TW388843B - Moving image encoding method, moving image encoder and moving image decoder - Google Patents
Moving image encoding method, moving image encoder and moving image decoder Download PDFInfo
- Publication number
- TW388843B TW388843B TW086113874A TW86113874A TW388843B TW 388843 B TW388843 B TW 388843B TW 086113874 A TW086113874 A TW 086113874A TW 86113874 A TW86113874 A TW 86113874A TW 388843 B TW388843 B TW 388843B
- Authority
- TW
- Taiwan
- Prior art keywords
- area
- encoding
- image
- region
- section
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/119—Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/146—Data rate or code amount at the encoder output
- H04N19/147—Data rate or code amount at the encoder output according to rate distortion criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
第86113874號專利說明書修正頁 修正日其:89希1.¾ fi ^ 錄、止 第86113874號專利說明書修正頁 修正日其:89希1.¾ fi ^ 錄、止 A7 B7 補充 五、發明說明(2) 輸出》加法器108是將解碼預測誤差信號107和預測信 號102進行加法運算,其將其做為解碼影像信號109輸 出。預測部111是對輸入影像1和儲存在記憶體110内 的前一畫框之解碼影像信號109,進行運動補償預測,輸 出預測信號102和運動向量112。此時,此運動補償是以 16x16畫素固定大小之區塊單位進行處理,稱之為巨區塊 (macro block)。對於運動較激烈區域内的區塊而言,也能 夠利用將巨區塊分割為4個8x8畫素的次區塊單位之方 式’做為輔助性的功能來進行處理。所求得的運動向量 112則是$影像解i裝置送出,預測信號102則1皮送到差 分器101和加法器108。在此裝置中,藉由採用運動補償 預測的處理,所以能夠在維持晝質的同時也能夠壓縮動 畫的資料量。 第28圖表示第二習知技術中的影像編碼裝置結構 圖。此裝置是根據L.C.Real等在“A Very Low Bit Rate Video Coder Based on Vector Quantization,,(IEEE Trans, on Image Proceeding, VOL.5, No.2, Feb.1996)所提出的編 碼方法而設計。在此圖中,113為區域分割部,114為預 測部’ 115為區域決定部,116為包含畫框間編碼/畫框内 編碼(inter/intra)資料的編碼模式資料,117為運動向量, 118為編碼部,119則為編碼資料》 在此裝置中,首先在區域分割部113中將輸入影像 分割成複數個區域。區域分割部113是根據運動補償預 測誤差來決定區域的大小。區域分割部113是在預先準 5* 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公« ) I I-- » ^ ills — ^-1111111 1^. *· · 、 (請先閱讀背f寫本頁) 經濟部智慧財產局貝工消费合作社印製 A7 B7 五、發明説明(1 ) 本發明係有關於輸入動畫加以編碼的方法和裝置, 以及對已編碼的動畫進行解碼的裝置。 第27圓為第一習知技術,方塊圓表示根據ITU-T建 議書(recommendation) H.263之一種動畫編碼裝置結構 。在此圖中,1表示輸入數位衫像資料(以下簡單稱之為 輸入影像),101表示差分器,102表示預測信號,103 表示預測誤差信號,104表示編碼部,105表示編碼資 料,106表示解碼部,107表示編碼預測誤差信號,108 表示加法器,109表示本地(local)解碼影像信號,110 表示記憶體,111表示預測部,112表示運動向量 (motion vector) 〇 待編碼的輸入名像1,首先輸入至差分器101中。 差分器J01取出輸入影像1和預測信號102間的差分, — ...... - - - - - . 作為預娜誤羞信號1〇3输此.,編瑪„部l_〇f則是對名拾41 埯的輸影像1 .或是對預測誤差信號103進行蠱碼,輸 出編碼資料105。至於1編碼部1〇4中的編碼方法,根 ·、 - - — i - 經濟部中央標率局貝工消费合作社印家 (祷先閲讀背面之注意事項再填寫本頁) 據上述的建議書所採用的是,利用一種正交變換的 DCT(Discrete Cosine Transformation,離^科 預測誤差信號103從空間領域轉換到頻率萝域,並且將 所得之轉锋命數進行線性量化的^方法。 編碼資料105被分到兩個方向。一個是朝著接收端 龙影像解碼裝置(未圖示)送去,另一個則是輸入到本裝 置内的解磚部106。解碼部106表實施與編碼部105相 反的動作,即掸編碼資料105產生鮮碼預測誤差信號1〇7 本紙張尺度適用中國國家橾準(CNS ) A4规格(210X297公釐) 第86113874號專利說明書修正頁 修正日其:89希1.¾ fi ^ 錄、止 第86113874號專利說明書修正頁 修正日其:89希1.¾ fi ^ 錄、止 A7 B7 補充 五、發明說明(2) 輸出》加法器108是將解碼預測誤差信號107和預測信 號102進行加法運算,其將其做為解碼影像信號109輸 出。預測部111是對輸入影像1和儲存在記憶體110内 的前一畫框之解碼影像信號109,進行運動補償預測,輸 出預測信號102和運動向量112。此時,此運動補償是以 16x16畫素固定大小之區塊單位進行處理,稱之為巨區塊 (macro block)。對於運動較激烈區域内的區塊而言,也能 夠利用將巨區塊分割為4個8x8畫素的次區塊單位之方 式’做為輔助性的功能來進行處理。所求得的運動向量 112則是$影像解i裝置送出,預測信號102則1皮送到差 分器101和加法器108。在此裝置中,藉由採用運動補償 預測的處理,所以能夠在維持晝質的同時也能夠壓縮動 畫的資料量。 第28圖表示第二習知技術中的影像編碼裝置結構 圖。此裝置是根據L.C.Real等在“A Very Low Bit Rate Video Coder Based on Vector Quantization,,(IEEE Trans, on Image Proceeding, VOL.5, No.2, Feb.1996)所提出的編 碼方法而設計。在此圖中,113為區域分割部,114為預 測部’ 115為區域決定部,116為包含畫框間編碼/畫框内 編碼(inter/intra)資料的編碼模式資料,117為運動向量, 118為編碼部,119則為編碼資料》 在此裝置中,首先在區域分割部113中將輸入影像 分割成複數個區域。區域分割部113是根據運動補償預 測誤差來決定區域的大小。區域分割部113是在預先準 5* 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公« ) I I-- » ^ ills — ^-1111111 1^. *· · 、 (請先閱讀背f寫本頁) 經濟部智慧財產局貝工消费合作社印製 钂濟部中央樣準局貝工消费合作杜印製 A7 B7 五、發明説明(3 ) 備好的10種區塊大小,4x4、4x8、8x4、8x8、8x16 、16x8、16x16、16x32、32x16、32x32 之中,利用 與畫框間信號發散程度相關的臨界值進行判定,運動較 大的區域是採用較小的區塊,另外,在背景等等運動較 小的區域則是採用較大的區塊》具艘的說,就是對預測 部114所得的預測誤差信號,在區域決定部115中計算 其發散值,再據以決定區塊的大小。區域形狀資料或是 編碼模式等的屬性資料116、和運動向量117也是在此 時決定。根據編碼模式資料,預測誤差信號或是原信號 在編碼部118中加以編碼,得到編碼資料119。之後的 處理則與第一習知技術相同。 在第一習知技術中,編碼單位的區域形狀限定為2 種’並且都是正方形V因此,適合於影像畫面結構或是 影像的特徵的編碼會被自然而然地受限》例如,如果需 要對運動較大的被攝物提高其編碼董時,雖然最好定義 出舆被攝物範圍相同形狀的區域,但這在習知技術是很 困難的》 第二習知技術在提供數種大小之區塊的觀點上,是 處理得比第一習知技術來得有评性。然而,此裝置仍然 是將各區域限定在正方形上。因此,即使已經有10種大 小的正方形,對任意形狀的影像區域仍然有改善其適應 性的空間。 本發明根據以上的課題,其目的即在於對應於待處 理影像的狀況,提供動畫編碼技術來更彈性地的處理。 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公嫠) (請先閲讀背面之注意事項再填寫本頁) ι^ϋ I i In · 、1Τ 經濟部中央揉率局貝工消费合作杜印簟 A7 B7 五、發明説明(4 ) 本發明更具體的目的在於提供一種動畫編碼技術,採用 能夠確實對應於各種影像結構的區域分割技術。本發明 之另一目·的在於,當分割需要編碼的區域時,能夠根據 各種的觀點提供分割的基準。本發明之又一目的在於, 提供一種能夠正確地對於從V各種形狀所分割區域“編碼 資料,進行正確解碼的技術。 本發明的動畫編碼方法,其包含根據既定之分割與 否判斷基準,分割輸入影像為複數區域之步驟;分別對 於所分割之複數區域,根據既定之整合與否判斷基準, 整合該區域與其周圍區域之步驟;以及分別對於整合後 所留下之區域,編碼影像信號之步驟。 上述分割與否判斷基準是根據對於某一區域,其區 域進行分割時和不分割時的編碼優劣之比較結果而決定 〇 上述整合與否判斷基準是根據於於某一區域,其區 域與其周圍區域進行整合時和不整合時的編今優劣之比 較結果而決定。 ' 另一方面,本發明的動畫編碼裝置則包括區域分割 部和編碼部。區域分割部,其包含一分割處理部,用以 根據既定之分割與否判斷基準,將輸入影像分割為複數 區域,以及一整合處理部,用以對藉由分割處理部所分 割之複數區域,分別根據既定之整合與否判斷基準,整 合該區域與其周圍區域*編碼部則對藉由整合處理部所 整合留下之區域,分別編碼其影像信號。 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) τ--..-----裝------訂------'/Λ ·* (請先閱讀背面之注意事項再填寫本頁)No. 86113874 Patent Specification Amendment Sheet Revised Date: 89 Greek 1.¾ fi ^ Record, only No. 86113874 Patent Specification Amendment Sheet Revised Date: 89 Greek 1.¾ fi ^ Catalog, Only A7 B7 Supplement V. Description of Invention ( 2) Output >> The adder 108 adds the decoded prediction error signal 107 and the prediction signal 102, and outputs it as a decoded video signal 109. The prediction unit 111 performs motion compensation prediction on the input image 1 and the decoded image signal 109 of the previous frame stored in the memory 110, and outputs a prediction signal 102 and a motion vector 112. At this time, this motion compensation is processed in a block unit of a fixed size of 16x16 pixels, which is called a macro block. For blocks in areas with more intense motion, it is also possible to use the method of dividing a giant block into 4 8x8 pixel sub-block units as an auxiliary function to process. The obtained motion vector 112 is sent from the $ image solution device, and the prediction signal 102 is sent to the difference 101 and adder 108. In this device, the motion compensation prediction process is used, so it is possible to compress the amount of data in the movie while maintaining the quality of the day. Fig. 28 is a block diagram of a video encoding device in the second conventional technique. This device is designed based on the coding method proposed by LCReal and others in "A Very Low Bit Rate Video Coder Based on Vector Quantization," (IEEE Trans, on Image Proceeding, VOL.5, No.2, Feb. 1996). In this figure, 113 is a region division unit, 114 is a prediction unit, 115 is a region determination unit, 116 is a coding mode data including inter-frame coding / intra-frame coding (inter / intra) data, and 117 is a motion vector. 118 is the encoding unit and 119 is the encoded data. In this device, the input image is first divided into a plurality of regions in the region division unit 113. The region division unit 113 determines the size of the region based on the motion-compensated prediction error. The region division Department 113 is pre-calibrated 5 * This paper size applies Chinese National Standard (CNS) A4 specifications (210 X 297 male «) I I-» ^ ills — ^ -1111111 1 ^. * (Please read the back first f write this page) Printed by A7 B7, Shellfish Consumer Cooperative of Intellectual Property Bureau, Ministry of Economic Affairs 5. Description of the invention (1) The present invention relates to a method and a device for encoding input animation, and a device for decoding the encoded animation. Round 27 is first In the conventional technology, a square circle indicates a structure of an animation encoding device according to ITU-T Recommendation H.263. In this figure, 1 indicates input digital shirt image data (hereinafter simply referred to as input image), and 101 indicates Differentiator, 102 indicates the prediction signal, 103 indicates the prediction error signal, 104 indicates the encoding section, 105 indicates the encoding data, 106 indicates the decoding section, 107 indicates the encoding prediction error signal, 108 indicates the adder, and 109 indicates the local decoded video signal. , 110 indicates the memory, 111 indicates the prediction unit, and 112 indicates the motion vector. 0 The input name image 1 to be encoded is first input to the difference 101. The difference J01 takes the difference between the input image 1 and the prediction signal 102. , — ......-----. Lose this as the pre-acceptance signal 103, and the editor's department l_〇f is the input image 1 for the name 41. Or The prediction error signal 103 is coded, and the coded data 105 is output. As for the coding method in the coding section 1 of the coding department, the roots,----i-Yin Jia, Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling this page) According to the above proposal The method is to use an orthogonal transform DCT (Discrete Cosine Transformation) to transform the prediction error signal 103 from the spatial domain to the frequency domain, and linearly quantify the obtained frontal number of hits. Encoding data 105 It is divided into two directions. One is to send to the receiving end dragon image decoding device (not shown), and the other is input to the deblocking unit 106 in the device. The implementation of the decoding unit 106 is opposite to that of the encoding unit 105. , That is, the coded data 105 generates a fresh code prediction error signal 107. This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) No. 86113874 Patent Specification Amendment Page Revision Date: 89 Greek 1. ¾ fi ^ record, only amendment page of Patent Specification No. 86113874, date: 89 Greek 1. ¾ fi ^ record, stop A7 B7 Supplement V. Description of Invention (2) Output "Adder 108 is to decode the prediction error signal 107 and the prediction signal 102 are added and outputted as a decoded image signal 109. The prediction unit 111 performs motion compensation prediction on the input image 1 and the decoded image signal 109 of the previous frame stored in the memory 110. , The prediction signal 102 and the motion vector 112 are output. At this time, this motion compensation is processed in a block unit of a fixed size of 16x16 pixels, which is called a macro block. For blocks in areas with more intense motion, In other words, the method of dividing a giant block into four 8x8 pixel sub-block units can also be used as an auxiliary function for processing. The obtained motion vector 112 is sent by the $ image solution device. The prediction signal 102 is sent to the differentiator 101 and the adder 108. In this device, by using motion compensation prediction processing, the amount of animation data can be compressed while maintaining the quality of the day. Figure 28 It shows the structure of the image coding device in the second conventional technology. This device is based on LCReal et al. In "A Very Low Bit Rate Video Coder Based on Vector Quantization ,, (IEEE Trans, on Image Proceedi ng, VOL.5, No.2, Feb. 1996). In this figure, 113 is the region segmentation unit, 114 is the prediction unit, 115 is the region determination unit, and 116 is the interval between frames. Encoding mode data of inter / intra encoding (inter / intra) data, 117 is the motion vector, 118 is the encoding section, and 119 is the encoding data. In this device, the input image is first divided into the region division section 113 into Plural areas. The area dividing unit 113 determines the size of the area based on the motion compensation prediction error. The area division section 113 is pre-calibrated 5 * This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 male «) I I--» ^ ills — ^ -1111111 1 ^. *, (Please first (Read the back to write this page) Printed by the Shellfish Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by the Shellfish Consumer Cooperative of the Central Sample Bureau of the Ministry of Economic Affairs, and printed by A7 B7. V. Description of the invention (3) 10 block sizes are prepared, Among 4x4, 4x8, 8x4, 8x8, 8x16, 16x8, 16x16, 16x32, 32x16, 32x32, the threshold value related to the degree of signal divergence between the frames is used for determination. Smaller blocks are used in areas with greater motion. In addition, in areas with small movements such as the background, larger blocks are used. According to Gu Chuan, the prediction error signal obtained by the prediction unit 114 is calculated by the divergence value in the area determination unit 115. Determine the block size. The area shape data, the attribute data 116 such as the coding mode, and the motion vector 117 are also determined at this time. Based on the coding mode data, the prediction error signal or the original signal is coded in the coding unit 118 to obtain coded data 119. The subsequent processing is the same as the first conventional technique. In the first known technique, the region shape of the coding unit is limited to 2 types and both are square V. Therefore, the coding suitable for the image frame structure or the characteristics of the image will be naturally limited. For example, if motion is required, When a larger subject improves its coding, although it is best to define a region of the same shape as the subject's range, this is difficult in the conventional technique. The second conventional technique is to provide regions of several sizes. From a block perspective, it is more critical than the first known technique. However, the device still confins the areas to a square. Therefore, even if there are already 10 kinds of squares, there is still room for improving the adaptability of image areas of arbitrary shapes. The present invention is based on the above-mentioned problems, and an object thereof is to provide animation coding technology for more flexible processing in accordance with the situation of an image to be processed. This paper size applies to Chinese National Standard (CNS) Α4 specification (210 × 297 cm) (Please read the precautions on the back before filling this page) ι ^ ϋ I i In · 1 1印 簟 A7 B7 V. Description of the invention (4) A more specific object of the present invention is to provide an animation coding technology, which adopts a region segmentation technology that can surely correspond to various image structures. Another object of the present invention is to provide a reference for segmentation according to various viewpoints when dividing a region to be encoded. Yet another object of the present invention is to provide a technology capable of accurately "encoding data for a region divided from various shapes of V, and performing correct decoding. The animation encoding method of the present invention includes segmenting according to a predetermined division judgment criterion. The steps of inputting the image as a plurality of regions; the steps of integrating the divided and plural regions according to a predetermined integration judgment criterion, and integrating the region and its surrounding regions; and the steps of encoding the image signals for the regions left after integration, respectively The above-mentioned judgment criterion for division or not is determined based on the comparison of the coding pros and cons of a certain region when the region is divided and when it is not divided. The above-mentioned criterion for integration judgment is based on a certain region, its region and its surroundings. The result of the comparison between the compilation and the current when the region is integrated and when it is not integrated is determined. 'On the other hand, the animation encoding device of the present invention includes an area division section and an encoding section. The area division section includes a division processing section for Divides the input image into The plural area and an integration processing unit are used to judge the plural areas divided by the division processing unit respectively according to a predetermined integration judgment criterion, and the integration area and the surrounding area are integrated. The coding unit controls the integration area by the integration processing unit. The areas left by the integration are coded separately for their image signals. The paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) τ --..------ installation ------ order-- ---- '/ Λ · * (Please read the notes on the back before filling this page)
經濟部中夬標率局貝工消费合作社印I Α7 Β7 五、發明説明(5 ) 上述整合處理部則包括一用以預備性地對每一區域 編碼影像並且計算其碼董之臨時編碼部、一用以解碼在 臨時編碼部所編碼的影像之解碼部、一利用解碼部所解 碼之影像來計算編碼之失真的編碼失真計算部以及在 考慮碼量和編碼失真兩者情況下,計算用以判斷編碼優 劣的評估值之評估值計算部。對於各區域,依據與周圍 區域整合情況下所得之評估值和未整合情況下所得之評 估值的比較結果’決定是否進行區域的整合/ 上述的分割處理部包括一動作計算部,用以計算判 隨各區域運動補償預測之預測誤差電力,做為該區域之 動作參數,以及一分割判斷部,用以比較所計算出之動 作參數和預設之基準值〃當比較結果是動作參數超過基 準值的情況時,則將此區域分割成更細部之區域β 或者是’上述分割處理部包括一動作計算部,用以 計算各區域之原始信號的邊緣強度,做為該區域之動作 參數,以及一分割判斷部,用以比較所計算出之動作參 數和預設之基準值*當比較結果是動作參數超岑基準值 的情況時,則將此區域分割成更細部之區域。 或者是,上述分割處理部包括一動作計算部,用以 對各區域’計算表示此區域影像特性的複數個數值之線 性加總,做為該區域之動作參數,以及一分割判斷部, 用以比較所計算出之動作參數和預設之基準值。當比較 結果是動作參數超過基準值的情況時,則將此區域分割 成更細部之區域。 本紙張尺度適用中國國家揉準(CNS ) Α4規格(210Χ297公釐) -'*I i:-! H n I "' (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部中央標準扃貝工消費合作杜印策 A7 B7 五、發明説明(6 ) 上述的複數個數值亦可以包含在運動補償預測中的 各區域運動參數的碼量和預測誤差電力。 另外·,上述的複數個數值亦可以包含各區域運動參 數之碼量、在運動補償中的預測誤差電力、原始信號的 發散值、邊緣強度、和各區域之運動參數大小。 上述的分割處理部更包括層級辨識部,用以決定各 區域之重要度,做為層級參數,從動作參數和重要度來 判斷各區域是否可以分割。 上述的層級辨識部係觀察橫跨於,複數個區域的被攝 物結構,決定各區域之層級。 上述被攝物結構亦可以由區域之原始信號發散度、 邊緣強攻、以及與周圍區域在邊緣上連結之程序來判斷 Ο 另外,上述的層級辨識部係觀察影像之特徵量進行 被攝物的檢測,根據其結果決定各區域的層級。 此時上述的層級辨識部係對每一被事前修設包含在 影像中的被攝物,預先儲存包含此被攝物的影'像特徵量 ,並且依據各區域影像的特徵量與Μ儲存之被攝物特徵 量的一致性,決定各區域的層級。 上述的分割處理部包括用以預備性地對每一區域編 碼影像並且計算其碼量的臨時編碼部、用以解碼在臨時 編碼部所編碼影像之解碼部、利用解碼部所解碼之影像 計算編碼失真之編碼失真計算部、以及在考慮碼量和編 碼失真兩者情況下,計算用以判斷編碼優劣之評估值的 9 本紙張尺度適用中國國家揉準(CNS ) Α4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) --------裝Printed by the Ministry of Economic Affairs of the Bureau of Standardization, Shellfish Consumer Cooperative, I Α7 Β7 V. Description of the Invention (5) The above-mentioned integrated processing section includes a temporary coding section for preliminarily encoding images for each area and calculating its code, A decoding section for decoding an image encoded in the temporary encoding section, a coding distortion calculation section for calculating encoding distortion using the image decoded by the decoding section, and calculating both An evaluation value calculation unit that judges the evaluation value of the coding quality. For each area, based on the comparison of the evaluation value obtained in the case of integration with the surrounding area and the evaluation value obtained in the case of unintegration, 'decide whether to perform the integration of the area / The above-mentioned division processing section includes an action calculation section for calculating the judgment The prediction error power of the motion compensation prediction with each area is used as the motion parameter of the area, and a division judgment section is used to compare the calculated motion parameter with a preset reference value. When the comparison result is that the motion parameter exceeds the reference value In the case of this, the region is divided into a more detailed region β or the above-mentioned segmentation processing unit includes an action calculation unit for calculating the edge strength of the original signal of each region as an action parameter of the region, and a A division judgment unit is used to compare the calculated motion parameter with a preset reference value. When the comparison result is a case where the motion parameter exceeds the reference value, this area is divided into more detailed areas. Alternatively, the above-mentioned segmentation processing unit includes an action calculation unit for calculating a linear sum of a plurality of values representing the image characteristics of the region for each region, as the action parameters of the region, and a segmentation judgment unit for Compare the calculated motion parameters with preset reference values. When the comparison result is that the action parameter exceeds the reference value, this area is divided into more detailed areas. This paper size applies to China National Standard (CNS) Α4 (210 × 297 mm)-'* I i:-! H n I "' (Please read the notes on the back before filling this page) Set the central standard of the Ministry of Economic Affairs扃 Beigong consumer cooperation Du Yince A7 B7 V. Description of the invention (6) The above-mentioned plural values may also include the code amount and prediction error power of the motion parameters of each region in the motion compensation prediction. In addition, the above-mentioned plural values may also include the code amount of the motion parameters of each region, the prediction error power in motion compensation, the divergence value of the original signal, the edge strength, and the size of the motion parameters of each region. The above-mentioned segmentation processing unit further includes a hierarchy identification unit for determining the importance of each area as a hierarchy parameter, and judging whether each area can be divided from the action parameters and the importance. The above-mentioned hierarchy recognition unit observes the structure of the subject across a plurality of regions, and determines the hierarchy of each region. The above-mentioned subject structure can also be judged by the original signal divergence of the area, the edge attack, and the program connected to the surrounding area on the edge. In addition, the above-mentioned level recognition unit observes the feature amount of the image to detect the subject Based on the results, determine the level of each area. At this time, the above-mentioned hierarchical recognition department sets up a subject included in the image in advance, and stores in advance image feature values including the subject, and stores the feature values of each area image and the M The consistency of the characteristics of the subject determines the level of each area. The above-mentioned segmentation processing unit includes a temporary encoding unit to preliminarily encode an image for each region and calculate a code amount thereof, a decoding unit to decode the image encoded in the temporary encoding unit, and an encoding calculation using the image decoded by the decoding unit. Distortion coding distortion calculation unit and 9 paper sizes that are used to calculate the evaluation value for judging coding quality considering both code size and coding distortion. Applicable to China Paper Standard (CNS) A4 (210X297 mm) ( (Please read the precautions on the back before filling out this page)
、1T M濟部中央輮準局貝工消费合作社印掣 A7 _____B7 五、發明説明(7 ) 評估值計算部。對於各區域,根據分割成更小區域的情 況下所得之評估值和未分割情況下所得之評估值的比較 結果,決定是否進行區域的分割。 另外’在該臨時編瑪部内’動態地設定伴隨在運動 補償預測之預測誤差信號的量化參數《評估值計算部則 在改變量化參數之同時計算出評估值。 更進一步,在上述臨時編碼部的前段中設置一評估 值計算部,用以求取在運動補償預測中各區域之移動參 數的碼量和預測誤差電力的線性總合,做為評估值。上 述的臨時編碼部亦可以根據此評估值檢測出運動參數。 另一方面,本發明的動畫解碼裝置,其接收在分割 成複數區域後編碼之影像的編碼資料。其包括一區域形 狀解碼部,根據該編碼資料中所含之區域形狀資訊,用 以還原在編碼時所分割之各區域形狀;以及一影像資料 解碼部,根據所還原之各區域形狀確認區域的編碼順序 ,用以從該編碼資料解碼各區域之影像。 此時該區域形狀資訊包含在編碼時對各區域進行分 割和整合的處理過程之相關資訊,此區域形狀解碼部根 據此資訊,利用與編碼裝置相同處理來重現,以確認區 域之分割狀態。 實施例: 【第一實施例】 第1圓表示本實施例中動畫編碼裝置的結構方塊圈 。此裝置可以利用在例如視訊電話或視訊會議等,用來 10 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) •裝. 訂 經濟部中夹標準扃貝工消费合作社印策 A7 B7 五、發明説明(8 ) ' 進行影像通訊的可攜式或固定式設備。另外,也可以做 為數位VTR、影像飼服器(video server)等影像铸存及記 錄裝置中的動畫編碼坡置。甚至此裝置中的處理程序, 也可以應用在以軟體或是數位訊號處理(Digital Signal Processing,DSP)之勒艘(firmware)形態所實施的動畫編 碼程式中" 在第1圖中,1為輪入影像,2為區域分割部,3 為區域形狀資料,4為區域影像資料,5為區域運動資 料,6為區域屬性資料,7為編碼部,8為本地解碼影 像,9為記憶體,10為參考影像丨u為編碼位元串。 第2圖表示本裝置之操作流程圖。根據第1圖和第2圖 ,首先說明裝置整體的操作。 輸入影像輸入至區埤分割部2(S1),在這裡被分割為 複數個區域。區域分割部2是用來實施像走後述的初期 分割(S2)、周圍區域整合(S3)之兩處理步驟·區域分割部 2則針對分割結果所得到的各區域,將形狀資料3、影像 資料4、運動資料5、各區域的編碼模式等等’之屬性資 料6 ,轉交到編碼部7。編碼部7是根據既定的編碼方 法,將這些資料轉換處理及多工處理成為位元樣式(bit pattern) ’做為編碼位元串n輸出(S4、S5)。在最後區 域之前,持續進行各區域的編碼(S6、S7)e另外,為了 根據運動補償預測來進行區域分割和編碼的處理,所以 編碼部7產生每個區域的本地解碼影像8,並將其储存 在記憶艎9中。區域分割部2和解码部7取出儲存在紀 本紙張尺度適用中國國家樣準(CNS ) Α4規格(2丨0Χ297公釐) ΙΊ--Γ----i(l^.-- • - (請先閱讀背面之注意事項再填寫本頁) ,?τ 經濟部中央橾準局貝工消费合作杜印11 A7 B7 、發明説明(9 ) 憶體9的本地解碼影像做為參考影像10,進行運動補償 預測。 第3圖為區域會割部2的詳細結構圈。在此圖中, 12為分割處理部# 13為初期分割形狀資料,14為整合 處理部。 (1)初期分割 對應於第2圓中S2的初期分割步驟是在分割處理部 12中進行。初期分割是指在進入整合之前所實施的分割 處理。分割的總數是由影像的狀態所決定,也就是影像 的特徵或是特性。 第4圈表示分割處理部12的内部結構圖。在此圖中 ,15為均勻分割部,16為動作(activity)計算部,17為 動作參數,18為分割判斷部,19為分割狀態指示信號 。所謂的動作是為了判斷影像的特徵或特性,根據既定 性質所決定的量化資料。在此處的動作則是採用伴隨著 區域之運動補償預測之預測誤差電力。 第19圖表示藉由區塊匹配法(block matching)之運動 補償預測方法。在區塊匹配法中是以下式求取所得的向 量v,做為被預測區域S的運動向量·、 1T M Printed by the Central Bureau of Standards and Quarantine of the People's Republic of China, Shellfish Consumer Cooperative A7 _____B7 V. Description of Invention (7) Evaluation value calculation department. For each area, a decision is made as to whether to divide the area based on the comparison between the evaluation value obtained when it is divided into smaller areas and the evaluation value obtained when it is not divided. In addition, "in the temporary editing unit", the quantization parameter of the prediction error signal accompanying the motion-compensated prediction is dynamically set, and the "evaluation value calculation unit calculates the evaluation value while changing the quantization parameter." Furthermore, an evaluation value calculation section is provided in the previous paragraph of the temporary encoding section, to obtain a linear sum of the code amount of the motion parameters of each region and the prediction error power in the motion compensation prediction as the evaluation value. The above-mentioned temporary encoding unit can also detect motion parameters based on the evaluation value. On the other hand, the animation decoding device of the present invention receives encoded data of an image encoded after being divided into a plurality of regions. It includes an area shape decoding unit for restoring the shape of each area divided during encoding based on the area shape information contained in the encoded data; and an image data decoding unit for confirming the area based on the restored area shape. The encoding sequence is used to decode the image of each area from the encoded data. At this time, the shape information of the area includes information related to the process of dividing and integrating each area during encoding. Based on this information, the shape decoding unit of the area uses the same processing as the encoding device to reproduce to confirm the division status of the area. Embodiment: [First Embodiment] The first circle represents the structured block circle of the animation encoding device in this embodiment. This device can be used in, for example, video calls or video conferences. It is used for 10 paper sizes that apply the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the precautions on the back before filling out this page). Standards of the Ministry of Economic Affairs, Ai Binggong Consumer Cooperatives Co., Ltd. A7 B7 V. Description of Invention (8) 'Portable or fixed equipment for image communication. In addition, it can also be used as a video encoding device for video casting and recording devices such as digital VTRs and video servers. Even the processing program in this device can be applied to an animation encoding program implemented in software or firmware of Digital Signal Processing (DSP) " In the first figure, 1 is Rotate the image, 2 is the area segmentation part, 3 is the area shape data, 4 is the area image data, 5 is the area motion data, 6 is the area attribute data, 7 is the encoding part, 8 is the locally decoded image, 9 is the memory, 10 is a reference image and u is a coded bit string. Fig. 2 shows the operation flowchart of the device. First, the overall operation of the device will be described with reference to FIGS. 1 and 2. The input image is input to the area division section 2 (S1), where it is divided into a plurality of areas. The area segmentation unit 2 is used to perform two processing steps such as the initial segmentation (S2) and the surrounding area integration (S3) described later. The area segmentation unit 2 applies shape data 3 and image data to each area obtained by the segmentation result. 4. Sport data 5, coding mode of each area, etc. 'attribute data 6 are transferred to the coding section 7. The encoding unit 7 outputs these data conversion processing and multiplexing into a bit pattern 'according to a predetermined encoding method as an encoded bit string n (S4, S5). Before the last area, the encoding of each area is continued (S6, S7). In addition, in order to perform the process of area division and encoding based on motion compensation prediction, the encoding unit 7 generates a locally decoded image 8 of each area and Stored in memory 艎 9. The area division unit 2 and the decoding unit 7 take out and store the paper in the chronological paper, and apply the Chinese National Standard (CNS) A4 specification (2 丨 0 × 297 mm) ΙΊ--Γ ---- i (l ^ .-- •-( (Please read the precautions on the back before filling this page),? Τ The local consumerism cooperation agreement of the Ministry of Economic Affairs of the Central Bureau of quasi-industry Du Yin 11 A7 B7, invention description (9) Local decoded image of memory 9 as reference image 10, Motion compensation prediction. Figure 3 shows the detailed structural circle of the area cut section 2. In this figure, 12 is the segmentation processing section # 13 is the initial segmentation shape data, and 14 is the integration processing section. (1) The initial segmentation corresponds to the first The initial segmentation step of S2 in 2 circles is performed in the segmentation processing section 12. The initial segmentation refers to the segmentation processing performed before the integration. The total number of segmentation is determined by the state of the image, that is, the characteristics or characteristics of the image The fourth circle shows the internal structure of the segmentation processing unit 12. In this figure, 15 is a uniform segmentation unit, 16 is an activity calculation unit, 17 is an action parameter, 18 is a segmentation judgment unit, and 19 is a segmentation status indicator. Signal. The so-called action is to judge the image The feature or characteristic is quantified data determined according to the established properties. The action here is to use the prediction error power accompanied by the motion compensation prediction of the area. Figure 19 shows the motion compensation by block matching. Prediction method. In the block matching method, the vector v obtained by the following formula is used as the motion vector of the region S to be predicted.
Dmin = min (Σ tf s(x + vx/ y + v. t - i) - f s(x, y, t)]) veR g fs(x,y,t)為被預測區域S在時間t中(x,y)上的畫素值 ,fs(x,y,t-l)是在時間t_l中(x,y)上的畫素值, fs(x+vx,y+Vy,t· 1)則是在位置(x,y,t-l)以向量v移位的位置 上之畫素值》另外,R表示運動向量搜尋範園。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公嫠) -i^i· al^i ^^^1 n ftjl ——I— m I • I (請先閲讀背面之注^^項再填寫本頁) 訂 經濟部中央標丰局負工消费合作社印製 A7 -------一-______ B7_ 五、發明説明(10 ) 藉由此結果所得之向董,預測影像即為 ^x+Vx’y+v^-o’預測誤差電力亦即,,動作”則為 °在此方·法中’藉由所定義的動作參數便能约根據影 像局部的運動複雜度來進行區域分割。所以能夠在編瑪 之類的控制上,細分運動較劇烈的部分粗分運動較小 的部分。另外,也可以利用在求取類似性(affine)運動參 數的類似性運動補償,以及檢査3度空間運動的 perspective運動補償等等。 第5圖表示分割處理部12之操作流程圖。在此圖中 ,首先均勻分割部15是在無特定條件下進行均勻區塊 分割(S8)。此時,例如第6圈所示,將一個畫框分割成 32x32畫素的區塊《>稱此次分割處理為第〇次分割階段。 在第〇次分割階段所產生的區塊數為各區塊以B0n( 1 彡n S N〇)表示, 接著’個別判斷各BGnS否需要更進一步進行區塊分 割(S9)。為此’在動作計算部16中計算出各B0n的動作 參數17。分割判斷部18則將預先設定好的臨>值ΤΗ0 和各區塊的動作參數進行比較,當動作參數17比ΤΗ0 來得大時’此BGn則再做4等分的分割(S10)。如此進行 到最後一個區塊為止(S11、S12) ’此即為第1次分割階 段。Dmin = min (Σ tf s (x + vx / y + v. T-i)-fs (x, y, t)]) veR g fs (x, y, t) is the predicted region S in time t The pixel value at (x, y), fs (x, y, tl) is the pixel value at (x, y) in time t_l, and fs (x + vx, y + Vy, t · 1) then Is the pixel value at the position (x, y, tl) shifted by the vector v "In addition, R represents the motion vector search range. This paper size applies Chinese National Standard (CNS) A4 specification (210X297 cm) -i ^ i · al ^ i ^^^ 1 n ftjl ——I— m I • I (please read the note ^^ on the back first) (Fill in this page) Order A7 printed by the Ministry of Economic Affairs Central Standards Bureau Bureau of Consumers and Cooperatives ------- a -______ B7_ V. Description of the invention (10) Based on the results obtained by the director, the predicted image is ^ x + Vx'y + v ^ -o 'prediction error power, that is, the action "is °. In this method," the method can be used to perform a region based on the local motion complexity of the image with the defined action parameters. Segmentation. Therefore, in the control such as knitting, it is possible to subdivide the part with more severe motion and coarsely divide the part with smaller motion. In addition, similarity motion compensation and check can be used to obtain similarity (affine) motion parameters. Perspective motion compensation for 3 degree spatial motion, etc. Fig. 5 shows the operation flowchart of the segmentation processing section 12. In this figure, the first uniform segmentation section 15 performs uniform block segmentation without specific conditions (S8). , For example, as shown in the sixth circle, a picture frame is divided into blocks of 32x32 pixels " > This segmentation process is called the 0th segmentation stage. The number of blocks generated in the 0th segmentation stage is represented by B0n (1 1n SN〇) for each block, and then 'individually judge whether each BGnS needs to be updated. Further block segmentation is performed (S9). To this end, the motion parameter 17 of each B0n is calculated in the motion calculation section 16. The segmentation determination section 18 performs a preset preset value T0 and the motion parameter of each block. In comparison, when the action parameter 17 is larger than T0 ',' This BGn is divided into 4 equal divisions (S10). This proceeds to the last block (S11, S12) 'This is the first division stage.
I 第7圖為第1次分割階段結束時的影像分割狀態。 新產生的16x16畫素區塊數董為Νι ,各區塊以 BUlSMNi)表示。之後’計算出各B、的動作參數,並 13 本紙張尺度適用中國國ϋ率(CNS > A4規格(2丨0x297公釐) (請先閲讀背面之注意Ϋ項再填寫本頁)I Figure 7 shows the image segmentation state at the end of the first segmentation phase. The number of newly generated 16x16 pixel blocks is Nm, and each block is represented by BUlSMNi). After that, calculate the operating parameters of each B and 13 paper sizes that are applicable to China's national standard (CNS > A4 size (2 丨 0x297 mm) (Please read the note on the back before filling this page)
經濟部中央標率局—工消费合作社印装 A7 B7 五、發明説明(11 ) 且使用臨界值TH1進行第2次分割階段。而後對於第j 次分割階段所產生的區塊是採用臨界值THj ,實施第 j+Ι次分割階段(S13〜S16)。當j值達到既定的上限值時, 則結束初期分割。此處的說明是以第2次分割階段作為 結束V此時,最後產生的是如第8圖所示的區塊。區塊 的大小可為8x8畫素〜32x32畫素。在初期分割結束時區 塊數為M0,各區塊以初期區塊s〇n來表示。s〇n的形狀 資料則做為初期分割形狀資料傳送到整合處理部14。 (2)周圍區域之整合 接著在整合處理部14中,進行各s0n周圍區域的整 合。整合處理部14的内部結構圖如第9囷所示_在此圓 中’ 20為標記(labeling)部’ 21為周圍區域設定部,22 為臨時編瑪部,23為解碼部,24為編瑪失真計算部, 25為評估值計算部,26為用來計算評估值的常數,27 為整合判斷部,28為整合處理循環指示信號。 第10圖表示整合處理部14的操作流程圖。在此圓 中’根據一定的規則,首先標記部21對初期區域8〇(1給 予編號’也就是標記(lebel)。例如,依據對影像畫框内 的畫素單位從左上角到右下角進行掃描,依序賦予各區 域編號。第11圖即表示給予標記的簡單例子。在此圖中 依據掃描線上所呈現的順序,給予各區塊標記r 1」 、「2」…。此時’不考慮區域的大小。以下,區域Skn 的標記值以l(Skn)表示。另外,此k值對應於後述的第k 次整合階段,在初期狀態時k=0。 本紙張尺度適用中國國家樣準(CNS > Α4规格(2丨0X297公嫠) JT.--------cr -- -- (請先閲讀背面之注意事項再填寫本頁) ,ιτ 經濟部中央揉準局貝工消费合作社印装 A7 £7_ 五、發明説明(12 ) 接著,在周圍區域設定部21中,利用標記定義出各 區域的「周圍區域」(S18)。第12圈為周圍區域之一例。 根據第1Ϊ圖中的標記來表示區域S〇n的周圓區域。也就 是說,區域B、C、D與做為對象的區域A之邊相接, 並且其標記值比做為對象的區域A來得大,因此迹義為 周圍區域。 接著走對每個區域判斷是否該區域可與其周圍區域 進行整合。為此,利用臨時編碼部22、解碼器23、編 碼失真計算部24和評估值計算部25,計算出整合用的評 估值(S19)。評估值即為如下式所示之碼董_失真成本(c〇st) 關係》 I(5*) = D(5*) + AR(5*) (式 此處D(Skn)為Sfcn的編碼失真,也就是平方誤差總合 ’ R(Skn)為Skn的碼量,λ為常數26。整合是朝著L(Skn) 變小的方向進行^ L(Skn)變小也就相當於在所給的常數 下’在既定的碼量範圍内縮小編碼失真。藉审縮小畫框 内之L(Skn>總合,便能夠在使用相同喝董情況下,降低 編碼失真。 第13圖為S19的詳細流程圖。首先在臨時編瑪器22 中準備對Skn編碼(S22)。此編碼的目的是準備算出碼量 R(Skn)和導出編碼失真D(skn)。在本實施例中,臨時編碼 部22利用參考影像1〇進行運動補償預測。編碼的資料 包含影像資料,也就是預測誤差信號或是原信號、用來 指定預測影像的運動資料、和編碼棋式等等的屬性資料 (讀先閲讀背面之注意事項再填寫本頁) -裝· 訂 15 A7Printed by the Central Bureau of Standards of the Ministry of Economic Affairs-Industrial and Consumer Cooperatives A7 B7 V. Description of the invention (11) and use the threshold value TH1 for the second division stage. Then, for the j-th partition stage, the threshold THj is adopted, and the j + 1th partition stage is implemented (S13 ~ S16). When the value of j reaches a predetermined upper limit value, the initial division is ended. The explanation here is based on the second segmentation phase. At this time, the block shown in Fig. 8 is finally generated. The block size can be 8x8 pixels to 32x32 pixels. At the end of the initial division, the number of blocks is M0, and each block is represented by an initial block sn. The shape data of SON is transmitted to the integration processing unit 14 as the initial segmented shape data. (2) Integration of surrounding areas Next, the integration processing unit 14 integrates the surrounding areas of each s0n. The internal structure of the integration processing unit 14 is shown in Section 9_ In this circle, '20 is the labeling unit '21 is the surrounding area setting unit, 22 is the temporary editing unit, 23 is the decoding unit, and 24 is the editing unit Ma distortion calculation section, 25 is an evaluation value calculation section, 26 is a constant used to calculate the evaluation value, 27 is an integration judgment section, and 28 is an integration processing cycle instruction signal. FIG. 10 shows an operation flowchart of the integration processing unit 14. In this circle, 'in accordance with a certain rule, the marking unit 21 first assigns a number to the initial region 80 (1), which is a label (lebel). For example, the pixel unit in the image frame is performed from the upper left to the lower right corner. Scan, and sequentially assign each area number. Figure 11 shows a simple example of marking. In this figure, according to the order presented on the scanning line, each block is marked with r 1 "," 2 "... At this time 'No Consider the size of the area. Below, the label value of the area Skn is represented by l (Skn). In addition, this k value corresponds to the k-th integration stage described below, and k = 0 in the initial state. This paper scale applies to Chinese national standards (CNS > Α4 specification (2 丨 0X297) 嫠 JT .-------- cr--(Please read the precautions on the back before filling in this page) Industrial and consumer cooperatives printed A7 £ 7_ V. Description of the invention (12) Next, in the surrounding area setting section 21, the "surrounding area" (S18) of each area is defined by a mark. Circle 12 is an example of the surrounding area. According to The mark in the first figure indicates the circle area of the area So. That is, the areas B, C, and D are connected to the edges of the area A as the target, and the marker value is larger than the area A as the target, so the trace is the surrounding area. Then go to each area to determine whether This area can be integrated with its surrounding area. To this end, the temporary encoding section 22, decoder 23, encoding distortion calculation section 24, and evaluation value calculation section 25 are used to calculate an evaluation value for integration (S19). The evaluation value is as follows The relationship between the code shown in the formula and the distortion cost (c0st) "I (5 *) = D (5 *) + AR (5 *) (where D (Skn) is the coding distortion of Sfcn, which is the square The sum of the errors 'R (Skn) is the code amount of Skn, and λ is a constant 26. Integration is performed in the direction that L (Skn) becomes smaller ^ L (Skn) becomes smaller, which is equivalent to the given constant' Reduce the encoding distortion within the predetermined code size range. By reviewing the reduction of L (Skn>) in the picture frame, you can reduce the encoding distortion under the same conditions. Figure 13 is a detailed flowchart of S19. First, Prepare the Skn encoding in the temporary encoder 22 (S22). The purpose of this encoding is to prepare to calculate the code size R (Skn) and derive the encoding error. D (skn). In this embodiment, the temporary encoding unit 22 uses the reference image 10 to perform motion compensation prediction. The encoded data includes image data, that is, the prediction error signal or the original signal, and is used to specify the motion data of the predicted image. , And coding attributes, etc. (Read the precautions on the back before filling in this page)-Binding · Order 15 A7
五、發明説明(13 ) 輕濟部中央梂率局貝工消费合作社印策 ,這些碼量的總合為R(Skn)。預測誤差信號是由區域Skn 的原信號和預測影像之差而得, 另一方面,解碼部23中利臨時編碼部22所得的編 碼資料,產生Skn的本地解碼影像(S23)。接著,編瑪失 真計算部24計算本地解瑪影像和原影像的失真 D(Skn)(S24)。評估值計算部乃是根據R(skn)和D(Skn), 計算碼量-失真成本L(Skn)(S25)。 步驟S19中,根據以上評估值的計算方式,對所有 的區域計算三種評估值: 1 .各區域Skn本身…L(Skn) 2 · Skn的周圍區域 Ni[Skn]…L(Ni[Skn]) 3 ·假設Skn和Ni[Skn]整合後的區域…L(Skn+Ni[Skn]) 此處Ni[Skn]表示!^η的周圍區域,i為用來區別複數 個周圍區域之編號》 接著整合判斷部27在影像畫框内,搜尋出 Dl =Ι(5*) + Ι(^[^])-Ι(5* +^[5*]) , 之值最大的位置,將此Skn和Ni[Skn]進行整合(S20)。此 為第k次整合陏段《之後,整合判斷部27透過整合處理 循環指示信號28,對標記部20指示標記的更新。棵記 部20以標記l(Skn)置換標記l(Ni[Skn]),再以周面區域設 定部21設定周圍區域。此處得到新的區域Sk+1n和周圍 區域 NKSk+1n),求得 L(Sk+1n)、 L(Ni[Sk+1n])、 L(Sk+1n+Ni[Sk+1n])。整合判斷部27在沒有組合可以產生 正的DL值時,停止對標記部20的指示,結束整合處理 16 本紙張尺度適用中國國家標窣(CNS > A4規格(2丨0X297公羞} (請先閲讀背面之注意事項再填寫本頁) n ^n— ^^^1 1^1 —ι>ϊ I . 訂 經濟部中夬揉率局貝工消费合作社印家 A7 B7 五、發明説明(14 ) ~'~ (S21)〇 在以上有關於區域分割和整合的處理結束後,將表 示最後輸入影像1的區域分割狀態之資料3、各區域的 影像資料4、運動資料5、屬性資料6輪出到編碼部7 。其後,以既定的編碼手段進行編碼。 ' 在本實施例中’不僅僅進行分割,也進行整合。因 此在最後,各區域能夠以各種不同大小的正方形區塊集 合呈現。例如對於影像内運動較大的被攝物,能夠整合 出類似其輪廓線形狀之單一區域《其結果是,能夠改變 每個被攝物的量化參數而控制碼量,彈性地對應出實際 的影像結構。另外,在所提供的碼量限制下,能夠呈現 編碼失真最小的最適當區域分割。因此,與習知_般的 動畫編碑裝置相比,很容易利用較少的碼量來實現較高 的畫質。 另外’雖然本實施例中是在第2次分割階段結束初 期分割,但是也可以在其他的階段上結束。例如,在影 像整艎的運動較小之情況下,可以在第1次分'割階段結 束,在相反的情況下也可以增加階段數。另外,雖然在 本實施中是以影像畫框做為編碼的對應,但是同樣也可 以適用在影像畫框中任意形狀之被攝物,以外接四方形 圍住的矩形影像資料上。 在本實施例之編碼部7和臨時編碼部22中,雖然是 以DCT和線性量化的組合來進行區域skn的編碼,但是 其他的方法,例如向量量化法、次頻帶(sub-band)編碼、 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 1^----111^ί丫 裝-- •· (請先閲讀背面之注意事項再填寫本頁) 訂 M濟部中央輮率局貝工消费合作社印簟 A7 B7 五、發明説明(15 ) 細波(wavelet)編碼法等等,也可以採用。也可以是提供 數種編碼方法,再選擇性地使用編碼效率最佳方法的結 構。 雖然在本實施例中是採用預測誤差電力做為動作參 數,但在其他的例子中也可以考慮採用,例如: 第一個例子是區域内的發散值(dispersion)。發散值 表示區域内畫素分佈的複雜度,在包含邊緣等等畫素值 劇烈改變之影像區域,其發散值愈假設區域S的畫 素值為fs(x,y,t),區域S内的畫素值平均值為Ps,發散值 可由下式求得。 σϊ =去 〜)2V. Description of the invention (13) The policy of the Shellfish Consumer Cooperative of the Central Bureau of the Ministry of Light Economy, the sum of these code amounts is R (Skn). The prediction error signal is obtained from the difference between the original signal of the region Skn and the predicted image. On the other hand, the decoded data obtained by the temporary encoding unit 22 in the decoding unit 23 generates a locally decoded image of Skn (S23). Next, the editing distortion calculation unit 24 calculates the distortion D (Skn) of the local demapping image and the original image (S24). The evaluation value calculation unit calculates a code amount-distortion cost L (Skn) based on R (skn) and D (Skn) (S25). In step S19, three evaluation values are calculated for all regions according to the calculation method of the above evaluation values: 1. Each region Skn itself ... L (Skn) 2 · Skn's surrounding region Ni [Skn] ... L (Ni [Skn]) 3 · Suppose the area where Skn and Ni [Skn] are integrated ... L (Skn + Ni [Skn]) where Ni [Skn] represents the surrounding area of! ^ Η and i is the number used to distinguish the surrounding areas. The integration judging unit 27 searches for the position where the value of Dl = Ι (5 *) + Ι (^ [^])-Ι (5 * + ^ [5 *]) is the largest in the image frame, and this Skn and Ni [Skn] is integrated (S20). This is the k-th integration segment "After that, the integration judgment unit 27 instructs the marking unit 20 to update the mark through the integration processing cycle instruction signal 28. The tree section 20 replaces the mark 1 (Ni [Skn]) with the mark 1 (Skn), and sets the surrounding area with the peripheral area setting section 21. A new region Sk + 1n and a surrounding region NKSk + 1n) are obtained here, and L (Sk + 1n), L (Ni [Sk + 1n]), and L (Sk + 1n + Ni [Sk + 1n]) are obtained. The integration judging unit 27 stops the instruction to the marking unit 20 when no combination can produce a positive DL value, and ends the integration process. 16 This paper size applies the Chinese national standard (CNS > A4 specification (2 丨 0X297)} (Please Please read the notes on the back before filling in this page) n ^ n— ^^^ 1 1 ^ 1 —ι >. I. Ordered by the Ministry of Economic Affairs, Bureau of Labor, Cooper ’s Consumer Cooperative, A7 B7, V. Description of the invention (14 ) ~ '~ (S21) 〇 After the above processing of region segmentation and integration is completed, data indicating the region segmentation status of the last input image 1 3, image data of each region 4, motion data 5, attribute data 6 rounds It goes to the encoding section 7. After that, encoding is performed by a predetermined encoding method. 'In this embodiment,' not only segmentation, but also integration. Therefore, in the end, each area can be presented as a set of square blocks of various sizes. For example, for a subject with large motion in the image, a single area similar to its contour line shape can be integrated. As a result, the quantization parameter of each subject can be changed to control the code amount, which flexibly corresponds to the actual Shadow In addition, under the limitation of the provided code amount, the most appropriate region division with the smallest coding distortion can be presented. Therefore, compared with the conventional _animated inscription device, it is easy to implement with less code amount High image quality. In addition, 'Although the initial segmentation is completed at the second segmentation stage in this embodiment, it can also be completed at other stages. For example, when the movement of the image trimming is small, you can At the end of the first sub-cut phase, the number of phases can also be increased in the opposite case. In addition, although the image frame is used as the coding correspondence in this implementation, it can also be applied to any shape in the image frame. The subject is a rectangular image surrounded by an external square. In the encoding unit 7 and the temporary encoding unit 22 of this embodiment, although the area skn is encoded by a combination of DCT and linear quantization, other Methods, such as vector quantization, sub-band coding, this paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 1 ^ ---- 111 ^ ί 丫 装-• · ( please Read the notes on the back before filling this page.) Order the A7 B7 seal of the Bayong Consumer Cooperative of the Central Ministry of Economic Affairs of the Ministry of Economic Affairs. 5. Description of the invention (15) The wavelet encoding method can also be used. It can also be Provides several encoding methods and selectively uses the best encoding efficiency structure. Although the prediction error power is used as the action parameter in this embodiment, it can also be considered in other examples, for example: First An example is the dispersion value in a region. The dispersion value indicates the complexity of the pixel distribution in the region. In an image region that contains sharp changes in pixel values such as edges, the divergence value assumes that the pixel value of the region S is fs (x, y, t), the average pixel value in the region S is Ps, and the divergence value can be obtained by the following formula. σϊ = go ~) 2
Ns 若採用此動作參數,則能夠根據影像區部的結構複 雜度來分割區域,所以能夠控制對畫素值變化劇烈的部 分細部編碼,對畫素值變化較少的部分粗略編碼。 第二個例子是區域内的邊緣強度《邊緣強度能夠利 用如 G.Robinson 在「Edge detection by compass gradient masks 」(Journal of Computer Graphices and Image Processing,Vol.6, No.5, Oct.1977)所記載的 Sobel 運算子 ,做為分佈在邊綠上的畫素數(邊緣分佈面積)來求得。 在此方法的情況下,能夠對應於影像邊綠結構來分割區 域,所以能夠控制對於具有邊綠的部分砷部編碼,對於 不具有邊綠的部分粗略編碼。 第三個例子是根據區域之運動補償預測的運動參數 大小。運動補償預測的結果是求得運動參數。在區塊匹 18 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐> (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部中央揉率局貝工消费合作社印家 Α7 Β7 五、發明説明(16) 配法的情況中’也就是向量v。在此方法中,能夠對應 於影像運動的程度來分割區塊,所以能夠控制對於被攝 物等等產·生局部上較大運動的部分細部編碼,對於背景 區域等等幾乎沒有產生運動的部分粗略編碼。 第四個例子是根據區域之運動補償預測的運‘參數 之碼量,以及預測誤差電力的線性和。此情況的評估值 定義如下式。 L«nc = Dmc + 又Rmc . (式 2) \ 此處的Dmc是在檢出運動參數的過程中所求得的預 測誤差電力’λ為常數,Rmc為運動參數的碼量。將Lmc 縮小以求得運動參數,此時的評估值即做為動作參數。 在此方法中,區域的分割是朝著透過影像運動複雜度之 資料量和運動參數之資料量的總編碼值(total encoding cost)變小的方式進行,能夠以較少的資料量來進行區域 的編碼。 第五個例子即為以上所述的動作值之線悻和。藉由 對各種動作值適當地加權,所以能夠處理各種’的影像。 【第二實施例】 本實施Λ有關於第一實施例中的區域分割部2之部 分變形裝置》第14圓為本實施例中區域分割部2的内部 結構圈。在此圖中,本實施例的區域分割部2形態,是 以均勻分割部15來取代第3圖的分割處理部12。在此 結構中,如第15圖所示,在初期分割處理中並不進行動 作參數之臨界值判斷,而是無條件地分割成區最小面積 本纸張尺度適用中國國家標率(CNS ) A4規格(210X297公釐) ^ϋ· IV HI In n _ · (請先閲讀背面之注意事項再填寫本頁) 訂 Λ濟部中央樣率局貝工消费合作社印掣 A7 __B7____ 五、發明説明(17 ) 之區域的正方形區塊。此最小區域面積是可以加以設定 的。 在本實例中不霏要設定臨界值,所以僅以碼量-失真 值做為評估值進行區域的分割。因此,既不需要與設定 臨界值相關的步驟,也不需要動作參數的計算、比較判 斷之處理。所以,在需要減輕有關於這些處理的計算負 擔時,便可以利用本實施例來取代第一實施例。 【第三實施例】 在本實施例的分割處理上,判斷是否可以分割時不 僅包含動作參數,也包含表示區域重要性的指標(以稱之 為層級,class)。在重要性較高的區域上,最好是以細部 編碼的方式,並且區域面積要較小。重要性較低的區域 則儘可能地取大,以降低每個畫素的碼量。 舉例來說,動作參數是在區域内的封閉、局部性之 統計董。另一方面’本實施例中的層級參數則是基於區 域間橫跨影像的特徵。在本實施例中,是根據橫跨區域 的被攝物構造’由人所能看到何種程度來定義層級參數 ’也就是人的注視度。舉例來說,某個區域如果其邊緣 分佈是橫跨在很廣的範圍上,並且和周圍區域間的連接 也較強時,很有可能此區域就在某個被攝物的邊界上。 第16圈是本實施例中分割處理部12的内部結構圈 \ 。此外的結構與第一實施例相同,以下描述則集中與第 一實施例不同的部分加以說明《在此圈中,29為層級辨 識部、30為層級參數,31為分割判斷部。第17圖表示 20 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閲讀背面之注^n*項再填寫本頁) • Α-χ*-裝------訂 趣濟部中央揉準局負工消费合作社印製 A7 ________B7 五、發明説明(18〉 第16圖所示之分割處理部12的操作流程囷。 如第17囷所示,首先進行均勻分割(S26)e接著,在 層級辨識部29内決定各區域的層級參數3〇(S27)。層級 辨識部29根據區域内的發散值大小α、區域内邊綠分佈 的狀態β(包含邊綠方向、分佈面積等等)、以及與‘圍區 域之邊綠連接性γ ,決定層級參數3〇。舉例來說,對於 區域内發散值α比預定值小的區域,則設為最低的層級 (層級C)’而對於《值較大區域則再進一步求取其區域内 邊緣分佈β。β值可以利用如先前所述之S〇bel運算子等 等來決定。當β值比預定值來得小時,此區域則被視為 具有獨,立邊緣的小區域,而非被攝物的邊界,所以設定 為中等程度的層級(層級Β)。當β值相當大時則評估其連 接性γ,在</值較大的情況則分類成最重要的層級(層級 Α) ° 在層級分類後’在動作計算部16中計算動作參數π ’而分割判斷部31則先對有關於動作參數的臨界值進 行判斷(S28)。在此,對於要判斷是否應分割的^域而言 ’接著根據層級參數30,來判斷是否應予分割(S29)。於 是’在分割判斷部30中預先決定出各層級的區域在多大 程度的區域時需要分割的判斷基準。當允許對層級進行 分割時,則分割此區域(S30)。這是對所有區域進行的處 理’更進一步對於所有被分割新產生的區域也進行同樣 的分割處理(S33〜S38)。 在本實施例中進行影像的編碼時,能夠同時考慮到 本纸張尺度適用中國國家揉牟(CNS ) A4规格(210X297公釐) 17---------- 1* (請先閲讀背面之注意事項再填寫本筲) 订 經濟部中央標率局貝工消费合作社印*. A7 B7 五、發明説明(19 ) 橫跨數個區域的影像特徵,特別是被攝物的輪廓線β因 此,能夠控制對於注視度較低的區域,以粗略編碼來減 少資料量,同時對於注視度較低的區域則採用足夠的資 料量。 【第四實施例】 在第三實施例中是利用人的注視度來決定層級。而 在本實施例中則是利用影像的特徵量。在本實施例中, 是在儲存某個已知的影像特徵量條件下,根據其和各區 域中所算出的特徵量間之一致性(consistency)來決定層 級。 舉例來說,至今為止對於人臉影像的研究為數相當 多,也已經提出各種將臉上結構以特徵量數值化的方法 。當有儲存這些特徵值時,就能夠從影像中檢測出人臉 (這通常是相當重要的)。另外,對於其他的被攝物而言 ,也有很多情況是可以根據亮度或是紋理(texture)的資 料,以特徵董加以描述。當要清楚地表示出人臉時,對 於具有與人驗特徵董一致特徵量的區域,則設為最重要 的層級A,而對於其他區域則是設定成普通重要性的層 級B等等。 第18圖表示在本實施例中,層級識別部29的結構 圖。其他的部分則舆第三實施例相同。在第18圖中,32 為特徵量記憶難,33為特徵量一致性計算部,34為層 級決定部》 在特徵量記憶體32中,對每個被分類到層級中的被 本紙張尺度適用中國國家棋準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) —^1 -I- H ^^1 .^n ml «κι nl· rn v·^— HI 1^1 _ 、tr 經濟部中央標準局工消费合作社印11 A7 B7 五、發明説明(20 ) 攝物,儲存相關於被攝物的特徵董❶特徵一致性計算部 33則是分別計算輸入影像1和被分類到各層級的被攝物 特徵量間之一致性。例如,一致性可以是求取輸入影像1 的特徵量和特徵量記憶體32中的特徵量間誤差。接著, 在層級決定部34中檢查出具有最高一致性的被攝'物,將 此區域分類到該被攝物所屬之層級。 根據本實施例,便可以根據影像的特徵量來辨識或 檢查出被攝物。而且能夠對需要的被攝物提高其畫質。 由於可以根據人類注視度相關的特徵量來進行被攝物層 級的分類’因此能夠在考量人類對於影像的視覺特性下 ,進行編碼。 【第五實施例】 在第一實施例中’是在整合處理時考慮到編碼的失 真。而在本實施例中,則是在分割處理的階段考慮到編 碼的失真。 第20圖表示在本實施例中,分割處理部12的内部 結構圖。在此囷中,35為分割判斷部,36則,為分割處 理循環指示信號。第21圈則是表示第20圖分割處理部 12的操作流程圈》 本實施例的分割處理部12是採用第一實施例所引用 的公式卜利用此公式,初期分割處理是朝著畫框内L(skn) 總和變小的方向來進行,能夠減少使用相同碼量時的編 碼失真。 如第21圖所示,首先在均勻分割部16中以如第石 本紙張尺度適用中國國家揉準(CNS ) Α4ϋΤΊϊ〇χ297公釐)------- .- Λ41!!—--—Arrvi -- • · (請先閱讀背面之注意事項再填寫本頁) ,?τ 鯉濟部中央梯準局貝工消费合作社印掣 A7 ____B7_ 五、發明説明(21) 圈中狀態的方式進行均勻的區塊分割(S39)。此相當於第 〇次的分割階段。此時所得的區塊數量為N〇,各區塊則 以Β η表示。對於各B%則判斷是否更進一步地進行區塊 分割。比較BQn相關的L(BGn),以及將B'分割4塊後所 得之各次區塊相關之L(SB0n(i))總和,若後 者較小時就允許分割。 對於碼量-失真成本的計算,首先是在臨時編瑪部22 中進行BQn和SBGn(i)的編碼。接著解碼部23從臨時編碼 部22所得的編碼資料中,產生BGn* SBGn⑴的本地解碼 影像。接著以編碼失真計算部24計算本地解碼影像和原 影像之間的失真值D(BGn)和D(SBGn(i))。評估值計算部25 就根據碼量R(BGn)和R(SBGn(i))、編碼失真值D(BGn)* D(SB0n(i)),計算 L(B〇n)和 L(SB0n(i))(S40、S41)。 分割判斷部35比較L(BGn)、和4個次區塊之 L(SB0n(i))(i=l、2、3、4)總和(S42),若後者這方較小 時,就將BQn分割成4個SBGn(i)(S43)。此相當於第1次 的分割階段。以SBGn(i)分割的區塊則以新的 表示,對於進行相同的分割判斷(S46〜S51)〇以下 ,以既定次數進行相同的分割處理,最後則是實現如第8 圖所示的分割形態。 以上所述,由於在本實施例中不進行有關於動作參 數的演算,所以在要求降低演算量的場合中特別有利。 【第六實施例】 以其他實施範例來說明第一實施例中第9圖所示的 本纸張尺度適用中國國家橾率(CNS ) A4规格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) -裝·If Ns uses this action parameter, it can divide the area according to the structural complexity of the image area. Therefore, it can control the encoding of the details of the parts with sharp changes in pixel values and the rough encoding of the parts with less changes in pixel values. The second example is the edge strength in the area. "Edge strength can be used as described by G. Robinson in" Edge detection by compass gradient masks "(Journal of Computer Graphices and Image Processing, Vol. 6, No. 5, Oct. 1977). The recorded Sobel operator is obtained as the number of pixels (edge distribution area) distributed on the edge green. In the case of this method, the region can be divided according to the edge green structure of the image, so it is possible to control the encoding of the arsenic part with the edge green and the rough encoding of the part without the edge green. The third example is the magnitude of motion parameters predicted based on the motion compensation of the region. The result of motion compensation prediction is to find motion parameters. In this paper, the paper size of this paper applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page). Β7 V. Description of the invention (16) In the case of the matching method, 'is the vector v. In this method, the block can be divided according to the degree of image movement, so it can control the production and locality of the subject and so on. Partial detailed coding for larger motions, rough coding for parts that have almost no motion, such as background regions. The fourth example is the code amount of the operation parameters predicted based on the motion compensation of the region, and the linear sum of the power of the prediction error. The evaluation value of the situation is defined as follows: L «nc = Dmc + and Rmc. (Equation 2) \ Here Dmc is the prediction error power obtained during the detection of the motion parameter 'λ is constant and Rmc is motion The code size of the parameter. Lmc is reduced to obtain the motion parameter, and the evaluation value at this time is used as the motion parameter. In this method, the area is divided into the amount of data and the complexity of the motion complexity through the image. The total encoding cost of the parameter data amount is reduced, and the region encoding can be performed with less data amount. The fifth example is the sum of the action values described above. Borrow Since various motion values are appropriately weighted, various kinds of images can be processed. [Second Embodiment] This embodiment Λ relates to a partial deformation device of the region dividing unit 2 in the first embodiment. The fourteenth circle is this embodiment. The internal structure circle of the middle region division unit 2. In this figure, the region division unit 2 of this embodiment has a uniform division unit 15 instead of the division processing unit 12 of FIG. 3. In this structure, as shown in FIG. As shown in the figure, in the initial segmentation process, the critical value of the operating parameters is not judged, but the minimum area is unconditionally divided into regions. The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) ^ ϋ · IV HI In n _ · (Please read the notes on the back before filling out this page) Order the A7 __B7____ printed by the Central Laboratories of the Ministry of Economic Affairs of the People's Republic of China. 5. The square block in the area of the description of the invention (17). This Smallest The area area can be set. In this example, it is not necessary to set a critical value, so only the code size-distortion value is used as the evaluation value to divide the area. Therefore, neither the steps related to setting the critical value nor the The calculation of the action parameters and the processing of comparison and judgment are not needed. Therefore, when the calculation burden on these processes needs to be reduced, this embodiment can be used instead of the first embodiment. [Third embodiment] In this embodiment, In the segmentation process, when determining whether it can be segmented, it includes not only action parameters, but also indicators indicating the importance of the area (called a level, class). On areas of high importance, it is best to use detailed coding. And the area is smaller. The less important areas are made as large as possible to reduce the code size of each pixel. For example, the action parameters are closed, local statistical directors within a region. On the other hand, the hierarchical parameter in this embodiment is based on the characteristics of the cross-region image. In this embodiment, the hierarchical parameter ′ is defined based on the structure of the object across the area, to what extent a person can see, that is, the degree of human attention. For example, if the edge distribution of a certain area spans a wide range and the connection with the surrounding area is also strong, it is likely that this area is on the boundary of a certain subject. The 16th circle is the internal structure circle \ of the division processing section 12 in the present embodiment. The other structure is the same as that of the first embodiment. The following description focuses on the parts that are different from the first embodiment. "In this circle, 29 is a hierarchy identification unit, 30 is a hierarchy parameter, and 31 is a division judgment unit. Figure 17 shows that 20 paper sizes are applicable to Chinese National Standard (CNS) Α4 specification (210X297 mm) (Please read the note on the back ^ n * before filling this page) • Α-χ *-装 ----- -Printed by A7 ________B7 printed by the Central Government Bureau of the Ministry of Economic Affairs and Consumer Cooperatives V. Description of the invention (18) The operation flow of the division processing unit 12 shown in Fig. 16 囷. As shown in Fig. 17 囷, the uniform division is performed first. (S26) e Next, the level parameter 30 of each area is determined in the level identification unit 29. (S27). The level identification unit 29 is based on the value of the divergence value α in the area and the state of the edge green distribution in the area β (including the edge green direction). , Distribution area, etc.), and the green connectivity γ to the edge of the surrounding area, determines the level parameter 30. For example, for the area where the divergence value α is smaller than a predetermined value, it is set to the lowest level (level C) ', and for the region with a larger value, the edge distribution β in the region is further obtained. The β value can be determined using the Sobel operator and the like described above. When the β value is smaller than the predetermined value, This area is considered a small area with independent, standing edges, rather than The boundary of the subject is set to a moderate level (level B). When the β value is relatively large, the connectivity γ is evaluated, and when the value of < / is large, it is classified into the most important level (level A) ° After hierarchical classification, 'calculate the motion parameter π in the motion calculation section 16', and the segmentation judgment section 31 first judges the critical value regarding the motion parameter (S28). Here, for the ^ field to be judged whether it should be divided In terms of 'the next step is to judge whether or not it should be divided based on the hierarchical parameter 30 (S29).' Then the division judgment section 30 determines in advance the extent of the area of each hierarchical level in which a judgment criterion for division is needed. When the hierarchical level is allowed When segmentation is performed, this region is segmented (S30). This is a process performed on all regions. Further, the same segmentation process is performed on all newly generated regions that are segmented (S33 to S38). In this embodiment, images are performed. When encoding, you can also take into account that this paper size is applicable to the Chinese national standard (CNS) A4 specification (210X297 mm) 17 ---------- 1 * (Please read the precautions on the back before filling this ) Printed by the Central Laboratories of the Ministry of Economic Affairs of the Bayer Consumer Cooperative Association *. A7 B7 V. Description of the invention (19) Image features across several areas, especially the contour line β of the subject. Therefore, it is possible to control In low areas, the amount of data is reduced by coarse coding, and at the same time, sufficient data is used in areas with low attention. [Fourth Embodiment] In the third embodiment, the level of human attention is used to determine the level. In this embodiment, the feature quantity of the image is used. In this embodiment, the consistency between the known feature quantity of the image and the feature quantity calculated in each area is used to store the known feature quantity. ) To determine the hierarchy. For example, there are quite a few studies on facial images so far, and various methods have been proposed to quantify the structure of the face as feature quantities. When these feature values are stored, a human face can be detected from the image (this is usually quite important). In addition, for other subjects, there are many situations that can be described by characteristic features based on brightness or texture data. When a human face is to be clearly expressed, for a region having a feature amount consistent with human features, it is set as the most important level A, and for other areas it is set as the level B of ordinary importance, and so on. Fig. 18 is a diagram showing the configuration of the hierarchical identification unit 29 in this embodiment. The other parts are the same as those in the third embodiment. In Fig. 18, 32 is a feature quantity memory difficulty, 33 is a feature quantity consistency calculation unit, and 34 is a hierarchy determination unit. In the feature quantity memory 32, it is applied to each paper size classified into a hierarchy. China National Chess Standard (CNS) A4 (210X297 mm) (Please read the notes on the back before filling out this page) — ^ 1 -I- H ^^ 1. ^ N ml «κι nl · rn v · ^ — HI 1 ^ 1 _, tr Printed by the Industrial Standards and Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 11 A7 B7 V. Description of the invention (20) Objects, storing the characteristics related to the objects. Consistency between the image 1 and the feature amount of the subject classified into each level. For example, the consistency may be obtained by obtaining an error between the feature quantity of the input image 1 and the feature quantity in the feature quantity memory 32. Next, the subject having the highest consistency is checked in the hierarchy decision section 34, and this region is classified into the hierarchy to which the subject belongs. According to this embodiment, the subject can be identified or checked out based on the feature amount of the image. And can improve the image quality of the required subject. Since the classification of the object level can be performed according to the feature quantity related to human attention, it can be encoded by taking into account human visual characteristics of the image. [Fifth embodiment] In the first embodiment, 'the distortion of encoding is taken into consideration in the integration process. In this embodiment, the encoding distortion is considered at the stage of the division process. Fig. 20 is a diagram showing the internal configuration of the division processing unit 12 in this embodiment. In this example, 35 is a division determination unit, and 36 is a division processing cycle instruction signal. The 21st circle shows the operation flow of the segmentation processing section 12 in FIG. 20. The segmentation processing section 12 of this embodiment uses the formula cited in the first embodiment. Using this formula, the initial segmentation processing is directed toward the frame. L (skn) is performed in a direction in which the total sum becomes smaller, which can reduce coding distortion when the same code amount is used. As shown in FIG. 21, firstly, the Chinese National Standard (CNS) Α4ϋΤΊϊ〇χ297 mm is applied to the uniform division 16 in the same paper size as the first stone paper. Arrvi-• · (Please read the precautions on the back before filling out this page),? Τ Printed by the Central Laboratories of the Ministry of Economic Affairs of the People's Republic of China, A7 ____B7_ V. Description of the invention (21) The state of the circle is uniform Block division (S39). This corresponds to the 0th division stage. The number of blocks obtained at this time is No, and each block is represented by B η. For each B%, it is judged whether to further divide the block. Compare L (BGn) related to BQn and the sum of L (SB0n (i)) related to each block obtained by dividing B 'into 4 blocks. If the latter is smaller, partitioning is allowed. For the calculation of the code size and distortion cost, first, BQn and SBGn (i) are coded in the temporary coding unit 22. Next, the decoding unit 23 generates a locally decoded video of BGn * SBGn⑴ from the encoded data obtained by the temporary encoding unit 22. Next, the encoding distortion calculation unit 24 calculates the distortion values D (BGn) and D (SBGn (i)) between the locally decoded image and the original image. The evaluation value calculation unit 25 calculates L (B〇n) and L (SB0n () based on the code amounts R (BGn) and R (SBGn (i)), the encoding distortion value D (BGn) * D (SB0n (i)), and i)) (S40, S41). The division judgment unit 35 compares L (BGn) with the sum of L (SB0n (i)) (i = 1, 2, 3, 4) of the four sub-blocks (S42). The BQn is divided into four SBGn (i) (S43). This corresponds to the first division stage. The block divided by SBGn (i) is represented by a new expression. For the same division judgment (S46 ~ S51), the same division process is performed a predetermined number of times. Finally, the division shown in Figure 8 is achieved. form. As described above, since calculation of the operation parameters is not performed in this embodiment, it is particularly advantageous in the case where a reduction in the calculation amount is required. [Sixth embodiment] Other embodiments are used to illustrate the paper size shown in Figure 9 in the first embodiment. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm). (Please read the precautions on the back first. (Fill in this page again)
.1T 經濟部中央標率局貝工消費合作社印製 A7 B7 五、發明説明(22 ) 整合處理部14。第22圖表示本實施例中整合處理部14 的内部結構圖。在此圖中,37為量化參數設定部,38 為量化參數,39為臨時編碼部。整合處理部14的操作 除了 S19之外,基本上與第10圖相同。 第23囷則是表示相當於S19之評估值計算處理之流 程圖。計算評估值是利用臨時編碼部39、解碼部23、 編碼失真計算部24和評估值計算部25來進行。 首先,在量化參數設定部37中設定初期的參數值, 並輸出到臨時編碼部39中(S52)。接著,在臨時編碼部 39中進行區域Skn的編碼(S53)。在進行編碼時,則是利 用設定好的量化參數進行量化6 以解碼部23從如此所得到的編碼資料中,產生本地 解碼影像(S54)。接著再以編碼失真計算部24來計算本地 解碼影像和原影像之間的失真值D(Skn)(S55)。評估值計 算部25則根據碼量R(Skn)和編碼失真值D(Skn),計算 L(Skn)(S56)。最初計算所得的成本值是以Lmiji加以儲存 ,之後,改變量化參數進行相同的成本計算。由於藉由 改變董化參數會變化碼量和失真值之間的平衡點,所以 採用碼量-失真成本最小時的參數,以最後設定區域Skn 的碼量-失真成本L(Skn)(S57〜S60)。之後則與第一實施例 者相同。 在本實施例中是在考慮量化參數的情況下,實現最 適當的整合處理。另外,添加董化參數的方法,亦可以 適用在第五實施例中所述的基於碼量-失真成本的分割 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X 297公釐) -ml ^^1 —LI- HI 1^1 In n ** (請先閱讀背面之注項再填寫本頁) 訂 經濟部中央標準局貝工消费合作社印掣 A7 __B7 五、發明説明(23 ) 處理上。 【第七實施例】 本實施例則是說明第六實施例的其他實施範例。第 24圖表示本實施例中整合處理部14的内部結構圖。在此 圈中’ 40為運動補償預測成本計算部,41為運動補償 預測成本,42為臨時編碼部》 臨時編碼部42是基於運動補償預測,使用編碼,來 決定運動參數。此時是採用第一實施例中所述的運動補 償預測成本(公式2)。也就是說,臨時編碼時運動參數之 決定,是採用導因於運動補償的匹配失真和運動參數的 碼量間的平衡點,以最小成本的方式進行。具體地來說 ’就是在臨時編碼部42進行編碼的過程中,是基於運動 補償預測成本計算部40所計算出的成本值,來決定運動 參數。之後的處理則與第六實施例者相同。 在本實施例中,根據既定的常數λ ,能夠從運動補 償到編碼間,總和的碼量_失真成本最小化,同時決定區 域的形狀。其結果是能夠根據既定的碼量降低編碼的失 真β 【第八實施例】 在本實施例中說明的是動畫解碼裝置,用以對利用 以上所述的各種動畫解碼裝置所產生的編碼位元串,進 行解碼。第25圖表示解碼裝置之結構圖。在此圖中’ 43 為位元串分析部,44為區域形狀解碼部,45為屬性資 訊解碼部,46為影像資料解碼部,47為運動資訊解碼 « (請先閲讀背面之注意事項再填寫本頁) .裝. 訂 本纸張尺度適用中國國家標準(CNS > Α4規格(210Χ297公釐) 經濟部中央樣準局負工消費合作社印製 A7 B7 五、發明説明(24 ) 部’ 48為運動參數,49為運動補償部,50為預測影像 ’ 51為影像還原部,52為外部記憶艘,52為重現影像 〇 · 此解碼裝置是將表示影像畫框或是影像畫框中部分 影像(以下稱之為「影像畫框等」)相關之區域分&狀態 之區域形狀資訊、利用既定方法加以編碼的各區域影像 資料、各區域的屬性資訊、和各區域的運動資訊所構成 的編碼位元串加以解碼,還原區域影像並將影像畫框等 加以重現。 在本實施例的情況中’由於編碼的過程是在正方形 以外區域產生’所以區域形狀資訊的記述方法與一般習 知的方式不同。在本實施例中所採用的記述方法為:⑴ 以各區域的頂點座標加以表示;(Π)在編碼時,以區域的 分割和整合處理過程加以表示。在方法(ii)的情況中,例 如對於任意的i和j ’利用在第i次分割階段所分割出的 區域編號,以及在第j次整合階段所整合出的區域編號 加以描述。解碼裝置舆編碼裝置一樣,是先進'行如第6 圖的第0次分割階段’之後依據解碼裝置相同的順序而 能夠重現最终的分割狀態。在方法(ii)場合的資料量一般 會比直接記錄座標資料的方式來得少》 第26圈表示此解碼裝置的操作流程圈。編碼位元串 11首先輸入到位元串分析部43,使得位元串轉換為編碼 資料(S61)。從編碼資料中,以區域形狀解碼部44解碼區 域形狀資訊,再以上述的方法還原影像畫框等的區域分 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公漦).1T Printed by Shellfish Consumer Cooperative, Central Standards Bureau, Ministry of Economic Affairs A7 B7 V. Description of Invention (22) Integration Processing Department 14. Fig. 22 is a diagram showing the internal configuration of the integration processing unit 14 in this embodiment. In this figure, 37 is a quantization parameter setting section, 38 is a quantization parameter, and 39 is a temporary encoding section. The operation of the integration processing unit 14 is basically the same as that of FIG. 10 except for S19. Chapter 23 is a flowchart showing the evaluation value calculation processing equivalent to S19. The calculation of the evaluation value is performed using the temporary encoding unit 39, the decoding unit 23, the encoding distortion calculation unit 24, and the evaluation value calculation unit 25. First, initial parameter values are set in the quantization parameter setting section 37 and output to the temporary encoding section 39 (S52). Next, the region Skn is coded in the temporary coding unit 39 (S53). When encoding is performed, quantization is performed using the set quantization parameter 6 so that the decoding unit 23 generates a locally decoded image from the encoded data thus obtained (S54). Then, the encoding distortion calculation unit 24 calculates a distortion value D (Skn) between the locally decoded image and the original image (S55). The evaluation value calculation unit 25 calculates L (Skn) based on the code amount R (Skn) and the encoding distortion value D (Skn) (S56). The cost value calculated initially is stored in Lmiji. After that, the quantization parameters are changed to perform the same cost calculation. Because the balance between the code size and the distortion value is changed by changing the Donghua parameter, the parameter with the smallest code size-distortion cost is used to finally set the code size-distortion cost L (Skn) of the area Skn (S57 ~ S60). After that, it is the same as that of the first embodiment. In this embodiment, the most appropriate integration process is realized in consideration of the quantization parameter. In addition, the method of adding Donghua parameters can also be applied to the code size-distortion cost-based segmentation described in the fifth embodiment. The paper size is applicable to China National Standard (CNS) A4 (210X 297 mm) -ml ^^ 1 —LI- HI 1 ^ 1 In n ** (Please read the note on the back before filling out this page) Order the seal of the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A7 __B7 V. Description of the invention (23) Processing . [Seventh Embodiment] This embodiment is another example of the sixth embodiment. Fig. 24 is a diagram showing the internal configuration of the integration processing unit 14 in this embodiment. In this circle, '40 is a motion compensation prediction cost calculation section, 41 is a motion compensation prediction cost, and 42 is a temporary encoding section. The temporary encoding section 42 uses coding to determine motion parameters based on motion compensation prediction. At this time, the motion compensation prediction cost described in the first embodiment is used (Equation 2). That is to say, the determination of motion parameters during temporary encoding is performed at the least cost by using the balance point between the matching distortion caused by motion compensation and the code amount of the motion parameters. Specifically, the motion parameter is determined based on the cost value calculated by the motion-compensated prediction cost calculation unit 40 during the encoding process by the temporary encoding unit 42. Subsequent processing is the same as that of the sixth embodiment. In this embodiment, according to a predetermined constant λ, from motion compensation to coding, the total code amount_distortion cost can be minimized, and the shape of the area can be determined at the same time. As a result, the encoding distortion β can be reduced according to a predetermined code amount. [Eighth Embodiment] In this embodiment, an animation decoding device is described to encode encoding bits generated by using the various animation decoding devices described above. String for decoding. Fig. 25 is a configuration diagram of a decoding device. In this figure, '43 is the bit string analysis section, 44 is the area shape decoding section, 45 is the attribute information decoding section, 46 is the image data decoding section, and 47 is the motion information decoding «(Please read the precautions on the back before filling (This page). Binding. The size of the paper is in accordance with Chinese national standard (CNS > A4 size (210 × 297 mm). Printed by A7, B7, Consumer Work Cooperative of Central Procurement Bureau, Ministry of Economic Affairs. 5. Description of Invention (24) Department '48 Is the motion parameter, 49 is the motion compensation section, 50 is the predicted image, 51 is the image restoration section, 52 is the external memory boat, and 52 is the reproduced image. This decoding device displays the image frame or part of the image frame. Areas related to images (hereinafter referred to as "image frames, etc.") are divided into & state shape information, image data of each area encoded by a predetermined method, attribute information of each area, and motion information of each area Decode the encoded bit string, restore the regional image and reproduce the image frame, etc. In the case of this embodiment, 'because the encoding process is generated in the area outside the square' The description method of the area shape information is different from the conventional method. The description method used in this embodiment is: ⑴ It is represented by the vertex coordinates of each area; (Π) During the encoding, the area is divided and integrated. The process is represented. In the case of method (ii), for example, for any i and j ', the area number divided in the i-th division stage and the area number integrated in the j-th integration stage are described. The decoding device is the same as the encoding device. It is advanced after the "0th division stage of Fig. 6", and the final division state can be reproduced according to the same sequence of the decoding device. The amount of data in the case of method (ii) is generally It is less than the method of directly recording the coordinate data. The 26th circle indicates the operation flow of this decoding device. The encoded bit string 11 is first input to the bit string analysis section 43 so that the bit string is converted into encoded data (S61). From the encoding In the data, the area shape information is decoded by the area shape decoding unit 44, and the area of the image frame and the like is restored by the method described above. The paper size is applicable to China. Standard (CNS) A4 size (210X 297 public slime)
Ji —l· -rn 11 n I .· (請先閱讀背面之注項再填寫本頁) 訂 «濟部中央橾率局貝工消费合作社印衷 A7 _B7 五、發明説明(25 ) 割狀態(S62)。利用被還原的區域,指定出後續位元串中 被編碼區域資訊的編碼順序。各區域設為Sn。 接著’根據編碼的順序,依序從位元串中解瑪各區 域的資料。首先,以屬性資訊解碼部45解碼區域Sn的屬 性資訊,再解碼區域的編碼模式資訊等等(S63)。此處, 若是為中間模式(inter_mode,畫框間編碼模式),亦就是 預測誤差信號被編碼的棋式時(S64),則在運動資訊解碼 部47中解碼運動參數48(S65)。接著運動參數48被送到 運動補償部49中。運動補償部49據此計算出記憶想位 址,其對應到儲存於外部記憶體52之參考影像中的預測 影像,並且從外部記憶體52中擷取預測影像5〇(S66)» 接著,在影像資料解碼部46中解碼區域sn的影像資料 (S67)。在中間模式情況下’利用解碼後的影像資料和預 測影像50的加法運算,可以得到最後的區域心的重現影 像。 另一方面,在内部模式(intra-mode,畫框内編瑪棋 式)的情況下,解碼後的影像資料即做為最终區域Sn的重 現影像。為了利用重現影像做為後續產生預測影像的參 考影像,所以將重現影像寫入外部記憶體52中。至於這 些判斷以及重現影像的還原則是在影像還原部61中實 施(S68)。 在對包含影像畫框等的所有區域實施後,則結束此 一連串的處理。對於後續的影像畫框等則是實施相同的 處理。 28 本紙張尺度制中關家橾準((:剛八4賴*(21()/297公釐) — I-------Γτ^.-- •- (請先閲讀背面之注意事項再填寫本頁) 、1Τ 銼濟部中央揉準局貝工消費合作社印製 A7 __B7_ 五、發明説明(26 ) 在本發明的動畫編碼方法中,由於不僅進行區域的 分割,也進行區域的整合,因此能夠對應於影像的結構 ,彈性地進行編瑪。 由於所採用之分割與否判斷基準,是根據區域進行 分割時和不分割時的編碼優劣之比較結果,因此“約朝 著更佳編碼的方向,確實地進行所需的分割。 由於所採用之整合與否判斷基準,是根據區域進行 整合時和不整合時的編瑪優劣之比較結果,因此能夠朝 著更佳編碼的方向,確實地進行所需,的整合。 另一方面,本發明的動畫編碼裝置則包括區域分割 部和編碼部,區域分割部則包含分割處理部和整合處理 部。其結果是,由於不僅進行區域的分割,也進行區域 的整合,因此能夠對應於影像的結構,彈性地進行編场 〇 在整合處理部包括臨時編碼部、解碼部、編碼失真 計算部、以及評估值計算部的情況下,能夠车既定的碼 董條件下,降低編碼失真。 ’ 在分割處理部利用預測誤差電力做為動作參數的情 況下’能夠對預測誤差大的區域,也就是對一般運動較 大的區域,進一步分割。 在分割處理部利用各區域之原始信號的邊緣強度做 為該區域之動作參數的情況下,能夠獲得對應於影像邊 緣結構的區域形狀,並且能夠對被攝物的輪廓部分等易 於受主觀畫質而影像的區域,進一步分割 29 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐) (請先聞讀背面之注意事項再填寫本頁) 裝· 訂 鲤濟部中央梯率局舅工消费合作社印笨 A7 ______ B7 五、發明説明(27 ) — 在分割處理部利用表示區域影像特性的複數個數值 之線性加總做為該區域之動作參數的情況下,能夠根據 數個觀點或基準來進一步分割區域。 當上述的複數個數值亦包含在運動補償預測中的各 區域運動參數的碼量和預測誤差電力時,能夠以減少含 有影像運動複雜性之資訊量和運動參數資訊量之總合編 碼成本的方式,進行區域的分割,並且在相同的失真條 件下亦能夠以較少的資訊量進行編碼》 當上述的複數個數值可以包含各區域運動參數之瑪 董、在運動補償中的預測誤差電力、原始信號的發散值 、邊緣強度、和各區域之運動參數大小時,能整想性地 檢驗各種的基準值以獲得最適當的區域形狀。 在上述的分割處理部包括層級辨識部的情況下,能 夠對較重要的區域進行分割區域。 在層級辨識部係觀察橫跨於複數個區域之被攝物結 構的情況下’容易配合被攝物的形狀來進行區域的分割 〇 當被攝物結構係由區域之原始信號發教度、邊緣強 度、以及與周圍區域在邊緣上連結之程序來判斷的情況 下,能夠配合原始影像信號的複雜性或被攝物結搆來獲 得區域形狀。特別是能夠根據被攝物的輪廓結構來細 區域》 在層級辨識部觀察影像之特徵量的情況下,例如人 的臉孔等等,很容易依據每一被振物在細節上差異來分 本紙張尺度適用中困國家標举(CNS > A4規格(210X297公釐) (讀先閱讀背面之注項再填寫本頁) 、11 經濟部中央標率局貝工消費合作杜印製 A7 B7 五、發明説明(28 ) 割區域。因此,能夠根據對應於人注視度等的特定圖像 和影像特徵之影像區域重要性,獲得區域的形狀。 此時·’當根據每一被攝物所儲存的影像特徵量和實 際影像特徵量的一致性來決定各區域的層級時,可以提 高被攝物的辨識率並且較正確地實現區域的分割二 在分割處理部包括臨時編碼部、解碼部、編碼失真 計算部、以及評估值的評估值計算部的情況下,能夠在 既定的碼董條件下,降低編碼失真。 在評估值計算部改變量化參數之同時計算出評估值 的情況下’能夠同時實現在區域編碼中量化參數的最佳 化和區域形狀的最佳化,並且提高編碼的效率。 當在臨時編碼部的前段中設置一評估值計算部,用 以求取在運動補償預測中各區域之移動參數的碼量和預 測誤差電力的線性總合時,能夠以編碼成本最小化的方 式選擇運動參數且達到區域分割的最佳化,並且能夠以 減少包含量化參數最佳化的區域之總合編碼成本之方式 ,實施區域的分割。 … 另一方面,本發明的動畫解碼裝置,由於具有區域 形狀解碼部和影像資料解碼部,所以能夠應付在編碼裝 置中所產生的各種形狀區域。因此,很容易和本發明的 動畫編碼裝置配合。 在區域形狀資訊包含在編碼時對各區域進行分割和 整合的處理過程之相關資訊的情況下,能夠以較少的資 訊量來還原區域形狀。 本紙張尺度適用中國國家橾隼(CNS > A4規格(210X297公釐) ----------------、tr------Λ4 * . * (請先聞讀背面之注意事項再填寫本頁)Ji —l · -rn 11 n I .. (Please read the note on the back before filling in this page) Order «Institute of the Central Ministry of Economic Affairs Bureau of the Bayer Consumer Cooperatives A7 _B7 V. Description of the invention (25) Cutting status ( S62). Using the restored area, the encoding order of the encoded area information in the subsequent bit string is specified. Each area is set to Sn. Then, according to the order of encoding, the data of each area is sequentially decoded from the bit string. First, the attribute information decoding section 45 decodes the attribute information of the area Sn, and then decodes the coding mode information of the area, etc. (S63). Here, if it is an intermediate mode (inter_mode), that is, when the prediction error signal is encoded (S64), the motion information decoding unit 47 decodes the motion parameter 48 (S65). The motion parameters 48 are then sent to the motion compensation section 49. Based on this, the motion compensation unit 49 calculates the desired memory address, which corresponds to the predicted image stored in the reference image stored in the external memory 52, and retrieves the predicted image 5 from the external memory 52 (S66) » The video data decoding unit 46 decodes video data of the area sn (S67). In the case of the intermediate mode ', using the addition of the decoded image data and the predicted image 50, a reproduced image of the final region center can be obtained. On the other hand, in the case of intra-mode (in-frame editing), the decoded image data is used as the reproduced image of the final area Sn. In order to use the reproduced image as a reference image for subsequent generation of the predicted image, the reproduced image is written into the external memory 52. As for these judgments and the principle of reproducing images, it is implemented in the image restoration unit 61 (S68). After all areas including video frames are implemented, this series of processing ends. The same process is performed for subsequent image frames and the like. 28 Guan Jiazheng Standard in this paper scale system ((: Gangba 4 Lai * (21 () / 297 mm) — I ------- Γτ ^ .-- •-(Please read the note on the back first Please fill in this page for further information), 1T printed by the Central Ministry of Economic Affairs of the Central Bureau of Zhuanzhou Bureau of Shellfish Consumer Cooperative A7 __B7_ V. Description of the invention (26) In the animation coding method of the present invention, not only the area is divided, but also the area. Integration, so that it can be edited flexibly in accordance with the structure of the image. As the judgment criterion for division or not is the result of comparing the encoding of the division when the region is divided and the division when it is not divided, "about the better The direction of encoding is exactly divided as required. Because the criterion for determining whether to integrate or not is based on the comparison of the advantages and disadvantages of the coding when the area is integrated and when it is not integrated, it can move in the direction of better encoding. On the other hand, the animation encoding device of the present invention includes a region division section and an encoding section, and the region division section includes a division processing section and an integration processing section. As a result, not only the region Segmentation also integrates regions, so it can be flexibly edited in accordance with the structure of the video. When the integration processing unit includes a temporary encoding unit, a decoding unit, a coding distortion calculation unit, and an evaluation value calculation unit, Under the condition of the predetermined code, the coding distortion is reduced. 'In the case where the segmentation processing unit uses the prediction error power as the motion parameter', it can further segment the region with large prediction error, that is, the region with large general motion. When the segmentation processing unit uses the edge strength of the original signal of each area as the motion parameter of the area, the shape of the area corresponding to the edge structure of the image can be obtained, and the subjective image quality such as the contour portion of the subject can be easily subject to The area of the image is further divided into 29 paper sizes that are in accordance with the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the precautions on the back before filling out this page). Industrial and Consumer Cooperatives Benben A7 ______ B7 V. Description of the Invention (27) — Use of the display area in the division processing section When the linear summation of the plural values of the image characteristics is used as the action parameter of the region, the region can be further divided according to several viewpoints or benchmarks. When the above plural values are also included in the motion of each region in the motion compensation prediction When the parameter code amount and prediction error power are used, the region can be segmented in a manner that reduces the total coding cost of the amount of information containing the motion complexity of the image and the amount of information of the motion parameter information, and can also be compared under the same distortion conditions. Encoding with a small amount of information "When the above-mentioned plurality of values can include the Ma Dong of the motion parameters of each region, the prediction error power in motion compensation, the divergence value of the original signal, the edge strength, and the size of the motion parameters of each region, Various reference values can be checked imaginatively to obtain the most appropriate area shape. In the case where the above-mentioned segmentation processing section includes a hierarchical identification section, it is possible to segment a relatively important region. In the case where the hierarchical recognition department observes the structure of the object across a plurality of areas, it is' easy to divide the area according to the shape of the object. When the structure of the object is based on the original signal of the area, the edge In the case of judging the intensity and the program connected to the surrounding area on the edge, the area shape can be obtained in accordance with the complexity of the original image signal or the structure of the object. In particular, it is possible to thin the area according to the outline structure of the subject. ”In the case of the feature quantity of the image observed by the hierarchical recognition unit, such as a person's face, etc., it is easy to divide the text according to the difference in details of each subject Paper standards are applicable to national standards for poor countries (CNS > A4 size (210X297 mm) (read the notes on the back before filling out this page), 11 Central Bureau of Standards, Ministry of Economic Affairs, Shellfish Consumer Cooperation, Du printed A7 B7 5 2. Description of the invention (28) Cut the area. Therefore, the shape of the area can be obtained according to the importance of the image area corresponding to the specific image and image characteristics of the person's degree of attention. When determining the level of each region by the consistency of the image feature quantity and the actual image feature quantity, the recognition rate of the object can be improved and the region can be segmented more accurately. The segmentation processing unit includes a temporary encoding unit, a decoding unit, and an encoding unit. In the case of the distortion calculation unit and the evaluation value calculation unit, the encoding distortion can be reduced under the predetermined code condition. The evaluation value calculation unit changes the quantization parameter in the same way. When the evaluation value is calculated, 'the optimization of the quantization parameter and the optimization of the area shape in the area coding can be realized at the same time, and the encoding efficiency is improved. When an evaluation value calculation section is provided in the previous section of the temporary encoding section, When calculating the linear sum of the code amount of motion parameters and prediction error power in each region in motion-compensated prediction, the motion parameters can be selected in a manner that minimizes the coding cost, and the region segmentation can be optimized. The method of reducing the total coding cost of the area including the optimization of the quantization parameter is to divide the area. On the other hand, the animation decoding device of the present invention has a region shape decoding unit and a video data decoding unit, so it can cope with Various shape areas generated in the encoding device. Therefore, it is easy to cooperate with the animation encoding device of the present invention. In the case where the area shape information includes relevant information about the process of segmenting and integrating each area during encoding, it is possible to use Reduce the amount of information to restore the shape of the area. This paper scale is applicable to the Chinese country 橾 隼(CNS > A4 specification (210X297 mm) ----------------, tr ------ Λ4 *. * (Please read the notes on the back before filling in (This page)
經濟部中央樣率局貝工消費合作社印氧 圈式之簡單說明: 第1圖為實施例中所有動畫編碼裝置的共通結構圖 〇 第2圖為第1圏之編碼裝置操作時之流程圖。 第3圖為第1圓之區域分割部的内部結構圖。 第4圓為第3®之分割處理部的内部結構圖。 第5圓為第4圓之分割處理部操作時的流程圖。 第ό圖表示在第4圈之分割處理部中,均勻分割處 理結果之範例。 第7圖表示在第4圓之分割處理部中,第一次初期 分割處理的結果。 第8圖表示在第4圖之分割處理部中,初期分割處 理的最後結果》 第9圖為第3圈之整合處理部的内部結構圖。 第10圈為表示第9圈之整合處理部操作時的流程圖 e 第11圖為第9圖之整合處理部中,將各區域附上標 記範例之示意囷。 第12圖為第9圖之整合處理部中,周園區域設定範 例之示意圖。 第13圖表示第10圈步驟S19之流程圈》 第14圈表示第3圈分割處理部之其他實施形態的内 部結構圖。 第15圖表示在第14圈之分割處理部中,初期分割 本纸張尺度適用中國國家標準(CNS ) A4規格(2丨0 X 297公釐} ---.-----裝-- 巋 . (請先閲讀背面之注f項再填寫本頁) 訂 經濟部中央橾率局贝工消费合作杜印製 A7 B7 五、發明説明(30 ) 處理的最後結果。 第16圓為第3圖分割處理部之其他實施形態的内部 結構圖。· 第17圓表示第16圖之分割處理部在操作時的流程 圖。 第18圖表示第16圓之層級辨識部的其他實施形態 〇 第19圖為利用區塊匹配法之運動補償預測的示意圖 〇 第20圖為第3圖分割處理部之其他實施形態的内部 結構圖。 第21囷表示第20圖之分割處理部在操作時的流程 圖。 第22圖為第3圈整合處理部之其他實施形態的内部 結構圈。 第23圖表示第22圈之整合處理部在操作時的流程 圖》 第24圖為第3圖整合處理部之其他實施形態的内部 結構圖》 第25圖表示在實施例令動畫解碼裝置的内部結構圖 〇 第26圖表示第22圓之解碼裝置在操作時的流程圖 〇 第27圈為第一習知技術中動畫編瑪裝置之示意圈。 本紙張尺度適用中圃國家標车(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) -裝. 訂 «濟部中央標準局貝工消费合作社印掣 A7 B7 五、發明説明(31 ) 第28圖為第二習知技術中動畫編碼裝置之示意圖。 符號說明: 1~輸入影像;2〜區域分割部;3〜區域形狀資訊; 4~區域影像信號;5~區域運動資訊;6〜區域屬性資訊 ;7〜編碼部;8〜本地解碼影像;9〜記憶體;10~參考影 像;11〜編碼位元串;12〜分割處理部;13〜初期分割形 狀資訊;14〜整合處理部;15〜均勻分割部;16〜動作計 算部;17〜動作參數;18〜分割判斷部;19〜分割判斷指 示信號;20〜標記部;2卜周圍區域設定部;22〜臨時編 碼部;23〜解碼部;24〜編碼失真計算部;25〜評估值計 算部;26〜用以計算評估值之常數;27〜整合判斷部; 28~整合處理循環指示信號;29〜層級辨識部;30〜層級 參數;31〜分割判斷部;32〜特徵量記憶體;33~特徵一 致性計算部;34〜層級決定部;35〜分割判斷部;36〜分 割處理循環指示信號;37〜量化參數設定部;38〜量化 參數;39〜臨時編碼部;40〜運動補償預測成本計算部 ;4卜運動補償預測成本;42〜臨時編碼部;43〜位元串 分析部;44〜區域形狀解碼部;45〜屬性資訊解碼部; 46〜影像資料解碼部;47〜運動資料解碼部;48〜運動參 數;49〜運動補償部;50〜預測影像;51~影像還原部; 5.2〜外部記憶體;53〜重現影像;101〜差分器;102〜預 測信號;103〜預測誤差信號;104〜編碼部;105〜編碼 資料;106〜解碼部;107〜編碼後預測誤差信號;108〜 加法器;109〜本地解碼影像信號;110〜記憶體;111〜 本紙張尺度適用中國國家標準(CNS ) A4規格(210Χ 297公釐) (請先閲讀背面之注意事項再填寫本頁) .裝. 訂 A7 B7 五、發明説明(32 ) 預測部;112〜運動向量;113〜區域分割部;114〜預測 部;115〜區域決定部;116〜編碼模式資訊;117〜運動 向董;118〜編碼部;119〜編碼資料。 (請先閱讀背面之注意事項再填寫本頁) 裝‘A simple explanation of the oxygen printing method by the Central Sample Rate Bureau of the Ministry of Economic Affairs of the Bayer Consumer Cooperative: Figure 1 is a common structural diagram of all the animation coding devices in the embodiment. Figure 2 is a flowchart of the operation of the coding device of the first frame. Fig. 3 is an internal configuration diagram of a region dividing section of a first circle. The fourth circle is an internal configuration diagram of the division processing section of the third ®. The fifth circle is a flowchart of the operation of the division processing unit of the fourth circle. Fig. 6 shows an example of the uniform division processing result in the division processing section of the fourth circle. Fig. 7 shows the results of the first initial segmentation processing in the segmentation processing section of the fourth circle. Fig. 8 shows the final result of the initial division processing in the division processing section in Fig. 4 ". Fig. 9 is an internal configuration diagram of the integration processing section in the third circle. The tenth circle is a flowchart showing the operation of the integration processing unit of the ninth circle. E FIG. 11 is a schematic diagram of an example of marking in the integration processing unit of FIG. Fig. 12 is a schematic diagram of an example of setting a Zhouyuan area in the integration processing section of Fig. 9. Fig. 13 shows the flow of step S19 in the tenth circle. "The fourteenth circle shows the internal structure of another embodiment of the segmentation processing unit in the third circle. Fig. 15 shows that in the division processing section of the 14th circle, the initial division of the paper size is applicable to the Chinese National Standard (CNS) A4 specification (2 丨 0 X 297 mm) ---.-------岿. (Please read the note f on the back before filling this page) Order the A7 B7 printed by the shellfish consumer cooperation department of the Central Bureau of Economic Affairs of the Ministry of Economic Affairs 5. The final result of the processing of the invention (30). The 16th round is the 3rd Figure 17 shows the internal structure of another embodiment of the segmentation processing unit. • The 17th circle shows the flowchart of the segmentation processing unit in Figure 16 during operation. The 18th figure shows the other embodiment of the 16th circle level recognition unit. 19th The figure is a schematic diagram of motion compensation prediction using the block matching method. Fig. 20 is an internal structure diagram of another embodiment of the segmentation processing section of Fig. 3. Fig. 21 shows the flowchart of the segmentation processing section of Fig. 20 during operation. Figure 22 shows the internal structure circle of the third embodiment of the integrated processing unit. Figure 23 shows the flowchart of the operation of the integrated processing unit at the 22nd cycle. Figure 24 shows the other processing unit of the integrated processing unit at Figure 3. [Internal structure diagram of the embodiment] FIG. 25 shows the embodiment The internal structure of the animation decoding device. Figure 26 shows the flowchart of the operation of the decoding device of the 22nd circle. Circle 27 is the schematic circle of the animation knitting device in the first known technology. Standard car (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling out this page)-Install. Order «Printing A7 B7 of the Bayer Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs of the People's Republic of China (31) Fig. 28 is a schematic diagram of an animation encoding device in the second conventional technique. Explanation of symbols: 1 ~ input image; 2 ~ area division; 3 ~ area shape information; 4 ~ area image signal; 5 ~ area motion information; 6 ~ Area attribute information; 7 to encoding section; 8 to locally decoded image; 9 to memory; 10 to reference image; 11 to encoded bit string; 12 to segmentation processing section; 13 to initial segmentation shape information; 14 to integration processing section 15 to uniform segmentation unit; 16 to motion calculation unit; 17 to action parameter; 18 to segmentation judgment unit; 19 to segmentation judgment instruction signal; 20 to marker unit; 2 surrounding area setting unit; 22 to temporary encoding unit; 23 ~ Decoding section; 2 4 ~ coding distortion calculation section; 25 ~ evaluation value calculation section; 26 ~ constant for calculating evaluation value; 27 ~ integration judgment section; 28 ~ integration processing cycle instruction signal; 29 ~ level identification section; 30 ~ level parameters; 31 ~ Segmentation judging section; 32 ~ Feature quantity memory; 33 ~ Feature consistency calculation section; 34 ~ Hierarchy determination section; 35 ~ Segmentation judgment section; 36 ~ Segmentation processing cycle instruction signal; 37 ~ Quantization parameter setting section; 38 ~ Quantization Parameters; 39 ~ temporary encoding section; 40 ~ motion compensation prediction cost calculation section; 4b motion compensation prediction cost; 42 ~ temporary encoding section; 43 ~ bit string analysis section; 44 ~ region shape decoding section; 45 ~ attribute information decoding 46 ~ image data decoding unit; 47 ~ motion data decoding unit; 48 ~ motion parameters; 49 ~ motion compensation unit; 50 ~ predicted image; 51 ~ image restoration unit; 5.2 ~ external memory; 53 ~ reproduced image; 101 ~ differentiator; 102 ~ prediction signal; 103 ~ prediction error signal; 104 ~ encoding unit; 105 ~ encoded data; 106 ~ decoding unit; 107 ~ encoded prediction error signal; 108 ~ adder; 109 ~ local solution Video signal; 110 ~ Memory; 111 ~ This paper size is applicable to Chinese National Standard (CNS) A4 specification (210 × 297 mm) (Please read the precautions on the back before filling this page). Packing. Order A7 B7 V. Invention Explanation (32) prediction section; 112 to motion vector; 113 to region division section; 114 to prediction section; 115 to region determination section; 116 to coding mode information; 117 to motion direction manager; 118 to coding section; 119 to coding data . (Please read the notes on the back before filling out this page) Install ‘
,1T 經濟部中央標準局貝工消费合作社印製 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公嫠), 1T Printed by the Shellfish Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs This paper size applies to the Chinese National Standard (CNS) A4 specification (210 × 297 cm)
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10707297 | 1997-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW388843B true TW388843B (en) | 2000-05-01 |
Family
ID=14449781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW086113874A TW388843B (en) | 1997-04-24 | 1997-09-24 | Moving image encoding method, moving image encoder and moving image decoder |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR100257175B1 (en) |
CN (3) | CN1324533C (en) |
HK (1) | HK1105262A1 (en) |
TW (1) | TW388843B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7006097B2 (en) | 2000-11-23 | 2006-02-28 | Samsung Electronic Co., Ltd. | Method and apparatus for compression and reconstruction of animation path using linear approximation |
EP2720468B1 (en) * | 2005-09-26 | 2017-03-29 | Mitsubishi Electric Corporation | Moving image decoding method |
EP2395755A4 (en) | 2009-02-09 | 2015-01-07 | Samsung Electronics Co Ltd | Video encoding method and apparatus using low-complexity frequency transformation, and video decoding method and apparatus |
US8494290B2 (en) * | 2011-05-05 | 2013-07-23 | Mitsubishi Electric Research Laboratories, Inc. | Method for coding pictures using hierarchical transform units |
CN102843556B (en) * | 2011-06-20 | 2015-04-15 | 富士通株式会社 | Video coding method and video coding system |
JP6084682B2 (en) * | 2013-03-25 | 2017-02-22 | 日立マクセル株式会社 | Encoding method and encoding apparatus |
CN112070866B (en) * | 2019-06-11 | 2024-07-02 | 腾讯科技(深圳)有限公司 | Animation data encoding and decoding method and device, storage medium and computer equipment |
CN113314063B (en) * | 2021-05-31 | 2023-08-08 | 北京京东方光电科技有限公司 | Display panel driving method and device and display equipment |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5453787A (en) * | 1993-12-10 | 1995-09-26 | International Business Machines Corporation | Variable spatial frequency chrominance encoding in software motion video compression |
US5594504A (en) * | 1994-07-06 | 1997-01-14 | Lucent Technologies Inc. | Predictive video coding using a motion vector updating routine |
JPH0879753A (en) * | 1994-09-05 | 1996-03-22 | Sharp Corp | Moving image encoding device and moving image decoding device |
KR0159559B1 (en) * | 1994-10-31 | 1999-01-15 | 배순훈 | Adaptive postprocessing method of a digital image data |
JP3169783B2 (en) * | 1995-02-15 | 2001-05-28 | 日本電気株式会社 | Video encoding / decoding system |
KR100249028B1 (en) * | 1995-03-20 | 2000-03-15 | 전주범 | Apparatus for effectively encoding/decoding video signals having stationary object |
JPH09102953A (en) * | 1995-10-04 | 1997-04-15 | Matsushita Electric Ind Co Ltd | Method, device for encoding digital image and decoding device |
-
1997
- 1997-09-24 TW TW086113874A patent/TW388843B/en not_active IP Right Cessation
- 1997-12-26 KR KR1019970074005A patent/KR100257175B1/en not_active IP Right Cessation
-
1998
- 1998-02-26 CN CNB2003101161093A patent/CN1324533C/en not_active Expired - Lifetime
- 1998-02-26 CN CNB981052363A patent/CN1153175C/en not_active Expired - Lifetime
- 1998-02-26 CN CN2006101002103A patent/CN1968414B/en not_active Expired - Lifetime
-
2007
- 2007-09-27 HK HK07110516.7A patent/HK1105262A1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
HK1105262A1 (en) | 2008-02-06 |
CN1197250A (en) | 1998-10-28 |
CN1523538A (en) | 2004-08-25 |
CN1968414A (en) | 2007-05-23 |
KR100257175B1 (en) | 2000-05-15 |
CN1324533C (en) | 2007-07-04 |
CN1968414B (en) | 2010-12-22 |
CN1153175C (en) | 2004-06-09 |
KR19980079547A (en) | 1998-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5138086B2 (en) | Video decoding device | |
CN105981389B (en) | Picture coding device, picture decoding apparatus, encoding stream converting means, image encoding method and picture decoding method | |
KR102060586B1 (en) | Decoding device | |
TW201043042A (en) | Device, method and program for image prediction encoding, device, method and program for image prediction decoding, and encoding/decoding system and method | |
TW388843B (en) | Moving image encoding method, moving image encoder and moving image decoder | |
KR20100046202A (en) | Method for processing images and the corresponding electronic device | |
US20230023856A1 (en) | Inter prediction method, encoder, decoder, and storage medium | |
JP2003116053A (en) | Method for encoding specific effect data, method for displaying specific effect, and method for editing specific effect data | |
TW202139694A (en) | Inter-frame predication method, encoder, decoder, and storage medium | |
CN110166770B (en) | Video encoding method, video encoding device, computer equipment and storage medium | |
CN112601095B (en) | Method and system for creating fractional interpolation model of video brightness and chrominance | |
CN111901595B (en) | Video coding method, device and medium based on deep neural network | |
CN104168482A (en) | Method and device for video coding and decoding | |
JP7185467B2 (en) | Image decoding device, image encoding device, image processing system and program | |
CN111539874A (en) | Method and device for accelerating video super-resolution reconstruction | |
Yokoyama et al. | Very low bit-rate video coding with object-based motion compensation and orthogonal transform | |
CA2419988A1 (en) | Method and apparatus for transferring video frame in telecommunication system | |
JPH09200763A (en) | Motion compensating method for moving image encoding | |
JP4136403B2 (en) | Image processing apparatus, image processing method, program, and storage medium | |
CN101841701A (en) | Encoding and decoding method and device based on macroblock pair | |
CN116156187A (en) | Image processing method, device, electronic equipment and storage medium | |
CN117939153A (en) | Video encoding method, video encoding device, electronic device, storage medium, and program product | |
CN116993652A (en) | Method, device, equipment, medium and product for determining picture quality of screenshot | |
JP2011199685A (en) | Moving image encoder, moving image decoder, moving image encoding method, and program | |
JP2003209844A (en) | Moving picture encoding apparatus and moving picture encoding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |