TW393584B - Dye-doped polymer planary-dispersed liquid crystal display - Google Patents

Dye-doped polymer planary-dispersed liquid crystal display Download PDF

Info

Publication number
TW393584B
TW393584B TW85100219A TW85100219A TW393584B TW 393584 B TW393584 B TW 393584B TW 85100219 A TW85100219 A TW 85100219A TW 85100219 A TW85100219 A TW 85100219A TW 393584 B TW393584 B TW 393584B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
polymer
electric field
frequency
substrate
Prior art date
Application number
TW85100219A
Other languages
Chinese (zh)
Inventor
Shu-Shia Wang
Jiun-Jie Wu
Jr-Ming Wang
Wang-Yang Li
Original Assignee
Nat Science Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Science Council filed Critical Nat Science Council
Priority to TW85100219A priority Critical patent/TW393584B/en
Application granted granted Critical
Publication of TW393584B publication Critical patent/TW393584B/en

Links

Abstract

The dye-doped polymer planary-dispersed liquid crystal (PPDLC) is aligned by rubbing or applying external fields such that most of the molecules of the liquid crystal are parallel to the substrates. The liquid crystal molecules in the PPDLC are parallel to each other, or rendomly aligned in the plane parallel to the substrates. After polymerization, this kind of PPDLC can show higher absorption and scattering coefficients than the normal PDLC films. Moreover, the contrast ratio and the slope of the transsion-voltage curve are increased and the driving voltage is decreased.

Description

經濟部中央梂準局員工消費合作社印装 A7 ___B7_ 五、發明説明(/ ) 發明背景 1 (一)先前技術及目前技術水平: 至目前爲止,高分子分散液晶顯示器之操作原理大洛如 圖2所示,保持於綑狀透明高分子中之液晶呈現安定狀態, 5利用外加電場可控制液晶折射率之變化,而調整高分子與 液晶間之折射率差異性,以控制顯示器之光學透明度及光 學散釓度的狀態。利用此動作原理所製成之高分子分散液 晶顆示器,有1984年J.L.Fergasori之美國專利第4435047 號及1986年J.W.Doane等人Appl.Phys.Lett.第48 春第 269 10頁,提出將線狀液晶之液晶球裝置於高分子層内。在無外 加電場時,由於液晶之等效折射率neff與高分予折射率ΠΡ 不匹配,使顯示器呈光學散釓狀態;在有外加電場時,液 晶之等效折射率nef f=液晶之常光折射率n0=高分子折射率 np,故液晶與高分子之折射率互相匹配,而使顯示器呈光 15學透明狀態。另外,1991年T.Gotoh等人於液晶纣論會第 328頁,提出將二遴波液晶與光學等向性之紫外線婕化型樹 脂混合後,在外加低頻電場下,照射紫外線使高分子硬化, 再利用高頻電場作驅勤。於是此逆顯示高分子分散液晶顯 示器在無外加電場時,可呈光學透明狀態;在有外加電場 20時,則呈光學三維散亂狀態。然而,二遇波液晶材料之不 穗定性間題,目前尚未解決。此外,p.p.C〇〇ker.等人於 1990年Appl.Phys.Lett·第57卷第2529頁,提出利用膽固酵 (cholesteric)液晶,或在液晶中滲入旋轉型(chiral)分 24子,使該液晶對光波長具有選擇性反射之效果,因此使顯 2 K 裝------π------t (請先03·讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標隼(CNS > A4規格(210X297公釐) 經濟部中央標车局貝工消费合作杜印製 A7 B7 _ —-------- " 五、發明説明(一) 1示器顯現顏色。又,此顯現顏色之概念亦被H.S.Kitzerow 等人於1992年Appl.Phys· Lett·第60卷第3093頁之論文 提出應用於具有快速棑列轉換特性之旋轉型層狀(chiral smetic)波晶所製成的高分予分散液晶颟示器。 5 因此依照已知方法所製成的高分子分散液晶顯示器,可 區分爲兩種顯示方式: ⑴無外加電場時,液晶呈現散礼排列因而產生光學散亂狀 態;以及外加電場時,液晶排列整齊而產生光學透明之狀態 10,此種頻示方式稱爲高分子分散衣晶(PDLC,polymer dispersed liquid crystal)顆示器。 (2)無外加電場時,液晶棑列整齊而產生光學透明狀態,以 及外加電場時,波晶散釓棑列而產生光學散亂狀態,此種顆 示方式稱爲逆联示高分子分散液晶(RPDLC,reverse mode 15 polymer dispersed liquid crystal)類示器。 此外,Paul S.Drzaic等人於1989年SPIE第41頁提出使 用含二色性染料之主客(guest-host)型液晶,以製成同時 其有散釓及吸收效茱的主客型高分子分散液晶顯示器(PDLC) 20及主客型逆顚示高分子分散波晶顯示器(RPDLC)等,兩種高 分子分散液晶顚示器〇J.W.Doane等人於1991年IEEE第175 頁,提出利用線狀液晶及膽固踌液晶之相轉移,以製成具有 纪憶性質之逆顯示分散型液晶顚示器(RPDLC)。 24 3 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) !,-------裝------訂--------汰 V I (請先閲讀背面之注意事項再填寫本頁) 經濟部中央揉率局貝工消費合作社印装 A7 _________B7_ 五、發明説明(> ) 1 (二)本發明所欲解決之問題: 直至目前,無論是高分子分散液晶顯示器(pDLc)或逆顯 示高分子分散液晶顯示器(RPDLC),該等高分子分散液晶顯 5示器之颟示方式,均存在著下列需解決的間題: 1、 就對比度而言,高分子分散塑液晶颟示器(PDLC)及逆顯 示高分子分散型液晶顯示器(RPDLC)等高分子分散液晶顯示 * . 策尚遠低於一般市面商品之90度旋轉型液晶(TH)顚示器或超 角度旋轉型液晶(STN)顯示器。故如何提高對比度,乃是當 10前亟須解決的問題。 2、 就穿透率-電壓曲線之急峻度而言,由於液晶處於不等 間距之液晶一高分子界面間,各液晶區域内液晶分子所泉 受的界面固著力(anchor i ng force)也就随著各處界面之間 15距不同而不同。故導致各區域内液晶分子開始轉動的起始電 壓亦各不相同,此係造成穿透率一電壓曲線之急峻度惡劣之 原因。 3、 就驅動電壓而言,爲達到充分發揮分教塑液晶顯示器( 20 PDLC)及逆顯示分散型液晶顯示器(RPDLC)上液晶-高分子 層之散札效果,必須增加液晶與高分子間之相分離界面,因 而相對地增加液晶分子永到的界面固著力(anchor ing force ),於是其驅勤電壓也就跟著增加。因此,分散塑液晶顯示 24器(PDLC)或逆顚示分敢型液晶顯示器(RPDLC)的驅勤電壓遠 _ 4 1本紙張尺度逋用中國國家標準(CNS ) A4規格-U10X297公釐) I n I n I _ I n LK. I I n I n _ T- n _ n I n „ - 、V6 參 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央梯準局貞工消费合作社印製 Μ —__ Β7____ 五、發明説明(4 ) 1高於一般單純矩陣方式(simple matrix)驅動之液晶瓶示器 ,同時也高於一般主動式矩陣(active matrix)方式驅動之 液晶顯示器,因此造成驅動電路之製作上極大的困難。此外 ,利用線狀液晶及膽固酵液晶之相轉移,以製成具有記悚性 5質的逆顯示分散型液晶顯示器(RPDLC),由於旋轉自由能之 加入,其驅動電壓更高,在實用性也就更爲困難。 本發明乃用以改善或解決上述問題,分別達到如下之敗 果: 10 1、增高對比度:本發明利用摩擦、外加電場等方法, 将高分子前驅體、液晶及染料等混合物加以處理,使其液晶 分子之指向變化散亂分佈於平行基板表面之二度空間平面中 ,並利用紫外光、加熱、溶劑蒸發等方法,以形成配向加染 料高分子平面分散液晶顯示器。此方法較之過去,灰晶分子 15之指向變化散亂分佈於三度空間平面中的情況,本發明在散 札狀態時,由於染料分子對光之吸收性,以及充分發揮高分 子與液晶之折射率之不匹配性,使得該高分子分散液晶顯示 器之穿透率大幅減少;而在透明狀態時,本發明之穿透率在 理論上相等於過去高分子分散液晶顯示器之穿逢率。而對比 20度爲逢明狀態與散亂狀態之穿透率比,故本發明之對比度可 高於過去高分子分散液晶顯示器之對比度。 2、增加穿透率一電壓曲線之急峻度•·由於造成最高或 24最低點穿透率之電壓,分別爲起始電壓或飽和電壓,穿透率 本紙張尺度適用中關家縣(CNS ) A4«iS· ( 21GX297公g '~~'— -------k 裝------ix--;---- 線 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央樣準局負工消资合作社印«. A7 ________B7 五、發明説明(;) 1 —電壓曲線之急峻度係最高與最低點間穿透率之差,除以起 始電壓與飽和電壓之差。因此在無扭轉自由能的情沉下,本 發明之起始或飽和電壓在理論上相等於過去高分子分散液晶 顯示器之起始或飽和電壓,故兩者間之電壓差相等;而穿透 5率卻由於本發明在散釓狀態時穿透率的大幅減少,迭成穿透 率差增加,也因此使得本發明之穿透率一電壓曲線之急峻度 .高於過去之高分子分散波晶顯示器。 3、降低驅動電壓:因爲液晶分子所受到的界面固著力 10 (anchoring force)越高,液晶分子越不易轉動,其驅動電 壓亦隨之增高。在有扭轉自由能的情沉下,本發明利用摩擦 、外加電場等方法造成扭轉配向,而產生外加之扭轉自由能 。該外加之扭轉自由能與液晶分子之内在自由能相互抵消, 使得總彈性自由能減少,驅動電壓也因而降低。反之,過去 15利用旋轉型廣狀(chiral smetic)液晶所製成的高分子分散 液晶颟示器,或是利用線狀液晶及膽固酵液晶之相轉移,以 製成之具有纪慊性質的高分子分散液晶顯示器,均由於液晶 分子之堆加内在之扭轉自由能而使總自由能亦增加,也因而 增高驅動電壓。 20 (三)本發明之技術乾疇: 本發明係運用於手錶顯示、自勤化顯示、投影機顯示等方 面所採用之高分子平面分散液晶顚示器。 24__ __6 _ 本紙張適用中固囷家橾準(CNS )八4胁(21〇χ297公羡) ' (請先閱讀背面之注意事項再填寫本頁) "裝_ 訂 .4 I A7Printed by A7 _B7_ of the Consumer Cooperatives of the Central Government Bureau of the Ministry of Economic Affairs 5. Description of the Invention (/) Background of the Invention 1 (1) Prior and Current Technology Levels: So far, the operating principle of polymer dispersed liquid crystal displays is as shown in Figure 2 As shown, the liquid crystal held in the bundle-shaped transparent polymer shows a stable state. 5 Using an external electric field, the refractive index change of the liquid crystal can be controlled, and the refractive index difference between the polymer and the liquid crystal can be adjusted to control the optical transparency and optics of the display. The state of divergence. The polymer-dispersed liquid crystal display devices made by using this principle of action include US Patent No. 4,435,047 from JLFergasori in 1984 and JWDoane et al. Appl. Phys. Lett. The liquid crystal spheres of the linear liquid crystal are arranged in a polymer layer. When there is no external electric field, the equivalent refractive index neff of the liquid crystal does not match the high refractive index ΠP, which makes the display in an optically dispersed state. When there is an external electric field, the equivalent refractive index of the liquid crystal nef f = constant light of the liquid crystal Refractive index n0 = polymer refractive index np, so the refractive indexes of liquid crystal and polymer match each other, so that the display is optically transparent. In addition, in 1991, T. Gotoh et al., On the LCD Conference, page 328, proposed that after mixing the two-line liquid crystal with an optically isotropic ultraviolet Jie resin, the polymer was cured by irradiating ultraviolet rays under an external low-frequency electric field. , And then use high-frequency electric field for driving. Therefore, this reverse display polymer dispersed liquid crystal display can be optically transparent when no external electric field is applied; when it has an external electric field 20, it can be optically three-dimensionally scattered. However, the qualitative problem of Eryu liquid crystal materials has not been solved at present. In addition, pp. 00ker. Et al., 1990, Appl. Phys. Lett, Vol. 57, p. 2529, proposed the use of cholesteric liquid crystals, or the infiltration of chiral liquid crystals into 24 cells, so that This liquid crystal has a selective reflection effect on the wavelength of light, so the 2 K display is installed ------ π ------ t (please read the notes on the back before filling this page) Applicable to China National Standard (CNS > A4 specification (210X297 mm)) Printed by Aberdeen Consumer Cooperative of the Central Bureau of Standard Vehicles of the Ministry of Economic Affairs A7 B7 _ —-------- " V. Description of Invention (I) 1 display color. Also, the concept of this color was also proposed by HSKitzerow et al. In 1992, Appl. Phys · Let · Vol. 60, p. 3093, applied to a rotating layer with fast queue conversion characteristics. (Chiral smetic) high-dispersion pre-dispersed liquid crystal display made by wave crystal. 5 Therefore, polymer-dispersed liquid crystal displays made according to known methods can be divided into two display modes: 液晶 When no external electric field is applied, the liquid crystal It presents a sloppy arrangement and thus produces an optically disordered state; and when an electric field is applied, the liquid crystals are arranged neatly The optically transparent state 10 is generated, and this frequency display method is called polymer dispersed liquid crystal (PDLC). (2) When no external electric field is applied, the liquid crystal queues are neat and optically transparent. And when an electric field is applied, the wave crystals are scattered to produce an optically scattered state. This kind of particle display method is called reverse-mode display polymer dispersed liquid crystal (RPDLC) reverse mode 15 polymer dispersed liquid crystal indicator. In addition, Paul S. Drzaic et al., SPIE, page 41, 1989 proposed the use of guest-host type liquid crystals containing dichroic dyes to make host-guest polymer dispersed liquid crystal displays with both dispersion and absorption effects ( PDLC) 20 and host-guest reverse display polymer dispersed wave crystal display (RPDLC), etc., two types of polymer dispersed liquid crystal display devices. JWDoane et al., 1991 IEEE page 175, proposed the use of linear liquid crystal and踌 Phase transfer of liquid crystal to make a reverse display dispersive liquid crystal display (RPDLC) with the properties of memory. 24 3 This paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm)!,- ----- install ------ -------- Tie VI (Please read the notes on the back before filling in this page) Printed by the Central Government Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, printed A7 _________B7_ V. Description of the Invention (>) 1 (2) This Problems to be solved by the invention: Until now, whether it is a polymer dispersed liquid crystal display (pDLc) or a reverse display polymer dispersed liquid crystal display (RPDLC), the display method of these polymer dispersed liquid crystal displays has existed. The following problems need to be solved: 1. In terms of contrast, polymer dispersed liquid crystal displays such as polymer dispersed plastic liquid crystal display (PDLC) and reverse display polymer dispersed liquid crystal display (RPDLC) *. 90 degree rotating liquid crystal (TH) display or super-angle rotating liquid crystal (STN) display for general commercial products. Therefore, how to improve the contrast is a problem that must be solved urgently. 2. In terms of the sharpness of the transmittance-voltage curve, since the liquid crystal is located between the liquid crystal-polymer interface at unequal intervals, the interface anchor force on the liquid crystal molecules in each liquid crystal region is also It varies with 15 distances between interfaces. Therefore, the initial voltages that cause the liquid crystal molecules to start rotating in each region are also different, which is the reason that the severity of the transmittance-voltage curve is bad. 3. As far as the driving voltage is concerned, in order to make full use of the dispersion effect of the liquid crystal-polymer layer on the liquid crystal display (20 PDLC) and the reverse display dispersive liquid crystal display (RPDLC), the gap between the liquid crystal and the polymer must be increased. The phase separation interface thus relatively increases the anchoring force of the liquid crystal molecules, so that its driving voltage also increases. Therefore, the driving voltage of dispersive plastic liquid crystal display 24 (PDLC) or reverse display liquid crystal display (RPDLC) is far _ 4 1 This paper size uses China National Standard (CNS) A4 specification-U10X297 mm) I n I n I _ I n LK. II n I n _ T- n _ n I n „-, V6 (Please read the precautions on the back before filling out this page) System M —__ Β7 ____ V. Description of the Invention (4) 1 Higher than the liquid crystal display device driven by the simple matrix method, and higher than the liquid crystal display device driven by the active matrix method. It is extremely difficult to manufacture the driving circuit. In addition, the phase transfer of linear liquid crystal and cholesteric liquid crystal is used to make a reverse display dispersive liquid crystal display (RPDLC) with a memorable quality of 5. Due to the addition of rotational free energy The driving voltage is higher and the practicality is more difficult. The present invention is used to improve or solve the above problems and achieve the following failures: 10 1. Increase the contrast: The present invention uses methods such as friction and external electric field. Polymer The mixture of the driver, liquid crystal, and dye is processed to make the orientation changes of the liquid crystal molecules scattered in the two-dimensional space plane of the parallel substrate surface, and the methods such as ultraviolet light, heating, and solvent evaporation are used to form the alignment plus dyes. The molecular plane disperses the liquid crystal display. Compared with the past, the orientation change of the gray crystal molecules 15 is scattered in a three-dimensional space plane. In the scattered state of the present invention, due to the absorption of light by the dye molecules, and sufficient The mismatch between the refractive index of the polymer and the liquid crystal is brought into play, so that the transmittance of the polymer dispersed liquid crystal display is greatly reduced; while in the transparent state, the transmittance of the present invention is theoretically equal to that of the polymer dispersed liquid crystal display in the past. The penetration ratio. The contrast ratio of 20 degrees is the penetration ratio between the bright state and the scattered state, so the contrast of the present invention can be higher than the contrast ratio of the polymer dispersion liquid crystal display in the past. Severity • · Because the voltage that causes the highest or lowest point penetration rate is the starting voltage or saturation voltage, respectively, the penetration rate of the paper Standards apply to Zhongguanjia County (CNS) A4 «iS · (21GX297 male g '~~' — ------- k installed ------ ix-; ---- line (please read first Note on the back, please fill in this page again.) Printed by the Central Bureau of Standards, Ministry of Economic Affairs, Consumer Goods Cooperative Cooperatives «. A7 ________B7 V. Description of the invention (;) , Divided by the difference between the starting voltage and the saturation voltage. Therefore, in the case of no torsional free energy, the starting or saturation voltage of the present invention is theoretically equal to the starting or saturation voltage of a polymer dispersed liquid crystal display in the past. The voltage difference between the two is equal; but the penetration 5 rate is due to the sharp reduction of the transmittance in the scattered state of the present invention, which results in an increase in the difference in transmittance, which also makes the transmittance-voltage curve of the present invention Urgency. Higher than the previous polymer dispersed wave crystal display. 3. Decrease the driving voltage: because the higher the interface anchoring force 10 (liquid crystal force) the liquid crystal molecules are, the harder it is for the liquid crystal molecules to rotate, and the driving voltage will increase accordingly. In the case of torsional free energy, the present invention uses friction, an external electric field, and other methods to cause torsional alignment, and generates additional torsional free energy. The additional torsional free energy and the intrinsic free energy of the liquid crystal molecules cancel each other, so that the total elastic free energy is reduced, and the driving voltage is also reduced accordingly. Conversely, in the past 15, polymer dispersed liquid crystal display devices made of chiral smetic liquid crystals, or phase transfer of linear liquid crystals and cholesteric liquid crystals have been used to make them. The polymer-dispersed liquid crystal displays all increase the total free energy due to the pile of liquid crystal molecules and the inherent torsional free energy, thereby increasing the driving voltage. 20 (3) The technical domain of the present invention: The present invention is a polymer flat-dispersed liquid crystal display used in watch display, self-service display, and projector display. 24__ __6 _ This paper is suitable for CNS Standard (CNS) Ya 4 threats (21〇 × 297 public envy) '(Please read the precautions on the back before filling out this page) " Binding_ Order .4 I A7

經濟部中央橾準局貝工消费合作社印製 五、發明説明(A ) 1 (一)故術架構與特點: 本發明揭示一種高分子平面分散液晶顯示器,其係於液 晶顚示器内失於基板之畫素電極間的液晶一高分子層(以下 5稱爲高分子散釓液晶),使其液晶分子與高分子之光學折射 率不同,因此不論在顯示或不顯示之情沉時,可分別由液晶 分子與高分子間所存在光學折射率之差異度變化而表現出相 異之光學散釓特性,爲該高分子平面分散液晶顯示器。該高 分子平面分散液晶之高分子,可由高分子前驅體經照射絷外 10光、加熱、成溶劑蒸發等聚合方法而加以高分子化。 本發明之高分子平面分散液晶可爲線狀液晶與光學等向 後高分子,並利用基故上之分子指向限制處理方法,使得該 液晶分子之指向有散亂或平行分佈於平行基板表面之二度空 15間平面中的趨勢。 本發明之高分子平面分散液晶亦可爲線狀液晶與光學異 向性高分子。利用基板上之配向處理,使得液晶分子與高分 子前驅體之指向有分佈於平行基板表面之二度空間平面中的 20趨势,且液晶分子與高分子前驅體之指向在該二度空間平面 中互相平行。 本發明之高分子平面分散液晶顚示器,其液晶可爲主客 24型液晶,亦即液晶中含有二色性染料。利用二色性染料之吸 —------ 脅 - ί (請先閱讀背面之注意事項再填离本頁) -*Printed by Shelley Consumer Cooperative of Central Bureau of Standards, Ministry of Economic Affairs V. Invention Description (A) 1 (1) Archaic Architecture and Features: The present invention discloses a polymer flat-dispersed liquid crystal display, which is lost in the liquid crystal display. The liquid crystal-polymer layer (hereinafter referred to as polymer scattered liquid crystal) between the pixel electrodes of the substrate makes the liquid crystal molecules and the polymer have different optical refractive indices. Therefore, it can be used when the display or non-display is heavy. Different optical dispersion characteristics are exhibited by changes in the degree of difference in optical refractive index existing between liquid crystal molecules and polymers, which are flat-dispersed liquid crystal displays for polymers. The polymer of the high-molecular plane-dispersed liquid crystal can be polymerized by a polymer precursor through polymerization methods such as irradiation with external light, heating, and evaporation of a solvent. The polymer planar dispersed liquid crystal of the present invention can be a linear polymer such as a linear liquid crystal and an optically backward polymer, and the molecular orientation limitation processing method on the basis is used, so that the orientation of the liquid crystal molecules is scattered or distributed in parallel on the surface of the parallel substrate. Trends in 15 planes. The polymer planar dispersed liquid crystal of the present invention may also be a linear liquid crystal and an optically anisotropic polymer. By using the alignment process on the substrate, the orientation of the liquid crystal molecules and the polymer precursors has a tendency of being distributed in a two-degree space plane parallel to the surface of the substrate, and the orientation of the liquid crystal molecules and the polymer precursors is in the two-degree space plane. In parallel to each other. In the polymer flat dispersion liquid crystal display device of the present invention, the liquid crystal can be a host-guest 24 type liquid crystal, that is, the liquid crystal contains a dichroic dye. Utilization of dichroic dyes ------- Threaten-ί (Please read the notes on the back before filling out this page)-*

本紙張尺度適用中國國家標準(CNS )八4找放ί 7 ,1 Π NX ,\ 政 A7 B7 五、發明説明(7 ) 1收特性,以增加該顚禾器之對比度。 本發明之高分子平面分散液晶顚示器,在分子指向限制 處理方法上,可分兩種: 5 (一)内部處理一利用外加場影均勻響整個高分子平面分散液 晶屑,該場之影響及於該高分子平面分散液晶層之内部。 1·電場處理:液晶可採用二遇波液晶,布即該液晶之分 予指向,係琅著外加交流電場類率之增減而具備可轉變爲平 行或垂直電場方向棑列之特性波晶。其中利用高於二遇波液 10晶交會類率(cross over frequency)之高顏電場作分子指向 限制處理,使得該液晶分子之指向散釓分佈於平行基板表面 之一度空間平面中,而以低於二返波洗晶交會頻率之低類電 場作堪動;或是利用低於二遇波液晶交會姨率之低頻電場作 分子指向限制處理,而以高於二遇波液晶交會頻率之高頻電 15場作驅動。 2·磁場處理:本發明之高分子平面分散液晶,其液晶分 子亦可經由磁場作分子指向限制處理,使得該液晶分子之指 向散釓分佈於平行基板表面之二度空間平面中;或選用其洗 晶分子與光學異向性高分子前堪體,具有可利用磁場敗分子 20指向限制處理之特性,經分子指向限制處理之後,該液晶分 子與光學異向性高分子前騍體之指向平行分饰於平行基板表 面之二度空間平面中。 24 (二)外部處理一利用配向劑、摩擦、或蒸鍍等方法對基枝進 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央樣率局負工消费合作社印装 、τThis paper scale applies the Chinese National Standard (CNS) 8 4 Finding and Putting 7,1 Π NX, \ Government A7 B7 V. Description of the Invention (7) 1 collection characteristics, in order to increase the contrast of the watercraft. The polymer planar dispersing liquid crystal display device of the present invention can be divided into two types in terms of the molecular orientation limitation processing method: 5 (1) Internal treatment-using an external field shadow to evenly disperse the entire polymer plane to disperse liquid crystal chips, and the influence of the field And inside the polymer plane dispersed liquid crystal layer. 1. Electric field processing: liquid crystal can use dual-wave liquid crystal, which means that the liquid crystal is divided, and it has the characteristic wave crystal that can be transformed into a parallel or vertical electric field queue with the increase and decrease of the AC electric field rate. Among them, a high-face electric field higher than the cross-frequency of the second encounter liquid 10 is used for the molecular orientation limitation treatment, so that the orientation of the liquid crystal molecules is scattered in a degree space plane parallel to the surface of the substrate, and at a low level Use low-frequency electric fields at the frequency of the second-wave washing crystal rendezvous; or use a low-frequency electric field lower than the frequency of the second-wave liquid crystal rendezvous for molecular orientation restriction processing, and use a higher frequency than the frequency of the second-wave liquid crystal rendezvous 15 electric fields for driving. 2. Magnetic field treatment: In the polymer planar dispersed liquid crystal of the present invention, the liquid crystal molecules of the liquid crystal molecules can also be subjected to molecular orientation restriction processing, so that the orientation of the liquid crystal molecules is scattered in a two-dimensional space plane parallel to the surface of the substrate; Crystal-washing molecules and optically anisotropic polymer precursors have the property that the magnetic field can be used to limit the orientation of the molecules. After the molecular orientation limitation process, the liquid crystal molecules are parallel to the orientation of the optically anisotropic polymer precursor. Distributing in a two-dimensional space plane parallel to the surface of the substrate. 24 (II) External processing-Use the alignment agent, friction, or evaporation method to advance the base branches (please read the precautions on the back before filling this page).

本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) 装 Α7 ____ Β7 五、發明説明(2 ) 1行配向處理,去影響高分子平面分散液晶層之表面棑列,進 而傳達此影響到該高分子平面分散液晶層之内部。 本發明之高分子平面分散液晶,其液晶分子之指向,可 5運用配向劑、摩擦、或蒸鍍等方法進行配向處理。甚至於其 液晶分子,或液晶與光學異向性高分子前驅體之指向,亦可 運用配向劑、摩擦、成蒸鍍等方法作配.向處理。 ί 在結構上,本發明之高分子平面分散液晶,其液晶分子 10之指向,除一般之平行棑列外,尚可利用配向劑、摩擦或爭 鍍等方法,造成基板表面配向方向之不同而達到旋轉棑列之 特性。或利用基板表面配向方向之不同,而使液晶分子與光 學異向性高分子前驅殖兩者之指向,具有旋轉排列之特性, 而有增加高分子平面分散液晶之散釓度及吸收度乏效果。 15 (二)技術功效: 本發明高分子平面分散液晶顯示器,具備改善過去高分 子分散液晶顧示器之块點;不僅增高對比度、穿透率一電恩 20曲線之急峻度,而且降低驅動電壓。 (三〉圖式説明 24圖1本發明之一種高分子平面分散液晶(PPDLC)顆示器之 9 -St (請先閲讀背面之注意事項再填寫本頁)This paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm). Packing A7 ____ Β7 V. Description of the invention (2) 1-line alignment treatment to affect the surface queue of the polymer plane dispersed liquid crystal layer, and then convey this Affects the interior of the polymer planar dispersed liquid crystal layer. The orientation of the liquid crystal molecules of the polymer planar dispersed liquid crystal of the present invention can be aligned using methods such as alignment agent, rubbing, or vapor deposition. Even its liquid crystal molecules, or the orientation of liquid crystal and optical anisotropic polymer precursors, can be aligned using alignment agents, rubbing, vapor deposition, and other methods. ί Structurally, the polymer planar dispersed liquid crystal of the present invention has the orientation of the liquid crystal molecules 10, in addition to the normal parallel queues, and can also use alignment agents, rubbing, or plating to cause different orientation directions on the substrate surface. Reach the characteristics of the rotation queue. Or, the orientation of the substrate surface is different, so that the orientation of the liquid crystal molecules and the optically anisotropic polymer precursors has the characteristics of rotation arrangement, and it has the effect of increasing the dispersion and absorption of the polymer plane dispersed liquid crystal. . 15 (II) Technical effects: The polymer flat-dispersed liquid crystal display of the present invention has the advantages of improving the spot of the polymer-dispersed liquid crystal display device in the past; it not only increases the sharpness of the contrast, the transmittance and the electric curve, but also reduces the driving voltage. . (III) Schematic description 24 Figure 1 9-St of a polymer flat dispersive liquid crystal (PPDLC) display device of the present invention (please read the precautions on the back before filling this page)

本紙張尺度適用中國國家樣準(CNS ) Α4规格(210X297公釐) 五、發明説明) 1 靳面圖,及其操作原理 5 圖 101 ·液晶與高分子界面 102.高分子區 1〇3·液晶區之液晶分予 104.電極 105·基梃 106.ac電源 107·液晶分子之平均指向 f知型式之高分子分散液晶(PDLC)颟示器之斷器之 斷面圈,及其操作原理 10 (請先閱讀背面之注意事項再填寫本頁) 101. 液晶與高分子界面 102. 高分子區 103. 液晶區(液晶分子 104. 電極 105. 基板 106. ac電源 107. 液晶分子之平均指向 15 -匆- 經濟部中央樣準局貝工消费合作社印製 圖3本發明之一種平行水平配向之高分子平面分散波晶( PPDLC)顯示器之斷面圖,及其操作原理 20 301. 液晶與高分子界面 302. 高分子區 303. 液晶區之液晶分子 24 10 本紙張尺度適用中國闺家標準(CNS ) A4規格(210X297公釐) 304.電極 305·基板 306.ac電源 五、 A7 B7 發明説明( 1圖4自然光、線偏極光,垂直入射於本發明之平行水平配 向之高分子平面分散液晶(PPDLC)樣品基板時,其穿 透率與ac電壓大小之關係 5 10 圖 15 圖 翅濟部中央棣準局貝工消費合作衽印製 401. 表垂直入射於無配向樣品之自然光之穿透率 402. 表偏極方向平行基板配向方向之垂直入射線偏極 光之穿透率 403. 表偏極方向垂直基;配向方向之垂直入射線偏極 光之穿透率 自然光垂直入射於習知型式之PDLC與本發明之PPDLC 樣品基挺>表垂時,其穿透率與ac電壓大小之關係 501. 表垂直入射於無配向樣品之自然光之倉透率 502. 直入射於90度旋轉配向樣品之自然光之穿透率 本發明之一種旋轉水平配向之高分子平面分散液晶 (PPDLC)顯示器之斷面圖,及其操作原理 (請先閱讀背面之注意事項再填寫本頁) -裝·This paper scale is applicable to China National Standard (CNS) A4 specification (210X297 mm) V. Description of the invention 1 Jin surface diagram and its operating principle 5 Figure 101 · Interface between liquid crystal and polymer 102. Polymer area 103 · The liquid crystal area of the liquid crystal region is divided into 104. electrodes 105, base 106, ac power source 107, the average point of the liquid crystal molecules, and the break-off ring of the polymer-dispersed liquid crystal (PDLC) display device, and its operating principle. 10 (Please read the precautions on the back before filling this page) 101. Interface between liquid crystal and polymer 102. Polymer region 103. Liquid crystal region (liquid crystal molecule 104. electrode 105. substrate 106. ac power source 107. average direction of liquid crystal molecules 15-Hurry-Printed by the Central Bureau of Specimen of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, Figure 3 A cross-sectional view of a parallel horizontally oriented polymer plane dispersive wave crystal (PPDLC) display of the present invention, and its operating principle 20 301. Liquid crystal and Polymer interface 302. Polymer region 303. Liquid crystal molecules in the liquid crystal region 24 10 This paper size is applicable to the Chinese standard (CNS) A4 specification (210X297 mm) 304. Electrode 305 · Substrate 306.ac Power supply V. A7 B7 Invention Description (1 4 Natural light, linearly polarized aurora, perpendicularly incident on the polymer horizontally-dispersed polymer planar dispersed liquid crystal (PPDLC) sample substrate of the present invention, the relationship between the transmittance and the ac voltage 5 10 Figure 15 Co-consumer cooperation cooperation print 401. Table penetrating rate of natural light perpendicularly incident on non-aligned samples 402. Table polarizing direction is parallel to the substrate alignment direction. Vertical penetrating polarized light transmission rate is 403. Table polarizing direction is vertical The transmission rate of the polarized polarized polarized light in the alignment direction. The natural light is perpendicularly incident on a conventional type of PDLC and the PPDLC sample of the present invention. When the surface is vertical, the relationship between the transmission rate and the ac voltage is 501. Table The transmittance of natural light perpendicularly incident on an unaligned sample is 502. The transmittance of natural light directly incident on a 90-degree rotating alignment sample is a cross-sectional view of a polymer horizontally dispersed liquid crystal display (PPDLC) display with rotating horizontal alignment, And its operating principle (please read the precautions on the back before filling this page)

*1T 線_ 20 601. 液晶與高分子界面 602. 高分子區 603. 液晶區之液晶分子 604. 電極 605·基故 606. ac電源 607. 液晶分子之平均指向 608. 波晶區之染料分子 24 &張尺^適用中國國家棣準(CNS ) A4*UM 210X297公釐) 經濟部中央揉準局貞工消*^合作社印製 Μ __Β7 五、發明説明(/ /) 1圖7自然光垂直入射於習知型式之PDLC與本發明之旋轉 水平配向之高分子平面分散波晶PPDLC時,其穿透率 與ac電壓大小之關係 5 701.表垂方入射岭叙献旮如毕料样品夕句女沐 率 702.直入射於90度旋轉配向加染料樣品之自然光之穿 透率 10 (四)應用實例 【實例一】等向性高分子+水平配配向液晶 請春閲如圖3所示本發明之一種高分子平面分散液晶顚 15示器(PPDLC)之斷面圖。 首先於平坦之透明玻璃基板305上,以蒸著法鍍上ΙΤ0 , 形成透明電極304。再於電極上鍵上PVA(polyvinyl alcohol) ,並用布料在電極面敗單向磨擦,作配向處理。再將兩枚基 20板之電極面相對,使配向方向互相平行,並取間隙(以後稱 此間隙爲樣品厚度)10 w m*形成一空樣品。在1〇〇 下, 在此空樣品之間隙中,封入N0A65之高分子前驅赌(Norland 公司製)、液晶E7(Merck公司製)及液晶ZLI-2806(Merck 24公司製)等三者,其重量比爲4〇 : 54 : 6所製成之混合物。 ____ 12 本紙張尺度適用中國國家橾準(CNS ) A4规格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) ,裝- 訂 經濟部中央橾準局貝工消费合作衽印裝 A7 B7 五、發明説明C/i) 1將此樣品徐徐冷卻至50 °C,使混合物中液晶分子呈配向方 向排列。再以強度16.6 w W/cro2,波長365 nm之紫外光線 照射樣品,使高分子前驅體結合成高分子302,並與液晶產 生相分離,完成如圖3所示本發明之一種高分子平面分散液 5晶顯示器(PPDLC)。 该樣品在未加電場前呈白色混濁之光散亂狀態,加電場 則呈透明狀態。另外,在偏光板互相垂直之偏光顯歡鏡下旋 轉樣品並觀察高分子部份,呈現不透光之全黑現像,表示高 10分子確呈光學等向性。 爲比較本發明與過去高分子分散液晶(PDLC)顯示器樣品 之光電特性,我們同時以相同材質省略與配向處理,製成一 般«知型式之高分子分散液晶顯示器(PDLC)樣品,量取兩 15者之光電特性,如圖4所示,自然光、線偏極光,垂直入射 於本發明之平行水平配向之高分子平面分散液晶(PPDLC)樣 品基板時,其穿透率與ac電壓欠小之關係。401代表習知型 式分散型液晶顯示器(PDLC)樣品之光電特性,由於各液晶區 域内之液晶分子指向呈散釓分饰,故與入射光之偏極方向無 20關。但本發明之平行水平配向之高分子平面分散液晶(PPDLC )顯示器樣品由於經配向處理,故與入射光之偏極方向有關 ;當入射先之偏極方向與樣品之配向方向平行時,其特性 402,最大光穿透率與401相近,但最低穿透率則低於401, 24由此可見,本發明之高分子平面分散液晶(PPDLC)顆示器的 _ _13___ •尺度適财國國家標準(C叫从胁(加χ297公廣) ' · II-1.-----k 裝------IX——_---丨線 (請先閱讀背面之注意事項再填寫本頁) A7 B7 經濟部中央標準局員工消费合作衽印製* 1T line_ 20 601. Interface between liquid crystal and polymer 602. Polymer region 603. Liquid crystal molecules in liquid crystal region 604. Electrode 605 · Foundation 606. AC power source 607. The average direction of liquid crystal molecules is 608. Dye molecules in wave crystal region 24 & Zhang Chi ^ Applicable to China National Standards (CNS) A4 * UM 210X297 mm) Zhen Gong Xiao, Central Bureau of the Ministry of Economic Affairs * ^ Printed by the cooperative M __Β7 V. Description of the invention (//) 1 Figure 7 Natural light vertical The relationship between the transmittance and the ac voltage when a conventional type of PDLC and the polymer horizontally-dispersed wave crystal PPDLC of the present invention are rotated horizontally.句 女 沐 率 702. The transmission rate of natural light directly incident on a 90-degree rotating alignment dye sample 10 (four) Application example [Example 1] Isotropic polymer + horizontal alignment alignment liquid crystal please see Figure 3 A cross-sectional view of a polymer planar dispersed liquid crystal display device (PPDLC) of the present invention. First, ITO is plated on a flat transparent glass substrate 305 by evaporation to form a transparent electrode 304. Then, PVA (polyvinyl alcohol) is bonded to the electrode, and the electrode surface is rubbed in one direction with a cloth for alignment treatment. Then, the electrode surfaces of the two base plates were opposed, the alignment directions were parallel to each other, and a gap (hereinafter referred to as the gap thickness) of 10 w m * was taken to form an empty sample. At 100, three gaps of NOA65 polymer precursor (manufactured by Norland), liquid crystal E7 (manufactured by Merck), and liquid crystal ZLI-2806 (manufactured by Merck 24) were sealed in the gap between the empty samples. A weight ratio of 40: 54: 6. ____ 12 This paper size applies to China National Standard (CNS) A4 (210X297 mm) (please read the precautions on the back before filling out this page), binding-ordering the printing and packaging of the Central Laboratories, the Ministry of Economic Affairs A7 B7 V. Description of the invention C / i) 1 Slowly cool the sample to 50 ° C, so that the liquid crystal molecules in the mixture are aligned in the alignment direction. Then, the sample is irradiated with ultraviolet light with an intensity of 16.6 w / cro2 and a wavelength of 365 nm, so that the polymer precursor is combined into a polymer 302, which is phase-separated from the liquid crystal to complete a polymer planar dispersion of the present invention as shown in FIG. 3 Liquid crystal display (PPDLC). Before the application of the electric field, the sample was in a state of scattered white turbid light, and the sample was in a transparent state. In addition, rotating the sample under the polarizing plates with polarizing plates perpendicular to each other and observing the polymer part showed a completely opaque black image, indicating that the high 10 molecules were indeed optically isotropic. In order to compare the optical and electrical characteristics of the present invention with those of previous polymer dispersed liquid crystal (PDLC) display samples, we omit and align the same material at the same time to make a general «known type of polymer dispersed liquid crystal display (PDLC) sample. As shown in Fig. 4, the photoelectric characteristics of natural light and linearly polarized polarized light are perpendicularly incident on the parallel-aligned polymer plane-dispersed liquid crystal (PPDLC) sample substrate of the present invention, and the relationship between the transmittance and the low ac voltage . 401 represents the photoelectric characteristics of samples of the conventional type of dispersed liquid crystal display (PDLC). Since the liquid crystal molecules in each liquid crystal region are scattered, they are not related to the polarized direction of incident light. However, the parallel horizontally aligned polymer planar dispersive liquid crystal (PPDLC) display sample of the present invention is related to the polarization direction of incident light because of alignment processing; when the polarization direction before incident is parallel to the alignment direction of the sample, its characteristics 402, the maximum light transmittance is similar to 401, but the minimum transmittance is lower than 401. 24 It can be seen that the polymer planar dispersed liquid crystal (PPDLC) indicator of the present invention _ _13___ (C is called Congxie (plus χ297 public broadcasting) 'II-1 .----- k equipment -------- IX ——_--- 丨 line (Please read the precautions on the back before filling in this Page) A7 B7 Printed by the Consumer Standards Cooperative Office of the Central Bureau of Standards of the Ministry of Economic Affairs

五、發明説明(ο) 1對比度確實比f知之分散型液晶顯示器(PD1X)更高。當入射 光之偏極方向與樣品之配向方向垂直時,其特性如403 ,最 欠光穿透率與401相近,但最低穿透率則高於401 ,由此 可證明,本發明高分子平面分散液晶颟示器(PPDLC)之液晶 5分子受到配向處理的效果。所以如果光源爲線偏極光,則使 入射光之偏極方向與本發明高分子平面分散液晶顯示器( PPDLC)之配向方向平行時,该顧示器的對比度優於習知之高 分子分散液晶顚示器(PDLC)。 10【實例二】等向性高分子+旋轉配向液晶 請春閱如圖1所示本發明之一種高分子平面分散液晶顯 示器(PPDLC)之斷面圖。運用相同之材質,比照實例一之製 播方法’再於電極上鍍上配向膜PVA (j>〇lyVinyl alch〇h〇l) 15,並用布料在電極面敗單向磨擦,作配向處理,苒將兩枚基 板之電極面相對,使配向方向互相垂直,並取樣品厚度爲 un,形成成一空樣品。在1〇〇 t:下,在此空樣品之間隙中, 封入相同之混合物。將此樣品徐徐冷卻至5〇,使混合物 中之液晶分子順著配向方向由下基枝至上基板呈度旋轉 20棑列。並鱺續製佛步驟,於高分子與液晶產生相分離後,完 成如圖1所示本發明之一種高分子平面分散液晶(ppj^c)顯 示器。該樣品在未加電場前呈白色混濁之光散亂狀態,加電 場則呈透明狀態C男外,在偏光故互相垂直之偏光顯微鏡下 24旋轉樣品並觀察高分子部价,呈現不透光之全黑現像,表示 ___ U (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部中央棣準局貞工消费合作社印製 A7 B7 五、發明説明(/於) 1高分子確呈光學等向性。以相同材質省卷掉配向處理,製成 一般習知型式之高分子分散液晶顯示器(PDLC)樣品,量取兩 者之之光電特性。當自然光垂直入射於f知型式之PDLC與 本發明之PPDLC樣品基故時,其穿透率與ac電壓大小之關係 5如圖5所示。501代表習知型式之高分子分散液晶(PDLC) 顯示器樣品之光電特性,502代表本發明之高分子平面分散 液晶(PPDLC)顯帝器樣品之光電特性。由於f知型式之高分 子分散液晶(PDLC)顯示器樣品之各液晶區域内之液晶分子指 向呈三度空間散釓分佈,而本發明之樣品之各液晶區域内之 10液晶分子指向則呈二度空間散亂分佈,故本發明之高分子平 面分散液晶顯示器(PPDLC)樣品的最低穿透率比過去之高分 予分散液晶(PDLC)颟示器樣品的最低穿透率爲低,而最欠光 穿透率則相近。由此可見,本發明之高分子平面分散液晶 (PPDLC)顚示器的對比度確比f知之高分子分散波晶(pdlc) 15顯示器的對比度爲高。由圖5亦可看出本發明之光電特性曲 線之急峻度較習知者爲高。在驅動電壓方面,本發明之起始 電壓雖較f知者爲高,但飽和電壓則較f知者爲低。 此外本發明高分子平面分散液晶颟示器(PPDLC)之旋轉 20配向(實例二)與平行配向(實例一)兩種樣品的光電特性, 如圖5之502與囷4之402、403所示,最大光穿透率均 約相同,但最低穿透率以402最小,502爲次,403最大〇 因此當光源爲線偏極光,可採用本發明實例一之平行配向以 24提高對比度;當光源爲自然光》則採用本發明實例二之旋轉 — _15 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) II^丨.-----k裝------訂—:---.丨妹 (請先閱讀背面之注意事項再填寫本頁) A7 B7 5 五、發明説明(/i , [配向以提高對比度 【實例三】等姐高分子+旋触配向紅+染料 諳本閲如圖6所示本發明之一種高分子平面分散液晶( PPDLC)顯示器之斷面圖。首先於平坦之透明玻璃基板6〇5 ,以蒸著法鍵上ITO,形成透明電極6〇4。再於電極上鍍上( PVA’polyvinyl alcohol ),並用布料在電極面敗單向磨擦 ,作配向處理。再將兩枚基板之電極面相對,使配向方向互 10相垂直,並取樣品厚度爲1〇αιη,形成一空樣品。在1〇〇 C 下*在此空樣品之間隙中,封入Ν0Α65之高分子前驅體、液 晶Ε7、液晶ZLI-2806及加黑色染料之主客型液晶ZLI-4281/2 (Merck公司製)等四者,以重量比爲4〇 : 54 : 3 : 3所製成 之泥合物。將此樣品徐徐冷卻至5〇 Cc,使混合物中之液晶 15分子頫著配向方向由下基板至上基板呈go度旋轉排列。苒以 強度24.0鉍W/ c ,波長365 nm之紫外光線照射樣品, 使高分子前驅韹結合成高分子6〇2,並與液晶產生相分離, 完成如圈6所示本發明之一種高分子平面分散液晶(ppdlc) 顯示器。該樣品在未加電場前呈灰白色混濁之光散釓狀態, 20加電場則呈透明狀態。以相同材質省略·掉配向處理,製成一 般習知型式之高分子分散液晶顯示器(PDLC)樣品,量取兩者 之之光電特性。當自然光垂直入射於f知型式之PDLC顯示器 與本發明之旋轉水平配向之高分子平面分散液晶PPDLC顯示 24器時,其穿透率與ac電壓大小之關係如圖7所示。701代 _____16______ 本紙張尺度逋用中國國家樣準(CNS ) A4胁(210X297公釐) !^丨,-----k裝------訂——:---丨妹 (請先閱讀背面之注意事項再填寫本頁) 經濟部中失樣準局工消费合作社印裝V. Explanation of the invention (ο) 1 The contrast ratio is indeed higher than the dispersion type liquid crystal display (PD1X) known by f. When the polarizing direction of the incident light is perpendicular to the alignment direction of the sample, its characteristics such as 403, the lowest light transmittance is similar to 401, but the lowest transmittance is higher than 401, which can prove that the polymer plane of the present invention The 5 molecules of liquid crystal of the dispersed liquid crystal display (PPDLC) are subjected to the effect of alignment treatment. Therefore, if the light source is linear polarized aurora, when the polarized direction of the incident light is parallel to the alignment direction of the polymer flat dispersion liquid crystal display (PPDLC) of the present invention, the contrast of the monitor is better than the conventional polymer dispersed liquid crystal display. (PDLC). 10 [Example 2] Isotropic polymer + rotating alignment liquid crystal Please read the cross-sectional view of a polymer flat dispersion liquid crystal display (PPDLC) according to the present invention as shown in FIG. 1. Using the same material, the method of producing and broadcasting according to Example 1 was followed by plating an electrode with an alignment film PVA (j > 〇lyVinyl alch〇h〇l) 15 and using a cloth to rub unidirectionally on the electrode surface for orientation treatment. The electrode surfaces of the two substrates are opposite to each other, the alignment directions are perpendicular to each other, and the thickness of the sample is taken as un to form an empty sample. At 100 t: the same mixture was sealed in the gap between the empty samples. This sample was slowly cooled to 50, and the liquid crystal molecules in the mixture were rotated in a 20-degree row from the lower base to the upper substrate along the alignment direction. The step of making Buddha is continued. After the polymer and liquid crystal are phase-separated, a polymer planar dispersion liquid crystal (ppj ^ c) display of the present invention is completed as shown in FIG. 1. Before the electric field was applied, the sample was in a state of scattered white turbid light, and the electric field was in a transparent state. Outside the C male, the sample was rotated under a polarizing microscope with polarized light perpendicular to each other, and the polymer part was observed. All black images, ___ U (Please read the notes on the back before filling out this page) This paper size applies to Chinese National Standard (CNS) A4 (210X297 mm) Printed by Zhengong Consumer Cooperative, Central Bureau of Standards, Ministry of Economic Affairs A7 B7 V. Description of the invention (/ in) 1 Polymers are indeed optically isotropic. The same material is used to eliminate the alignment treatment, and a conventionally known type of polymer dispersed liquid crystal display (PDLC) sample is prepared. The photoelectric characteristics of the two are measured. When natural light is incident perpendicularly to the PDLC of the known type and the PPDLC sample of the present invention, the relationship between the transmittance and the ac voltage is shown in FIG. 5. 501 represents the photoelectric characteristics of a conventional type of polymer dispersed liquid crystal (PDLC) display sample, and 502 represents the photoelectric characteristics of the polymer planar dispersed liquid crystal (PPDLC) display device sample of the present invention. Because the orientation of the liquid crystal molecules in each liquid crystal region of the polymer-dispersed liquid crystal (PDLC) display sample of the known type is three-dimensionally spaced, the 10 liquid crystal molecules in each liquid crystal region of the sample of the present invention are oriented at two degrees. The space is scattered randomly, so the lowest transmittance of the polymer flat dispersion liquid crystal display (PPDLC) sample of the present invention is lower than the past. The lowest transmittance of the pre-dispersed liquid crystal (PDLC) display sample is lower, and the lowest Light transmittance is similar. It can be seen that the contrast ratio of the polymer planar dispersed liquid crystal (PPDLC) display of the present invention is indeed higher than that of the polymer dispersed wave crystal (pdlc) 15 display known by f. It can also be seen from Fig. 5 that the severity of the photoelectric characteristic curve of the present invention is higher than that of the conventional one. In terms of driving voltage, although the starting voltage of the present invention is higher than that of f, the saturation voltage is lower than that of f. In addition, the optical characteristics of the two samples of the polymer flat dispersion liquid crystal display (PPDLC) of the present invention are the rotation 20 alignment (Example 2) and parallel alignment (Example 1), as shown in Figures 502 and 囷 4, 402 and 403. The maximum light transmittance is about the same, but the minimum transmittance is 402 minimum, 502 times, and 403 maximum. Therefore, when the light source is linearly polarized aurora, the parallel alignment of Example 1 of the present invention can be used to improve the contrast; when the light source is "For Natural Light", the rotation of Example 2 of the present invention is adopted. _15 This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) II ^ 丨 .----- k-pack -------- Order—: ---. 丨 Girl (please read the precautions on the back before filling this page) A7 B7 5 V. Description of the invention (/ i, [Alignment to improve contrast [Example 3] Waiting for high polymer + rotary touch alignment red + dye谙 This review is a cross-sectional view of a polymer flat dispersive liquid crystal (PPDLC) display of the present invention as shown in Fig. 6. First, ITO is formed on a flat transparent glass substrate 605 by evaporation, and a transparent electrode 6 is formed. 4. Plating on the electrode (PVA'polyvinyl alcohol), and use cloth on The electrode surface is rubbed in one direction for alignment treatment. Then the electrode surfaces of the two substrates are opposite to each other, so that the alignment directions are perpendicular to each other, and a sample thickness of 10 μm is taken to form an empty sample. At 100 C ** In the gap of this empty sample, four of the polymer precursors of NOA65, liquid crystal E7, liquid crystal ZLI-2806, and host-guest liquid crystal ZLI-4281 / 2 (manufactured by Merck) with black dye were sealed, with a weight ratio of 40%. : 54: 3: The mud compound made by 3. This sample is slowly cooled to 50 ° C, so that 15 molecules of liquid crystal in the mixture are arranged in a degree of rotation from the lower substrate to the upper substrate in the orientation direction. 苒 with an intensity of 24.0 Bismuth W / c, UV light with a wavelength of 365 nm irradiates the sample, so that the polymer precursor is combined into a polymer 602 and phase-separated from the liquid crystal to complete a polymer plane-dispersed liquid crystal of the present invention as shown in circle 6. ppdlc) display. The sample showed a gray-white turbid light dispersion state before the application of an electric field, and a transparent state after the application of an electric field at 20. The same material was omitted and the alignment treatment was made to make a conventional polymer dispersion liquid crystal display ( PDLC) samples, Take the photoelectric characteristics of the two. When the natural light is perpendicularly incident on the PDLC display of the F-type and the polymer horizontally dispersed liquid crystal PPDLC display of the rotating horizontal alignment of the present invention, the relationship between the transmittance and the ac voltage is shown in the figure. As shown in Figure 7. 701 generation _____16______ This paper size is based on the Chinese National Standard (CNS) A4 threat (210X297 mm)! ^ 丨, ----- k installed -------- order ----:- -丨 Girl (please read the precautions on the back before filling this page) Printed by the Bureau of Consumer Affairs Co., Ltd.

五、發明説明(。力 經濟部中央樣準局貝工消费合作杜印製 1表習知型式#分子^散液晶(PDLC)顯示器樣品之光電特性 ,702代表^分子平面分散液晶(pPDLC)顯示器樣 品之光電特性。由於f知型式之高分子分散液晶(PDLC)顯 示器樣品各液晶區域内之液晶分子指向呈三度空間散亂分佈 5 ,而本發明之高分子平面分散液晶(PPDLC)顯示器樣品各液 晶區域内之液晶分子指向則呈二度空間散亂分佈,故如實例 二所示*本發明之高分子高分子平面分散液晶(PPDLC)顚示 器樣品的最低穿透率比習知之高分子分散液晶(PDLC>顯示 器樣品的最低穿透率爲低,而最大光穿透率則相近。由此可 10知,本發明之高分子平面分散液晶(PPDLC)顯帝器的對比度 確比f知之高分子分散液晶(PDLC)顯示器的對比度爲高。由 圖7亦可看出本發明之光電特性曲線之急峻度較習知者爲高 。比較實例二本發明未加染料之高分子平面分散液晶(PPDLC )顯示器樣品之光電特性502與加染料高分子平面分散液晶 15顯承器樣品的光電特性702。由於J.L.West等人於1990年 SPIE第1257卷第76頁故迷當t外光強度調到最佳值,則 加染料之高分子分散波晶(PDLC)顯示器其對比度當然大於 未加染料之旋轉排列分散型液晶(PDLC)顯示器;可是加染料 之樣品其對比度並未大於實例二中未加染料之樣品,此乃因 20爲此例中之紫外光強度尚未調整到最佳值,亦即散射效采未 發揮至最大。 24 17. -----------------丁 • I -s (請先閱讀背面之注意事項再填寫本頁) t紙張尺度適用十國國家標準(CNS ) A4規格(210X297公釐)V. Description of the invention (.. The Central Bureau of Standards and Technology of the Ministry of Economics and Economics of the Central Bureau of Specimen and Consumer Engineering, Cooperative Production and Printing of 1 Table, Known Type #Molecular Scattering Liquid Crystal (PDLC) Display Sample Photoelectricity Characteristics, 702 represents ^ Molecular Planar Dispersive Liquid Crystal (pPDLC) Display Optoelectronic characteristics of the sample. Due to the known type of polymer dispersed liquid crystal (PDLC) display samples, the liquid crystal molecules in each liquid crystal region have a three-dimensional spatial distribution, 5 and the polymer planar dispersed liquid crystal (PPDLC) display samples of the present invention. The orientation of the liquid crystal molecules in each liquid crystal region is scattered in a two-dimensional space, so as shown in Example 2 * The lowest transmittance of the polymer polymer plane-dispersed liquid crystal (PPDLC) indicator of the present invention is higher than conventional The minimum transmittance of the PDLC display samples is low, while the maximum light transmittance is similar. From this, it can be seen that the contrast ratio of the polymer planar dispersed liquid crystal (PPDLC) emperor of the present invention is indeed better than f The contrast ratio of the known polymer dispersed liquid crystal (PDLC) display is high. It can also be seen from FIG. 7 that the urgency of the photoelectric characteristic curve of the present invention is higher than that of the conventional one. Comparative Example 2 Optoelectronic characteristics 502 of the unpigmented polymer planar dispersive liquid crystal (PPDLC) display sample of the present invention and optoelectronic characteristics 702 of the dyed polymer planar dispersive liquid crystal 15 display device sample. Since JLWest et al. When the external light intensity is adjusted to the optimal value, the contrast of the polymer dispersed wave crystal (PDLC) display with dye is of course greater than that of the spin-dispersed liquid crystal (PDLC) display without dye; however, the dye is added. The contrast of the sample is not greater than that of the sample without dye in Example 2, because the UV intensity in this example has not been adjusted to the optimal value, that is, the scattering effect is not maximized. 24 17.- --------------- ding • I -s (Please read the notes on the back before filling out this page) t The paper size applies to the ten national standards (CNS) A4 specifications (210X297 mm )

Claims (1)

告本 Α8 ^ Β8 S8. δ. I 9c8 年 f專利範ϋΓ 卜一種高分子光學散亂型液晶顯示器,其係失於基板之畫素電極間的液 晶-高分子層(以下稱高分子分散液晶),其液晶分子與高分子之光 學折射率不同’而不論在顯示或不顯示之情況時,其特徵為可選用 線狀液晶與光學等向性高分子,並利用基板上之配向處理,使得液 晶分子之指向分佈於平行基板表面之二度空間平面; 液晶顧示器,可利用含有二色性染料以提高對比度; 液晶之分子指向可隨外加交流電場頻率之增減而變為平行或垂直電 場方向排列(亦即二週波液晶); 液晶顯示器’係利用二週波液晶交會頻率(cross over frequency)高 之高頻電場作配向處理,且利用此二週波液晶交會頻率低之低頻電 場加以驅動。 2、一種高分子光學散亂型液晶顯示器,其係夾於基板之畫素電極間的液 晶-高分子層(以下稱高分子分散液晶),其液晶分子與高分子之光 學折射率不同,而不論在顯示或不顯示之情況時,其特徵為可選用 線狀液晶與光學異向性高分子,並利用基板上之配向處理,使得液 晶分子之指向分佈於平行基板表面之二度空間平面; 液晶分子與高分子前驅體之指向在該二度空間平面中互相平行; 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) L--=-----f裝------訂------線 (請先閲讀背面之注意事項再填寫本買) 經濟部中央揉準局負工消费合作社印製 告本 Α8 ^ Β8 S8. δ. I 9c8 年 f專利範ϋΓ 卜一種高分子光學散亂型液晶顯示器,其係失於基板之畫素電極間的液 晶-高分子層(以下稱高分子分散液晶),其液晶分子與高分子之光 學折射率不同’而不論在顯示或不顯示之情況時,其特徵為可選用 線狀液晶與光學等向性高分子,並利用基板上之配向處理,使得液 晶分子之指向分佈於平行基板表面之二度空間平面; 液晶顧示器,可利用含有二色性染料以提高對比度; 液晶之分子指向可隨外加交流電場頻率之增減而變為平行或垂直電 場方向排列(亦即二週波液晶); 液晶顯示器’係利用二週波液晶交會頻率(cross over frequency)高 之高頻電場作配向處理,且利用此二週波液晶交會頻率低之低頻電 場加以驅動。 2、一種高分子光學散亂型液晶顯示器,其係夾於基板之畫素電極間的液 晶-高分子層(以下稱高分子分散液晶),其液晶分子與高分子之光 學折射率不同,而不論在顯示或不顯示之情況時,其特徵為可選用 線狀液晶與光學異向性高分子,並利用基板上之配向處理,使得液 晶分子之指向分佈於平行基板表面之二度空間平面; 液晶分子與高分子前驅體之指向在該二度空間平面中互相平行; 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) L--=-----f裝------訂------線 (請先閲讀背面之注意事項再填寫本買) 經濟部中央揉準局負工消费合作社印製 A8 B8 C8 D8 六、申請專利範圍 可利用含有二色性染料以提高對比度; 其液晶之分子指向可隨外加交流電場頻率之增減而變為平行,或垂 直電場方向排列(亦即二週波液晶); 利用二週波液晶交會頻率(cross over frequency)高之高頻電場作 配向處理,且利用此二週波液晶交會頻率低之低頻電場加以驅動。 3、如申請專利範圍第1或第2項之液晶顯示器,其利用二週波液晶交 會頻率低之低頻電場作配向處理’且利用此二週波液晶交會頻率高 之高頻電場加以驅動。 如申請專利範圍第1或第2項之液晶顯示器,其液晶分子利用磁場作 配向處理。 HM I n I II- 1— - — !| 1— I : I ——I U3-s (請先閲讀背面之注^h項再填寫本頁) 線 經濟部中央標隼局貝工消費合作社印製 、如申請專利範圍第1或第2項之液晶顯示器,其液晶分子與光學異向 性高分子前驅體,利用磁場作配向處理。 、如申請專利範圍帛1或第2項之液晶顯示器,其液晶分子可經由配向 劑、蒸鍍、或摩擦等方法作配向處理。 本紙張ΛΑ逋用中關家梯卒(CNS)域冰(21QX297公董) A8 B8 C8 D8 六、申請專利範圍 7、 如申請專利範圍第1或第2項之液晶顯示器’其液晶分子或液晶與光 學異向性高分子前驅體,可經由配向劑、蒸鍍、或摩擦等方法作配 向處理。 8、 如申請專利範圍第1或第2項之液晶顯示器,其液晶分子之指向,係 利用基板表面配向方向之不同而造成旋轉排列。 9、 如申請專利範圍第1或第2項之液晶顯示器,其液晶分子與光學異向 性高分子前驅體之指向,係利用基板表面配向方向之不同而造成& 轉排列。 (靖先閲讀背面之注意事項再填寫本頁} -訂- 經濟部中央搮车局貝工消费合作社印«. •TI. ¾. -紙 本 A4 Ns 6 /f\ 準 橾 家 國 國 中 用 逋 釐 9 2This document A8 ^ Β8 S8. Δ. I 9c8 f patent Fan ϋ Γ A polymer optical scattered liquid crystal display, which is lost to the liquid crystal-polymer layer between the pixel electrodes of the substrate (hereinafter referred to as polymer dispersed liquid crystal ), The liquid crystal molecules and polymers have different optical refractive indices', regardless of whether it is displayed or not, it is characterized by the choice of linear liquid crystal and optical isotropic polymers, and the use of alignment processing on the substrate, so that The orientation of the liquid crystal molecules is distributed on a two-dimensional space plane parallel to the surface of the substrate. The LCD monitor can use dichroic dyes to improve the contrast. The orientation of the molecules of the liquid crystal can be parallel or vertical as the frequency of the applied AC electric field increases or decreases. The direction of the electric field is aligned (ie, two-cycle liquid crystal); the liquid crystal display 'uses a high-frequency electric field with a high cross-frequency of the two-cycle liquid crystal for alignment processing, and is driven by the low-frequency electric field with a low frequency of the two-cycle liquid crystal cross-frequency. 2. A polymer optical scatter liquid crystal display, which is a liquid crystal-polymer layer (hereinafter referred to as polymer dispersed liquid crystal) sandwiched between pixel electrodes on a substrate. The refractive index of liquid crystal molecules and polymers is different. Whether it is displayed or not, it is characterized by the choice of linear liquid crystals and optically anisotropic polymers, and the use of alignment processing on the substrate, so that the orientation of liquid crystal molecules is distributed on a two-dimensional spatial plane parallel to the surface of the substrate; The orientation of the liquid crystal molecules and the polymer precursors are parallel to each other in this two-dimensional plane; This paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm) L-= ----- f pack-- ---- Order ------ line (please read the precautions on the back before filling in this purchase) The Central Bureau of the Ministry of Economic Affairs printed the notice Α8 ^ Β8 S8. Δ. I 9c8 year f Patent Fan Liyi A polymer optical scatter liquid crystal display, which is lost to the liquid crystal-polymer layer between the pixel electrodes of the substrate (hereinafter referred to as polymer dispersed liquid crystal). The refractive index of the liquid crystal molecules is different from that of the polymer. 'Regardless of When displaying or not displaying, it is characterized by the choice of linear liquid crystal and optical isotropic polymers, and the use of alignment processing on the substrate, so that the orientation of the liquid crystal molecules is distributed on a two-dimensional spatial plane parallel to the surface of the substrate; Monitors can use dichroic dyes to increase contrast; the molecular orientation of liquid crystals can be aligned in parallel or perpendicular to the direction of the electric field as the frequency of the applied AC electric field increases or decreases (that is, two-cycle liquid crystal); The high-frequency electric field with a high crossover frequency of the two-cycle liquid crystals is used for alignment processing, and the low-frequency electric field with a low frequency of the two-cycle liquid crystals crossover is used for driving. 2. A polymer optical scatter liquid crystal display, which is a liquid crystal-polymer layer (hereinafter referred to as polymer dispersed liquid crystal) sandwiched between pixel electrodes on a substrate. The refractive index of liquid crystal molecules and polymers is different. Whether it is displayed or not, it is characterized by the choice of linear liquid crystals and optically anisotropic polymers, and the use of alignment processing on the substrate, so that the orientation of liquid crystal molecules is distributed on a two-dimensional spatial plane parallel to the surface of the substrate; The orientation of the liquid crystal molecules and the polymer precursors are parallel to each other in this two-dimensional plane; This paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm) L-= ----- f pack-- ---- Order ------ line (please read the precautions on the back before filling in this purchase) Printed by the Central Ministry of Economic Affairs, the Bureau of Work and Consumer Cooperatives, A8, B8, C8, and D8. Chromatic dyes to improve contrast; the molecular orientation of its liquid crystals can be parallel with the increase or decrease of the applied AC electric field frequency, or arranged in a vertical electric field direction (that is, two-cycle liquid crystals); the frequency of two-cycle liquid crystals is used to intersect (cross over frequency) The high-frequency electric field with high alignment is used for alignment processing, and the low-frequency electric field with low intersection frequency of the two-cycle liquid crystals is used for driving. 3. If the liquid crystal display of the first or second item of the patent application is applied, it uses a low frequency electric field with a low frequency of the two-cycle liquid crystal crossover as an alignment process' and a high-frequency electric field with a high frequency of the two-cycle liquid crystal crossover. For example, the liquid crystal display of the first or second patent application range uses liquid crystal molecules to align the liquid crystal molecules. HM I n I II- 1—-—! | 1— I: I ——I U3-s (please read the note ^ h on the back before filling this page) For the liquid crystal display, such as the first or second item of the patent application scope, the liquid crystal molecules and the optical anisotropic polymer precursor are aligned using magnetic field. For the liquid crystal display with the scope of patent application (1) or (2), the liquid crystal molecules can be aligned by means of alignment agent, evaporation, or rubbing. This paper ΛΑ 逋 uses Zhongguanjia ladder (CNS) domain ice (21QX297 public director) A8 B8 C8 D8 6. Application for patent scope 7, such as the application of patent scope 1 or 2 of the liquid crystal display 'its liquid crystal molecules or liquid crystal And optically anisotropic polymer precursors can be aligned by means of alignment agents, evaporation, or rubbing. 8. For the liquid crystal display of the first or second item of the patent application, the orientation of the liquid crystal molecules is caused by the different alignment directions of the substrate surface to cause the rotation arrangement. 9. If the liquid crystal display of the first or second item of the patent application is applied, the orientation of the liquid crystal molecules and the optically anisotropic polymer precursor is caused by the difference in the orientation direction of the substrate surface. (Jing first read the precautions on the back before filling out this page} -Order-Printed by the Central Bureau of Vehicles, Ministry of Economic Affairs, Shellfish Consumer Cooperatives «. • TI. ¾.-On paper A4 Ns 6 / f \ quasi Cm 9 2
TW85100219A 1996-01-10 1996-01-10 Dye-doped polymer planary-dispersed liquid crystal display TW393584B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW85100219A TW393584B (en) 1996-01-10 1996-01-10 Dye-doped polymer planary-dispersed liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW85100219A TW393584B (en) 1996-01-10 1996-01-10 Dye-doped polymer planary-dispersed liquid crystal display

Publications (1)

Publication Number Publication Date
TW393584B true TW393584B (en) 2000-06-11

Family

ID=21625123

Family Applications (1)

Application Number Title Priority Date Filing Date
TW85100219A TW393584B (en) 1996-01-10 1996-01-10 Dye-doped polymer planary-dispersed liquid crystal display

Country Status (1)

Country Link
TW (1) TW393584B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955277A (en) * 2012-11-07 2013-03-06 北京三五九投资有限公司 Method for enhancing contrast of polymer dispersed liquid crystal (PDLC) display
TWI588575B (en) * 2009-01-09 2017-06-21 Yu-Wen Chen Liquid crystal structure and its making method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI588575B (en) * 2009-01-09 2017-06-21 Yu-Wen Chen Liquid crystal structure and its making method
CN102955277A (en) * 2012-11-07 2013-03-06 北京三五九投资有限公司 Method for enhancing contrast of polymer dispersed liquid crystal (PDLC) display
CN102955277B (en) * 2012-11-07 2014-11-19 北京三五九投资有限公司 Method for enhancing contrast of polymer dispersed liquid crystal (PDLC) display

Similar Documents

Publication Publication Date Title
Ren et al. Polarization-independent phase modulation using a polymer-dispersed liquid crystal
JP3060656B2 (en) Liquid crystal display device
JP4392186B2 (en) High-speed response liquid crystal device and driving method
CN100381887C (en) Display element and display apparatus
KR100824840B1 (en) Display element and display device
JP3086718B2 (en) Liquid crystal display device
EP2598943B1 (en) Liquid crystal display and method for preparation thereof
JP2002277862A (en) Liquid crystal light modulator and display device using the same
US20070200093A1 (en) Non-synthetic method for modifying properties of liquid crystals
JP2006099038A (en) Display element and display device
KR100682440B1 (en) Display Apparatus
JP2005338800A (en) Display element and display device
JPWO2009069249A1 (en) Liquid crystal display device
US20100315568A1 (en) Liquid crystal devices and methods providing fast switching mode
JP4147217B2 (en) Display element and display device
Ren et al. Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels
TWI285770B (en) A display device and an electro-optical device using a colloidal liquid crystal composite
Joshi et al. P‐151: Fast Flexoelectro‐optic Response of Bimesogen‐doped Polymer Stabilized Cholesteric Liquid Crystals in Vertical Standing Helix Mode
TW393584B (en) Dye-doped polymer planary-dispersed liquid crystal display
Khatun et al. Topological defects stabilized by a soft twist-bend dimer and quantum dots lead to a wide thermal range and ultra-fast electro-optic response in a liquid crystalline amorphous blue phase
KARAPINAR Electro-optic response of a polymer dispersed liquid crystal film
Kumari et al. Pseudopeptidic polymers for modulating electro-optic switching, dielectric and electrical properties of liquid crystal
Diorio Jr et al. The electro-optic properties of colloidal silica filled nematics
JP3298522B2 (en) Liquid crystal display device
Yu et al. P. 93: Optically Isotropic Polymer Dispersed Liquid Crystal Composite for High Contrast Ratio and Fast Response Time

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent