TW393684B - Construction of a film on a semiconductor wafer - Google Patents

Construction of a film on a semiconductor wafer Download PDF

Info

Publication number
TW393684B
TW393684B TW87102342A TW87102342A TW393684B TW 393684 B TW393684 B TW 393684B TW 87102342 A TW87102342 A TW 87102342A TW 87102342 A TW87102342 A TW 87102342A TW 393684 B TW393684 B TW 393684B
Authority
TW
Taiwan
Prior art keywords
wafer
material layer
processing chamber
gas
code
Prior art date
Application number
TW87102342A
Other languages
Chinese (zh)
Inventor
Chyi Chern
Michal Danek
Maruin Liao
Roderick C Mosely
Karl Littau
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/810,221 external-priority patent/US6251758B1/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Application granted granted Critical
Publication of TW393684B publication Critical patent/TW393684B/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

The construction of a film on a wafer, which is placed in a processing chamber, may be carried out through the following steps. A layer of material is deposited on the wafer. Next, the layer of material is annealed. Once the annealing is completed, the material may be oxidized. Alternatively, the material may be exposed to a silicon gas once the annealing is completed. The deposition, annealing, and either oxidation or silicon gas exposure may all be carried out in the chamber, without need for removing the wafer from the chamber until all three steps are completed. A semiconductor wafer processing chamber for carrying out such an in-situ construction may include a processing chamber, a showerhead, a wafer support and a RF signal means. The showerhead supplies gases into the processing chamber, while the wafer support supports a wafer in the processing chamber. The RF signal means is coupled to the showerhead and the wafer support for providing a first RF signal to the showerhead and a second RF signal to the wafer support.

Description

A7 B7 經濟部中央標隼局負工消费合作社印裝 五、發明説明(1 ) 相關申請案之對照春者資蚪 本申請案為下述美國專利申請案之部分繼續申請案: 美國專利申請案第08/339,521號,發明名稱為「藉由 化學氣相沈積法沈積之改良氮化鈦薄膜及製造該薄膜之方 法」及申請曰為1994年11月14曰; 美國專利申請案第〇8/498,990號,發明名稱為「薄膜 之偏壓電漿鞀化」及申請曰為1995年7月6曰; 美國專利申請案第08/567,461號,發明名稱為「薄膜 之電漿鞀化」及申請日為1995年12月5日; 美國專利申請案第08/677,185號,發明名稱為「建構 半導體晶圓上之氧化膜的操作室」及申請曰為1996年7月9 a ; 美國專利申請案第08/677,218號,發明名稱為「原位 建構半導體晶圓上的氧化膜」及申請日為1996年7月9曰; 以及 美國專利申請案第08/680,913號,發明名稱為「薄膜 之轟擊」及申請日為1996年7片12曰》 上述各個相關專利皆併入本文中以供參考。 發明昔景 A ·發明頜域 本發明係關於製造積體電路之領域。 J3_ •相關技藝說明 當製造積體電路時,應用於將絕緣材料及導電材料之 薄膜沈積在晶圓上之方法為沈積法。沈積已可經由許多不 (請先閱讀背面之注意事項再4·寫本頁) 、^1 -4- 經濟部中央標準局貝工消費合作社印装A7 B7 Printed by the Central Bureau of Standards, Ministry of Economic Affairs and Consumer Cooperatives. V. Description of the Invention (1) Contrast of related applications. This application is part of the following US patent applications. Continued applications: US Patent Application No. 08 / 339,521, the invention name is "improved titanium nitride film deposited by chemical vapor deposition method and method for manufacturing the same" and the application is November 14, 1994; US Patent Application No. 08 / No. 498,990, the invention name is "Bias Plasma Plasma of Film" and the application is July 6, 1995; U.S. Patent Application No. 08 / 567,461, the invention name is "Plasma Plasma of Film" and application The date is December 5, 1995; US Patent Application No. 08 / 677,185, the invention name is "Operation Room for Constructing Oxide Films on Semiconductor Wafers" and the application is July 9, 1996; US Patent Application No. 08 / 677,218, the invention name is "In-Situ Construction of Oxide Films on Semiconductor Wafers" and the filing date is July 9, 1996; and U.S. Patent Application No. 08 / 680,913, the invention name is "Bombing of Thin Film And the application date is 1996 7 12 said "each of the above patents are incorporated herein by reference. Inventions of the Invention A. Inventive Jaw Field The present invention relates to the field of manufacturing integrated circuits. J3_ • Description of related techniques When manufacturing integrated circuits, the method used to deposit thin films of insulating and conductive materials on wafers is the deposition method. The deposition can be printed by many people (please read the precautions on the back before writing this page), ^ 1

A 7 ---—__ ___B7___五、發明説明(2) 同之已知方法進行,例如化學氣相沈積法(“CVD”)及物 理氣相沈積法(“PVD”或“錢錄 在CVD方法中’晶圓係裝載至化學氣相沈積室中。傳 統之CVD方法係供應反應氣體至晶圓表面上,於該處進 行熱引發之化學反應而在待加工之晶圓表片上形成薄膜層 。一種特別之CVD應用為由包含金屬有機化合物之反應 '氟體,在晶圓上沈積含鈦化合物,.例如^匕鈦。一種此類 之化合物為具有下述結構式之四(二烷基胺基)鈦(Ti(NR2)4): R R\ / R N R (請先閲讀背面之注意事項再填寫本頁) N — Ti — N: / i \ R N R / \ R R 其中R每次出現皆獨立地為例如丨_5個碳原子的烷基。例如 ,一般係使用四(二甲基胺基)鈦(TDMAT),其化學式為 Ti(N(CH3)2)4。 載體氣體,例如氦、氬、氮或氫氣,攜帶化合物至反 應室’因此可利用能量擴散。在熱CVD的例子中,能量 可經由一加熱源產生,或在電漿促進之cVD的例子中, 能量可由射頻(“rf”)信號源產生。使能量化之化學蒸氣 與晶圓表面反應而在晶圓上形成材料薄膜。當利用tdmat 化學蒸氣時’係在晶圓上沈積氮化鈦膜。 在賤錢方法中’晶圓係放置在物理氣相沈積(“ PVD ”)處理室中,並使處理室充滿氣體,例如氬氣。藉由在 本紙張尺度逋用中國國家標準(CNS〉A4規格(210X297公釐) 經濟部中央橾準局負工消費合作杜印袈 A7 --- ~~-____B7_ 五、發明説明(3^ ' --- 反應至中產生電場,由氣體產生包含帶正電之離子的電装 1帶正電之離子加速並碰撞裝設在處理室中的目標材料。 錯此由目標分離目標材料之原子並沈積在晶圓上而在晶圓 表面上形成目標材料層。 在習知濺鍍方法中,帶正電之離子對目標材料之轟擊 可藉由對目標材料提供負電偏壓來增進,其可藉由對支撐 目標材料之電極提供射頻來達成 分離之rf信號可電感地耦合至反應以於高密度電漿 PVD處理室中產生帶正電的離子。高密度電漿PVD處琿室 可包含另一個耦合至晶圓支座的“信號以改良目標材料對 晶圓的吸引力。 沈積處理室,例如CVD處理室或PVD處理室,可用於 在積體電路中沈積擴散阻障層。擴散阻障層抑制接觸窗金 屬擴散至建構在矽基材上之半導層裝置的主動區,其防止 接觸窗金屬交互擴散至基材中,該接觸窗金屬例如鋁及銅 。不同於材料之絕緣層,擴散阻障層形成電流可流通之導 電通路。例如擴散阻障層可應用於覆蓋在位於接觸孔之矽 基材上。 當積體電路加熱至超過450°C時,接觸窗金屬及矽基 材間可開始進行劇烈的内擴散。若容許發生内擴散,則接 觸點金屬滲入矽基材中。此可造成積體電路中的開路接觸 點並使積體電路有缺陷。 在製造積體電路時’已增加使用在超過45(TC下之高 溫下之鋁及銅的金屬化製程操作。因此,需要具有擴散層 ^紙張尺度逋用中國國家橾準(CNS ) A4規格(210X 297公釐) ---------(裝-- (請先閲讀背面之注項再4·寫本頁) 訂- -6- A7 B7 經濟部中央標準局貝工消费合作衽印製 五、發明説明(4) ’該擴散層具有較大之抑制接觸窗金屬擴散的能力,該接 觸窗金屬例如鋁及銅。 傳統上’已使擴散層增厚以符合前述需求。然而,在 積體電路之製造上已採用較小的幾何形狀。較小之幾何形 狀減小接觸孔之尺寸’藉此使擴散層能理想地更薄及更保 形。 第1圖說明位於矽基材101之導電區域105及接點窗插 塞102之間的擴散阻障層1〇〇〇接觸孔1〇3係形成.在例如二 氧化矽之材料104的絕緣層中,該絕緣層覆蓋在基材1〇1上 。理想地形成擴散阻障層100以使該阻障層薄及大致上符 合接觸孔103表面的輪廓。 若擴散阻障層100為薄且高度保形,接觸窗金屬1〇2能 夠充分地與矽基材之導電區域105形成導電電阻性接觸。 如第2圖所示’若擴散層1〇〇太厚或低劣地形成’其可防止 接觸窗金屬102與基材區域1〇5形成充分地導電電阻式接觸 〇 於第2圖中’低劣地形成的擴散阻障層1〇〇嚴重地縮小 接觸孔103之開口。狹窄之開口導致接觸窗金屬1〇2形成, 以致使接觸窗金屬無法到達接觸孔1〇3之底部。結果,形 成孔洞106。 為了確保接觸窗金屬102及基材區域105之間良好的電 阻式接觸’理想上係使擴散阻障層100之電阻降至最低。 ‘一般而言’可接受之電阻率值為1,000以或更低。已 成功地應用於作為擴散阻障層之材料為氮化鈦(TiN)。 ---------1 裝-- (請先閲讀背面之注意事項再4·寫本頁) 訂 本紙張尺度適用中國國家標準(CNS ) M規格(21〇x297公董 -7- 五、發明説明(5 ) A7 B7 ㈣’在Μ沈積㈣中’例如利用tdmat,提供 具有高電阻率之不安定的阻障層。在_Ατ的例子中, 該不安定的阻障層部分係由於顯著比例之沈㈣障層㈣是由礙組成(煙類、碳化物等)。再者,鈦,為-種化學活 性金屬,在膜中可能不完全反應。理想上是利用沈積後處 理來處理此種阻障材料層,以致能使該層之電阻率降低並 安定化。 經濟部中央操準局貝工消費合作社印製 在製造積體電路時,理想上係在同一處理室(“原位 ”)實行製造方法之連續步驟,例如沈積及沈積後處理。 原位操作藉由降低晶圓在製造設備之不同部分間所需轉移 之次數來降低晶圓所暴露之污染物量。原位操作亦導致減 少積體電路製造商必_置及維護之昂責製造設備構件的 數目。 因此,需要建構一種具有增進之抑制接觸窗 能力的高保形薄擴散膜’該接觸窗金屬例如鈦或銅。再者 ’該擴散膜可理想地作為具有料擴散轉層形成良好電 流通路之電阻的擴散阻障層。亦需要能原位地建構此種擴 散阻障層。 發明概述 根據本發明提供-種裝置,以的行具有改良電阻率 之兩保形擴散阻障層的原位L藉由實施本發明之各方 面,可增進擴散層阻礙接觸窗金屬擴散的能力,該接觸窗 金屬例如链或銅。此種擴散阻障層之增進效果不會顯著地 使其厚度或電阻率擴大至超討接受之限制 I 一、裝-- (請先閲讀背面之注意事項再^-寫本頁)A 7 ---—__ ___B7___ V. Description of the invention (2) Performed by the same known methods, such as chemical vapor deposition ("CVD") and physical vapor deposition ("PVD" or "money recorded in CVD") In the method, the wafer is loaded into a chemical vapor deposition chamber. The traditional CVD method is to supply a reaction gas to the surface of the wafer and perform a thermally-induced chemical reaction there to form a thin film layer on the wafer surface to be processed. A special application of CVD is to deposit a titanium-containing compound, such as ^ titanium, on a wafer from a reactive 'fluoride containing a metal organic compound. One such compound is tetrakis (dialkyl) having the following structural formula Amine) Titanium (Ti (NR2) 4): RR \ / RNR (Please read the notes on the back before filling in this page) N — Ti — N: / i \ RNR / \ RR where R appears independently each time it appears It is, for example, an alkyl group of 5 carbon atoms. For example, tetra (dimethylamino) titanium (TDMAT) is generally used, and its chemical formula is Ti (N (CH3) 2) 4. Carrier gas, such as helium, argon , Nitrogen, or hydrogen, which carry the compound to the reaction chamber 'so energy diffusion can be used. In the example of thermal CVD, It can be generated by a heating source, or in the case of plasma-assisted cVD, energy can be generated by a radio frequency ("rf") signal source. The energetic chemical vapor reacts with the wafer surface to form a thin film of material on the wafer. When tdmat chemical vapor is used, the system is to deposit a titanium nitride film on the wafer. In the cheap method, the wafer system is placed in a physical vapor deposition ("PVD") processing chamber and the processing chamber is filled with a gas, such as Argon. By adopting the Chinese national standard (CNS> A4 size (210X297 mm) on this paper scale) Du Yin 袈 A7 --- ~~~ ____ B7_ 3 ^ '--- An electric field is generated during the reaction, and the gas containing positively charged ions is generated by the gas. 1 The positively charged ions accelerate and collide with the target material installed in the processing chamber. Atoms are deposited on the wafer to form a target material layer on the wafer surface. In the conventional sputtering method, the bombardment of the target material by positively charged ions can be enhanced by providing a negative electrical bias to the target material, which Can be countered The electrode of the target material provides radio frequency to achieve separation. The rf signal can be inductively coupled to the reaction to generate positively charged ions in the high-density plasma PVD processing chamber. The high-density plasma PVD chamber can contain another coupling to the crystal. The "signal of the circular support to improve the attractiveness of the target material to the wafer. Deposition processing chambers, such as CVD processing chambers or PVD processing chambers, can be used to deposit diffusion barriers in integrated circuits. Diffusion barriers suppress contact windows The metal diffuses into the active area of the semiconducting layer device built on the silicon substrate, which prevents the interactive diffusion of contact window metals, such as aluminum and copper, into the substrate. Unlike the insulating layer of the material, the diffusion barrier layer forms a conductive path through which current can flow. For example, a diffusion barrier layer can be applied to cover a silicon substrate located in a contact hole. When the integrated circuit is heated to more than 450 ° C, intense internal diffusion between the contact window metal and the silicon substrate can begin. If internal diffusion is allowed, the contact metal penetrates into the silicon substrate. This can cause open contact points in the integrated circuit and make the integrated circuit defective. In the manufacture of integrated circuits, the metallization process operation using aluminum and copper at high temperatures exceeding 45 ° C has been increased. Therefore, it is necessary to have a diffusion layer ^ paper size using China National Standard (CNS) A4 specifications ( 210X 297 mm) --------- (install-(please read the note on the back before writing this page 4) order--6-A7 B7 Shellfish consumer cooperation of the Central Standards Bureau of the Ministry of Economic Affairs 衽Printing 5. Description of the invention (4) 'The diffusion layer has a large ability to suppress the diffusion of the contact window metal, such as aluminum and copper. Traditionally,' the diffusion layer has been thickened to meet the aforementioned requirements. However, Smaller geometries have been used in the fabrication of integrated circuits. Smaller geometries reduce the size of the contact holes', thereby making the diffusion layer ideally thinner and more conformal. Figure 1 illustrates the silicon substrate. A diffusion barrier layer 1000 contact hole 103 is formed between the conductive region 105 of the 101 and the contact window plug 102. In an insulating layer of a material 104 such as silicon dioxide, the insulating layer covers the base Material 101. The diffusion barrier layer 100 is desirably formed so that the barrier layer is thin and substantially conforms to the interface. The contour of the surface of the hole 103. If the diffusion barrier layer 100 is thin and highly conformal, the contact window metal 102 can sufficiently form a conductive resistive contact with the conductive region 105 of the silicon substrate. As shown in FIG. The diffusion layer 100 is too thick or inferiorly formed, which prevents the contact window metal 102 from forming a sufficiently conductive and resistive contact with the substrate region 105. In the second figure, the inferiorly formed diffusion barrier layer 1 is formed. 〇The opening of the contact hole 103 is severely reduced. The narrow opening leads to the formation of the contact window metal 102, so that the contact window metal cannot reach the bottom of the contact hole 103. As a result, a hole 106 is formed. In order to ensure the contact window metal 102 and The good resistive contact between the substrate regions 105 'ideally minimizes the resistance of the diffusion barrier layer 100.' Generally 'acceptable resistivity values are 1,000 or less. Successfully The material used as the diffusion barrier layer is titanium nitride (TiN). --------- 1 Packing-(Please read the precautions on the back before writing this page). Chinese National Standard (CNS) M Specification (21〇297297-7 DESCRIPTION OF THE INVENTION (5) A7 B7 (in the M deposition ㈣), for example, using tdmat to provide a unstable barrier layer with high resistivity. In the example of _Ατ, the unstable barrier layer is due in part to significant The proportion of the barrier layer is composed of barriers (smoke, carbides, etc.). Furthermore, titanium, a chemically active metal, may not fully react in the film. Ideally, this is treated by post-deposition treatment. This kind of barrier material layer can reduce and stabilize the resistivity of this layer. The printed materials produced by the Shellfish Consumer Cooperative of the Central Office of the Ministry of Economic Affairs are ideally tied in the same processing room ("in-situ" ) Carry out successive steps of the manufacturing method, such as deposition and sedimentation post-treatment. In-situ operation reduces the amount of contaminants exposed to a wafer by reducing the number of times the wafer needs to be transferred between different parts of the manufacturing equipment. In-situ operation has also led to a reduction in the number of components of integrated circuit manufacturers that must be installed and maintained. Therefore, there is a need to construct a high-conformity thin diffusion film 'having an improved ability to suppress a contact window, such as a contact metal such as titanium or copper. Furthermore, the diffusion film is ideally used as a diffusion barrier layer having a resistance for forming a good current path through the material diffusion transfer layer. It is also necessary to be able to construct such a diffusion barrier in situ. SUMMARY OF THE INVENTION According to the present invention, there is provided a device having an in-situ L of two conformal diffusion barrier layers with improved resistivity. By implementing aspects of the present invention, the ability of the diffusion layer to impede the diffusion of the contact window metal can be enhanced, The contact window metal is, for example, a chain or copper. The enhancement effect of such a diffusion barrier layer will not significantly increase its thickness or resistivity beyond the acceptable limit. I. Installation-(Please read the precautions on the back before writing ^-this page)

,1T I I HI I- t-i · 本紙張尺度適財關家標率(CNS )八4聽·( 21()><297公|了 8- 經濟部t央橾準局貝工消費合作社印製 A7 B7____ 五、發明説明(6) 可用於實施本發明之實施例的半導體加工裝置,可包 含處理室、噴射頭、晶圓支座,及rf訊號裝置。在本發明 之一實施例中,半導體晶圓處理裝置可進行化學氣相沈積 〇 " 喷射頭係於處理室中用來供應氣體。晶圓支座係於處 理室中供支持晶圓。rf訊號裝置可與喷射頭及晶圓支座二 者輕合來提供第一rf訊號至喷射頭及第二rf訊號至晶圓載 體。另外’ rf訊號裝置可僅耦合以提供rf1fL號至晶圓支座 〇 晶圓支座係藉由支撐臂支撐於處理室中。支撐臂耦合 rf訊號至晶圓支座。支撐臂亦耦合藏置在晶體支座中的熱 電偶至溫度測定裝置以供測量晶圓支座的溫度。熱電偶可 電氣地與rf訊號裝置隔離。 當實施本發明之一方面時,可在晶圓上建構薄膜。首 先,將材料層沈積在晶圓上》該材料可為二元金屬氮化物 MxNy或二元金屬矽氮化物MxSiyNz(其中μ可為鈦Ti、锆 Zr、铪Hf、钽Ta、鉬Mo、鎢取,及其他金屬)。材料之沈 積可藉由各種不同之方法進行,例如化學氣相沈積法及物 理氣相沈積法。 於沈積材料後,可使材料經過電漿靭化以致能降低材 料層之電阻率。電漿轫化可包含將材料暴露至含有離子之 環境中並使材料層電氣偏離而使離子撞擊材料。 再者,鞀化作用可由多個利用不同之氣體連續進行之 初化步琢組成。例如,第-初化步驟可應用氣 混合 本紙張从適用中國國家標準(CNS ) ( 21GX297公釐) (請先聞讀背面之注意事項再填寫本頁) 裝· -9- 經濟部中央梂準局貝工消費合作社印製 、發明説明(7)初化步_ 一合物。接下來之 驟為自材料中去除氫分子來降低電阻率。 之完,化,可氧化材料層。氧化作用增進材料層 r觸由金屬擴散的能力,該接觸窗金屬例如紹。再 魅_化之㈣可暴露之我氣體巾以增進材料之抑制 窗金屬擴散的能力,該接觸窗金屬例如銅。 。。根據本發明,沈積、初化及氧.化或暴露至石夕烧皆可在 單-處理室中進行’在此三操作皆完成之前無需將晶圓移 開處理室。因此,材料之沈積、初化及氧化或暴露至石夕烧 可原位進行。 凰^之簡尊說明: 本發明之進一步細節係藉助於後附圖式來說明,其中 第1圖說明積體電路中的接觸窗插塞,其包含擴散阻 障層。 第2圖說明積體電路中的接觸孔,.其由擴散阻障層所 阻隔。 第3(a)圖說明化學氣相沈積室》 第3(b)圖說明第3(a)圖所示處理室之晶圓支座及支撑 臂。 第4圖說明多處理室之處理裝置。 第5圖說明根據本發明之晶圓處理室的一實施例。 第6圖說明通過第5圖所示之晶圓支座及支撐臂之縱 截面圖。 本紙張尺度逋用中國國家捸準(CNS)A4规格(210x297公康) -10- (請先聞讀背面之注意事項再4·寫本頁) 裝· 訂_, 1T II HI I- ti · This paper standard is suitable for financial and family standards (CNS) 8 4 · (21 () > < 297 Gong | the 8- printed by the Ministry of Economic Affairs and the Central Bureau of Quasi Bureau Shellfish Consumer Cooperative B7____ 5. Description of the invention (6) A semiconductor processing device that can be used to implement the embodiment of the present invention may include a processing chamber, a spray head, a wafer support, and an RF signal device. In one embodiment of the present invention, the semiconductor crystal The round processing device can perform chemical vapor deposition. The spray head is provided in the processing chamber to supply gas. The wafer support is provided in the processing chamber to support the wafer. The RF signal device can be used with the spray head and the wafer support. The two are light to provide the first rf signal to the spray head and the second rf signal to the wafer carrier. In addition, the rf signal device can only be coupled to provide the rf1fL number to the wafer support. The wafer support is supported by a support arm. Supported in the processing chamber. The support arm couples the rf signal to the wafer support. The support arm also couples the thermocouple hidden in the crystal support to the temperature measuring device for measuring the temperature of the wafer support. The thermocouple can be electrically It is isolated from RF signal device. Film can be constructed on the wafer. First, a material layer is deposited on the wafer. The material can be a binary metal nitride MxNy or a binary metal silicon nitride MxSiyNz (where μ can be titanium Ti, zirconium Zr , 铪 Hf, tantalum Ta, molybdenum Mo, tungsten, and other metals). The deposition of materials can be performed by various methods, such as chemical vapor deposition and physical vapor deposition. After depositing the material, it can be made The material is toughened by plasma so as to reduce the resistivity of the material layer. Plasma hardening may include exposing the material to an environment containing ions and electrically deviating the material layer to cause the ions to strike the material. Furthermore, the hardening effect can be multiplied by The composition of the initial step is continuously performed using different gases. For example, the first-step step can be applied by gas mixing. The paper can be applied from the Chinese National Standard (CNS) (21GX297 mm) (Please read the precautions on the back before reading) (Fill in this page) · -9- Printed by the Central Laboratories of the Ministry of Economic Affairs, Shellfish Consumer Cooperatives, Invention Description (7) Initialization step _ One compound. The next step is to remove the hydrogen molecules from the material to reduce the resistivity The end, Oxidizable material layer. Oxidation enhances the ability of the material layer r to diffuse from the metal, such as the metal of the contact window. Re-enchantment can be exposed to our gas towel to enhance the material's ability to inhibit the diffusion of window metal. Contact window metals such as copper ... According to the present invention, deposition, initiation, and oxygenation or exposure to Shixi burn can be performed in a single-processing chamber. No wafer removal is required until all three operations are completed Therefore, the deposition, initiation, and oxidation of the material or exposure to the stone sintering can be performed in situ. Brief description of the description: Further details of the present invention are explained by means of the following drawings, of which FIG. 1 illustrates A contact window plug in an integrated circuit that includes a diffusion barrier layer. Figure 2 illustrates the contact holes in the integrated circuit, which are blocked by a diffusion barrier layer. Figure 3 (a) illustrates a chemical vapor deposition chamber "Figure 3 (b) illustrates a wafer support and a support arm of the processing chamber shown in Figure 3 (a). FIG. 4 illustrates a processing apparatus of a multi-processing chamber. FIG. 5 illustrates an embodiment of a wafer processing chamber according to the present invention. Fig. 6 illustrates a longitudinal sectional view of the wafer holder and the support arm shown in Fig. 5; This paper uses China National Standard (CNS) A4 size (210x297 Gongkang) -10- (Please read the precautions on the back before you write this page) Binding _

Ki A7五、發明説明(8 第7圖說明第6圖所示之支撐臂在支撐臂支撐晶圓支座 處之放大截面圖。 第8圖說明在7圖中沿著線6-.6之部分載面圖。 第9(a)圖說明第6圖所示之支撐臂的俯視圖。 第9(b)圖說明沿第9(a)圖之線7-7的縱截面圖。 第10(a)圖說明第6圖所示之支撐臂内的熱電偶隔離器 的平面圖。 第10(b)圖說明沿第i〇(a)圖之線8-8的縱載面圖。 第11(a)圖說明第6圖所示之rf饋電線隔離器的平面圖 第11(b)圖过明第11(a)圖所不之隔離|§的部分截面正 (請先閱讀背面之注意事項再填寫本頁) •裝· 經濟部中央標準局貝工消費合作社印製 視圖。 第12圖說明第6圖所示之支樓臂的下方扣板之平面圖 第13圖為一截面圖,說明第6圖所示之支撐臂的固定 端上的零件。 第14圖說明位於第6圖所示之支撐臂的rf镇電線的連 接器零件。 第15(a)-15(c)圖說明第5圖所示之匹配網路的實施例 第16圖說明根據本發明之半導體晶圓處理室的另一實 施例 第17圖說明根據本發明之半導體晶圓處理室的另一實 施例 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐〉 ,ιτKi A7 V. Description of the invention (8 Fig. 7 illustrates the enlarged sectional view of the support arm shown in Fig. 6 at the position where the support arm supports the wafer support. Fig. 8 illustrates the 7 in Fig. 7 along line 6-.6. Partial surface view. Figure 9 (a) illustrates a top view of the support arm shown in Figure 6. Figure 9 (b) illustrates a longitudinal cross-sectional view taken along line 7-7 of Figure 9 (a). Figure 10 ( a) A plan view of the thermocouple isolator in the support arm shown in Fig. 6. Fig. 10 (b) shows a longitudinal section view taken along line 8-8 of Fig. 10 (a). Fig. 11 ( a) Figure illustrates the plan view of the rf feeder isolator shown in Figure 6. Figure 11 (b) is too clear. Isolation not shown in Figure 11 (a). (Fill in this page) • Printed view of the Shell and Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. Figure 12 illustrates the plan view of the lower gusset plate of the branch arm shown in Figure 6. Figure 13 is a cross-sectional view illustrating the sixth The parts on the fixed end of the support arm shown in the figure. Figure 14 illustrates the connector parts of the RF cable located on the support arm shown in Figure 6. Figures 15 (a) -15 (c) illustrate Figure 5 Example of Matching Network shown in Figure 16 Fig. 17 shows another embodiment of the semiconductor wafer processing room according to the present invention. Fig. 17 illustrates another embodiment of the semiconductor wafer processing room according to the present invention. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm). 〉, Ιτ

經濟部中央標準局貝Η消費合作杜印IL Α7 Β7 五、發明説明(9) 第18圖說明利用習知沈積法沈積之氮化鈦薄膜的薄片 電阻對時間圖。 第19圖說明利用習知沈積法沈積在矽晶圓上的氮化鈦 薄膜的盧瑟福反向散射光譜。 第20圖說明表I。 第21圖說明表Π。 第22圖說明表]Π。 第23圖說明利用NF3氣流之化學沈積法沈積之氮化鈦 薄膜的盧瑟福反向散射光譜。 第24圖說明根據本發明之氮化鈦薄膜的奥格濺鍍分析 圖。 第25圖說明表IV 〇 第26圖說明根據本發明之另一氮化鈦薄膜的元素的奥 格表面光譜。 第27圖說明第26圖所示之氮化鈦薄膜中各種不同元素 的原子濃度圖。 第28圖說明一對照組氮化鈦薄膜的元素的奥格表面光 譜。 第29圖說明第28圖之對照組氮化鈦薄膜中各種不同元 素的原子濃度圖。 第30圖說明根據本發明之另一氮化鈦薄膜的元素的奥 格表面光譜。 第31圖說明第30圖之對照組氮化鈦薄膜中各種不同元 素的元素濃度圖。 本紙張尺度適用中國闺家棣準(CNS ) A4規格(2ΐ〇χ297公兼) J---------f 裝------訂-------(J. (請先閲讀背面之注意事項再皮寫本頁) -12- 、發明説明(10) 第32圖明說明表v。 第33圖說明根據本發明製造之薄膜的氧吸收。 第34(a)-34(c)圖說明根據本發明製造之薄膜的有機碳 含量的降低。 第35(a)-35(b)圖說明根據本發明形成之薄膜的改良通 路電阻及接觸電阻。 第36圖說明利用不同循環次數.之沈積及電漿處理製造 之薄膜的電阻率。 第37圖說明薄膜電阻率及電壓為電漿處理壓力之函數 圖 第38(a)圖說明轫化時間及頻率對薄膜電阻率之影響 請 先 閱 Λ 之 注 意 事 項 再 裝 訂 經濟部中央標準局貝工消费合作社印装 第38(b)圖說明初化時間對薄膜電阻率之影響的另一 實施例。 第39(a)-39(b)說明藉由連續沈積及轫化氮化鈦層形成 之氮化鈥薄膜的奥格電子頻譜深度變化。 第40圖說明利用習知化學沈積法沈積在矽晶圓上之 1000埃氮化鈦層的X —光繞射照射角掃瞄。 第41圖為根據本發明沈積在矽晶圓上及鞀化之1〇〇〇埃 氮化鈦層的X—光繞射照射角掃瞄。 第42圖說明表VI。 第43(a)-43(b)圖說明根據本發明之一實施例分別形成 之無氧化及氧化擴散阻障層的化學組成。 第44圖說明根據本發明形成之擴散阻障層的電阻特性 本紙張尺度逋用中國國家橾隼(CNS ) A4規格(210X297公釐) -13- 經濟部中央標準局員工消費合作社印製 A7 B7五、發明説明(11) 〇 第45圖說明根據本發明利用填塞矽形成之薄膜的奥格 深度變化。 第46圖說明根據本發明藉由沈積含矽材料形成之薄膜 的奥格深度變化。 第47圖說明第45圖及第46圖所示之薄膜的電阻率及組 成的比較。 第4 8圖說明根據本發明控制用於在基材上建構薄膜之 處理室的控制單元。 第49圖說明在本發明之一實施例中,藉由第48圖所示 之控制單元進行的操作順序。 第50圖說明在本發明之另一實施例中,藉由第48圖所 示之控制單元進行的操作順序。 較佳實施例之詳細說明 A ·處理晶圓之處理室 1 .總論 第3(a)及3(b)圖聯合描述習知之CVD處理室10。CVD 反應室10包含處理室12,其中晶圓係由例如晶座之晶圓支 座16支撐。晶圓支座16係由圓盤18支撐,該盤一般係由例 如氧化鋁陶瓷之材料製成。盤18位在支撐臂22的自由端20 上。支撐臂22利用裝設在桿26之固定端24界定一懸臂。桿 26可在位移機構28之作用上垂直地位移。位移機構28係操 作供在處理室12内垂直地移動支撐臂20。 在處理晶圓14期間,氣體經由喷射頭36注射至處理室 (請先閲讀背面之注意事項再填寫本頁) 裝·The Central Bureau of Standards, Ministry of Economic Affairs, Beiya Consumer Cooperation, Du Yin, IL Α7, B7 V. Description of Invention (9) Figure 18 illustrates the sheet resistance versus time diagram of a titanium nitride film deposited by a conventional deposition method. Figure 19 illustrates the Rutherford backscattering spectrum of a titanium nitride film deposited on a silicon wafer using a conventional deposition method. Figure 20 illustrates Table I. Figure 21 illustrates Table Π. Figure 22 illustrates the table] Π. Figure 23 illustrates the Rutherford backscattering spectrum of a titanium nitride film deposited by the chemical deposition method of NF3 gas flow. Fig. 24 illustrates an Auger sputtering analysis diagram of a titanium nitride film according to the present invention. Figure 25 illustrates Table IV. Figure 26 illustrates the Auger surface spectrum of elements of another titanium nitride film according to the present invention. Fig. 27 is a graph showing atomic concentrations of various elements in the titanium nitride thin film shown in Fig. 26; Fig. 28 illustrates the Auger surface spectra of elements of a control group of titanium nitride films. Fig. 29 illustrates atomic concentration maps of various elements in the control group of the titanium nitride film of Fig. 28. Fig. 30 illustrates an Auger surface spectrum of an element of another titanium nitride thin film according to the present invention. Fig. 31 is a graph showing the element concentration of various elements in the control titanium nitride film of Fig. 30; This paper size is applicable to the Chinese girl's standard (CNS) A4 specification (2ΐ〇χ297 公 和) J --------- f Packing ------ Order ------- (J. (Please read the precautions on the back before writing this page) -12- 、 Instruction of the invention (10) Fig. 32 shows the explanation table v. Fig. 33 shows the oxygen absorption of the film manufactured according to the present invention. Section 34 (a) Figure -34 (c) illustrates the reduction in organic carbon content of a film made according to the present invention. Figures 35 (a) -35 (b) illustrate the improved path resistance and contact resistance of a film formed according to the present invention. Figure 36 illustrates The resistivity of thin films made by deposition and plasma treatment using different number of cycles. Figure 37 illustrates the film resistivity and voltage as a function of the plasma processing pressure. Figure 38 (a) illustrates the curing time and frequency versus film resistance The effect of the rate please read the notice of Λ before binding. Another example of the effect of the initializing time on the resistivity of the film is shown in Figure 38 (b) of the Central Bureau of Standards of the Ministry of Economic Affairs. -39 (b) illustrates the Auger electron spectrum depth variation of a nitrided thin film formed by continuous deposition and hafnium titanium nitride layer. Figure 40 The X-ray diffraction angle scan of a 1000 angstrom titanium nitride layer deposited on a silicon wafer by a conventional chemical deposition method is shown in Fig. 41. Fig. 41 shows a silicon wafer deposited on a silicon wafer according to the present invention. Scanning of X-ray diffraction irradiation angle of 〇Å titanium nitride layer. Fig. 42 illustrates Table VI. Figs. 43 (a) -43 (b) illustrate non-oxidation and The chemical composition of the oxidation diffusion barrier layer. Figure 44 illustrates the resistance characteristics of the diffusion barrier layer formed according to the present invention. This paper is based on China National Standard (CNS) A4 (210X297 mm). -13- Ministry of Economic Affairs Printed by the Consumer Bureau of Standards Bureau A7 B7 V. Description of the invention (11) 〇 Figure 45 illustrates the Auger depth change of a film formed by stuffing silicon according to the present invention. Figure 46 illustrates the formation by depositing a silicon-containing material according to the present invention. The Auger depth change of the thin film. Figure 47 illustrates the resistivity and composition comparison of the films shown in Figures 45 and 46. Figures 4 and 8 illustrate the process for controlling the construction of a film on a substrate according to the present invention. The control unit of the room. Fig. 49 illustrates an embodiment of the present invention. In one embodiment, the operation sequence performed by the control unit shown in FIG. 48. FIG. 50 illustrates the operation sequence performed by the control unit shown in FIG. 48 in another embodiment of the present invention. Detailed description of the preferred embodiment A. Processing chamber for processing wafers 1. General Figures 3 (a) and 3 (b) jointly describe the conventional CVD processing chamber 10. The CVD reaction chamber 10 includes a processing chamber 12, in which wafers It is supported by a wafer support 16 such as a wafer base. The wafer support 16 is supported by a disc 18, which is generally made of a material such as alumina ceramics. The disk 18 is seated on the free end 20 of the support arm 22. The support arm 22 defines a cantilever by a fixed end 24 mounted on the rod 26. The lever 26 is vertically displaceable by the action of the displacement mechanism 28. The displacement mechanism 28 is operative to move the support arm 20 vertically in the processing chamber 12. During the processing of the wafer 14, the gas is injected into the processing chamber through the spray head 36 (please read the precautions on the back before filling this page).

、1T 本紙張尺度逋用中國國家橾準(CNS ) A4規格(210X297公釐) -14- A7 B7 經濟部中央標準局員工消費合作社印装 五、發明説明(12 ) 12内。噴射頭36—般係裝設在晶圓14之正上方》 在操作中’處理室12内部係藉由裝設在CVf處理室1〇 下方之一組紅外線燈30加熱。燈30經由石英窗32照射處理 室12的内部,該石英窗位於燈30及處理室12内部之間。燈 30同時供給處理12之内部及晶圓支座16熱量。因此,位在 晶圓支座16上之晶圓14亦可被加熱。 為了增進晶座支座16之加熱,.如第3b圖所示之陶究支 撐盤18包含許多通過該盤之孔34。典型的如第3b圖所示的 孔34係製成透明,故盤18常稱為“鈕扣型”板。 熱CVD晶圓處理對晶圓溫度非常敏感。為了確保晶圓 維持在適當之溫度下,藉由熱電偶38測量晶圓支座16之溫 度。熱電偶38係支撐在支撐22之自由端20上且裝設在晶圓 支座16之本體内。電氣導電纜42耦合熱電偶至溫度測定裝 置40上,該裝置設置在處理室12之外側》電纜42—般係沿 著支撐臂22内部中心形成之孔延伸。 第4圖描述適於進行製造包含積體電路之晶圓的多反 應室真空系統。處理室Α係供預清潔基材,積體電路將形 成在該基材上。於預清潔後,將基材轉移至CVF處理室B ,以致使薄膜可沈積在基材上《接著將基材轉移至沈積後 處理室C來改良沈積薄膜的品質。 若需要利用一物質“填塞”薄膜來增進薄膜作為一擴 散阻障層之作用’基材可轉移至處理室D,於該反應中可 進行“填塞”。例如,薄膜可為氮化鈦材料扇,該材料層 可利用氧來填塞以降低鋁之薄膜擴散率。利用氧填塞氮化 請 先 閱 讀 背 面 之 注 3 頁 裝 訂 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) -15- 經濟部中央揉準局貝工消費合作社印袋 A7 ^ ~1 —-----------B7 五、發明説明(13) ~ --:— =阻障層係揭露於頒給Ngan等人之美國專利第5,378,_ 〜發明名稱為“阻障層及紹接觸”。 上述任-系統皆可應用於本發明之實施方面。然而, 無'系統具有在單-處理室内在晶圓上沈積材料及在材料 上進行沈積後處理來形成薄膜的能力。此種後沈積處理可 包含轫化、氧化、暴露於矽中,或其組合。 2.. ·原位操作之虛理室 第5圖說明根據本發明之半導體處理室。晶圓處理室 HOA可供在半導體晶圓114上進行__系列之原位沈積及沈 積後處理步戰。根據本發明,第5圖描述之處理室可 為例如詳述於美國專利申請案第08/567,46 i及08/677, i 85 號所述的化學沈積室處理室。 根據本發明之晶圓處理室丨1〇A省卻應用多個處理室 來沈積及處理材料的需求。例如,晶圓處理室i丨〇A可應 用於藉由沈積材料在晶圓上而在晶圓上形成薄膜並使經沈 積之材料初化來安定化並降低電阻。因此,晶圓在薄膜形 成期間無需遭受處理室U0A外侧之不純物的危害。 如第5圖所示,半導體晶圓處理室u〇a包含與地面耦 合之處理室112。半導鱧晶圓U4可支撑於處理室112之晶 圓支座116上,該支座可與第3(a)及3(b)圖所示之支座16相 同。晶圓支座116可為晶座、基座、電阻加熱器,或其他 適於支撐晶圓114的裝置。 於第5圖中’晶圓支座116為晶座,其為當應用燈照射 晶圓支座116時常用之晶圓支座形式。晶座係由陽極化之 本紙張尺度速用中國國家標準(CNS ) Μ規格(210X2.97公釐) (請先閲讀背面之注意事項再4·寫本頁)、 1T This paper size is in accordance with China National Standards (CNS) A4 specification (210X297mm) -14- A7 B7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 5. The description of the invention (12) 12. The spray head 36 is generally installed directly above the wafer 14. In operation, the inside of the processing chamber 12 is heated by a group of infrared lamps 30 installed below the CVf processing chamber 10. The lamp 30 illuminates the inside of the processing chamber 12 through a quartz window 32 which is located between the lamp 30 and the inside of the processing chamber 12. The lamp 30 simultaneously supplies heat to the inside of the process 12 and the wafer support 16. Therefore, the wafer 14 on the wafer support 16 can also be heated. In order to increase the heating of the crystal holder support 16, the ceramic support plate 18 shown in Fig. 3b includes a plurality of holes 34 passing through the plate. The holes 34 are typically made transparent as shown in Figure 3b, so the disc 18 is often referred to as a "button type" plate. Thermal CVD wafer processing is very sensitive to wafer temperature. To ensure that the wafer is maintained at an appropriate temperature, the temperature of the wafer support 16 is measured by a thermocouple 38. The thermocouple 38 is supported on the free end 20 of the support 22 and is mounted in the body of the wafer support 16. The electrical conducting cable 42 couples the thermocouple to the temperature measuring device 40, which is disposed outside the processing chamber 12. The cable 42 generally extends along a hole formed in the inner center of the support arm 22. Figure 4 depicts a multi-reactor vacuum system suitable for manufacturing wafers containing integrated circuits. The processing chamber A is for pre-cleaning the substrate, and the integrated circuit will be formed on the substrate. After pre-cleaning, the substrate is transferred to the CVF processing chamber B so that the thin film can be deposited on the substrate, and then the substrate is transferred to the post-processing processing chamber C to improve the quality of the deposited film. If it is necessary to use a substance to "plug" the film to enhance the function of the film as a diffusion barrier layer, the substrate can be transferred to the processing chamber D, and "padding" can be performed in the reaction. For example, the thin film may be a fan of a titanium nitride material, and the material layer may be filled with oxygen to reduce the thin film diffusion rate of aluminum. Nitrogen is used to fill the nitrogen. Please read the note on the back of the book. The three-page bound paper size applies to the Chinese National Standard (CNS) A4 size (210X297 mm). ------------- B7 V. Description of the invention (13) ~-:-= The barrier layer is disclosed in US Patent No. 5,378 issued to Ngan et al. Barriers and contacts. " Any of the above-mentioned systems can be applied to the implementation aspects of the present invention. However, the 'none' system has the ability to deposit material on a wafer in a single-processing chamber and perform post-deposition processing on the material to form a thin film. Such post-deposition treatments may include tritiation, oxidation, exposure to silicon, or a combination thereof. 2 .. In-situ operation chamber Figure 5 illustrates a semiconductor processing chamber according to the present invention. The wafer processing chamber HOA can be used to perform in-situ deposition and deposition post-processing steps of the __ series on the semiconductor wafer 114. According to the present invention, the processing chamber described in FIG. 5 may be, for example, a chemical deposition chamber processing chamber described in detail in U.S. Patent Application Nos. 08 / 567,46 i and 08/677, i 85. The wafer processing chamber according to the present invention eliminates the need to use multiple processing chambers to deposit and process materials. For example, the wafer processing chamber IOOA can be applied to form a thin film on a wafer by depositing the material on the wafer and to initialize the deposited material to stabilize and reduce resistance. Therefore, the wafer does not need to be harmed by impurities on the outside of the processing chamber U0A during the film formation. As shown in FIG. 5, the semiconductor wafer processing chamber u0a includes a processing chamber 112 coupled to the ground. The semiconducting wafer U4 may be supported on a wafer support 116 of the processing chamber 112, which may be the same as the support 16 shown in Figs. 3 (a) and 3 (b). The wafer support 116 may be a wafer base, a pedestal, a resistance heater, or other devices suitable for supporting the wafer 114. In FIG. 5, the 'wafer support 116' is a wafer support, which is a form of wafer support commonly used when a lamp is irradiated to the wafer support 116. The crystal base is anodized and used in accordance with the Chinese National Standard (CNS) M standard (210X2.97 mm) (Please read the precautions on the back before writing this page)

-16- 五、發明説明(Μ) A7 B7 經濟部中央樣準局員工消费合作社印装 鋁製成且由習知氧化鋁陶瓷支撐板118支撐,該支撐板與 第3b圖之支撐板18類似。 支撐板118、晶圓支座116及晶圓114之組合係支撐在 懸臂氧化鋁支撐臂122之自由端120上。支撐臂122之固定 端124係裝設在一般可垂直移動之桿126上,該桿係藉由分 隔件160電氣地與處理室分隔。可垂直移動的桿126在位移 機構128之作用下可垂直地位移。. 處理室112及其内容物可藉由習知燈13〇加熱,該燈經 由習知石英窗132照射晶圓支座116。半導體晶圓處理室 110A進一步包含溫度測定裝置14〇。溫度測定裝置14〇係 與晶圓支座116耦合來感測晶圓支座116的溫度。真空泵、 壓力計及壓力調節閥皆包含在壓力控制單元中。壓力控制 單元157調整處理室112内的壓力並由處理室η:中抽出載 體氣體及反應副產物。 喷射頭136位在處理室122之晶圓支座116上並藉由分 隔件119與處理室112電氣地分隔。喷射頭136由氣體屏52 供應處理氣體。氣體屏52藉由電腦形式之氣體屏控制器5〇 控制。 為了進行沈積後處理鞀化,半導體晶圓處理室u〇A 包含⑽⑷^原⑷施予心力率至喷射頭⑽’該嗔射頭 係作用為第一電極,及晶圓支座116,其作用為第二電極 。rf源142可提供頻率低μ MHz之訊號,並較佳為提供頻 率為350 KHz之訊號。提供rf訊號至二電極136及來克 服其他習知半導趙晶圓處理室中未提供你訊號至二電極 紙張又度適用中國國家揉準(CNS ) A4規格(21〇χ297公着 (請先閲讀背面之注意事項再填寫本頁) 裝· -訂 0 I— · -17- 五、發叼説明(15) 的挑戰’該習知處理室例如pvD處理室。 在本發月之實施例中,可預防對喷射頭136施予過量 、負偏麗f射頭136上過量之負偏壓可造成噴射頭136之 離子轟擊增加,其料”好㈣生。 I S知PVD處理室中需要具有大量之目標電極的離子 為擊在W〇PVD處理室中,目標電極支樓欲沈積的目標 材料。目私電極具有顯著的負.偏壓,因此離子可容易地與 目標材料碰撞以供進行目標材料之沈積。 再者,在習知濺鍍方法中,晶圓支座之負偏壓及晶圓 肌度之控制一般並不重要β在本發明之實施例中則非如此 。控制在晶圓支座116上的負偏壓可理想地建立適量之朝 向晶圓114的離子流。準確地設定晶圓114之溫度可理想地 進行沈積及經沈積之材料的沈積後處理。 因此’晶圓支座提供與rf源142耦合及藏置熱電偶感 測機構(未顯示)幻雙重功能31:£源142可供控制晶圓支座116 之負偏壓,且熱電偶可供監測晶圓114之溫度。 經濟部中央橾準局貝工消費合作社印製 (請先閱讀背面之注意事項再填寫本頁) 晶圓支座116及支撐臂122係設計來分隔rf源訊號及熱 電偶訊號’以致能記取溫度讀數。此分隔可使“源訊號及 熱電偶訊號皆可準續地傳遞至處理室11 〇A内,以致能使 晶圓114適當地偏壓及加熱。晶圓支撐臂122係參考第6-14 圖詳述於下文中。 3 ·晶阓去撐臂 一般參考第6-9(b)圖’晶圓114支撐在晶圓支座116上 ,該支座本身由習知“鈕扣型”氧化鋁陶瓷支撐板118» 本紙張又变適用中國國家橾準(CNS ) A4規格(210X297公釐) -18- 五、發明説明(Ιό) A7 B7 經濟部中央橾準局貝工消費合作社印製 薄石英板119位於支撐板丨18及晶圓支座〗16之間。石英去 除支座116與晶圓處理室ιι〇Α内其他元件之間發弧。石英 板119為透明以供輻射由燈13〇提供之能量β其容許燈13〇 快速地加熱晶圓支座116。 晶圓支座116係由石英屏蔽15〇圍繞。石英屏蔽15〇位 於氧化鋁支撐板118上(部分顯示於第7圖)而延伸於晶圓支 座116上並界定晶圓容納槽,該槽中可供置放晶圓支座116 及晶圓114 »石英屏蔽150具有向外削角之上部邊緣,當晶 圓來回地轉移至晶圓支座時,可更容易地容納晶圓114。 石英屏蔽150主要係作用來屏蔽晶圓支座〗16邊緣以避免吸 引電弧。 在處理過程中,藉由裝設在晶圓支座116上的熱電偶 152測量晶圓支座116旳溫度。熱電偶152係裝設在氮化鋁 鞘154内,該鞘緊密地裝配在晶圓支座U6之本體内。鞘^斗 提供熱電偶152及晶圓支座〗16本體間的電氣絕緣。雖然鞘 154為高電阻的,其仍維持為一良好的熱導體。鞘154具有 低熱質量且因此具有低熱慣性,故適於作為熱電偶152。 再者,鞘154在處理室113之處理環境内具有化學安定性。 熱電偶152藉由導電電纜156與溫度測定裝置14〇連接 。如下文所述,電規156沿著支„122之中心部分通過並 與任何處理室122内的射頻率能量電氣絕緣。 熱電偶152藉由小鎳球158固定位置,該球捲曲在導電 電瘦156上。球158停留在槽_,該槽形成於鍵形㈣ 扣件…中。鍵形扣件162鍵接在槽164内,該槽形成於位 I— I - - I · (裝— (請先閲讀背面之注意事項再4·寫本頁) 訂 Λ. -19- 經濟部中央梯準局員工消费合作社印装 Α7 Β7 五、發明説明(17) 在晶圓支座116下方之中心突出的短截棒166中。此配置確 保當晶圓支座116與支撐臂122分開時,熱電偶152可相當 谷易地移位》上述配置確保熱電偶152可穩固地定位固持 在晶圓支座116中’同時保持晶體支座i〗6及熱電偶丨52間 的電氣隔離》 晶圓支座116藉由一對螺栓168鎖固在支撐臂ι22上, 該螺栓旋入中心短截棒。第8圖顯示支撐臂120主要 係由倒U形陶瓷區段no構成。螺栓168通過個別之孔172 ,該孔通過U形區段170之水平部分。為了 u形區段17p之 水平部分上的螺栓168的過度承載,將每個頭藉*Beivedere 彈簧墊圈174與水平部分分隔。避免u形區段17〇之水平部 分上的螺拴168過度承載是很重要的,因為陶瓷,特別是 薄區段會碎裂。過度之承載力可造型區段17〇破裂。 rf導電條180沿著支撐臂122通過。導電條18〇係電氣 地連接至晶圓支座Ί16下方之短截棒166處。rf導電條18〇 塗覆专高溫彈性介電材料,例如聚亞醯胺,例如可獲自杜 邦電子公司,商品名為Pyralin。 聚亞醯胺塗層提供rf導電條180電氣絕緣性。再者,rf 導電條180藉由陶瓷絕緣件丨82與導電電纜電氣絕緣。陶瓷 絕緣件182之零件將參考第10(a)&10(b)圖中討論於下文中 。再者,rf導電條180藉由倒ϋ形區段170之“腿部”及絕 緣件184與處理室112之内部分隔。絕緣件184之零件將參 考第11(a)及11(b)圖討論於下文中。 在組裝期間,熱電偶152及附帶之鞘154係插入晶圓支 本紙張尺度適用中國國家樣準(CNS ) Α4規格(210Χ29?公釐〉 I--I 广、裝-- (請先閲讀背面之注意事項再^-寫本頁) 訂 20. 經濟部中央標準局貝工消費合作社印袈 A7 B7 五、發明説明(18) 座116中。接著藉由螺栓丨68將熱電偶之鉛纜丨56送入u形 區段170内》絕緣件182位在導電電纜156上以供分隔導電 電纜156與*^導電條180。接著將rf導電條180置於絕緣件182 上並將絕緣件182放置在rf導電條18〇上。 因此’將平坦之陶瓷扣件186槽接至緊接著u形區段 170 “腿部”之自由端形成的槽188中。扣件186係作為所 有不同之位在U形區域170主體内的零件的扣作。扣作186 之零件如第12圖所示。 如第9(a)及9(b)圖之說明,支撐臂122係由分別在自由 端120及固定端124具有擴大部分之相當細長的中心部分構 成。支撐臂122之自由端120具有二個分別形成在槽190之 任一側的螺栓孔172 ,該槽形成在自由端120之上部表面内 。槽190容納鍵形結構192,該結構由晶圓支座166底部之 短截棒166向下延伸。此鍵形結構192與槽190配對接合並 當定位在支撐臂122時可進一步穩固晶圓支座H6。鍵形結 構192之零!^如第8及14圖所示》支撐臂122之固定端124係 鎖固在可垂直移動的桿194上’其零件將參考第π圖來敘 述。 由第10(a)及10(b)圖可見絕緣件182為U形通道形式, 其中設置導電電纜156。U形通道在一端具有擴大部分丨96 。擴大部分196覆蓋位在支撐臂122之固定端的rf導電條 180 〇 如第11(a)及第11(b)圖所示,絕緣件184具有擴大部分 198 ’其尺寸係相當緊密地密接在支撐臂122之自由端120 本紙張尺度逋用中國國家標準(CNS > A4規格(210X297公釐〉 (請先閲讀背面之注意事項再填寫本頁} 丁 -21 · 經濟部中央揉準局貝工消費合作社印製 A7 ______B7_ 五、發明説明(19) ' ~ "-— 内。擴大部分198内部具有通道2〇(^當組裝裝置時,^導 電條180位在絕緣件184之上部表面2〇2。rf導電條18〇亦彎 曲來依循通道200内部的輪廓。此配置說明於第7圖並使κ 導電條180與連接螺.栓168分隔。由第7圖亦可看出,亦提 供適當之分隔元件204來配合通道200並分隔rf導電條18〇 與螺栓168。 扣件186之零件說明於第12圖中。扣件186一般為湯匙 形,具有經定尺寸以供容納於形成在支撐臂122之自由端 120處的擴大部分206尹。在組裝期間,扣件1 %係由文撐 臂122之自由端120插入槽188中。 如第13圖之說明,支撐臂122之固定端124係連接至桿 194。桿194為中空管,其在上端擴大以界定凸緣21〇,藉 由螺检212將支撑臂122的固定端124栓固至該凸緣。為了 避免螺栓212及陶瓷固定端124之間的過度承載,可在每個 螺检212及支撑臂122之固定端124之間.設置Belleville彈等 墊圈214 » 不銹鋼波紋管216係設置在凸緣210及處理室112之底 部之間。波紋管216容許支撐臂122垂直地上下移,動,當其 通過處理室122之壁218時’同時提供桿194周圍之密封件 〇 如上所述,桿194為中空管的形式。電氣上不導電管22〇 位在形成桿194之管内部。不導電管220—般是由聚亞醯胺 材料製成且提供處理室112及中空rf導電管222之間的電氣 絕緣。rf導電管222係與rf源142及rf導電條180連接。連通 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -----------(裝-- (請先閲讀背面之注項再炎寫本頁) 訂-16- V. Description of the invention (M) A7 B7 The Consumer Cooperative of the Central Prototype Bureau of the Ministry of Economy is made of printed aluminum and is supported by the conventional alumina ceramic support plate 118, which is similar to the support plate 18 in Figure 3b. . The combination of the support plate 118, the wafer support 116 and the wafer 114 is supported on the free end 120 of the cantilever alumina support arm 122. The fixed end 124 of the support arm 122 is mounted on a generally vertically movable rod 126 which is electrically separated from the processing chamber by a partition 160. The vertically movable lever 126 is vertically displaceable by the displacement mechanism 128. The processing chamber 112 and its contents can be heated by a conventional lamp 130, which illuminates the wafer holder 116 through a conventional quartz window 132. The semiconductor wafer processing chamber 110A further includes a temperature measuring device 140. The temperature measurement device 14 is coupled to the wafer support 116 to sense the temperature of the wafer support 116. Vacuum pump, pressure gauge and pressure regulating valve are all included in the pressure control unit. The pressure control unit 157 adjusts the pressure in the processing chamber 112 and extracts carrier gas and reaction by-products from the processing chamber η :. The spray head 136 is located on the wafer support 116 of the processing chamber 122 and is electrically separated from the processing chamber 112 by a partition 119. The spray head 136 is supplied with a process gas from a gas screen 52. The gas screen 52 is controlled by a gas screen controller 50 in the form of a computer. In order to carry out post-deposition processing, the semiconductor wafer processing chamber u0A includes the following: the heart rate is applied to the ejection head; the ejection head functions as the first electrode, and the wafer support 116, which functions Is the second electrode. The rf source 142 can provide a signal with a low frequency of μ MHz, and preferably provides a signal with a frequency of 350 KHz. Provide rf signal to two-electrode 136 and to overcome other conventional semi-conductor Zhao wafer processing room did not provide your signal to two-electrode paper again applicable to China National Standard (CNS) A4 specification (21〇297297 (please read the back first) Please pay attention to this page and fill in this page again) Assemble · -Order 0 I-· -17- V. Challenge of the description (15) 'The conventional processing room such as the pvD processing room. In the example of this month, you can Preventing excessive application of negative bias to the ejection head 136 and excessive negative bias on the ejection head 136 can increase the ion bombardment of the ejection head 136, which is expected to be "good." IS knows that there must be a large number of targets in the PVD processing chamber. The ion of the electrode is the target material to be deposited in the target PVPV processing chamber. The target electrode has a significant negative bias voltage, so the ions can easily collide with the target material for the deposition of the target material. Moreover, in the conventional sputtering method, the negative bias of wafer support and the control of wafer muscle are generally not important β, which is not the case in the embodiment of the present invention. Controlled at wafer support 116 Negative bias on the ideal to establish the right amount of Ion flow of wafer 114. Accurately setting the temperature of wafer 114 is ideal for deposition and post-deposition processing of deposited materials. Therefore, the 'wafer support provides a coupling with rf source 142 and a thermocouple sensing mechanism ( Not shown) Magic dual function 31: The source 142 can be used to control the negative bias of the wafer support 116, and the thermocouple can be used to monitor the temperature of the wafer 114. Printed by the Shellfish Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy (please (Please read the notes on the back before filling this page) The wafer support 116 and support arm 122 are designed to separate the rf source signal and the thermocouple signal 'so that temperature readings can be taken. This separation allows "source and thermocouple signals to be It can be continuously transferred into the processing chamber 110A, so that the wafer 114 can be appropriately biased and heated. The wafer support arm 122 is described in detail below with reference to FIGS. 6-14. 3 Refer to Figure 6-9 (b) for the arm. The wafer 114 is supported on the wafer support 116. The support itself is supported by the conventional "button-type" alumina ceramic support plate 118. This paper has become applicable to the country of China. Standard (CNS) A4 (210X297mm) -18- V. Invention Ming (Ιό) A7 B7 The thin quartz plate 119 printed by the Shellfish Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs is located between the support plate 18 and the wafer support 16. The quartz removal support 116 and the wafer processing chamber ιι〇Α Arcs occur between other components inside. The quartz plate 119 is transparent for radiating the energy provided by the lamp 130. It allows the lamp 130 to quickly heat the wafer support 116. The wafer support 116 is surrounded by a quartz shield 15o. The quartz shield 15 is located on the alumina support plate 118 (partially shown in FIG. 7) and extends on the wafer support 116 and defines a wafer receiving slot in which the wafer support 116 and the crystal can be placed. Circle 114 »Quartz Shield 150 has an upper edge that is chamfered outwardly, which allows wafer 114 to be more easily accommodated when the wafer is transferred back and forth to the wafer support. The quartz shield 150 is mainly used to shield the edges of the wafer support 16 to avoid attracting arcs. During the process, the temperature of the wafer support 116 is measured by a thermocouple 152 mounted on the wafer support 116. The thermocouple 152 is housed in an aluminum nitride sheath 154, which is tightly fitted into the body of the wafer holder U6. Sheath hopper provides electrical insulation between the thermocouple 152 and the wafer support. Although the sheath 154 is highly resistive, it remains a good thermal conductor. The sheath 154 has a low thermal mass and therefore a low thermal inertia and is suitable as a thermocouple 152. The sheath 154 is chemically stable in the processing environment of the processing chamber 113. The thermocouple 152 is connected to the temperature measuring device 14 through a conductive cable 156. As described below, the electric gauge 156 passes along the central portion of the support 122 and is electrically insulated from the radio frequency energy in any processing chamber 122. The thermocouple 152 is fixed in position by a small nickel ball 158, which is curled on a conductive thin electrode 156. The ball 158 stays in the groove _, which is formed in the key-shaped ㈣ fastener ... The key-shaped fastener 162 is keyed in the groove 164, and the groove is formed in the position I—I--I · (装 — ( Please read the precautions on the back before writing this page. 4) Λ. -19- Printed by the Consumer Cooperatives of the Central Elevator Bureau of the Ministry of Economic Affairs Α7 Β7 V. Description of the invention (17) Protrudes in the center below the wafer support 116 Stub 166. This configuration ensures that the thermocouple 152 can be moved relatively easily when the wafer support 116 is separated from the support arm 122. The above configuration ensures that the thermocouple 152 can be firmly positioned and held on the wafer support. In 116, while maintaining the electrical isolation between the crystal support i6 and the thermocouple 丨 52, the wafer support 116 is locked to the support arm 22 by a pair of bolts 168, which are screwed into the center short rod. Figure 8 shows that the support arm 120 is mainly composed of an inverted U-shaped ceramic section no. Bolts 168 pass through individual holes 1 72, the hole passes through the horizontal portion of the U-shaped section 170. For the excessive load of the bolt 168 on the horizontal portion of the u-shaped section 17p, each head is separated from the horizontal portion by the * Beivedere spring washer 174. Avoid the u-shaped section The excessive loading of the bolts 168 on the horizontal part of 170 is very important because the ceramics, especially the thin sections, will crack. The excessive bearing capacity can break the shaped section 170. The rf conductive strip 180 runs along the support arm 122 Passed. The conductive strip 180 is electrically connected to the stub 166 below the wafer support Ί 16. The rf conductive strip 180 is coated with a special high-temperature elastic dielectric material, such as polyimide, for example, available from DuPont Electronics. Company, trade name is Pyralin. Polyurethane coating provides electrical insulation of rf conductive strip 180. Furthermore, rf conductive strip 180 is electrically insulated from conductive cables through ceramic insulators 82. Parts of ceramic insulator 182 will be referenced Figures 10 (a) & 10 (b) are discussed below. Furthermore, the rf conductive strip 180 is separated from the interior of the processing chamber 112 by the "legs" of the inverted-shaped section 170 and the insulating member 184. Parts of insulator 184 will be discussed with reference to Figures 11 (a) and 11 (b) During the assembly, the thermocouple 152 and the attached sheath 154 are inserted into the wafer. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 × 29? Mm) I--I Read the precautions on the back before you write this page) Order 20. Seal A7 B7, Shellfish Consumer Cooperative, Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of the invention (18) in Block 116. Then the thermocouple is bolted by 68 The lead cable 56 is fed into the u-shaped section 170. The insulation member 182 is located on the conductive cable 156 for separating the conductive cable 156 from the conductive strip 180. Next, the rf conductive bar 180 is placed on the insulating member 182 and the insulating member 182 is placed on the rf conductive bar 180. Thus, 'the flat ceramic fastener 186 is slotted into a slot 188 formed immediately following the free end of the "leg" of the u-shaped section 170. The fasteners 186 are fasteners that are different parts located in the body of the U-shaped region 170. The parts buckled as 186 are shown in Figure 12. As illustrated in Figs. 9 (a) and 9 (b), the support arm 122 is formed of a relatively elongated central portion having enlarged portions at the free end 120 and the fixed end 124, respectively. The free end 120 of the support arm 122 has two bolt holes 172 formed on either side of the groove 190, which grooves are formed in the upper surface of the free end 120. The slot 190 receives a keyed structure 192 that extends downwardly from a stub 166 at the bottom of the wafer support 166. This key structure 192 is mated with the groove 190 and further stabilizes the wafer holder H6 when positioned on the support arm 122. Key structure zero of 192! ^ As shown in Figs. 8 and 14, the fixed end 124 of the support arm 122 is locked on the vertically movable rod 194 'and its parts will be described with reference to Fig. Π. It can be seen from Figs. 10 (a) and 10 (b) that the insulating member 182 is in the form of a U-shaped channel, and a conductive cable 156 is provided therein. The U-shaped channel has an enlarged portion 96 at one end. The enlarged portion 196 covers the rf conductive strip 180 located at the fixed end of the support arm 122. As shown in Figs. 11 (a) and 11 (b), the insulating member 184 has an enlarged portion 198 'whose dimensions are closely and tightly attached to the support. The free end 120 of the arm 122 uses the Chinese standard (CNS > A4 size (210X297 mm) for this paper size (please read the precautions on the back before filling this page) DING-21 Printed by the consumer cooperative A7 ______B7_ V. Description of the invention (19) '~ "-. Inside the enlarged part 198 has a channel 2〇 (^ When the device is assembled, ^ conductive strip 180 is located on the upper surface of the insulating member 184 2. 2. The rf conductive strip 18 is also bent to follow the contour of the interior of the channel 200. This configuration is illustrated in Figure 7 and separates the κ conductive strip 180 from the connecting screw. Bolt 168. It can also be seen from Figure 7 that it also provides appropriate The partition element 204 cooperates with the channel 200 and separates the rf conductive strip 180 and the bolt 168. The parts of the fastener 186 are illustrated in Fig. 12. The fastener 186 is generally spoon-shaped and has dimensions sized to be received on the support. Enlarged portion 206 at the free end 120 of the arm 122 During assembly, 1% of the fastener is inserted into the slot 188 by the free end 120 of the brace arm 122. As illustrated in Figure 13, the fixed end 124 of the brace arm 122 is connected to the rod 194. The rod 194 is a hollow tube, It is enlarged at the upper end to define the flange 21, and the fixed end 124 of the supporting arm 122 is bolted to the flange by the screw inspection 212. In order to avoid excessive load between the bolt 212 and the ceramic fixed end 124, Between the screw inspection 212 and the fixed end 124 of the support arm 122. A washer 214 such as Belleville bombs is provided »A stainless steel bellows 216 is provided between the flange 210 and the bottom of the processing chamber 112. The bellows 216 allows the support arm 122 to go up and down vertically Move, move, as it passes through the wall 218 of the processing chamber 122, while providing a seal around the rod 194. As mentioned above, the rod 194 is in the form of a hollow tube. Electrically non-conductive tube 22 is located in the position forming the rod Inside the tube. The non-conductive tube 220 is generally made of polyurethane material and provides electrical insulation between the processing chamber 112 and the hollow rf conductive tube 222. The rf conductive tube 222 is connected to the rf source 142 and the rf conductive strip 180 。Connected to this paper standard applicable to China National Standard (CNS) A4 (210X297 mm) ----------- (equipment - (Please read the note on the back of the item and then write inflammation of this page) book

UX -22- 經濟部中央標準局員工消費合作社印製 A7 B7五、發明説明(20) 熱電偶152及溫度測定裝置140之導電電纜156向下通過形 成於rf導電管222内的中心孔。 第14圖,當與第13圖一起研讀時,說明rf導電條180 與rf導電管222之間如何連接。如第13圖所示,rf導電管在 上端蜿展以界定圓形凸緣224。rf導電條180,如第14圖所 示,終止於圓形導電箍226。當組裝支撐臂122時,箍226 係置放在rf導電管222之圓狀凸緣224上。 其對rf導電條180提供一 rf導電連接件,該導電條係耦 合至晶圓支座116。此連接件容許容易地組裝及拆卸支撐 臂122。當支撐臂122之固定端124定位在桿194之凸緣210 上時,此連接件亦容許一定量之旋轉自由度(在桿194之縱 向入口上)。 4 .匹配網路 根據本發明,rf源142係經由匹配網路145與晶圓支座 116及喷射頭136耦合。匹配網路145為一電阻器/電感器 /電容器之網路。匹配網路匹配負載阻抗至電源阻抗,以 致能使在一定頻率下藉由能源傳輸之功率最大化。匹配網 路145亦分裂晶圓支座116及喷射頭136之間的rf功率並設 定提供至喷射頭136及晶圓支座116之rf訊號的相移。 用於本發明之一實施例的匹配網路145如第15(a)圖所 示,包含一負載匹配變壓器70、二電感器80及82,及二電 容器72及74。負載匹配變壓器70之一端與rf源142及地耦 合,及另一端與電感器80及82耦合。電感器80及82分別經 由電容器72及74以分別耦合至喷射頭136及晶圓支座116。 (請先閱讀背面之注意事項再填寫本頁) 裝. 訂UX -22- Printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs A7 B7 V. Description of the invention (20) The conductive cable 156 of the thermocouple 152 and the temperature measuring device 140 passes downward through the center hole formed in the rf conductive tube 222. FIG. 14 illustrates how the rf conductive strip 180 and the rf conductive tube 222 are connected when studied together with FIG. 13. As shown in FIG. 13, the rf conductive pipe is meandered at the upper end to define a circular flange 224. The rf conductive strip 180, as shown in FIG. 14, terminates in a circular conductive ferrule 226. When the support arm 122 is assembled, the hoop 226 is placed on the circular flange 224 of the rf conductive tube 222. It provides an rf conductive connection to the rf conductive strip 180, which is coupled to the wafer support 116. This connection allows the support arm 122 to be easily assembled and disassembled. When the fixed end 124 of the support arm 122 is positioned on the flange 210 of the rod 194, this connection member also allows a certain amount of rotational freedom (on the longitudinal entrance of the rod 194). 4. Matching network According to the present invention, the rf source 142 is coupled to the wafer support 116 and the spray head 136 via a matching network 145. The matching network 145 is a resistor / inductor / capacitor network. The matching network matches the load impedance to the power source impedance, so that the power transmitted by the energy source at a certain frequency can be maximized. The matching network 145 also splits the rf power between the wafer support 116 and the spray head 136 and sets the phase shift of the rf signal provided to the spray head 136 and the wafer support 116. The matching network 145 used in one embodiment of the present invention includes a load matching transformer 70, two inductors 80 and 82, and two capacitors 72 and 74, as shown in Fig. 15 (a). One end of the load matching transformer 70 is coupled to the rf source 142 and ground, and the other end is coupled to the inductors 80 and 82. Inductors 80 and 82 are coupled to spray head 136 and wafer support 116 via capacitors 72 and 74, respectively. (Please read the notes on the back before filling this page)

Vi 本紙張尺度適用中國國家標隼(CNS ) A4規格(210 X 297公釐) -23- A7 B7 五、發明説明(21) 負載匹配變壓器70之第一對第二匝數比範圍為1 : 1至 1 : 4,典型為1 : 1.22。根據本發明負載匹配變壓器70之 第一線圈可具有18匝,以及負載匹配變壓器70之第二線圈 可具有47匝。電感器80及82各自具有50仁Η電感,及電容 器72及74各自具有0.01 μ F電容〇 喷射頭136及晶圓支座116之間的rf訊號的功率分裂及 相移可藉由調整負載變壓器70之E·數比來改變。另外,如 第15(b)所示,負載匹配變壓器71可具有可選擇之接地分 接頭78 »可選擇之接地分接頭78容許選擇不同之接地分接 頭位置來改變喷射頭136及晶圓支座116之間的rf訊號的功 率分裂及相移》 匹配網路145之另一實施例如第15(c)圖所示。電容器 72及喷射頭136皆經由導電扼流圈83與地輛合。電容器74 及晶圓支座116皆經由導電扼流圈84與地耦合》導電扼流 圈83及導電扼放圈84可各自具有'500仁Η »當應用此一實 施例時,喷射頭136及晶圓支座116不會變成偏壓之dc。 當處理室110係應用於電漿轫化及/或氧化時,喷射 頭136及晶圓支座116皆經由匹配網路145耦合至疗源142是 有利的。唢射頭136及晶圓支座Π6之間的rf訊號相移可設 定以供增進沈積後處理期間產生之電漿的均一性。喷射頭 136及晶圓支座116之間訊號的異相關係造成電漿中之離子 比被吸引至接地之處理室112更容易被吸引至晶圓支座116 、。異相關係亦增加噴射頭136及晶圓支座之間的電壓電位 ’藉此增進朝向晶圓114之離子流的均_性。 私紙張尺度逋用中國國家揉準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝· 訂 經濟部中央標準局貝工消費合作社印«.. -24- A7 B7 經濟部中央搮準局黃工消費合作社印装 五、發明説明(22) 調整喷射頭136及晶圓支座116之訊號的功率分裂使得 可控制晶圓114及喷射頭136之離子轟擊強度。在電漿產生 期間,晶圓支座116之負偏壓一般造成離子加速朝向晶圓 U4。晶圓支座Π6之過度負偏壓造成離子是以損害晶圓 之能量轟擊晶圓114。在電漿產生期間’噴射頭136之過度 負偏壓一般造成離子轟擊喷射頭136並產生污染顆粒。 在本發明之一實施例中’ rf源145訊號之功率分裂可 由處理室110A之操作者選擇。功率分裂可設定以致使喷 射頭136及晶圓支座ι16之負偏壓能使前述污染及危害晶圓 之離子轟擊的傾向最小化。 根據本發明,匹配網路145可配置成使供應至晶圓支 座116及噴射頭136的rf訊號具有相同功率及頻率,但呈18〇 度異相。此可有效地耦合rf功率至喷射頭136及晶圓支座 116以供轉換處理室112中之氣體成為電漿。 rf分裂功率之配置的實施例可參見頒給Sugiyama等人 之美國專利第5,314,603號,發明名稱為“在處理室之電 極處可測定及調整準確RF功率的電漿處理裝置”,及頒 給Ogle等人之美國專利第4,871,421號,發明名稱為“電 漿姓刻系统之分裂相驅動器”。 5·處理官桎作 在沈積期間’氣體屏控制器5〇使氣體屏52供應CVD處 理氣體至喷射頭136,該處理氣體例如TDMA1^經由喷射 頭136 ’將處理氣體導入處理室112並轉移至經加熱之晶圓 114。結果,在晶圓114之上部表面沈積材料之薄膜。當應 ---------1裝— (請先閲讀背面之注意事項再4-寫本頁) 訂 本紙張尺度適用中國國家標牟(CMS〉A4規格(210X297公釐) -25- 經 中 央 揉 隼 局 貝 工 消 費 合 作 社 印 % 五、發明説明(23) A7 B7 用TDMAT時,形成之材料薄膜為氮化鈦丁…。 當在半導體晶圓處理室應進行沈積後處理時,可 依下文所述進行初化、氧化,或暴露於石夕中。在電漿初化 期間,電聚氣體,例如氮、氫、氬或其組合可在氣'^控 制器50之控制下藉由氣體屏52供應至喷射頭136。在沈積 吵期間,以氧為主之氣體,例如%或N2/02,可在氣 體屏控制器50之控制下藉由氣體屏52供應至喷射頭136。 在?之過程中’以梦為主之氣體,例如㈣(SiH4), 可在氣體屏控制㈣之控制下藉由氣體屏52供應至喷射頭 136。 在電漿鞀化及氧化過程中,藉由喷射頭136供應之氣 體係轉換成含有與晶圓114作用之帶正電荷離子的電漿。 在石夕暴露之過程中,氣體經由晶圓114及晶圓支座116之加 熱而注入能量。在沈積或沈積後處理時所應用之任何載體. 氣體以及由沈積或沈積後處理產生之任何副產物可藉由壓 力控制單元157排出處理室112。 ·另一個處理宮sp.筈 第16圖說明併入本發明之另一個實施例的半導體晶圓 處理室110Β,以供進行根據本發明之方法。第16圖所示 之半導體晶圓處理輊110Β與第5圖描述之處理室11〇八相同 ,但常射頭136不與rf源耦合。rf源62係經由匹配網路63與 晶圓支座116耦合,且將喷射頭136接地。 匹配網路63使用習知裝置來匹配晶圓支座116之負載 阻抗與rf源62之阻抗,匹配使藉由#源62輸送之功率在_ 請 先 閱 面 之 注 項 再 f 寫 本 頁 裝 訂 本紙張尺度逋用中國國家標準(CNS ) ( 210X297公釐 -26- 經濟部中央標準局貝工消費合作杜印製 A7 _._B7 五、發明説明(24) 定的頻率下最大化。根據本發明,匹配網路63及rf源62可 配置成供應rf訊號至晶圊支座116,以致能在不造成晶圓 114變成過度負偏壓下,提供足夠之rf能量供電漿初化或 氧化。 第17圖說明併入本發明之另一實施例的半導體晶圓處 理室110C且可進行根據本發明之方法。第17圖所示之半 導禮晶圓處理室110C與第5圖所示之處理室ιιοΑ相同,但 是鳴被頭_136及晶園支座116係各自分別耦合至不同之rf源 。rf源143經由匹配網路146與喷射頭136耦合, 且rf源144經由匹配網路147與晶圓支座116耗合。 匹配網路146及147各自使用習知裝置來分別匹配喷射 頭136及晶圓支座116之負載阻抗至能源阻抗。匹配使各個 能源在一定頻率下輸送的功率最大化。較佳地,^源143 及144可耦合在一起(未顯示)以供控制提供至喷射頭136及 晶圆支座116之rf訊號之間的相務及功率分裂。根據本發 明,匹配網路146及147及rf源143及144可配置成使供應至 晶圓支座116及喷射頭136之rf訊號具有相同之功率及頻率 ,但呈 〇 於本發明之另一實施例中,在第5、16或17圖中任一 圖所示的晶圓支座116可為電阻加熱器。電阻加熱器支撐 晶圓114並併入電阻線圈以供加熱晶圓114。 第5、16、及17圖顯示之半導體晶體處理室係應用來 進灯許多製程。在本發明之另一方面,提供一種形成擴散 阻障層的方法。可認知到本發明之方法可有利地在前述裝 本紙張尺度適用中國國_準(CNS )从胁(21Qx297公竣y -- -27- (請先聞讀背面之注意事項再寫本頁)Vi This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) -23- A7 B7 V. Description of the invention (21) The range of the first pair of second turns ratio of load matching transformer 70 is 1: 1 to 1: 4, typically 1: 1.22. The first coil of the load matching transformer 70 according to the present invention may have 18 turns, and the second coil of the load matching transformer 70 may have 47 turns. Inductors 80 and 82 each have a 50 Ω inductance, and capacitors 72 and 74 each have a 0.01 μF capacitance. The power split and phase shift of the rf signal between the spray head 136 and the wafer support 116 can be adjusted by the load transformer. E · number ratio of 70 to change. In addition, as shown in Section 15 (b), the load matching transformer 71 may have a selectable grounding tap 78. »The optional grounding tap 78 allows selection of different grounding tap positions to change the spray head 136 and the wafer support. Power splitting and phase shifting of rf signals between 116 "Another embodiment of the matching network 145 is shown in Figure 15 (c). The capacitor 72 and the ejection head 136 are connected to the ground via a conductive choke coil 83. The capacitor 74 and the wafer support 116 are both coupled to the ground via a conductive choke 84. The conductive choke 83 and the conductive choke 84 may each have a '500 core'. »When this embodiment is applied, the spray head 136 and The wafer support 116 does not become a biased dc. When the processing chamber 110 is used for plasma amalgamation and / or oxidation, it is advantageous that both the spray head 136 and the wafer support 116 are coupled to the treatment source 142 via a matching network 145. The phase shift of the rf signal between the head 136 and the wafer support Π6 can be set to improve the uniformity of the plasma generated during post-deposition processing. The heterogeneous signal relationship between the spray head 136 and the wafer support 116 causes the ions in the plasma to be more easily attracted to the wafer support 116 than to the processing chamber 112 which is grounded. The out-of-phase relationship also increases the voltage potential between the spray head 136 and the wafer support, thereby increasing the uniformity of the ion current toward the wafer 114. The size of the private paper is in accordance with China National Standard (CNS) A4 (210X297 mm) (Please read the precautions on the back before filling in this page). -A7 B7 Printed by Huanggong Consumer Cooperative, Central Bureau of Standards, Ministry of Economic Affairs 5. Description of the invention (22) Adjust the power split of the signals of the jet head 136 and wafer support 116 to control the ion bombardment of the wafer 114 and jet head 136 strength. During plasma generation, the negative bias of wafer support 116 generally causes ions to accelerate toward wafer U4. The excessive negative bias of wafer support Π6 causes ions to bombard wafer 114 with energy that damages the wafer. Excessive negative bias of the spray head 136 during plasma generation generally causes ions to bombard the spray head 136 and produce contaminated particles. In one embodiment of the present invention, the power split of the 'rf source 145 signal can be selected by the operator of the processing chamber 110A. Power splitting can be set so that the negative bias of the showerhead 136 and wafer support ι16 can minimize the aforementioned tendency to contaminate and harm ion bombardment of the wafer. According to the present invention, the matching network 145 may be configured so that the rf signals supplied to the wafer support 116 and the spray head 136 have the same power and frequency, but are 180 degrees out of phase. This can effectively couple rf power to the spray head 136 and the wafer support 116 for converting the gas in the processing chamber 112 into a plasma. An example of the configuration of rf split power can be found in U.S. Patent No. 5,314,603 issued to Sugiyama et al., with the invention name "Plasma processing device capable of measuring and adjusting accurate RF power at the electrodes of the processing chamber", and awarded to Ogle U.S. Patent No. 4,871,421, et al., Entitled "Split Phase Driver of Plasma Surname System". 5. The processing officer works during the deposition period. The 'gas screen controller 50' causes the gas screen 52 to supply a CVD processing gas to the ejection head 136, such as TDMA1. The process gas is introduced into the processing chamber 112 via the ejection head 136 and transferred to The heated wafer 114. As a result, a thin film of material is deposited on the upper surface of the wafer 114. Dangying --------- 1 Pack— (Please read the precautions on the back before 4-writing this page) The size of the paper is applicable to China National Standards (CMS> A4 specification (210X297 mm) -25 -Printed by the Central Government Bureau of Shellfish Consumer Cooperative Co., Ltd. V. Description of Invention (23) A7 B7 When using TDMAT, the material film formed is titanium nitride .... When post-deposition treatment should be performed in the semiconductor wafer processing room, It can be initialized, oxidized, or exposed to Shi Xi as described below. During the plasma initialization, electropolymerized gas, such as nitrogen, hydrogen, argon, or a combination thereof can be borrowed under the control of the gas controller 50. The gas screen 52 is supplied to the ejection head 136. During the period of heavy accumulation, oxygen-based gas, such as% or N2 / 02, can be supplied to the ejection head 136 through the gas screen 52 under the control of the gas screen controller 50. In the process of 'the dream-based gas, such as tritium (SiH4), can be supplied to the ejection head 136 through the gas screen 52 under the control of the gas screen control radon. During the plasma desulfurization and oxidation process, The gas system supplied by the ejection head 136 is converted into containing positively charged ions that interact with the wafer 114 Plasma. During the exposure of Shi Xi, the gas is injected into the energy by heating the wafer 114 and the wafer support 116. Any carrier used in the deposition or post-deposition process. The gas and generated by the deposition or post-deposition process Any of the by-products can be discharged from the processing chamber 112 by the pressure control unit 157. Another processing palace sp. 筈 FIG. 16 illustrates a semiconductor wafer processing chamber 110B incorporated in another embodiment of the present invention for performing the process according to the present invention. The method of the invention. The semiconductor wafer processing unit 110B shown in FIG. 16 is the same as the processing chamber 1108 described in FIG. 5, but the constant head 136 is not coupled with the RF source. The RF source 62 is connected to the RF network 63 via a matching network 63. The wafer support 116 is coupled, and the spray head 136 is grounded. The matching network 63 uses a conventional device to match the load impedance of the wafer support 116 and the impedance of the rf source 62, so that the power delivered by # 源 62 is between _ Please read the notes above and then f. Binding this page. Paper size: Chinese National Standard (CNS) (210X297 mm-26)-Central Bureau of Standards, Ministry of Economic Affairs, Shellfish Consumer Cooperation Du printed A7 _._ B7 V. Invention description (24) fixed frequency According to the present invention, the matching network 63 and the rf source 62 can be configured to supply rf signals to the crystal support 116, so that sufficient rf energy can be provided without causing the wafer 114 to become excessively negatively biased. The slurry is initialized or oxidized. Fig. 17 illustrates a semiconductor wafer processing chamber 110C incorporated in another embodiment of the present invention and the method according to the present invention can be performed. The semi-conducting wafer processing chamber 110C shown in Fig. 17 and The processing chamber shown in FIG. 5 is the same, but Ming Quilt _136 and Jingyuan Support 116 are respectively coupled to different RF sources. The rf source 143 is coupled to the spray head 136 via a matching network 146, and the rf source 144 is coupled to the wafer support 116 via a matching network 147. The matching networks 146 and 147 each use a conventional device to match the load impedance to the energy impedance of the head 136 and the wafer support 116, respectively. Matching maximizes the power delivered by each energy source at a certain frequency. Preferably, the sources 143 and 144 may be coupled together (not shown) for controlling the phase and power split between the RF signals provided to the spray head 136 and the wafer support 116. According to the present invention, the matching networks 146 and 147 and the rf sources 143 and 144 may be configured so that the rf signals supplied to the wafer support 116 and the ejection head 136 have the same power and frequency, but present in another aspect of the present invention. In the embodiment, the wafer support 116 shown in any one of the figures 5, 16 or 17 may be a resistance heater. The resistance heater supports the wafer 114 and incorporates a resistance coil for heating the wafer 114. The semiconductor crystal processing chambers shown in Figures 5, 16, and 17 are used for many processes in lamps. In another aspect of the present invention, a method for forming a diffusion barrier layer is provided. It can be recognized that the method of the present invention can be advantageously applied to the aforementioned paper size of the Chinese paper standard (CNS) Congxie (21Qx297)--27- (Please read the precautions on the back before writing this page)

經濟部中央揉準局貝工消費合作社印装 Μ ' ' 一1 _—— ____Β7_ 五、發明説明(25) ^ ---—- 置中進行然而,應可進_步認知到,所揭露之方法可在 任何適當之處理室中進行。 二建構薄膜 丄·總論 本發明之實施例提供在積體電路上建構具有改良電阻 率值的薄膜。一薄膜可為擴散阻障層。然而,其他欲抑制 例如紹及銅等接觸窗金屬擴散的薄.膜亦可利用本發明之實 施例來建構。 根據本發明,材料層係沈積在例如半導體晶圓之基材 上。接著使材料電毁初化以降低沈積材料的電阻率。因此 ,新的一層材料可沈積在先前沈積之材料上。再次使材料 初化來降低材料之電阻率。材料之沈積及初化可重覆數次 以形成位在晶圓之上部表面的薄膜。 本發明之另一方面提供於晶圓上已鞀化之材料中填塞 分子。填塞增進材料抑制例如鋁及銅等接觸窗金屬之擴散 的能力。為了增進薄膜作為紹之阻障層的作用,填塞可經 由氧化已初化之材料來達成。為了增進薄膜作為銅之阻障 層的作用’填塞可經由將已初化之材料暴露至石夕烧卿句 中來達成。另外,降低銅之擴散可獲自於沈積三元金屬氮 化矽之材料。 本發明之另一方面提供原位形成在晶圓上之材料的沈 積、轫化及填塞。 h初化以降低簿膜雷陌率 根據本發明,一薄膜可藉由沈積一材料層並電漿鞀化 本紙張尺度適用中國國家揉準(CNS ) A4規格(2ΐ〇χ 297公廣) (裝-- (請先閲讀背面之注意事項再免寫本頁) 、Tr -28 - A7 經濟部中央標準局貝工消费合作社印装 B7五、發明説明(26) _ ' 該材料層而形成在晶圓上,藉此可降低該薄膜之電阻率。 在一處理室中將材料層沈積在晶圓上,該處理室可進 行習知的化學氣相沈積法,例如第3(a)圖所示之處理室1〇 、第5圖所示之處理室11 〇A、第16圖所示之,處理室nog, 或第17圖所示之處理室110(::。氮化鈦材料之沈積可經由 使用金屬-有機鈦化合物來達成,較佳為四(二烧胺基)鈦 (Ti(NR2)4) 〇 載體氣體,例如氦、氬、氮或氫,攜帶鈦化合物至處 理室中。於處理室中,為了鈦化氮與間接產生之反應性物 質反應’該反應性物質例如鹵素、氨或氫自由基。為了促 進鈦化鈦之沈積’晶圓溫度係設定在約200_60(rc,及處 理室壓力係設定在約0.1-100托。 已沈積之氮化鈦包含顯著量的碳,藉此造成所得之氮 化鈦薄膜具有化學反應性。因此,當薄膜暴露至空氣或其 他含氧氣體中時,使薄膜吸收氧。因為氧之吸收無法控制 ’薄膜之穩定性受損且負面地增加薄膜之電阻率。其可造 成形成晶圓之裝置的耐用性不良。 於暴露至空氣後,已沈積之氮化欽薄膜的薄膜電阻率 可增加至約10,000 # Ω -cm/sq至高達约1〇,〇〇〇以Q _cm/sq 之值。當已沈積之氮化鈦係作為導電接觸點或通路之阻障 層時,該電阻率值高度不理想。對阻障層而言,理想的電 阻率等級為1,000 V Ω -cm/sq或更低。 根據本發明,已沈積之氮化鈦薄膜係利里含有高能量 離^之惰性電漿進行電漿鞀j匕。該離子可藉由對晶圓施予 本紙張又度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再4·寫本頁) 裝- -訂 h -29- 五、發明説明(27) A7 B7 。DC偏壓電漿可藉由與晶圓支座耦合並提 供足夠功率以便由前驅氣體形成電漿之低功率^源而應用 至晶圓°應用至晶圓之電壓約100至1,000伏特即已足夠。 例如,僅具有100瓦特rf功率之400伏特可用於形成電衆。 其足夠形成高能量離子及足夠鈍化或增輝氮化鈦薄膜,以 致使該薄膜在延長時間内能保持穩定。 當根據本發明轫化之氮化鈦薄膜暴露至空氣、氧或水 蒸氣中時,若未對晶圓施予偏壓,則該薄膜不會吸收氧或 吸收量極少《根據本發明沈積及轫化之氮化鈦薄膜與習知 金屬-有機鈦化合物之熱CVD製造之氮化鈦薄膜相較,較 具結晶性,包含較多氮,且具有蜱低之氧及碳含量、根據 本發明初化之已沈積的氮化鈦薄膜亦具有低及穩定的電阻 率〇 本發明之確實機制未知。然而,相信為已沈積在偏壓 基材上之薄膜的高能量離子轟擊強化該薄膜。 氮電漿 a -- (請先閲讀背面之注意事項再4·寫本頁)Printed by the Central Government Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperatives M '' 1 1 _—— ____ Β7_ V. Description of the Invention (25) ^ ------ It should be carried out in the center. The method can be performed in any suitable processing chamber. Two Construction Films 丄 · General Embodiments of the present invention provide a construction of a thin film having an improved resistivity value on an integrated circuit. A thin film may be a diffusion barrier layer. However, other thin films that want to suppress the diffusion of contact window metals such as Shao and copper can also be constructed using embodiments of the present invention. According to the present invention, a material layer is deposited on a substrate such as a semiconductor wafer. The material is then electrically initialized to reduce the resistivity of the deposited material. Therefore, a new layer of material can be deposited on previously deposited material. Initialize the material again to reduce the resistivity of the material. The deposition and initialization of the material can be repeated several times to form a thin film on the upper surface of the wafer. Another aspect of the present invention provides for the packing of molecules in a halogenated material on a wafer. Packing enhances the material's ability to inhibit diffusion of contact window metals such as aluminum and copper. In order to enhance the function of the film as a barrier layer, the filling can be achieved by oxidizing the material that has been initialized. In order to enhance the function of the thin film as a copper barrier layer, the filling can be achieved by exposing the initialized material to Shi Xiyao's sentence. In addition, reduced copper diffusion can be obtained from materials that deposit ternary metal silicon nitride. Another aspect of the present invention provides deposition, tritium, and packing of materials formed in situ on a wafer. h Initialization to reduce the film-thinning rate. According to the present invention, a thin film can be deposited by depositing a material layer and plasma-coated. Equipment-(Please read the precautions on the back before writing this page), Tr -28-A7 Printed B7 by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. 5. Description of the invention (26) On the wafer, the resistivity of the film can be reduced. A material layer is deposited on the wafer in a processing chamber, which can perform conventional chemical vapor deposition methods, such as shown in Figure 3 (a). The processing chamber 10 shown in FIG. 5, the processing chamber 11A shown in FIG. 5, the processing chamber nog shown in FIG. 16, or the processing chamber 110 (::. Titanium nitride material deposition shown in FIG. 17) This can be achieved by using a metal-organic titanium compound, preferably a tetrakis (dialkylamino) titanium (Ti (NR2) 4) o carrier gas, such as helium, argon, nitrogen or hydrogen, carrying the titanium compound into the processing chamber. In the processing chamber, in order for the titanium titanate to react with indirectly generated reactive substances, the reactive substances such as halogen, ammonia or hydrogen In order to promote the deposition of titanium titanate, the wafer temperature is set at about 200-60 rc, and the processing chamber pressure is set at about 0.1-100 Torr. The deposited titanium nitride contains a significant amount of carbon, thereby causing The obtained titanium nitride film has chemical reactivity. Therefore, when the film is exposed to air or other oxygen-containing gas, the film absorbs oxygen. Because the absorption of oxygen cannot be controlled, the stability of the film is impaired and the film is negatively increased. Resistivity. It can cause poor durability of the device that forms the wafer. After exposure to air, the film resistivity of the deposited nitride film can increase to about 10,000 # Ω -cm / sq up to about 10, 〇〇〇 is Q _cm / sq value. When the deposited titanium nitride system is used as a conductive contact point or barrier layer, the resistivity value is highly unsatisfactory. For the barrier layer, the ideal resistivity The rating is 1,000 V Ω -cm / sq or lower. According to the present invention, the deposited titanium nitride film is a plasma containing a high-energy ionizing inert plasma. This ion can be obtained by crystallizing the crystal. Yuanshi applies this paper to Chinese national standards ( CNS) A4 specification (210X297 mm) (Please read the precautions on the back before writing this page 4) Installation--Order h -29- V. Description of the invention (27) A7 B7. DC bias plasma can be used A low-power source coupled to the wafer support and providing sufficient power to form a plasma from the precursor gas is applied to the wafer. A voltage of approximately 100 to 1,000 volts is sufficient for the wafer. For example, having only 100 400 volts of Watt rf power can be used to form an electric mass. It is sufficient to form high energy ions and to passivate or brighten a titanium nitride film, so that the film can remain stable for an extended time. When the film is exposed to air, oxygen, or water vapor, if the wafer is not biased, the film will not absorb oxygen or absorb very little. "Titanium nitride films deposited and tritiated according to the present invention and conventional metals -Compared with titanium nitride film produced by thermal CVD of organic titanium compounds, it is more crystalline, contains more nitrogen, and has low oxygen and carbon content in ticks. Has low and stable resistivity. Real mechanism is unknown. However, it is believed that the high energy ion bombardment of the film that has been deposited on the biased substrate strengthens the film. Nitrogen Plasma a-(Please read the precautions on the back before writing this page)

A 經濟部中央標準局貝工消費合作杜印製 在本發明之一實施例,用於形成供轫化已沈積之薄膜 的氣.體可為任何氣體,但較佳為不含氧及碳之氣體,例如 亂、氨或氫氣。氮為純化氮化鈦材料之最有效氣體。另 ’已沈積之材料可利用由非氣相物質產生之離子在擊, 如離子源。已沈積之氮化鈦的電漿處理不會負面影響顆 表現、步驟涵蓋範圍' 已沈積材料之沈積速率或阻障層表 面。 氮化鈦已在下述條件下,於習知真空化學氣相沈積室 外 例 粒 -30- A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(28) 1〇中沈積在矽晶圓上。處理室12内的壓力為0.45托,以及 晶圓支座16之溫度設定為420t。經由含有Ti(NR2)4之起 泡器使用400scm之氦氣流,且氮稀釋劑之流速設定在 lOOsccm。於氮化蘇沈積後,氬沖洗氣體以200sccrn流過 處理室。沈積氮化鈦之習知CVD方法揭露於頒給Sandhu 等人之美國專利第5,246,881號》 結果,氮化鈦以每分鐘約4 2 5 .棒之沈積速率沈積。所 得之氮化鈦薄膜在厚度上非常均一,四晶圓厚度之變異僅 有3.03%。然而’薄膜電阻率(4個晶圓之平均值)高達u,360 β Ω -cm/sq。電阻率亦不穩定。 第18圖為已沈積之氮化鈦之薄膜電阻率(以Q/sq表示) 對時間(以小時表示)之圖。由□表示之測量值係取自在獲 得理想之薄膜厚度後由沈積室中取出之薄膜。由〇表示之 測量值係取自在移出沈積室前先冷卻至1 5〇°C之薄膜。雖 然〇薄膜之薄膜電組率低於□薄膜,但其薄膜電阻率隨時 間而增加。這些性質對擴散阻障層而言皆不理想。 對已沈積之氮化鈦薄膜進行盧瑟福反相散射測量。所 得光譜如第19圖所示。如矽界面一般,碳c、氮n、及氧 〇之波峰顯著出現在光譜上。氮化飲中不同材料之含量如 下··碳含量約30%,氮含量約24% ,氧含量約25%,及鈦 含量約23%。其顯示已沈積之氮化鈦材料包含相當高量之 碳及氧雜質。 努力去降低氮化鈦之薄膜電阻率,藉由在沈積製程時 添加各種不同之氣體來改變氮化鈦之沈積方法。結果如表 (請先閲讀背面之注意事項再填寫本頁) 裝. ,ίτA In the embodiment of the present invention, the shellfish consumer cooperation of the Central Standards Bureau of the Ministry of Economic Affairs is used to form a gas used for forming a thin film that has been deposited. The gas can be any gas, but it is preferably free of oxygen and carbon. Gases such as chaos, ammonia or hydrogen. Nitrogen is the most effective gas for purifying titanium nitride materials. In addition, the deposited materials can be attacked by ions generated from non-gaseous materials, such as ion sources. Plasma treatment of the deposited titanium nitride will not negatively affect the performance of the particles, the scope of the steps' deposition rate of the deposited material or the surface of the barrier layer. Titanium nitride has been printed in the conventional vacuum chemical vapor deposition outdoor samples under the following conditions. -30- A7 B7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs. 5. Description of the invention (28) Deposited on a silicon wafer. on. The pressure in the processing chamber 12 is 0.45 Torr, and the temperature of the wafer holder 16 is set to 420 t. A 400scm helium flow was used through a bubbler containing Ti (NR2) 4, and the flow rate of the nitrogen diluent was set at 100 sccm. After the deposition of thallium nitride, an argon flushing gas was passed through the processing chamber at 200 scccn. A conventional CVD method for depositing titanium nitride is disclosed in US Patent No. 5,246,881 issued to Sandhu et al. As a result, titanium nitride is deposited at a deposition rate of about 42.5 bar per minute. The obtained titanium nitride film is very uniform in thickness, and the variation in thickness of four wafers is only 3.03%. However, the thin film resistivity (average of 4 wafers) is as high as u, 360 β Ω -cm / sq. The resistivity is also unstable. Figure 18 is a graph of the film resistivity (expressed in Q / sq) versus time (expressed in hours) of the deposited titanium nitride. The measurement indicated by □ is taken from the film taken out of the sedimentation chamber after the desired film thickness is obtained. The measurement indicated by 0 was taken from a film cooled to 150 ° C before being removed from the deposition chamber. Although the thin film electrical composition of the thin film is lower than that of the thin film, its thin film resistivity increases with time. These properties are not ideal for a diffusion barrier layer. Rutherford backscattering measurements were performed on the deposited titanium nitride films. The resulting spectrum is shown in Figure 19. Like the silicon interface, the peaks of carbon c, nitrogen n, and oxygen 0 appear prominently on the spectrum. The contents of different materials in the nitrated beverage are as follows: carbon content is about 30%, nitrogen content is about 24%, oxygen content is about 25%, and titanium content is about 23%. It is shown that the deposited titanium nitride material contains relatively high amounts of carbon and oxygen impurities. Efforts have been made to reduce the film resistivity of titanium nitride and to change the deposition method of titanium nitride by adding various gases during the deposition process. The results are shown in the table (please read the precautions on the back before filling this page).

&amp;紙張尺度適用中國國家揉準(CNS ) A4規格(·2ι〇χ297公釐) -31 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(29 ) I所示’顯示於第20圖》表1所示之對照組鈦層是利用剛 提過之方法沈積。在沈積期間,降低氮化鈦之薄膜電阻率 之最成功的實施方式包含NF3(7 seem)流,可使薄膜電阻 率降低至2,200仁Ω -cm。然而,經NF3處理之材料的盧瑟 福反相散射光譜(參見第23圖)顯示薄膜中摻合之雜質為免 。氟之摻合是不理想的。 再者,沈積前一及沈積後一氣流及電漿處理係用以決 定是否此種處理將影響已沈積之氮化鈦的薄膜電阻率。在 2個例子中,電漿係在氮化鈦之化學氣相沈積前及後感生 。利用100瓦特之低功率產生電漿且未偏壓容納氮化鈦沈 積之基材矽晶圓。結果摘要於表π中,顯示於第21圖。沈 積則一及沈積後一處理對已沈積之氮化妖的薄膜電阻率無 很大的影響。因此,高度無法預期的是於電漿中應用偏壓 至晶圓會降低薄膜電阻率並使該薄膜在延長之時間内可維 持穩定。 本發明之其他方法進一步藉由下述實施例說明,但非 思才θ本發明受限於該等實施例中的細節。進行一系列的試 驗,其中對具有氮化鈦層之矽晶圓基材施予4〇〇伏特之偏 壓。在第16圖之處理室110B中,沈積氮化鈦在晶圓上並 在約100瓦特之應用rf功率下利用電漿轫化。連續地循環 沈積及偏壓。循環此二步驟5次以上。延長時間内之沈積 厚度、循環次數及電阻率摘要於表羾,顯示於第22圖。對 &lt;請先閲讀背面之注意事項再4·寫本頁) 裝- 組疋在5未間斷之步驟中沈積,但未在沈積作用之間於 電漿中轫化。&amp; Paper size applies to China National Standard (CNS) A4 (· 2ιχχ297 mm) -31-Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (29) I The titanium layer of the control group shown in Table 1 of Fig. 20 is deposited by the method just mentioned. During deposition, the most successful embodiment of reducing the film resistivity of titanium nitride includes a NF3 (7 seem) flow, which can reduce the film resistivity to 2,200 Ω-cm. However, Rutherford reverse-scattering spectra of NF3-treated materials (see Figure 23) show that impurities doped in the film are avoided. Blending of fluorine is not desirable. Furthermore, a gas flow and plasma treatment before deposition and after deposition are used to determine whether such treatment will affect the film resistivity of the deposited titanium nitride. In two examples, plasma was induced before and after chemical vapor deposition of titanium nitride. Utilizing a low power of 100 watts to generate a plasma and unbiased a substrate silicon wafer containing titanium nitride deposits. The results are summarized in Table π and shown in Figure 21. Sedimentation and post-settling treatments have no significant effect on the resistivity of the deposited nitride nitride film. Therefore, it is highly unexpected that applying a bias voltage to the wafer in the plasma will reduce the resistivity of the film and keep the film stable for an extended period of time. The other methods of the present invention are further illustrated by the following examples, but the invention is not limited to the details in these examples. A series of tests were performed in which a bias voltage of 400 volts was applied to a silicon wafer substrate having a titanium nitride layer. In the processing chamber 110B of FIG. 16, titanium nitride is deposited on a wafer and plasma-etched at an applied rf power of about 100 watts. Continuously cycle deposition and bias. Repeat these two steps more than 5 times. A summary of the deposition thickness, number of cycles, and resistivity over extended time periods is shown in Table 羾 and is shown in Figure 22. (<Please read the precautions on the back before writing this page. 4) Installation-The assembly is deposited in 5 uninterrupted steps, but it is not triturated in the plasma during the deposition.

-32- 、發明説明(3〇) 經濟部中央標準局員工消費合作社印装 表ΙΠ中之《據顯f氮化飲電阻率可顯著地降低且藉由 氮化鈦之後沈積鞀化來戲劇性地改良穩定性。於表瓜之每 個實施例中,延長時間内的電阻率及電阻率改變優於對照 組之例子。經初化之氮化鈦的最初電阻率較低、及延長時 間内的電阻率增加較少。 第24圖為實施例i之氮化鈦薄膜的奥格分析圖。圖顯 示薄膜中的元素的原B農度對薄膜之減鍵邊緣深度(以埃 表示)的關係。氮化鈦在30秒内偏壓2次(參見表瓜)。如第 24圖所示’鈦漠度維射亙定,但圖明顯地顯示出薄膜表面 的氮濃度高,而碳及氧之濃度低。碳及氧雜質量之降低可 持績至深度約1〇〇埃。在彻埃之深度時,#薄膜首先利用 高能量氮原子麻時,氮濃度升高,而碳及氧漢度降低。 第24圖亦顯示根據本發明之初化後薄膜的元素組成改變。 元素分析隨深度之改變如表jy所示,顯示於第25圖。 因為100埃岸度之氮化鈦薄膜適於做為阻障層,本發 明之沈積後轫化可理想地改良氮化鈦阻障層的穩定性並降 低電阻率。顯示存在於實施例7之經沈積後轫化的氮化鈦 的表面70素之奥格光譜顯示於第26圖。該光譜顯示大部分 沈積之材料為含有一些鈦之氮化鈦。碳及氧存在於表面,為雜質。 然而,實施例7之奥格濺鍍分析,如第27圖所示,顯 示在大部分的薄膜中氧濃度降低至一低程度β除了氧之外 ,碳為唯一的主要雜質,但藉由本發明之轫化方法,碳之 殘留不造成影響》在2〇〇埃之深度,薄膜中各種不同元 請k, 閲 讀 背 面 之 注 意 事 項 再 裝 頁 訂 -33- 經濟部中央揲準局員工消費合作社印製 五、發明説明(31) 之濃度,以原子百分比表示為1,2 8% ;碳,20 9% :鈦’ 38.8% ;及氮,37.54%。不含矽。 為了作比較,第28圖顯示對照組薄膜的表面奥格分析 ,及第29圖顯示對照組薄膜的濺鍍奥格分析。對照組薄膜 之氧含量顯著地較高。在200埃之深度,對照組薄膜之元 素濃度,以原子百分比表示為:氧,1〇 8% ;碳,2〇 7% ’敛,41.0% ;及氮,27.5%。不含石夕〇 實施例8之氮化鈦薄膜的表面奥格分析顯示於第3〇圖 ,及濺鍍奥格分析對深度(以埃表示)之關係顯示於第31圖 。此薄膜之氧含量低◊在43埃之測度,元素濃度以原子百 分比表示為:氧,3.1% ·’碳,13.7% ;鈦,40.0% ;及氮 ’ 43·2%。不含發。 利用盧瑟福反相散射測定對照組及實施例之氮化鈦沈 積膜的密度,以原子/立方厘米表示。數據摘要於表V, 顯示於第32圖。如表V之數據所示,電漿靭化,包含利用 高能量離子轟擊已沈積之氮化鈦,與對照組相較,增加氮 化鈦薄膜的密度。 本發明未限制於氮化欽阻障層。本發明亦可改良其他 化材料之性質及化學組成,例如鋁、銅、鈦、组、五氧化 二鈕、矽化物,其他氮化物。例如可藉由實施本發明之各 方面來改良一元金屬氣化物MxNy及三元金屬發氮化物-32-, Description of the invention (30) The “Resistance of Nitrided Drink Resistivity can be significantly reduced and printed dramatically by the deposition of titanium nitride after the deposition of titanium nitride, as shown in Table III printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs. Improved stability. In each embodiment of the watch, the resistivity and resistivity change over an extended period of time were better than those of the control group. The initial resistivity of the initialized titanium nitride is low, and the resistivity increase over time is small. Fig. 24 is an Auger analysis chart of the titanium nitride film of Example i. The figure shows the relationship between the original B agronomy of the elements in the film and the minus bond edge depth (in Angstroms) of the film. Titanium nitride is biased twice within 30 seconds (see Table Gourd). As shown in Fig. 24 ', the titanium oxide is dimensionally determined, but the figure clearly shows that the film surface has a high nitrogen concentration and a low carbon and oxygen concentration. The reduction in carbon and oxygen mass can be sustained to a depth of about 100 Angstroms. At the Chee's depth, when the #film first uses high-energy nitrogen atomic hemp, the nitrogen concentration increases, while the carbon and oxygen content decreases. Figure 24 also shows the change in the elemental composition of the film after the initialisation according to the invention. Elemental analysis as a function of depth is shown in Table jy and is shown in Figure 25. Since a titanium nitride film with a thickness of 100 angstroms is suitable as the barrier layer, the post-deposition halide of the present invention can ideally improve the stability of the titanium nitride barrier layer and reduce the resistivity. The Auger spectrum showing 70 elements present on the surface of the post-deposited tritiated titanium nitride of Example 7 is shown in FIG. The spectrum shows that most of the deposited material is titanium nitride containing some titanium. Carbon and oxygen exist on the surface and are impurities. However, the Auger sputtering analysis of Example 7, as shown in FIG. 27, shows that the oxygen concentration is reduced to a low level in most films. In addition to oxygen, carbon is the only major impurity. "The carbonization method does not affect carbon residue." At a depth of 200 angstroms, the various elements in the film please k. Read the precautions on the back and re-bound. System V. Description of the invention (31) The concentration in atomic percentage is 1, 2 8%; carbon, 20 9%: titanium '38.8%; and nitrogen, 37.54%. Does not contain silicon. For comparison, Figure 28 shows the surface Auger analysis of the control film, and Figure 29 shows the sputtering Auger analysis of the control film. The oxygen content of the control film was significantly higher. At a depth of 200 angstroms, the elemental concentration of the control film was expressed in atomic percentages as: oxygen, 108%; carbon, 207% ', 41.0%; and nitrogen, 27.5%. The surface Auger analysis of the titanium nitride film without Shi Xi in Example 8 is shown in FIG. 30, and the relationship between the sputtering Auger analysis and the depth (in Angstroms) is shown in FIG. 31. The oxygen content of this film was measured at 43 angstroms, and the elemental concentration was expressed in atomic percentage as: oxygen, 3.1% · 'carbon, 13.7%; titanium, 40.0%; and nitrogen' 43.2%. Does not include hair. The density of the titanium nitride deposited films of the control group and the examples was measured using Rutherford back-scattering, and expressed in atoms / cm3. The data is summarized in Table V and shown in Figure 32. As shown in the data in Table V, plasma toughening involves bombarding the deposited titanium nitride with high-energy ions, which increases the density of the titanium nitride film compared to the control group. The invention is not limited to a nitride barrier layer. The invention can also improve the properties and chemical composition of other chemical materials, such as aluminum, copper, titanium, titanium, pentoxide, silicide, and other nitrides. For example, the implementation of various aspects of the present invention can improve the monometallic gaseous MxNy and ternary metal nitrides.

MxSiyNz(其中 Μ為 Ti、Zr、Hf ' Ta、Mo、W及其他金屬) 之性質及化學組成。除了矽晶圓以外之基材亦可利用,例 如不錄鋼、金屬、氧化物、玻璃,及梦化物。 本紙張尺度適用中國國家梯準(CNS ) A4规格(210X297公釐) L---------^ ^------tr----1--^ j {請先閲讀背面之注意事項再4·寫本頁) -34- 經濟部中央榡準局員工消費合作社,5-¾ A7 B7 五、發明説Η月(32) 沈積及電漿轫化可在配備有前驅物氣體及電漿可能輸 出功率之單一CVD處理室中進行,例如處理室u〇A、n〇B 及iioo當應用處理室110A、110B、或110(:時,氮化鈦 之薄膜可沈積並接著直接在同一處理室令鞀化。再者,當 應用例如第3(a)圖所示之裝置來實施本發明時,可應用超 過一個處理室以上。當應用超過一個以上的處理室時,當 由CVD處理室1 〇轉移至鞀化處理室時,最好維持真空。 當在處理室110B中進行已沈積之氮化鈦的電漿鞀化 時,可接著進行下述步驟。將晶圓114置於晶圓支座116.上 並與噴射頭B6相距約〇.3至〇.8叫,較佳為〇 6至〇 7忖。藉 由將來自功率約1〇〇至5〇〇瓦特及350kHz之rf訊號源之rf能 量施予基材而獲得帶能量之離子。每平方厘米(em2)之晶 圓114之表面積轉移約0.3至L6瓦特之功率。 因為接地之帶負電力之晶圓支座116及喷射頭136及處 理室壁’可感生介於50至1,〇〇〇伏特之DC自給偏壓。較佳 地’介於晶圓114及地面間的DC自給偏壓為介於200至800 伏特。此足夠吸引離子在高能量下轟擊晶圓n4表面。結 果,可惰化或強化已沈積之氮化鈦,以致使氮化鈦在延長 時間内可維持穩定。 第33圖為根據本發明形成之二種不同氮化鈦層之氧原 子濃度對空氣暴露時間的圖。此二氮化鈦薄膜皆在祖同處 理至内沈積及電漿初化。此處理室顏似於上述之處理室 110B。 對每一薄膜而言,藉由循環沈積及鞀化來形成厚度2〇〇 本紙張尺度適用中國國家捸準(CNS ) A4规格(210X297公釐) U---------Γ 裝------訂----^--- (請先聞讀背面之注意事項再‘填寫本頁) -35- 經濟部中央樣準局員工消費合作社印裝 A7 ~-----— _B7_ 五、發明説明(33 ) 埃的氣化欽薄膜。《了達成此目的,沈積厚1GG埃之層並 接著轫化,接著進行厚1〇〇埃之第二層的沈積及鞀化。利 用N2電漿達成軔化。在24小時内重覆測量該二薄膜的氧 原子濃度百分比並反映在圖312上。 由圖312可看出,氧濃度最初約2%。於24小時後含 量低於2.5%,表示沈積薄膜非常穩定。為了做比較,圖314 說明利用習知CVD但未轫化之方法沈積之氮化鈦薄膜的 氧濃度測量值。這些薄膜不僅具有較高(15%)之最初氧濃 度,亦以較快的速率吸收氧。習知方法形成之薄膜在延長 時間内亦較不穩定,電阻率顯著地增加。為了做比較,第 34圖中之點316說明藉由物理氣相沈積法沈積之氮化鈦薄 膜的典型氧濃度(約1%)。 第34(a)-(c)圖為不同薄膜之xPSf光譜的圖形表示。第 34(a)圖表示200埃未轫化薄膜的光譜並顯示在316處,有 機結合之碟量非常高。為了做比較,用於繪出第34(b)及(c) 圖之200埃薄膜測量值分別在317及318處顯示降低之有機 結合碳量。需注意的是,第34(b)圖之薄膜係藉由根據本 發明沈積100埃氮化欽層、電漿初化,並接著進行埃之 第二氮化鈦層的沈積及鞀化來形成。第34(c)圖之薄膜係 藉由連續地沈積及轫化四層厚50埃之氮化鈦層來形成。 第35(a)及(b)囷進一步說明本發明之改良。第35(&amp;)圖 顯示應用CVD氮化鈦薄膜之通路電阻,該薄膜係經沈積 並利用N2電漿來電漿初化。通路首先與cvd氮化氮黏著 層連接並接著充填CVD鎢插塞。第35(a)圖提供通路電阻 本紙張尺度適用中國國家揉準(CNS ) A4規格(210X297公釐) -----------{裝-- (請先閲讀背面之注意事項再ίΛ·寫本頁) 、1Τ J·. *1 HiThe properties and chemical composition of MxSiyNz (where M is Ti, Zr, Hf 'Ta, Mo, W and other metals). Substrates other than silicon wafers can be used, such as steel, metal, oxide, glass, and dream compounds. This paper size is applicable to China National Standard (CNS) A4 (210X297mm) L --------- ^ ^ ------ tr ---- 1-^ j {Please read first Note on the back (4. Write this page) -34- Employee Consumer Cooperatives, Central Bureau of Standards, Ministry of Economic Affairs, 5-¾ A7 B7 V. Inventory (32) Deposition and plasma plasma conversion can be equipped with precursors The gas and plasma may output power in a single CVD processing chamber, such as the processing chambers uOA, noB, and iioo. When the processing chambers 110A, 110B, or 110 (:) are used, a thin film of titanium nitride can be deposited and then Directly in the same processing chamber. Furthermore, when the present invention is implemented using the device shown in Figure 3 (a), more than one processing chamber can be applied. When more than one processing chamber is used, when When transferring from the CVD processing chamber 10 to the halogenated processing chamber, it is best to maintain a vacuum. When the plasma hardening of the deposited titanium nitride is performed in the processing chamber 110B, the following steps can be performed. Wafer 114 It is placed on the wafer support 116. and is spaced apart from the jet head B6 by about 0.3 to 0.8, preferably from 0 to 6 忖. 500 watts and the rf energy of the 350 kHz rf signal source are applied to the substrate to obtain energetic ions. The surface area of the wafer 114 per square centimeter (em2) transfers approximately 0.3 to L6 watts of power. The wafer support 116 and the spray head 136 and the processing chamber wall 'can induce a DC self-bias voltage between 50 and 1,000 volts. Preferably' a DC self-bias voltage between the wafer 114 and the ground It is between 200 and 800 volts. This is enough to attract ions to bombard the n4 surface of the wafer at high energy. As a result, the deposited titanium nitride can be inerted or strengthened, so that the titanium nitride can be stable for an extended period of time. Figure 33 is a graph of oxygen atomic concentration versus air exposure time for two different titanium nitride layers formed according to the present invention. The titanium dinitride films are all processed to the inner deposition and plasma initializing. This process chamber It is similar to the above-mentioned processing chamber 110B. For each film, the thickness is formed by cyclic deposition and chemical conversion. This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) U --- ------ Γ Install ------ Order ---- ^ --- (Please read the note on the back first (Please fill in this page again) -35- Printing of A7 by the Consumer Cooperatives of the Central Procurement Bureau of the Ministry of Economic Affairs ~ --------- _B7_ V. Description of the Invention (33) The gasification film of Egypt. "To achieve this purpose, A layer with a thickness of 1 GG was deposited and then tritiated, and then a second layer with a thickness of 100 angstroms was deposited and tritiated. The tritium was achieved using a N2 plasma. The oxygen atomic concentrations of the two films were repeatedly measured within 24 hours. The percentages are also reflected on graph 312. As can be seen from graph 312, the oxygen concentration was initially about 2%. The content was less than 2.5% after 24 hours, indicating that the deposited film was very stable. For comparison, FIG. 314 illustrates the oxygen concentration measurement of a titanium nitride thin film deposited by the conventional CVD but not tritiated method. Not only do these films have a higher (15%) initial oxygen concentration, they also absorb oxygen at a faster rate. The film formed by the conventional method is also unstable for a prolonged period of time, and the resistivity increases significantly. For comparison, point 316 in FIG. 34 illustrates a typical oxygen concentration (about 1%) of a titanium nitride film deposited by a physical vapor deposition method. Figures 34 (a)-(c) are graphical representations of xPSf spectra of different films. Figure 34 (a) shows the spectrum of a 200 angstrom unfluorinated film and is shown at 316. The amount of organically bound discs is very high. For comparison, the 200 angstrom film measurements used to plot Figures 34 (b) and (c) show reduced organic bound carbon at 317 and 318, respectively. It should be noted that the thin film of FIG. 34 (b) is formed by depositing a 100 angstrom nitride layer and plasma initiation according to the present invention, and then performing deposition and hafnium of a second titanium nitride layer of angstrom. . The thin film of Fig. 34 (c) is formed by successively depositing and triturating four titanium nitride layers with a thickness of 50 angstroms. Items 35 (a) and (b) (i) further describe improvements of the present invention. Figure 35 &amp; shows the via resistance of a CVD titanium nitride film, which was deposited and initialized with a N2 plasma. The via is first connected to a cvd nitrogen nitride adhesion layer and then filled with a CVD tungsten plug. Figure 35 (a) provides the path resistance. The paper size is applicable to the Chinese National Standard (CNS) A4 (210X297 mm) ----------- {Installation-- (Please read the precautions on the back first) (I write this page again), 1T J .. * 1 Hi

1 I -36- A7 B7 五、發明説明(34) 對薄膜沈積厚度圖。該圖係針對05//m之通路而繪製, 縱橫尺寸比約2.5。如圖所示,經電漿鞀化之薄膜(圖32〇) 的通路電阻實質低於未鞀化之習知沈積薄膜(圖322)。為 了做比較,藉由箭頭324說明pVD沈積之氮化鈦薄膜的通 路電阻。 類似之改良藉由第35(b)圖說明,該圖為矽化物之接 觸電阻對It化鈇厚度之圖示。該圖係針對〇 5 a m接觸點 而繪製,縱橫尺寸比約2.5。圖33〇顯示根據本發明藉由N2 電漿處理製備之接觸點的電阻。圖33〇說明之電阻實質低 於圖322說明之電阻,圖322表示之電阻係得自習知技術 CVD沈積。為了做比較,藉由箭頭324表示pvD氮化鈦對 照組之接觸電阻。 第36圖說明用於產生理想厚度之單一薄膜的沈積及退 火循環次數的景H第中,藉由化學氣相沈積法及 到用戰_化來沈積總厚度扇埃之氮化鈦薄膜。由圖 340說明之第-例中,製程循環4次,沈積之四層中每層各 具有厚度500埃並在沈積下一層之前進行電漿轫化。由圖 342說明之第二例中’沈積各具有1〇〇埃厚度之二層並個別 鞀化》 圖340表示之例子顯示之電阻率(500至600仁Q _cm)較 曲線342顯示之電阻率(7〇〇至8〇〇// Ω.)低。然而,由圖 340及342表示之薄膜電阻率皆低於1000&quot; Ω-cm之上限。 再者’在每―例中’ 8天内增加的電阻率接近相等,該二 例皆至少低於5%。 f 裝 訂------f.w- (請先閲讀背面之注意事項再4·寫本頁) 經濟部中央標準局貝工消費合作社印製 -37- 經濟部中央橾準局男工消費合作杜印製1 I -36- A7 B7 V. Explanation of the invention (34) Thickness map of thin film deposition. The map is drawn for the 05 // m path, and the aspect ratio is about 2.5. As shown in the figure, the via resistance of the plasma-thinned film (Figure 32) is substantially lower than that of a conventionally-deposited thin film (Figure 322). For comparison, the arrow 324 illustrates the path resistance of the pVD-deposited titanium nitride film. A similar improvement is illustrated by Figure 35 (b), which is a graphical representation of the contact resistance of silicide vs. It thickness. The map is drawn for a contact point of 0 5 a m with an aspect ratio of about 2.5. FIG. 33 shows the resistance of a contact point prepared by N2 plasma treatment according to the present invention. The resistance illustrated in Figure 33 is substantially lower than the resistance illustrated in Figure 322. The resistance illustrated in Figure 322 is derived from the conventional technique CVD deposition. For comparison, the contact resistance of the pvD titanium nitride control group is indicated by arrow 324. Fig. 36 illustrates the scenario of the deposition and tempering cycles used to produce a single thin film of the desired thickness. The titanium nitride thin film with a total thickness of fan angstroms is deposited by a chemical vapor deposition method and by chemical conversion. In the first example illustrated by FIG. 340, the process cycle is four times, and each of the four layers deposited has a thickness of 500 angstroms and is plasma-cured before being deposited. In the second example illustrated by FIG. 342, 'deposit two layers each having a thickness of 100 angstroms and individually melt them. "The example shown in Fig. 340 shows a resistivity (500 to 600 ren Q _cm) than the resistivity shown in curve 342. (700 to 800 // Ω.) Is low. However, the resistivity of the thin films shown in FIGS. 340 and 342 are both lower than the upper limit of 1000 Ω-cm. Moreover, the increase in resistivity within 8 days of each case is nearly equal, and both cases are at least less than 5%. f Binding ------ fw- (Please read the notes on the back first and then write this page) Printed by the Shell Worker Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs-37 Print

五、發明説明(35) 進行其他測試來測定電漿處理之處理壓力對薄膜電阻 率及DC偏壓的影響。這些測試之結果說明於第37圖。第37 圖係針對200埃氮化欽沈積而續製,該沈積係在電漿令處 理60秒,使用之功率约2〇瓦特。 如圖350所示,藉由本發明製造之呈現改良電阻率的 薄膜一般不受處理壓力影響。然而,其顯示出當處理壓力 低於约200毫托時,無法達到低電阻率。 如圖352所示,超過降低之電漿之感生DC偏壓實質上 約等於處理壓力,該感生DC偏壓約2〇〇至1〇〇〇毫托。因此 ’該偏壓相當恆定地維持在約15〇伏特。 第38(a)圖說明處理時間及頻率對薄膜電阻率的影響 。比較4種不同之薄膜,每種總厚度為2〇〇埃。第_種薄膜 ’如圖360表示,係藉由最初沈積及轫化一層厚5〇埃之膜 並接著沈積及轫化6層厚25埃之膜而形成^每一層經沈積 並接著在下一層沈積之前鞀化。第二種薄膜,如圖362表 示,係藉由分別沈積及轫化4層厚50埃之膜而形成。第三 種薄膜,由圖364表示,係藉由分別分別沈積及轫化2層厚 1〇〇埃之膜而形成。最後一種薄膜,由圖366表示,係藉由 沈積單一層厚200埃之膜並接著根據本發明轫化而形成。 由第38(a)圖内之圖,可做許多觀察。該圖顯示出當 最後膜層是由較高數目之個別層數組成時,可達到較低的 電阻率。再者,各個膜層愈薄,電漿處理之時間對電阻率 影響愈低。第38〇&gt;)圖說明電漿處理時間對薄膜電阻率之 影響的另一實施例。 本紙張从適用中關家梯準(CNS ) ( 2ωχ297公釐) -38- A7 B7 經濟部中央橾準局貝工消費合作社印製 五、發明説明(36) 除了降低薄膜之電阻及增加其穩定性之外,可利用本 發明之方法達到其他目的。利用N2電漿轫化之薄膜的分 析顯示出接近薄膜表面之氮量增加。其顯示出某些氮離子 已包埋在薄膜内並與薄膜反應。因此,可使用此轫化過程 使薄膜富含來自電漿的離子/分子。再者,此過程可用於 自薄膜放出或取代非所欲的分子/離子。第34(b)-(c)圖顯 示轟擊薄膜放出碳原子。 /氤雷链 在本發明之另一實施例中’在電漿鞀化沈積在晶圓m 上的薄膜時,氮及氫之混合物可應用於產生電漿。第一步 '...- · 1 / 雜為利用習知熱CVD法在晶圓114上沈積氮化鈦薄膜,。 接著利用由含有氮及氫之混合物的氣體產生電漿來轫化已 沈積之材料。 若利用處理室ΠΟΑ、110B或110C中任一處理室來進 行這些步驟,CVD'處理及鞀化可在相同之處理室中進行 。另外,可於一處理室中將氮化鈦沈積在晶圓H4上,及 晶圓114可轉移至另一處理室進行沈積後轫化。 當應用處理室110A時,晶圓114可放置在晶圓支座116 上並與噴射頭136間隔约0.3至0.8吋,較佳為0.6至0.7对。 如上所述,可在晶圓114上沈積一層氮化鈦。最初沈積之 氮化鈦層厚度可為5〇至200埃厚》 於完成沈積後,開始進行已沈積材料的電漿鞀化。經 由喷射頭136將包含氮及氫之3: 1混合物的氣體引入處理 至112。以氮氣流速約3〇〇sccm之速率引入氣及氫之混合 請 先 閲 背 iBj 之 注V. Description of the invention (35) Other tests were performed to determine the effect of plasma treatment pressure on film resistivity and DC bias. The results of these tests are illustrated in Figure 37. Figure 37 is a continuation of the 200 Angstrom Nitrogen deposition, which was processed in a plasma order for 60 seconds, using about 20 watts of power. As shown in Fig. 350, a thin film exhibiting improved resistivity produced by the present invention is generally not affected by the processing pressure. However, it has been shown that when the processing pressure is lower than about 200 mTorr, a low resistivity cannot be reached. As shown in Figure 352, the induced DC bias exceeding the reduced plasma is substantially equal to the processing pressure, and the induced DC bias is about 2000 to 10,000 millitorr. Therefore, 'the bias voltage is maintained fairly constant at about 150 volts. Figure 38 (a) illustrates the effect of processing time and frequency on film resistivity. Compare 4 different films, each with a total thickness of 200 Angstroms. The first type of thin film, as shown in Figure 360, is formed by initially depositing and curing a film of 50 angstroms in thickness and then depositing and curing 6 layers of 25 angstroms in thickness. Was previously converted. The second type of thin film, as shown in Figure 362, is formed by depositing and aerating 4 layers of 50 angstroms respectively. The third type of thin film, shown in Fig. 364, is formed by depositing and aerating two layers each having a thickness of 100 angstroms. The final thin film, represented by Figure 366, is formed by depositing a single layer with a thickness of 200 angstroms and then aerating in accordance with the present invention. From the graph in Figure 38 (a), many observations can be made. The figure shows that when the final film layer is composed of a higher number of individual layers, a lower resistivity can be achieved. Furthermore, the thinner the individual film layers, the lower the effect of plasma treatment time on resistivity. Fig. 38 &gt;) illustrates another example of the influence of the plasma treatment time on the resistivity of the thin film. This paper is printed from the applicable Zhongguanjiazheng Standard (CNS) (2ωχ297mm) -38- A7 B7 Printed by Shellfish Consumer Cooperative of Central Bureau of Standards, Ministry of Economy In addition to other properties, the method of the present invention can be used to achieve other purposes. Analysis of the thin film hardened with N2 plasma showed an increase in the amount of nitrogen near the surface of the thin film. It shows that some nitrogen ions have been embedded in and reacted with the film. Therefore, this process can be used to enrich the film with ions / molecules from the plasma. Furthermore, this process can be used to release or replace unwanted molecules / ions from the film. Figures 34 (b)-(c) show that carbon atoms are emitted when the film is bombarded. / 氤 雷 链 In another embodiment of the present invention, when a thin film deposited on a wafer m is plasma-magnetized, a mixture of nitrogen and hydrogen may be used to generate a plasma. The first step '...- · 1 / hybrid is to deposit a titanium nitride film on the wafer 114 by the conventional thermal CVD method. A plasma generated from a gas containing a mixture of nitrogen and hydrogen is then used to tritify the deposited material. If these steps are performed using any one of the processing chambers ΠOA, 110B, or 110C, the CVD 'processing and chemical conversion can be performed in the same processing chamber. In addition, titanium nitride may be deposited on the wafer H4 in one processing chamber, and the wafer 114 may be transferred to another processing chamber for post-deposition and tritiation. When the processing chamber 110A is applied, the wafer 114 may be placed on the wafer support 116 and spaced from the spray head 136 by about 0.3 to 0.8 inches, preferably 0.6 to 0.7 pairs. As described above, a layer of titanium nitride may be deposited on the wafer 114. The thickness of the initially deposited titanium nitride layer may be 50 to 200 Angstroms. After the deposition is completed, the plasma hardening of the deposited material begins. A gas containing a 3: 1 mixture of nitrogen and hydrogen is introduced to 112 through a spray head 136. Introduce the mixing of gas and hydrogen at a nitrogen flow rate of about 300 sccm. Please read the note of iBj first.

I 裝 頁 訂 - I } * y -39- 、發明説明(37) 物。rf源142接著在350KHz下經由匹配網路145供應350瓦 特之功率以產生rf訊號至晶圓支座H6及噴射頭136。較佳 地,喷射頭136及晶圓支座116之rf訊號為180度異相。 雖然上述氮對氮之比率為3 : 1,也可使用1 : 2。一般 而言,混合物中氫佔較高比例造成具有較高長期穩定性的 薄膜。然而,電漿中氫過多可能造成薄膜中氫及碳之間鍵 結形成聚合物,增加薄膜之電阻率、 在供應至喷射頭136及晶圓支座116之rf功率的影響下 ,形成含有帶正電之氮及氫離子的電漿。電漿一般維持 10-30秒。如上所述,使處理室112接地。噴射頭136需要 介於-100至-400伏特之負偏壓,一般為_2〇〇伏特。晶圓114 之自給偏壓需要介於_1〇〇至_4〇〇伏特之負偏壓’ 一般為_ 300伏特。該負偏壓伏特數在轟擊期間維持約為定值。 在轟擊期間,帶正電之離子藉由電壓梯度自電漿向晶 圓114表面加速。此造成離子轟擊晶圓表面,穿透至5〇至1〇〇 埃之深度。來自電漿之帶能量的中性原子顆粒亦可轟轟擊 晶圓114。 離子轟擊之結果,產生沈積材料之壓縮並使厚度減少 20至50埃。此厚度減少是由晶圓溫度及電漿處理時間及能 量決定。可接續地沈積其他氮化鈦層並依需要轫化。較佳 地,其他層各別之厚度範圍為5〇至1〇〇埃。 於完成轫化後,所得經鞀化之氮化鈦薄膜呈現許多改 良的性質。氧含量降低約20至25%,造成經沈積及鞀化之 材料之含氧量低於1%。薄膜密度由低於3丨克/立方厘 A7 B7 五、發明説明(38) (g/cm3)增加至約3.9(g/cm3)。摻合至薄膜内的碳部分降低 25%或更多,以致使沈積膜之含碳量為3%。薄膜之結構 發生改變,且薄膜之電阻率由約1〇,〇〇〇# Q_cmi處理前 程度降低至如..150 a Q -cm —般低。當經初化之薄膜暴露 之氧、空氣或水蒸氣中時,氧吸收量低於未經鞀化之沈積 膜。電漿鞀化造成來自電漿之氮取代所謂之沈積膜中的碳 及氮。 請 閲 之 注I binding-I} * y -39-, invention description (37). The rf source 142 then supplies 350 watts of power at 350 KHz via the matching network 145 to generate rf signals to the wafer support H6 and the spray head 136. Preferably, the rf signals of the spray head 136 and the wafer support 116 are 180 degrees out of phase. Although the above-mentioned nitrogen-to-nitrogen ratio is 3: 1, 1: 2 can also be used. In general, the higher proportion of hydrogen in the mixture results in films with higher long-term stability. However, too much hydrogen in the plasma may cause a bond between hydrogen and carbon in the film to form a polymer, increase the resistivity of the film, and under the influence of the rf power supplied to the spray head 136 and the wafer support 116, a band containing Plasma of positively charged nitrogen and hydrogen ions. Plasma is usually maintained for 10-30 seconds. As described above, the processing chamber 112 is grounded. The ejection head 136 requires a negative bias voltage of -100 to -400 volts, which is generally -200 volts. The self-bias voltage of wafer 114 requires a negative bias voltage between 100 and 400 volts, which is generally 300 volts. The negative bias volts remain approximately constant during the bombardment. During the bombardment, positively charged ions are accelerated from the plasma toward the surface of the crystal circle 114 by a voltage gradient. This caused the ions to bombard the wafer surface and penetrate to a depth of 50 to 100 Angstroms. Neutral atomic particles with energy from the plasma can also bombard wafer 114. As a result of the ion bombardment, compression of the deposited material is produced and the thickness is reduced by 20 to 50 Angstroms. This reduction in thickness is determined by wafer temperature and plasma processing time and energy. Other titanium nitride layers can be successively deposited and halogenated as needed. Preferably, each of the other layers has a thickness ranging from 50 to 100 angstroms. After the halogenation is completed, the resulting titanium nitride film exhibits many improved properties. The oxygen content is reduced by about 20 to 25%, resulting in less than 1% oxygen content in deposited and tritiated materials. The density of the film increased from less than 3 g / cm3 A7 B7 V. Description of the invention (38) (g / cm3) to about 3.9 (g / cm3). The amount of carbon incorporated into the film is reduced by 25% or more, so that the carbon content of the deposited film is 3%. The structure of the thin film was changed, and the resistivity of the thin film was reduced from about 10.0% # Q_cmi before the treatment to as low as 150 a Q-cm. When the originalized film is exposed to oxygen, air, or water vapor, the amount of oxygen absorbed is lower than that of the non-cured deposited film. Plasma deliquescence causes nitrogen from the plasma to replace carbon and nitrogen in the so-called deposited film. Please read the note

I 經濟部中央楼準局貝工消費合作社印製 已發現將虱添加至形成電漿之氣體可在藉由離子轟擊 自薄膜中放出碳時,顯著地減少塗覆在處理室112内側的 碳量。處理室112之碳塗層的減少是有利的,因為碳塗層 改變處理室之阻抗並使電漿之精確控制變得困難。碳塗層 之降低造成處理室112在需要清潔前之使用次數較多。 第39(a)圖為藉由連續在二氧切層上沈積及初化厚 1〇〇埃之氮化鈦層而形成之氮化鈦層的奥格電子光譜深度 變化。由第39⑷随可看出’整個’薄膜大部分具有均一的 碳及氧含量,其中碳為9原子百分比及氧為2原子百分比。 經轫化之氮化鈦薄膜的電阻率約25〇从Ω 。 第39(b)圖顯示藉由沈積絲化厚观之氮化欽層所 獲得之改良。第39(b)圖 第39⑷圖為藉由連續在二氧切頂層沈積及初化厚 0埃之氮化鈦層而形成之氮化鈦層的奧格電子光譜深度變 化。再次可看㈣個薄膜大部分具有均__的似氧含量, ,中碳為3原子百分比及氧為!原子百分比。欽及氮之部分 间於刖述厚1GG埃之製程。薄膜的電阻率僅有⑽&quot;◦.I Printed by Shelley Consumer Cooperative, Central Bureau of the Ministry of Economic Affairs, has found that adding lice to the plasma-forming gas can significantly reduce the amount of carbon coated inside the processing chamber 112 when carbon is released from the film by ion bombardment . The reduction of the carbon coating of the processing chamber 112 is advantageous because the carbon coating changes the impedance of the processing chamber and makes precise control of the plasma difficult. The reduction of the carbon coating causes the processing chamber 112 to be used more often before it needs to be cleaned. Fig. 39 (a) shows the change in depth of the Auger electron spectrum of a titanium nitride layer formed by successively depositing and initializing a titanium nitride layer having a thickness of 100 angstroms on a dioxane layer. It can be seen from the 39th paragraph that the 'whole' film has most of uniform carbon and oxygen contents, in which carbon is 9 atomic percent and oxygen is 2 atomic percent. The resistivity of the tritiated titanium nitride film is about 25 ° from Ω. Figure 39 (b) shows the improvement obtained by depositing a thickened nitrided layer. Figure 39 (b) Figure 39 (i) shows the Auger electron spectrum depth change of a titanium nitride layer formed by successively depositing and initializing a titanium nitride layer with a thickness of 0 angstroms on the top of the dioxane. Once again, you can see that most of the films have an oxygen-like content of __, and the medium carbon is 3 atomic percent and the oxygen is! Atomic percentage. The process involving nitrogen is described in the process of thick 1GG. The resistivity of the film is only ⑽ &quot; ◦.

$ 裝 訂 V^· -41 - 經濟部中央標準局員工消費合作社印製 A7 B7 . 五、發明説明(39) '~ - 0 ~^~二_氮/氫/稀有i辨常焚 ,在本發明之另一實施例中,利用氣及氣之氣體混合物 形成之初化電漿亦可包含其他氣體,例如氮、氮及氨。包 含其他稀有氣體亦可改良離子絲處理。因為氣原子較氮 原子重’氬原子可提供較優異的轟擊輸出功率。 再者,可想像到由非氮化鈦之材料組成之薄膜組成亦 可利用類似本發明使用之方式來改變。可添加其他氣體至 電漿來改變薄膜的化學組成,藉由與薄膜掺合或與薄膜中 存在雜質反應。例如,可使用NH3及CH4。較佳為利用以 氧為主之電漿處理氧化物薄膜,例如Ta2〇5。 雖然本發明已藉由電漿轟擊之CVD沈積薄膜來描述, 但本發明在PVD-沈積薄膜上具有應用性。再者,本發明 發現在二元金屬氮化物MxNy及三元金屬矽氮化*MxSiyNz( 其中Μ可為Ti、Zr、Hf、Ta、Mo、W及其他金屬)上的特 殊應用。 本發明亦可用於以有利的方式改良薄膜的形態。薄阻 障層材料可適用於本發明之高密度離子轟擊,以增進薄膜 晶粒位向之均一性。因為底層晶粒之位向影響後續沈積層 的結構,本發明藉由改良底層之晶體結構及/或晶體生長 位向而具有調整及改良後續沈積層之形態的能力。 可藉由沈積厚度低於50埃之薄成核界面層來控制多層 之形態,藉由高密度離子轟擊調整形態,並接著藉由標準 技術沈積大部分或其餘部分的薄膜。覆蓋層之結構係由先 本紙張尺度適用中國國家捸準(CNS ) A4規格(210X297公釐) ~~~' (請先閲讀背面之注意事項再4·寫本頁) 裝·$ Binding V ^ · -41-Printed A7 B7 by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs. V. Description of the invention (39) '~-0 ~ ^ ~ 2_nitrogen / hydrogen / rare i In another embodiment, the initial plasma formed by using a gas and a gas mixture of gas may also include other gases, such as nitrogen, nitrogen, and ammonia. Containing other noble gases can also improve ion wire processing. Because gas atoms are heavier than nitrogen atoms, argon atoms can provide superior bombardment output. Furthermore, it is conceivable that the composition of a thin film composed of a material other than titanium nitride can also be changed in a manner similar to that used in the present invention. Other gases can be added to the plasma to change the chemical composition of the film, either by blending with the film or reacting with impurities present in the film. For example, NH3 and CH4 can be used. It is preferred to use an oxygen-based plasma treatment of the oxide film, such as Ta205. Although the present invention has been described by plasma bombarded CVD deposited films, the present invention has applicability to PVD-deposited films. Furthermore, the present invention finds special applications on binary metal nitrides MxNy and ternary metal silicon nitrides * MxSiyNz (where M can be Ti, Zr, Hf, Ta, Mo, W, and other metals). The invention can also be used to improve the morphology of films in an advantageous manner. The thin barrier layer material can be applied to the high-density ion bombardment of the present invention to improve the uniformity of the crystal grain orientation of the thin film. Because the orientation of the underlying crystal grains affects the structure of the subsequent deposited layer, the present invention has the ability to adjust and improve the morphology of the subsequent deposited layer by improving the crystal structure and / or crystal growth orientation of the underlying layer. The morphology of multiple layers can be controlled by depositing a thin nucleation interface layer with a thickness of less than 50 Angstroms, adjusting the morphology by high-density ion bombardment, and then depositing most or the rest of the film by standard techniques. The structure of the cover layer is based on the paper size applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) ~~~ '(Please read the precautions on the back before writing the page 4)

、1T -42- A7 B7 40 五、發明説明( 前經調整之底層的結構決定。 此可參考第40圖來說明。就氮化鈦薄膜而論,已可決 定其較佳之晶體及位向為&lt;2〇〇&gt;。推測添加氫至電漿中 可藉由使薄膜較具結晶性來改良薄膜。第4〇圖為習知 氮化鈦層之X—射線散射掠射角掃瞄,該氮化鈦層厚1000 埃,沈積在矽晶圓上》曲線上的點表示位在&lt; 200&gt;位向、 1T -42- A7 B7 40 V. Description of the invention (The structure of the bottom layer adjusted before. This can be explained with reference to Figure 40. As far as the titanium nitride film is concerned, its better crystal and orientation can be determined as &lt; 2〇〇 &gt;. It is speculated that adding hydrogen to the plasma can improve the film by making the film more crystalline. Figure 40 is an X-ray scattering grazing angle scan of a conventional titanium nitride layer. The titanium nitride layer is 1000 angstroms thick and is deposited on a silicon wafer. The points on the curve indicate that they are in the &lt; 200 &gt; orientation.

上晶粒的數目,標記為300由圖可看出,無明顯之TiN &lt;200&gt;波峰。此表示利用習知CVD法形成之薄膜的弱結 晶性 TiN&lt;200&gt;。 第41圖為根據本發明沈積在矽晶圓上及鞀化之CVD氮 化鈦層的X —射線散射掠射角掃瞄,該氮化鈦層厚1〇〇〇埃 。該繞射圖譜顯示薄膜為微結晶,具有顯著增加之較佳位 向&lt; 200 &gt;,如標記350所示。具有較多晶粒位在接近&lt; 2〇〇 &gt;方向,界於40及45度之間。再者,波峰31〇在第4〇圖中 顯著地低於第41圖》 —— 3·連婧轫化 為了進一步降低沈積膜之電阻率,電漿轫化過程可根 據本發明改變,使其包含二連續電漿轫化步驟。第一次退 火之步驟係利用如上述之包含氮及氫之氣體混合物形成電 漿來進行。第二次初化之步驟進行自經初化之材料中去除 氫,因為氫對氧之親合力造成電阻率之增加。 第二次電漿形成之離子轟擊經沈積及鞀化的材料,藉 此造成材料表面的氫以廢棄副產物之方式由薄膜放出。氫 之減少使材料對氧之親合力降低,其使薄膜具有較低之電 本紙張尺度適用中國國家標隼(CNS ) MC格(210X297公瘦 裝- (請先聞讀背面之注意事項再4-寫本頁)It can be seen from the figure that the number of the upper grains is 300, and there is no obvious peak of TiN &lt; 200 &gt;. This indicates the weak crystallinity TiN &lt; 200 &gt; of a thin film formed by a conventional CVD method. Fig. 41 is an X-ray scattering grazing angle scan of a CVD titanium nitride layer deposited on a silicon wafer and tritiated according to the present invention. The titanium nitride layer is 1,000 angstroms thick. This diffraction pattern shows that the film is microcrystalline and has a significantly increased preferred orientation &lt; 200 &gt;, as shown by reference numeral 350. There are more grains located in the direction of &lt; 200 &gt;, bounded between 40 and 45 degrees. In addition, the peak 31o is significantly lower in Figure 40 than in Figure 41. ——3. Lian Jinghua In order to further reduce the resistivity of the deposited film, the plasma hardening process can be changed according to the present invention to make it Contains two continuous plasma dehydration steps. The first annealing step is performed using a gas mixture containing nitrogen and hydrogen as described above to form a plasma. The second initializing step is performed to remove hydrogen from the initialized material because the affinity of hydrogen for oxygen causes an increase in resistivity. Ions formed by the second plasma bombard the deposited and tritiated material, thereby causing hydrogen on the surface of the material to be released from the film as a waste by-product. The reduction of hydrogen reduces the material's affinity for oxygen, which makes the film have a lower electrical paper size. Applicable to the Chinese National Standard (CNS) MC grid (210X297 male thin pack-(Please read the precautions on the back before reading 4) -Write this page)

.•IT 經濟部中央梂準局貞工消費合作社印製 -43- 五、發明説明(41) A7 B7. • Printed by Zhengong Consumer Cooperative, Central Bureau of Standards, Ministry of Economic Affairs -43- V. Description of Invention (41) A7 B7

經濟部中央樣準局貞工消費合作社印IL 阻率及呈現改良的穩定性。 在第二次連續轫化步驟中,用於形成電漿之氣體可包 含氮或氮及氦、氬或氖之混合物。較佳為氦,因為其可增 進氮分子之離子化並降低N+、N2+、N3 +及N4+離子之組 合或然率。氮及氦之混合物優於單單使用氮,因為以氦為 主之電漿的離子可增進離子化效率,藉此促進離子反應性 並達到較大的穿透深度。較大之穿透深度可供取代較大量 的氫’以致使材料之電阻率降低可達最大化。再者,氦之 小質量使其得以填塞材料中因為釋出氫原子留下的空位, 該空位對氣原子而言太小而無法填塞。 根據本發明’晶圓114置於處理室中,例如處理室丨丨〇A ,及如上述將材料層沈積在晶圓上。沈積之材料可為氮化 鈦以供作為擴散阻障層。 一旦沈積材料層後,可進行離子轟擊之第一次鞀化過 程。當晶圓置放在晶圓支座116時,晶圓114與噴射頭136 之距離可為〇_3至0.8吋。較佳地,晶圓114與喷射頭136之 距離為介於0.6至0.7吋之間》 藉由首先經由喷射頭136將氣體輸送至處理室U2來達 成離子4擊。在本發明之-實施例中,氣艘為氮及氣之混 合物’其中氮對氫之比率為2: 3且以氮流速約織咖之 速率引人處理室112中。處理室112中的壓力μ在約i q 托,且晶圓溫度設定在介於35〇_45(rc之間。在本發明之 另-實施例中’氣體可包含氮對氫之比率介於3: m 之間的混合物。The Central Standards Bureau of the Ministry of Economic Affairs, Zhengong Consumer Cooperative, printed the resistance rate and showed improved stability. In the second continuous desulfurization step, the gas used to form the plasma may include nitrogen or a mixture of nitrogen and helium, argon, or neon. Helium is preferred because it can increase the ionization of nitrogen molecules and reduce the combined probability of N +, N2 +, N3 +, and N4 + ions. The mixture of nitrogen and helium is better than using nitrogen alone, because the ions of helium-based plasma can increase the ionization efficiency, thereby promoting the ion reactivity and achieving a larger penetration depth. A larger penetration depth can replace a larger amount of hydrogen &apos; so that the resistivity of the material can be reduced to a maximum. Furthermore, the small mass of helium makes it possible to fill vacancies left in the material due to the release of hydrogen atoms, which are too small for gas atoms to fill. According to the present invention, the wafer 114 is placed in a processing chamber, such as a processing chamber, and a material layer is deposited on the wafer as described above. The deposited material may be titanium nitride for use as a diffusion barrier. Once the material layer is deposited, the first decantation process can be performed by ion bombardment. When the wafer is placed on the wafer support 116, the distance between the wafer 114 and the spray head 136 may be 0.3 to 0.8 inches. Preferably, the distance between the wafer 114 and the ejection head 136 is between 0.6 and 0.7 inches. The ion strike is achieved by first delivering gas to the processing chamber U2 via the ejection head 136. In the embodiment of the present invention, the gas vessel is a mixture of nitrogen and gas', wherein the ratio of nitrogen to hydrogen is 2: 3 and is introduced into the processing chamber 112 at a nitrogen flow rate of approximately weaving coffee. The pressure μ in the processing chamber 112 is about iq Torr, and the wafer temperature is set to be between 35 ° C. and 45 ° C. In another embodiment of the present invention, the gas may include a nitrogen to hydrogen ratio of 3 : A mixture between m.

(請先閲讀背面之注意事項再#寫本頁) 裝· 訂 m 1^1 i^i— m -44- 經濟部中央標準局員工消費合作社印製 A7 B7五、發明説明(42) 接著,在第一次轫化過程中,rf源142供應rf訊號至喷 射頭136及晶圓支座116。此造成氣體形成包含帶正電離子 之電漿。rf源142在350 kHz下可供應350瓦特之rf功率,經 由匹配網路145可產生rf訊號至噴射頭136及晶圓支座116 ,該噴射頭136及支座116為180度異相。一般而言,使電 漿維持20秒。rf源142可交替地在低於1 MHz之頻率下供應 350瓦特之rf功率。 來自rf源之重覆循環的電壓造成晶圓附近之電子過剩 ,其在晶圓114處產生負偏壓。晶圓支座116可能需要介於 -100至-400伏特之負偏壓,一般為-300伏特,而喷射頭136 可能需要介於-100至-400伏特之負偏壓,一般為-200伏特 。使處理室112接地,並使晶圓114之負偏壓界於-100至-400伏特,一般為-300伏特,在離子轟擊期間維持一定。 在離子轟擊期間,來自電漿之帶正電的離子藉由電壓 梯度加速進入晶圓'114之表面並穿'透晶圓之表面達深度介 於100至110埃。來自電漿之帶能量的中性原子顆粒亦可轟 擊晶圓114。一旦完成20秒之第一次鞀化後,清洗處理室112 〇 接著,開始第p次鞀化。在本發明之一實施例中 ,電漿產生氣體僅為氮。氣體以氮流速約500-1000 seem 之速率引入處理室112。處理室112中的壓力設定在約1.0 托,且晶圓溫度設定在介於350-450°C之間。 在本發明之另一實施例中,氣體可為氮及氦之混合物 ,氮對氦之比率介於0.2至1.0之間。亦可使用包含氮及氬 (請先閱讀背面之注意事項再填寫本頁) 裝· 訂 本紙張又度適用中國國家標準(CNS ) A4规格(210X297公釐) -45- Α7 Β7 經濟部中央標準局負工消費合作杜印策 五、發明説明(43) 、汛'氦或其組合之其他組合的氣體。 接者在第二次鞀化過程中,rf源供應rf訊號至喷射頭 136及晶圓支座116。此造成氣體形成帶正電荷之電漿erf 源142在300-400 kHz下可供應300-1,500瓦特rf功率,經由 匹配網路145產生rf訊號至噴射頭136及晶圓支座116,該 喷射頭及支座為180度異相。一般而言,電漿維持丨5秒》rf 源142可交替地在低於13 % MHz之不同頻率下供應3〇〇_ 1,500瓦特之rf功率β能源功率可基於不同尺寸之晶圓的 處理所需來衡量。 例如在第一次初化之例子中’來自rf源之重覆循環的 電壓造成晶圓附近之電子過剩,其在晶圓114處產生負偏 壓。晶圓支座116可能需要介於_100至-4〇〇伏特之負偏壓 ’ 一般為·300伏特,而喷射頭136可能需要介於-loo至_4〇〇 伏特之負偏壓,一般為_200伏特。使處理室112接地,並 使晶圓114之負偏壓界於_1〇〇至·4〇〇伏特,一般為_3〇〇伏 特,在離子轟擊期間維持一定。 在第二次離子轟擊之例子中,來自電漿之帶正電的離 子藉由電壓梯度加速進入晶圓114之表面並穿透晶圓之表 面達深度介於100至110埃。來自電漿之帶能量的中性原子 顆粒亦可轟擊晶圓114。一旦完成15秒之第一次轫化後, 清洗處理室112。 S應用氮氣時,離子穿透深度介於7〇至8〇埃之間。當 應用氮及氦之混合物時,離子穿透深度介於1〇〇至125埃之 間。因此,利用氮及氦之混合物可比僅應用氮來初化取 (請先閲讀背面之注意事項再4·寫本頁) 裝· 訂(Please read the precautions on the back before #writing this page) Binding and ordering m 1 ^ 1 i ^ i— m -44- Printed by the Consumer Standards Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A7 B7 V. Invention Description (42) Next, During the first halogenation process, the rf source 142 supplies the rf signal to the spray head 136 and the wafer support 116. This causes the gas to form a plasma containing positively charged ions. The rf source 142 can supply 350 watts of rf power at 350 kHz. The rf signal can be generated to the spray head 136 and the wafer support 116 through the matching network 145. The spray head 136 and the support 116 are 180 degrees out of phase. Generally, the plasma is maintained for 20 seconds. The rf source 142 may alternately supply rf power of 350 watts at frequencies below 1 MHz. The repeated cycling of voltage from the rf source causes an excess of electrons near the wafer, which creates a negative bias at the wafer 114. Wafer carrier 116 may require a negative bias voltage of -100 to -400 volts, typically -300 volts, and head 136 may require a negative bias voltage of -100 to -400 volts, typically -200 volts . The processing chamber 112 is grounded, and the negative bias of the wafer 114 is in the range of -100 to -400 volts, generally -300 volts, which is maintained constant during the ion bombardment. During ion bombardment, positively charged ions from the plasma are accelerated into the surface of the wafer '114 by a voltage gradient and penetrate through the surface of the wafer to a depth between 100 and 110 angstroms. Neutral atomic particles with energy from the plasma can also bomb the wafer 114. Once the first curing is completed in 20 seconds, the processing chamber 112 is cleaned. Then, the p-th curing is started. In one embodiment of the present invention, the gas generated by the plasma is only nitrogen. The gas is introduced into the processing chamber 112 at a nitrogen flow rate of approximately 500-1000 seem. The pressure in the processing chamber 112 is set at about 1.0 Torr, and the wafer temperature is set between 350-450 ° C. In another embodiment of the present invention, the gas may be a mixture of nitrogen and helium, and the ratio of nitrogen to helium is between 0.2 and 1.0. Can also be used containing nitrogen and argon (please read the precautions on the back before filling this page). The bound and bound paper is also applicable to China National Standard (CNS) A4 specification (210X297 mm) -45- Α7 Β7 Central Standard of the Ministry of Economic Affairs Du Yince, co-worker, consumer cooperation, V. Invention Description (43), Xun 'Helium or other combination of gases. During the second halogenation process, the rf source supplies rf signals to the spray head 136 and the wafer support 116. This causes the gas to form a positively charged plasma erf source 142 that can supply 300-1,500 watts of rf power at 300-400 kHz. The rf signal is generated through the matching network 145 to the spray head 136 and the wafer support 116. The spray head And the support is 180 degrees out of phase. Generally speaking, the plasma sustains for 5 seconds. The rf source 142 can alternately supply 300-1,500 watts of rf power at different frequencies below 13% MHz. Β energy power can be based on wafers of different sizes. Processing needs to be measured. For example, in the example of the first initialization, the repeated voltage from the rf source causes an excess of electrons near the wafer, which generates a negative bias voltage at the wafer 114. Wafer support 116 may require a negative bias voltage of _100 to -400 volts', typically 300 volts, and ejection head 136 may require a negative bias voltage of -loo to _400 volts, generally It is _200 volts. The processing chamber 112 is grounded, and the negative bias boundary of the wafer 114 is between 100 and 400 volts, typically _300 volts, which is maintained constant during the ion bombardment. In the second example of ion bombardment, positively charged ions from the plasma were accelerated into the surface of wafer 114 by a voltage gradient and penetrated the surface of the wafer to a depth of 100 to 110 angstroms. Neutral atomic particles with energy from the plasma can also bombard wafer 114. Once the first incubation for 15 seconds is completed, the processing chamber 112 is cleaned. When nitrogen is applied, the ion penetration depth is between 70 and 80 angstroms. When a mixture of nitrogen and helium is used, the ion penetration depth is between 100 and 125 Angstroms. Therefore, the use of a mixture of nitrogen and helium can be used for initial preparation than using only nitrogen (please read the precautions on the back before writing this page).

•46· 五、發明説明(44) A7 B7 經濟部中央標準局貞工消资合作社印11 更多的氫分子。 為了形成具有理想厚度的擴散阻障層,例如150至300 埃,可重覆進行CVD沈積及後績製程。連續地及依序地 使介於50至1〇〇埃之多層阻障層鞀化,直至達到理想的薄 膜厚度。 當在處理室110A、處理室110B,.,或處理室ii〇c中進 行後續轫化過程時,沈積、第一次轫化及第二次鞀化皆可 在相同處理室中進行。因此,沈積及後續之靭化可原位進 行。然而,沈積及後續之轫化的處理步驟無需原位進行且 可使用其他處理室。 表VI,顯示於第42圖,反映比較連績初化過程與單一 鞀化過程獲得之實驗結果。為了收集表贝之數據,將一組 晶圓各自依據本發明之不同實施例處理a根據本發明在各 個晶圓上形成厚200埃之氮化鈦層膜。 根據前述單.一轫化過程處理第一個晶圓,利用氮友氫 之氣體來產生轫化電漿。利用連續的轫化過程處理第二個 晶圓,所使用之電襞氣體僅含氮。利用連續的初化過程處 理第三個晶圓,所使用之電漿氣體包含氮及氦。利用三 連續鞀化處理第四個晶圓,其依序利用15秒之氮-氩電 鞀化,15秒之氮電漿鞀化及5秒之氮_氫電漿鞀化。 第二個晶圓,其連續利用氮氣進行轫化,顯示出電 率明顯低於僅經過單一轫化步驟處理之第一個晶圓。第 個晶圓之電阻率介於450-50(^Q_cm之間,而第一個晶 之電阻率介於570-630/z Q-cm之間。再去,笛 ^ ^ J丹考,第二個晶圓 相 漿 阻 圓 之 (請先閲讀背面之注意事項*'4·寫本頁) 裝· 訂 私紙張尺度適用中國國家椟準(CNS &gt; A4規格(210X297公着 -47- A7 B7 經濟部中央橾準局貝工消费合作社印製 發明説明(45) 電阻率在50小時後僅増加7·8%,而第一個晶圓則增加u-12% 〇 由第三個晶圓可看出更佳的結果,其在第二電漿鞀化 步驟中應用氮及氦之混合物。第三個晶圓之電阻率介於 440_480以Ω-cm之間,在50小時内僅增加3_7%。第三個 晶圓亦具有較低濃度之氧。與第二個晶圓相較,第三個晶 圓之氧濃度較低其歸因於氮—氦混合物具有優異的能力 以自氮化鈦薄膜移除氬。 第四個晶圓,其經歷利用氮及氫之混合物的第三鞀化 步驟,其電阻率及電阻率老化之測量值接近第一個晶圓。 其顯不在第二次鞀化步驟後,將氫再引入氮化鈦層產生過 量的氫。過量的氫使第二次轫化步驟達到之優點無效。 A·氡化以降低擴散率 除了&amp;供具有改良之電阻率的晶圓上薄膜之外’下述 步驟使薄膜較能妨礙接觸窗金屬擴散至薄膜下方基辞。特 別地’經處理之薄膜較能妨礙鋁之擴散。 首先,在晶圓114之上部表面上原位形成金屬層(即, 在膜層形成期間,無論何時皆未將晶圓移開處理室丨丨2)。 在本發明之一實施例中,材料之沈積及後續之電漿鞀化係 在處理室110A中進行以形成薄膜。材料層可利用熱CVD 法沈積在晶圓114之上部表面,以致使材料能順應晶圓j 14 之上部表面。在沈積期間,壓力控制單元157可設定處理 至内的屋力介於〇·6至1.2托之間及燈130可設.定晶圓Π4之 溫度介於360至38(TC之間。 (請先閲讀背面之注項再4·寫本頁) 裝· 訂 -48- 經濟部中央橾準局貝工消费合作社印製 五、發明説明(46) ,例t本發明之—實施例中,沈積之材料可為阻障層材料 另一 π金屬氮化物,例如氮化敛⑽)。在本發明之 :實施例中,三元金屬石夕氮化物可作為取代二元金屬氮 物之阻障層材料。沈積之材料的厚度介於50至则埃之 間’較佳為界於5〇至1〇〇埃之間。 A 一旦沈積阻障材料層後’可經由離子森擊方法初化。 當晶圓放置在晶圓支座116後,晶.圓114與噴射頭136之距 離約0.3至〇.8对。較佳地,晶圓114與喷射頭之距離約 〇_6至0.7对之間。 藉由首先經由喷射頭136將氣體輪送至處理室112來達 成離子A擊》在本發明之一實施例中,氣體為氣及氮之混 口物其中氮對氫之比率為2 : 3且以氮流速約4〇〇 sccm_^_ 速率引入處理室112中》處理室112中的壓力設定在約1〇 托,且晶圓溫度設定在介於300_40(rc之間,較佳為“❷七 0 . ... 在本發明之另一實施例中,氣體可包含具有氮對氫比 例介於3 : 1至1 : 2之間的氣體。亦可使用包含氮、氫,及 氬、氦或氨之其他組合的氣體。 接著在轫化過程中,!^源142供應rf訊號至喷射頭136 及晶圓支座116,造成氣體206形成電漿207,該電漿包含 帶正電的離子。rf源142在350 kHz下,經由匹配網路145 可供應350瓦特之功率以產生rf訊號至喷射頭136及晶圓支 座116,該喷射頭及支座為180度異相。一般而言,電漿維 持10至30秒。電漿維持20秒。rf源142可交替地在低於1MHz 本紙張尺度適用中國國家揉準(CNS ) A4規洛(210&gt;&lt;297公着) C請先閲讀背面之注意事項再资寫本頁} 裝. •ST. -49- 鯉濟部中央橾準局員工消費合作社印製 A7 ________B7_ 五、發明説明(47) 之頻率下供應350瓦特之rf功率。 在晶圓114上產生負偏壓。晶圓支座116可能需要介於 -100至-400伏特之負偏壓,一般為_3〇〇伏特,而噴射頭136 可能需要介於-100至-400伏特之負偏壓,一般為_2〇〇伏特 。使處理室112接地’並使晶圓114之負偏壓界於·⑶❶至· 400伏特,一般為_300伏特,在離子轟擊期間維持一定。 在離子轟擊期間,來自電漿之.帶正電的離子藉由電壓. 梯度加速進入晶圓114之表面並穿透晶圓之表面達深度介 於50至200埃。來自電漿207之帶能量的中性原子顆粒亦可 轟擊晶圓114。 離子轟擊造成阻障材料之沈積層厚度減少2〇至5〇%, 依基材之溫度及電漿處理時間及能量而定。如上所述,利 用厚度介於50至100埃之阻障材料層,可重覆CVD沈積及 退火過程來形成具有理想厚度之材料層。 另外’晶圓114上材料之沈積及轫化可藉由許多不同 方法進行。美國專利申請案第08/339,521號,發明名稱為 「藉由化學氣相沈積法沈積之改良的氮化鈦層及其製造方 法_i ’美國專利申請案第〇8/498,990號,發明名稱為「薄 膜之偏壓電漿轫化」’美國專利申請案第〇8/567,461號, 發明名稱為「薄膜之電楽;初化」,及美國專利申請案第 〇8/680,913號,發明名稱為「薄膜之電漿轟擊」,每個申 睛案皆揭露經由CVD方法及電漿轫化在晶圓之上部表面 形成阻障材料層的方法。這些申請案皆併入本說明書中以 供參考。這些申請案所揭露之方法皆可應用於本發明之實 張从適用中關家轉(CNS) 2丨Gx297公酱) --- (請先閲讀背面之注意事項再4·寫本頁) 裝· 、ΤΓ -50- A7 B7 經濟部中央標準局員工消費合作社印裝 五、發明説明(仙) 把例_以供在晶圓上形成材料層。 在本發明之實施例中,晶圓置於可進行物理氣相沈積 之裝置上,但藉由習知濺鍍方法形成材料層。在本發明之 另一實施例中,晶圓係放置在可進行化學氣相沈積法之處 理至中,並經由CVD方法形成材料層,未進行額外之電 漿初化。 在積體電路之製造中,通常應用鋁作為接觸窗金屬。 因為鱼liiL具有親合力,在富^料中可降低鋁的趙1率 。因此,形成在晶圓114上的材料層可藉由在材料中注入 ^來處理以供作為增進之擴散阻障層。 為了在材料中注入氧,可使晶圓114上的材料原位氧 化(即,於薄膜形成後未將薄膜移出處理室112直至完成氧 化為止)。因此,材料層之整個處理及氧化該層可在單一 處理室中原位進行。進行氧化仙以致使材料之晶粒間界 氧化,而材料之.晶粒本身則幾乎不氧化。 材料晶粒邊界之氧化可經由使用第5圖所示之半導體 曰曰圓處理至110Α原位達成。一旦在晶體丨〗4上形成材料層 (沈積及靭化)’晶圓Π4保留在處理室114内。壓力控制單 元157可設定處理室112内的壓力介於〇5至1〇托之間。晶 圓114溫度設定在介於300至4〇〇艺之間,且較佳為36〇芯。 將材料層暴露至承載氧氣之氣體中,例如N2/〇2混合 物或〇2。將該氣體經由喷射頭136以介於1〇〇_1〇〇 sccm2 流速輸送至處理室112争。氣體2〇8可含氮及氧且氮對氧之 混合比率為4 : 1。再者,rf源142經由匹配網路145供應訊 本紙張从適用中關轉準(CNS)从胁(加㈣爾 (裝--- (請先閲讀背面之注意事項再4·寫本頁) - -51 - 經濟部中央標準局員工消費合作社印製 A7 B7五、發明説明(49) 號至晶圓支座116及喷射頭136來將氣體轉化成含有帶正電 氧離子的電漿。 rf源142在350 kHz下經由匹配網路145供應350瓦特之 rf功率約20秒,產生rf訊號至噴射頭136及晶圓支座116, 該喷射頭136及支座116為180度異相。如上述之轫化過程 ,喷射頭136、晶圓支座116及晶圓114各自要求一負偏壓 。結果,帶正電荷之氧離子朝向晶圓114加速並穿透材料 層之表面且接觸材料之晶粒間界。 於本發明之一實施例中,一旦完成氧化,材料之氧化 層為氧化之氮化鈦。氧化之氮化鈦可作為接觸窗金屬之增 進的擴散阻障層,該接觸窗金屬例如鋁。再者,當材料層 為另一二元金屬氮化物MxNy或三元金屬矽氮化物MxSiyNz (其中Μ可為Ti、Zr、Hf、Ta、Mo、W及其他金屬)時,亦 可根據本發明形成增進之擴散阻障層。 在本發明之另一實施例中,應用相同之半導體晶圓處 理室110A來進行材料之熱氧化。將承載氧氣之氣體,例 如氧、臭氧、空氣或水,經由噴射頭136,在介於100至1000 seem之流速下輸送至處理至112。燈130接著加熱晶圓114 至溫度介於300至400°C之間,而處理室之壓力設定在介於 0.5至1000托之間及較佳為1.0托。 結果,承載氧氣之氣體中的氧穿透阻障層材料之表面 並接觸阻障層材料之晶粒間界。氧化阻障層材料之晶粒間 粒的方法揭露於頒給Ngan等人之美國專利第5,378,660號 ,發明名稱為“阻障層及鋁接觸點”,該文獻併入本文中 (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS &gt; A4規格(210X297公釐〉 -52- A7B7 經濟部中央標準局員工消費合作社印製 五、發明説明(50) 以供參考。一旦形成及氧化材料層2〇〇後,自處理室丨12中 移出晶圓114。 雖然在晶圓114上之材料層的形成及氧化已明確地描 述於第5圖所示之半導體晶圓處理室中,該方法並不拘限 於在處理室110A中進行。該方法亦可在任何半導體晶圓 處理室中進行,該處理室可供進行根據本發明之原位形成 及氧化處理’例如分別敘述於第16及17圖之處理室丨丨〇B 及110C。 傳統上,已將擴散阻障層製成較厚以供對接觸窗幸屬 之擴散提供較大的保護。本發明之實施例的結果,七散阻 障層無需製成較厚以供抑制接觸窗金屬之擴散。在本發明 之實施例中,阻障層材料之氧化降低對氧具有親合力之接 觸窗金屬的擴散率,例如鋁。當此種接觸窗金屬開始擴散 至例如氮化鈦之阻障層材料的氧化層時,接觸窗金屬與氧 離子結合,氧離子接觸阻障層材料的晶粒間界。結果,接 觸窗金屬無法到達擴散阻障層下方的區域。 第43 (a)圖中之表顯示已根據本發明沈積及電漿初化 一阻障材料層後,未經氧化,在晶圓之不同深度處的化 组成。第43(b)圖包含一圖表,顯示根據本發明沈積、 漿轫化並氧化阻障材料層後,在晶圓之不同深度處的化 組成。 每個圖表表示之數據係取自於具有覆蓋氮化鈦阻障層 之石夕基材的晶I藉由奥格電子錢探測晶^每個圖 顯示在晶圓中不同深度處,晶圓之不同化學原子濃度。 學電學 表 比 (請先閲讀背面之注意事項再4·寫本頁) 裝. &gt;•11 本紙張从適财關家縣(CNS ) 7 210^ \ •53- 、發明説明(51 ) 較該二圖表,在氧化阻障層材料(第43_)中之由阻障層 材料組成之晶圓頂部的氧濃度顯著高於在無氧化 料中者。 阻障層材料中含有氧,藉由例如紹之接觸窗金屬與阻 障層中的氧結合而使擴散率顯著降低。因此,氧化阻障層 材料(第43(_)優於無氧姐障層材料,可提供介於例如 鋁之接觸窗金屬及下方矽基材間的較佳擴散阻障層。 再者,藉由本發明之實施例形成之擴散阻障層的薄膜 :阻並不會無法接受地與氧化妥協。第44圖顯示說明此事 實之表。如該表所示,根據本發明沈積及電漿鞀化但無氧 化之厚200埃的氮化鈦阻障層,可具有4〇〇Q/sq之薄膜電 阻且薄膜電阻均一性之標準差為2·2%。此種阻障層材料 所得之電阻率為820以Ω-cm。根據本發明之厚2〇〇埃的氮 化鈦阻障層材料,其經沈積、電漿鞀化及氧化2〇秒薄膜 電阻僅為630 Ω /sq.及薄膜電阻均.一性之標準差為3 7%。 所得之電阻率為1260// Ω-cm。 第44圖中之表亦顯示厚度3〇〇埃之氮化鈦阻障層的薄 膜電阻。根據本發明進行沈積及電阻初化後,厚3〇〇埃之 氮化鈦薄膜可具有235 Ω /sq·之薄膜電阻且薄膜電阻均— 性之標準差為2.0%。根據本發明進行沈積、電漿轫化及 氮化20秒後,厚300埃之氮化鈦薄膜可具有25〇Q/sq之薄 膜電阻且薄膜電阻均一性之標準差為2_7%。因此,無氧 化之厚300埃的阻障層材料之電阻率為7〇5/z Ω _cm,而氧 化之厚300埃的阻障層材料之電阻率僅為75〇v Q_cm。 經濟部中央標準局貝工消費合作社印裝 A7 -----——__B7 五、發明説明(:7 —-— 氮化鈦之氧化層的相對有效性顯示於第44圖之表中, 依y述方式評估:將厚1000埃之紹層沈積在上部表面包含 無氧化或經氧化之氮化鈦阻障層材料的晶圓上。於沈積在 阳圓上後,在55〇 C之爐中初化1小時。具有2〇〇埃至3〇〇埃 之無氧化的氮化鈦阻障層材料的晶圓呈現嚴重的缺陷,該 缺疋因鋁擴散至晶圓基材中。具有2〇〇埃至3〇〇埃之經過 根據本發明之沈積、電漿初化及氧.化氧化的氮化敛阻障層 材料的晶圓,分別僅有微小或沒有得自鋁之擴散的缺陷。 第43(a)、43(b)及44圖之數據僅為一組由本發明冬實 施例可能達到的結果。這些圖式中敘述之結果不能以任何 方式解釋成本發明達成相同或實質上相同之結果的限制實 施例。 富含矽以降假攄f·, 在本發明之另一實施例中,藉由矽填塞步驟取代氧化 愛一驟。矽填塞步驟降低例如銅之接觸窗金屬在位於基材上 之例如氮化鈦的材料層t的擴散率。矽與充填在沈積之氮 化鈦膜之晶粒間界之氮的結合能力為促進氮化鈦之阻障層 性質的機制。 根據本發明,例如氮化鈦之材料在晶圓上的沈積及退 火係以與上述包含氧化之方法相同的方式來進行。較佳地 ,沈積厚100埃之氮化鈦層。於利用包含氮及氫之混合物 的電漿使材料鞀化後,氮化鈦層之厚度約50埃。 氮化鈦材料之沈積及轫化可在處理室i丨〇A、丨丨、 或110C中任-者内進行。可交替地應用另一個處理室或 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再4·寫本頁)• 46 · V. Description of the invention (44) A7 B7 Printed by the Central Standards Bureau of the Ministry of Economic Affairs, Zhenggong Consumer Capital Cooperative, 11 more hydrogen molecules. In order to form a diffusion barrier layer with a desired thickness, such as 150 to 300 angstroms, CVD deposition and subsequent processes can be repeated. Continuously and sequentially a plurality of barrier layers ranging from 50 to 100 angstroms are achieved until the desired film thickness is reached. When the subsequent curing process is performed in the processing chamber 110A, the processing chamber 110B,..., Or the processing chamber iioc, the deposition, the first curing, and the second curing may be performed in the same processing chamber. Therefore, deposition and subsequent toughening can be performed in situ. However, the processing steps for deposition and subsequent desulfurization need not be performed in situ and other processing chambers can be used. Table VI, shown in Figure 42, reflects the experimental results obtained by comparing the initial succession process with a single incubation process. In order to collect the data of the watch, a group of wafers were each processed according to different embodiments of the present invention. A Titanium nitride layer film having a thickness of 200 angstroms was formed on each wafer according to the present invention. The first wafer is processed according to the aforementioned single-fluorination process, and a nitrogen-hydrogen gas is used to generate a halogenated plasma. The second wafer is processed using a continuous halogenation process, and the electrorhenium gas used only contains nitrogen. The third wafer is processed using a continuous initialization process. The plasma gas used includes nitrogen and helium. The fourth wafer was processed by three consecutive halogenation processes, which sequentially used 15-second nitrogen-argon electro-fluoridation, 15-second nitrogen plasma-thinning, and 5-second nitrogen-hydrogen plasma-thinning. The second wafer, which was continuously halogenated with nitrogen, showed significantly lower power than the first wafer processed in a single halogenation step. The resistivity of the first wafer is between 450-50 (^ Q_cm, and the resistivity of the first wafer is between 570-630 / z Q-cm. Then, flute ^ ^ J Dan Kao, No. Two wafer phase slurry resistance (please read the precautions on the back first * '4 · Write this page) Binding and ordering paper size is applicable to China National Standards (CNS &gt; A4 Specification (210X297 Public Works-47- A7 B7 Printed invention note printed by the Shellfish Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs (45) Resistivity increased by only 7.8% after 50 hours, while the first wafer increased by u-12% 〇 The third wafer A better result can be seen, which uses a mixture of nitrogen and helium in the second plasma desulfurization step. The resistivity of the third wafer is between 440_480 and Ω-cm, which only increases by 3_7 in 50 hours. %. The third wafer also has a lower oxygen concentration. Compared to the second wafer, the third wafer has a lower oxygen concentration due to the excellent ability of the nitrogen-helium mixture to self-nitride Titanium film removes argon. The fourth wafer, which undergoes a third halogenation step using a mixture of nitrogen and hydrogen, has resistivity and resistivity aging measurements close to the first wafer. It does not appear that after the second halogenation step, the hydrogen is reintroduced into the titanium nitride layer to generate excess hydrogen. The excess hydrogen invalidates the advantages achieved by the second halogenation step. For films on wafers with improved resistivity, the following steps make the film more likely to prevent the contact window metal from diffusing below the film. In particular, the treated film is more likely to prevent the diffusion of aluminum. First, in the crystal A metal layer is formed in situ on the upper surface of the circle 114 (ie, the wafer is not removed from the processing chamber at any time during the film layer formation 2). In one embodiment of the present invention, the material deposition and subsequent Plasma annealing is performed in the processing chamber 110A to form a thin film. A material layer can be deposited on the upper surface of the wafer 114 by a thermal CVD method so that the material can conform to the upper surface of the wafer j 14. During deposition, the pressure The control unit 157 can be set to handle the house force between 0.6 to 1.2 Torr and the lamp 130 can be set. The temperature of the wafer Π4 is between 360 to 38 (TC.) (Please read the note on the back first Xiang Zai 4 · Write this page) Binding · Order-48- Ministry of Economic Affairs Printed by the Central Bureau of Standardization, Shellfish Consumer Cooperative, V. Description of Invention (46), Example t of the invention—In the embodiment, the deposited material may be another π metal nitride of the barrier layer material, such as nitrided fluorene) In the embodiments of the present invention, the ternary metal stone nitride can be used as a barrier layer material instead of the binary metal nitrogen. The thickness of the deposited material is between 50 and 200 Å. Between 50 and 100 angstroms. A Once the barrier material layer is deposited, it can be initialized by ionization. When the wafer is placed on the wafer support 116, the distance between the crystal circle 114 and the spray head 136 About 0.3 to 0.8 pairs. Preferably, the distance between the wafer 114 and the spray head is between about 0-6 and 0.7 pairs. In one embodiment of the present invention, the gas is a mixture of gas and nitrogen, wherein the ratio of nitrogen to hydrogen is 2: 3 and Introduced into the processing chamber 112 at a nitrogen flow rate of about 400 sccm _ ^ _. The pressure in the processing chamber 112 is set at about 10 Torr, and the wafer temperature is set between 300_40 (rc, preferably "较佳 七" 0 ... In another embodiment of the present invention, the gas may include a gas having a ratio of nitrogen to hydrogen between 3: 1 and 1: 2. Nitrogen, hydrogen, and argon, helium, or Other combined gases of ammonia. Then during the sulfidation process, the source 142 supplies the rf signal to the spray head 136 and the wafer support 116, causing the gas 206 to form a plasma 207 that contains positively charged ions. The rf source 142 can supply 350 watts of power through the matching network 145 at 350 kHz to generate rf signals to the spray head 136 and the wafer support 116, which are 180 degrees out of phase. Generally speaking, electricity The pulp is maintained for 10 to 30 seconds. The plasma is maintained for 20 seconds. The rf source 142 can be alternately lower than 1MHz. (CNS) A4 gauge (210 &gt; &lt; 297) C Please read the notes on the back before writing this page} Pack. • ST. -49- Printed by the Consumers' Cooperative of the Central Bureau of Standards, Liji Ministry System A7 ________B7_ V. Description of Invention (47) Supply rf power of 350 watts. Generate negative bias on wafer 114. Wafer support 116 may require a negative bias between -100 and -400 volts. Generally it is _300 volts, and the ejection head 136 may require a negative bias voltage of -100 to -400 volts, which is generally _2 volts. Ground the processing chamber 112 'and negatively bias the wafer 114. The boundary is between · ⑶❶ and · 400 volts, generally _300 volts, which is maintained constant during ion bombardment. During ion bombardment, positively charged ions from the plasma are accelerated by voltage. It penetrates the wafer surface to a depth of 50 to 200 angstroms. Energy-neutral atomic particles from plasma 207 can also bombard wafer 114. Ion bombardment reduces the thickness of the deposited layer of the barrier material by 20 to 50. %, Depending on the temperature of the substrate and the plasma processing time and energy. A barrier material layer having a degree between 50 and 100 angstroms can be repeatedly CVD deposited and annealed to form a material layer with a desired thickness. In addition, the deposition and conversion of materials on wafer 114 can be performed by many different methods. U.S. Patent Application No. 08 / 339,521, the invention name is "Improved Titanium Nitride Layer Deposited by Chemical Vapor Deposition Method and Method of Manufacture_i 'U.S. Patent Application No. 08 / 498,990, Invention Name is "Bias Plasma Biasing of Thin Films" 'U.S. Patent Application No. 08 / 567,461, the invention name is "Electrolyzing of Thin Films; Initialization", and U.S. Patent Application No. 08 / 680,913, the invention name is "Plasma bombardment of thin films", each case reveals a method of forming a barrier material layer on the upper surface of the wafer by CVD method and plasma scouring. These applications are incorporated herein by reference. The methods disclosed in these applications can be applied to the leaflets of the present invention. (Applicable to Zhongguanjiazhuan (CNS) 2 丨 Gx297 male sauce) --- (Please read the precautions on the back before you write this page) · ΤΓ -50- A7 B7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the Invention (Sin) Example _ for forming a material layer on a wafer. In the embodiment of the present invention, the wafer is placed on a device capable of performing physical vapor deposition, but a material layer is formed by a conventional sputtering method. In another embodiment of the present invention, the wafer is placed in a place where a chemical vapor deposition method can be performed, and a material layer is formed by a CVD method without additional plasma initialization. In the manufacture of integrated circuits, aluminum is usually used as the contact window metal. Because the fish liiL has affinity, it can reduce the Zhao 1 rate of aluminum in rich materials. Therefore, the material layer formed on the wafer 114 can be processed by implanting ^ into the material for an enhanced diffusion barrier layer. In order to inject oxygen into the material, the material on the wafer 114 may be oxidized in situ (i.e., the film is not removed from the processing chamber 112 after the film is formed until the oxidation is completed). Therefore, the entire processing of the material layer and oxidation of the layer can be performed in situ in a single processing chamber. Oxidation is performed so that the grain boundaries of the material are oxidized, while the grains of the material are hardly oxidized. Oxidation of the grain boundaries of the material can be achieved in situ by 110A using the semiconductor wafer processing shown in Figure 5. Once the material layer (deposition and toughening) is formed on the crystal 丨 4, the wafer Π 4 remains in the processing chamber 114. The pressure control unit 157 can set the pressure in the processing chamber 112 to be between 0.05 and 10 Torr. The temperature of the wafer 114 is set between 300 and 400, and preferably 36 cores. The material layer is exposed to an oxygen-bearing gas, such as a N2 / O2 mixture or O2. The gas is delivered to the processing chamber 112 via the spray head 136 at a flow rate between 100 and 100 sccm2. The gas 208 may contain nitrogen and oxygen and the mixing ratio of nitrogen to oxygen is 4: 1. In addition, rf source 142 supplies information paper through the matching network 145 and transfers it from applicable to Chinese standard (CNS) from the threat (Gall (install --- (Please read the precautions on the back before writing the page 4)) --51-The Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs printed A7 B7 V. Invention Note (49) to wafer support 116 and spray head 136 to convert the gas into a plasma containing positively charged oxygen ions. Rf The source 142 supplies 350 watts of rf power through a matching network 145 at 350 kHz for about 20 seconds, generating an rf signal to the spray head 136 and the wafer support 116, which are 180 degrees out of phase. As described above During the curing process, the jetting head 136, the wafer support 116, and the wafer 114 each require a negative bias. As a result, the positively charged oxygen ions accelerate toward the wafer 114 and penetrate the surface of the material layer and contact the crystals of the material. Intergranular boundary. In one embodiment of the present invention, once the oxidation is completed, the oxide layer of the material is oxidized titanium nitride. The oxidized titanium nitride can be used as an enhanced diffusion barrier layer for the contact window metal. For example, aluminum. Furthermore, when the material layer is another binary metal nitride MxNy or three When the metal silicon nitride MxSiyNz (where M can be Ti, Zr, Hf, Ta, Mo, W and other metals), an enhanced diffusion barrier layer can also be formed according to the present invention. In another embodiment of the present invention The same semiconductor wafer processing chamber 110A is used to thermally oxidize materials. The oxygen-bearing gas, such as oxygen, ozone, air, or water, is sent to the process through the spray head 136 at a flow rate between 100 and 1000 seem To 112. The lamp 130 then heats the wafer 114 to a temperature between 300 and 400 ° C, and the pressure in the processing chamber is set between 0.5 and 1000 torr and preferably 1.0 torr. As a result, the oxygen-bearing gas Oxygen in the material penetrates the surface of the barrier layer material and contacts the grain boundaries of the barrier layer material. The method of oxidizing the intergranular grains of the barrier layer material is disclosed in US Patent No. 5,378,660, issued to Ngan et al. Named "Barrier layer and aluminum contact point", this document is incorporated into this article (please read the precautions on the back before filling this page) This paper size applies to Chinese national standards (CNS &gt; A4 size (210X297 mm>- 52- A7B7 Central Standard of the Ministry of Economic Affairs Employee Consumer Cooperative Co., Ltd. printed V. Invention Description (50) for reference. Once the material layer was formed and oxidized, the wafer 114 was removed from the processing chamber 12. Although the material layer on the wafer 114 was formed and Oxidation has been explicitly described in the semiconductor wafer processing chamber shown in FIG. 5. This method is not limited to being performed in the processing chamber 110A. The method can also be performed in any semiconductor wafer processing chamber, and the processing chamber is available Performing the in-situ formation and oxidation treatment according to the present invention, for example, are described in the processing chambers of Figures 16 and 17B and 110C, respectively. Traditionally, diffusion barriers have been made thicker to provide greater protection for the diffusion of the contact window. As a result of the embodiment of the present invention, the Qi scattered barrier layer need not be made thicker to suppress the diffusion of the contact window metal. In an embodiment of the present invention, the oxidation of the material of the barrier layer reduces the diffusion rate of a contact window metal having an affinity for oxygen, such as aluminum. When such a contact window metal starts to diffuse to the oxide layer of the barrier layer material such as titanium nitride, the contact window metal is combined with oxygen ions, and the oxygen ions contact the grain boundaries of the barrier layer material. As a result, the contact window metal cannot reach the area under the diffusion barrier layer. The table in Fig. 43 (a) shows the chemical composition at different depths of the wafer without oxidation after a barrier material layer has been deposited and plasma-formed according to the present invention. Figure 43 (b) includes a chart showing the chemical composition at different depths of the wafer after the barrier material layer is deposited, slurryed, and oxidized according to the present invention. The data shown in each graph are taken from the crystals of the Shixi substrate with a titanium nitride barrier layer. The crystals are detected by Ogge electronic money. Each graph shows the wafers at different depths in the wafer. Different chemical atom concentrations. Electricity meter comparison (Please read the precautions on the back before writing this page 4). &Gt; • 11 This paper is from Shicai Guanjia County (CNS) 7 210 ^ \ • 53- In the two graphs, the oxygen concentration on the top of the wafer composed of the barrier material in the oxidation barrier material (43_) is significantly higher than that in the non-oxidized material. The barrier layer material contains oxygen, and, for example, the contact window metal and the oxygen in the barrier layer combine to significantly reduce the diffusivity. Therefore, the material of the oxidation barrier layer (43 (_) is superior to the material of the oxygen-free barrier layer, and can provide a better diffusion barrier layer between the contact window metal such as aluminum and the underlying silicon substrate. Further, by Film of a diffusion barrier layer formed by an embodiment of the present invention: resistance does not unacceptably compromise with oxidation. Figure 44 shows a table illustrating this fact. As shown in the table, deposition and plasma halide according to the invention However, a 200 Angstrom titanium nitride barrier layer without oxide thickness can have a thin film resistance of 400Q / sq and the standard deviation of the uniformity of the thin film resistance is 2.2%. The resistivity obtained by such a barrier layer material It is 820 in Ω-cm. According to the present invention, a 200 Å thick titanium nitride barrier layer material has a thin film resistance of only 630 Ω / sq. And a thin film resistance of 20 seconds after deposition, plasma annealing, and oxidation. The standard deviation of uniformity is 3 7%. The obtained resistivity is 1260 // Ω-cm. The table in Fig. 44 also shows the sheet resistance of the titanium nitride barrier layer with a thickness of 300 angstroms. After the invention is deposited and the resistance is initialized, a 300 Angstrom titanium nitride film can have a film resistance of 235 Ω / sq · The standard deviation of the properties is 2.0%. After depositing, plasma quenching and nitriding according to the present invention for 20 seconds, a titanium nitride film with a thickness of 300 angstroms can have a film resistance of 25Q / sq and a standard of film resistance uniformity. The difference is 2_7%. Therefore, the resistivity of a barrier layer material with a thickness of 300 angstroms without oxidation is 70.5 / z Ω_cm, and the resistivity of a barrier layer material with a thickness of 300 angstroms is only 75 volts Q_cm . Printed by A7, Shellfish Consumer Cooperative, Central Bureau of Standards, Ministry of Economic Affairs ---------__ B7 V. Description of the invention (: 7 —- — The relative effectiveness of the oxide layer of titanium nitride is shown in the table in Figure 44, Assessed in the manner described above: A 1000 Å thick layer was deposited on a wafer containing an oxide-free or oxidized titanium nitride barrier layer on the upper surface. After being deposited on the sun, it was placed in a furnace at 55 ° C. Initialized for 1 hour. Wafers with non-oxidized titanium nitride barrier material of 200 angstroms to 300 angstroms showed serious defects, which were caused by aluminum diffusion into the wafer substrate. Wafers having a barrier material of a thickness of between 200 angstroms and 300 angstroms after the deposition, plasma initiation, and oxygen oxidation oxidation according to the present invention, There are only minor or no defects derived from the diffusion of aluminum. The data in Figures 43 (a), 43 (b), and 44 are only a set of results that can be achieved by the winter embodiment of the present invention. The results described in these figures The limiting embodiment that achieves the same or substantially the same result in the invention cannot be explained in any way. Rich in silicon to reduce false f, In another embodiment of the present invention, the silicon filling step is used instead of the oxidation step. The silicon packing step reduces the diffusivity of a contact window metal such as copper in a material layer t such as titanium nitride, which is located on a substrate. The bonding ability of silicon and nitrogen filled in the grain boundaries of the deposited titanium nitride film is promoted Mechanism of barrier properties of titanium nitride. According to the present invention, deposition and annealing of a material such as titanium nitride on a wafer is performed in the same manner as the method including oxidation described above. Preferably, a titanium nitride layer is deposited to a thickness of 100 angstroms. The thickness of the titanium nitride layer was about 50 angstroms after the material was halogenated with a plasma containing a mixture of nitrogen and hydrogen. The deposition and amination of the titanium nitride material can be performed in any one of the processing chambers IOOA, 丨 丨, or 110C. Can alternately use another processing room or this paper size is applicable to China National Standard (CNS) A4 (210X297mm) (Please read the precautions on the back before writing this page)

-55- 經濟部中央標準局負工消費合作社印裂 A7 B7五、發明説明(53) 另一組處理室進行沈積及鞀化步驟。若應用處理室110A 、110B、或110C中,矽填塞可在與進行沈積及鞀化相同 之處理室中進行。結果,整個矽填塞過程可原位進行。 於沈積及轫化後,藉由將已轫化之氮化鈦暴露至矽烷 (SiH4).中來進行砍.填基。使石夕烧以30 seem之速率流入處 —---------............. 理室110A並歷時約30秒。在矽烷暴露期間,處理室之壓 力設定為1.2托;晶圓支座116係加熱至420°C,及氮氣係 以140之速率流入110A。利用流速200 seem之氬清洗。於 暴露至矽烷中後,藉由徹底地清洗將剩餘的吹掃出處理室 110及輸送線。 在暴露期間,矽與氮化鈦表面結合以填塞沈積材料之 晶粒間界。填塞之矽將阻礙稍後沈積之接觸窗金屬的擴散 ,例如銅。 沈積、鞀化、及矽填塞氮化鈦材料之步驟可依序重覆 進行,,直至所建構之薄膜具有理想的厚度。在建構200埃 之薄膜時,氮化鈦之沈積、轫化及暴露較佳地總共進行3 次,每次沈積厚100埃之氮化鈦層。結果,經矽填塞之氮 化鈦薄膜的建構厚度為150埃。為了達到200埃之理想厚度 ,將最後厚100埃之氮化鈦蓋層沈積及鞀化至厚度為50埃 。氮化鈦之蓋層可依上述利用含有氮及氫之電漿轫化。最 後沈積及鞀化蓋層材料未暴露至矽烷中。 經沈積及鞀化之最後部分材料未暴露至矽烷中,因為 矽烷對氧具有親合力。若經由暴露至矽烷而將矽導入氮化 鈦薄膜之最終表面蓋層時,薄膜之電阻率將變成高得無法 (請先閲讀背面之注意事項再4·寫本頁) 裝. ,ιτ 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公嫠) -56- 五、發明説明(54) 接受。利用經初化之4化鈦層覆蓋薄膜後,薄膜之電阻率 約520 A Q-cm。若將氮化鈦頂蓋層暴露至矽烷,則薄膜 之電阻率可能非常高。 盧瑟福反相散射光譜顯示出依據本發明填塞矽之薄膜 具有下述改變:Si含量為5原子百分比,Ti含量為35 2原 子百分比,N含量為52.8原子百分比及H含量為7原子百分 比。根據本發明形成之薄膜的奥格深度變化圖如第Μ圖所 示。奥格深度變化圖顯示均一之氮及鈇含量與振蘯變之石夕 含量,與厚150埃之藉由氮化鈦覆蓋的含矽材料呈一直線 需注意的是,上述測量及步驟係作為如何根據本發明 進行矽填塞的非限制性實施例。在本發明之另一實施例中 ,使沈積在基材上之材料層轫化及將材料暴露至矽烷之步 驟可互換。結果,沈積之材料,例如氮化欽,為了梦填塞 之目的首先暴露至我中,並接著利用電漿純來降低材 料的電阻率。再者,亦可應用其他非化學氣相沈積法之沈 積法,例如濺鍍法。 經濟部中央揉準局負工消费合作社印製 可作為矽填塞之替代物的三元金屬矽氮化物材料,例 如銻矽碳氮化物(TiSiCN),可代替氮化鈦材料而沈積。接 著使沈積之富矽材料轫化以降低其電阻率。如上述之方法 ,沈積及轫化可重覆地進行來形成具有理想厚度的薄膜。 根據此一本發明之實施例,晶圓置於可進行沈積過程 之處理室中。該處理室可為處理室11〇A、u〇B、或11〇c ,其可供原位建構富矽薄膜。可交替地應用另一個處理室 本紙張从適用中國國家縣(CNS)从胁(2敝297公 經濟部中央標準局負工消費合作社印裝 A7 B7五、發明説明(55) 或另一組處理室進行上述形成富矽薄膜的步驟。 一旦將晶圓置於處理室中,將銻矽碳氮化物(TiSiCN) 材料沈積在該晶圓上。沈積可利用習知熱CVD法應用 TDMAT來進行。為了引入矽,使一定體積之矽烷流入處 理室。暫保留等體積之氮稀釋劑,以便與當利用TDMAT 之CVD沈積氮化鈦時所用之體積比較。 在進行沈積時,處理室壓力係設定在1.2托;晶圓支 座溫度係設定在420°C,及分別以10 seem、70 seem及90 seem之流速使矽烷、He/TDMAT及氮稀釋劑流入處理室。 以200 seem之速率進行氬氣清洗。沈積可進行32秒以供形 成厚100埃之材料層。在氮化鈦之化學氣相沈積法令,未 使用石夕烧且氮流速為100 seem。 於沈積後接著利用氮及氫之電漿進行TiSiCN之鞀化 。轫化包含當沈積材料之最初厚度為100埃及希望材料層 之厚度為50埃時',進行20秒之離子轟擊。 沈積及鞀化可連續重覆地進行以供建構具有理想厚度 的薄膜。在本發明之一實施例中,所欲為厚200埃的薄膜 。沈積厚100埃的TiSiCN層並接著鞀化成厚50埃的材料層 。總共進行4次厚100埃之材料層的沈積及轫化以獲得所欲 之厚200埃的薄膜。 於一例子中,盧瑟福反相散射光譜顯示所得之厚200 埃的薄膜包含15原子百分比的矽,25.3原分子百分比的Ti ,49.7原子百分比的N,及10原子百分比的Η。薄膜之奥 格深度變化圖顯示於第46圖。奥格深度變化圖顯示具有約 (請先閲讀背面之注意事項再4-寫本頁) 袈. 訂 本紙張尺度適用中國國家梯準(CNS ) Α4規格(210X297公釐) -58- 經濟部中央標準局貝工消費合作社印製 A7 ^ ---^ B7 五、發明説明(56^ ' ---~— 5原子百分比之低碳量及約巧子百分比之低氧量的均一組 ,薄膜之電阻率為2,40()/ζ Ω,。第47圖顯示利用石夕減 錢开乂成之厚2〇〇埃的薄膜及利用沈積銻石夕壤氮化物形成之 厚200埃的薄獏的電阻率及組成的比較。 高電阻率之損失可換得獲得含有非常多的矽的薄膜來 作為擴散阻障層。對擴散阻障層而言,之電 阻率較能接受。可減少沈積步驟中使用之石夕炫量來降低薄 膜的電阻率。如上述,藉由在沈積及初化後填塞矽至材料 層中可達到最佳之電阻率。然而,經填塞石夕之擴散阻障層 的強度不足以作為阻礙銅擴散之藉由沈積含石夕枯料建構的 薄膜。例如,矽填塞之二元金屬氮化物,例如氮化鈦,及 一元金屬矽氮化物,例如TiSiCN,無法避免銅之擴散。 積體電路製造商可選擇石夕強化之方法,該方法可符合製造 商在建構薄膜時的需求。 亦需注意到的是,在上述各個矽強化之方法中所使 用之沈積方法可改變《可應用其他沈積方法,例如濺鍍, 取代化學氣相沈積法。於本發明之實施例中亦可使用除 TiSiCN之外的三元金屬矽氮化物。 再者’上述初化步驟並非限制於利用僅由氮及氫組成 之電衆。其他可降低沈積材料之電阻率的電漿組合物亦可 使用。此種電漿之一例為上述包含氮、氫、及氬之電漿。 亦可應用連續之靭化步驟。 在包含藉由暴露至矽來填塞矽的方法中,·暴露步驟並 不限制於熱激化。 尽紙張尺度通用中國國家標準(CNS ) A4規格Γ^·297公釐) (請先閲讀背面之注意事項再4·寫本頁) 裝. 訂 -59- 經濟部中央標準局員工消費合作社印製 A7 B7五、發明説明(57) 在本發明之另一實施例中,可藉由rf訊號激化富矽氣 體產生含有矽離子之電漿。含有經矽填塞之材料的晶圓亦 可經偏壓來增進矽對材料的轟擊。當利用電漿進行矽填塞 時,矽填塞亦可在轫化步驟前或後進行以降低其電阻率。 C ·處理機控制之薄膜建構 上述可在處理室中進行之使材料沈積、轫化、氧化及 填塞矽等步驟可藉由以處理機為主·之控制單元來控制。第 48圖顯示一種具有此種能力可供應用的控制單元600。該 控制單元包含處理機單元605、記憶體610、大量儲存裝置 620、輸入控制單元670及顯示器單元650,其等皆連接至 控制單元總線625。 處理機單元605可為微處理機或其他具有執行儲存在 記憶體中指令之能力的其他精密構造。記憶體610可為硬 碟機、隨機存取記憶體(“RAM”)、唯讀記憶體(“ROM ”)、RAM及ROM之組合,或其他記憶體。記憶體610包 含供處理機單元605執行之指令以供促進上述方法步驟之 實行。記憶體610中指令可為程式碼之形式。程式碼可符 合許多不同程式語言中之任何一種。例如,程式碼可由C+ 、C++、BASIC、Pascal或許多其他語言寫成。 大量儲存裝置620儲存數據及指令並由處理機可讀取 之儲存媒體中檢索數據及指令,該媒體例如磁碟片或磁帶 。例如,大量儲存裝置620可為硬碟機、軟碟機、磁帶機 、或光碟機。大量儲存裝置620儲存及檢索自處理機單元 605接收之對應於命令的指令。藉由大量儲存裝置620儲存 (請先閲讀背面之注意事項再4·寫本頁) 袈.-55- Printing by the Central Bureau of Standards, Ministry of Economic Affairs, Consumer Cooperatives A7 B7 V. Description of Invention (53) Another group of processing chambers performs the deposition and chemical conversion steps. If the processing chamber 110A, 110B, or 110C is used, the silicon packing can be performed in the same processing chamber as that used for deposition and tritiation. As a result, the entire silicon packing process can be performed in situ. After deposition and tritiation, cutting and filling are performed by exposing the tritiated titanium nitride to silane (SiH4). Make Shi Xiyao flow into the place at a rate of 30 seem —---------........ The treatment room 110A lasts about 30 seconds. During the silane exposure, the pressure in the processing chamber was set to 1.2 Torr; the wafer support 116 was heated to 420 ° C, and the nitrogen flowed into 110A at a rate of 140. Purge with argon at 200 seem. After exposure to the silane, the remaining purge is purged out of the processing chamber 110 and the conveyor line by thorough cleaning. During the exposure, the silicon and titanium nitride surfaces combine to fill the grain boundaries of the deposited material. Packed silicon will hinder the diffusion of contact window metals, such as copper, that are deposited later. The steps of depositing, halogenating, and silicon-filling the titanium nitride material can be repeated in sequence until the film is constructed to a desired thickness. When constructing a 200 angstrom thin film, the titanium nitride deposition, tritium, and exposure are preferably performed a total of three times, each time depositing a 100 angstrom titanium nitride layer. As a result, the thickness of the silicon nitride-filled titanium nitride film was 150 angstroms. In order to achieve an ideal thickness of 200 Angstroms, a final titanium nitride capping layer with a thickness of 100 Angstroms was deposited and hardened to a thickness of 50 Angstroms. The capping layer of titanium nitride can be halogenated using a plasma containing nitrogen and hydrogen as described above. The final deposited and tritiated cap material was not exposed to the silane. The last part of the deposited and tritiated material was not exposed to silane because silane has an affinity for oxygen. If silicon is introduced into the final surface capping layer of the titanium nitride film through exposure to silane, the resistivity of the film will become too high (please read the precautions on the back before writing this page). Ιτ This paper Standards are applicable to China National Standard (CNS) A4 specifications (210X297 cm) -56- V. Description of Invention (54) Accepted. After the film was covered with an initialized titanium tetraoxide layer, the resistivity of the film was about 520 A Q-cm. If the titanium nitride cap layer is exposed to silane, the resistivity of the film may be very high. The Rutherford reverse-scattering spectrum shows that the silicon-packed film according to the present invention has the following changes: the Si content is 5 atomic percent, the Ti content is 35 2 atomic percent, the N content is 52.8 atomic percent, and the H content is 7 atomic percent. The Auger depth map of the film formed according to the present invention is shown in Fig. M. The Auger depth change chart shows that the uniform nitrogen and thorium content and the oscillating rock content are in line with the silicon-containing material covered by titanium nitride with a thickness of 150 Angstroms. It should be noted that how the above measurements and steps are taken Non-limiting example of silicon stuffing in accordance with the present invention. In another embodiment of the present invention, the steps of halogenating the material layer deposited on the substrate and exposing the material to silane are interchangeable. As a result, the deposited material, such as Nitride, was first exposed to me for the purpose of dream packing, and then the plasma resistivity was reduced using plasma purity. Furthermore, other non-chemical vapor deposition methods, such as sputtering, can also be applied. Printed by the Central Government Bureau of the Ministry of Economic Affairs and Consumer Cooperatives, ternary metal silicon nitride materials, such as antimony silicon carbonitride (TiSiCN), which can be used as a substitute for silicon stuffing, can be deposited instead of titanium nitride materials. The deposited silicon-rich material is then tritiated to reduce its resistivity. As described above, the deposition and chemical conversion can be repeated to form a thin film having a desired thickness. According to this embodiment of the invention, the wafer is placed in a processing chamber where a deposition process can be performed. The processing chamber may be a processing chamber 11A, uB, or 11c, which can be used to construct a silicon-rich film in situ. This paper can be applied alternately to another processing room. This paper can be printed from China County (CNS) Congxiu (2 敝 297 Central Government Bureau of Ministry of Public Affairs, Consumer Work Cooperatives, printed A7, B7, 5. Description of invention (55) or another set of processing The step of forming a silicon-rich film described above is performed in a chamber. Once the wafer is placed in the processing chamber, an antimony silicon carbonitride (TiSiCN) material is deposited on the wafer. The deposition can be performed using the conventional thermal CVD method using TDMAT. In order to introduce silicon, a certain volume of silane is allowed to flow into the processing chamber. An equal volume of nitrogen diluent is temporarily retained for comparison with the volume used when depositing titanium nitride using TDMAT CVD. During the deposition, the processing chamber pressure is set at 1.2 Torr; Wafer holder temperature was set at 420 ° C, and silane, He / TDMAT, and nitrogen diluent were flowed into the processing chamber at flow rates of 10 seem, 70 seem, and 90 seem, respectively. Argon was performed at a rate of 200 seem Cleaning. Deposition can be carried out for 32 seconds to form a material layer with a thickness of 100 angstroms. In the chemical vapor deposition of titanium nitride, Shi Xiyao is not used and the nitrogen flow rate is 100 seem. After the deposition, the electricity using nitrogen and hydrogen is used. Ti SiCN tritium. Tritium includes an initial 20-second ion bombardment when the initial thickness of the deposited material is 100, and the thickness of the desired material layer is 50 angstroms. The deposition and tritium can be continuously repeated for construction. The thickness of the thin film. In one embodiment of the present invention, the desired thickness is 200 angstroms. A 100 angstrom TiSiCN layer is deposited and then hardened into a 50 angstrom material layer. A total of 4 angstroms of 100 angstrom material layers In order to obtain the desired thickness of 200 angstroms, in one example, Rutherford reverse-scattering spectroscopy shows that the 200 angstroms thick film contains 15 atomic percent silicon, 25.3 percent molecular Ti. 49.7 atomic percentage of N, and 10 atomic percent of plutonium. The Auger depth change diagram of the film is shown in Figure 46. The Auger depth change diagram shows about (Please read the precautions on the back before writing 4-page) 袈The paper size of the edition is applicable to China National Standard for Ladder (CNS) A4 (210X297 mm) -58- Printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A7 ^ --- ^ B7 V. Description of the invention (56 ^ '- -~ — As low as 5 atomic percent The amount of oxygen and the amount of low oxygen of about 70% of the percentage are equal. The resistivity of the film is 2,40 () / ζ Ω. Figure 47 shows the thickness of the 200 Angstrom film and Comparison of the resistivity and composition of a 200 Å-thick thin plutonium layer formed by depositing antimonite and soil nitride. The loss of high resistivity can be exchanged to obtain a film containing a large amount of silicon as a diffusion barrier. As for the barrier layer, the resistivity is more acceptable. It can reduce the amount of Shi Xixuan used in the deposition step to reduce the resistivity of the thin film. As mentioned above, by filling the silicon into the material layer after deposition and initialization, the maximum can be achieved. Good resistivity. However, the strength of the diffusion barrier layer filled with Shixi is not sufficient as a thin film constructed by depositing Shixi-containing dead material to hinder the diffusion of copper. For example, silicon-packed binary metal nitrides, such as titanium nitride, and monometallic silicon nitrides, such as TiSiCN, cannot avoid copper diffusion. Manufacturers of integrated circuits can choose the method of strengthening the slab, which can meet the manufacturer's needs when constructing thin films. It should also be noted that the deposition method used in each of the above silicon strengthening methods can be changed by applying other deposition methods, such as sputtering, instead of chemical vapor deposition. In the embodiment of the present invention, a ternary metal silicon nitride other than TiSiCN can also be used. Furthermore, the above-mentioned initializing step is not limited to the use of an electric mass consisting only of nitrogen and hydrogen. Other plasma compositions that reduce the resistivity of the deposited material can also be used. An example of such a plasma is the above-mentioned plasma containing nitrogen, hydrogen, and argon. Continuous toughening steps can also be applied. In the method including packing silicon by exposure to silicon, the exposure step is not limited to thermal activation. Common Chinese National Standards (CNS) A4 specifications Γ ^ · 297 mm as far as possible paper size (Please read the precautions on the back before writing this page) Binding. Order -59- Printed by the Central Consumers Bureau of the Ministry of Economic Affairs and Consumer Cooperatives A7 B7 V. Description of the invention (57) In another embodiment of the present invention, a silicon-rich gas can be generated by an rf signal to generate a plasma containing silicon ions. Wafers containing silicon-filled material can also be biased to increase the bombardment of the material by silicon. When plasma is used for silicon packing, silicon packing can also be performed before or after the halogenation step to reduce its resistivity. C. Processor-controlled thin film construction The above-mentioned steps that can be performed in the processing chamber to deposit, tritiate, oxidize, and stuff silicon can be controlled by a processor-based control unit. Fig. 48 shows a control unit 600 having this capability for application. The control unit includes a processor unit 605, a memory 610, a mass storage device 620, an input control unit 670, and a display unit 650, all of which are connected to a control unit bus 625. The processor unit 605 may be a microprocessor or other precision structure with the ability to execute instructions stored in memory. The memory 610 may be a hard disk drive, a random access memory ("RAM"), a read-only memory ("ROM"), a combination of RAM and ROM, or other memories. The memory 610 contains instructions for execution by the processor unit 605 to facilitate the implementation of the above method steps. The instructions in the memory 610 may be in the form of code. The code can conform to any of many different programming languages. For example, the code can be written in C +, C ++, BASIC, Pascal, or many other languages. The mass storage device 620 stores data and instructions and retrieves the data and instructions from a storage medium readable by the processor, such as a magnetic disk or magnetic tape. For example, the mass storage device 620 may be a hard disk drive, a floppy disk drive, a tape drive, or an optical disk drive. The mass storage device 620 stores and retrieves instructions corresponding to the commands received from the processor unit 605. Storage by mass storage device 620 (Please read the precautions on the back before writing this page) 袈.

.1T 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -60- A7 經濟部中央標準局員工消費合作社印製 B7五、發明説明(58) 及檢察之數據及指令由處理機單元605應用來進行上述方 法步驟。首先由大量儲存裝置620自媒體中檢索數據及指 示並接著傳輸至記憶體610以供處理機單元605使用。 顯示器單元650在處理機單元605之控制下,以圖形顯 示及字母數字之方式提供訊息給處理室操作者。輸入控制 單元670連接數據輸入裝置,例如鍵盤、滑鼠或光筆,至 控制單元600以供接收處理室之操作者的輸入訊息。 控制單元總線625為所有與控制單元總線625連接之裝 置間的數據及控制訊號的傳輸者。雖然控制單元總線係以 單一總線方式顯示,其可直接連接控制單元600中之裝置 ,控制單元總線625可為總線之集合。例如,顯示器單元650 、輸入控制單元670及大量儲存裝置620可連接至輸入-輸 出週邊總線,同時將處理機單元605及記憶體610連接至定 位處理機總線。定位處理機線總線及輸入-輸出週邊總線 可連接在一起形成控制單元總線625。 控制單元600係與應用於在基材上形成薄膜的處理室 元件連接。各個元件皆可與控制單元總線625連接以增進 控制單元600及元件間的傳輸。這些元件包含處理室之氣 體屏52、加熱元件,例如燈130、壓力控制單元157、rf源 或能源62、142、143、144,及溫度測定裝置140。在本發 明之一實施例中,控制單元600在處理室110A、110B、及 110C中稱為氣體屏控制器50。 控制單元600供應訊號至元件,使元件實行上述之在 基材上沈積、鞀化、氧化及矽填塞材料等製程步驟的操作 請 先 閱 背 面 之 注 意 事 項 再 填.f裝 頁 訂 Λ 本紙張尺度適用中國國家樣準(CNS ) Α4規格(210X297公釐) -61 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(59) 。控制單元600亦接收來自該等元件之訊號來決定如何進 行控制前述製程步驟的執行。例如,控制單元600接收來 自溫度測定裝置140之訊號來決定燈130應供應至處理室的 執量。 第49圖說明藉由處理機單元605回應於自記憶體610檢 索出之程式碼指.令可實行之一系列製程步驟。在開始在基 材上形成一薄膜時,進行沈積步驟700。在沈積步驟700中 ,處理機單元605執行檢索自記憶體610之指令。這些指令 之執行造成依述操作處理室之元件以便在基材上沈積材料 層。例如,處理機單元605,回應所檢索之指令,使處理 室中之氣體屏供應處理室中的前驅物氣體,使燈130加熱 處理室,並使壓力控制單元157設定處理室内的壓力。 一旦完成沈積步驟700,檢索自記憶體610之指令指示 處理機單元605使處理室之元件進行轫化步驟701,例如前 述轫化過程之一’。鞀化可包含利用氮、氮及氫之混合物或 氮、氫及其他例如氬之氣體之混合物的電漿籾化。另外, 轫化步驟701可使依上述執行連續的軔化。 於完成轫化步驟701後,進行氧化決定步驟702,其中 控制單元600決定是否執行氧化之製程步驟。若不進行氧 化,檢索自記憶體610之指令指示步驟703以使處理機單元 605決定是否進行矽填塞。若不進行矽填塞,控制單元600 決定是不進行步驟706之另一次沈積。除非已沈積之材料 的厚度大致等於所需薄膜厚度,否則實行沈積步驟。若已 達到所需之薄膜厚度,則完成在基材上建構薄膜之製程。 U---------^ 袈------訂------f (請先閲讀背面之注意事項再4·寫本頁) 本紙張尺度逋用中國國家標準(CNS ) Μ規格(2〖0X297公釐) -62- A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(6〇) 否則進行新的沈積步驟700。 若在氧化決定步驟702中決定進行氧化,接著處理機 單元605執行氧化步驟704。在氧化步驟704中,檢索之指 令使處理機單元605指示處理室之元件進行上述氧化沈積 材料必須的操作。氧化可以電漿為主或熱為主。在完成氧 化步驟704後,處理機單元605決定是否在步驟706中進行 -新的沈積步驟700。 若在步驟703中決定實行矽填塞,接著處理機單元605 執行矽填塞步驟705。處理機單元605檢索並執行記憶罈内 的矽填塞指令。回應於該等指令,處理機單元605使處理 室内之元件以執行上述矽填塞步驟之方式操作。矽填塞可 經由將沈積材料暴露至矽烷氣體中來達成,該矽烷氣體以 熱的方式注入能量。另外,矽填塞可藉由將沈積材料暴露 至含有矽離子之環境來達成,該離子係利用rf訊號產生電 漿而產生。在完成矽填塞步驟705後,重覆沈積步驟700。 第50圖說明可藉由處理機單元605實行之另一製程步 驟順序,該處理機回應檢索自記憶體610之程式碼指令。 製程步驟順序包含與第49圖相同之步驟。然而,改變步驟 順序以供在轫化步驟701之進行矽填塞步驟705。 於進行沈積步驟700後,處理機單元605立刻執行步驟 703之指令來決定是否進行矽填塞。若要進行矽填塞,接 著進行矽填塞步驟705並接著進行鞀化步驟701。否則,進 行鞀化步驟701。於轫化步驟701後,處理機單元605在步 驟702中決定是否進行氧化步驟。若要進行氧化,接著執 請 先 閲 背 ir 之 注 意 事 項 再 t 裝 訂 Λ 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) -63- A7 B7 五、發明説明(61 ) 行氧化步驟704。否則,在步和⑽決定是否進行新的沈 積。-旦氧化步驟706完成|,亦在步驟寫中 做決定。若 需要新的沈積作用,執行沈積步驟7⑽。否則,完成薄模 建構製程》 雖然本發明已藉由特定例示實施例來描述,但應能瞭 解到本發明可在未偏離如下述申請專利範圍明確敘述之本 發明之精神及範圍内,由熟習此項.技術者進行不同之改良 及變化❶ (請先閲讀背面之注意事項再填寫本頁) 袈. 訂 經濟部中央橾準局員工消費合作社印装 本紙張尺度適用中國國家操準(CNS ) A4規格(210X297公釐) -64- A7 B7 經濟部中央標準局員工消费合作社印製 五、發明説明(62) 元件符號對照 Α...處理室 62 ...rf源 Β...處理室 63...匹配網路 C...沈積後處理室 70...變壓器 D...處理室 72...電容器 10...CVD處理室 74...電容器 12...處理室 78...分接頭 14…晶圓 80...電感器 16...支座 82...電感 |§ 18_&quot;盤 83...扼流圈 20...自由端 8 4...扼流圈 22...支撐臂 100...擴散阻障層 24...固定端 101...矽基材 26…桿 102...接點窗插塞或金屬 28,·.位移機構 103...接觸孔 30...紅外線燈 104.··材料 32...石英窗 105…導電區域 34..•孔 106...孔洞 38...熱電偶 110 A…晶圓處理室 40··.溫度測定裝置 110B...晶圓處理室 42...導電纜 110C...晶圓處理室 50...氣體屏控制器 112...處理室 52...氣體屏 114...晶圓 裝 訂 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 請 先 閲 讀 背 Λ 之 注 意 事 項 再 寫 本 頁 -65- 五、發明説明(63) A7 B7 經濟部中央橾準局員工消費合作社印製 116...支座 159...分隔件 118...支撐板 160...分隔件,槽 119...石英板 162...扣件 120...自由端 164··.槽 122...支撐臂 166.·.短截棒 124...固定端 16 8...螺栓 126···桿 170:..區段 128…位移機構 172...孔 130...燈 174…彈簧墊圈 132···石英窗 180...導電條 136...喷射頭 182…絕緣件 140...溫度測定裝置 184…絕緣件 142&quot;.rf 源 18 6...扣件 143 ...rf源 188...槽 144._.rf 源 192...結構 145..·匹配網路 194.··桿 146...匹配網路 196...擴大部分 147...匹配網路 198…擴大部分 150…石英屏蔽 200...通道 152...熱電偶 202...上部表面 154...鞘 204…分隔元件 156...電纜 206…擴大部分 157...壓力控制單元 207...電漿 158...小鎳球 208...氣體 l·---------ί^------IT-----—Γ .) (請先閲讀背面之注意事項再4·寫本頁) 本紙張尺度適用中國國家揉準(CNS ) A4规格(210X297公釐) -66- 經濟部中央標準局負工消费合作杜印製 A7 B7 五、發明説明(64) 210...凸緣 620.··大量儲存裝置 212...螺栓 625...控制單元總線 214...彈簧墊圈 650...顯示器單元 216...波紋管 670...輸入控制單元 220...不導電管 700…沈積步驟 222...rf導電管 701…轫化步驟 224…凸緣. 702:..氧化決定步驟 226...導電箍 703...步驟 600...控制單元 704…氧化步驟 605…處理機單元 705...矽填塞步驟 610…記憶體 706...步驟 l·--------「袈------ΐτ----1--f (請先閱讀背面之注意事項再资寫本頁) 本紙張又度適用中國國家標準(CNS ) A4規格(210X297公釐).1T This paper size applies to Chinese National Standard (CNS) A4 specification (210X297 mm) -60- A7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs B7 V. Invention Description (58) and inspection data and instructions are processed by the processor The unit 605 is used to perform the above method steps. Data and instructions are first retrieved from the media by the mass storage device 620 and then transferred to the memory 610 for use by the processor unit 605. The display unit 650, under the control of the processor unit 605, provides information to the operator of the processing room in a graphic display and alphanumeric manner. The input control unit 670 is connected to a data input device, such as a keyboard, a mouse, or a light pen, to the control unit 600 for receiving input information from an operator of the processing room. The control unit bus 625 is a transmitter of data and control signals between all devices connected to the control unit bus 625. Although the control unit bus is shown as a single bus, it can be directly connected to the devices in the control unit 600, and the control unit bus 625 may be a collection of buses. For example, the display unit 650, the input control unit 670, and the mass storage device 620 can be connected to the input-output peripheral bus, while the processor unit 605 and the memory 610 are connected to the positioning processor bus. The positioning processor line bus and the input-output peripheral bus can be connected together to form a control unit bus 625. The control unit 600 is connected to a processing chamber element applied to form a thin film on a substrate. Each component can be connected to the control unit bus 625 to enhance the transmission between the control unit 600 and the components. These elements include a gas shield 52 of the processing chamber, heating elements such as a lamp 130, a pressure control unit 157, an rf source or energy source 62, 142, 143, 144, and a temperature measuring device 140. In one embodiment of the present invention, the control unit 600 is referred to as a gas screen controller 50 in the processing chambers 110A, 110B, and 110C. The control unit 600 supplies a signal to the component, so that the component performs the above-mentioned process steps of deposition, chemical conversion, oxidation, and silicon filling material on the substrate. Please read the precautions on the back before filling. Applicable to China National Standard (CNS) A4 specification (210X297mm) -61 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs A7 B7 V. Invention Description (59). The control unit 600 also receives signals from these components to decide how to control the execution of the aforementioned process steps. For example, the control unit 600 receives a signal from the temperature measuring device 140 to determine the capacity of the lamp 130 to be supplied to the processing chamber. Figure 49 illustrates a series of process steps that can be performed by the processor unit 605 in response to the code instructions retrieved from the memory 610. When a thin film is initially formed on the substrate, a deposition step 700 is performed. In the sinking step 700, the processor unit 605 executes an instruction to retrieve from the memory 610. Execution of these instructions causes the components of the processing chamber to be manipulated in order to deposit a layer of material on a substrate. For example, the processor unit 605, in response to the retrieved instruction, causes the gas screen in the processing chamber to supply precursor gas in the processing chamber, causes the lamp 130 to heat the processing chamber, and causes the pressure control unit 157 to set the pressure in the processing chamber. Once the deposition step 700 is completed, the instruction retrieved from the memory 610 instructs the processor unit 605 to cause the components of the processing chamber to perform the step 701, such as one of the aforementioned steps. Tritiation may include plasma tritiation using a mixture of nitrogen, nitrogen, and hydrogen or a mixture of nitrogen, hydrogen, and other gases such as argon. In addition, the dithering step 701 can perform continuous dithering as described above. After completion of the halogenation step 701, an oxidation decision step 702 is performed, in which the control unit 600 determines whether to perform an oxidation process step. If the oxidation is not performed, the instruction retrieved from the memory 610 instructs step 703 to enable the processor unit 605 to decide whether to perform silicon stuffing. If silicon packing is not performed, the control unit 600 decides not to perform another deposition in step 706. The deposition step is performed unless the thickness of the deposited material is approximately equal to the desired film thickness. If the required film thickness has been reached, the process of constructing a film on a substrate is completed. U --------- ^ 袈 ------ Order ------ f (Please read the notes on the back first and then write this page) This paper uses the Chinese national standard ( CNS) M specifications (2 〖0X297mm) -62- A7 B7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (60) Otherwise, a new deposition step 700 is performed. If it is decided to perform oxidation in the oxidation decision step 702, the processor unit 605 then executes the oxidation step 704. In the oxidation step 704, the retrieved instruction causes the processor unit 605 to instruct the components of the processing chamber to perform the operations necessary for the above-mentioned oxidative deposition of the material. Oxidation can be plasma-based or thermal-based. After completing the oxidation step 704, the processor unit 605 decides whether to proceed in step 706-a new deposition step 700. If it is decided in step 703 to implement silicon stuffing, the processor unit 605 then executes a silicon stuffing step 705. The processor unit 605 retrieves and executes the silicon stuffing instructions in the memory altar. In response to these instructions, the processor unit 605 causes the components in the processing chamber to operate in a manner that performs the silicon packing steps described above. Silica packing can be achieved by exposing the deposition material to a silane gas, which is thermally injected with energy. In addition, silicon packing can be achieved by exposing the deposition material to an environment containing silicon ions, which are generated using an rf signal to generate a plasma. After the silicon filling step 705 is completed, the deposition step 700 is repeated. Figure 50 illustrates another sequence of process steps that can be performed by the processor unit 605, which responds to code instructions retrieved from the memory 610. The process step sequence includes the same steps as in FIG. 49. However, the order of the steps is changed for the silicon stuffing step 705 in the halogenation step 701. After the deposition step 700 is performed, the processor unit 605 immediately executes the instruction of step 703 to decide whether to perform silicon stuffing. To perform silicon stuffing, a silicon stuffing step 705 is performed followed by a halogenation step 701. Otherwise, a step 701 is performed. After the halogenation step 701, the processor unit 605 decides in step 702 whether to perform the oxidation step. If you want to carry out oxidation, please read the precautions of ir before binding. The paper size is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) -63- A7 B7 V. Description of invention (61) Oxidation Step 704. Otherwise, in step and ⑽ decide whether to perform a new deposition. -Once the oxidation step 706 is completed, a decision is also made in the step writing. If new deposition is required, perform deposition step 7). Otherwise, complete the thin mold construction process. "Although the present invention has been described by specific exemplary embodiments, it should be understood that the present invention can be familiarized with within The technicians make different improvements and changes. (Please read the notes on the back before filling out this page.) 袈. Order printed on the paper of the Central Consumers ’Bureau of the Ministry of Economic Affairs. A4 specifications (210X297 mm) -64- A7 B7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (62) Component symbol comparison A ... processing room 62 ... rf source B ... processing room 63 ... matching network C ... deposition processing chamber 70 ... transformer D ... processing chamber 72 ... capacitor 10 ... CVD processing chamber 74 ... capacitor 12 ... processing chamber 78 ... tap 14 ... wafer 80 ... inductor 16 ... support 82 ... inductance | § 18_ &quot; disk 83 ... choke 20 ... free end 8 4 ... Flow coil 22 ... support arm 100 ... diffusive barrier layer 24 ... fixed end 101 ... silicon substrate 26 ... rod 102 ... contact window plug or metal 28, · .Displacement mechanism 103 ... Contact hole 30 ... Infrared lamp 104. ·· Material 32 ... Quartz window 105 ... Conductive area 34 .. · Hole 106 ... Hole 38 ... Thermocouple 110 A ... Wafer processing chamber 40 ... Temperature measurement device 110B ... Wafer processing chamber 42 ... Conductor 110C ... Wafer processing chamber 50 ... Gas screen controller 112 ... Processing chamber 52. .Gas screen 114 ... wafer binding This paper size is applicable to Chinese National Standard (CNS) A4 specification (210 × 297 mm) Please read the precautions on the back Λ before writing this page-65- V. Description of Invention (63) A7 B7 Printed by the Consumers' Cooperative of the Central Economic and Technical Bureau of the Ministry of Economic Affairs 116 ... support 159 ... divider 118 ... support plate 160 ... divider, groove 119 ... quartz plate 162 ... fastener 120 ... free end 164 ... groove 122 ... support arm 166 ... short bar 124 ... fixed end 16 8 ... bolt 126 ... rod 170: ... section 128 ... displacement Mechanism 172 ... hole 130 ... light 174 ... spring washer 132 ... quartz window 180 ... conductive bar 136 ... jet head 182 ... insulator 140 ... temperature measuring device 184 ... insulator 142 &quot; .rf source 18 6 ... fastener 143 ... rf source 188 .. .Slot 144 ._. Rf Source 192 ... Structure 145 ... Matching network 194 ... Matching 146 ... Matching network 196 ... Expanding section 147 ... Matching network 198 ... Expanding section 150 ... quartz shield 200 ... channel 152 ... thermocouple 202 ... upper surface 154 ... sheath 204 ... dividing element 156 ... cable 206 ... expanded 157 ... pressure control unit 207 ... electrical Slurry 158 ... small nickel ball 208 ... gas l · --------- ί ^ ------ IT ------- Γ.) (Please read the precautions on the back first (4, write this page again) The paper size is applicable to the Chinese National Standard (CNS) A4 (210X297 mm) -66- Duty Printing and Co-operation A7 B7 by the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of the Invention (64) 210 ... Flange 620 ..... Mass storage device 212 ... Bolt 625 ... Control unit bus 214 ... Spring washer 650 ... Display unit 216 ... Corrugated tube 670 ... Input control unit 220 ... non-conductive tube 700 ... deposition step 222 ... rf conductive tube 701 ... decidation step 224 ... flange. 702: .. oxidation decision step 226 ... conductive hoop 703 ... step 600 ... control Unit 704 ... Oxidation step 605 ... Processor unit 705 ... Silicon stuffing step 610 ... Memory 706 ... Step l · -------- 「---------- ΐτ ---- 1--f (Please read the precautions on the back before writing this page) This paper Applicable to China National Standard (CNS) A4 specification (210X297 mm)

Claims (1)

經濟部智慧財產局貝工消費合作社印製 A8 Λ λ : S 則》 ___ D8 六、申請專利範圍 ’該程式碼於在半導趙晶圓上建構薄膜時可控制一處 理室,其中該處理室包含氣艎屏、加熱元件、壓力控 制單元及rf訊號源,該程式碼包含: 第一程式碼,該第一程式碼指示處理機提供訊號 至該氣镇屏、該加熱裝置及該壓力控制單元以使材料 層沈精在處理室内的晶圓上,其中指示該氣艎屏提供 用於沈積三元金屬氮化物之前驅物氣體;以及 第二程式碼,該第二程式瑪指示處卑機^供訊號 至該氣體屏、該加熱裝置、該壓力控制單元及該rfm 號源以便電漿化該材料層β 55.如申請專利範圍第54項之儲存媒體,其中該三元金屬 石夕氣化物包含至少一選自於鈦、组、鹤及結之材料。 本紙張Μ適用中國國家揉车(CNS)八4胁(21()&gt;&lt;297公兼) (請先閲讀背面之注意事項再填寫本頁)A8 Λ λ printed by the Shelley Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs: S then "___ D8 VI. Patent application scope 'This code can control a processing chamber when constructing a thin film on a semiconductor wafer, where the processing chamber contains gas艎 screen, heating element, pressure control unit and rf signal source, the code includes: a first code, the first code instructs the processor to provide a signal to the gas ballast screen, the heating device and the pressure control unit so that The material layer is concentrated on the wafer in the processing chamber, where the gas mask is instructed to provide a precursor gas for depositing a ternary metal nitride; and a second code, the second code indicates a signal to the processor ^ for the signal To the gas shield, the heating device, the pressure control unit, and the rfm source to plasmatify the material layer β 55. For example, the storage medium of the scope of application for patent No. 54, wherein the ternary metal stone gaseous substance contains at least A material selected from titanium, group, crane and knot. This paper M is suitable for China National Kneading Car (CNS) Ya 4 Wuji (21 () &gt; &lt; 297) and (please read the precautions on the back before filling this page) A8 Bg C8 D8A8 Bg C8 D8 申請專利範圍 趣濟部中央榡準局負工消費合作,社印11 .一種在半導體晶圓上建構薄膜之方法,該方法包含下 述步驟: (a) 在該晶圓上沈積一材料層; (b) 在步驟(a)後電漿轫化該材料層以致能降低該 材料層之電阻率,其中該步驟(b)包含下述步驟: 進行該材料層之第一次電漿轫化;以及 於進行第一次電漿靭化後,進行該材料層之第二 次電漿鞀化。 2·如申請專利範圍第1之方法,其中進行該第—次電聚 轫化的步驟包含下述步驟: 將該材料層暴露至含有離子之第一環境中;以及 電氣偏壓該材料層造成離子由第-環境向該材料 層爲擊。 3, 如申請專利範圍第2項之方法,Α中 '、甲進仃該第二次電漿 鞀化的步驟包含下述步驟: '將該材料層暴露至含有離子之第二環境中;以及 料層^偏壓該材料層以造成離子由第二環境向該材 4. 如申請專利範圍第3項之方法,其中將該材 包含離子之第-環境的步驟包含下述步驟:— 提供第一氣體,以及 供應能量至該第-氣體來產生第,、. 其中將該材料層暴露至包含 乂及 驟包含下述步驟·· 卞之第二環境的步 ΐ紙張幻t適用令國^標準(CNS ) (請先閲讀背面之注項再填寫本頁) -Λ&quot; &quot;· 68 - A8 B8 CS D8The scope of the patent application is the work-consumption cooperation of the Central Bureau of Quasi-Ministry of the Ministry of Interest, Social Printing 11. A method for constructing a thin film on a semiconductor wafer, the method includes the following steps: (a) depositing a material layer on the wafer; (b) after step (a), the material layer is plasma-moltened so as to reduce the resistivity of the material layer, wherein the step (b) includes the following steps: performing the first plasma-moltenization of the material layer; After the first plasma toughening, the second plasma hardening of the material layer is performed. 2. The method of claim 1, wherein the step of performing the first electropolymerization comprises the steps of: exposing the material layer to a first environment containing ions; and electrically biasing the material layer to cause Ions strike the material layer from the -environment. 3. As in the method of applying for the second item of the patent scope, the steps of "A" and "A" to perform the second plasma plasmaization include the following steps: 'expose the material layer to a second environment containing ions; and The material layer ^ biases the material layer to cause ions from the second environment to the material. 4. The method of claim 3 in the scope of the patent application, wherein the step of the material including the ion-environment step includes the following steps:-providing the A gas, and the supply of energy to the-gas to generate the first, .... The material layer is exposed to a second environment including the following steps and steps including the following steps ... Paper steps t Applicable national standards (CNS) (Please read the notes on the back before filling this page) -Λ &quot; &quot; · 68-A8 B8 CS D8 申請專利範圍 提供第二氣體,以及 供應能量至該第二氣體來產生第二電漿。 5.如申請專利範圍第4項之方法,其中: 驟: 該供應能量至該第一氣體之步驟包含下述次要步 提供第一rf訊號至位在該晶圓之第一侧的第一電 極,以及 提供第二rf訊號至位在該晶圓之第二側的第二電 極,以及 其中提供能量至該第二氣體的步驟包含下述次要 步驟: ^供第二rfgfl號至位在該晶圓之第一側的第一電 極’以及 提供第四rf訊號至位在該晶圓之第二側的第二電 極 經濟部中央標準局貞工消費合作社印裝 6·如申請專利範圍第5項之方法,其中該第一 “訊號大致 與該第二rf訊號呈180度異相以及該第三rf訊號大致與 第四rf訊號呈180度異相。 7·如申請專利範圍第4項之方法,其中該第一氣體包含至 少一選自於氮、氫、氬、氦及氨之氣體。 8. 如申請專利範圍第4項之方法,其令該第二氣體包含至 少一選自於氮、氦、氖及氬之氣體。 9. 如申請專利範圍第丨項之方法,其中該步驟(a)係利用 化學氧相沈積法來進行β 表紙張尺度逋用中®國家梂準(CNS ) Α4规格(210x297公釐) (請先閲讀背面之注意事項再填寫本頁)The scope of the patent application provides a second gas, and supplies energy to the second gas to generate a second plasma. 5. The method of claim 4 in the scope of patent application, wherein: Step: The step of supplying energy to the first gas includes the following secondary steps of providing a first rf signal to the first located on the first side of the wafer An electrode, and a second electrode for providing a second rf signal to the second side of the wafer, and the step of providing energy to the second gas includes the following secondary steps: ^ For the second rfgfl signal to be located at The first electrode on the first side of the wafer and a fourth RF signal provided to the second electrode on the second side of the wafer are printed by the Central Standards Bureau of the Ministry of Economic Affairs, Zhengong Consumer Cooperatives. The method of 5 items, wherein the first "signal" is approximately 180 degrees out of phase with the second rf signal and the third rf signal is approximately 180 degrees out of phase with the fourth rf signal. Wherein the first gas includes at least one gas selected from the group consisting of nitrogen, hydrogen, argon, helium, and ammonia. 8. If the method of claim 4 is applied, the second gas includes at least one gas selected from the group consisting of nitrogen, Gases of helium, neon and argon. The method of item 丨, wherein step (a) is performed using chemical oxygen phase deposition method for β sheet paper size in use ® National Standard (CNS) Α4 size (210x297 mm) (Please read the precautions on the back first (Fill in this page again) -69- 衄濟部中央榡準局貝工消»·合作衽印袋 A8 B8 CS D8 申請專利範圍 10. 如申請專利範圍第!項之方法,其中該材料層為二元金 屬氮化物。 11. 如申請專利範圍第10項之方法,其進—步包含下述步 '驟: (0重覆該步驟(a)及該步驟(b)。 U·如申請專利範圍第丨項之方法,其中該步驟(a)及該步 驟⑻可同在-處理室中進行’無需在開始步驟⑻及完 成步驟(b)之間將晶圓移出處理室。 13-種在半導體晶圓上建構薄膜之方法,該方法包含下 述步驟: (a) 將材料層沈積在該晶圓上;以及 (b) 在步驟(a)後電漿初化該材料層以致能降低該 材料層之電阻率;以及 (&lt;0將該材料層暴露至含矽氣體中;以及 (d)加熱該材料層以使矽與該材料層反應。 如申明專利範圍第13項之方法,其中該步驟(c)及步驟 (d)係在步驟(b)之後進行。 15·如申請專利範圍第㈣之方法,其中該步驟⑷及步驟 (d)係在步驟(a)之後及在步驟(b)之前進行。 如申*3專利範圍第13項之方法,其中該含石夕氣體為石夕 燒。 17·如申請專利範圍第13項之方法,其進—步包含下述步 驟: ⑷重覆該步驟(a)、該步称(b)、該步驟⑷及該 揉準(CNS )八4狀(210X297公釐了 L -- (請先閱讀背面之注意事項再填寫本頁) 訂: -70- A8 B8 CS D8 經濟部t央操率局貝工消費合作衽印製 +請專利範圍 步驟(d)。 I8·如申請專利範圍第13項之方法,其進一步包含下述步 驟: (e) 在步驟(a)、(b)'⑷及(d)之後,在該材料層 上沈積該材料之蓋層;以及 (f) 使該材料之蓋層鞀化。 I9·如申請專利範爵第13項之方法,其中該步驟(a)、步驟(b) 、步驟(c)及步驟(d)皆在同一處理室中進行,無需在開 始步驟(a)及完成步驟(d)之間將晶圓移出處理室。 20.如申請專利範圍第U項之方法,其中該材料層是利用 化學氣相沈積法沈積。 1.如申清專利範圍第20項之方法,其中該材料層為二元 金屬氮化物。 22·如申請專利範圍第21項之方法,其中該二元金屬氮化 物包含至少一選自於鈦、鈕、鎢及錯之材料。 23_如申請專利範圍第20項之方法’其中該步驟(&amp;)、步驟(b) 、步驟(c)及步驟(d)皆在同一處理室中進行,無需在開 始步驟(a)及完成步驟(d)之間將晶圓移出處理室。 24·—種在半導體晶圓上建構薄膜之方法,該方法包含下 述步驟: (a) 將材料層沈積在該晶圓上;以及 (b) 在步驟(a)後電漿初化該材料層以致能降低該 材料層之電阻率;以及 (c) 將該材料層暴露至含有碎離子之環境中。 ) A4ft^ ( 210X297^ )~-*— ---------Α 衣-- (請先閲讀背面之注意事項再填寫本頁) 、*τ. -71 - 25·如申請專利範圍第24項 驟: 之方法,其進一 步包含下述步 該二=偏㈣材料層W子㈣環境, 26::半導觸上建構薄膜之方法,該方法包含下 U)將材料層沈積在該晶圓上;以及 ⑻在步驟⑷後電裝初化該材料層以致能降低該 =層之電阻率,其t該材料為三元金屬錢化物。 ==利範圍第26項之方法,其中該三元金屬錢 化物包含至少-選自於欽,、鶴及錯之材料。 28· 一種在半導體晶圓上建構薄膜之方法,該方法包含下 述步驟: (a)將晶圓置於一處理室中; (b)在該處if室中將材料層沈積在該晶圓上; 及 (0當晶圓位在該處理室中時,在步驟(b)後電漿 初化該材料層,其中該步驟⑷包含下述步驟: 將該材料層暴露至含有離子之第—環境中. 電氣偏壓該材料層以造成離子由第一環境向該材 料層轟擊;9 停止將該材料層暴露至該含有離子之第—環境中 f 於停止將該材料層暴露至該含有離子之第一環境-69- Beijin Consumer Products Co., Ltd., Central Bureau of Standards and Technology of the Ministry of Economic Affairs and Economics »· Cooperative Seal Bag A8 B8 CS D8 Patent Application Scope 10. If the scope of patent application is the first! The method of claim, wherein the material layer is a binary metal nitride. 11. For the method of applying for the scope of patent application, the further steps include the following steps: (0 Repeat this step (a) and step (b). U. For the method of applying for scope of patent application Among them, the step (a) and the step ⑻ can be performed in the same processing chamber 'without the need to move the wafer out of the processing chamber between the initial step ⑻ and the completion step (b). 13- Constructing a thin film on a semiconductor wafer The method comprises the following steps: (a) depositing a material layer on the wafer; and (b) initializing the material layer by plasma after step (a) so as to reduce the resistivity of the material layer; And (&lt; 0 exposing the material layer to a silicon-containing gas; and (d) heating the material layer so that silicon reacts with the material layer. For example, the method of claim 13 of the patent scope, wherein the steps (c) and Step (d) is performed after step (b). 15. The method according to the scope of patent application (i), wherein step (d) and step (d) are performed after step (a) and before step (b). The method of applying for item No. 13 in the scope of patent of * 3, wherein the gas containing Shixi is Shixiyan. 17. If applying for a patent The method around item 13 includes the following steps: ⑷ Repeat this step (a), this step is called (b), this step, and the CNS 8.4 shape (210X297 mm) L-(Please read the notes on the back before filling out this page) Order: -70- A8 B8 CS D8 Ministry of Economic Affairs t Central Operations Bureau Shellfish Consumer Cooperative Printing + Printing Patent Scope Step (d). I8 · The method of claim 13 further comprises the following steps: (e) depositing a capping layer of the material on the material layer after steps (a), (b) '⑷ and (d); and (f) Make the cover of the material trivial. I9. The method of item 13 of the patent application, wherein the steps (a), (b), (c) and (d) are all processed in the same way. It does not need to remove the wafer from the processing chamber between the beginning step (a) and the completion step (d). 20. The method according to item U of the patent application scope, wherein the material layer is deposited by chemical vapor deposition 1. The method as claimed in item 20 of the patent scope, wherein the material layer is a binary metal nitride. 22. The method as claimed in item 21 of the patent scope Method, wherein the binary metal nitride comprises at least one material selected from the group consisting of titanium, button, tungsten, and tungsten. 23_As in the method of claim 20 of the patent application 'wherein the step (&amp;), step (b), Step (c) and step (d) are performed in the same processing chamber, and there is no need to move the wafer out of the processing chamber between the beginning step (a) and the completion step (d). 24. A method of constructing a thin film on a semiconductor wafer The method comprises the following steps: (a) depositing a material layer on the wafer; and (b) initializing the material layer by plasma after step (a) so as to reduce the resistivity of the material layer; And (c) exposing the material layer to an environment containing fragmented ions. ) A4ft ^ (210X297 ^) ~-* — --------- Α clothing-(Please read the precautions on the back before filling out this page), * τ. -71-25 · If the scope of patent application Step 24: A method, which further includes the following steps: 2 = a partial material layer and a sub-environment, 26: a method of constructing a thin film on a semiconducting touch, the method including the following steps) depositing a material layer on the On the wafer; and after the step (i), the material layer is initialized so that the resistivity of the layer can be reduced, and the material is a ternary metal sulfide. == The method of item 26, wherein the ternary metal coinpeptide contains at least-materials selected from the group consisting of Qin, He, and He. 28. A method of constructing a thin film on a semiconductor wafer, the method comprising the following steps: (a) placing the wafer in a processing chamber; (b) depositing a material layer on the wafer in the if chamber And (0) when the wafer is in the processing chamber, the material layer is plasma-initialized after step (b), wherein the step ⑷ includes the following steps: exposing the material layer to In the environment. Electrically bias the material layer to cause ions to bombard the material layer from the first environment; 9 to stop exposing the material layer to the first ion-containing environment-to stop exposing the material layer to the ion-containing material First environment 申請專利範團 中後將該材料層暴露至含有離子之第二環境中; 及 1 以 經濟部中央揉準局貝工消費合作社印裝 電氣偏壓該材料層以造成離子由第二環境向該材 料層轟擊。 29·如申請專利範圍第28項之方法,其中 該將材料層暴露至包含離子之第一環境的步驟包 含下述步驟: 提供第一氣體,以及 供應能量至該第一氣體來產生第一電漿,以及 其中將該材料層暴露至包含離子之第二環境的步 驟包含下述步驟: 提供第二氣體,以及 供應能量至該第二氣體來產生第二電漿。 3〇·如申請專利範圍第29項之方法,丨中該第二氣體包含 至少一選自於氮、氦、氖及氬之氣體。 31. 如申請專利範圍第28項之方法,其中該步称⑷係利用 化學氣相沈積法來進行。 32. 種在半導體晶圓上建構薄膜之方法,該方法包含下 述步驟: (a) 將晶圓置於一處理室中; (b) 在該處理室中將材料層沈積在該晶圓上; (c) 當晶圓位在該處理室中時,在步驟(b)後電漿 轫化該材料層; (d) 當晶園位在該處理室中時,在步驟(c)後產生 « fk—· tn —i m ϋ —ί ^^^1 n (請先聞讀背面之注意事項再填寫本頁) 訂 -73- ABCD 趣濟部令央揉準局炅工消費合作社印裝 '申請專利範圍 含氧離子電漿;以及 (e)當晶圓位在該處理室中時,電氣偏壓該材料 層以使氧離子轟擊該材料層。 33.如申請專利範圍第32項之方法,其中該步驟⑷包含下 述步驟: 提供第-rf訊號至位㈣晶圓之第一側的第一電 極。 如申明專利範圍第33項之方法,其中該第一電極為晶 圓支座。 A如申請專利範圍第34項之方法,其中該步驟⑷包含下 述步驟: 提供第二rf訊號至位在該晶圓之第二侧的第二電 極。 36.如申請專利範圍第35項之方法,其中該第二電極喷射 頭支座。 A如申料職㈣36奴料,其巾該“圓支座為 晶座。 38.—種在半導體晶圓上建構薄膜之方法, 述步驟: (a) 將晶圓置於一處理室中; (b) 在該處理室令將材料層沈積在該晶圓上 ⑷當晶圓位在該處理室中時,在步驟⑻後 轫化該材料層; ⑷當晶圓位在該處理室甲時,將該材料層 本纸張適用中國國家梯率(CNS ) ( 210X297公釐 該方法包含下 (請先閲讀背面之注意事項再填寫本頁)After applying for a patent application, the material layer is exposed to a second environment containing ions; and 1 The printed material is electrically biased by the Central Government Bureau of the Ministry of Economic Affairs, Shellfisher Consumer Cooperative, to cause ions from the second environment to the Material layer bombarded. 29. The method of claim 28, wherein the step of exposing the material layer to a first environment containing ions includes the steps of: providing a first gas, and supplying energy to the first gas to generate a first electricity The plasma, and the step in which the material layer is exposed to a second environment containing ions, includes the steps of: providing a second gas, and supplying energy to the second gas to generate a second plasma. 30. The method of claim 29, wherein the second gas comprises at least one gas selected from the group consisting of nitrogen, helium, neon, and argon. 31. The method according to item 28 of the patent application, wherein this step is said to be performed by chemical vapor deposition. 32. A method of constructing a thin film on a semiconductor wafer, the method comprising the following steps: (a) placing the wafer in a processing chamber; (b) depositing a material layer on the wafer in the processing chamber ; (C) when the wafer is located in the processing chamber, the material layer is plasma-pulverized after step (b); (d) when the wafer is located in the processing chamber, generated after step (c) «Fk— · tn —im ϋ —ί ^^^ 1 n (Please read the precautions on the reverse side before filling out this page) 73-73- ABCD Order of the Ministry of Interest and Economic Affairs of the Central Government Procurement Bureau,“ Machinery Consumer Cooperatives ’Printing” Application The patent scope includes an oxygen ion plasma; and (e) when the wafer is in the processing chamber, the material layer is electrically biased to cause oxygen ions to bombard the material layer. 33. The method of claim 32, wherein the step ⑷ includes the following steps: providing a -rf signal to the first electrode on the first side of the wafer. For example, the method of claim 33 is claimed, wherein the first electrode is a wafer support. A The method according to item 34 of the patent application scope, wherein the step ⑷ includes the following steps: providing a second rf signal to a second electrode located on the second side of the wafer. 36. The method of claim 35, wherein the second electrode jetting head support. A If you apply for 36 materials, the "round support" is a crystal seat. 38. A method of constructing a thin film on a semiconductor wafer, the steps are described as follows: (a) the wafer is placed in a processing chamber; (b) ordering a material layer to be deposited on the wafer in the processing chamber; when the wafer is located in the processing chamber, the material layer is chemically converted after step (i) when the wafer is located in the processing chamber A , This material layer paper is applicable to China National Slope (CNS) (210X297 mm) This method includes the following (please read the precautions on the back before filling this page) -74--74- 申請專利範圍 至含矽氣體中;以及 (e)當晶圓位在該處理室中拉,4, 至中時,加熱該材料層以 使矽與該材料層反應。 39.如申請專利範圍第38項之方法, 烷 其中該含石夕氣體為碎 4〇.如申請專利範圍第38項之方法, .驟 其進一步包含下述步 ⑴重覆該步驟⑻、步驟⑷、步驟⑷及步驟⑷ 41.如申請專利範圍第38項之方法, 驟: 其進一步包含下述步 趣濟部中夬榡準局男工消費合作社印製 *⑴在步驟(e)之後,在該材料層上沈積該材料之 蓋層;以及 (g)使該材料之蓋層轫化。 42·—種在半導體㈣上建構薄膜之方法,該方法包含下 述步驟: (a)將晶圓置於一處理室中; ⑻在該處理室中將材料層沈積在該晶圓上; (c) 當3曰圓位在該處理室令時,在步驟(b)後電漿 初化該材料層;以及 (d) 當晶圓位在該處理室争時,將該材料層暴露 至含矽離子之環境中。 .如申請專利H圍第42項之方法’其進_步包含下述步 驟:The scope of the patent application is in a silicon-containing gas; and (e) when the wafer is pulled in the processing chamber, 4, to mid, the material layer is heated to react the silicon with the material layer. 39. The method of claim 38 in the scope of patent application, wherein the gas containing stone ash is broken up. 40. The method of claim 38 in the scope of patent application, which further includes the following steps (repeat this step), step ⑷, Step ⑷ and Step ⑷ 41. If the method of the scope of application for the patent No. 38, step: It further includes the following steps printed by the Ministry of Economic Affairs, China Bureau of Associate Bureau of Male Workers Consumer Cooperatives * ⑴ After step (e) A capping layer of the material is deposited on the material layer; and (g) the capping layer of the material is tritiated. 42 · —A method for constructing a thin film on a semiconductor wafer, the method comprising the following steps: (a) placing a wafer in a processing chamber; 沉积 depositing a material layer on the wafer in the processing chamber; ( c) when the circular position is in the processing chamber, the plasma layer is initialized after step (b); and (d) when the wafer is positioned in the processing chamber, the material layer is exposed to In the environment of silicon ions. . If the method of applying for patent No. 42 is ’, its further steps include the following steps: (請先閲讀背面之注意事項再填寫本頁)(Please read the notes on the back before filling this page) -75- A8 B8 C8 D8-75- A8 B8 C8 D8 六、申請專利範圍 經濟部中央揉準局貝工消费合作社印製 (e)當晶圓位在該處理玄 地埋至中時,電氣偏壓該材 層以使矽離子轟擊該材料層。 从如申請專利範圍第43項之方法,其進-步包含下述步 驟· ()在步驟(e)之後,在該材料層上沈積該材料之 蓋層;以及 (g)使該材料之蓋層靭化。 45_-種在半導體0日日圓上建構_之方法,該方法包含下 述步驟: (a)將晶圓置於一處理室中; ⑻在該處理室中將三元金屬石夕氣化物材料層沈 積在該晶圓上; ⑷當晶圓位在該處理室中時,在步释)後電裝 鞀化該材料層;以及 (句當晶圓位在該處理室中時,將該材料層暴露 至含矽離子之環境中。 46. 如申請專利範圍第45項之方法,其中該三元金屬石夕氮 化物包含至少一選自於鈦、鈕、鎢及銼之材料。 47. —種處理機可讀取之儲存媒體,該媒體被灌入程式碼 ,該程式碼於在半導體晶圓上建構薄膜時可控制一處 理至,其中該處理室包含氣體屏、加熱元件、壓力控 制單元及rf訊號源,該程式碼包含: 第一程式碼,該第一程式碼指示處理機提供訊號 至該氣體屏、該加熱裝置及該壓力控制單元以使材料 (請先聞讀背面之注意事項再填寫木頁)6. Scope of patent application Printed by the Central Government Bureau of the Ministry of Economic Affairs, Shelley Consumer Cooperative (e) When the wafer is buried in the processing ground, the material layer is electrically biased so that silicon ions bombard the material layer. From the method as claimed in item 43 of the patent application, its further steps include the following steps: () After step (e), deposit a cover layer of the material on the material layer; and (g) make the cover of the material Layer toughened. 45_- A method of constructing a semiconductor on 0 yen, the method includes the following steps: (a) placing a wafer in a processing chamber; 将 a ternary metal stone gaseous material layer in the processing chamber Deposited on the wafer; (i) when the wafer is in the processing chamber, the material layer is electrically assembled after the step; and () when the wafer is in the processing chamber, the material layer Exposure to an environment containing silicon ions. 46. The method of claim 45, wherein the ternary metal stone nitride comprises at least one material selected from the group consisting of titanium, buttons, tungsten, and files. 47.-species A processor-readable storage medium, the medium is filled with a program code, which can control a process to build a film on a semiconductor wafer, wherein the process chamber includes a gas screen, a heating element, a pressure control unit, and rf signal source, the code contains: the first code, the first code instructs the processor to provide signals to the gas screen, the heating device and the pressure control unit to make the material (please read the precautions on the back before reading (Fill in the wooden pages) -76- 經濟部中央榇準局貝工消費合作社印装 A8 B8 C8 ^^------D8 A、申請專利範圍 層沈積在處理室内的晶圓上; 第二程式碼’該第二程式碼指示處理機提供訊號 至該氣體屏、該加熱裝置、該壓力控制單元及該“訊 號源,以便在第一時間内電漿轫化該材料層; 第二程式碼’該第二程式碼指示處理機提供訊號 至該氣體屏、該加熱裝置、該壓力控制單元及該rfm 號源以便在第二時間内電漿轫化該材料層。 48. 如申請專利範圍第47項之處理機可讀取之儲存媒體, 其中該第二程式碼指示該處理機以使該氣體屏提供至 少一選自於氮、氫、氬、氦及氨之氣體,以及其中該 第三程式碼指示該處理機以使該氣體屏提供至少一選 自於氮、氦、氖及氬之氣體》 49. 一種處理機可讀取之儲存媒體,該媒體被灌入程式碼 ’該程式碼於在半導體晶圓上建構薄膜時可控制一處 理室,其中該處理室包含氣體屏、加熱元件、壓力控 制單元及rf訊號源,該程式碼包含: 第一程式碼’該第一程式碼指示處理機提供訊號 至該氣體屏、該加熱裝置及該壓力控制單元以使材料 層沈積在處理室内的晶園上; 第二程式碼,該第二程式碼指示處理機提供訊號 至該氣體屏、該加熱裝置、該壓力控制單元及該rf訊 號源以便電漿鞀化該材料層; 第三程式碼’該第三程式碼指示處理機提供訊號 至該氣體屏、該加熱裝置、該壓力控制單元及該rf訊 本紙張尺度逋用中國國家梂準(CNS ) A4規格(210X297公釐) (請先W讀背面之注意事項再填寫本頁) 衣 訂 77- A8 B8 C8 D8 申請專利範圍 號源以便氧化該材料層。 50. 如申請專利範圍第49項之處理機可讀取之儲存媒體, 其中該第二程式碼指示該處理機以使該rf訊號源提供 第一訊號至位在該晶圓之第一侧的第一電極及提供第 一訊说至位在該晶圓之第二侧的第二電極。 51. 如申請專利範圍第50項之處理機可讀取之儲存媒體, 其中該第一訊號大致上與該第二訊號呈18〇度異相。 52. —種處理機可讀取之儲存媒體,該媒體被灌入程式碼 ,該程式碼於在半導體晶圓上建構薄膜時可控制一處 理室,其中該處理室包含氣體屏、加熱元件、壓力控 制單元及rf訊號源,該程式碼包含: 第一程式碼,該第一程式碼指示處理機提供訊競 至該氣體屏、該加熱裝置及該壓力控制單元以使材料 層沈積在處理室内的晶圓上; 第二程式碼’該第二程式碼指示處理機提供訊號 至該氣體屏、該加熱裝置、該壓力控制單元及該^訊 號源以便電漿靭化該材料層; 經濟部中央揉準局me工消費合作社印製 (請先聞讀背面之注$項再填寫本頁) d, 第三程式碼’該第三程式碼指示處理機提供訊號 至該氣體屏、該加熱裝置及該壓力控制單元以便矽填 塞該材料層。 53‘如申請專利範圍第52項之處理機可讀取之儲存媒體, 其中該第三程式碼指示該處理機以使氣體屏提供矽烷 〇 54_—種處理機可讀取之儲存媒體,該媒體被灌入程式碼-76- A8 B8 C8 printed by the Shellfish Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs ^^ ------ D8 A. The patent application layer is deposited on the wafer in the processing chamber; The second code 'The second The code instructs the processor to provide a signal to the gas screen, the heating device, the pressure control unit, and the "signal source, so as to plasma-harden the material layer in the first time; the second code 'the second code Instruct the processor to provide a signal to the gas screen, the heating device, the pressure control unit and the rfm source in order to plasma-harden the material layer in the second time. The read storage medium, wherein the second code indicates the processor so that the gas screen provides at least one gas selected from nitrogen, hydrogen, argon, helium, and ammonia, and wherein the third code indicates the processor So that the gas screen provides at least one gas selected from the group consisting of nitrogen, helium, neon and argon "49. A processor-readable storage medium, the medium is filled with a code 'the code is on a semiconductor wafer Controllable when constructing film Processing room, wherein the processing room includes a gas screen, a heating element, a pressure control unit, and an RF signal source, and the code includes: a first code 'the first code instructs the processor to provide a signal to the gas screen, the heating device And the pressure control unit so that the material layer is deposited on the crystal garden in the processing chamber; a second code, the second code instructs the processor to provide a signal to the gas screen, the heating device, the pressure control unit and the rf signal Source so as to plasma-enhance the material layer; the third code 'the third code instructs the processor to provide signals to the gas screen, the heating device, the pressure control unit, and the RF signal paper size (using the Chinese country) Standard (CNS) A4 (210X297 mm) (Please read the precautions on the back before filling this page) E-booking 77- A8 B8 C8 D8 Patent application scope number source in order to oxidize the material layer. The storage medium readable by the processor of item 49, wherein the second code instructs the processor so that the RF signal source provides a first signal to the first side of the wafer The first electrode and the second electrode providing the first signal on the second side of the wafer. 51. If the storage medium can be read by the processor applying for item 50 of the patent application scope, the first signal is roughly It is 180 degrees out of phase with the second signal. 52. — A storage medium readable by a processor, the medium is filled with a code, which can control a processing chamber when a thin film is constructed on a semiconductor wafer, The processing chamber includes a gas screen, a heating element, a pressure control unit, and an RF signal source. The code includes: a first code that instructs the processor to provide signals to the gas screen, the heating device, and the A pressure control unit for depositing a material layer on a wafer in a processing chamber; a second code 'the second code instructs the processor to provide a signal to the gas screen, the heating device, the pressure control unit and the signal source in order to Plasma toughens the material layer; printed by the Mekong Consumer Cooperative of the Central Bureau of the Ministry of Economic Affairs (please read the note on the back before filling out this page) d, the third code 'the third code instructs the processor provide Signal to the gas screen, the heating device and the pressure control unit so that silicon fills the material layer. 53 'If the processor-readable storage medium of item 52 of the patent application scope, wherein the third code instructs the processor to make the gas screen provide a silane. 54_—a storage medium readable by the processor, the medium Infused code -78- 經濟部智慧財產局貝工消費合作社印製 A8 Λ λ : S 則》 ___ D8 六、申請專利範圍 ’該程式碼於在半導趙晶圓上建構薄膜時可控制一處 理室,其中該處理室包含氣艎屏、加熱元件、壓力控 制單元及rf訊號源,該程式碼包含: 第一程式碼,該第一程式碼指示處理機提供訊號 至該氣镇屏、該加熱裝置及該壓力控制單元以使材料 層沈精在處理室内的晶圓上,其中指示該氣艎屏提供 用於沈積三元金屬氮化物之前驅物氣體;以及 第二程式碼,該第二程式瑪指示處卑機^供訊號 至該氣體屏、該加熱裝置、該壓力控制單元及該rfm 號源以便電漿化該材料層β 55.如申請專利範圍第54項之儲存媒體,其中該三元金屬 石夕氣化物包含至少一選自於鈦、组、鹤及結之材料。 本紙張Μ適用中國國家揉车(CNS)八4胁(21()&gt;&lt;297公兼) (請先閲讀背面之注意事項再填寫本頁)-78- Printed A8 by Shelley Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs: S then ”___ D8 VI. Patent Application Scope This code can control a processing room when constructing a thin film on a semiconductor wafer, where the processing The chamber contains a gas screen, a heating element, a pressure control unit and an RF signal source. The code includes: a first code that instructs the processor to provide a signal to the gas ballast screen, the heating device, and the pressure control. A unit for immersing a material layer on a wafer in a processing chamber, wherein the air shield is instructed to provide a precursor gas for depositing a ternary metal nitride; and a second code, the second programma instructs a processing machine ^ For the signal to the gas screen, the heating device, the pressure control unit and the rfm source in order to plasmatize the material layer β 55. For example, the storage medium in the scope of application for patent No. 54 where the ternary metal stone gas The compound includes at least one material selected from the group consisting of titanium, group, crane, and junction. This paper M is suitable for China National Kneading Car (CNS) Ya 4 Wuji (21 () &gt; &lt; 297) and (please read the precautions on the back before filling this page)
TW87102342A 1997-02-28 1998-02-19 Construction of a film on a semiconductor wafer TW393684B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/810,221 US6251758B1 (en) 1994-11-14 1997-02-28 Construction of a film on a semiconductor wafer

Publications (1)

Publication Number Publication Date
TW393684B true TW393684B (en) 2000-06-11

Family

ID=25203301

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87102342A TW393684B (en) 1997-02-28 1998-02-19 Construction of a film on a semiconductor wafer

Country Status (1)

Country Link
TW (1) TW393684B (en)

Similar Documents

Publication Publication Date Title
US6500742B1 (en) Construction of a film on a semiconductor wafer
US6699530B2 (en) Method for constructing a film on a semiconductor wafer
US5989999A (en) Construction of a tantalum nitride film on a semiconductor wafer
TW442853B (en) Plasma annealing of substrates to improve adhesion
TW567239B (en) Chamber seasoning method to improve adhesion of F-containing dielectric film to metal for VLSI application
TW432476B (en) A silicon carbide deposition for use as a barrier layer and an etch stop
JP4658963B2 (en) Method and apparatus for forming a high quality low temperature silicon nitride layer
US6475854B2 (en) Method of forming metal electrodes
TW514987B (en) Plasma treatment of a titanium nitride film formed by chemical vapor deposition
TW490509B (en) Metal and metal silicide nitridization in a high a density, low pressure plasma reactor
US6841044B1 (en) Chemically-enhanced physical vapor deposition
US6155198A (en) Apparatus for constructing an oxidized film on a semiconductor wafer
US20020168468A1 (en) Method of TiSiN deposition using a chemical vapor deposition (CVD) process
EP0711846A1 (en) Titanium nitride deposited by chemical vapor deposition
TW479312B (en) Method and apparatus for forming material layers from atomic gasses
JP3698885B2 (en) Method for manufacturing device using ferroelectric film
WO2004057653A2 (en) A method and apparatus for forming a high quality low temperature silicon nitride layer
TW393684B (en) Construction of a film on a semiconductor wafer
WO2006020737A1 (en) Treatment of silicon prior to nickel silicide formation
JP4454675B2 (en) Method for constructing a metal nitride film on a wafer
US7645699B2 (en) Method of forming a diffusion barrier layer using a TaSiN layer and method of forming a metal interconnection line using the same
US7314651B2 (en) Film forming method and film forming device
KR100542799B1 (en) Construction of a film on a semiconductor wafer
JP2002540628A (en) Method of fabricating high dielectric constant dielectric stack with low buffer oxide
JP4423408B2 (en) Method for exciting the adhesion of a barrier layer to a dielectric

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees