入歧管C以供分離器735分離成富含水的產品物流736 和包含弱吸附沖洗流體的物流734,該物流734能被導入 儲存槽7 3 3供以後使用。 歧管D被連接到泵731,其經由管線730和732接受 各種不同的程序流體。此些程序流體通過管線7 3 0或7 3 2 而且經由泵731被加壓。該些受壓的流體可能通過歧管 D,而該歧管D經由管線715和725分別地與反應器601 和6 0 2流道相通。管線7 15和7 2 5分別地裝配有閥7 15a和 725a使得從歧管D進入反應器601和602的流動物流能被 控制。而且,弱吸附沖洗流體能以打開閥7 3 2 a經由管線 732或藉由輸入弱吸附沖洗流體經由管線730而被輸送到 栗7 3卜 圖9表現的幾個具體實施例的SER循環的操作將會被 解釋於一個任意選定的循環,該循環如表2所示有八個各 爲十分鐘的階段。雖然不限於此,圖9所示的SER方法使 用反應器601和602,其以依照一預定計時序列的循環操 -32- _ 83.3.10,000 本紙張尺度適用中國國家標準(CNS ) Α4規格(hOXW7公釐) 1— — — — — 裝 — — ^ 訂 (請先閲讀背面之注意事項再填寫本頁) A7 B7 五、發明説明(31) 作。其他的安排可能使用較少的或較多的反應器和連結的 氣體歧管和開關閥,選擇性地可使用泵的中斷或不連續 (使用空轉)操作。其他的安排可能藉由個別步驟的適當排 序或方法循環的階段而使用多於二個反應器。 — II 訂 I — ^ (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 -33 - 83. 3.10,000 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) A7406056 B7 明説 明發 經濟部中央標準局員工消費合作社印製 震 3303000303033 s <ΙΙ_υυοου3ουου3υυ ? I_UU00U3UU03UU0 Sil ουοοοοουουυυυ 字 _υοουυ03υουυου J z^ 0 0 〇 0 0• IX Printed by AIX6G56 A7 _B7_ of the Consumer Cooperatives of the Central Government Bureau of the Ministry of Economic Affairs V. Invention Description (23) (a) Adsorption reaction-the water-depleted heated reformed gas (raw material) is passed at a pressure of ~~ predetermined pressure containing a conversion catalyst A reactor with an admixture of an adsorbent, which has a preferential selectivity to water, and one of the CO-rich streams is discharged from the reactor. Water is selectively adsorbed by the adsorbent, and a reaction material transfer zone (RMTZ) is formed in the reactor. The transfer zone moves toward the outlet or discharge end of the reactor as more raw materials pass through the reactor. The adsorbent at the leading edge of RMTZ is substantially free of adsorbed water, while the adsorbent at the trailing edge of R M T Z is balanced with water according to local conditions. This adsorption reaction step is continued until the adsorbent in the reactor is substantially saturated with water. In other words, the adsorption reaction step ends as soon as the adsorption RMTZ has reached or disappeared from the reactor effluent end. This CO-rich stream is discharged from the reactor. (b) Decompression-The reactor is depressurized counter-currently to a second predetermined pressure by discharging a mixture containing unreacted raw materials, CO and water. This decompression step continues until the reactor reaches a second predetermined pressure. (c) Flushing I--The reactor is flushed countercurrently at a second pressure using a weakly adsorbed flushing fluid to desorb water from the adsorbent, and a weakly adsorbed flushing fluid, unreacted raw materials, part C A mixture of 0 and part of the water is discharged from the reactor. (d) Flush II-the reactor is flushed countercurrently at a second pressure with a CO 2 -free flushing fluid rich in CO to desorb the weakly adsorbed flushing fluid, and a weakly adsorbed flushing fluid comprising the weakly adsorbed flushing fluid A mixture of fluid, CO and water is discharged from the reactor. (e) Pressurization--Before starting another cycle, the reactor was enriched with -25 --- i I n 11 [I order " ~ 1- ^ (Please read the notes on the back before filling (This page) This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) 83. 3.10,000 406056 Printed by the Consumer Cooperatives of the Central Government Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (24) The flushing fluid from the second The pressure is pressurized countercurrent to the first pressure. The positions of those valves during the above-mentioned operating cycle stages are also listed in Table 1. The indication indicates that a specified valve is open and " C " indicates that a specified valve is closed. The sequence of operations performed in a complete process cycle stage reactor 301 will be described below in detail without omissions so that the operation of the continuous process can be fully understood. The same sequence of steps in Table 1 was followed in a slow sequence in reactor 302. Again, referring to the specific embodiment disclosed in FIG. 8 and the sequence stages and valve positions specified in Table 1, the reactor 301 has performed four sequence stages of the adsorption reaction step. The raw material stored in the storage tank 21 (optional) is introduced into the reactor 301 by opening the valves 311a and 316a and closing the valves 313a, 314a, and 315a, thereby allowing the raw material to flow through the manifold A, line 3 11 Instead, it enters reactor 301, which contains a required admixture of a conversion catalyst and a water-selective adsorbent. This adsorption reaction continues until the water substantially absorbed in the reactor 301 is saturated. Water is selectively adsorbed onto the adsorbent and a reaction material transfer zone (RMTZ) is formed inside the reactor 301, which transfer zone moves toward the discharge end of the reactor 301 as more raw materials pass through. When the MTZ reaches the outflow end of the reactor or disappears at a preset point, the adsorption reaction is complete. A CO-rich stream leaves the discharge end of reactor 301 via lines 340 and 316 and flows into manifold E for collection in separator 317. Alternatively, the mixture in the separator 317 can be traditionally increased by, for example, pressure increase or decrease adsorption, air increase or decrease adsorption, thermal increase or decrease adsorption, or distillation or condensation. -(Please read the note ^^ on the back before filling this page) • ^ This paper size applies to China National Standard (CNS) A4 (210X297 mm) 83.3.10,000 Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 406056 g 5. Description of the invention (25) Technical separation to form a stream containing substantially pure CO that is discharged from the separator 317 via line 318 and the remaining components of the mixture are discharged via line 3 19. The method performs a stage of a decompression step in which the reactor 301 is decompressed countercurrently to a second predetermined pressure by discharging a mixture containing unreacted raw materials, CO, and water from an input of the reactor 301. Valve 313a is opened and valves 3 11a and 3 14a are closed to allow the mixture to enter manifold B through lines 311 and 313 and communicate with the pump 360 flow path. The mixture exits the discharge end of the pump 360 and passes through line 362 for use as fuel (not shown) or is recycled into line 207 for use as a raw material for subsequent process circulation. This decompression step continues until the reactor reaches a second predetermined pressure. The reactor 301 then undergoes the stage of the washing step I. The reactor 301 is flushed countercurrently with a weakly adsorbed flushing fluid at a second pressure. After opening the valves 314a and 315a and keeping the valves 325a and 332a in the closed position, the weakly adsorbed flushing fluid from an external source passes through the pump 3 3 1 via line 3 3 0 and leaves the pump 3 3 1 at the second pressure to pass through the manifold D , Lines 3 1 5 and 3 4 0 enter the outlet end of the reactor 301. A mixture containing a weakly adsorbed flushing fluid, unreacted feedstock 'CO, and water is discharged from reactor 301 via line 311, line 314, and manifold C and collected in separator 3 3 5. This mixture may be used as fuel, discharged for use outside the process, or separated in separator 335 to form a weakly adsorbed flushing stream and a water-rich stream 336. A portion of this weakly-adsorbed flushing fluid may be transported via line 334 into storage tank 333 for future use. Upon request, by opening the valve 3 3 2 a, the weakly adsorbed flushing fluid-27- (please read the precautions on the back before filling this page) -packing. The size of the paper is applicable to China National Standard (CNS) A4 specifications ( 210X297 mm) 83.3.10,000 Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs ^ 06056 at ___B7__ V. Invention Description (26) May be input to pump 3 3 1 via pipelines 3 3 2 and 3 3 0 for subsequent The method is used cyclically. Reactor 301 then undergoes the stage of flush II step, in which reactor 301 is flushed countercurrently by a CO-rich fluid containing no hydrogen and co2. After opening valves 314a and 315a and keeping valves 325a and 332a in the closed position, a CO-rich flushing fluid from an external source passes pump 330 through line 330 and leaves pump 331 at a second pressure to pass through manifold D 'line 315 and Line 340 enters the outlet end of the reactor 301. A mixture comprising a weakly adsorbed flushing fluid, water, and a CO-rich flushing fluid is discharged from reactor 3 0 1 through line 3 1 1, line 3 1 4 and manifold C and collected in separator 3 3 5. This mixture may be used as fuel or discharged for use outside this method. The final step of the process cycle includes a single sequence of pressurization steps in which the reactor 301 is countercurrently flowed from the first to the first reactor cycle by a CO-rich flushing fluid or a high purity CO product stream 318 The two pressures are pressurized to the first pressure. In particular, after opening valve 315a and holding valves 311a, 313a, 314a, 325a, and 332a in the closed position, the CO-rich flushing fluid passes pump 330 through line 330 and leaves pump 331 at a second pressure to pass through the manifold D. Lines 315 and 340 enter the exit end of the reactor 301. This step ends when the reactor 301 reaches the first pressure. Following the above steps listed in Table 1, the method performs an additional cycle. Although these sequence stages are described as being of equal length, they are not necessary or necessary. The setting of time depends on the allowable maximum gas flow rate, the size of the valve and the pipeline, and the size of the valve. (Please read the precautions on the back before filling in this 萸 >). The paper size applies the Chinese National Standard (CNS) A4. Specifications (210X297 mm) 83.3.1, 〇〇〇 printed by the Consumers Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 406056 V. Description of invention (27) The nature of the adsorbent. Interactive procedures may be used to establish each cycle step For example, other techniques known in the industry, such as reactor effluent composition analysis, may be used to determine the end point of a particular step. Several variations of the general embodiment may be tested to meet the specific requirements of each plant. Yes, for example, the CO-rich stream of manifold E can be separated at separator 317 to form a stream 501 containing substantially pure CO stream 318 and a CO depleted stream. Stream 501 can be introduced into a traditional polymeric film 502 to form a hydrogen-rich exhaust gas stream 503 and a hydrogen-depleted carbon dioxide-rich recycle stream that can be recycled into the SMR reactor 204 5 0 4 _ Alternatively, each reaction may use a weak adsorption flushing fluid at the first pressure to perform an additional counter-current flushing step between the adsorption reaction step and the decompression step to discharge a mixture containing unreacted raw materials, CO and water. Recirculated as feed to these SER reactors via manifold B, pump 3 0 6 and line 3 6 2. Also, additional CO 2 may be added to the water depleted heated reformed gas stream 209 before the SER cycle is performed to balance Stoichiometry of C 0 2 and hydrogen in the conversion reaction. Another specific embodiment of the applicant's method is illustrated in FIG. 9, which illustrates a method flow diagram describing a steam methane reformer 604, a conversion reactor 802 , Hydrogen PSA unit 806, compressor 808, condenser 6 0 6, 6 10 and 8 0 4, dryer 6 12, feed heater 6 1 6 'SER reactor 6 0 1 and 6 0 2; many control valves ; Manifolds A to E; Pumps 731 and 760; Separator 717 and 735; and Regulating Vessel 614 and -29- (Please read the precautions on the back before filling out this page) This paper size applies Chinese National Standard (CNS) A4 Specifications (210X297 mm) 83.3 .10,000 A7 B7 Printed by the Shell Standard Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the Invention (28) 733. Referring to Figure 9, a hydrocarbon feedstock such as methane or natural gas is used in a container (not shown). Adsorbent desulfurization. The desulfurized hydrocarbon feedstock is mixed with steam to form a hybrid reformer feedstock represented by stream 603. The feedstock 603 is preheated in a preheater (not shown) and is introduced into the SMR reformer 604 within. This reformer is well known in the industry and is heated by burning a mixture of fuel and air (not shown). The reformer typically operates at a temperature of 800 ° to 100 ° C and a pressure of 5 to 30 atmospheres and produces a dry weight of approximately 73% hydrogen, 13% CO, 9% C. Recombination gas consisting of 2 and 5% methane. The reformed gas is sent to condenser 606 via line 605 where the temperature of the gas is reduced to 200 ° to 500 ° C. This gas is split into a first stream flowing through line 801 and a second stream flowing through condenser 6 10. The cooled recombined gas flows through a conversion reactor 802 through a line 801 where CO and water are converted into hydrogen. The hydrogen-rich stream 803 leaving the conversion reactor is cooled in a condenser 804 to 30 ° to 120 ° C, in which a large amount of water is removed by condensation. The water depleted hydrogen-rich stream 805 is sent to a hydrogen PSA 806 to produce a high purity hydrogen stream 807 and a waste stream. This second stream entering the condenser 610 is cooled to ambient temperature, and water is removed by condensation. The gas flows through line 611 to dryer 612, where the effluent is dried through a bed of water adsorbent. These dryer units are widely known in the industry and can be operated in thermal or pressure increase and decrease modes. This substantially dry gas is conveyed into the conditioning vessel 6 14 via line 6 13, where the fluid is conveyed through line 615 into heater 616 to form a water depleted heated reformed gas stream and is introduced into manifold A. The rest of Figure 9 shows the SER method, of which -30- (please read the note on the back ^ before filling this page) -pack- * 11- This paper size applies to China National Standard (CNS) A4 (210X297 mm) 83. 3.10,000 406056 A7 B7 Printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (29) Water-exhausted heated recombined gas will be subjected to a conversion reaction in a plurality of reactors operating in circulation to recombine The CO 2 and hydrogen in it are converted into CO and water through a reverse water gas conversion reaction and a CO-rich product is recovered. The manifold A is in communication with the branch line input pipes 711 and 721, and the branch line input pipes 711 and 721 are connected to the input ends of the reactors 601 and 602. Lines 711 and 721 are equipped with valves 711a and 721a, respectively. The opening of a suitable valve allows the compressed, water-depleted, heated recombined gas stream to pass through manifold A into a reactor that is selected to be placed in the flow path at the outset. Therefore, by opening the valve 71a and closing the valve 721a, the recombined gas can flow from the manifold A to the reactor 6 01 through the line 7 1 1. The outputs of the reactors 6 0 and 6 0 2 are connected to lines 7 4 0 and 750, respectively, which are each equipped with control valves 716a and 726a »Lines 740 and 750 are operatively connected to manifold E via lines 716 and 726 The CO-rich stream is discharged from reactors 601 and 602 via lines 716 and 726 and can be collected in separator 717. The separator 717 can be composed of any conventional separation system including a CO-VSA unit or a conventional distillation system. The high purity CO product can be collected via line 718, and the CO depleted stream 7 19 is compressed at compressor or blower 808 and combined with line 805 is introduced into hydrogen PSA 806. Therefore, by opening the appropriate valve 716a or 7 2 6 a, the C 0 rich mixture flows from the corresponding reactor into manifold E through lines 7 4 0 and 716 or lines 750 and 726 into the separator 717 Inside. Reactors 601 and 602 are operatively connected to lines 711 and 721, which communicate with the flow channels of lines 7 1 3 and 7 2 3, respectively. .Pipelines 7 1 3 and 7 2 3 are installed separately -31-—.1 —— Order IIIIIIII ^ (Please read the note ^^ on the back before filling this page) This paper size applies to China National Standard (CNS) A4 specifications ( 210X297 mm) 83.3.10,000 Printed by the Central Procurement Bureau of the Ministry of Economic Affairs, Consumer Cooperatives, printed 406056 b; V. Description of the invention (30) There are control valves 713a and 723a, these lines communicate with the manifold b channel. The manifold B can communicate with the flow channels of the reactors 601 and 602 through the lines 7 and 723 when the valves 7 1 a or 7 2 3 a are opened respectively. Manifold b also communicates with the flow channel of pump 7 60 connected to line 7 6 2, which line 7 6 2 is combined with stream 6 1 1. Manifold C communicates with reactors 601 and 602 via lines 714 and 724, which are equipped with valves 714a and 724a, respectively. The regenerated effluent from reactors 601 and 602 flows into manifold C via lines 714 and 724 for separation by separator 735 into a water-rich product stream 736 and a stream 734 containing weakly adsorbed flushing fluid, which stream 734 can be Into the storage tank 7 3 3 for later use. Manifold D is connected to a pump 731, which receives various program fluids via lines 730 and 732. These process fluids are pressurized via line 7 30 or 7 3 2 and via pump 731. The pressurized fluid may pass through manifold D, which is in communication with reactors 601 and 602 flow channels via lines 715 and 725, respectively. Lines 7 15 and 7 2 5 are equipped with valves 7 15a and 725a, respectively, so that the flow from manifold D into reactors 601 and 602 can be controlled. Moreover, the weakly adsorbed flushing fluid can be operated to open the valve 7 3 2 a via line 732 or by inputting the weakly adsorbed flushing fluid via line 730 to the operation of the SER cycle of several embodiments shown in FIG. 9. It will be interpreted in an arbitrarily selected cycle with eight cycles of ten minutes each as shown in Table 2. Although not limited to this, the SER method shown in FIG. 9 uses reactors 601 and 602, which operate in a cycle in accordance with a predetermined timing sequence -32- _ 83.3.10,000 This paper size applies the Chinese National Standard (CNS) A4 specification (hOXW7 (Mm) 1 — — — — — 装 — — ^ Order (please read the notes on the back before filling this page) A7 B7 V. Description of the invention (31). Other arrangements may use fewer or more reactors and associated gas manifolds and on-off valves, optionally with interrupted or discontinuous (using idling) operation of the pump. Other arrangements may use more than two reactors by appropriate sequencing of individual steps or stages of the process cycle. — II Order I — ^ (Please read the notes on the back before filling out this page) Printed by the Consumers' Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs -33-83. 3.10,000 This paper size applies the Chinese National Standard (CNS) A4 specification ( (210X297 mm) A7406056 B7 clearly states that the printing of the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs printed 3303000303033 s < ΙΙ_υυοου3ουου3υυ? I_UU00U3UU03UU Sil ουοοοοοουυυυυυ__οοουυ 0υ 0υουου

震義U033U00U00UUUU 'mMM¥a υουυυυουυοοουυ mmm uooouuouuooouu 證義 30300U0U0UU0UU 謂義U03UU30UU0UU0U (請先聞讀背面之注意事項再填寫本頁) 裝. 09-05 〇 寸,οε οε_ο(Ν 031 οι-ο § 震義 I義匿義 02-06 _呂 06-000? 11¾¾ 08·0Α Μ <^s: 0S9 i OSS Md < 震 4 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3.10,000 經濟部中央標準局員工消費合作社印策 406056 a? _B7 __五、發明説明(33 ) 依照圖9的另一具體實施例,每一個反應器601和 602皆進行四個階段的反應/吸附步驟,被稱爲吸附反應 步驟,解壓步驟的階段,沖洗I步驟的階段,沖洗II步驟 的階段,和加壓步驟的階段。如表2所示,每一個反應器 601和602在啓始時所採取的步驟皆緩慢進行以使得二個 反應器至少其中一個在整個方法循環階段都能夠進行該吸 附反應步驟。圖9所描述本發明的操作主要地包括下列的 步驟序列:在實施下列步驟時,第一壓力範圍爲從2到50 大氣壓,而第二壓力範圍爲從0.05到2大氣壓。 (a)吸附反應--該水耗竭的受熱重組氣(原料)在第一 預定壓力通過含有一種轉化催化劑和吸附劑的摻和劑之反 應器,該吸附劑對水有優先選擇性,於其中一種富含CO 的物流從反應器被排出。水被該吸附劑選擇性地吸附,而 且反應器裡形成一個反應物質傳遞區(RMTZ),當更多的 原料通過該反應器時該傳遞區朝向反應器的出口或排放端 移動。該RMTZ前緣的吸附劑實質上沒有被吸附的水而該 R Μ T Z後緣的吸附劑則是依局部條件與水達成平衡。該吸 附反應步驟一直繼續直到反應器裡的吸附劑實質上被水飽 和。換句話說,一旦吸附RMTZ已經到達反應器流出物端 或消失時吸附反應步驟即結束。該富含CO的物流從反應 器被排出。 (b )解壓--藉由排出包含未反應的原料、CO和水的一 種混合物該反應器被逆流地解壓到第二預定壓力。該解壓 步驟繼續到反應器到達第二預定壓力。 -35 - ----------裝------訂------^ (請先聞讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) 83.3.10,000 406056 經濟部中央橾隼局員工消費合作社印裝 五、發明説明(34) (C)沖洗I--該反應器在第二壓力被使用一種弱吸附沖 洗流體逆流地沖洗以自該吸附劑將水去吸附,而且一種包 含該弱吸附沖洗流體、未反應的原料、部分C0和部分水 的混合物自該反應器被排出。 (d )沖洗11 --該反應器在第二壓力被使用一種不含 C02和氫而富含C0的沖洗流體逆流地沖洗以去吸附該弱 吸附沖洗流體,而且一種包含該弱吸附沖洗流體、C0和 水的混合物自該反應器被排出。 (e)加壓--在開始另一循環之前反應器被以富含C0的 沖洗流體從第二壓力逆流地加壓到第一壓力。 在上述的操作循環階段那些閥的位置也被列在表2。 指示n 〇 __顯示一指定的閥爲開著的而"C "代表一指定的閥 爲關著的。在一個完整的方法循環階段反應器601內進行 的操作序列步驟將會於下文被無遺漏地描述其細節以使連 續程序的操作得以被完全了解。依照表2的相同步驟序列 在反應器6 0 2裡以緩慢的序列進行。 再一次,參照圖9揭示的具體實施例和在表2指定的 序列階段和閥位置,反應器601進行了吸附反應步驟的四 個序列階段。儲存在儲存槽614中的原料於加熱器616被 預熱,然後藉由打開閥71 la和716a而關閉閥713a、 714a和715a而被導入反應器601,藉此允許原料流過歧 管A,管線7 1 1而進入反應器6 0 1,該反應器6 0 1含有一 種被需要的轉化催化劑和水選擇性吸附劑的摻和劑。 該吸附反應繼續直到反應器60 1實質上被吸附的水加 -36- --------—多 (請先閲讀背面之注意事項再填寫本頁) Γ 卜 本紙浪尺度適用中國國家標準(CNS ) A4規格(210Χ297公釐) 83.3.10,000 40605^ A7 B7 經濟部中夬標準局員工消費合作社印製 五、發明説明(35) 以飽和。水被選擇性地吸附到該吸附劑之上而且反應物質 傳遞區(RMTZ)在反應器301裡面形成,該傳遞區隨著更 多原料通過而朝向反應器601的排放端移動。當MTZ到 達反應器流出端或在某預設定點消失的時候,該吸附反應 即完成。 一種富含CO的物流經由管線740和716離開反應器 601的排放端而且流入歧管E以供收集於分離器717之 內。可選擇性地,分離器7 1 7裡的混合物能被例如壓力增 減吸附、眞空增減吸附、熱增減吸附或蒸餾或冷凝的傳統 技術分離以形成一種物流,該物流包含經由管線718被從 分離器717排出之實質上純粹的CO而該混合物殘餘的成 分經由管線7 1 9被排出。 該方法進行一種解壓步驟的階段,於其中反應器601 藉由自反應器601的輸入端排出包含未反應的原料、CO 和水的混合物而被逆流地解壓到第二預定壓力。閥713a 被打開而閥711a和714a被關閉以允許混合物經過管線 711和713進入歧管B而且與泵760流道相通。該混合物 離開泵76〇的排放端經過管線762以供使用當做燃料(未 顯示)或再循環進入管線611以當做後續方法循環的原 料。該解壓步驟繼續直到反應器到達第二預定壓力。 然後反應器601接受沖洗I步驟的階段。反應器601 在第二壓力被用弱吸附沖洗流體逆流地沖洗。在打開閥 7Ma和7l5a而保持閥725a和732a在關閉位置之後,來 自外部來源的弱吸附沖洗流體經由管線7 3 0通過泵7 3 1而 -37- I-I n .^裝 I I I I 訂 I I I —-^ (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS > A4規格(210X297公釐) 83.3.10,000 經濟部中央標準局員工消費合作社印製 A7 __4〇6Q56 _B7__ 五、發明说明(36) 在第二壓力離開泵73丨以經由歧管D、管線715和管線 740進入反應器601的出口端。一種包含弱吸附沖洗流 體、未反應的原料' C Ο和水的混合物從反應器6 0 1經由 管線711、管線714和歧管C被排出並且收集在分離器 7 3 5。該混合物可能被用當做燃料,被排放以供本方法以 外使用或在分離器735裡被分離以形成一種弱吸附沖洗流 體的物流和一種富含水的物流7 3 6。該弱吸附沖洗流體的 一部分可能被輸送經由管線734進入儲存槽733中以供未 來使用。應要求時經由打開閥732a,該弱吸附沖洗流體 可能經由管線7 3 2和7 3 0被輸入泵7 3 1以供後續的方法循 環使用。 然後反應器601接受沖洗II步驟的階段,於其中反應 器601被一種不含氫和C02而富含CO的流體逆流地沖 洗。在打開閥714a和715a而保持閥725a和732a在關閉 位置之後,來自外部來源的富含CO的沖洗流體經由管線 730通過泵731而在第二壓力離開泵731以經由歧管D、 管線715和管線740進入反應器601的出口端。一種包含 弱吸附沖洗流體、水、和富含C Ο的沖洗流體的混合物從 反應器601經由管線711、管線714和歧管C被排出並且 收集在分離器7 3 5。該混合物可能被用當做燃料或被排放 以供本方法以外使用。 該方法循環的最後步驟包括一種單一序列的加壓步 驟,於其中反應器601被一種富含CO的沖洗流體或高純 度的CO產品物流718在反應器裡開始另一方法循環之前 -38- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83.3.10,000 ----------装------1T------4 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局貝工消費合作社印裝 A7406056_b7__ 五、發明説明(37) 逆流地自第二壓力加壓到第一壓力。特定而言,在打開閥 715a 而保持閥 7"a,713a,7 14a, 725a 和 732a 在關 閉位置之後,該富含CO的沖洗流體經由管線730通過泵 731而在第二壓力離開泵731以經由歧管D、管線715和 管線740進入反應器601的出口端。當反應器601到達第 一壓力之後本步驟即結束。 依照列於表2的上述步驟本方法進行著額外的循環。 儘管該些序列階段被描述爲等長,其並非必要或必需。時 間的設定取決於可允許最大氣體流率、閥和管線大小和所 使用吸附劑的性質。交互的程序可能被使用以建立毎一種 循環步驟的期間。舉例來說,例如反應器流出物成分分析 的業界熟知的其他技術可能被用以決定某一特別步驟的終 點。 或者,每個反應可能在第一壓力用一種弱吸附沖洗流 體在吸附反應步驟和解壓步驟之間進行額外的逆流沖洗步 驟而排出一種包含未反應的原料、CO和水的混合物,該 混合物能被當做進料經由歧管B、泵760和管線762再循 環到該些SER反應器》 適當的蒸汽甲烷重組反應催化劑包括傳統蒸汽甲烷重 組和預重組催化劑,例如鎳-氧化鋁、鎳-鎂氧化鋁和貴金 屬催化劑。 供在反應器或S E R循環進行逆轉化反應的適當水煤氣 轉化催化劑包括傳統的轉化催化劑,例如鐵-鉻高溫轉化 催化劑、銅-鋅氧化物低溫轉化催化劑和銅/鋅氧化物中溫 -39- n k装 I 訂 I (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3.10,000 經濟部中央樣準局員工消費合作社印製 406056 A7 _B7_五、發明説明(38 ) 轉化催化劑。 適用於整合性SER方法反應器的水吸附劑在反應條件 下必需具有活性,其意謂該吸附劑對於該較可吸附的產品 必須保有它的容量和選擇性。其次,該吸附劑必須爲化學 地中性而且不能當做逆水煤氣轉化反應的催化劑。 弱吸附流體一詞爲一種能夠在方法的操作階段取代被 吸附劑吸附了的產品之流體,而且該流體能被較不吸附的 產品去吸附使得後續的方法循環能夠在每個反應器內進 行。熟於此項技藝的人士能容易地選擇適用於所申請發明 的一種弱吸附流體或一種其混合物。 本發明的一般和另一具體實施例能使用傳統的硬體設 備而被操作。舉例來說,適當的反應器包括能夠承受實施 某種特別平衡控制方法的反應條件的任何容器,例如殼管 式反應器。而且,在方法中被列舉的該些分離器能由熟於 此項技藝的人士根據考慮到例如將被分離的特別混合物、 被分離流體的體積等等而被容易地選擇。 下列的實施例被提供以進一步舉例說明供用於生產 CO之申請人的方法。該些實施例是說明性的並且無意被 用以限制本案的申請專利範圍。 實驗部分 下列的實施例被提供以舉例說明申請人所申請之一種 生產CO的方法,該方法整合一種傳統的SMR方法和一種 SER循環以將存在於SMR重組氣中的C02經由逆水煤氣 -40 - 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83. 3.10,000 n.n n n I n I f — n n n ^ 111111 (請先聞讀背面之注意事項再填寫本頁) 406C56 at B7 經濟部中夬標準局員工消費合作社印製 五、發明説明(39) 轉化反應轉化成C0。 圖1到圖7描述了選定方法的質量平衡計算。來自芬 蘭 Outokumpu Research Oy 的"HSC Chemistry for Windows"套裝軟體被用以進行蒸汽甲烷重組器流 出物成分的熱力學平衡計算。所有其他的計算皆是化學工 程業界裡熟於此項技藝人士的常識。該些計算中使用了下 列的假設: (a )重組產品成分取決於在定溫定壓下重組器產品的 平衡轉化; (b )該蒸汽甲烷重組器操作於8 5 0 °C和2 5大氣壓; (c) 重組器的進料包含25莫爾/分鐘的CH4和75莫爾 /分鐘的H2〇 ; (d) 當考慮到輸入C02(圖5、圖8)的時候,一種額外 的60莫爾/小時的C02進料物流被加入重組器或吸附增強 反應器中; (e) 該CO-VSA方法在85%—氧化碳回收率下生產實 質上純粹的CO產品(99.5%); (f) 該H2-PSA方法在85%氫回收率下生產實質上純 粹的氫產品(9 9 . 9 % ); (g) 在吸附增強反應器方法中C02到CO的轉化是 8〇%(即是,進料到反應器的C02有80%以CO產品自反 應器被排出); (h) 圖6和圖8裡的薄膜分離器排放3 0 %的進料氫、 6 7%的進料二氧化碳,和97%的進料一氧化碳和甲烷, -41 - (請先閱讀背面之注^^項再填寫本頁) -裝· -5 本紙張尺度適用中國國家裸準(CNS ) A4規格(210X297公釐) 83.3.10,000 A7 B7Zhenyi U033U00U00UUUU 'mMM ¥ a υουυυυυυυοοουυ mmm uooouuouuuooouu Proof 30300U0U0UU0UU Predicate U03UU30UUUUU0UU (please read the notes on the back first and then fill out this page) Packing. 09-05 〇οο, ε义 密 义 02-06 _ 吕 06-000? 11¾¾ 08 · 0Α Μ < ^ s: 0S9 i OSS Md < Zhen 4 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 83. 3.10 10,000, the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs, 406056 a? _B7 __ V. Description of the Invention (33) According to another specific embodiment of FIG. 9, each of the reactors 601 and 602 performs a four-stage reaction / The adsorption step is called the adsorption reaction step, the stage of the decompression step, the stage of the washing step I, the stage of the washing step II, and the stage of the pressurizing step. As shown in Table 2, each of the reactors 601 and 602 is started The steps taken at this time are performed slowly so that at least one of the two reactors can carry out the adsorption reaction step throughout the process cycle. The operation of the present invention described in FIG. 9 mainly includes the following steps Column: When the following steps are performed, the first pressure range is from 2 to 50 atmospheres, and the second pressure range is from 0.05 to 2 atmospheres. (A) Adsorption reaction-the water-depleted heated reformed gas (raw material) A predetermined pressure is passed through a reactor containing a conversion catalyst and an admixture of an adsorbent, the adsorbent has a preferential selectivity to water, and a CO-rich stream is discharged from the reactor. The water is selectively selected by the adsorbent. Ground adsorption, and a reaction material transfer zone (RMTZ) is formed in the reactor. As more raw materials pass through the reactor, the transfer zone moves toward the outlet or discharge end of the reactor. The adsorbent at the leading edge of the RMTZ is substantially free of The adsorbed water and the adsorbent at the rear edge of the R M TZ reach equilibrium with water according to local conditions. The adsorption reaction step continues until the adsorbent in the reactor is substantially saturated with water. In other words, once RMTZ is adsorbed The adsorption reaction step ends when the effluent end of the reactor has been reached or disappeared. The CO-rich stream is discharged from the reactor. (B) Decompression-By discharging the unreacted raw material, C A mixture of O and water The reactor is decompressed countercurrently to a second predetermined pressure. The decompression step continues until the reactor reaches a second predetermined pressure. -35----------- 装 ---- --Order ------ ^ (Please read the notes on the back before filling out this page) This paper size applies to China National Standard (CNS) A4 (210X297mm) 83.3.10,000 406056 Central Ministry of Economic Affairs Printed by the Consumer Cooperative of the Bureau of the People's Republic of China. 5. Description of the invention (34) (C) Flushing I-The reactor is flushed countercurrently with a weak adsorption flushing fluid at a second pressure to desorb water from the adsorbent, and a A mixture containing the weakly adsorbed flushing fluid, unreacted raw materials, part of CO and part of water is discharged from the reactor. (d) Flushing 11-the reactor is flushed countercurrently at a second pressure with a flushing fluid rich in C0 that does not contain CO 2 and hydrogen to desorb the weakly adsorbed flushing fluid, and a weakly adsorbed flushing fluid containing the weakly adsorbed flushing fluid, A mixture of CO and water is discharged from the reactor. (e) Pressurization-the reactor is pressurized countercurrently from the second pressure to the first pressure with a CO-rich flushing fluid before starting another cycle. The positions of those valves in the above-mentioned operating cycle stages are also listed in Table 2. The indication n 〇 __ shows that a specified valve is open and " C " indicates that a specified valve is closed. The sequence of operations performed in a complete process cycle stage reactor 601 will be described below in detail without omissions so that the operation of the continuous process can be fully understood. The same sequence of steps according to Table 2 was performed in reactor 602 in a slow sequence. Once again, referring to the specific embodiment disclosed in FIG. 9 and the sequence stages and valve positions specified in Table 2, the reactor 601 has performed four sequence stages of the adsorption reaction step. The raw material stored in the storage tank 614 is preheated by the heater 616, and then is introduced into the reactor 601 by opening the valves 71a and 716a and closing the valves 713a, 714a, and 715a, thereby allowing the raw material to flow through the manifold A, Line 7 1 1 enters reactor 6 0 1, which contains a required admixture of a conversion catalyst and a water-selective adsorbent. The adsorption reaction continues until the reactor 60 1 is substantially adsorbed with water plus -36 ------------- (please read the precautions on the back before filling this page) Γ The scale of this paper is applicable to China Standard (CNS) A4 specification (210 × 297 mm) 83.3.10,000 40605 ^ A7 B7 Printed by the Consumers' Cooperatives of the China Standards Bureau of the Ministry of Economic Affairs 5. The invention description (35) is saturated. Water is selectively adsorbed onto the adsorbent and a reaction material transfer zone (RMTZ) is formed inside the reactor 301, which transfer zone moves toward the discharge end of the reactor 601 as more raw materials pass through. When the MTZ reaches the outflow end of the reactor or disappears at a preset point, the adsorption reaction is complete. A CO-rich stream leaves the discharge end of reactor 601 via lines 740 and 716 and flows into manifold E for collection within separator 717. Alternatively, the mixture in the separator 7 1 7 can be separated by conventional techniques such as pressure increase or decrease adsorption, air increase or decrease adsorption, heat increase or decrease adsorption, or distillation or condensation to form a stream, which is contained via line 718. The substantially pure CO discharged from the separator 717 and the remaining components of the mixture are discharged via the line 7 1 9. The method performs a stage of a decompression step in which the reactor 601 is decompressed countercurrently to a second predetermined pressure by discharging a mixture containing unreacted raw materials, CO, and water from an input of the reactor 601. Valve 713a is opened and valves 711a and 714a are closed to allow the mixture to enter manifold B through lines 711 and 713 and communicate with the flow path of pump 760. The mixture exits the discharge end of the pump 76 and passes through line 762 for use as fuel (not shown) or is recycled into line 611 as a raw material for subsequent process circulation. This decompression step continues until the reactor reaches a second predetermined pressure. The reactor 601 then undergoes the stage of the flushing step I. The reactor 601 is flushed countercurrently with a weakly adsorbed flushing fluid at a second pressure. After opening the valves 7Ma and 7l5a and keeping the valves 725a and 732a in the closed position, the weakly adsorbed flushing fluid from an external source passes the pump 7 3 1 through line 7 3 0 and -37-II n. 装 装 IIII IIIIII —- ^ (Please read the notes on the back before filling this page) This paper size applies to Chinese national standards (CNS > A4 size (210X297 mm) 83.3.10,000 Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A7 __4〇6Q56 _B7__ 5 Explanation of the invention (36) Leaving the pump 73 at the second pressure to enter the outlet end of the reactor 601 via the manifold D, the line 715 and the line 740. A weakly adsorbed flushing fluid, unreacted raw material 'C 0 and water The mixture is discharged from reactor 601 via line 711, line 714, and manifold C and collected in separator 7 3 5. This mixture may be used as fuel, discharged for use outside of this method, or in separator 735 Separated to form a weakly adsorbed flushing fluid stream and a water-rich stream 7 3 6. A portion of the weakly adsorbed flushing fluid may be transported via line 734 into storage tank 733 for future use By opening the valve 732a upon request, the weakly adsorbed flushing fluid may be fed into the pump 7 31 via lines 7 3 2 and 7 3 0 for subsequent method recycling. The reactor 601 then undergoes the stage of the flushing II step, at Wherein reactor 601 is flushed countercurrently by a CO-rich fluid that does not contain hydrogen and CO 2. After opening valves 714a and 715a and keeping valves 725a and 732a in the closed position, a CO-rich flushing fluid from an external source passes through the line 730 passes through pump 731 and exits pump 731 at a second pressure to enter the outlet end of reactor 601 via manifold D, line 715, and line 740. A mixture comprising a weakly adsorbed flushing fluid, water, and a flushing fluid rich in CO. It is discharged from reactor 601 via line 711, line 714, and manifold C and collected in separator 7 35. The mixture may be used as fuel or discharged for use outside the process. The final step of the process cycle includes a A single sequence of pressurization steps in which reactor 601 is flushed with a CO-rich flushing fluid or a high purity CO product stream 718 before the reactor begins another method cycle -38- Paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) 83.3.10,000 ---------- installation ----- 1T ------ 4 (Please read the Note for refilling this page) Printed by the Central Standards Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, A7406056_b7__ V. Description of the invention (37) Pressurize from the second pressure to the first pressure countercurrently. In particular, after valve 715a is opened and valves 7 " a, 713a, 7 14a, 725a, and 732a are in the closed position, the CO-rich flushing fluid passes pump 731 via line 730 and leaves pump 731 at a second pressure to Enter the outlet end of the reactor 601 via manifold D, line 715 and line 740. This step ends when the reactor 601 reaches the first pressure. Following the above steps listed in Table 2, the method performs an additional cycle. Although these sequence stages are described as being of equal length, they are not necessary or necessary. The time setting depends on the maximum allowable gas flow rate, the size of the valves and lines, and the nature of the sorbent used. Interactive procedures may be used to establish a period of cyclic steps. For example, other techniques well known in the industry, such as the analysis of the composition of reactor effluents, may be used to determine the end point of a particular step. Alternatively, each reaction may use a weak adsorption flushing fluid at the first pressure to perform an additional countercurrent flushing step between the adsorption reaction step and the decompression step to discharge a mixture containing unreacted raw materials, CO and water. Recycled as feed to these SER reactors via manifold B, pump 760 and line 762. Suitable steam methane reforming catalysts include traditional steam methane reforming and pre-reforming catalysts such as nickel-alumina, nickel-magnesium alumina And precious metal catalysts. Suitable water gas conversion catalysts for reverse conversion reactions in the reactor or SER cycle include traditional conversion catalysts such as iron-chromium high temperature conversion catalysts, copper-zinc oxide low temperature conversion catalysts, and copper / zinc oxide medium temperature -39-nk devices. I order I (Please read the notes on the back before filling this page) This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 83. 3.10,000 Printed by the Consumer Cooperatives of the Central Sample Bureau of the Ministry of Economic Affairs 406056 A7 _B7_ V. Description of the invention (38) Conversion catalyst. A water adsorbent suitable for an integrated SER process reactor must be active under the reaction conditions, which means that the adsorbent must retain its capacity and selectivity for the more adsorbable product. Secondly, the adsorbent must be chemically neutral and cannot be used as a catalyst for the reverse water gas conversion reaction. The term weakly adsorbed fluid is a fluid that can replace the product adsorbed by the adsorbent during the operation phase of the method, and the fluid can be desorbed by the less adsorbed product, allowing subsequent process cycles to be performed in each reactor. Those skilled in the art can easily select a weakly adsorbed fluid or a mixture thereof suitable for the claimed invention. The general and another specific embodiments of the present invention can be operated using conventional hardware equipment. For example, a suitable reactor includes any vessel capable of withstanding the reaction conditions under which a particular equilibrium control method is implemented, such as a shell and tube reactor. Moreover, the separators enumerated in the method can be easily selected by those skilled in the art in consideration of, for example, the particular mixture to be separated, the volume of the separated fluid, and the like. The following examples are provided to further illustrate the method for applicants for producing CO. These examples are illustrative and are not intended to be used to limit the scope of patent application in this case. In the experimental part, the following examples are provided to illustrate a method for producing CO applied by the applicant, which integrates a conventional SMR method and a SER cycle to pass CO 2 present in the SMR reformed gas through backwater gas -40- This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) 83. 3.10,000 nn nn I n I f — nnn ^ 111111 (Please read the notes on the back before filling this page) 406C56 at B7 Economy Printed by the Consumers' Cooperative of the Ministry of Standards and Standards of the People's Republic of China 5. Description of Invention (39) The conversion reaction is converted to C0. Figures 1 to 7 describe the mass balance calculations for the selected method. The "HSC Chemistry for Windows" software package from Finland Outokumpu Research Oy was used to calculate the thermodynamic equilibrium of the composition of the effluent from the steam methane reformer. All other calculations are common knowledge for those skilled in the chemical engineering industry. The following assumptions were used in these calculations: (a) the composition of the recombined product depends on the equilibrium conversion of the recombiner product at a constant temperature and pressure; (b) the steam methane recombiner operates at 850 ° C and 25 atmospheres (C) the feed to the reformer contains 25 mol / min CH4 and 75 mol / min H2O; (d) when considering input C02 (Figure 5, Figure 8), an additional 60 mol Hrs / hour of the CO2 feed stream is added to the reformer or adsorption enhancement reactor; (e) The CO-VSA process produces substantially pure CO products (99.5%) at 85% —carbon oxide recovery; (f ) The H2-PSA method produces a substantially pure hydrogen product at 95% hydrogen recovery (99.9%); (g) the conversion of CO2 to CO in the adsorption enhanced reactor method is 80% (i.e. 80% of the CO2 fed to the reactor is discharged from the reactor as CO products); (h) The membrane separator in Figure 6 and Figure 8 emits 30% of the feed hydrogen and 67% of the carbon dioxide feed , And 97% of the input carbon monoxide and methane, -41-(Please read the note ^^ on the back before filling out this page) -Packing · -5 This paper size applies to China National Naked Standard (CNS) A4 specifications ( 210X297 mm) 83.3.10,000 A7 B7

4Q6Q5B 五、發明説明(40 ) 其中排放參數被定義爲離開薄膜單元的重組氣(或高壓力) 物流中某特定成分的量對該成分於薄膜單元進料物流中的 量之比;和 (i)在該些轉化反應器裡的一氧化碳轉化率是80%。 實施例1 CO-SER方法與CO生產方法的整合 表3包含描述於圖5、圖6和圖8生產一氧化碳的一些 方法計畫之質量平衡資料。該表提供了被生產的一氧化碳 產品的總莫爾數、進料到SMR反應器之每莫爾新甲烷所 生產一氧化碳的莫爾數(CO/CH4)和進料到SMR反應器 之所有成分的總莫爾數(其正比於重組器所需的管子數及 重組器的熱量)。 表3 * 爲生產CO之整合性SERP-SMR方法計書的比較性能 -42- 紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閲讀背面之注意事項再填寫本页) -裝· 經濟部中央標準局員工消費合作杜印製 CO產品的淨量 (莫爾) 進料到SMR的 總量(莫爾) (CO/CH4) 圖5 SMR + CO-VSA 10.3 100.0 0.41 圖5 SMR + CO-VSA 有輸入的C02當作SMR» 31.9 160.0 1.28 圖6 SMR + CO-VSA 有來自CO-VSA再循環的 CO2/CH4 當作 SMR^料 20.0 153.3 0.80 圖8 SMR + SERP +CO-VSA 15.7 100.0 0.63 圖8 SMR+SERP +CO-VSA 有輸入的C〇2當作SERP進料 46.2 100.0 1.85 _8 SMR+SERP +CO-VSA 有來自CO-VS A廢氣的再循環 C02/CH4當作SMR進料 22.8 厂 154.4 0.91 * SMR進料:25莫爾CH4 + 75莫爾η2〇(基準例) 83. 3.10,000 經濟部中央標準局負工消費合作社印製 406056 Α7 Β7 五、發明説明(41 ) 由一個蒸汽甲烷重組器和接著的一個CO-VSA單元 分離一氧化碳(圖5)所組成的基準例系統的資料顯示每 100莫爾/分鐘的重組器進料能生產10.3莫爾/分鐘的 CO,而且CO/CH4比是0.41。申請人的方法由蒸汽甲院 重組、C02和H2轉化成CO的吸附增強反應和一個CO-VSA單元的一氧化碳分離所組成(申請專利範圍第1項的 一個具體實施例被說明於圖8),其達到每100莫爾/分鐘 的重組器進料能生產15.7莫爾/分鐘的CO,而且 CO/CH4比是0.63 ^因此,將SER循環添加到SMR方法 在相同的SMR進料率下產生了料想不到的較先前技藝方 法增加5 2%CO生產的結果。4Q6Q5B V. Description of the invention (40) where the emission parameter is defined as the ratio of the amount of a specific component in the recombined gas (or high pressure) stream leaving the membrane unit to the amount of the component in the membrane unit feed stream; and (i ) The carbon monoxide conversion in these conversion reactors is 80%. Example 1 Integration of the CO-SER method with the CO production method Table 3 contains mass balance data for some of the method plans for carbon monoxide production described in Figures 5, 6, and 8. The table provides the total number of moles of carbon monoxide produced, the number of moles of carbon monoxide produced per mole of new methane fed to the SMR reactor (CO / CH4), and the total number of all ingredients fed to the SMR reactor. Total Moire number (which is proportional to the number of tubes and heat of the reformer). Table 3 * Comparative performance of the integrated SERP-SMR method book for the production of CO -42- The paper size applies the Chinese National Standard (CNS) Α4 specification (210 × 297 mm) (Please read the precautions on the back before filling this page) -Equipped with the cooperation of employees of the Central Bureau of Standards of the Ministry of Economic Affairs, the net amount of CO products printed by Moore (Moore) Total amount fed to SMR (Moore) (CO / CH4) Figure 5 SMR + CO-VSA 10.3 100.0 0.41 Figure 5 SMR + CO-VSA with input C02 as SMR »31.9 160.0 1.28 Figure 6 SMR + CO-VSA with CO2 / CH4 from CO-VSA recycling as SMR ^ 20.0 153.3 0.80 Figure 8 SMR + SERP + CO -VSA 15.7 100.0 0.63 Figure 8 SMR + SERP + CO-VSA with input C02 as SERP feed 46.2 100.0 1.85 _8 SMR + SERP + CO-VSA with CO-VS A exhaust gas recirculation C02 / CH4 when For SMR feed 22.8 Plant 154.4 0.91 * SMR feed: 25 Mohr CH4 + 75 Moore η2〇 (benchmark example) 83. 3.10,000 Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 406056 Α7 Β7 V. Description of the invention (41) A reference example system consisting of a steam methane reformer and a subsequent CO-VSA unit to separate carbon monoxide (Figure 5) The data show that the reformer feed per 100 mol / min can produce CO of 10.3 mol / min, and the CO / CH4 ratio is 0.41. Applicant's method consists of steam restructuring, adsorption enhancement reaction of CO2 and H2 into CO, and carbon monoxide separation of a CO-VSA unit (a specific example of the first item in the scope of the patent application is illustrated in Figure 8), It achieves 15.7 mol / min of CO per 100 mol / min of recombiner feed, and the CO / CH4 ratio is 0.63 ^ Therefore, adding the SER cycle to the SMR process produces a feed at the same SMR feed Unexpected results of an increase of 5 2% CO production compared to previous techniques.

熟於蒸汽甲烷重組的人士將會了解把二氧化碳加入蒸 汽甲烷重組器的進料能增加CO生產。由一個有著額外輸 入的C02進料之蒸汽甲烷重組器和接著的一個CO-VSA 單元分離一氧化碳(圖5 )所組成的基準例系統的資料顯示 每160莫爾/分鐘的重組器進料(100莫爾/分鐘的甲烷/蒸 汽混合物加上60莫爾/分鐘的二氧化碳)能生產31.9莫爾 /分鐘的CO,而且CO/CH4比是1.28。申請人的新方法 由蒸汽甲烷重組、由經乾燥的重組氣物流加上一種純粹的 二氧化碳的摻和劑進料經過吸附增強反應將C 0 2和Η 2轉 化成CO和一個CO-VSA單元的一氧化碳分離所組成(申 請專利範圍第5項的一個具體實施例被說明於圖8),其達 到每100莫爾/分鐘的重組器進料能生產46. 2莫爾/分鐘 的一氧化碳,而且CO/CH4比是1.85。因此,將SER循 -43 - 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 83. 3.10,000 -----ρ-------裝-- (請先閲讀背面之注$項再填寫本頁) 、π 4, 經濟部中央標準局貝工消費合作社印製 A7406056_B7_五、發明説明(42) 環添加到現有的SMR方法在62%的先前技藝方法進料率 下產生了較先前技藝方法實質上增加45 % CO生產的結 果。換句話說,就某總重組器進料率(甲烷+蒸汽+二氧化 碳),使用申請人所申請的方法可以提高CO生產132 %。 在相同的重組器進料率下,申請人的方法生產的CO比由 一個蒸汽甲烷重組器和接著的一個CO-VSA單元分離一 氧化碳(圖5)所組成的基準例生產的CO多4.48倍。 如果輸入的二氧化碳無法獲得,熟於蒸汽甲烷重組的 人士將會了解能夠從該分離系統回收一種富含二氧化碳的 物流。該物流能夠被再循環到蒸汽甲烷重組器的進料以增 加該方法的CO生產率。由一個有著額外富含C02的再循 環物流進料之蒸汽甲烷重組器和接著的一個CO-VSA單 元分離一氧化碳而且自CO耗竭的物流形成該富含C02的 再循環物流(圖6)所組成的系統的資料顯示每153.3莫爾 /分鐘的重組器進料(100莫爾/分鐘的甲烷/蒸汽混合物 加上53.3莫爾/分鐘的富含C02的物流)能生產20.0莫爾 /分鐘的CO,而且CO/CH4比是0.80。 申請人申請的方法由一個有著富含C02的再循環物流 的額外進料之蒸汽甲烷重組器、經過一種SER循環將經乾 燥的重組氣中的C02和H2轉化成CO和接著的一個CO- VSA單元分離一氧化碳而且自CO耗竭的物流形成該富含 C 0 2的再循環物流所組成(申請專利範圍第4項的一個具 體實施例被說明於圖8),其達到每100莫爾/分鐘的重組 器進料能生產22.8莫爾/分鐘的一氧化碳,而且(:0/(:114 -44 - I i 111I ^ (請先閲讀背面之注意Ϋ項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 83.3.10,000 經濟部中央標準局員工消費合作社印轚 A7 B7 五、發明説明(43) 比是0 . 9 1。因此,將S E R循環添加到現有的S M R方法在 65 %的先前技藝方法進料率下產生了較先前技藝方法顯著 的增加14 % C0生產的結果。換句話說,就某總重組器進 料率(甲烷+蒸汽+富含C02的再循環物流),使用申請人 所申請的方法可以提高C 0生產7 5 %。在僅高出5 4 %重組 器進料率下,申請人申請的方法生產的C0比由一個蒸汽 甲烷重組器和接著的一個CO-VSA單元分離一氧化碳(圖 5)所組成的基準例生產的C0多2.21倍。 實施例2 CO-SER方法與1^2_生產方法的整合 表4包含生產氫(圖1)和較小量共產品一氧化碳(圖7 和圖9)的一些方法計畫之質量平衡資料。該表提供了被 生產的氫和一氧化碳產品的總莫爾數。 表4 * 爲同時生產C0和H2之整合性SERP-SMR方法計畫的比 _ 較性能 H2產品的淨量 (莫爾) CO產品的淨量 (莫爾) 圖1 smr+h2-psa 66.0 0 圖7 SMR + H2-PSA + CO-VSA 65.2 1.03 圖9 SMR + H2-PSA + SERP + CO-VSA 65.0 「1.56 * SMR進料:25莫爾CH4 + 75莫爾H2〇(基準例)。 由一個蒸汽甲院重組器和接著的一個H2-PSA單元分 -45 - 本紙張尺度適用中國國家標準(CNS ) A4^ ( 21〇X297公釐) 83.3.10,000 (請先閲讀背面之注意事項再填寫本頁) -裝.Those familiar with steam methane reforming will understand that adding carbon dioxide to the feed of a steam methane reformer can increase CO production. Data from a benchmark system consisting of a steam methane reformer with an additional input of C02 feed and a subsequent CO-VSA unit to separate carbon monoxide (Figure 5) shows that the reformer feed (100 Moore / minute of methane / steam mixture plus 60 mole / minute of carbon dioxide) can produce 31.9 Moore / minute of CO, and the CO / CH4 ratio is 1.28. Applicant's new method consists of steam methane recombination, a dry recombination gas stream plus a pure carbon dioxide admixture feed, which undergoes an absorption enhancement reaction to convert C 0 2 and Η 2 into CO and a CO-VSA unit. It is composed of carbon monoxide separation (a specific embodiment of item 5 of the patent application is illustrated in Figure 8), which reaches 46.2 moles / minute of carbon monoxide per 100 moles / minute of reformer feed, and CO The / CH4 ratio is 1.85. Therefore, the SER follows -43-this paper size applies to the Chinese National Standard (CNS) Α4 specification (210 × 297 mm) 83. 3.10,000 ----- ρ ------- install-(Please read first Note the item on the back, please fill in this page), π 4, printed by the Central Standards Bureau of the Ministry of Economic Affairs, Shelley Consumer Cooperative A7406056_B7_V. Description of the invention (42) Ring added to the existing SMR method at 62% of the previous technology method This results in a substantial 45% increase in CO production compared to previous techniques. In other words, for a total reformer feed rate (methane + steam + carbon dioxide), using the method applied by the applicant can increase CO production by 132%. At the same reformer feed rate, the applicant's method produced 4.48 times more CO than the baseline example consisting of a steam methane reformer and a subsequent CO-VSA unit separating carbon monoxide (Figure 5). If the incoming carbon dioxide is not available, those familiar with steam methane reforming will understand the ability to recover a carbon dioxide-rich stream from the separation system. This stream can be recycled to the feed of the steam methane reformer to increase the CO productivity of the process. It consists of a steam methane reformer with an additional CO2-rich recycle stream feed and a subsequent CO-VSA unit to separate carbon monoxide and form the CO2-rich recycle stream from the CO-depleted stream (Figure 6) The system data show that every 153.3 mol / min of reformer feed (100 mol / min of methane / steam mixture plus 53.3 mol / min of CO2-rich stream) can produce 20.0 mol / min of CO, And the CO / CH4 ratio is 0.80. Applicant's method consists of a steam methane reformer with an additional feed of a CO 2 -rich recycle stream, and a SER cycle to convert CO 2 and H 2 in the dried reformed gas to CO and then a CO-VSA The unit separates carbon monoxide and from the CO depleted stream to form the C 0 2 -enriched recycle stream (a specific example of item 4 in the patent application scope is illustrated in Figure 8), which reaches The feed of the reformer can produce 22.8 mol / min of carbon monoxide, and (: 0 / (: 114 -44-I i 111I ^ (Please read the note on the back before filling this page). The paper size applies to Chinese national standards (CNS) A4 specification (210X297 mm) 83.3.10,000 Employees' Cooperative Cooperative A7 B7 of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (43) The ratio is 0.9 1. Therefore, the SER cycle is added to the existing SMR method At a 65% prior art process feed rate, a significant 14% increase in C0 production results over the prior art process. In other words, for a total reformer feed rate (methane + steam + CO2-rich recycle stream) , With the method applied by the applicant, the production of C 0 can be increased by 75%. At a rate of only 54% higher than the reformer feed rate, the method applied by the applicant produces C0 that is produced by a steam methane reformer and a subsequent CO- The VSA unit separated carbon monoxide (Figure 5) and produced a baseline example of 2.21 times more C0. Example 2 Integration of the CO-SER method and 1 ^ 2_ production method Table 4 contains hydrogen production (Figure 1) and a smaller amount of total Mass balance data for some method plans for product carbon monoxide (Figures 7 and 9). This table provides the total moles of hydrogen and carbon monoxide products produced. Table 4 * is an integrated SERP for the simultaneous production of C0 and H2 Comparison of SMR method plan_ Comparison of performance H2 product net (Moore) CO product net (Moore) Figure 1 smr + h2-psa 66.0 0 Figure 7 SMR + H2-PSA + CO-VSA 65.2 1.03 Figure 9 SMR + H2-PSA + SERP + CO-VSA 65.0 "1.56 * SMR feed: 25 Mohr CH4 + 75 Mohr H2〇 (base example). A steam reformer and a subsequent H2-PSA unit Min -45-This paper size applies Chinese National Standard (CNS) A4 ^ (21 × 297mm) 83.3.10,000 (Please read the back first Note to fill out this page) - installed.

.1T 406056 經濟部中央樣準局員工消費合作社印聚 五、發明説明(44) 離氫(圖1)所組成的基準例方法的資料顯示每100莫爾/ 分鐘的重組器進料能生產66.0莫爾/分鐘的H2。熟於蒸 汽甲烷重組的人士將會了解能夠取出一部分重組氣體(被 稱爲支物流),將其冷卻到周圍溫度,然後經由適當的分 離器分離出一氧化碳而獲得小量的共產品一氧化碳* 然後來自分離器的CO耗竭的廢氣能夠再循環到H2-PSA單元以部分回收剩餘的氫。圖7舉例說明這個方法的 一個特定具體實施例。當10 %離開冷凝器114的物流被當 作支物流(經由管線118)通過CO-VSA程序時,每100 莫爾/分鐘的重組器進料能生產1.03莫爾/分鐘的C02而 氫產品物流降至6 5 . 2莫爾/分鐘(低於基準例1 . 2 % )。申 請人申請的方法包含蒸汽甲烷重組、將重組氣分離成二道 物流(其中之一是支物流)、將水自該支物流移除以形成 一種經乾燥的重組氣物流、於一種吸附增強反應方法中反 應該物流以將C02和氫轉化成CO、以一種CO-VSA單元 自該物流回收一氧化碳、最後自該CO-VSA單元再循環 廢氣到Η 2 - P S A單元以部分地回收剩餘的氫(申請專利範 圍第12項的一個具體實施例被說明於圖9),本方法達成 每100莫爾/分鐘的重組器進料(假定支物流由10 %離開冷 凝器606的重組氣物流組成)能生產1.56莫爾/分鐘的一 氧化碳和6 5 . 0莫爾/分鐘的氫(低於基準例1 · 5 % )。因 此,將SER方法添加到現有的方法在相同的支物流流率下 產生了較先前技藝方法增加51 % CO生產而且氫生產率僅 有微量降低(< 2 % )的結果。 -46- (請先閲讀背面之注意事項再填寫本頁) -* 本紙張尺度適用中國國家揉準(CNS ) A4^格(210X297公釐〉 83.3.10,000 406056 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(45 ) 本發明已作了上面的描述,本發明被認爲適當的申請 專利範圍定義如下。 -47- 1 I I —訂— I I n I ^ (請先閲讀背面之注意事項再填寫本頁) 83. 3.10,000 本紙張尺度適用中國國家標準(CNS ) A4規格(2!0X297公釐).1T 406056 Printed by the Consumer Cooperatives of the Central Sample Bureau of the Ministry of Economic Affairs. 5. Description of the invention (44) The standard case method composed of hydrogen (Figure 1) shows that it can produce 66.0 per 100 mol / min of reformer feed. Mohr / min H2. Those familiar with steam methane recombination will understand the ability to take a portion of the recombined gas (known as a branch stream), cool it to ambient temperature, and then separate the carbon monoxide through a suitable separator to obtain a small amount of co-product carbon monoxide * and then come from The CO-depleted exhaust gas of the separator can be recycled to the H2-PSA unit to partially recover the remaining hydrogen. Figure 7 illustrates a specific embodiment of this method. When 10% of the stream leaving condenser 114 is passed through the CO-VSA process as a branch stream (via line 118), every 100 mol / min of reformer feed can produce 1.03 mol / min of CO2 and the hydrogen product stream Reduced to 65.2 Moores / minute (1.2% lower than the baseline example). The method applied by the applicant includes steam methane recombination, separation of the recombined gas into two streams (one of which is a branch stream), removal of water from the branch stream to form a dried recombined gas stream, and an adsorption enhancement reaction The method reacts the stream to convert CO 2 and hydrogen to CO, recovers carbon monoxide from the stream in a CO-VSA unit, and finally recycles the exhaust gas from the CO-VSA unit to the plutonium 2-PSA unit to partially recover the remaining hydrogen ( A specific example of the 12th scope of the patent application is illustrated in Figure 9). This method achieves the performance of the reformer feed per 100 mol / min (assuming that the branch stream is composed of 10% of the reformed gas stream leaving the condenser 606). It produced 1.56 mol / min of carbon monoxide and 65.0 mol / min of hydrogen (1.5% lower than the reference example). Therefore, the addition of the SER method to the existing method at the same tributary flow rate yielded a 51% increase in CO production and a slight decrease in hydrogen productivity (< 2%) over the prior art method. -46- (Please read the notes on the back before filling in this page)-* This paper size is applicable to China National Standard (CNS) A4 ^ (210X297 mm) 83.3.10,000 406056 Printed by the Consumer Standards Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs System A7 B7 V. Description of the invention (45) The present invention has been described above, and the scope of the present invention that is considered to be appropriate for patent application is defined as follows. -47- 1 II — 订 — II n I ^ (Please read the Note: Please fill in this page again.) 83. 3.10,000 This paper size applies the Chinese National Standard (CNS) A4 specification (2! 0X297 mm)

Claims (1)

經濟部中央標準局員工消費合作社印製 A8 4(^4--1¾ (-ο 年 1 月修正) Trrj /U 1.一種生產一氧化碳的方法,其包含下列步驟: (a) 使一種含有甲烷和水的原料在一撰自鎳-氣化鋁、鎖 -MMJh鋁和貴金屬催化劑所組成族群的蒸汽甲烷重 組催化劑的存在下、於溫度範圍從700t到1000°C和 壓力範圍從2到50大氣壓下、進行反應而形成包含 氫、一氧化碳、二氧化碳和未反應原料的一重組氣; (b) 將水從該重組氣移除以形成水耗竭的重組氣而且將 該水耗竭的重組氣加熱到溫度範圍從200°到500°C 以形成水耗竭的受熱重組氣; (c) 將該水耗竭的受熱重組氣導入複數反應器之內,該 些反應器依照下列的步驟以預定的計時序列操作, 該些步驟於每個反應器裡皆被循環進行: (1) 於範圍介於2到50大氣壓的一第一壓力下、於含有 水吸附劑和水煤氣轉化催化劑的一摻和劑的第一個反 應器裡、在足以將二氧化碳和氫轉化成一氧化碳並且 將水吸附在吸附劑上的反應條件下'使該水耗竭的受 熱重組氣進行反應而且排出一種富含CO的物流,其中 該水吸附劑爲選自沸石、氧化鋁或矽膠,而該水煤氣 轉化催化劑爲選自鐵-鉻高溫轉化催彳劑、銅/鋅氬化物 低溫轉化催化劑和銅/鋅氣化物中馏轉化·催化劑所組 成的族群; (2) 藉由排出一種包含未反應的原料、一氧化碳和水的 混合物而將該第一個反應器逆流地解壓到範圍介於 0.05到2大氣懕的一第二壓力; __- 48 -__ 本^張尺度適用中國國家標率(CNS ) A4規格(210X297公釐) ~ ' (請先閲讀背面之注意事項再填寫本頁) *1T 經濟部中央標準局貝工消費合作社印製 A8 B8406056_Stc、申請專利範圍 (3) 在該第二壓力、以對該吸附劑呈弱吸附的一沖洗流 體逆流地沖洗該第一個反應器,而自該吸附劑將水去 吸附且排出一種包含未反應的原料、一氧化碳和水的 混合物,其中該弱吸附沖洗流體爲潠自甲烷、氤、氣 和二氣化碳所組成的族群; (4) 在該第二壓力、以一種不含氫和二氧化碳且富含CO 的沖洗流體逆流地沖洗該第一個反應器而去吸附該弱 吸附沖洗流體並且排出一種包含該弱吸附沖洗流體、 一氧化碳和水的混合物;和 (5) 在該第一個反應器開始另一個方法循環之前、以該 富含CO的沖洗流體將該第一個反應器從該第二壓力 逆流地加壓到第一壓力。 2. 如申請專利範圍第1項的方法,其進一步的包含: (d)藉由壓力增減昉附、寘空增減吸附、熱增減吸附、 蒸餾或冷凝來分離步驟c(l)之富含CO的物流以形成 一包含CO的物流和一 CO耗竭的物流。 3. 如申請專利範圍第1項的方法,其進一步的在步驟 c(l)與步驟c(2)之間包含下列步驟:以一弱吸附沖洗流體在 該第一壓力逆流地沖洗該第一個反應器,而且排出一種包 含未反應的原料、一氧化碳和水的混合物。 4. 如申請專利範圍第2項的方法’其進一步包含將步 ___- 49 :__ 本紙張尺度逋用中國國家標率(CNS ) A4規格(210X297公瘦) (2〇〇〇年1月修正) I I I I ! I I _ '衣 I I I I 訂 (請先閱讀背面之注意事項再填寫本頁) 406056 A8 B8 C8 D8 (2000年1月修正) 申請專利範圍 驟(d)的CO耗竭的物流藉由壓力增減吸附、真空增柯瞄 附、熱增減吸附、蒸餾或冷凝來進行分離,而形成—富含 氫的廢氣物流和一氫耗竭富含二氧化碳的再循環物流,並 且再循環至少一部分的該再循環物流來作爲步驟(a)的原 料。 5.如申請專利範圍第1項的方法,其進一步包含: (d)在進行步驟(c)之前導入一種二氧化碳來源至該水 耗竭的受熱重組氣物流。 6.如申請專利範圍第1項的方法,其中該催化劑和吸 附劑的摻和劑包含5到95重量%的吸附劑和95到5重量% 的催化劑。 7.如申請專利範圍第1項的方法,其中該原料所包含 水和甲烷的量爲水對甲烷的化學計量比介於1.5到30範 圍。 I------策-- (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部中央榡準局員工消費合作社印製 8.—種生產一氧化碳的方法,其包含下列步驟: (a)使一含有甲烷和水的原料在一潠自鎢-氬化鋁、鎮-鐘氧化鋁和貴金屬催化劑所細成旌群的蕊汽甲烷重 組催化劑的存在下、於溫度範圍從70CTC到1000°C和 壓力範圍從2到50大氣壓下、進行反應以形成包含 氫、一氧化碳、二氧化破和未反應原料的一重組氣; W ( CNS ) A4^ ( 21〇x'297;i* ) 406056 8 8 8 8 ABCD (2000年1月修正) 經濟部中央標率局負工消費合作社印裝 六、申請專利範圍 (b) 將該重組氣冷卻到一範圍從200°到500°C的溫度以 形成一被冷卻的重組氣,並且將該被冷卻的重組氣 分成第一物流和第一物流; (c) 使該第一物流在足以形成一種富含氫第一物流的反 應條件下、接觸一水煤氣轉化催化劑,冷卻該富含 氫第一物流以形成一種冷卻的富含氫第一物流,並 且分離該冷卻的富含氫第一物流以形成一種氫產品 物流和一種氫耗竭物流; (d) 將水自該第二物流移除以形成水耗竭的第二物流, 而且將該水耗竭的第二物流加熱到溫度範圍從200° 到500°C以形成水耗竭的受熱第二物流; (e) 將該水耗竭的受熱第二物流導入複數反應器之內, 該些反應器依照下列的步驟以預定的計時序列操 作,該些步驟於每個反應器裡皆被循環進行: (1) 於範圍介於2到50大氣匦的一第一艇力、於含有 水吸附劑和水煤氣轉化催化劑的一摻和劑的第一個 反應器裡、,在足以將二氧化碳和氫轉化成一氧化碳 並且將水吸附在吸附劑上的反應條件下、使該水耗 竭的受熱第二物流進行反應而且排出一種富含CO 的物流,其中該水吸附劑爲潠自沸石、氧化鋁或矽 膠,而該水煤氣轉化催化劑爲選自鐵-鉻高滔轉化催 1劑、銅/鋅氣化物低溫轉化催化劑和銅/鋅氣化物Φ 溫^轉化催化劑所組成的旌群; (2) 藉由排出一包含未反應的原料、一氧化碳和水的 _ _ - 51 - 本紙張尺度適用中國國家揲準(CNS ) A4規格(210X297公釐) ^^^1 n^— I Bn— *nl m 1 T. i . - ' (請先閲讀背面之注^項再填寫本頁) 6 5 侧 8 S 8 8 ABCD (2000年1月修正) 經濟部中央標率局負工消費合作社印裝 申請專利範圍 混合物,而將該第一個反應器逆流地解壓到範圍介 於0.05到2大氣壓的一第二壓力; (3) 在該第二壓力、以一對該吸附劑呈弱吸附的沖洗 流體逆流地沖洗該第一個反應器而自該吸附劑將水 去吸附,而且排出一種包含未反應的原料、一氧化 碳和水的混合物,其中該弱吸附沖洗流體爲撰自甲 烷、氣、氮和二氣化碳所組成的族群; (4) 在該第二壓力、以一不含氫和二氧化碳且富含CO 的沖洗流體逆流地沖洗該第一個反應器以去吸附該 弱吸附沖洗流體,且排出一種包含該弱吸附沖洗流 體、一氧化碳和水的混合物;和 (5) 在第一個反應器開始另一個方法循環之前,以該 富含CO的沖洗流體將該第一個反應器從第二壓力 逆流地加壓到第一壓力;和 (f)分離步驟e(l)之富含CO的物流以形成一包含CO的物 流和一 CO耗竭的物流,壓縮該CO耗竭的物流,而且 在該步驟c之冷卻的富含氫第一物流被分離成一種氫 產品物流和一種氫耗竭的物流之前,將該被壓縮的 CO耗竭的物流與該冷卻的富含氫第一物流合倂。 9.如申請專利範圍第8項的方法,其進一步的在步驟 e(l)與步驟e(2)之間包含下列步驟:在第一壓力、以一弱吸 附沖洗流體逆流地沖洗該第一個反應器,而排出一包含未 反應的原料、一氧化碳和水的混合物。 良紙張尺度適用中國國家梯準(CNS > A4規格(210X297公釐) n ' 1^1 n m n n n » I n n n n an T 5 、-** (請先閱讀背面之注^>項再填寫本頁) 406056 8 8 88 ABCD (2000年1月修正) 六、申請專利範圍 1 0.如申請專利範圍第8項的方法,其中該催化劑和吸 附劑的摻和劑包含5到95重量%的吸附劑和95到5重量% 的催化劑。 1 1.如申g靑專利範圍第8項的方法,其中該原料所包含 水和甲烷的量爲水對甲烷的化學計量比介於i 5至彳3 〇 圍。 HI -1 ^^^1 HI I 1— - I nn —^n n mt I— - I - s -LI (請先閱讀背面之注項再填寫本頁) 經濟部中央標準局員工消費合作社印製 -53 - 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公釐)Printed by the Consumer Standards Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs A8 4 (^ 4--1¾ (as amended in January) Trrj / U 1. A method for producing carbon monoxide, comprising the following steps: (a) Making methane and The raw material for water is in the presence of a steam methane reforming catalyst composed of a group of nickel-gasified aluminum, lock-MMJh aluminum and precious metal catalysts, at a temperature range from 700t to 1000 ° C and a pressure range from 2 to 50 atmospheres React to form a reformed gas containing hydrogen, carbon monoxide, carbon dioxide, and unreacted feedstock; (b) remove water from the reformed gas to form a water-depleted reformed gas and heat the water-depleted reformed gas to a temperature range From 200 ° to 500 ° C to form water-depleted heated reformed gas; (c) introducing the water-depleted heated reformed gas into a plurality of reactors, which are operated in a predetermined timing sequence according to the following steps, the These steps are circulated in each reactor: (1) the first one containing a water adsorbent and a water gas conversion catalyst at a first pressure ranging from 2 to 50 atmospheres; In a reactor, under reaction conditions sufficient to convert carbon dioxide and hydrogen to carbon monoxide and adsorb water on the adsorbent, the water-depleted heated reformed gas is reacted and a CO-rich stream is discharged, wherein the water adsorbent It is selected from the group consisting of zeolite, alumina, or silica gel, and the water gas conversion catalyst is a group selected from the group consisting of iron-chromium high-temperature conversion catalyst, copper / zinc argon low-temperature conversion catalyst, and copper / zinc gas middle-range conversion · catalyst; (2) Decompress the first reactor countercurrently to a second pressure ranging from 0.05 to 2 atmospheres by discharging a mixture containing unreacted raw materials, carbon monoxide and water; __- 48 -__ 本^ Zhang scale is applicable to China National Standards (CNS) A4 specification (210X297 mm) ~ '(Please read the notes on the back before filling this page) * 1T Printed by A8 B8406056_Stc, Application by the Central Standards Bureau of the Ministry of Economic Affairs Patent scope (3) at the second pressure, flush the first reactor countercurrently with a flushing fluid that weakly adsorbs the adsorbent, and desorb water from the adsorbent A mixture containing unreacted raw materials, carbon monoxide and water is discharged, wherein the weakly adsorbed flushing fluid is a group consisting of methane, tritium, gas, and carbon dioxide; (4) at the second pressure, a A flushing fluid containing hydrogen and carbon dioxide and rich in CO flushes the first reactor countercurrently to desorb the weakly adsorbed flushing fluid and discharge a mixture containing the weakly adsorbed flushing fluid, carbon monoxide and water; and (5) in the Before the first reactor begins another method cycle, the first reactor is counter-pressurized from the second pressure to the first pressure with the CO-rich flushing fluid. 2. The method according to item 1 of the patent application scope, further comprising: (d) separating step c (l) by pressure increase or decrease, air increase / decrease adsorption, thermal increase / decrease adsorption, distillation or condensation The CO-rich stream forms a CO-containing stream and a CO-depleted stream. 3. The method of claim 1 in the scope of patent application, further comprising the following steps between steps c (l) and c (2): flushing the first countercurrently with a weakly adsorbed flushing fluid at the first pressure Reactor, and a mixture containing unreacted raw materials, carbon monoxide, and water was discharged. 4. If the method of applying for the second item of the patent scope, which further includes the following steps ___- 49: __ This paper size adopts China National Standards (CNS) A4 specifications (210X297 male thin) (January 2000 (Revision) IIII! II _ 'Ill IIII (Please read the precautions on the back before filling out this page) 406056 A8 B8 C8 D8 (Amended in January 2000) Patent application scope Step (d) CO exhausted logistics by pressure Increase or decrease adsorption, increase vacuum adsorption, increase or decrease thermal adsorption, distillation or condensation to separate to form—a hydrogen-rich exhaust gas stream and a hydrogen-depleted carbon dioxide-rich recycle stream, and recycle at least a portion of the The recycle stream is used as the feed for step (a). 5. The method of claim 1, further comprising: (d) introducing a source of carbon dioxide into the water-depleted heated reformed gas stream before performing step (c). 6. The method according to item 1 of the patent application range, wherein the admixture of the catalyst and the adsorbent comprises 5 to 95% by weight of an adsorbent and 95 to 5% by weight of a catalyst. 7. The method according to item 1 of the patent application range, wherein the amount of water and methane contained in the raw material is a stoichiometric ratio of water to methane ranging from 1.5 to 30. I ------ Strategy-- (Please read the notes on the back before filling out this page) Order printed by the Central Consumers' Bureau of the Ministry of Economic Affairs, Consumer Cooperatives 8.—A method for producing carbon monoxide, which includes the following steps: ( a) Make a raw material containing methane and water in the presence of a core steam methane reforming catalyst formed from a group of tungsten-aluminum argon, town-bell alumina and precious metal catalysts, in a temperature range from 70CTC to 1000 ° C and pressure ranging from 2 to 50 atmospheres to perform a reaction to form a reformed gas containing hydrogen, carbon monoxide, carbon dioxide, and unreacted raw materials; W (CNS) A4 ^ (21〇x'297; i *) 406056 8 8 8 8 ABCD (Amended in January 2000) Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. 6. Patent application scope (b) Cool the recombined gas to a temperature ranging from 200 ° to 500 ° C. Forming a cooled recombined gas, and dividing the cooled recombined gas into a first stream and a first stream; (c) bringing the first stream into contact with a reaction stream under conditions sufficient to form a hydrogen-rich first stream; Water gas conversion catalyst to cool the hydrogen-rich first stream To form a cooled hydrogen-rich first stream, and separate the cooled hydrogen-rich first stream to form a hydrogen product stream and a hydrogen depleted stream; (d) remove water from the second stream to form water The depleted second stream, and the water depleted second stream is heated to a temperature ranging from 200 ° to 500 ° C to form a water depleted heated second stream; (e) introducing the water depleted heated second stream into a plurality of Within the reactor, the reactors are operated in a predetermined timing sequence according to the following steps, which are cyclically performed in each reactor: (1) a first in the range of 2 to 50 atmospheres Boat power, in a first reactor containing a water adsorbent and a blender of water gas conversion catalyst, under reaction conditions sufficient to convert carbon dioxide and hydrogen to carbon monoxide and adsorb water to the adsorbent, The water-depleted heated second stream reacts and discharges a CO-rich stream, where the water adsorbent is rhenium, zeolite, alumina, or silicone, and the water gas conversion catalyst is selected from the group consisting of iron-chromium high flux Catalyst group consisting of catalyst 1, copper / zinc gaseous low-temperature conversion catalyst, and copper / zinc gaseous Φ temperature ^ conversion catalyst; (2) By discharging an unreacted raw material, carbon monoxide and water _ _-51- This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) ^^^ 1 n ^ — I Bn— * nl m 1 T. i.-'(Please read the note ^ on the back before filling in this (Page) 6 5 side 8 S 8 8 ABCD (revised in January 2000) The Central Standards Bureau of the Ministry of Economic Affairs printed a patent-pending mixture for the consumer cooperative, and decompressed the first reactor countercurrently to the range of 0.05. A second pressure to 2 atmospheres; (3) at the second pressure, flushing the first reactor countercurrently with a pair of flushing fluids weakly adsorbing the adsorbent to desorb water from the adsorbent, and A mixture containing unreacted raw materials, carbon monoxide, and water is discharged, wherein the weakly adsorbed flushing fluid is a group composed of methane, gas, nitrogen, and carbon dioxide; (4) at the second pressure, a non- The CO-rich flushing fluid containing hydrogen and carbon dioxide flushes the countercurrently The first reactor to desorb the weakly adsorbed flushing fluid and discharge a mixture containing the weakly adsorbed flushing fluid, carbon monoxide, and water; and (5) before the first reactor begins another method cycle, use the rich The CO-containing flushing fluid counter-pressurizes the first reactor from the second pressure to the first pressure; and (f) separates the CO-rich stream from step e (l) to form a CO-containing stream and a CO depleted stream, the CO depleted stream is compressed, and the compressed CO depleted stream is separated before the cooled hydrogen-rich first stream of step c is separated into a hydrogen product stream and a hydrogen depleted stream. Combined with this cooled hydrogen-rich first stream. 9. The method according to item 8 of the patent application, further comprising the following steps between steps e (l) and e (2): flushing the first countercurrently with a weakly adsorbed flushing fluid at a first pressure Reactor, and a mixture containing unreacted raw materials, carbon monoxide and water is discharged. Good paper size applies to China National Standards (CNS > A4 size (210X297mm) n '1 ^ 1 nmnnn »I nnnn an T 5,-** (Please read the note on the back ^ > before filling out this page ) 406 056 8 8 88 ABCD (Amended in January 2000) 6. Application for patent scope 10. The method as in item 8 of the patent scope, wherein the admixture of catalyst and adsorbent contains 5 to 95% by weight of adsorbent And 95 to 5% by weight of the catalyst. 1 1. The method of claim 8 in the patent scope, wherein the amount of water and methane contained in the feedstock is a stoichiometric ratio of water to methane ranging from i 5 to 彳 3. HI -1 ^^^ 1 HI I 1—-I nn — ^ nn mt I—-I-s -LI (Please read the note on the back before filling this page) -53-This paper size applies to China National Standard (CNS) A4 (210X297 mm)
TW085104200A 1996-04-08 1996-04-10 Integrated steam methane reforming process for producing carbon monoxide TW406056B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/624,148 US6328945B1 (en) 1995-04-10 1996-04-08 Integrated steam methane reforming process for producing carbon monoxide

Publications (1)

Publication Number Publication Date
TW406056B true TW406056B (en) 2000-09-21

Family

ID=24500837

Family Applications (1)

Application Number Title Priority Date Filing Date
TW085104200A TW406056B (en) 1996-04-08 1996-04-10 Integrated steam methane reforming process for producing carbon monoxide

Country Status (1)

Country Link
TW (1) TW406056B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447329B (en) * 2008-09-26 2014-08-01 Univ Ohio State Conversion of carbonaceous fuels into carbon free energy carriers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447329B (en) * 2008-09-26 2014-08-01 Univ Ohio State Conversion of carbonaceous fuels into carbon free energy carriers

Similar Documents

Publication Publication Date Title
US6328945B1 (en) Integrated steam methane reforming process for producing carbon monoxide
US8241400B2 (en) Process for the production of carbon dioxide utilizing a co-purge pressure swing adsorption unit
US8715617B2 (en) Hydrogen production process with low CO2 emissions
EP0157480B1 (en) Process for producing ammonia synthesis gas
US7354562B2 (en) Simultaneous shift-reactive and adsorptive process to produce hydrogen
CA1334888C (en) Process and apparatus for the production of high purity oxygen and carbon dioxide
CA1321711C (en) Hydrogen
US4813980A (en) Recovery of nitrogen, hydrogen and carbon dioxide from hydrocarbon reformate
US8303930B2 (en) Processes for the recovery of high purity hydrogen and high purity carbon dioxide
US5980857A (en) Production of carbon monoxide from syngas
US5000925A (en) Hydrogen and carbon dioxide coproduction apparatus
US20140248205A1 (en) Producing ammonia using ultrapure, high pressure hydrogen
CN113795460A (en) ATR-based hydrogen process and apparatus
KR101717121B1 (en) Co-production of methanol and ammonia
TW406055B (en) Integrated steam methane reforming process for producing carbon monoxide and hydrogen
EP0737647B1 (en) Integrated steam methane reforming process for producing carbon monoxide
CN115916690A (en) ATR-based hydrogen production method and apparatus
EP0411506A2 (en) Production of hydrogen, carbon monoxide and mixtures thereof
US4988490A (en) Adsorptive process for recovering nitrogen from flue gas
EP0742172B1 (en) Integrated steam methane reforming process for producing carbon monoxide and hydrogen
US5202057A (en) Production of ammonia synthesis gas
JPS6197124A (en) Collection of carbon dioxide
TW406056B (en) Integrated steam methane reforming process for producing carbon monoxide
Anand et al. Sorption enhanced reaction process (SERP) for production of hydrogen
KR20240019412A (en) Process for Economic Co-Production of Blue Hydrogen and Acetic Acid Using Switching Reaction System between Sorption Enhanced Steam Methane Reforming and Dry Reforming Process