TW389984B - Inter-metal dielectric process made by O3-TEOS - Google Patents
Inter-metal dielectric process made by O3-TEOS Download PDFInfo
- Publication number
- TW389984B TW389984B TW87118108A TW87118108A TW389984B TW 389984 B TW389984 B TW 389984B TW 87118108 A TW87118108 A TW 87118108A TW 87118108 A TW87118108 A TW 87118108A TW 389984 B TW389984 B TW 389984B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- oxide
- interlayer dielectric
- dielectric layer
- metal
- Prior art date
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
五、發明說明(1) 本發明係有關於半導體積體電路的製造,且特別是有 關於一種以〇3_T EOS氧化物為主之金屬層間介電層(IMD)的 改良製程,提昇其間隙填充能力以適用於更細微尺寸積體 電路元件的製造。 近年來,隨著半導體積體電路製造技術的發展,晶片 中所含元件的數量不斷增加,元件的尺寸也隨積集度的提 昇而不斷地縮小’晶片的表面漸漸無法提供足夠的面積來 製作所需的内連導線。為了適應新的需求,兩層以上的金 屬導線設計,便逐漸成為許多積體電路所必須採用的方 式’特別是一些功能較複雜的產品,如微處理器 (microprocessor)等,甚至需要四層或五層以上的金屬導 線’才能使各元件發揮應有的功效。因此,多重内連導線 (multi level interconnects)製程已成為今日半導體製程 中不可或缺的重要技術之一。 在多重内連導線製程中,固然各元件需藉助内連導線 來彼此連結,但各内連導線之間卻不可直接接觸而發生短 路,必須利用絕緣層加以隔離,一般稱之為金屬層間介電 層(IMD),其中氧化發、氮化發層、和四乙氧基係曱燒 (TE0S)氧化物等是較常使用的介電材料。但是當半導體製 程進入半微米線寬尺寸領域後,上述介電材料由於間隙填 充能力不佳,並無法提供所需之絕緣性質,因此諸多改良 製程技術應運而生,其中以次常壓氣相沈積(SACVJ))程序 形成之〇3_TE〇s氧化層經研究證實具有良好的步階覆蓋性 質’有利於填充於曰漸縮小的導線間隙中,因此是目前生V. Description of the invention (1) The present invention relates to the manufacture of semiconductor integrated circuits, and in particular to an improved process for the metal interlayer dielectric layer (IMD) mainly composed of 0_T EOS oxide, to improve its gap filling. The capability is suitable for the manufacture of finer size integrated circuit components. In recent years, with the development of semiconductor integrated circuit manufacturing technology, the number of components contained in wafers has continued to increase, and the size of components has continued to shrink with the increase in the degree of accumulation. Required interconnect cables. In order to meet the new requirements, the design of two or more layers of metal wires has gradually become a way that many integrated circuits must adopt. In particular, some products with more complex functions, such as microprocessors, etc., even require four layers or Five or more layers of metal wires can make each component work as it should. Therefore, the process of multi-level interconnects has become one of the important technologies indispensable in today's semiconductor processes. In the process of multiple interconnected wires, although the components need to be connected to each other by means of interconnected wires, the interconnected wires cannot be directly contacted to cause a short circuit. They must be isolated by an insulating layer, which is generally called metal interlayer dielectric Layer (IMD), among which oxidized, nitrided, and TEOS oxides are the most commonly used dielectric materials. However, after the semiconductor process entered the field of half-micron line width dimensions, due to the poor gap-filling ability of the above-mentioned dielectric materials, they could not provide the required insulation properties. Therefore, many improved process technologies have emerged, including sub-normal pressure vapor deposition ( 〇3_TE〇s oxide layer formed by the SACVJ)) program has been researched and proved to have good step coverage properties. 'It is conducive to filling the shrinking wire gap, so it is currently
五、發明說明(2) 產線上常被用來製作金屬層間介電層(IMD)的技術之一。 然而,儘管次常壓氣相沈積程序形成之〇3_te〇s氧化 層具有較佳的間隙填充性質,但其沈積速率卻會隨著基底 材質的不同而有極大的差異’不僅影響了生產製造的效 率’並且導致氧化層品質不佳和表面不平坦等問題。因此 一般製程上係採PECVD氧化矽底層/SACVD 03-TE0S氧化層 之組合’利用一氧化矽底層覆蓋内連導線和基底的表面, 以利於後續均勻地沈積〇3_TEOS氧化層而形成金屬層間介 電層。以下,即參照第1 A至1 D圖,說明此種組合的製造流 程。 首先’如第1A囷所示者’提供一半導體基底f0,例如 是一矽晶圓,其上方形成有所需的半導體元件,此處為了 簡化起見,僅以一平整的基底10表示之。在基底10上依序 形成一擴散阻障層(diffusion barrier layer)ll、一金 屬層 12、和一抗反射層(anti-reflection layer)13。例 如’先沈積一氮化鈦(TiN)層11,接著沈積一銅鋁(AlCu) 合金層12,然後再沈積另一氮化鈦層13。接著,塗佈一光 阻層14,並施行微影成像程序以定義出導線圖案。 請參見第1B圖’進行定義内連導線構造的步驟,利用 上述光阻層14的圖案當作罩幕,依序蝕刻抗反射層13、金 屬層12、和擴散阻障層11,以形成如圖所示的内連導線構 造Μ。然後,以適當溶液或乾蝕刻程序去除上述光阻層 14。接著,施行一電漿加強化學氣相沈積(PECVD)程序, 而在内連導線構造Μ和基底10露出的表面上,形成一薄的V. Description of the Invention (2) One of the technologies often used to produce metal interlayer dielectric (IMD) on the production line. However, although the 03_te0s oxide layer formed by the subatmospheric pressure vapor deposition process has better gap-filling properties, its deposition rate will vary greatly depending on the substrate material ', which not only affects the efficiency of manufacturing 'And cause problems such as poor quality of the oxide layer and uneven surface. Therefore, in the general process, the combination of PECVD silicon oxide underlayer / SACVD 03-TE0S oxide layer is used to cover the surface of the interconnecting wires and the substrate with a silicon oxide underlayer to facilitate the subsequent uniform deposition of the 03_TEOS oxide layer to form a metal interlayer dielectric. Floor. Hereinafter, the manufacturing process of this combination will be described with reference to FIGS. 1A to 1D. First, "as shown in 1A", a semiconductor substrate f0 is provided, for example, a silicon wafer on which a desired semiconductor element is formed. For simplicity, it is represented by a flat substrate 10 only. A diffusion barrier layer 11, a metal layer 12, and an anti-reflection layer 13 are sequentially formed on the substrate 10. For example, 'a titanium nitride (TiN) layer 11 is deposited first, then a copper aluminum (AlCu) alloy layer 12 is deposited, and then another titanium nitride layer 13 is deposited. Next, a photoresist layer 14 is applied, and a lithography imaging procedure is performed to define a wire pattern. Please refer to FIG. 1B for the steps of defining the structure of the interconnecting wires. Using the pattern of the photoresist layer 14 as a mask, the anti-reflection layer 13, the metal layer 12, and the diffusion barrier layer 11 are sequentially etched to form a layer such as The interconnecting wire structure M shown in the figure. Then, the photoresist layer 14 is removed by an appropriate solution or a dry etching process. Next, a plasma enhanced chemical vapor deposition (PECVD) process is performed to form a thin
C:\ProgramFiles\Patent\0503-3787-E. ptd第 5 頁 五、發明說明(3) 氧化矽層15作為底層(underlayer),成為如第1C圖所示之 結構。 接下來,請參見第1D圖’施行一次常壓化學氣相沈積 (SACVD)程序,以形成一 〇3_TE〇s氧化層16覆蓋在上述氧化 梦底層15表面上,並填入内連導線構造μ的間隙中,共同 形成如圖所示的金屬層間介電層,以提供内連導線構造Μ 與上方另一金屬層(未顯示)的隔絕效果。其中,由於先前 刻意形成一氧化矽底層1 5 ’使得〇3_TE〇S氧化層〗6沈積時 不會產生沈積速率不均的問題,而有助於增進其間隊填充 能力。 然而’隨著半導體積體電路設計尺寸不斷縮小化的發 展’内連導線間隙中的〇a-TEOS氧化層16仍不可避免地因 步階覆蓋能力的限制而產生孔洞17,特別是當製程技術進 入四分之一微米甚或更細微尺寸領域時,此一情況將更加 惡化,上述PECVD氧化矽底層/SACVD 03-TE0S氧化層之組 合的間隙填充(gap-filling)能力已不敷所需。其中,由 於孔洞1 7係位於靠近〇s-TEOS氧化層1 6表面的區域'中,在 後續進行平坦化處理之化學性機械研磨(CMp)程序時,往 往容易使孔洞17外露,致使研漿(Slurry)流入其中而在後 續造成顆粒污染的問題’甚或在高溫成長其他金屬層時因 熱膨脹而爆開。 因此’為了適應更細微尺寸元件之製程,有必要更進 一步提昇金屬層間介電層的間隙填充能力,並對於金屬層 間介電層之孔洞因研磨處理而外露的問題謀求改進之道。 ΗΗΙΗΗΙΓ C:\Program Files\Patent\0503-3787-E.ptd第 6 頁' 五、發明說明(4) 本發明之一個目的,即在提供一種以〇3_teos氧化物 為主之金屬層間介電層的改良製程,改善其在内連導線間 隊的填充能力,並縮小所產生孔洞的大小。 本發明另一個目的,在提供一種&〇3_TE〇S氧化物為 主之金屬層間介電層的改良製程,其可使内連導線間隙中 所產生孔洞向下移,避免因研磨處理而外露的問題。 為了達成上述目的,本發明提出一種形成金屬層間介 電層的改良製程,以提昇其間隙填充能力,其先在基底和 内連導線表面上形成一 PECVD氧化矽/〇3-TEOS氧化物疊 層’然後施行一氬氣濺擊回蚀刻處理而留下在内連導線侧 壁上的間隙壁(spacer)’藉此緩和内連導線的側面輪廓; 接著再依序覆蓋一PECVD氧化矽底層和一〇3-TEOS氧化層’ 即完成具有良好間隙填充能力之金屬層間介電層的製作。 其中’ 〇3_TEOS氧化層在内連導線的間隙區域中所產生的 孔洞’將比習知製程所產生者為小;並且,若刻意增長形 成間隙壁之氬氣濺擊程序的處理時間,而在内連導線間的 半導體基底上形成凹陷’更可使〇3_TE〇s氧化層中生成的 孔洞向下移,避免後續因研磨處理而外露。 詳言之,本發明提出一種〇3-TE〇S氧化物為主之金屬 層間介電層的製作方法,用以提昇其間隙填充能力,該方 法包括下列步驟:提供一半導體基底’其上方形成有複數 内連導線;接連施行一電漿加強化學氣相沈積和一次常壓 化學氣相沈積程序,以形成一氧化矽/ 化物養 層,覆蓋在内連導線和半導體基底露出的表面上;施行一C: \ ProgramFiles \ Patent \ 0503-3787-E. Ptd page 5 V. Description of the invention (3) The silicon oxide layer 15 serves as an underlayer, and has a structure as shown in FIG. 1C. Next, please refer to FIG. 1D 'perform an atmospheric pressure chemical vapor deposition (SACVD) procedure to form a 03_TEOs oxide layer 16 overlying the surface of the above-mentioned oxide dream layer 15 and fill in the interconnect structure μ In the gap, a metal interlayer dielectric layer is formed together as shown in the figure to provide the insulation effect of the interconnecting conductor structure M from another metal layer (not shown) above. Among them, because the silicon oxide underlayer 15 was intentionally formed previously, the 〇3_TE〇S oxide layer 〖6 does not have the problem of uneven deposition rate during deposition, which helps to improve the filling capacity of the team. However, as the design size of semiconductor integrated circuits continues to shrink, the 0a-TEOS oxide layer 16 in the interconnect gap still inevitably generates holes 17 due to the limitation of step coverage, especially when the process technology This situation will worsen when entering the field of one-quarter micron or even finer size. The gap-filling capability of the above-mentioned combination of PECVD silicon oxide underlayer / SACVD 03-TE0S oxide layer is no longer sufficient. Among them, since the pores 17 are located in a region 'close to the surface of the 0s-TEOS oxide layer 16', in the subsequent chemical mechanical polishing (CMp) process of planarization, it is easy to expose the pores 17 and cause slurry (Slurry) Flow into it and cause subsequent particle contamination 'even when other metal layers grow at high temperatures due to thermal expansion. Therefore, in order to adapt to the manufacturing process of finer-size components, it is necessary to further improve the gap filling capability of the interlayer dielectric layer, and to improve the problem of the holes exposed by the interlayer dielectric layer due to the grinding process. ΗΗΙΗΗΙΓ C: \ Program Files \ Patent \ 0503-3787-E.ptd page 6 '5. Description of the invention (4) One object of the present invention is to provide a metal interlayer dielectric layer mainly composed of 〇3_teos oxide. The improved manufacturing process improves the filling capacity of the interconnect line and reduces the size of the holes generated. Another object of the present invention is to provide an improved manufacturing process of < 〇3_TE〇S oxide-based metal interlayer dielectric layer, which can move the holes generated in the gap between interconnect wires downward to avoid exposure due to grinding treatment. The problem. In order to achieve the above object, the present invention proposes an improved process for forming a metal interlayer dielectric layer to improve its gap filling capability. First, a PECVD silicon oxide / 〇3-TEOS oxide stack is formed on the substrate and the surface of the interconnect wire. 'Then perform an argon spatter etch back process to leave the spacers on the side walls of the interconnect wires' to relax the lateral profile of the interconnect wires; then cover a PECVD silicon oxide substrate and a 〇3-TEOS oxide layer 'is to complete the production of a metal interlayer dielectric layer with good gap filling ability. Among them, the 'holes generated in the gap area of the 〇3_TEOS oxide layer' will be smaller than those produced by the conventional process; and if the processing time of the argon spattering process that forms the gap wall is deliberately increased, the The formation of a depression 'on the semiconductor substrate between the interconnecting wires can further move the holes generated in the 〇3_TE〇s oxide layer downward to avoid subsequent exposure due to the grinding process. In detail, the present invention proposes a method for fabricating a metal interlayer dielectric layer based on 03-TE0S oxide to improve its gap-filling capability. The method includes the following steps: a semiconductor substrate is formed above There are a plurality of interconnected wires; a plasma-enhanced chemical vapor deposition and an atmospheric chemical vapor deposition process are successively performed to form a silicon oxide / compound layer, covering the exposed surfaces of the interconnected wires and the semiconductor substrate; One
C:\ProgramFiles\Patent\0503-3787-E. ptd第 7 頁C: \ ProgramFiles \ Patent \ 0503-3787-E. Ptd page 7
,氣濺擊(Ar sputter)程序以回蝕刻上述氧化矽/〇3_te〇s 化物疊層,使留在内連導線側壁上的部分形成一間隙壁 (_spaCer);施行另一電漿加強化學氣相沈積程序以形成 :氧化矽底層,覆蓋在内連導線、間隙壁和半導體基底露 的表面上;施行一氮氣電漿處理以增加氧化矽底層的成 j密度;以及施行另一次常壓化學氣相沈積程序,以形成 03-TE0S氧化物厚層,填入内連導線的間隙(gap)並覆蓋 在氧化矽底層的表面上,完成金屬層間介電層的製作。 根據本發明的較佳實施例,上述擴散阻障層係一氮化 欽(ΤιΝ)層’金屬層係一鋁銅合金(41(:11)層,而抗反射層 係另一氮化鈦層。此外,上述氧化矽/〇3_TE〇s氧化物疊 層’係由1 00 0埃的氧化矽和1〇〇〇埃的〇3_TE〇s氧化物所構 成者’而氧化矽底層的厚度約為1〇〇〇埃。 為了讓本發明之上述目的、特後、和優點能更明顯易 懂’下文特舉出一較佳實施例’並配合所附圖式,作詳細 說明如下: 圖式之簡單說明 第1A至1D圖為一系列剖面圖,用以緣示一習知pecvd 氧化發底層/ SAC VD 03-TE0S氧化層組合之金屬層間介電層 的製造流程;以及 第2A至2C圊為一系列剖面圖,用以繪示根據本發明改 良方法一較佳實施例的製造流程。 實施例 首先,如第2A圖所示者,提供一半導體基底20,例如Ar sputter process to etch back the above silicon oxide / 〇3_te〇s compound stack, so that the part left on the side wall of the interconnect wire forms a gap wall (_spaCer); another plasma is used to strengthen the chemical gas Phase deposition process to form: a silicon oxide underlayer covering the exposed surfaces of interconnect wires, spacers, and semiconductor substrates; a nitrogen plasma treatment to increase the density of the silicon oxide underlayer; and another atmospheric chemical gas Phase deposition process to form a thick layer of 03-TE0S oxide, fill gaps of interconnect wires and cover the surface of the bottom layer of silicon oxide to complete the fabrication of the interlayer dielectric layer. According to a preferred embodiment of the present invention, the diffusion barrier layer is a TiN layer, the metal layer is an aluminum-copper alloy (41 (: 11) layer, and the anti-reflection layer is another titanium nitride layer. In addition, the above-mentioned silicon oxide / 〇3_TE〇s oxide stack 'is composed of 1000 angstrom silicon oxide and 1000 angstrom 〇3_TE〇s oxide', and the thickness of the bottom layer of silicon oxide is about In order to make the above-mentioned object, features and advantages of the present invention more comprehensible, a preferred embodiment is exemplified below and described in detail with the accompanying drawings as follows: Brief descriptions 1A to 1D are a series of cross-sectional views for illustrating a manufacturing process of a metal interlayer dielectric layer of a conventional pecvd oxidation underlayer / SAC VD 03-TE0S oxide combination; and 2A to 2C are A series of cross-sectional views are used to illustrate the manufacturing process according to a preferred embodiment of the improved method of the present invention. First, as shown in FIG. 2A, a semiconductor substrate 20 is provided, such as
C:\Program Files\Patent\0503-3787-E.ptd第 8 頁 五、發明說明(6) --- 是一矽晶圓,其上方形成有所需的半導體元件,此處同樣 為了簡化起見,僅以一平整的基底2 〇表示之。在基底2〇上 依序形成一擴散阻障層21、一金屬層22、和一抗反射層 23。例如,先沈積一氮化鈦(1<1?〇層21,接著沈積一銅鋁 (AlCu)合金層22,然後再沈積另一氮化鈦層23。然後,施 行微影成像和蝕刻程序,以定義出如圖中所示的内連導線 構造Μ。 接下來,施行一電漿加強化學氣相沈積(PECVD)程序 以形成一氧化矽層,其厚度例如是1 0 0 0埃,緊接著再施行 一次常壓化學氣相沈積(SACVD)程序以形成一〇3-TEOS氧化 層’其厚度例如也是1000埃,藉此在内連導線構造Μ和半 導體基底20露出的表面上,共同形成一氧化矽/(^ — ^⑽氧 化物疊層2 4。 請參見第2Β圖,施行一氬氣減擊(Ar sputter)程序, 用以回蝕刻上述氧化矽/〇3-TEOS氧化物疊層24,至露出半 導體基底20為止,使得留在内連導線構造μ側壁上的部分 形成一間隙壁24a,其厚度約為2000埃。藉此,可以緩和 内連導線構造Μ的侧面輪廓,以利後續介電層的沈積《應 注意者,當形成間隙壁2 4a以後,仍可繼續氬氣濺擊程序 一段時間,而在内連導線構造Μ間的半導體基底20上形成 適當的凹陷I ,將有助於使後續金屬層間介電層之孔洞位 置向下移,避免發生因研磨處理而外露的問題。 接著,如第2C圖所示者,施行一電漿加強化學氣相沈 積程序,用以在内連導線構造Μ、間隙壁24a、和基底20露C: \ Program Files \ Patent \ 0503-3787-E.ptd page 8 V. Description of the invention (6) --- It is a silicon wafer with the required semiconductor components formed on it. Here again, to simplify the process See, only expressed as a flat substrate 20. A diffusion barrier layer 21, a metal layer 22, and an anti-reflection layer 23 are sequentially formed on the substrate 20. For example, a titanium nitride (1 < 10 layer 21 is deposited first, then a copper aluminum (AlCu) alloy layer 22 is deposited, and then another titanium nitride layer 23 is deposited. Then, a lithography imaging and etching process is performed, In order to define the interconnected wire structure M as shown in the figure, a plasma enhanced chemical vapor deposition (PECVD) process is performed to form a silicon oxide layer having a thickness of, for example, 100 angstroms, followed by Another atmospheric pressure chemical vapor deposition (SACVD) procedure is performed to form a 03-TEOS oxide layer having a thickness of, for example, 1000 angstroms, thereby forming an interconnecting conductor structure M and the exposed surface of the semiconductor substrate 20 together to form a Silicon oxide / (^ — ^ ⑽ oxide stack 2 4. Please refer to FIG. 2B, and perform an Ar sputter procedure to etch back the above silicon oxide / 〇3-TEOS oxide stack 24 Until the semiconductor substrate 20 is exposed, a portion left on the sidewall of the interconnecting conductor structure μ forms a gap wall 24a with a thickness of about 2000 Angstroms. This can relax the side profile of the interconnecting conductor structure M for the benefit of subsequent The deposition of dielectric layers After the wall 24a, the argon spattering process can be continued for a period of time, and the appropriate depression I formed on the semiconductor substrate 20 between the interconnecting conductor structures M will help to make the position of the holes of the subsequent interlayer dielectric layer Move down to avoid the problem of exposure due to the grinding process. Then, as shown in Figure 2C, a plasma enhanced chemical vapor deposition process is performed to interconnect the conductor structure M, the spacer 24a, and the substrate 20 dew
C:\Program Files\Patent\0503-3787-E.ptd第 9 頁 五、發明說明(7) 出的表面上,形成一薄的氧化矽底層25,其厚度例如是 1000埃。然後’施行一次常壓化學氣相沈積程序,以形成 一Os-TEOS氧化層26覆蓋在上述氧化矽底層25表面上,並 填入内連導線構造Μ的間隙中,共同形成如圚所示的金屬 層間介電層’以提供内連導線構造Μ與上方另一金屬層(未 顯示)的隔絕效果。此外,為了增加氧化矽底層25的成核 密度,可在兩次沈積程序之間,增加施行一氮氣電漿處理 程序,將更有利於沈積03-TE0S氧化層26。 比較本發明改良製程與習知技術,可明顯發現下列優 點:首先’由於本發明先在内連導線構造jj的側壁上製作 出間隙壁2 4 a ’不僅可緩和其侧面輪廓,也可部分填滿内 連導線的間隙’有助於改善後續沈積介電層的步階復蓋能 力。其次’由於沈積03-TE0S氧化層26之前,先施行一氮 氣電漿處理程序以增加氧化矽底層25的成核密度,也有助 於改善03-TE0S氧化層26的間隙填充能力,使得所形成之 孔洞2 7小於習知技術者。此外,由於先前刻意增加氬氣濺 擊處理的時間’而在連導線構造Μ間的半導體基底20上形 成適當的凹陷I ,也有助於使上述孔洞27的位置向下移, 避免發生因研磨處理而外露的問題。 本發明雖然已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此項技藝者,在不脫離本發明之 精神和範圍内’當可作些許之更動與潤飾,因此本發明的 保護範圍當視後附之申請專利範圍所界定者為準》C: \ Program Files \ Patent \ 0503-3787-E.ptd page 9 V. Description of the invention (7) A thin silicon oxide underlayer 25 is formed on the surface, and its thickness is, for example, 1000 angstroms. Then, an atmospheric pressure chemical vapor deposition process is performed to form an Os-TEOS oxide layer 26 overlying the surface of the above-mentioned silicon oxide underlayer 25 and fill the gaps of the interconnecting conductor structure M together to form as shown in 圚The metal interlayer dielectric layer 'provides the insulation effect of the interconnecting wire structure M from another metal layer (not shown) above. In addition, in order to increase the nucleation density of the silicon oxide underlayer 25, a nitrogen plasma treatment process can be added between the two deposition processes, which will be more beneficial for the deposition of the 03-TE0S oxide layer 26. Comparing the improved process and the conventional technology of the present invention, the following advantages can be clearly found: First, 'because the present invention first creates a gap wall 2 4 a on the side wall of the interconnected wire structure jj', it can not only relax its side profile, but also partially fill it. The 'full interconnect gap' helps to improve the step coverage of subsequent dielectric layers. Secondly, before the 03-TE0S oxide layer 26 is deposited, a nitrogen plasma treatment process is performed to increase the nucleation density of the silicon oxide underlayer 25, which also helps to improve the gap filling ability of the 03-TE0S oxide layer 26, so that The holes 27 are smaller than those skilled in the art. In addition, due to the deliberate increase of the time of the argon sputtering process, the formation of a suitable depression I in the semiconductor substrate 20 between the conductor structures M also helps to move the position of the above-mentioned hole 27 downward to avoid the occurrence of polishing treatment. And exposed problems. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Anyone skilled in the art can make some modifications and retouches without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application
C:\PrQgramFiles\Patent\0503-3787-E.ptd第 10 頁C: \ PrQgramFiles \ Patent \ 0503-3787-E.ptd page 10
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW87118108A TW389984B (en) | 1998-10-31 | 1998-10-31 | Inter-metal dielectric process made by O3-TEOS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW87118108A TW389984B (en) | 1998-10-31 | 1998-10-31 | Inter-metal dielectric process made by O3-TEOS |
Publications (1)
Publication Number | Publication Date |
---|---|
TW389984B true TW389984B (en) | 2000-05-11 |
Family
ID=21631834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW87118108A TW389984B (en) | 1998-10-31 | 1998-10-31 | Inter-metal dielectric process made by O3-TEOS |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW389984B (en) |
-
1998
- 1998-10-31 TW TW87118108A patent/TW389984B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7691739B2 (en) | Via electromigration improvement by changing the via bottom geometric profile | |
US6627557B2 (en) | Semiconductor device and method for manufacturing the same | |
US6228760B1 (en) | Use of PE-SiON or PE-OXIDE for contact or via photo and for defect reduction with oxide and W chemical-mechanical polish | |
JP2005505934A (en) | Metal-insulating film-metal (MIM) capacitor structure and manufacturing method thereof | |
JPH10223760A (en) | Method for formation of air gap by plasma treatment of aluminum interconnection | |
JPH09321045A (en) | Semiconductor device and method for manufacturing the same | |
US7485574B2 (en) | Methods of forming a metal line in a semiconductor device | |
US6952051B1 (en) | Interlevel dielectric structure | |
JP2000208622A (en) | Semiconductor device and production thereof | |
JP2001118928A (en) | Method for manufacturing integrated circuit | |
TW389984B (en) | Inter-metal dielectric process made by O3-TEOS | |
JP2991695B2 (en) | Method for forming insulating film of semiconductor device | |
JPH1116914A (en) | Mutual connection method for semiconductor device and constitution body | |
US7514793B2 (en) | Metal interconnection lines of semiconductor devices and methods of forming the same | |
US20030038371A1 (en) | Method of forming a metallic interconnect structure with a metallic spacer | |
KR20020056637A (en) | method for forming metal line of semiconductor device | |
KR19980032463A (en) | Via Pads and Caps for Improved Electromigration Capabilities | |
US5920791A (en) | Method of manufacturing intermetal dielectrics for sub-half-micron semiconductor devices | |
KR100352304B1 (en) | Semiconductor device and method of manufacturing the same | |
US20050142849A1 (en) | Method for forming metal wirings of semiconductor device | |
US20230197511A1 (en) | Double patterning with selectively deposited spacer | |
JPH08130248A (en) | Deposition of film and fabrication of semiconductor device | |
JP3378693B2 (en) | Method for manufacturing semiconductor device | |
TW418490B (en) | Method of producing intermetal dielectric layer capable of preventing cracking | |
JPH09237768A (en) | Semiconductor device and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |