TW394993B - Method for etching the bottom anti-reflective coating on semiconductor silicon wafer - Google Patents

Method for etching the bottom anti-reflective coating on semiconductor silicon wafer Download PDF

Info

Publication number
TW394993B
TW394993B TW87120493A TW87120493A TW394993B TW 394993 B TW394993 B TW 394993B TW 87120493 A TW87120493 A TW 87120493A TW 87120493 A TW87120493 A TW 87120493A TW 394993 B TW394993 B TW 394993B
Authority
TW
Taiwan
Prior art keywords
layer
etching
photoresist
reflective
bottom layer
Prior art date
Application number
TW87120493A
Other languages
Chinese (zh)
Inventor
Yi-Chun Chang
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW87120493A priority Critical patent/TW394993B/en
Application granted granted Critical
Publication of TW394993B publication Critical patent/TW394993B/en

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

This is a method for etching the bottom anti-reflective coating on semiconductor silicon wafer.The BARC is located between a photoresist and a poly-silicon coating. After partial removal, a pattern is developed on the photoresist layer, which serves to define the BARC and the poly-silicon coating. The dry etching process is accomplished by exposing the wafer to 10-60 sccm oxygen gas (standard cubic centimeter per minute) and 20-80 sccm chlorine gas to completely remove the patterned BARC.

Description

本發明係提供一種蝕刻半導體晶片的方 钮刻半導體晶片之抗反射底層(bottom anti coating)的方法。 法,尤指一種 -reflective 在半導體的製程中,黃光(lithography)和蝕刻 (etj)是兩個非常重要的製程:黃光製程是將光罩(ph〇t〇 曰上的圖案(pattern)歷經曝光顯影之後再轉印到半導 -=片亡的光阻(ph〇t〇_resist),蝕刻製程是將半導體晶 片表面未被光阻所覆蓋區域上的物質,例如矽 =111 con)、一氧化矽等,加以蝕刻去除,然後再將光阻 J如此,半導體晶片上所有的積體電路圖案便得以利 製程 '經由光罩先轉印到光阻,然後再形 土、+導體片之上。因此如何將光罩上的圖案經由黃光 2刻製料確地轉印到半導體曰曰曰[是研究半導體製程 非吊重要的課題。 靖麥閲圖一,圖一為習知無抗反射底層之半導體晶片 10曝光顯影的示意圖。晶片10上塗佈(coating)有光阻 12 ,光罩1 5上的圖案經由光線14的作用轉印到晶片i 〇 上。光阻12上被曝光的區域16會起化學變化,然後區域i6 會和顯影液起化學反應而被去除,留下未曝光的區域丨8在 ^片10形成一特定的圖案。但是在對光阻12進行曝光顯影 叶,大多會有一些非平行光透過光罩丨5,而被半導體晶片 10表面具有光反射性的物質反射,造成光阻12上不應被曝The invention provides a method for etching a semiconductor wafer by etching a semiconductor wafer with a bottom anti-coating method. Method, especially a -reflective In the semiconductor manufacturing process, yellow light (lithography) and etching (etj) are two very important processes: the yellow light process is a pattern (ph0t〇) on the pattern (pattern) After exposure and development, it is transferred to a semiconductor-resistance photoresist (ph〇t〇_resist). The etching process is to remove the substances on the surface of the semiconductor wafer that are not covered by the photoresist, such as silicon = 111 con) , Silicon monoxide, etc., and then removed by etching, and then the photoresist J is so. All integrated circuit patterns on the semiconductor wafer can be processed. The photoresist is first transferred to the photoresist through the photomask, and then the soil and + conductor sheet are formed. Above. Therefore, how to accurately transfer the pattern on the photomask to the semiconductor through the yellow light 2 engraving material is an important issue in the research of semiconductor manufacturing processes. Jingmai read Figure 1. Figure 1 is a schematic diagram of exposure and development of a conventional semiconductor wafer 10 without an anti-reflection underlayer. The wafer 10 is coated with a photoresist 12, and the pattern on the photomask 15 is transferred to the wafer i 0 through the action of light 14. The exposed area 16 on the photoresist 12 will undergo a chemical change, and then the area i6 will be chemically reacted with the developer to be removed, leaving unexposed areas. A specific pattern is formed on the film 10. However, when the photoresist 12 is exposed and developed, most of the non-parallel light passes through the photomask 5 and is reflected by the light-reflective substance on the surface of the semiconductor wafer 10, so that the photoresist 12 should not be exposed.

五、發明說明(2) 光的區域會被這些反射光影響而起化學變化,最後在半導 體晶片1 0上所形成的圖案會與原先光罩上的圖案有所誤 差。這種圖案誤差會隨著半導體製程的縮小(shrinking) 而增大’導致光阻在曝光顯影後的線寬(af terV. Description of the invention (2) The light area will be affected by these reflected light and will change chemically. The pattern formed on the semiconductor wafer 10 will be different from the pattern on the original photomask. This pattern error will increase as the semiconductor process shrinks (shrinking), resulting in the line width of the photoresist after exposure and development (af ter

development inspection critical dimension,簡稱ADI CD)難以控制。 目前’半導體製程已邁入次微米(sub-micr〇n)的世 代,為因應前述問題的缺陷,半導體晶片上塗佈光阻的方 式,也從一般的單層光阻塗佈,逐漸演變成加上抗反射表 層(top anti-reflective coating),乃至於現在加上抗 反射底層的做法。請參閱圖二,圖二為習知有抗反射底層 之半導體晶片10曝光顯影的示意圖。圖二所示,位於光阻 12和晶片10之間的抗反射底層2〇是一種有機光阻,藉由抗 反射底層20特殊的材料特性以及塗佈厚度的調整,抗反射 底層20便會吸收反射光,使得光阻12不受反射光所影響, 僅有應被曝光的區域1 7會起化學反應而被去除,因此使晶 片10上形成的圖案與所需圖案誤差減小。 請參閱圖三及圖四,圖三為習知有抗反射底層的半導 體晶片22於多晶矽閘極製程的示意圖,圖四為圖三所示之 半導體晶片22於使用習知的蝕刻抗反射底層方法後的多晶 矽線剖面(poly-line cross secti〇n)示意圖。半導體晶 片22包含有矽基底(substrate)30、閘氧化層(gatedevelopment inspection critical dimension (referred to as ADI CD) is difficult to control. At present, the semiconductor process has entered the sub-micron generation. In response to the defects of the foregoing problems, the method of coating photoresist on semiconductor wafers has also gradually evolved from ordinary single-layer photoresist coating. Add top anti-reflective coating, and now even add anti-reflective bottom layer. Please refer to FIG. 2. FIG. 2 is a schematic diagram of exposure and development of a conventional semiconductor wafer 10 having an anti-reflection underlayer. As shown in FIG. 2, the antireflection bottom layer 20 located between the photoresist 12 and the wafer 10 is an organic photoresist. With the special material characteristics of the antireflection bottom layer 20 and the adjustment of the coating thickness, the antireflection bottom layer 20 will absorb. The light is reflected so that the photoresist 12 is not affected by the reflected light. Only the areas 17 to be exposed will be removed by a chemical reaction, so that the error between the pattern formed on the wafer 10 and the desired pattern is reduced. Please refer to FIG. 3 and FIG. 4. FIG. 3 is a schematic diagram of a conventional polycrystalline silicon gate semiconductor wafer 22 with an anti-reflection bottom layer. FIG. 4 is a conventional etching method of the anti-reflection bottom layer by using the conventional semiconductor wafer 22 shown in FIG. 3. Schematic diagram of the poly-line cross-section. The semiconductor wafer 22 includes a silicon substrate 30 and a gate oxide layer.

I: \ACC\二維碼\NAU\NAU-09. PTD 第5頁 五、發明說明(3) oxide)32、多晶矽(pi〇y silic〇n)34、抗反射底層2〇以及 光阻1 2 °光線透過光罩將圖案轉印在半導體晶片22上,而 抗反射底層20並未隨著曝光顯影而被去除,因此蚀刻製程 必須先進行蝕刻抗反射底層2〇的步驟,然後再蝕刻多晶矽 34 ’最後停在閘氧化層3 2上。 習知餘刻半導體晶片之抗反射底層的方法中使用的混 合氣體主要為溴化氫(hydrogen bromide, HBr)、氧氣 (oxygen,02)以及氦氣(he 1 ium,He),但是利用這種混合 氣體的蝕刻方法對抗反射底層2 〇與多晶矽3 4的蝕刻選擇比 (etch selectivity)大約只有4左右,也就是說,在這種 银刻條件下,抗反射底層2 0的蝕刻速率大約為多晶矽3 4的 4倍。由於蝕刻時是先對抗反射底層2〇進行主蝕刻(main etch)然後將殘餘的抗反射底層2 〇的清除也就是過蝕刻 (over etch)。然而蝕刻選擇比只有4左右,所以在進行過 钱刻時會對下層的多晶矽34產生蝕刻的效應,造成多晶石夕 34侧邊(side-wall)的傾斜而不平整(smooth),而且當最 後多晶矽34蝕刻完成後,多晶矽34的線寬(after etch inspection critical dimension,簡稱 ΑΕΙ CD)與未蝕刻 前的光阻線寬(ADI CD)的偏差(bias)也會增大。 本發明的主要目的在於提供一種蝕刻半導體晶片之抗 反射底層的方法’本發明能提高抗反射底層2 〇對多晶矽3 4 的钮刻選擇比,使多晶矽側邊較為平整,並且使AD I CD與I: \ ACC \ Two-dimensional code \ NAU \ NAU-09. PTD Page 5 V. Description of the invention (3) oxide) 32, polycrystalline silicon (pi〇y silic〇n) 34, anti-reflection bottom layer 20 and photoresist 1 The 2 ° light passes through the mask to transfer the pattern on the semiconductor wafer 22, and the anti-reflective bottom layer 20 is not removed with the exposure and development. Therefore, the etching process must first perform the step of etching the anti-reflective bottom layer 20, and then etch the polycrystalline silicon. 34 'finally stops on gate oxide layer 32. It is known that the mixed gas used in the method of the anti-reflection bottom layer of the semiconductor wafer is mainly hydrogen bromide (HBr), oxygen (02), and helium (he 1 ium, He). The etching method of the mixed gas etching method has an etch selectivity of only about 4 for the anti-reflective bottom layer 20 and polycrystalline silicon 34, that is, under this silver etch condition, the etching rate of the anti-reflective bottom layer 20 is about polycrystalline silicon. 3 4 times. Because the main anti-reflective bottom layer 20 is subjected to main etch during the etching, and the remaining anti-reflective bottom layer 20 is removed, that is, over etch. However, the etching selection ratio is only about 4, so when the money is engraved, the effect of etching on the lower polycrystalline silicon 34 will be caused, causing the side-wall of the polycrystalline stone 34 to be tilted and not smooth. Finally, after the polysilicon 34 is etched, the bias of the polysilicon 34's line width (after etch inspection critical dimension (AEI CD) for short) and the photoresistance line width (ADI CD) before the etching will increase. The main object of the present invention is to provide a method for etching the anti-reflection bottom layer of a semiconductor wafer. The present invention can improve the button selection ratio of the anti-reflection bottom layer 20 to polycrystalline silicon 3 4, make the polycrystalline silicon side more flat, and make AD I CD and

I:\ACC\二維碼\NAU\NAU-09.PTD 第 6 頁.I: \ ACC \ Two-dimensional code \ NAU \ NAU-09.PTD page 6.

五、發明說明(5) 晶石夕層34。本發明方法是通入1〇至6〇 sccm(standard cubit centimeter per minute)的氧氣以及通入 20 至 80 seem的氣氣的環境下進行抗反射底層2〇的乾蝕刻(dry etch)製程。此外,該乾蝕刻製程的壓力範圍為3至1〇毫米 耗耳(m torr),溫度範圍為5〇至75。(:,上功率(top power)範圍為1〇〇至3〇〇瓦,下功率(bottom power)範圍為 50至2 0 0瓦° 由於上述之乾蝕刻製程中所通入的氣氣會同時對抗反 射底層20及多晶矽34產生蝕刻反應,而且隨著增加通入氧 氣的里,氯氣對多晶梦34的飯刻速率會降低。所以在經過 實驗驗證後,本發明蝕刻抗反射底層2〇時的氯氣和氧氣的 氣體流量可使抗反射底層2〇對多晶矽34的蝕刻選擇比達到 1 0以上。如此利用本發明之方法來提高抗反射底層2〇對多 晶矽34的蝕刻選擇比時,在進行抗反射底層2〇的蝕刻製程 時便不容易蝕刻多晶矽3 4,因此不會造成多晶矽34側邊的 傾斜,使側邊比較平整,並且ΑΕ I CD與ADI CD的偏差也會 縮小。本發明適用在〇. 35em以下,定義抗反射底層以及 多晶矽層的製程。 相較於習知的抗反射底層乾蝕刻的方法,本發明蝕刻 半導體晶片之抗反射底層的方法是通入1〇至6〇 sccm的氧 氣以及通入20至80 seem的氣氣的環境下進行乾蝕刻製 程。在本發明製程條件下’抗反射底層2〇對多晶矽34的蝕V. Description of the invention (5) Spar evening layer 34. In the method of the present invention, a dry etch process of the anti-reflective bottom layer 20 is performed in an environment where oxygen of 10 to 60 sccm (standard cubit centimeter per minute) is passed and gas of 20 to 80 seem is passed. In addition, the pressure of the dry etching process ranges from 3 to 10 mm torr, and the temperature ranges from 50 to 75. (:, The top power range is 100 to 300 watts, and the bottom power range is 50 to 200 watts. Because the gas passed in the dry etching process mentioned above will be simultaneously The anti-reflective bottom layer 20 and the polycrystalline silicon 34 produce an etching reaction, and as the oxygen gas is added, the rate at which the chlorine gas eats the polycrystalline dream 34 will decrease. Therefore, after experimental verification, the present invention etches the anti-reflective bottom layer at 20 o'clock. The flow rate of chlorine gas and oxygen gas can make the etching selection ratio of the antireflection bottom layer 20 to the polycrystalline silicon 34 reach more than 10. In this way, when the method of the present invention is used to improve the etching selection ratio of the antireflection bottom layer 20 to the polycrystalline silicon 34, In the etching process of the anti-reflection bottom layer 20, it is not easy to etch the polycrystalline silicon 34, so the sides of the polycrystalline silicon 34 will not be tilted, the sides will be flat, and the deviation between AE CD and ADI CD will be reduced. The invention is applicable Below 0.35em, define the process of the anti-reflection bottom layer and the polycrystalline silicon layer. Compared with the conventional anti-reflection bottom dry etching method, the method for etching the anti-reflection bottom layer of the semiconductor wafer according to the present invention is Dry-etching process under an oxygen gas into 1〇 to 6〇 sccm, and leads to a 20 to 80 seem of gas gas environment under process conditions of the present invention 'antireflective underlayer of polysilicon 34 is etched 2〇

I:\ACC\二維碼\NAU\NAU-09.PTD 第 8 頁 394993___ 五、發明說明(6) 刻選擇比會大幅增加,蚀刻後多晶石夕侧邊也會較為平整, 同時AEI CD與ADI CD的偏差也會縮小。 以上所述僅為本發明之較佳實施例,凡依本發明申請 專利範圍所做之均等變化與修飾,皆應屬本發明專利之涵 蓋範圍。 'I: \ ACC \ Two-dimensional code \ NAU \ NAU-09.PTD Page 8 394993___ V. Description of the invention (6) The engraving selection ratio will be greatly increased, and the sides of polycrystalline stone will be flat after etching, and AEI CD Deviations from ADI CD will also be reduced. The above description is only a preferred embodiment of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application for the present invention shall fall within the scope of the invention patent. '

第9頁Page 9

I *\ACC\二維碼\NAU\NAU-09· PTDI * \ ACC \ Two-dimensional code \ NAU \ NAU-09 · PTD

Claims (1)

394993 六、申請專利範圍 1· 一種钱刻半導體晶片之抗反射底層(bottom anti-reflective coating)的方法,該抗反射底層係位 於一光阻層及一多晶矽(P 1 〇y s i 1 i con)層之間,該光阻 層係以部分去除的方式形成一圖案(pattern),用來定 義該抗反射底層以及該多晶矽層,該方法包含有下列步 驟: 通入 10 至60 seem (standard cubic centimeter per minute)的氧氣以及通入2 0至80 seem的氣氣的環境下進 行乾蝕刻(dry etch)製程’以完全去除具該圖案的抗反 射底層。 2 ·如申請專利範圍第1項所述之方法,其中該乾蝕刻製程 中’其壓力範圍為3至10毫米托耳(m torr),溫度範圍 為50至75°C ’上功率(top power)範圍為1〇〇至30 0瓦, 下功率(bottom power )範圍為50至200瓦。 3·如申請專利範圍第1項之方法,其中該抗反射底層係由 一有機光阻所構成。 4. ?申請專利範圍第3項之方法,其中該乾蝕刻製程對該 抗反射底層與該多晶矽層的蝕刻選擇比(selectivit 可達到1 0以上》394993 VI. Scope of patent application 1. A method for bottom anti-reflective coating of a semiconductor chip, which is located on a photoresist layer and a polycrystalline silicon (P 1 0ysi 1 i con) layer In between, the photoresist layer is partially removed to form a pattern, which is used to define the anti-reflection bottom layer and the polycrystalline silicon layer. The method includes the following steps: 10 to 60 seem (standard cubic centimeter per minute) of oxygen and a dry etch process under an atmosphere of 20 to 80 seem gas to completely remove the anti-reflective underlayer with the pattern. 2. The method according to item 1 of the scope of patent application, wherein in the dry etching process, 'the pressure range is 3 to 10 millimeter torr (m torr) and the temperature range is 50 to 75 ° C'. ) Ranges from 100 to 300 watts, and bottom power ranges from 50 to 200 watts. 3. The method according to item 1 of the patent application, wherein the anti-reflective bottom layer is composed of an organic photoresist. 4. The method of claim 3 in the patent application range, wherein the dry etching process selects the etching resistance ratio of the anti-reflective bottom layer to the polycrystalline silicon layer (selectivit can reach more than 10 "
TW87120493A 1998-12-10 1998-12-10 Method for etching the bottom anti-reflective coating on semiconductor silicon wafer TW394993B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW87120493A TW394993B (en) 1998-12-10 1998-12-10 Method for etching the bottom anti-reflective coating on semiconductor silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW87120493A TW394993B (en) 1998-12-10 1998-12-10 Method for etching the bottom anti-reflective coating on semiconductor silicon wafer

Publications (1)

Publication Number Publication Date
TW394993B true TW394993B (en) 2000-06-21

Family

ID=21632241

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87120493A TW394993B (en) 1998-12-10 1998-12-10 Method for etching the bottom anti-reflective coating on semiconductor silicon wafer

Country Status (1)

Country Link
TW (1) TW394993B (en)

Similar Documents

Publication Publication Date Title
US7662718B2 (en) Trim process for critical dimension control for integrated circuits
US6514672B2 (en) Dry development process for a bi-layer resist system
TWI380350B (en) Double patterning strategy for contact hole and trench in photolithography
US8435728B2 (en) Method of slimming radiation-sensitive material lines in lithographic applications
US6416933B1 (en) Method to produce small space pattern using plasma polymerization layer
US7786020B1 (en) Method for fabricating nonvolatile memory device
US8338086B2 (en) Method of slimming radiation-sensitive material lines in lithographic applications
JP3003657B2 (en) Method for manufacturing semiconductor device
US6423475B1 (en) Sidewall formation for sidewall patterning of sub 100 nm structures
KR20100134418A (en) Method for forming contact hole using spacer patterning technology
US8048764B2 (en) Dual etch method of defining active area in semiconductor device
JP5224919B2 (en) Manufacturing method of semiconductor device
JP2009239030A (en) Method of manufacturing semiconductor device
JP2003133295A (en) Etching method using photoresist pattern as mask
KR100843899B1 (en) Method for manufacturing of semiconductor device
TW394993B (en) Method for etching the bottom anti-reflective coating on semiconductor silicon wafer
KR100819647B1 (en) Method of Manufacturing Semiconductor Device
US6767690B2 (en) Methods of forming patterns across photoresist and methods of forming radiation-patterning tools
JP2932462B1 (en) Surface patterning method for semiconductor manufacturing
KR100443346B1 (en) Method of forming fine contact hole for semiconductor device
KR20020000351A (en) A method for a fine pattern of a semiconductor device
JP2008159717A (en) Etching method
KR100440776B1 (en) A fabricating method of semiconductor device using ArF photolithography
JPH0513325A (en) Pattern formation method
JP2000114133A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees