TW321685B - Gene expression system comprising the promoter region of alpha-amylase gene - Google Patents

Gene expression system comprising the promoter region of alpha-amylase gene Download PDF

Info

Publication number
TW321685B
TW321685B TW81101029A TW81101029A TW321685B TW 321685 B TW321685 B TW 321685B TW 81101029 A TW81101029 A TW 81101029A TW 81101029 A TW81101029 A TW 81101029A TW 321685 B TW321685 B TW 321685B
Authority
TW
Taiwan
Prior art keywords
gene
rice
dna
item
vector
Prior art date
Application number
TW81101029A
Other languages
Chinese (zh)
Inventor
Shwu-Meei Yu
Lih-Fei Liou
Original Assignee
Nat Science Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Science Council filed Critical Nat Science Council
Priority to TW81101029A priority Critical patent/TW321685B/en
Application granted granted Critical
Publication of TW321685B publication Critical patent/TW321685B/en

Links

Abstract

It has been found that during the suspension culture of rice cells, when the culture medium was depleted of sugar (sugar starvation), an excessive gene expression of some alpha-amylase genes located in the cultured cells takes place, resulting in the mass production of alpha-amylase, which is subsequently secreted out of the cell and into the culture medium. In the present invention, DNA fragments which comprise the alpha-amylase gene promoter and DNA sequence encoding the signal peptide chain of the enzyme, and which is capable of being induced to conduct extensive gene expression under sugar depletion, were screened from rice genomic DNA library. The alpha-amylase gene promoter and the DNA sequence encoding the signal peptide chain together with glucuronidase reporter gene and hygromycin resistance gene were then utilized in the construction of a GUS gene expression vector, which was in turn transformed into the rice suspension-cultured cells, so as to investigate the expression of the GUS expression vector in the cells under the control of the alpha-amylase promoter. In such a way, it is possible to conduct gene regulation and protein expression and secretion by utilizing the characteristics of the alpha-amylase gene promoter and the DNA sequence encoding the signal peptide chain.

Description

321685 Α7 Β7 經濟部中央標準局貝工消費合作社印製 五·、發明説明(/ ) 澱粉含有直鍵澱粉和支鏈澱粉兩種葡萄糖聚合物,是 穀類種子最主要的養份貯存成份(AKazawa et al., 1985) 。在穀類種子發芽初期,猢粉層細胞會合成α -澱粉水解 酶,〇t -澱粉水解酶-糖苷酶及限制糊精酶等酵素分泌到内 胚乳共同水解澱粉成為葡萄糖和麥穿糖以提供胚發育所需 的養份(Rogers , 1985)。參與澱粉水解的酵素尚有一種/3- 澱粉水解酶',可將澱粉水解為麥芽糖及少部份的葡萄糖。 平時,/3 -澱粉水解酶在乾燥的種子中以雙硫鍵與蛋白質 體結合成為一種不活性形式存在於内胚乳中(Tronier· et al . , 1970)。種子發芽時糊粉層細胞亦受到GA3誘導而産 生蛋白酶,可破壞雙硫鍵而釋出活性形式的;3-澱粉水解 酶。 i 以上四種酵素在種子發芽過程中均參與澱粉水解的工 作,但以α -澱粉水解酶産生的量最多且擔任最重要的角 色(Akazawa et al., 1988) *其中已知GAa對ot+ -源粉水解 酶的表現有直接的影蜜(Chandler et al.,1987),當以 GA3處理水稻種子後,由糊粉層細胞新合成的α-澱粉水解 酶mRNA將比正情況增加50到100倍(O’Neill et al., 1990) 。事實上,以GA3誘導α -澱粉水解酶mRHA的大量表現對植 物荷爾蒙如何調控基因的表現已提供一値極理想的研究模 式(Ho et al., 1987)。 水稻,大麥及小麥的ot-澱粉水解酶基因至今已被大 量選殖出來且進行更進一步的研究分析,结果顯示這些穀 ~ _類的α -澱粉水解酶異構酶均是由多種α -澱粉水解酶基因 請先閲讀背面之注意事14填寫本頁) -裝· 訂 線 本纸張尺度適用中國國家標隼(CNS ) Α4規格(2丨0χΜ7公釐) 4 321685 A7 經濟部中央標準局員工消費合作社印製 B7 五、發明説明(之) 所製造(Baulcombe et al·,1987; Huany et al.,1990; Knox, 1987) 0 大麥及小麥的種子在發穿期間由糊粉層細胞所分泌出 來的α -澱粉水解酶,被分為高等電點及低等電點兩大類 (Jacobsen,1982; Lazarus et al.,1985 )。在大麥中約 有7個ct -澱粉水解酶基因屬於高等電點,3至4傾基因屬於 低等電點(K^ursheed &amp; Rogers,1988),至今共有7種大 ' 麥的ot -澱粉水解酶cDNA及9種α -澱粉水解酶基因群DNA已 被選殖出來(Chandler et al.,1984; Deikman et al., 1985; Khrusheed &amp; Rogers, 1988; Knox et al., 1987; W h i 11 i e η e t a 1 . , 1 9 8 7 )。小麥中的a -殿粉水解酶基因 共分為〇&lt;^11^1,〇[-/\|〇72’〇(-&amp;111丫3三群。〇(-/\|1171具有高 等電點,ct -Amy2則為低等電點,它們至少各含有10®以 上的基因且在發芽的種子中表現(Colin et al., 1985; Alisonet al.,1988),ct-Amy3則包含3至4個基因且只 在未成熟的種子中表現(Baulcombe et al., 1987)。 關於水稻ct -澱粉水解酶基因的研究,則未能像大麥 及小麥一樣'將α -澱粉水解酶基因分為高等電點群及低 等電點群。事實上,Macgregor等人( 1988 )利用等電點電 泳的分析法,發現水稻的α-澱粉水解酶異構酶都集中在 Ρ I值小於5 . 5的位置,所以水稻可能沒有高等電點的異構 酶。Huang等人(1990b)利用交互雜交實驗,將10種水稻的 α -澱粉水解酶基因分為5群,並確定其分佈於5條染色體 —上(Ranjhan et ai.,原稿在準備中O’Neill 等人(1990) 本纸張尺度適用中國國家標準(CMS ) A4規格(210X297公釐) (請先閱讀背面之注意事^4填寫本頁) 裝. 訂 經濟部中央標準局員工消費合作社印製 321685 . A7 ___B7__ 五、發明説明(彡) 首先對水稻α -澱粉水解酶的cDNA P0S103及P0S137做了較 詳細的研究,P0S103及P0S137所製造出來的α -澱粉水解 酶前驅蛋白分子量約為48KDa,當其被分泌到細胞外時, 該前驅蛋白的訊號胜肽鍵則被切除,因此成熟的《-澱粉 水解酶分子量約為45至46KDa且其等電點預測约為6.0。但 Kumagai等人(1990)將P0S103轉殖到酵母菌細胞内*讓酵 母菌將α -澱粉水解酶分泌到培養基中,發現ex -澱粉水解 酶分子量約為44至45KDa,等電點約為4.7至5.0。 闊於植物蛋白質的分泌機制,至今尚未有深入的瞭解 ,目前一般相信可能與動物的分泌機制類似,分泌性蛋白 質先由粗,形内質網(RER)膜上的核糖體所合成,藉著訊 號胜肽鏈i的功能將延長中的蛋白質引導進入内質網(ER)内 腔裡面,訊號胜肽酶將訊號胜肽切除後,ER以出穿方式形 成囊泡將蛋白質包含在其中,然後轉移到高爾基氏體與之 結合,將蛋白質送到高爾基氏體内。在高爾基氏體中又藉 分泌性囊泡轉移至細胞膜,經膜融合後復將蛋白質分泌到 細胞外(Walter et al.,1984)。 許多分泌性的蛋白質中都被發現有被N -糖基化的現象 。糖基化作用對蛋白質的分泌擔任何種角色至今尚不清楚 。已知大麥及小麥的糊粉層細胞内的分泌性α -释粉水解 酶都没有被糖基化(Jacobsen et al·,1988; Tkachuk &amp; Kruger,1974)。Akazawa等人(1985)己經證明在水現發現 穿期間胚盤(scu te 1 1 um)所産生的α -澱粉水解酶都是被糖 — '基化的分泌性蛋白質。但是0 · He i i 1等人(1990 )卻認為在 本紙伕尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 6 — ^------^-- (請先閲讀背面之注意事t彳¾寫本頁) 、va 321685 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(么) 水稻種子發穿期間所製造的的成熟的α -澱粉水解酶至少 有2種並沒有被糖基化,分別是P0S137及λ OSgl ’因為其 胺基酸序列上並無糖基化作用位置。Akazawa等人( 1986 ) 發現在α -澱粉水解酶形成過程中,訊號胜肽鏈被移除後 ,一種分子量為2 9 0 0 D a的寡糖會結合到cc -澱粉水解酶上 。以糖基化作用的抑制物,衣徽素(tunicamycin)處理胚 盤細胞,發^它可抑制糖基化作用卻不能抑制α -澱粉水 解酶的分泌(Akazawa &amp; Nishimura, 1985)。所以穀類α-澱粉水解酶的分泌可能與糖基化作用無關。利用小麥及水 稻的α -澱粉水解酶基因轉殖到酵母菌細胞内,發現小麥 α -澱粉本解酶沒有被糖基化,其分泌量並不多(Roths te in et al . , (1987),而水稻ct -澱粉水解酶不但被糖基化並且 分泌出大量的cx -澱粉水解酶(Kumasai et al . , 1990), 所以Kumaga i等人認為糖基化作用雖與蛋白質的分泌與否 無關,.卻會影饗穀類α -澱粉水解酶分泌量的高低。 大麥糊粉層細胞内α -澱粉水解酶的分泌也受到鈣離 子的謳節(Bush et a I., 1989)。α-澱粉水解酶是一種含 有經離子的金屬蛋白(metalloprotein),如果缺少敦離子 則α -澱粉水解酶將失去其酵素活性且變得不穩定。GA3可 調節鈣離子進入ER内腔中與a -澱粉水解酶結合,因此GA3 可能也調節ct -澱粉水解酶合成的後轉譯的層次(Bush et a 1.,1989)。 應用基因轉殖技術,以單細胞為材料,進行真核生物 基因的表現及功能的分析,是研究高等生物基因調控機制 請先閱讀背面之注意事kC填寫本頁 -裝. 訂 線 本紙浪尺度適用十國國家標準(CNS ) A4規格(210X 297公釐) 衫 1685 A7 B7 經濟部中央標準局貝工消費合作社印裝 五、發明説明(_r) 的一値理想糸 分化狀態較一 處理反應快等 育種及分子生 植株或植物體 控機制,涉及 本案發明 ,由控制培養 解酶基因的表 酶基因受到剌 泌也同時.增加 存庫中篩濃出 動子及訊號胜 粉水解酶基因 徑與機制,並 ,利用植物細 、酵母等傳统 1. 植物細 進行過 性,而 作之修 2. 桿狀病 其來製 … — 是目前 統。而植物懸浮培養細胞具有生長速度快, 致,易於分離原生質體,操作方便及對外加 待性,因此是研究植物生理、生化、遣傳、 物學方面極為理想的材料。相對地,以整棵 的某一特定組織為材料來研究基因表現的調 複雜的生理生化反應,因此不易於研究。 人近兩年來的研究,已知水稻懸浮培養細胞 基中蔗糖的有無,可以控制某些CC -澱粉水 現。在培養基缺糖的情況下,α -澱粉水解 激而大量表現,cc-澱粉水解酶的合成與分 。本案即針對此現象,期望自水稻基因群DNA 受蔗糖調控表現的α -澱粉水解酶基因的啓 肽鍵的DN Α序列,以進一步研究糖類對α-澱 表現的調控機制及ot -澱粉水解酶分泌的途 進而可利用此新機制於遣傳工程技術上。蓋 胞來製造基因工程技術蛋白質具有利用細菌 方法所缺乏之優點,例如: 胞是高等有核細胞生物,其所生成之蛋白質 許多複雜的後轉譯修飾以使該蛋白質具有活 在細菌則缺乏後轉譯条統,至於酵母則是所 飾有限; 毒(Bacu丨ovirus)是昆蟲細胞之病毒,利用 備重組型蛋白質通常具極佳活性,故此条統 普遍採用之基因表現条統,惟該病毒必須感 請- 先、 讀 背 面 意 事 填 寫 本 頁 裝 訂 本紙張又度適用中國國家標準(CNS ) A4規格(210X 297公釐) 8 A7 B7 經濟部中央標準局貝工消资合作社印裝 五、發明説明(彡) 染培養的昆蟲細胞才能進行基因重組型蛋白質之製 備,而培養昆蟲細胞的培養基須含有血清,成本極 0' · 间 , 3 .利用本案新發展出來的α -澱粉水解酶基因表現条 統,所生成的蛋白質可於培養基缺糖狀況下突增其 合成量,甚而達50倍以上,且該蛋白質可被分泌至 培養i内因而可簡化純化程序。 &quot; 在本案發明人近兩年來之研究中發現,水稻α -澱粉 水解酶基因族傺隸屬於兩種不同型式之調節:(1)萌穿種 子之激素調節,以及(2)在培養的細胞中藉由有用的磺水 化物營養.物之代謝性抑制。己知去胚化水稻種子内ct -澱 粉水解酶龚因之表現偽為外源吉貝酸(sibberel 1 ic acid) 所誘發。另一方面,α -澱粉水解酶基因在散浮-培養的細 胞内之表現傜為缺乏磺水化物營養物所誘發。在缺乏蔗糖 的培養基内α -澱粉水解酶mRNA之誘發需要一為2至4小時 的遲延期。該ct-澱粉水解酶基因表現之誘發超乎尋常地 高且α -澱粉水解酶mRNA之位準於缺乏蔗糖24小時後可增 至8至20倍。ct -澱粉水解酶之合成與分泌亦視磺源之位準 而定。ct -澱粉水解酶合成之去抑制或抑制分別可藉由剝 除培養基内之蔗糖或補充蔗糖至培養基而反轉。葡萄糖與 果糖對α -澱粉水解酶合成亦發揮一類似於蔗糖所産生之 抑制作—用。(Su-May Yu et al.,&quot;Metabolic Depression of a -amylase Gene Express ion in Suspens ion-cu 1 tured • C e 1 1 s o f R 丨 c e , ” 即將發表在《L__B-..L.0 1,_C h e m . v ο l 266. (請先閲讀背面之注意事項ίν %寫本頁 •裝- 、τ 線 本紙張尺度適用t國國家標隼(CNS ) Α4規格(2HTX 297公釐) 9 經濟部中央標準局員工消費合作社印製 A7 -____B7_五、發明説明(夕) 1991 Nov. ; Su-May Yu et al., &quot;Catabolic Depression of a -amylase Gene Express ion in Suspension-cultured Cel Is of Rice, ”準備發表中,該文等獻併入本案以為參 考文獻)。 利用基因轉移技術,將D N A轉殖到植物細胞内,已經 成為目前研究基因的調控機制,最普遍且是最好的方法。 將DNA轉殖到‘植物細胞或組織内,除了利用土壤桿菌屬 (Agrobacterium) Ti 質體(Bevan &amp; chilton, 1982)方法外 ,尚有化學法及物理法二種。化學法包含有使用P E G方法 (Krens et al.,1982)、聚-L鳥胺酸(poly-L ornithine) 方法(Dav_ey et al.,1980)及礎酸 15 的方法(Hain e.t al., 19 85)等乓種。這些化學藥物均對細胞具有毒性,所以可 能會造成細胞的傷害而影響轉殖效率。物理法則包括電穿 透方法(Fromm et al., 1986)、顯徹注射法(Crossway et al . , 1986)、粒子撞擊法(Klein et al., 1987)及超音波 方法(Joersbo &amp; Brunstedt, 1990)等,其所利用的原理 均是以機械性力量在細胞表面造成孔洞以利DN A的進入, 因此對細胞亦會造成某些程度的傷害。 · 此外,提供轉移的質體DN A應帶有抗性基因及報導基 因。抗性基因因為其産物可以抵抗某些抗生素或藥物的作 用,所以可當作轉殖植物的選擇性標記。一般植物較常利 用的抗性基因有二種,一是潮徽素B (Hygromycin B)抗性 基因(Waldron et al., 1984)。它可以抑制潮徽素的作用 _ •。另一種是新黴素磷酸轉移酶E (NPT H )基因(Herrera et 請先閲讀背面之注意事WC%寫本頁 .裝. -° 線 本紙張尺度適用t國國家標隼(CNS ) A4規格(210X 297公釐) 321685 A7 B7 五、發明説明(f) 經濟部中央標準局貝工消费合作社印製 al . , 1983),可以抑制卡那徽素(Jcanaiaycin)及G41S的作 用,但是許多禾本科植物對卡那黴素天生具有高度的抵抗 能力,所以利用HPT II當作選擇性標記,可能難以確定轉 歹直是否成功(Hauptmann et al.,1988; Potrykus et al., 1985)。 報導基因就是在基因融合時當作編碼區域的基因,其 轉錄及轉譯作用直接受基因本身的或外來的其他基因啓動 子所控'制(Jeferson, 1987)。在高等植物中較常見的報導 基因有t種,分別是/S-半乳糖苷酶(UCz)(Helmer et al. 1984)、氯黴素乙醢轉移酶(CAT) (Gorman et al_. , 1982) ,新黴素磷酸轉移酶(HPTH)(ReiSS et al., 1984)、藍 曙红(nop^aline)合成酶(M0S)(BeraI et al.,1983),章 魚鹼合成酶(OCS)(DeGreve et al., 1982)、螢火蟲蟲螢 光素酶(Ow et al., 1 986)以及大腸桿菌/3-¾糖醛酸苷酶 (GUS) (.Jefferson et al.,1987)。在以上七種報導基因 中,植物體本身就會産生lacz酵素,而NOS、0CS、螢火蟲 蟲螢光素酶等酵素的分析較麻煩。目前使用較普遍的CAT 及NPT II的齒素分析亦具昂貴及困難的缺點,而且植物本 身所含的酯酶、磷酯酶及轉移酶會和CAT及NPT 1的受質發 生競爭作用,因此相對地減低了酵素分析的敏感性(Gorman et al., 1982; Reiss et al., 1984)° 目前已廣泛地利用GUS基因當作報導基因,雖然Hu等 人(1990 )發現在種子植物發育中的果實及未成熟種子均能 測到很強的G US活性,但是G US的分析法具有分析簡單迅速 請 先 閱 讀 背 面 之 注 意 事I- 裝 訂 線 本紙張尺度適用中國國家標隼(CNS ) A4規格(210 X 297公釐) 11 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明( V » GUS的受質(5- 溴-4-氯-3-吲哚基葡糖醛酸苷)(X-gluc) 價 格 較 便 宜, GUS穩定性佳,及大部份植物體内本身GUS的 活 性 低 (j ef f e r s on,1987)等待性,所以目前以GUS基因當 作 高 等 植 物的 報 導基因最為理想。 有 鑒 於目 &gt; ·-刖 ct -澱粉水解酶已廣泛用於工業界,因此 9 能 以 一 大量 且 簡易之生成方式獲得此酵素以供業界所需 » 乃 成 為 所需 〇 故以,本案發明人所發現藉由造成培養基 缺 糖 狀 況 以誘 發 α -澱粉水解酶基因之表現即能達致上述 巨 的 〇 更 進一 步 地,利用α -澱粉水解酶的基因表現条統 並 於 缺 糖 狀況 下 可獲致其它整合至該基因表現条統内之所 欲 蛋 白 質 的大 量 生成。因此,本案之一目的是提供一生成 大 量 α -澱粉水解酶之方法。本案之另一目的是提供一新 穎 基 因 表 現条 统 以製造遣傳工程的蛋白質,以供大量産製 該 所 欲 蛋 白質 0 本 發 明將 以 下列實例暨附圖進一步說明,然而,如熟 於 此 項 技 藝人 士 所瞭解的,下列範例僅傺用以闡述本案發 明 之 待 擻 ,而 非 用以限制本發明。 材 料 與 77 Μ I 由 水 稻基 因 群DHA存庫中篩選ct -澱粉水解酶基因 1 . 1 水 稻 基因 群 DHA存庫之簡介: 1 . 本 案 所用 的 水稻基因群DNA存庫購自CLONTCH (cat»f FL 1040 D, Lot t»7081 )公司,所用水稻品種是 R 9 t i v ^ L • Japonica。基因群DNA抽取黑暗中生長7天 的 水 稻幼 m 然後製成基因群DNA存庫。 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 請- 先 閲, 讀 背一 ύ 之 注 意 裝 訂 線 A7 B7 五、發明説明(/P) 2. 此存庫的選殖載體為EMBL-3*選殖位是Bam HI,平均 選殖的基因群DNA片段長度為15kb。而此DNA片段可經 由Bam HI或Sal I的作用自噬菌體DNA分離出來。 3. 為達篩選基因群存庫之目的,此EMBL-3存庫宿主細菌 以大腸桿菌NM538或LE 392為最佳,可在洋菜培養基 上産生較大的溶菌斑。 1.2由水稻基因群D N A存庫中篩選α -澱粉水解酶因的方法·· &quot;1 . 2 . 1 .製備及感染噬菌體的宿主細菌: 1. 在10ml試管内加入5ml LB液體培養基(每升含NaCl 10g、胰蛋白腺l〇g、酵母抽出物5g),以牙籤挑取 大腸桿菌NM538的單一菌落到此試管内,於37°C振 盪將養約6〜8小時,直至ODe&quot;值為0.5〜0.7。 2. 在4°C中利用Sorvall RT6 000B型離心機以3000rpm 速度離心10分鐘,以冰冷的10mM MgSO*來溶解沈澱 的細菌體(每l〇ml菌液的沈澱物加入3ml MgS〇4予以 溶解),將之貯存在4°C中備用(約存放一星期 經濟部中央標準局貝工消費合作杜印製 3. 以徹波爐溶解80ml的Top瓊膠(每升LB液髏培養基加 XlM’ MgS〇4 10ml、10N NaOH 0.2ml、瓊膠 8g),將 其分裝成8管,每管各含9m 1的Top瓊膠,保溫於46 °C的水浴中。 4. 將6m1的水稻基因群存庫(效價2x104/jU)與己製備 好的2. 4ml NM538菌液充分混合,在37t中培養15 〜2 0分鐘。 ' 5 ·依序各取300ra 1的混合菌液,加入此8管Top瓊膠中 本纸張尺度適用中國國家標準(CNS )八4規格(210 X 297公釐) 經濟部中央標準局員工消费合作社印製 321685 A7 ____B7___ 五、發明説明(//) 蓋緊試管蓋子,然後上下搖一次充分混合,迅速倒 入已於37°C預溫的大培養皿(直徑14cm)的固體培養 基(1升LB液體培養基加15g瓊脂)上,待Top瓊膠凝 結後再將48値培養皿倒置於37 υ培養箱培養過夜, 次曰即可見到密佈的溶菌斑。 1.2.2.將溶菌斑中的DNA轉印到硝基纖雒素濾紙上: • 1.準備3値淺盤,上面各舖一張Whatman 3ΜΜ濾紙,三 個淺盤濾紙分別以變性溶液(0.5M NaOH + 1.5M NaCl) 、中和溶液(4.5M NaCl+l.OM Tris-HCl,pH 8.0) 以及2xSSC(毎升含17.5g NaCl及8.8g醋酸鈉)充分 潤.濕之。 2. 在碱基纖維素(NC)濾紙上以簽字筆標上記號,記號 面朝下輕輕覆蓋於長滿溶B斑的固體培養基上再用 大頭針於培養基上戮四傾不對稱點,作為將來挑取 溶菌斑對合之用。 3. 慢慢將NC濾紙自培養基上撕起,記號面朝上,置於 變性溶液上反應5分鐘,再轉移至中和溶液5分鐘, 最後再於2xSSC中反應2分鐘。 4. 將NC濾紙置於3MM濾紙上,待其乾後,再於80°C烘 箱内供烤2小時。 1 . 2 . 3 .利用探針雜交由基因群DN A存庫中篩選《-澱粉水解 …酶基因: 1.2.3.1.瓊脂膠體回收 DNA (Maniatis et al., 1989): ' 1 .水稻α -澱粉水解酶cDNA純株RMAYC30 (Tzou,1990 ) | 裝 訂 矣 (請先閱讀背面之注意事一填寫本頁) ( 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) -14 - A7 B7 經濟部中央標準局貝工消費合作社印製 五、發明説明(/ &gt;) 以限制酶EcoR I作用後,予以加入0 . 15倍體積的装 填(loading)缓衝液(0.25¾溴酚藍、0.25 %二甲苯苯 胺(cyanol)、30¾甘油)。 2.利用瓊脂膠體(0.8¾瓊膠明膠)於TBE缓衝液(0.089M Tris、0.089M硼酸、0.002M EDTA)中,以 1〇〇伏特 電壓進行電泳。 • 3.電泳膠體經由漠化乙鍵(ethidium bromide)染色’ &quot; 置於長波長(300-360nm) UV燈下確定所要DNA片段 之位置,以刀片將此位置的膠體連同DN A切下。 4 .把膠體置人適當的透析袋内並注滿1 X ΓΒ E緩衝液’ 以透析袋夾,夾緊袋的兩端|避免氣泡産生,平放 於渾泳槽中,槽内電泳溶液務必蓋過於此袋。 5.以100V電泳約1,5〜2小時,在UV燈下撿視DNA,如 己跑出膠體進入袋中溶液,如再放回電泳槽内,以 相反電極電泳約2分鐘。 6 .小心回收袋内液髏,以酚及氣仿各萃取一次。加入 0.1倍體積的醋酸鈉以及等量的異丙烷(IPA),混合 均勻,置於-2 0 °C至少2小時。 7.於4°C及14000rpra下離心30分鐘,倒掉上清液,各 以70¾及100Γ酒精洗一次,利用真空離心使DN A乾燥 Ο 8 :加入適當TE缓衝液來溶解乾燥的DN A。 1 . 2 . 3 . 2 .探針的製備: '1.2.3.2.1.隨機模販法(「611^6「8&amp;¥〇口6151^1|1,1983.): (請先閱讀背面之注意事isC填寫本頁) •裝. -訂 線 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X 297公釐) 經濟部中央標準局員工消費合作社印裳 A7 B7 五、發明説明(/;) 1 .取100〜200ng的DNA,加入已滅菌的去離子水,使 體積成為5.,然後於100°C中加熱3分鐘後迅速 插入冰中,使其急速冷卻。 2.加入 ljitl BSA (10iUg/wl),1.5ul 的六元物(hexamer) (25ng/iil)、l〇wl 的 2.5x反應缓衝液(0.5M Hepes, PH 6.6; 12.5mM MgCla; 25ntM/3-籂基乙醇;125mM Tris, pH 8.0, 5〇mM dATP, 5〇mM dGTP, 5〇mM dTTP) 、5 u 1 [ a - 3 2 P ] d C T P (1 0 n c i / *11,1 M 1 K 1 e η o w 酵素) (BRL, 5單位/ill)混合均勻。 3 .靜置於室溫反應至少2小時。 4. 加入TE缓衝液使體積增加200ul。 5. 以豳及氛仿各萃取一次。加入20m1 Ha0Ac、3wl tRHA (20Mg/jal), 200m1 IPA,混合均勻,並置於-20°C 下至少2小時。321685 Α7 Β7 Printed by the Beigong Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of invention (/) Starch contains two glucose polymers, amylose and amylopectin, and is the most important nutrient storage component of cereal seeds (AKazawa et al., 1985). At the early stage of germination of cereal seeds, the silty cell will synthesize α-starch hydrolase, 〇t-starch hydrolase-glycosidase and limit the secretion of dextrinase and other enzymes into the endosperm to hydrolyze starch together to form glucose and maltose to provide embryos Nutrients required for development (Rogers, 1985). The enzyme involved in the hydrolysis of starch still has a / 3-starch hydrolase, which can hydrolyze starch into maltose and a small part of glucose. Usually, / 3-starch hydrolase binds to the proteosome in the form of an inactive form in the endosperm in the dried seeds (Tronier et al., 1970). When the seeds germinate, the aleurone cells are also induced by GA3 to produce proteases, which can break the disulfide bond and release the active form; 3-starch hydrolase. i The above four enzymes are involved in starch hydrolysis during seed germination, but the most produced by α-starch hydrolase and plays the most important role (Akazawa et al., 1988) * Among them, GAa is known to ot +- The performance of the source powder hydrolase has a direct shadow of honey (Chandler et al., 1987). When rice seeds are treated with GA3, the newly synthesized α-starch hydrolase mRNA will be increased by 50 to 100 compared with the normal situation. Times (O'Neill et al., 1990). In fact, the large amount of expression of the α-starch hydrolase mRHA induced by GA3 has provided an ideal research model for how plant hormones regulate gene expression (Ho et al., 1987). The ot-starch hydrolase genes of rice, barley and wheat have been selected in large numbers and further research and analysis have been carried out. The results show that these cereals ~ _ class α-starch hydrolase isomerases are composed of a variety of α-starch Please read the notes on the back of the hydrolase gene 14 to fill out this page) -The paper size of the binding and binding book is applicable to the Chinese National Standard Falcon (CNS) Α4 specification (2 丨 0χΜ7mm) 4 321685 A7 Central Standards Bureau staff of the Ministry of Economic Affairs Printed by the consumer cooperative B7 V. Description of the invention (part 1) Manufactured (Baulcombe et al., 1987; Huany et al., 1990; Knox, 1987) 0 Barley and wheat seeds are secreted by aleurone cells during hair wear The resulting α-starch hydrolase is divided into two categories: high isoelectric point and low isoelectric point (Jacobsen, 1982; Lazarus et al., 1985). There are about 7 ct-starch hydrolase genes in barley belonging to high isoelectric points, and 3 to 4 tilt genes belong to low isoelectric points (K ^ ursheed &amp; Rogers, 1988). So far, there are 7 types of ot-starch in barley. Hydrolase cDNA and DNA of nine α-starch hydrolase gene groups have been selected (Chandler et al., 1984; Deikman et al., 1985; Khrusheed &amp; Rogers, 1988; Knox et al., 1987; W hi 11 ie η eta 1., 1 9 8 7). The a-house powder hydrolase gene in wheat is divided into three groups: 〇11 <1, 〇 [-/ \ | 〇72′〇 (-& 111 YA3. 〇 (-/ \ | 1171 has high Electrical point, ct-Amy2 is a low isoelectric point, they each contain at least 10 ® genes and appear in germinated seeds (Colin et al., 1985; Alisonet al., 1988), ct-Amy3 contains 3 Up to 4 genes and only appear in immature seeds (Baulcombe et al., 1987). Research on the rice ct-starch hydrolase gene failed to divide the α-starch hydrolase gene like barley and wheat It is a high isoelectric point group and a low isoelectric point group. In fact, Macgregor et al. (1988) used isoelectric point electrophoresis analysis and found that rice α-starch hydrolase isomerase is concentrated in the PI value of less than 5. 5 position, so rice may not have a high isoelectric isomerase. Huang et al. (1990b) used an interactive hybridization experiment to divide the 10 kinds of rice α-starch hydrolase genes into 5 groups and determined their distribution in 5 Chromosome—on (Ranjhan et ai., The manuscript is in preparation O'Neill et al. (1990) This paper scale applies the Chinese National Standard (CMS)) A4 size (210X297mm) (please read the notes on the back ^ 4 fill in this page first). Pack. Order 321685 printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. A7 ___B7__ V. Description of Invention (彡) First of all, rice α- Starch hydrolase cDNAs P0S103 and P0S137 have been studied in more detail. The molecular weight of the alpha-starch hydrolase precursor protein produced by P0S103 and P0S137 is about 48KDa. When it is secreted out of the cell, the signal of this precursor protein is peptide The bond is cut off, so the molecular weight of the mature starch hydrolase is about 45 to 46 KDa and its isoelectric point is predicted to be about 6.0. However, Kumagai et al. (1990) transferred POS103 into yeast cells. The α-starch hydrolase is secreted into the medium, and it is found that the molecular weight of ex-starch hydrolase is about 44 to 45KDa, and the isoelectric point is about 4.7 to 5.0. The secretion mechanism of the plant protein is broader than that, and there is no deep understanding so far. It may be similar to the secretion mechanism of animals. Secreted proteins are first synthesized by ribosomes on the rough, endoplasmic reticulum (RER) membrane, and the function of the peptide chain i will extend the protein in the signal. Guide into the inner cavity of the endoplasmic reticulum (ER). After the signal peptide is excised, the ER forms a vesicle in a piercing way to contain the protein, and then transfer to the Golgi body to bind it and send the protein. Into the body of Golgi. In the Golgi, it is transferred to the cell membrane by secretory vesicles, and the protein is secreted out of the cell after fusion of the membrane (Walter et al., 1984). Many secreted proteins have been found to be N-glycosylated. It remains unclear what role glycosylation plays in protein secretion. It is known that neither the secreted α-releasing hydrolase in the aleurone cells of barley and wheat is glycosylated (Jacobsen et al., 1988; Tkachuk &amp; Kruger, 1974). Akazawa et al. (1985) have proved that the α-starch hydrolase produced in the blastoderm (scu te 1 1 um) during the perforation period is all secreted proteins that are sugar-based. However, 0 · He ii 1 and others (1990) believe that the Chinese national standard (CNS) A4 specification (210X297mm) is applicable to the paper scale of this paper 6 — ^ ------ ^-(please read the notes on the back first Things to write this page), va 321685 A7 B7 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs V. Description of Invention (Mo) There are at least two mature α-starch hydrolases produced during the wearing of rice seeds It is not glycosylated, respectively P0S137 and λ OSgl 'because there is no glycosylation position on the amino acid sequence. Akazawa et al. (1986) found that during the formation of α-starch hydrolase, after the signal peptide chain was removed, an oligosaccharide with a molecular weight of 290 Da was bound to cc-starch hydrolase. Treatment of blastoderm cells with tunicamycin, an inhibitor of glycosylation, revealed that it inhibits glycosylation but not the secretion of α-starch hydrolase (Akazawa &amp; Nishimura, 1985). Therefore, the secretion of cereal α-starch hydrolase may not be related to glycosylation. The wheat and rice α-starch hydrolase genes were transferred into yeast cells, and it was found that wheat α-starch lysozyme was not glycosylated and its secretion was not large (Roths te in et al., (1987) However, rice ct-starch hydrolase is not only glycosylated and secretes a large amount of cx-starch hydrolase (Kumasai et al., 1990), so Kumagai et al. Believe that glycosylation has nothing to do with protein secretion. However, it will affect the amount of α-starch hydrolase secreted by cereals. The secretion of α-starch hydrolase in cells of barley aleurone layer is also affected by calcium ions (Bush et a I., 1989). Α-starch Hydrolase is a metalloprotein containing ions. If the ion is lacking, α-starch hydrolase will lose its enzyme activity and become unstable. GA3 can regulate calcium ion into the ER lumen to hydrolyze with a-starch Enzymes are combined, so GA3 may also regulate the level of post-translation of ct-starch hydrolase synthesis (Bush et a 1., 1989). Using gene transfer technology, using single cells as materials, the expression and function of eukaryotic genes 'S analysis is To study the mechanism of gene regulation in higher organisms, please read the notes on the back kC and fill out this page-installation. The paper size of the binding is applicable to the national standard of the ten countries (CNS) A4 specification (210X 297 mm) shirt 1685 A7 B7 Central Standards Bureau Printed by Beigong Consumer Cooperative. V. Description of the invention (_r) The ideal state of differentiation is faster than that of a treatment. Breeding and molecular plant or plant body control mechanisms are faster than the treatment response. This involves the invention of this case. Genes are also secreted at the same time. Increase the gene diameter and mechanism of the sifter and signal powder hydrolase in the storage, and use the tradition of plant fines, yeasts, etc. The symptom is caused by it ... It is the current system. Plant suspension culture cells have a fast growth rate, consistent, easy to separate protoplasts, easy operation and external treatment, so it is to study plant physiology, biochemistry, transfer, and physical aspects. Very ideal material. Relatively, a specific tissue of the whole tree is used as a material to study the complex physiological and biochemical reactions of gene expression, so it is not easy Research. In the past two years of research, it is known that the presence or absence of sucrose in the cell base of rice suspension culture can control some CC-starch water. In the case of lack of sugar in the culture medium, the hydrolysis of α-starch is greatly stimulated, cc- Synthesis and analysis of starch hydrolase. In this case, it is expected that the DN Α sequence of the peptide-opening bond of the α-starch hydrolase gene from the rice genome DNA regulated by sucrose is expected to further study the performance of sugars on α-amylase The regulation mechanism and the way of secretion of ot-starch hydrolase can then use this new mechanism in the transfer engineering technology. The production of genetically engineered proteins by capsular cells has advantages that are lacking using bacterial methods. For example: Cells are higher nucleated cell organisms, and the resulting protein has many complex post-translational modifications to make the protein live in bacteria but lacks post-translation. The system is limited in terms of yeast; Bacuoovirus is a virus of insect cells. The use of recombinant proteins usually has excellent activity. Therefore, the gene expression system generally used in this system, but the virus must be infected Please-first, read the back page and fill out this page. The bound paper is again applicable to the Chinese National Standard (CNS) A4 specification (210X 297mm) 8 A7 B7 Printed by the Beigong Consumer Capital Cooperative, Central Standards Bureau, Ministry of Economic Affairs (彡) Insect cells cultured can only be used for the preparation of genetically-recombinant proteins, and the culture medium for insect cells must contain serum at a very low cost of 0. · 3. Using the newly developed α-starch hydrolase gene expression bar System, the protein produced can suddenly increase its synthesis amount under the condition of lack of sugar in the culture medium, even more than 50 times, and the White matter may be secreted into the culture i can be simplified purification procedures. &quot; In the research of the inventors in the past two years, it has been found that the rice α-starch hydrolase gene family Ye belongs to two different types of regulation: (1) hormone regulation through seeds, and (2) cells in culture In the metabolic inhibition of useful sulfonate nutrients. It is known that the performance of ct-amyl hydrolase Gong Yin in the deembryo rice seeds is pseudo-induced by sibberel 1 ic acid. On the other hand, the performance of the α-starch hydrolase gene in floating-cultured cells is induced by the lack of sulfonate nutrients. The induction of α-starch hydrolase mRNA in a medium lacking sucrose requires a lag period of 2 to 4 hours. The induction of the expression of the ct-starch hydrolase gene is unusually high and the level of the α-starch hydrolase mRNA can increase to 8 to 20 times after 24 hours of lack of sucrose. The synthesis and secretion of ct-starch hydrolase also depend on the level of sulfonate source. The de-inhibition or inhibition of ct-starch hydrolase synthesis can be reversed by stripping sucrose from the medium or supplementing the medium with sucrose, respectively. The synthesis of α-starch hydrolase by glucose and fructose also exerts an inhibitory effect similar to that produced by sucrose. (Su-May Yu et al., &Quot; Metabolic Depression of a -amylase Gene Express ion in Suspens ion-cu 1 tured • C e 1 1 sof R 丨 ce, ”will be published in" L__B-.. L.0 1 , _C hem. V ο l 266. (Please read the precautions on the back first ίν% to write this page • Install-, τ line paper size is applicable to the national standard falcon (CNS) Α4 specifications (2HTX 297 mm) 9 Economy A7 -____ B7_ Printed by the Ministry of Central Standards Bureau Employee Consumer Cooperative V. Description of Invention (Xi) 1991 Nov.; Su-May Yu et al., &Quot; Catabolic Depression of a -amylase Gene Express ion in Suspension-cultured Cel Is of Rice, "Preparation for publication, this article and other contributions are incorporated into this case as a reference). Using gene transfer technology to transfer DNA into plant cells has become the most common and best way to study the regulatory mechanism of genes. Transplanting DNA into plant cells or tissues, in addition to using the Agrobacterium Ti plastid (Bevan &amp; chilton, 1982) method, there are two chemical methods and physical methods. The chemical method includes the use of PEG method (Krens et al., 1982), poly-L ornithine method (Dav_ey et al., 1980) and basal acid 15 method (Hain et al., 19 85). These chemical drugs are all It is toxic to cells, so it may cause cell damage and affect the efficiency of colonization. Physical laws include electrical penetration method (Fromm et al., 1986), obvious injection method (Crossway et al., 1986), particle impact method (Klein et al., 1987) and ultrasonic method (Joersbo & Brunstedt, 1990), etc., the principle of which is to use mechanical force to create holes in the cell surface to facilitate the entry of DNA, so it will also Causes some degree of damage. In addition, the transferred plastid DNA should carry a resistance gene and a reporter gene. The resistance gene can be used as a transgenic plant because its product can resist the action of certain antibiotics or drugs. Selectable markers. There are two types of resistance genes commonly used by plants, one is the Hygromycin B (Hygromycin B) resistance gene (Waldron et al., 1984). It can inhibit the effect of hygroside _ •. The other is the neomycin phosphotransferase E (NPT H) gene (Herrera et please read the notes on the back WC% to write this page. Install.-° The size of the paper is applicable to the national standard Falcon (CNS) A4 specification (210X 297 mm) 321685 A7 B7 5. Description of the invention (f) Printed by the Beigong Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs (al., 1983), which can suppress the effects of Jcanaiaycin and G41S, but many Undergraduate plants are inherently highly resistant to kanamycin, so using HPT II as a selectable marker may make it difficult to determine whether the transformation is successful (Hauptmann et al., 1988; Potrykus et al., 1985). Reporter genes are genes that are used as coding regions during gene fusion, and their transcription and translation functions are directly controlled by the gene itself or foreign gene promoters (Jeferson, 1987). There are t types of reporter genes that are more commonly reported in higher plants, namely / S-galactosidase (UCz) (Helmer et al. 1984) and chloramphenicol acetyltransferase (CAT) (Gorman et al_., 1982 ), Neomycin phosphotransferase (HPTH) (ReiSS et al., 1984), blue eosin (nop ^ aline) synthase (MOS) (BeraI et al., 1983), octopine synthase (OCS) ( DeGreve et al., 1982), firefly luciferase (Ow et al., 1 986), and E. coli / 3-¾-glucuronidase (GUS) (.Jefferson et al., 1987). Among the above seven reported genes, the plant itself produces lacz enzymes, and analysis of enzymes such as NOS, 0CS, and firefly luciferase is more troublesome. At present, the more popular CAT and NPT II dentin analysis also has the disadvantages of being expensive and difficult, and the esterase, phosphoesterase and transferase contained in the plant itself will compete with the CAT and NPT 1 substrates, so Relatively reduces the sensitivity of enzyme analysis (Gorman et al., 1982; Reiss et al., 1984) ° The GUS gene has been widely used as a reporter gene, although Hu et al. (1990) found it in the development of seed plants Both the fruit and immature seeds can measure the strong G US activity, but the G US analysis method is simple and quick to analyze. Please read the notes on the back first I- Binding line paper size is applicable to China National Standard Falcon (CNS) A4 Specifications (210 X 297 mm) 11 A7 B7 Printed by the Employees ’Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of invention (V» Acceptance of GUS (5-bromo-4-chloro-3-indolyl glucuronic acid Glycoside (X-gluc) is cheaper, GUS has good stability, and most plants have low GUS activity (j ef fers on, 1987) waiting, so the GUS gene is currently used as a report for higher plants Genetically optimal In view of the purpose &gt; ·-刖 ct-starch hydrolase has been widely used in industry, so 9 can be obtained in a large and simple way to produce this enzyme for the industry needs »It became necessary. Therefore, this case The inventors found that by causing the medium to lack sugar to induce the expression of the α-starch hydrolase gene, the above-mentioned giant can be achieved. Further, the gene expression of the α-starch hydrolase is used in a systematic manner under the condition of sugar deficiency Large amounts of other desired proteins integrated into the gene expression system can be obtained. Therefore, one purpose of this case is to provide a method for generating a large amount of α-starch hydrolase. Another purpose of this case is to provide a novel gene expression bar It is used to manufacture proteins for repatriation engineering for mass production of the desired protein. The present invention will be further illustrated with the following examples and accompanying drawings. However, as those skilled in the art understand, the following examples are only for Ye Describe the invention of this case, not to limit the invention. Materials and 77 Μ I. Screening of the ct-starch hydrolase gene from the rice genome DHA repository 1. Introduction to the rice genome DHA repository: 1. The rice genome DNA library used in this case was purchased from CLONTCH (cat »f FL 1040 D, Lot t »7081), the rice variety used is R 9 tiv ^ L • Japonica. Genome DNA is extracted from 7-day-old rice seedlings in the dark and then made into a genome DNA library. The size of this paper is in accordance with Chinese National Standard (CNS) Α4 specification (210X297mm) Please-read first, read the note binding line A7 B7 5. Invention description (/ P) 2. The stocking carrier of this repository is The EMBL-3 * colonization site is Bam HI, and the average DNA size of the selected colony is 15 kb. This DNA fragment can be isolated from phage DNA by the action of Bam HI or Sal I. 3. For the purpose of screening gene bank, the host bacteria of this EMBL-3 bank is Escherichia coli NM538 or LE 392, which can produce large plaques on the broccoli culture medium. 1.2 Method for screening α-starch hydrolase from the DNA bank of rice genome · &quot; 1. 2. 1. Preparation and infection of bacteriophage host bacteria: 1. Add 5ml LB liquid medium (per liter) to a 10ml test tube Contain 10g of NaCl, 10g of pancreatic gland, 5g of yeast extract), pick a single colony of E. coli NM538 with a toothpick into this test tube, shake it at 37 ° C and keep it for about 6 ~ 8 hours until the ODe &quot; value is 0.5 ~ 0.7. 2. Centrifuge at 3000 rpm for 10 minutes using a Sorvall RT6 000B centrifuge at 4 ° C, and dissolve the precipitated bacterial bodies with ice-cold 10 mM MgSO * (add 3 ml of MgS〇4 per 10 ml of bacterial cell precipitate to dissolve ), Store it at 4 ° C for future use (about one week for the Ministry of Economic Affairs, Central Standards Bureau, Beigong Consumer Co., Ltd. Du Printing 3. Dissolve 80ml of Top agar in a wave oven (plus XlM per liter of LB liquid medium) MgS〇4 10ml, 10N NaOH 0.2ml, agar 8g), divide it into 8 tubes, each containing 9m 1 of Top agar, and keep it in a water bath at 46 ° C. 4. Transfer 6m1 of rice gene Group storage (potency 2x104 / jU) and the prepared 2. 4ml NM538 bacterial solution are thoroughly mixed, and cultured in 37t for 15 ~ 20 minutes. '5 · Take 300ra 1 of the mixed bacterial solution in sequence, add this The size of the paper in the 8-tube Top agar applies the Chinese National Standard (CNS) 84 specifications (210 X 297 mm) 321685 A7 ____B7___ printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economy V. Description of invention (//) Cover tightly Cover the test tube, then shake up and down to mix thoroughly, and quickly pour into a large petri dish (diameter 14cm) pre-warmed at 37 ° C ) On the solid medium (1 liter of LB liquid medium plus 15g agar), wait for Top agar to coagulate, and then put the 48-value petri dish upside down in the 37 υ incubator for overnight cultivation, the next day you will see densely covered plaques. 1.2.2 .Transfer the DNA in the lysate to the nitrocellulose filter paper: • 1. Prepare 3-value shallow plates, each with a Whatman 3M filter paper on top, and three shallow plate filter papers with denaturing solution (0.5M NaOH + 1.5M NaCl), neutralizing solution (4.5M NaCl + l.OM Tris-HCl, pH 8.0) and 2xSSC (each containing 17.5g NaCl and 8.8g sodium acetate) are fully moistened. Wet it. 2. On the base fiber Mark the surface of the (NC) filter paper with a signature pen, and gently cover the solid medium covered with plaque B with the mark face down, and then use a pin to place asymmetrical points on the medium to pick plaque pairs in the future. Suitable for use 3. Slowly tear the NC filter paper from the culture medium, with the mark side facing up, place it on the denaturing solution for 5 minutes, then transfer to the neutralizing solution for 5 minutes, and finally react in 2xSSC for 2 minutes. 4 . Put the NC filter paper on the 3MM filter paper, let it dry, and then bake it in the 80 ° C oven for 2 hours. 1. 2. 3 .Use probe hybridization to select "-starch hydrolysis ... Enzyme gene: 1.2.3.1. Agar colloid recovery DNA (Maniatis et al., 1989):" 1. Rice α-starch hydrolase cDNA pure RMAYC30 (Tzou, 1990) | Binding (please read the notes on the back first and fill in this page) (This paper size is applicable to China National Standard (CNS) A4 specification (210 X 297mm) -14-A7 B7 Ministry of Economic Affairs Printed by the Beigong Consumer Cooperative of the Central Bureau of Standards 5. Description of the invention (/ &gt;) After the restriction enzyme EcoR I is applied, a loading buffer of 0.15 times the volume (0.25¾ bromophenol blue, 0.25% 2%) is added Toluidine (cyanol), 30¾ glycerin). 2. Using agar colloid (0.8¾ agar gelatin) in TBE buffer (0.089M Tris, 0.089M boric acid, 0.002M EDTA), electrophoresis is performed at a voltage of 100 volts. • 3. The electrophoretic colloid is stained with ethidium bromide '&quot; placed under a long-wavelength (300-360nm) UV lamp to determine the position of the desired DNA fragment, and the colloid together with DNA is cut off with a blade. 4. Put the colloid in an appropriate dialysis bag and fill it with 1 X ΓΒ E buffer solution to clamp the dialysis bag and clamp the two ends of the bag | to avoid the generation of air bubbles, lay it flat in the mud bath, and the electrophoresis solution in the tank must be Cover this bag too. 5. Electrophoresis at 100V for about 1, 5 ~ 2 hours. Look at the DNA under the UV lamp. If you have run out of the colloid and enter the solution in the bag, if you put it back in the electrophoresis tank, run it with the opposite electrode for about 2 minutes. 6. Carefully recover the liquid skull in the bag, and extract once with phenol and gas imitation. Add 0.1 volume of sodium acetate and equal amount of isopropyl (IPA), mix well, and place at -20 ° C for at least 2 hours. 7. Centrifuge at 4 ° C and 14000 rpra for 30 minutes, discard the supernatant, wash once with 70¾ and 100Γ alcohol respectively, and dry the DNA by vacuum centrifugation. 8: Add appropriate TE buffer to dissolve the dried DNA. 1. 2. 3. 2. Preparation of the probe: '1.2.3.2.1. Random mode selling method ("611 ^ 6" 8 &amp; ¥ 〇 口 6151 ^ 1 | 1,1983.): (Please read the back first Note for isC to fill out this page) • Install. -The paper size of the binding book is applicable to the Chinese National Standard Falcon (CNS) A4 specification (210X 297 mm) A7 B7 printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. /;) 1. Take 100 ~ 200ng of DNA, add sterilized deionized water to make the volume 5. Then heat it at 100 ° C for 3 minutes and quickly insert it into ice to make it cool rapidly. 2. Add ljitl BSA (10iUg / wl), 1.5ul hexamer (25ng / iil), lOwl 2.5x reaction buffer (0.5M Hepes, PH 6.6; 12.5mM MgCla; 25ntM / 3-propyl alcohol) ; 125 mM Tris, pH 8.0, 50 mM dATP, 50 mM dGTP, 50 mM dTTP), 5 u 1 [a-3 2 P] d CTP (1 0 nci / * 11, 1 M 1 K 1 e η ow enzyme) (BRL, 5 units / ill) mixed evenly. 3. Stand at room temperature and react for at least 2 hours. 4. Add TE buffer to increase the volume by 200ul. 5. Extract once with vinegar and acetone. Add 20m1 Ha0Ac, 3wl tRHA (20Mg / jal), 200m1 IPA, Mix well and place at -20 ° C for at least 2 hours.

6. 在14000rpm下離心20分鐘,將上層液吸掉,沈澱的 探針DNA以75¾酒精洗兩次*再利用真空離心將DNA 乾燥。 7 .取5ίΐ 1的探針溶液,利用閃爍計數器測其cpm以估 計雜交時所需的探針溶液量。 探針溶液量U1)= 2〜5xl05cpm/ml X雜交反應溶液體積(ml) +探針 1容液放射量(c p m / μ 1) 1 . 2 . 3 . 2 . 2 .活體外轉訊作用法(Me 1 ton et a 1 . , 19δ4): _ ' 1 .此方法偽以pB luescr ipt H KS (+/-)為載體,利用 本紙張尺度適用t國國家標準(CNS)八4規格(210X 297公釐)-16 - I I I 裝 I I I I I 訂— I I I 線 (請先閱讀背面之注意事h填寫本頁) ( 經濟部中央標準局員工消費合作社印製 A7 ______B7_ 五、發明説明(//) 其包含有T7啓動子與T3啓動子的持性,在試管中加 入T7 RNA聚合酶或T3 RNA聚合酶以製造單股的反意 RHA為探針。在本實驗中傜利用此反應來製備待定 基因探針(Tzou, 1990)以便篩選水稻的澱粉水 解酶基因的啓動子及確定四種澱粉水解酶cDN A (RAMYC26、RAMYC27、RAMYC28、及 RAMYC30)是否可 能源自於我們所分離的α -澱粉水解酶基因群DNA。 2·取約200〜300ng的DNA,加入DEPC HaO使體積成為6 wi,再加入5itl 5x轉譯缓衝液、lwl 10mM rATP、1 wl 10mM rCTP、U1 ΙΟιηΜ rGTP、2m1 ImM r*UTP、1 Ml. 0.75M DTT 、 U 1 RNase-b lock (40U/m1 RNas in) 、C2iil 酵母 t-RNA (1〇u1/m1)、5/ul a - 32P_UTP (A m e r s h a m,1 0 m c i / ii 1)、1 M 1 T 7 或 T 3 R N A 聚合酶, 混合均勻後,於37 TC下反應45分鐘。 3.加入 20ul DEPC Η2〇、5μ1 DNase I缓衝液(l〇x)、 0.5mI DNase I (23u/;ul),混合均勻後,於37°C 下 反應15分鐘。 4 .同方法1 · 2.3.2 . 1.步驟的5、6、7。 1. 2 . 3 . 3 .探針雜交: 1 .將烘乾後的NC濾紙浸潤在5xSSC中。 2.將此NC濾紙轉移至裝有適量預雜交溶液(50¾甲醯胺, —0.75M NaCl, 50mM Tris,ΡΗ7·5, 0.1% Na4P2〇7, 1¾ SDS, ImM EDTA, lx Denhardt’s溶液,0.1mg/ml ' 鮭魚精子DNA.)的玻璃皿中。預雜交溶液(ml ) = (0.04 本紙張尺度適用中國國家標隼(CNS〉A4規格(210X 297公釐) I n 裝 I I I -—訂 I I I —線 (請先閱讀背面之注意事&quot;-/填寫本頁) 一 經濟部中央標準局員工消费合作社印裝 五、發明説明(/,) ml/cra2x每片NC濾紙的面積(cm2)xNC濾紙的數目&gt;。 鮭魚精子DNA需先加熱至100 °C歷時5分鐘,然後迅 速放入冰中使DNA雙股分開後才可使用。 3 .置於42 定溫箱中振盪反應3小時。 4 .將含α -澱粉水解酶基因的探針加熱至1 〇〇 °C歷時3 分鐘(RNA探針是不需加熱),迅速插入冰中,待其 冷卻彳k,加入預雜交溶液内,混合均勻,再放回42 t定溫箱中反應過夜。 5.將雜交反應溶液倒掉,以洗滌液(0. lxSSC, 0. 1% SDS)於室溫中振盪清洗兩次,再於50 °C中振盪清洗 30.分鐘,利用蓋格計數器測其放射性的高低,若太 高则以55 °C或更高溫的洗滌液清洗30分鐘。 6 .將NC濾紙晾乾,然後在NC濾紙的四値不對稱點各點 上摻有微量(ct -35S)dATP的墨水,以便底片沖洗後 供作方位辨識參考。 1 . 2.4 澱粉水解酶基因群純株的純化: 1 .由前述的步驟初步得到具有雜交正反應的溶菌斑, 此溶菌斑即含有α-澱粉水解酶的基因。因為由曝 光的底片所得到的雜交反應圖可能涵蓋數艏溶菌斑 ,所以這些溶菌斑均需挖取以更進一步確定那一値 才是真正具有雜交正反應,但這些溶菌斑的噬菌體 …濃度可能太高*因此必需進行連續稀釋,再選擇適 當的濃度進行探針雜交。 一—-' 2 .經初步雜交後,以吸管尖端挖取雜交正反應點所含 ir 填寫本育) -裝· 訂 線 本紙張尺度適用中國國家標準(CNS &gt; A4規格(2H3X297公釐) 18 經濟部中央標準局員工消費合作社印裝 A7 ____B7_五、發明説明(/石) 蓋的溶菌斑,並與lml溶菌斑稀釋液(噬菌體稀釋缓 衝液)(20mM Tris-HCl, pH 7.5; lOOmM HaCl, 10mM MgSO*),20/il氣仿充分混合。 3 .在室溫中靜置2小時,使噬菌體從洋菜膠内擴散出 來,平均一痼溶菌斑大約有10 8〜1〇 7噬菌體顆粒。 4 .噬菌體的連續稀釋法:準備3値1.5m 1的小離心管, 各加又lOOOwl、180ul、90a1的噬菌體稀釋緩衝液 ,再由步驟2的噬菌體原液中取lwl與lOOOwl的噬菌 體稀釋液混合,即為10 - 3倍的噬菌體稀釋溶液,由 10 _ 3倍的溶液吸取20u I與ISOu I的稀釋液混合,即 為.稀釋10_4倍,再由其吸取10叫與90*11的稀釋液混 合運為稀釋1 (Γ 5倍*因此可得到10 — 3、10 -4、10 -3 的噬菌體稀釋溶液。 5. 分別取 ΙΟΟίΐΙ 的 NM 538菌液(0D600 = 0.5 〜0.7)到 3 値 .乾淨的eppendorf試管内,再分別吸取10-3、10-4 、:10-5倍的噬菌體稀釋液各lOOiil與菌液混合,於 37°C下培養15分鐘。 6. 取3個5ιβ1試管各加入3ml融解的Top瓊膠及30wl 1M MgCl 2,保溫於48TC的水浴中。 7. 將噬菌體及細菌的混合液與Top瓊膠混合均勻,快 速倒入預溫37_3C過的LB固體培養基(直徑9cm)上, 使均勻展開,俟Top瓊膠凝结後,在37 °C培養箱培 養過夜。 ' 8 ·重覆步驟1 . 2 . 2 .、1 · 2 · 3 .及1 . 2 · 4 .直到培養基上含 請先閲讀背面之注意事h 填寫本頁) 裝. 訂_ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -19- _______B7_ 五、發明説明(/^ ) α -澱粉水解酶基基因的溶菌斑僅由單一溶菌斑繁 衍而來為止。 H '分析水稻α -澱粉水解酶基因群純株: 2. 1 .噬菌體DNA的純化: 1. 將宿主細_^»1 538接種於lOral LB + Mg*2的液體培養 基(每升LB含lOiiil 1M MgS〇4),於37°C振盪培養過 夜。’ 2. 在500ml錐形瓶中加人100ml LB + Mg*2的培養基,再 與4ml培養過夜的宿主細菌及5〜10®同一來源的溶 菌斑(或500m1的噬菌體原液)混合,在37¾振盪培 養.過夜。 3 .培i養過夜的培養基將可見到被噬菌體融蝕的細菌屍 體,所以培養基稍呈澄清狀態,此時可加入各5/t 1 的DNase I (l〇ug/iil)及RNase (l〇Mg/iil),再於 37 -°C中振盪培養30分鐘。 4. 用 GSA rotor在 Sorvall RC 5C 型離心機中,於 4°C 及8000rpin下離心10分鐘,上層澄清液即為噬菌體 溶液。 經濟部中央標準局負工消费合作社印製 5. 在 Beckman 離心管中(Cat. No. 344058),加人 6ml cushion溶液(40¾甘油,20raM MgS〇4, 50mMNaCl, 10mM Tris-HCI, PH8.0),再慢慢注人噬菌體溶液, 待注諶距管口 0 . 5 c ai時即可。平衡後,以B e c k ma η Sw28 rotor, LB-M型超高速離心機於及27000rpm &quot; 下離心1 . 5小時。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐)-20 - 經濟部中央標準局負工消費合作社印製 A7 B7 五、發明説明(ΛΓ) 6 .離心後,倒掉上層液,倒拿離心管,以剪刀在管底 附近剪斷 '倒蓋離心管避免其他雜物污染。以1 1 ΝΤΕ缓衝液(300inM NaCl, lOOmM Tris-HCl,pH 8.0, ImM EDTA)溶解沈澱的噬菌體,再轉移到eppendorf 試管中,再以150m 1 ΝΤΕ缓衝液清殘留的噬菌體沈 澱一次。 -7.加入#量的酚萃取二次,再用氯仿萃取一次。 8. 加入3〇μ1 4.4Μ醋酸銨pH 5.2,350wl異丙醇,混合 均勻,便可見到噬菌體DNA的沈澱。再於4°C下,用 e p p e n d 〇 r f離心機以1 4 0 0 0 p r m離心5分鐘,.即能獲得 噬、菌體DNA。 9. 沈澱的噬菌體DMA以70¾酒精洗一次,再以100Γ酒精 洗一次,利用真空抽氣使DNA乾燥。 10.加入 4〇m1 TE 缓衝液(10mM Tris, ImM EDTA)溶解乾 燥的DNA,取U 1的DNA溶液進行限制的切割分析。 2.2.南方墨點法(Southern blot analysis): 1.噬®體DNA以限制酶作用後,加入0 . 1 5倍體的裝镇 (loading)缓衝液(0.25¾:溴酚藍、0.25¾二甲苯苯胺 、3 0 甘油)。 2 .利用瓊脂膠體(〇 · 8%瓊膠凝膠)於ΤΒΕ缓衝液(0 . 089Μ6. Centrifuge at 14000 rpm for 20 minutes, aspirate the supernatant, and wash the precipitated probe DNA twice with 75¾ alcohol * and then dry the DNA by vacuum centrifugation. 7. Take 5 μl of the probe solution and measure its cpm using a scintillation counter to estimate the amount of probe solution required for hybridization. Probe solution volume U1) = 2 ~ 5xl05cpm / ml X volume of hybridization reaction solution (ml) + probe 1 volume of liquid radiation (cpm / μ 1) 1 .2. 3. 2. 2. In vitro transduction method (Me 1 ton et a 1., 19δ4): _ '1. This method uses pB luescr ipt H KS (+/-) as a carrier, and uses the paper standard to apply the national standard (CNS) 84 specification (210X 297mm) -16-III Pack IIIII Book-Line III (please read the notes on the back first and fill in this page) (printed by the Ministry of Economic Affairs Bureau of Central Standards Staff Consumer Cooperative A7 ______B7_ V. Description of Invention (//) It contains There is the persistence of T7 promoter and T3 promoter, add T7 RNA polymerase or T3 RNA polymerase to the test tube to make single-stranded anti-intentional RHA as a probe. In this experiment, Wang used this reaction to prepare the pending gene probe Needle (Tzou, 1990) to screen the promoter of the starch hydrolase gene of rice and determine whether the four starch hydrolases cDN A (RAMYC26, RAMYC27, RAMYC28, and RAMYC30) may be derived from our isolated α-starch hydrolase Genome DNA. 2. Take about 200 ~ 300ng of DNA, add DEPC HaO to make the volume 6 wi, then add Into 5itl 5x translation buffer, lwl 10mM rATP, 1 wl 10mM rCTP, U1 ΙΟιηΜ rGTP, 2m1 ImM r * UTP, 1 Ml. 0.75M DTT, U 1 RNase-b lock (40U / m1 RNas in), C2iil yeast t -RNA (1〇u1 / m1), 5 / ul a-32P_UTP (A mersham, 10 mci / ii 1), 1 M 1 T 7 or T 3 RNA polymerase, after mixing, react at 37 TC for 45 3. Add 20ul DEPC Η2〇, 5μ1 DNase I buffer (l〇x), 0.5mI DNase I (23u /; ul), after mixing well, react at 37 ° C for 15 minutes. 4. Same method 1 · 2.3.2. 1. Steps 5, 6, and 7. 1. 2. 3. 3. Probe hybridization: 1. Soak the dried NC filter paper in 5xSSC. 2. Transfer the NC filter paper to the device With an appropriate amount of prehybridization solution (50¾ formamide, —0.75M NaCl, 50mM Tris, pH7.5, 0.1% Na4P207, 1¾ SDS, ImM EDTA, lx Denhardt's solution, 0.1mg / ml 'salmon sperm DNA.) In a glass dish. Pre-hybridization solution (ml) = (0.04 The paper size is applicable to China ’s national standard falcon (CNS> A4 specifications (210X 297 mm) I n Pack III--order III-line (please read the notes on the back &quot;-/ (Fill in this page) 1. Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of the invention (/,) ml / cra2x area of each piece of NC filter paper (cm2) x number of NC filter paper>. Salmon sperm DNA needs to be heated to 100 ° C for 5 minutes, then quickly put it in ice to separate the DNA double strands before use. 3. Place in a 42 constant temperature box and shake for 3 hours. 4. Heat the probe containing the α-starch hydrolase gene It takes 3 minutes to 100 ° C (the RNA probe does not need to be heated), quickly insert it into the ice, wait for it to cool down, add it to the pre-hybridization solution, mix well, and put it back into the 42 t constant temperature box to react overnight 5. Discard the hybridization reaction solution, wash twice with washing solution (0.1xSSC, 0.1% SDS) at room temperature, and then shake and wash at 50 ° C for 30 minutes, measure with Geiger counter The level of radioactivity, if it is too high, wash with a washing liquid at 55 ° C or higher for 30 minutes. 6. Dry the NC filter paper, and then mix a small amount of (ct -35S) dATP ink on each of the four asymmetric points of the NC filter paper, so that the negative film can be used for reference for orientation identification after washing. 1. 2.4 Pure strain of starch hydrolase gene group Purification of: 1. Initially obtain the lysate with positive hybridization reaction from the previous steps, which contains the gene of α-starch hydrolase. Because the hybridization reaction map obtained from the exposed negative film may cover several plaque lysates, So these plaques need to be excavated to further determine which value is the real positive hybridization reaction, but the bacteriophage of these plaques ... The concentration may be too high * Therefore, serial dilution is necessary, and then select the appropriate concentration for probe hybridization ——- '2. After preliminary hybridization, use the tip of a pipette to dig out the ir contained in the positive reaction point of the hybridization to fill in this education)-The paper size of the binding and binding book is applicable to the Chinese National Standard (CNS> A4 specification (2H3X297mm ) 18 A7 ____B7_ printed by the Consumers ’Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs V. Description of the invention (/ stone) The plaque covered with lysate and 1 ml of plaque dilution (phage dilution buffer) (20 mM Tris-HCl, pH 7.5; 100 mM HaCl, 10 mM MgSO *), 20 / il gas imitate and mix thoroughly. 3. Let stand at room temperature for 2 hours to diffuse the bacteriophage out of the gelatin, averagely dissolving bacteria The plaques have about 10 8 ~ 107 phage particles. 4. Serial dilution method of phage: prepare 3 small 1.5m 1 centrifuge tubes, add 100wl, 180ul, 90a1 phage dilution buffer each, and then proceed to step 2 The phage stock solution is mixed with lwl and lOOwl phage dilution, which is 10-3 times the phage dilution solution, from 10 _ 3 times the solution to absorb 20u I and ISOu I dilution mixture, that is. Diluted 10_ 4 times, then It draws 10 and mixes with 90 * 11 of the diluent to make a dilution of 1 (Γ 5 times *), so 10-3, 10-4, and 10-3 phage dilution solutions can be obtained. 5. Take ΙΟΟίΙΙ of NM 538 bacterial solution (0D600 = 0.5 ~ 0.7) to 3 units. In a clean eppendorf test tube, then pipette 10-3, 10-4, and 10-5 times of phage dilutions of 100iil and The bacterial solution was mixed and incubated at 37 ° C for 15 minutes. 6. Take three 5ιβ1 test tubes and add 3ml of melted Top agar and 30wl 1M MgCl 2 respectively, and keep them in a 48TC water bath. 7. Mix the phage and bacteria mixture with Top agar evenly, and quickly pour it on the pre-warmed 37_3C LB solid medium (diameter 9cm) to spread it evenly. After Top agar has coagulated, incubate in a 37 ° C incubator Incubate overnight. '8 · Repeat steps 1. 2. 2., 1 · 2 · 3. And 1. 2 · 4. Until the medium contains, please read the notes on the back first h fill in this page) Pack. Order_ This paper size is applicable China National Standard (CNS) A4 specification (210X297mm) -19- ________B7_ V. Description of the invention (/ ^) The plaques of the α-starch hydrolase-based gene are reproduced only from a single plaque. H 'analysis of pure strains of rice α-starch hydrolase gene group: 2. 1. Purification of bacteriophage DNA: 1. Inoculate the host fine _ ^ »1 538 into lOral LB + Mg * 2 liquid medium (lOiiil per liter of LB) 1M MgS〇4), shaking culture at 37 ° C overnight. '2. Add 100ml of LB + Mg * 2 medium to 500ml Erlenmeyer flask, and then mix with 4ml of overnight host bacteria and 5 ~ 10® plaques from the same source (or 500m1 phage stock solution), shake at 37¾ Cultivate. Overnight. 3. The culture medium cultured overnight can see the corpses of bacteria eroded by the phage, so the culture medium is slightly clear, at this time, 5 / t 1 of DNase I (l〇ug / iil) and RNase (l〇 Mg / iil), and then incubated at 37- ° C with shaking for 30 minutes. 4. Centrifuge the Sorvall RC 5C centrifuge with a GSA rotor at 4 ° C and 8000rpin for 10 minutes. The upper clear solution is the phage solution. Printed by the Consumer Labor Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. In a Beckman centrifuge tube (Cat. No. 344058), add 6 ml cushion solution (40¾ glycerol, 20raM MgS〇4, 50mMNaCl, 10mM Tris-HCI, PH8.0 ), Then slowly inject the human phage solution until the injection is 0.5 c ai away from the nozzle. After equilibration, centrifuge for 1.5 hours at 27000rpm using a Beckma η Sw28 rotor, LB-M ultra-high-speed centrifuge. This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) -20-A7 B7 printed by the Negative Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of the invention (ΛΓ) 6. After centrifugation, discard the supernatant Then, take the centrifuge tube upside down and cut it with scissors near the bottom of the tube. Invert the centrifuge tube to avoid other debris contamination. Dissolve the precipitated phage in 1 1 NTE buffer (300 inM NaCl, 100 mM Tris-HCl, pH 8.0, 1 mM EDTA), and then transfer it to an eppendorf test tube, and then deposit the remaining phage in 150 m 1 NTE buffer to precipitate once. -7. Add # amount of phenol to extract twice, and then extract once with chloroform. 8. Add 30μ1 4.4M ammonium acetate pH 5.2, 350wl isopropanol, mix well, and then the precipitation of phage DNA can be seen. Then, centrifuge at 1 4 0 0 0 p r m for 5 minutes at 4 ° C with an e p p e n d 0 r f centrifuge, that is, phagocytic and bacterial DNA can be obtained. 9. The precipitated phage DMA was washed once with 70¾ alcohol and then with 100Γ alcohol, and the DNA was dried by vacuum suction. 10. Add 40ml TE buffer (10mM Tris, ImM EDTA) to dissolve the dried DNA, take U1 DNA solution for restricted cleavage analysis. 2.2. Southern blot analysis: 1. After the effect of phage DNA with restriction enzymes, add a loading buffer of 0.15-fold (0.25¾: bromophenol blue, 0.25¾ Toluidine, 30 glycerol). 2. Use agar colloid (0.8% agar gel) in TBE buffer (0.089M

Tris, 0.089Μ硼酸,0.002Μ EDTA)中,以 1〇〇伏特 電壓進行電泳。 3 .電泳後,瓊脂膠體經由溴化乙錠染色,在U V燈下照 一 ·. 相。 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) 21 I I I I J —裝 I I 訂 I I n (請先閱讀背面之注意事ΐ/-r填寫本頁) ( 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(/f) 4 .瓊脂膠體以變性溶液在室溫下振盪浸泡約1小時, 再用中和溶液振盪泡1小時。 5.將壓克力板作成的橋倒蓋於一淺盤上,上面覆一張 3MM濾紙,使伸展於橋之下,以便能吸取淺盤内的 溶液。再於其上蓋一張與該橋相同大小的3MM濾紙 ,在濾紙上先倒一些lOxSSC溶液使濾紙濕潤,然後 將膠體平放在濾紙上面,以預先在lOxSSC中濕潤過 '的基因篩析膜平蓋在膠體之上,去除任何氣泡,再 於上面覆蓋二張以lOxSSC濕潤的3MM濾紙。 δ.將適量的lOxSSC溶液倒入淺盤中,在橋面的四週膠 • 體^未覆蓋到的部位以二層保潔膜覆蓋,然後在膠體 之山的濾紙上再置放一叠吸水紙,最上面再以書本 輕壓過夜。 7. 取出基因篩析膜,置於80 Ό烘箱内供烤2小時》 8. 將烘烤後的基因篩析膜裝於雜交袋中加入2xSSC溶 液來濕潤基因篩析膜。擠出多餘的2xSSC溶液後, 加入適量的預雜交溶液,於42 C中振盪反應3小時。 9 .其於步驟請參考前述之步驟1.2.3.3.。 2·3.水稻α -澱粉水解酶基因群DHA片段的選殖: 2.3.1.製備適當的細胞(competent cell)(大腸桿菌XL 1-Β 菌株): 1 :挑取XL1-B的單一菌落並接種於5ml LB液體培養基 *於3 7 °C振盪培養過夜。 2 .將5m 1的菌液倒入500m 1的LB培養基,在37 3C振盪培 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210Χ297公釐) (請先聞讀背面之注意事項再填寫本頁) .裝·Tris, 0.089M boric acid, 0.002M EDTA), electrophoresis was carried out at 100 volts. 3. After electrophoresis, the agar colloid is stained with ethidium bromide, and the phase is illuminated under UV light. This paper scale is applicable to the Chinese National Standard (CNS) Α4 specification (210X 297mm) 21 IIIIJ-Pack II Order II n (please read the notes on the back first // r fill in this page) (Employee consumption of the Central Standards Bureau of the Ministry of Economic Affairs A7 B7 printed by the cooperative. V. Description of the invention (/ f) 4. The agar colloid is immersed in a denaturing solution at room temperature for about 1 hour, and then the neutralizing solution is used for 1 hour. 5. Bridge made of acrylic plate Cover the tray with a 3MM filter paper so that it can stretch under the bridge so that it can absorb the solution in the tray. Then cover it with a 3MM filter paper of the same size as the bridge, first on the filter paper Pour some lOxSSC solution to moisten the filter paper, and then put the colloid flat on the filter paper. The gene sieve membrane that has been wetted in lOxSSC in advance is flatly covered on the colloid to remove any air bubbles. Then cover it with two sheets to moisten with lOxSSC 3MM filter paper. Δ. Pour the appropriate amount of lOxSSC solution into the shallow dish, and cover the area around the bridge with the two layers of cleaning film, and then put another one on the filter paper of the mountain of colloid. Stack the absorbent paper, then top with the book Lightly press overnight. 7. Take out the gene sieve membrane and place it in an 80 Ό oven for 2 hours. 8. Put the baked gene sieve membrane in a hybridization bag and add 2xSSC solution to wet the gene sieve membrane. After squeezing out the excess 2xSSC solution, add an appropriate amount of prehybridization solution and shake the reaction at 42 C for 3 hours. 9. For the steps, please refer to the previous step 1.2.3.3 .. 2 · 3. Rice α-starch hydrolase gene Colonization of group DHA fragments: 2.3.1. Preparation of appropriate cells (E. coli XL 1-B strain): 1: Pick single colonies of XL1-B and inoculate in 5 ml of LB liquid medium * on 3 7 Cultivate overnight at ° C. 2. Pour 5m 1 of bacterial solution into 500m 1 of LB medium, shake at 37 3C to culture the paper. The paper scale is applicable to China National Standards (CNS) Λ4 specification (210Χ297mm) (please read the back first (Please fill out this page again).

*1T 321685 A7 ______B7___ 五、發明説明(&gt;〇 ) 養至 0D55〇=0.35 〜0.5。 3.於4°C及5000rF&gt;m下離心5分鐘。 4 .倒棄上清液,將離心管置於水浴中,以200m 1冰冷 的〇· 1M MgCU容解沈澱的菌體。 5. 在5000轉下離心5分鐘,以200ml冰冷的0.1M CaCla 溶解®體,置於冰浴中20分鐘後再以5000轉離心5 分鐘。 6. 加入43ml冰冷的0.1M CaCla來溶解菌體,再加入7ml 預冷過的甘油,於冰浴中混合均勻。 7·將菌液分裝於Eppendorf試管内,並置於液態氮内 急.速冷凍再保存於-70 t冰箱内。 2.3.2.接合反應: 2.3.2.1線性質體DNA的去磷作用: 1. 利用單一限制酶,將lOwg的質體pBluescriptl KS ,( + /,)(Stratagene)切開,加入TE缓衝液使體積成 為 lOOul。 2. 根據瓊脂膠體回收DNA的方法(第1.2.1.1.節的步驟 6、f、8)可以再得到純化的線性質體DNA。 經濟部中央標準局貝工消費合作社印製 3. 加入20ul TE缓.衝液來溶解DNA,再加入2單位的CIAP (小牛腸鹼性磷脂酶)及2w I 10xC IAP去磷酸作用缓 衝液(10mM ZnCI2, 10mM MgCI2, 100mM Tris),於 37T:下培養30分鐘。 4 .同步驟2。 5 .再重覆步驟3及2各一次。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部中央揉準局員工消费合作社印製 A7 B7 五、發明説明(&gt;/) 6 .加入20m 1 TE緩衝液以溶解去磷酸化的質體DN A,保 存於4 °C中。 2.3.2.2.黏頭端DN A的接合: 1 .請參考瓊脂膠體回收DN A的方法(第1.2.3 . 1.節的步 驟1、2、3)。但膠體的製備改為低融點的Nusieve 瓊膠(FMC, # 10259),且毎lOOial瓊脂膠體加入5ul 的溴化乙錄(10ug/wl)。 &quot; 2 .在ϋ V燈光上,將DH A的膠體切下,置於68 °C水浴中1 0分鐘,使膠體融解再保溫於37 °C水浴中。 3.取20.5W1 DNA,加入〇.5ul去碟酸化的質體DNA(0.2 Mg/iil),6杜1 5xT4 DNA接合酶缓衝液(lOOmM Tris, 25®M MgCl2, 25raM DTT, 250,ug/ul BSA) * 3wl T4 DNA接合酶(1單位/ *il)。 4 .於1 6 °C水浴中反應過夜。 2 . 3 . 2 . 3 .齊頭DNA的接合: 1 .利用瓊脂膠體回收DNA的方法得到純化的黏端末端 的 D N A 〇 2. 敗40ul DNA,加入 2m1 2mM dNTP mix, 3/il Uenow 酵素(5n/wl),5m1 l〇x斷 口轉譯緩衝液(0.5M Tr is, 0.1M MgS〇4, lmM DTT, 500iig/ml BSA),混合均勻 ,於室溫中反應30分鐘,即能將DNA的黏頭補成齊 _頭端。 3. 加入2ul 0.5M EDTA,再以酚及氯仿各萃取一次, ^ / 重覆瓊脂_體回收DN A的方法(第1 . 2 . 3 . 1 .節的步驟 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 24 I---^-----7~裝------訂------線 (請先閱讀背面之注意事項P填寫本頁) ( 321685 A7 B7 _ 五、發明説明(&gt;兮 6 &gt; 7 &gt; 8) ° 4.取43.5til DNA,加入0.5m1齊頭末端的質體DNA(0.2 wg/ul),10wl 5x T4 DNA接合酶缓衝液,6*il T4 DNA接合酶(ul/ml)。 5 .於16 t:水浴中反應過夜。 2.3.3.細菌的轉殖作用: • 1.水稻α -澱粉水解酶基因群DNA片段與質體DNA接合 反應過夜後,如傺在低融點的膠體中反應,則將其 加熱68 °C 5分鐘,再保溫於37 °C水浴中。 2.加入200jul適當的細胞(XU-Blue),置於冰浴中30 分·,鐘。 3 .迅嬅放入42 °C水浴中3分鐘。 4. 加入IOOmI LB培養基,於37°C振盪培養30分鐘至1 小時。 5. 在含有安比西林(5〇Mg/ml)的LB固體培養基中各塗 以 75ul X-sal (2%, 5-溴-4-氯-3-蚓跺基-/3-D-H 比 喃半乳糖苷及l〇wl IPTG (100mM異丙基-;S-D-硫-吡喃半乳糖苷),靜置於無菌操作台1 5分鐘以上。 6. 將菌液塗在含有X-Gal及IPTG的LB固體培養基上, 於37 °C培養過夜。 2.4.純化細菌質體0以: 2.4 . 1. _小量純化法: 1 .挑取單一菌落培養於5 m 1 L B + A m p ( 5 0 w g / Μ 1 )的液體 —· _ 培養基於,37 1C振盪培養過夜。 本纸張尺度適用t國國家標準(CNS ) Α4規格(210X 297公釐〉-25 - ---------「裝------訂------線 (請先閲讀背面之注意事項〆填寫本頁) 經濟部中央標準局貝工消費合作社印褽 A7 B7 經濟部中央標準局貝工消費合作社印裝 五、發明説明( &gt;刃 2. 吸取1.51111的®液到eppendorf試管内,並在4°C及 14000rpm下離心3分鐘。 3. 吸掉上清液•以lOOul新鮮配製冰冷的溶液I (50mM 葡萄糖,lOraM EDTA, 25nM Tris-Cl, 4mg/ml 溶解 酶)來溶解沈澱的菌體,混合均勻,於室溫下反應5 分鐘。 • 4.加入200ul新鮮配製的溶液H (0.2M NaOH, 1% SDS) '混合均勻,在冰浴中反應10分鐘。 5. 加入 150jil冰冷的溶液 I (5M CHaCOOK, pH4. 8),混 合均勻,在冰浴中反應10分鐘。 6. 於4°C及14000rpm下離心10分鐘。 7 .吸取上清液各以酚及氣仿萃取一次,加入等量的異 丙酵,置於-20 °C冰箱中至少1小時。 8. 於4°C及14000rpm下離心30分鐘,倒掉上清液,各 以70¾及100¾酒精洗一次,利用真空離心使DNA乾燥 Ο 9. 加入16.8wl TE緩衝液來溶解DN)。 10 .苕此DNA俗做為DKA序列分析之用,則再加入3 . 2u 1 5M NaCl, 20m1 13¾ PEG (8000),混合後置於冰浴 中至少3 0分鐘。 11.重覆步驟8,取16iil TE缓衝液來溶解DN A,保存於 ' 4 °C中以備D N A序列分析之用。 2 . 4.2 .大量純化法: • 1 .對5 m 1培養過夜的菌液,加入2 5 0 m 1含安比西林(5.〇 1背面之|事項( 攻寫本頁) 裝.* 1T 321685 A7 ______B7___ 5. Description of the invention (&gt; 〇) Raised to 0D55〇 = 0.35 ~ 0.5. 3. Centrifuge for 5 minutes at 4 ° C and 5000rF> m. 4. Discard the supernatant, place the centrifuge tube in a water bath, and dissolve the precipitated bacteria with 200 ml of ice-cold 0.1M MgCU. 5. Centrifuge at 5000 rpm for 5 minutes, dissolve with 200 ml of ice-cold 0.1M CaCla®, place in an ice bath for 20 minutes, and then centrifuge at 5000 rpm for 5 minutes. 6. Add 43ml of ice-cold 0.1M CaCla to dissolve the bacteria, then add 7ml of pre-chilled glycerin and mix well in the ice bath. 7. Separately pack the bacterial solution in Eppendorf test tubes and place in liquid nitrogen. Quickly freeze and store in -70 t refrigerator. 2.3.2. Conjugation reaction: 2.3.2.1 Dephosphorylation of linear DNA: 1. Using a single restriction enzyme, cut lOwg pBluescriptl KS, (+ /,) (Stratagene), and add TE buffer to make the volume Become 100ul. 2. According to the method of recovering DNA by agar colloid (steps 6, f, 8 in Section 1.2.1.1.), Purified linear DNA can be obtained again. Printed by Beigong Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 3. Add 20ul TE buffer to dissolve the DNA, then add 2 units of CIAP (calf intestinal alkaline phospholipase) and 2w I 10xC IAP dephosphorylation buffer (10mM ZnCI2 , 10mM MgCI2, 100mM Tris), incubated at 37T: 30 minutes. 4. Same as step 2. 5. Repeat steps 3 and 2 again. This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm). The A7 B7 is printed by the Employee Consumer Cooperative of the Central Bureau of Economic Development of the Ministry of Economic Affairs. 5. Description of the invention (&gt; /) 6. Add 20m 1 TE buffer to dissolve Phosphorylated plastids DNA, stored at 4 ° C. 2.3.2.2. Joining of DNA at the adhesive head: 1. Please refer to the method of recovering DNA from agar colloid (Section 1.2.3. 1. Steps 1, 2, 3). However, the preparation of the colloid was changed to Nusieve agar with a low melting point (FMC, # 10259), and 5 ul of ethyl bromide (10ug / wl) was added to each 100ial agar colloid. &quot; 2. On the ϋ V light, cut the colloid of DH A and place it in a water bath at 68 ° C for 10 minutes to melt the colloid and keep it in a water bath at 37 ° C. 3. Take 20.5W1 DNA, add 0.5ul of dish acidified plastid DNA (0.2 Mg / iil), 6 Du 1 5xT4 DNA ligase buffer (100 mM Tris, 25®M MgCl2, 25raM DTT, 250, ug / ul BSA) * 3wl T4 DNA ligase (1 unit / * il). 4. React overnight in a 16 ° C water bath. 2. 3. 2. 3. Conjugation of homogenous DNA: 1. Use agar colloid to recover DNA to obtain purified DNA at the end of the sticky end 〇2. Fail 40ul DNA, add 2m1 2mM dNTP mix, 3 / il Uenow enzyme (5n / wl), 5m1 l〇x fracture translation buffer (0.5M Tr is, 0.1M MgS〇4, 1mM DTT, 500iig / ml BSA), mix well, and react at room temperature for 30 minutes Make up the head _ head end. 3. Add 2ul 0.5M EDTA, and then extract once with phenol and chloroform, ^ / repeated agar_body recovery method of DNA (Section 1.2.3.1. The steps in this paper are applicable to Chinese national standards (CNS) A4 specification (210X297mm) 24 I --- ^ ----- 7 ~ install ------ order ------ line (please read the precautions on the back first P fill this page ) (321685 A7 B7 _ V. Description of the invention (&gt; xi 6 &gt; 7 &gt; 8) ° 4. Take 43.5til DNA, add 0.5m1 blunt end plastid DNA (0.2 wg / ul), 10wl 5x T4 DNA ligase buffer, 6 * il T4 DNA ligase (ul / ml). 5. Reaction at 16 t: overnight in water bath. 2.3.3. Transplantation of bacteria: • 1. Rice α-starch hydrolase gene After the group DNA fragment and plastid DNA were conjugated and reacted overnight, if it reacted in a low-melting point colloid, it was heated at 68 ° C for 5 minutes, and then incubated in a 37 ° C water bath. 2. Add 200jul of appropriate cells ( XU-Blue), placed in an ice bath for 30 minutes, 3 minutes. 3. Quickly put in a 42 ° C water bath for 3 minutes. 4. Add IOOmI LB medium, shake at 37 ° C for 30 minutes to 1 hour. 5 . Cultured in LB solids containing ampicillin (50 mg / ml) Each base is coated with 75ul X-sal (2%, 5-bromo-4-chloro-3-worm-yl- / 3-DH galactoside and l0wl IPTG (100mM isopropyl-; SD- Thio-galactopyranoside), and leave it on a sterile operating table for more than 15 minutes. 6. Spread the bacterial solution on LB solid medium containing X-Gal and IPTG and incubate at 37 ° C overnight. 2.4. Purify bacteria Plastid 0: 2.4. 1. _Small purification method: 1. Pick a single colony and cultivate it in a liquid of 5 m 1 LB + A mp (5 0 wg / Μ 1) — Culture based on, 37 1C shaking culture Overnight. This paper scale is applicable to the national standard (CNS) Α4 specification (210X 297mm) -25---------- "installed ----- ordered ----- line (Please read the precautions on the back first 〆fill this page) Ministry of Economic Affairs Central Standards Bureau Beigong Consumer Cooperative Printed A7 B7 Ministry of Economic Affairs Central Standards Bureau Beigong Consumer Cooperative Printed 5. Invention Description (&gt; Blade 2. Draw 1.51111 ® solution into an eppendorf test tube and centrifuge at 14000 rpm for 3 minutes at 4 ° C. 3. Aspirate the supernatant • Prepare ice-cold solution I (50mM glucose, lOraM EDTA, 25nM Tris-Cl, 4mg / ml) with 100ul Dissolve enzyme) to dissolve the precipitate Cells, mixed, reacted at room temperature for 5 minutes. • 4. Add 200ul of freshly prepared solution H (0.2M NaOH, 1% SDS) 'to mix well, and react in an ice bath for 10 minutes. 5. Add 150jil of ice-cold solution I (5M CHaCOOK, pH 4.8), mix well, and react in an ice bath for 10 minutes. 6. Centrifuge at 4 ° C and 14000 rpm for 10 minutes. 7. Aspirate the supernatant and extract once with phenol and aeroform, add equal amount of isopropanase, and place in -20 ° C refrigerator for at least 1 hour. 8. Centrifuge at 4 ° C and 14000 rpm for 30 minutes, discard the supernatant, wash once with 70¾ and 100¾ alcohol respectively, and dry the DNA by vacuum centrifugation. 9. Add 16.8wl TE buffer to dissolve DN). 10. This DNA is commonly used for DKA sequence analysis, then add 3.2 u 1 5M NaCl, 20m1 13¾ PEG (8000), mix and place in an ice bath for at least 30 minutes. 11. Repeat step 8 and take 16iil TE buffer to dissolve DNA and store at 4 ° C for D N A sequence analysis. 2. 4.2. Large-scale purification method: • 1. For 5 m 1 of the bacterial solution cultured overnight, add 2 50 m 1 containing ampicillin (5.0.1 on the back | matters (write this page) for installation.

、1T 線· 本纸張尺度適用中國國家標準(CNS ) Α4規格(210 X 297公釐) A7 B7 五、發明説明(&gt;么) 經濟部中央標準局貝工消費合作社印製 wg/ml)的2χΥΤ培養基(每升含細菌胰蛋白腺16g、酵 母抽出物10g、 NaCl 5g、 ION HaOH 0.5ml)中,在 37°C振盪培養過夜。 2.以GAS rotor在4°C下以5000rpm離心5分鐘。 3·倒棄上清液,加入5ml溶液I (25mM Tris-Cl,10mM EDTA,15% Sucrose,2mg/mU容解酶)來溶解菌體, 將菌體轉移到40ml的Oakridge試管内,於冰浴中反 應20分鐘。 4. 加入 9.5ml 溶液]I (0.2M NaOH, 1¾ SDS),輕輕上下 搖動離心管使其混合均勻,在冰浴中反應1 0分鐘。 5. 加,入 7.5ral 溶液 H (3M CHaCOONa,pH 4.8)輕輕混合 均勻,置於冰浴中20分鐘。 6. 於SS34 rotor中用12000rpm離心30分鐘。利用二層 纱布或一層mi rac loth過濾上清液,加入等量的異 丙醇,置於-20 °C冰箱中至少2小時。 7. 以12000rpm離心30分鐘,倒棄上清液,沈澱的DNA 以100¾酒精洗一次,利用真空抽氣乾燥DNA。 8. 以4.2ml TE缓衝液來溶解DNA,加入5ul RHase (10 mg/ml)於37°C靜置20分鐘。 9 .加入4.5s CsC 1,輕輕搖動使其完全溶解,然後以 滴管將 DNA溶液轉移到 Quick Seal tube (Beckman, 5.lml,No . 344075)内。 10.以溴化乙錠n〇mg/inl)填滿離心管,平衡後利用Tub&lt; Sealer (Beckman)將管口 密封。 請_ 先 閱― % 背一 &amp; 之 注 意 事 項 裝 訂 線 本紙張尺度適用中國國家標準(CNS ) Α4規格(210 X 297公釐) 27 321685 經濟部中央標準局貝工消费合作社印製 A7 B7五、發明説明11.利用 VTi 65.2 rotor 於 20°C 及 55000rpm 下離心 15 小 時。 12 ·在長波長的[JV燈下,使用針頭抽取質體DN A,然後 以丁醇萃取红色的溴化乙錠數次,直到DNA溶液澄 清無色為止。 13. 於TE緩衝液中透析袋進行透析約12至20小時,以去 除CsC 1,其間約需換三次TE缓衝液。 . 14. '收集DHA溶液·利用分光光度計测定DfU濃度。 I、D N A序列分析水稻α -澱粉水解酶基因的啓動子: 3, 1 .条列漸次縮短的α -澱粉水解酶基因的5 ’端(Henikoff , S . , 1984) 1. 本滇驗原理是以二種限制酶在DN A的二値不同部位 切割,一個部位切出突出的3 '端,另一部位切出突 出的5’端或齊頭端*再利用外核酸酶Π[ (ΕχοΒΙ)在 突出的5 ’端或齊頭端具專一性切割作用的原理,在 不同的反應時間後取樣品,卽可得到一条列漸次縮 短的D Ν Α。 2. 取lSjug DHA,以限制酶Bam HI及Bstx I於37〇C作用 2小時。 3. 重覆瓊脂膠體回收DN A的方法(第1. 2. 3.節之步驟6、7、8卜4. 以1 H2〇溶解DNA,加人2m i 1〇χ Εχο Μ缓衝液 (660mM Tris pH ·8·0,6.6mM MgCl2.),保溫於 3〇 ' °C水浴中。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) A7 ---------B7_____ 五、發明説明(&gt;ό;) 5 .配製 S 1 m ·〖X ( 5 9 · 5 « 1 丨彳:〇,9 . 5 u 1 7 . 4 X S 1 缓衝液, 5 〇 單位 S 1 核酸酶),7.4 x s 1 缓衝液(〇 . 3 M C H 3 C Ο Ο K, Ρ Η 4 · 6,2 . 5 Μ M a C 1 , 1 〇 m Η Z n S Ο 4,5 Ο % 甘油)。 6 .取7 . 5 u 1 S 1 m i χ分裝於8屆e f&gt; ρ e η d ο r f試管内,保持 在冰浴中。 7 .在步驟4的DNA樣品中加入400單位的Exo H[酵素’快 速混合,置於3 0 t:水浴中反應:, 8 .每間隔一分鐘各取出2.5u丨的反·溶液冰浴中的S 1 m i '&lt;充分混合,置於室溫下反應3 0分鐘。 &quot; 9 .加入 1 u 1 S 1 终止缓衝液(〇 . 3 Μ T r i s b a s e,0 〇 5 Μ E D T A ),混合後於7 0 t:中加熱1 0分鐘。 1 〇 .在每傾反應時間點的D N A樣品各取2m 1進行瓊脂膠體 的電泳分析。 11. 加入 1.5mI Klenow mix (15m1 lxKlenow缓衝液,5 單位的Klenow酵素),置於37°C反應3分鐘後,再加 入 U1 dNTP mix (dATP、dCTP、dGTP 及 dTTP 各 0.125 m Μ ),在3 7 °C反應至少5分鐘。 12. 加入 40m1 接合酶 mix (395iM H20, 50ul l〇x 接合酶 經濟部中央標準局員工消費合作社印製 缓衝液,50jil 50% PEG, 500mM DTT, 5單位的 T 4 D N A接合酶),於室溫反,應至少1小時·。 1 3 .重覆第2 · 3 · 3 .節有關細菌的轉殖作用之步驟2、3、 4、5、6 ° 3 . 2 . DNA序列分析: …-利用S a n g e r的雙去氧核餹核酸鍵终止法,以S e q u e n a s e 本紙乐尺度遑用中國國家標隼(CNS ) Λ4規格210 X297公牮) 經濟部中央標準局貝工消費合作社印装 A7 B7 五、發明説明(&lt;) kit (USB, Version 2.0,No. 70496),合成新股 DHA,並 使用(α - 3 5 S) d ATP來標定核苷酸。 3 . 2 . 1 .膠體的製備: 1.將玻璃片以清潔劑清洗,再以95¾酒精擦拭,俟乾 燥後,上層玻璃片的内面以5¾二氯二甲基硅烷均勻 擦試一次,確保其光滑,再將玻璃片與Spacer組合 好(參考 Maniatis et al,1989,圖 13.8)° ' 2.'取 48ml Urea mix (每升含尿素 420g, ΙΟχΤΒΕ 100 ml), 36ml丙醯胺原液(每升丙醯胺193g,尿素420g, 雙-丙醯胺 6.7g, 10χ ΤΒΕ ΙΟΟπιΙ)與 600/ϋ 10¾ 過硫 酸$,混合均勻並置於冰浴中。 3. 取α〇ηι1混合液加20ml TEMED (Ν,Ν,Ν,ϋ,-四-甲基乙 稀胺),混合後利用pipetteman tip迅速沿著玻璃 片間的Spacer封邊,再以夾子夾緊玻璃Η周邊,靜 置約半小時。 4. 在丙烯醯胺混合液内加入57.5iil TEMED,混合均勻 。將製備完成的玻璃片膠體模型以底部一角與水平 成45°角方式斜立,利用pipet-aid以25ml吸管吸取 丙醯胺混合液,慢慢自較低的斜邊將其注入。 5 .待注滿後,玻璃片以平躺方式慢慢放下,在頂部墊 以保麗龍板使頂部高於底部約5 c m,再將S h a r k ' s齒 梳的齊平端自頂口插入約0 . 5cm。 6 .以夾子夾緊頂部,靜置2小時以上,若欲置放過夜 ~ ~ ,則以保潔膜密封頂口防止膠體乾燥。 (請先閲讀背面之注意事項-T&quot;%寫本頁) 裝- 線 太祕掁油田中团困定熳激(CMS ) A4规格(210X297公犛) 2 0 經濟部中央標準局員工消費合作社印製 A7 _B7_ _ 五、發明説明(&gt;f) 3.2.2. 雙股DNA序列分析:, 1T line · This paper scale is applicable to China National Standard (CNS) Α4 specification (210 X 297 mm) A7 B7 5. Description of invention (&gt; printed by the Ministry of Economic Affairs, Central Standards Bureau, Beigong Consumer Cooperative) wg / ml) In 2 × ΥΤ medium (containing 16g of bacterial trypsin gland, 10g of yeast extract, 5g of NaCl, 0.5ml of ION HaOH) in 2 × ΥΤ medium, shake culture at 37 ° C overnight. 2. Centrifuge with GAS rotor at 5000 rpm for 5 minutes at 4 ° C. 3. Discard the supernatant, add 5 ml of solution I (25 mM Tris-Cl, 10 mM EDTA, 15% Sucrose, 2 mg / mU lysozyme) to dissolve the cells, transfer the cells to a 40 ml Oakridge test tube, place on ice React for 20 minutes in the bath. 4. Add 9.5ml of solution] I (0.2M NaOH, 1¾ SDS), gently shake the centrifuge tube up and down to mix evenly, and react in an ice bath for 10 minutes. 5. Add, add 7.5ral solution H (3M CHaCOONa, pH 4.8), mix gently and place in an ice bath for 20 minutes. 6. Centrifuge at 12000 rpm in SS34 rotor for 30 minutes. Filter the supernatant with two layers of gauze or one layer of mi rac loth, add an equal amount of isopropanol, and place in a -20 ° C refrigerator for at least 2 hours. 7. Centrifuge at 12000rpm for 30 minutes, discard the supernatant, wash the precipitated DNA once with 100¾ ethanol, and dry the DNA by vacuum suction. 8. Dissolve the DNA in 4.2ml TE buffer, add 5ul RHase (10 mg / ml) and let stand at 37 ° C for 20 minutes. 9. Add 4.5s CsC 1, gently shake to completely dissolve, then transfer the DNA solution to the Quick Seal tube (Beckman, 5.1ml, No. 344075) with a dropper. 10. Fill the centrifuge tube with ethidium bromide (nmg / inl), and after equilibration, seal the tube opening with Tub &lt; Sealer (Beckman). Please _ first read ―% Remarks &amp; Precautions Binding paper size is applicable to China National Standard (CNS) Α4 specifications (210 X 297 mm) 27 321685 Ministry of Economic Affairs Central Standards Bureau Bei Gong Consumer Cooperative Printed A7 B7 5 1. Description of the invention 11. Centrifuge with VTi 65.2 rotor at 20 ° C and 55000 rpm for 15 hours. 12 · Under a long-wavelength [JV lamp, use a needle to extract the plastid DNA, and then extract the red ethidium bromide with butanol several times until the DNA solution is clear and colorless. 13. Carry out dialysis in a dialysis bag in TE buffer for about 12 to 20 hours to remove CsC1, during which the TE buffer needs to be changed about three times. . 14. 'Collect DHA solution · Measure DfU concentration using a spectrophotometer. I. DNA sequence analysis The promoter of rice α-starch hydrolase gene: 3, 1. The 5 'end of the α-starch hydrolase gene with progressively shortened sequence (Henikoff, S., 1984) 1. The principle of this experiment is Two restriction enzymes are used to cut two different parts of DNA, one part has a protruding 3 'end, and the other part has a protruding 5' end or blunt end. * External nuclease Π [(ΕχοΒΙ) The principle of specific cutting action at the protruding 5 'end or flush head end. Taking samples after different reaction times can obtain a series of gradually shortened D Ν Α. 2. Take lSjug DHA to act with restriction enzymes Bam HI and Bstx I at 37 ℃ for 2 hours. 3. The method of recovering DNA by repeating the agar colloid (Section 1. 2. 3. Steps 6, 7, and 8 Bu 4. Dissolve the DNA in 1 H2〇, and add 2 mL of 10 mL Εχο Μ buffer (660 mM Tris pH · 8 · 0, 6.6mM MgCl2.), Keep in a water bath at 30 ° C. The paper size is applicable to China National Standard (CNS) A4 specification (210X 297mm) A7 -------- -B7 _____ 5. Description of the invention (&gt;ό;) 5. Preparation of S 1 m · 〖X (5 9 · 5 «1 彳: 〇, 9.5 u 1 7.4 XS 1 buffer, 5 〇unit S 1 nuclease), 7.4 xs 1 buffer (0.3 MCH 3 C Ο Ο K, Ρ Η 4.6, 2.5 Μ M a C 1, 1 〇m Η Z n S Ο 4, 5, Ο% glycerol ) 6. Take 7.5 u 1 S 1 mi χ and aliquot it into 8th e f> ρ e η d ο rf test tubes and keep them in an ice bath. 7. Add 400 units of DNA sample in step 4 Exo H [enzyme's rapid mixing, placed in 30 t: reaction in a water bath :, 8. Take out 2.5 u of the anti-solution S 1 mi '&lt; thoroughly mixed in an ice bath every one minute and place in the chamber The reaction was carried out at a temperature of 30 minutes. &Quot; 9. Add 1 u 1 S 1 stop buffer (0.3 M T risbase, 0 〇5 Μ EDTA), after mixing, heated at 70 t: 10 minutes. 1 〇. Take 2m 1 of the DNA samples at each reaction time point for electrophoresis analysis of agar colloids. 11. Add 1.5mI Klenow mix (15m1 lxKlenow buffer, 5 units of Klenow enzyme), incubate at 37 ° C for 3 minutes, then add U1 dNTP mix (dATP, dCTP, dGTP and dTTP each 0.125 m Μ), and react at least 5 at 37 ° C 12. Add 40m1 zymase mix (395iM H20, 50ul l〇x zymase, Ministry of Economic Affairs Central Standards Bureau employee consumer cooperatives printed buffer, 50jil 50% PEG, 500mM DTT, 5 units of T 4 DNA ligase) At room temperature, it should be at least 1 hour. 1 3. Repeat steps 2, 3, 3. 3 on bacterial colonization steps 2, 3, 4, 5, 6 ° 3.2 DNA sequence analysis: …-Using S anger's dideoxynucleic acid bond termination method, using the Chinese standard standard falcon (CNS) Λ4 specification 210 X297 public frame at the standard of S equenase paper. A7 printed by Beigong Consumer Cooperative of Central Bureau of Standards, Ministry of Economic Affairs B7 5. Description of the invention (&lt;) kit (USB, Version 2.0, No. 70496), synthesis Unit DHA, and using (α - 3 5 S) d ATP calibrated nucleotides. 3.2.1. Preparation of colloid: 1. Clean the glass sheet with detergent and wipe with 95¾ alcohol. Once dry, the inner surface of the upper glass sheet is evenly rubbed once with 5¾ dichlorodimethylsilane to ensure its Smooth, and then combine the glass sheet with Spacer (refer to Maniatis et al, 1989, Figure 13.8) ° '2.' Take 48ml Urea mix (420g per liter containing urea, ΙΟχΤΒΕ 100 ml), 36ml of acetamide stock solution (per liter Acetamide 193g, urea 420g, bis-propionamide 6.7g, 10χ ΤΒΕ ΙΟΟπιΙ) and 600 / ϋ 10¾ persulfate, mixed evenly and placed in an ice bath. 3. Take α〇ηι1 mixture and add 20ml TEMED (Ν, Ν, Ν, ϋ, -tetra-methyl vinylamine), after mixing, use the pipetteman tip to quickly edge the spacer between the glass pieces, and then clamp it with a clip Tighten the periphery of the glass Η and let stand for about half an hour. 4. Add 57.5iil TEMED to the mixed solution of acrylamide and mix well. The prepared colloidal model of glass flakes was slanted at an angle of 45 ° to the horizontal at the bottom, and pipet-aid was used to suck the mixture of acrylamide with a 25ml pipette, and slowly inject it from the lower bevel. 5. After filling, the glass sheet is slowly laid down in a flat lying manner, and the top of the top is styrofoam plate so that the top is about 5 cm higher than the bottom, and then the flush end of Shark's tooth comb is inserted into the top from the top 0.5 cm. 6. Clamp the top with a clamp and let it sit for more than 2 hours. If you want to put it overnight ~ ~, seal the top with a cleaning film to prevent the gel from drying. (Please read the precautions on the back-T &quot;% to write this page) Installed-Line Tai Mi Chu Oilfield Middle Group Dang Ji Ji (CMS) A4 specification (210X297 public yak) 2 0 Printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economy System A7 _B7_ _ V. Description of the invention (&gt; f) 3.2.2. Double strand DNA sequence analysis:

1. 取 16ul 超螺旋雙股 DNA (Ug/μΐ)加人 4ul 2M NaOH ,混合均勻於室溫下反應5分鐘。 2. 加 U1 模販(l〇ng/ul), 6m1 3M CHaCOONa 以及 80ul 100¾酒精,混合後置於-20 t:冰箱至少2小時。 3. 在14000rpm下離心30分鐘,沈澱的DNA各以70%及100% 酒精丨i 一次,利用真空離心乾燥DNA。 4. 取4個eppendoff試管,分別加入2.5m1 ddATP、ddGTP 、ddTTP,置於37°C水浴中預溫。 5. 取8(·ΐ1 HzO溶解DNA,再加入20«1 Sequenase反應緩 衝液,U1 DTT, 2m1 稀釋的 mix (0.4U dGTP 標識 ati^ + 1.6«1 ΗίΟ + 1 μ 1 ( α - 3 5 S) d ATP (10iici/wl), 2m1 稀釋的 sequenase (0.3m1 Sequenase +1.7wl 酵 素稀釋緩衝液),於室溫下反應5分鐘。 6 .各取3.5a 1已經放射性標識的DNA反應溶液與預溫的 2.5/tl ddATP、ddGTP、ddCTP、ddTTP充分混合,於 37°C反應5分鐘。 7 .各管分別加入4« 1终止溶液,混合均勻後於86 °C加 熱5分鐘再迅速置於冰浴中,待冷卻後即可進行電 泳分析。 3.2.3. 單股DNA序列分析: 本賓驗原理偽利用pBI rescript H KS ( + /-)質體具有 f I ( + /-)噬菌體的複製起始點,當質體複製時,經由噬菌 —-體的感染*正股[SK (+),包含/?-半乳搪苷酶基因的譯解 I I I I I I 裝 I I I I —.訂 線 (請先閱讀背面之注意事項c-%寫本頁) ( 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 31 -X 1 經濟部中央標準局貝工消費合作社印製 321685 A7 _____B7五、發明説明(&gt;f ) 密碼股]及負股[US (-),包含非譯解密碼股]分別能整合 到噬菌體的基因群内。因此純化噬菌體的DNA,利用不同 方向的模版(KS或SK模版),將可進行雙向的單股DHA序列 分析。 1.挑取單一菌落加入2xYT +安比西林(75ug/ml)的液體 培養基中。 • 2.加入 108〜103pfu/ml 的嗤菌體 VCS-M13 (Stratagene, Ho. 200251)或R408 (Stratagene, No. 200252) * 於3710振盪培養2小時。 3. 在VCS-M13的培養基中加入卡那徽素(70ttg/W丨),但 R4;08的培養基則不加,於37°C振盪培養10〜12小時 0 ^ 4. 取1.5ml菌液以14000「pm的速度離心5分鐘。 5. 吸取ltnl上清液,加入150m 1 PS緩衝液(20¾ PEG, .2.5M NaCl),混合均勻靜置於冰浴中30分鐘。 6. 以14000rpm速度離心20分鐘,吸掉上清液,以400m1 SE緩衝液(0.3M CH3C00Na, lmM EDTA)溶解沈澱的 噬a'禮顆粒。 7. 各以酚及氯仿萃取一次,加入等量的異丙醇,置於 -2 0 °C約1小時。 8. 以14000rpni離心30分鐘,吸掉上清液,沈澱的DNA 各以70¾及1〇〇%酒精洗一次,利用真空離心乾燥DNA Ο 一 : 9.取 56ul HzO溶解 DNA ’ 加入 U丨模版,luI DMSO, 2ul1. Take 16ul of supercoiled double-stranded DNA (Ug / μl) and add 4ul of 2M NaOH, mix well and react at room temperature for 5 minutes. 2. Add U1 mold vendor (l〇ng / ul), 6m1 3M CHaCOONa and 80ul 100¾ alcohol, mix and place in -20 t: refrigerator for at least 2 hours. 3. Centrifuge at 14000 rpm for 30 minutes. The precipitated DNA is once in 70% and 100% alcohol, and the DNA is dried by vacuum centrifugation. 4. Take 4 eppendoff test tubes, add 2.5m1 ddATP, ddGTP, ddTTP respectively, and place them in a 37 ° C water bath for pre-warming. 5. Take 8 (· l1 HzO to dissolve DNA, then add 20 «1 Sequenase reaction buffer, U1 DTT, 2m1 diluted mix (0.4U dGTP logo ati ^ + 1.6« 1 ΗίΟ + 1 μ 1 (α-3 5 S ) d ATP (10iici / wl), 2m1 diluted sequenase (0.3m1 Sequenase + 1.7wl enzyme dilution buffer), react at room temperature for 5 minutes. 6. Take 3.5a 1 of each radioactively labeled DNA reaction solution and pre Warm 2.5 / tl ddATP, ddGTP, ddCTP, ddTTP are fully mixed and reacted for 5 minutes at 37 ° C. 7. Add 4 «1 stop solution to each tube, mix evenly and heat at 86 ° C for 5 minutes before placing on ice In the bath, electrophoresis analysis can be carried out after cooling. 3.2.3. Single strand DNA sequence analysis: The principle of this test is to use pBI rescript H KS (+ /-) plastid to replicate f I (+ /-) phage Starting point, when the plastid replicates, infection via bacteriophage-positive strand [SK (+), including /?-Galactosidase gene translation IIIIII loading IIII-. Line (please first Read the precautions on the back c-% to write this page) (This paper size is applicable to China National Standard (CNS) A4 specification (210X297mm) 31 -X 1 Central Ministry of Economic Affairs 321685 A7 _____B7 printed by Beigong Consumer Cooperative of the Bureau of Standards V. Description of Invention (&gt; f) Cryptographic Unit] and negative shares [US (-), including non-deciphered cryptographic units] can be integrated into the bacteriophage gene group. Therefore Purify the DNA of the bacteriophage, and use the template in different directions (KS or SK template) to perform two-way single-strand DHA sequence analysis. 1. Pick a single colony and add it to the liquid medium of 2xYT + ampicillin (75ug / ml). 2. Add 108 ~ 103pfu / ml of bacterium VCS-M13 (Stratagene, Ho. 200251) or R408 (Stratagene, No. 200252) * Shake culture at 3710 for 2 hours. 3. Add card to the medium of VCS-M13 Nahuisu (70ttg / W 丨), but the medium of R4; 08 is not added, shaking culture at 37 ° C for 10 ~ 12 hours 0 ^ 4. Take 1.5ml of bacterial solution and centrifuge at 14000 "pm for 5 minutes. 5 Aspirate the ltnl supernatant, add 150m 1 PS buffer (20¾ PEG, .2.5M NaCl), mix and place in an ice bath for 30 minutes. 6. Centrifuge at 14000rpm for 20 minutes, aspirate the supernatant, 400m1 SE buffer (0.3M CH3C00Na, 1mM EDTA) dissolves the precipitated phage particles. 7. Extract once with phenol and chloroform, add equal amount of isopropanol, and place at -2 0 ° C for about 1 hour. 8. Centrifuge at 14000 rpni for 30 minutes, aspirate the supernatant, wash the precipitated DNA with 70¾ and 100% alcohol each time, and dry the DNA by vacuum centrifugation. O: 9. Take 56ul HzO to dissolve the DNA and add it to the U 丨 template. luI DMSO, 2ul

IJI (請先閱讀背面之注意事項f%寫本頁) 裝IJI (please read the notes f% on the back to write this page)

、1T 線 本紙張尺度適用中國國家標隼(CNS ) A4規格(2丨0 X 297公釐) 32 經濟部中央標準局貝工消費合作社印製 A7 _____B7___五、發明説明 Sequenase反應缓衝液,混合均勻。 10 .其餘步驟同雙股DN A序列分析的步驟4、5、6、7。 但步驟4中各管需再加入0.25/11 DMS0。 3· 2.4. DN A序列的電腦分析: 藉由GCG的序列分析電腦軟體(the Genetics Computer Group, University of Wisconsin, Version 5.0, June 1987)(Devereux et al.,1984)進行 DNA 序列的電腦分析。 &lt; W、水稻懸浮培養細胞的轉殖作用--利用電穿透法: 4.1.水稻懸浮培養·· 1. 在125ml三角瓶内置25 ml含3¾蔗糖的MS (附錄一)液 體培養基,加入〇 . 5m丨懸浮培養的水稻(台農67號) 細碑(約0 . 2 g)。 2. 於25 °C,12小時光照及12小時黑暗中,以120r pm速 度振盪培養。 3. 每隔7天進行繼代培養(Subculture)—次。 4.2 .利用電穿透法將基因轉殖到水稻細胞内。 1.取生長第三天的水稻懸浮培養細胞,將三角瓶中的 培養液吸乾,以洗滌培養基(附錄二)CPW7 . 4清洗一 次,將細咆移入培養皿中,加入5 m I酵素溶液(每1 0 0 ml CPW7.4 中含有 4% 纖維素酶 RS,1¾ macerozyme R-10)於室溫中反應30分鐘。 2 .收集酵素處理過的細胞溶液,移入1 5 m 1離心管中以 800rpm離心3分鐘。 -&quot;' 3 .取出上清液,沈澱的細胞以CP W7 . 4清洗兩次後’再 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X 297公釐) -33 - (請先閲讀背面之注意事項一4寫本頁) .裝. 訂 線 經濟部中央標準局員工消費合作社印裝 321685 A7 B7 五、發明説明($,) 以 EPR 缓衝液(10¾¾ 萄糖,4inM CaCU,10mM Hepes, p Η 7 . 2)清洗一次。 4 .加入5ιπ 1 EPR緩衝液懸浮清洗過的細胞,再加入20 的欲轉殖的α -澱粉水解酶基因啓動子-GUS基 因融合載體(ΡΗΕ132, ΡΑΕ132, ...等)及 10ug/ml 的鮭魚精子DNA,混合均勻,在室溫下靜置培養1小 時。 5. '取0.8ml的細胞懸浮液放入0.4cm electrode gap的 Gene Pulser cuvette中,靜置於冰浴中15分鐘。 6. 將 cuvette 置於 Gene Pulser (BIO-RAD)中,設定電 壓:(Vo)為150伏持,電容量(Co)為960uF,電阻(Ω ) 為4〇0歐姆,電擊時間為120msec。設定完成後施以 電擊使DNA轉殖進入細胞内。 7. 將電擊後的細胞靜置於冰浴中15分鐘。 8·.將細胞轉移到具有24個并(Costar,No. 3424)的培 養皿+,加入3ml KPR(附錄三)液體培養基,以石 蠟膜密封培養皿的週邊,在室溫黑暗中以50rpm培 養3夫。 4.3.GUS分析(GUS assay): 4.3.1』1^呈色反應溶液(7-8丨11反應溶液)的製備: 1. 取 5mg X-glu 溶於 100ttl DMS0 中。 2. 加入 10ml 反應緩衝液(l〇mM Na^EDTA, lOOmM NaHaPCU.HsO, 0.1% Triton, ρΗ7·0)。 ' 3.混合均勻後,各K5〇iii分裝於eppendorf試管中’ (請先閱讀背面之注意事項P%寫本頁) 裝. 訂 線 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -34- 五、發明説明 A7 B7 經濟部中央樣準局員工消費合作社印裝 保存於-20TC冰箱内。 4.3.2.GUS分析: 1 .轉殖的細胞經培養3天後,取出培養液,加入50ϋΐ 1 的X-glu反應溶液,靜置於溫室黑暗中反應3小時以 上0 2 .取出細胞,在顯微鏡下觀察細胞的染色情形。 蓠驗结罢 ‘ 一、分析水稻ot-澱粉水解酶基因群DNA純株: 以水稻ct -澱粉水解酶cDNA純株,RAMYC30编碼屋域當 作探針來筛選水稻基因群DMA存庫,共得到16個基因群純 株。使用限制酶“ Sal I”將水稻基因群DNA自噬菌體DNA中 分離出來k,由電泳圖(如圔1A、1C、2E)可看出這些基因群 DNA被切成數段。其中RAMYG28與RAMYG18的電泳圖一樣, 可能為同一純株,RAMYG17與RAMYG19也可能是相同的純株 0 為了要確定所獲得的基因群DMA存庫中那些才是真正 的包含水稻α -澱粉水解酶基因的純株,將圖1A、1C、2E 之DNA於瑄Ιΐ膠體電泳分離後,以南方墨點法將DNA轉移到 基因篩析膜上,再與RAMYC30編碼區域或RAMYC28编碼區域 的5 ’端所做成的探針進行雜交,結果(圖IB、ID、2F)顯示 RAMYG10、RAMYG11、RAMYG14、RAMYG20都沒有正反應,所 以推斷這4値純株可能不含ct -澱粉水解酶基因,因此共得 到12艏α -澱粉水解酶基因群純株。 圖IB、ID、2F顯示某些純株具2至5画雜交正反應,因 (請先閱讀背面之注意事項寫本頁) •裝· 訂 線 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 35 B7_ 五、發明説明(») 此推測這些純株所包含的α -澱粉水解酶基因可能被Sa 1 I 分割成數段,或同一條DH A上含一値以上的α -澱粉水解酶 基因(Huang et al, 1990a)。 A ··確定α -澱粉水解酶基因5 ’端部位: 本實驗所使用的5 ’端及3 ’端探針,皆是利用活體外方 法所製得的DN A探針,此探針包含有一小段質體[pBI lies crip t &quot;H KS( + /-)]多重植人位的DNA片段,可能此段DNA與標記 (lkb ladder,BRL)中的1.6kb及0.5kb具有高度同源性的 0“序列,所以在標記1.61^及0.51^的地方都呈現出很強 的雜交正反應。 為了辜確定所篩選出來的水稻基因群純株那些具有α-澱粉水解酶基因的5 ’端,以便分離啓動子部位,所以利用 活體外轉譯法,得到RAMYC28及RAMYC30的编碼區域的5 '端 ,長度分別為320b及430b,再加上HS501的3’端,長度為 350b (Yu et al, 1990)所做成的三種DNA探針。經由分子 雜交結果(圖 2B、2D、2F、2H),發現 RAMYG6、RAMYG8、 RAMYG17、1TAMYG18、RAMYG21及 RAMYG28都有雜交正反應, 經濟部中央梯隼局貝工消費合作杜印製 顯示這些純株可能含有α -澱粉水解酶基因的啓動子部位 。其他純株或許也含有某些α-澱粉水解酶基因的5’端, 但可能與本實驗所用探針的DNA序列同源性較低,故未呈 現正反應。 在RAMYG6、RAMYG28兩値純株中,皆有二段DNA片段呈 _ •現正反應(圖2F),因此推斷實驗中所用的探針(RAMYC28- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210x 297公釐) 經濟部中央標準局員工消費合作杜印製 A7 B7_五、發明説明(&gt;么Ο 5·),其中DNA序列可能介於二段DNA片段交界處或與二段 DNA片段均有高度相似組成。後來進一步的實驗(圖11、12) 證實 RAMYC28-5’的 DNA序列的確與RAMYG28a 及 RAMYG6c 的 DMA 序列有高度的同源性之間。至於RAMYG28b與RAMYG6a所呈 現的較弱正反應,可能是探針的DNA序列與這兩段DNA的同 源性程度較低所致。 B.確定已知&amp;^ α -澱粉水解酶cDNA是否可能源自已分離出 — 來的基因群D N A : 利用四種α -澱粉水解酶基因(RAMYC26、27、28、30) 的.3'端為基因專一性探針(gene-specific probe)進行分 子雜交,以了解這四種cx -澱粉水解酶cDNA可能源自那幾 個分離得到的基因群DNA,經由雜交结果(圖3B、3D、3F、 3G)顯示,RAMYC26 是源自 RAMYG8 的 cDNA 純株,RAMYC27 及 RAMYC28則是分別源自RAMYG17及RAMYG28的cDNA純株(請參 考表一)。 結果顯示,RAMYG6、RAMYG18以及RAMYG28可能為包含 RAMYC28的基因群DNA,而RAMYG18與RAMYG28可能為同一値 基因;RAMfGS可能包含RAMYC26的基因群DNA; RAMYG21、 RAMYG22與RAMYG23可能包含RAMYC27的基因群DHA。 在圖3F中,RAMYG18亦與RAMYC27的3'端的持定基因探 針有雜交正反應,可能RAMYG18與RAMYC27的3’端也具有某 種程度相似組成的D N A序列,所以亦呈現出雜交正反應。 三、水稻α -澱粉水解酶基因群D H A片段的次轉殖 ~ _ 自水稻基因群DNA存庫篩選出來的基因群DNA純株與α - (请先閱讀背面之注意事項寫本頁) -裝· 訂 線 本紙張尺度適用辛國國家標準(〇^)八4規格(2〗0/297公釐) 37 321685 A7 B7 經濟部中央標準局員工消費合作社印裝 澱粉水解酶基因的编碼區域的5’端及3’端部位的探針呈雜 交正反應的DNA片段(圖5),其中部分轉殖到pBluescript 11(5( + /-)載體中,如圖6所示。其中1?/^¥01732(圖4匕)與 RAMYG28a2經限制酶切割縮小的DNA片段,再轉殖到pBluescript 載體而成。 四、水稻ct -澱粉水解酶基因的5 ’端部位的DNA序列分析: (A) RAMYG17'基因的5’端部位的DNA序列分析: RAMYC30编碼區域的5’端所做成的探針與1?4»^01731有 雜交正反應(圖2b),所以1^^^61731可能含有α -澱粉水解 酶基因的啓動子部位。利用限制Sal I及EcoRI可將4.5kb 的RAMYGlJa!縮減為1.2kb的RAMYG17a2(圖4),而仍可與 RAMYC30均5 ’端反應,表示RAMYG17a2可能仍含有α -澱粉 水解酶基因的啓動子部位,藉由Exo SI刪除的方法將RAMY 01732的1)^^片段漸次縮短,再以Sanger雙去氣核糖核酸鍵 終止法進行DNA序列的分析,分析完成的DNA序列再利用GCG 条統與已發表的水稻〇(-澱粉水解酶基因做比較。RAMYG17 a2的DNA序列雖只定出1200bp,但已發現其與λ 0Sg2純株 (Huang eta 1., 1990)完全相同(圖 7、8),這表示 RAMYG17 33與λ 0Sg2純株應該是屬於同一個基因。 根據已發表的報告,α -澱粉水解酶基因的訊號胜肽 鏈部位可被找出(如圖8所示),緊接著訊號胜肽鐽部位之 後的DN Α序列上有一脑EcoN I限制酶可切割之部位,因此利 用EcoNI在1?/\14代1731的5’端切開*如此可切出不同長度的 5 '端包含不同長度cc -澱粉水解酶基因啓動子的部位以及 請 先 閱 讀 背 之 注 意 事 裝 訂 線 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 經濟部中央標準局員工消費合作杜印製 A7 _____B7_五、發明説明(#) 3’端包含訊號胜呔鏈的DH A片段(圖9),這些DN A片段將來 可與欲表現蛋白質的基因相接連,以構築成一種蛋白質表 現載體,並藉由訊號胜肽鏈的功能將表現竹蛋白質分泌到 細胞外。 (B) RAMYG6與RAMYG28基因的5’端部位的DNA序列分析: RAMYC28編碼區域的5 ’端所做成的探針與RAMYG6、RAMY G28均得到雜交正反應,呈正反應的DNA片段分別被命名為 RAMYG6a、 RAMYG6c、 RAMYG28a及RAMYG28M圖2F)。經由DNA 序列分析後發現RAMYG28a及RAMYG6b均含有α -澱粉水解_ 基因的5 ’端啓動子部位。RAMYG6b所包含5 ’端啓動子部位 與RAMYC2、8编碼區域的5'端並無同源性,RAMYG6C則有,所 以前者與碟針無雜交正反應,後者則有(圖10)。實驗進行 中,Huang等人發表兩個α -澱粉水解酶基因的DN A序列, 他們將之命名為RAmy3D及RAmy3E。經比對DNA序列後,我 們發現RAMYG28和RAmy3E應為相同的純株(圖10,11),而 RAMYG6則是橫跨RAmy3E的3’端部位及幾乎含蓋整個RAmy3D 基因(圖 10、11、12)。Huang等人之研究(Huang et al., 1990)已指出 RAmy3D( = RAMYG6)及 RAmy3E( = RAMYG28)傜位於 同一條染色體上,兩者間距離約為4 · Okb (圖10),本發明 之DNA序列分析亦證實此結果。 五、GUS表現載體的構築: A、構築質髏 pBSI、pBXE 及 pBSfll (由 Divid McEU「y 所贈 送) ' pBI 101.1、 pBI 101.2、 pBI 101.3 (CLONTECH, No. 請先閲讀背面之注意事'^'填寫本頁) -裝. 訂 r線 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部中央標準局員工消費合作社印製 成的 已擇 否選 是共 因可 基有 斷具 -My I 判種 以一 難立 能建 可’ 時此 變因 轉 。 狀中 性胞 物細 植物 行植 進 至 當殖 ’ 轉 號地 記功 A7 _B7_ 五、發明説明(&gt;;;) 6022)偽以缺少啓動子的大腸桿菌GUS基因(2kb)被轉殖在 Agrobacrteri um t umifaciens binary質體載體 pBIM19 的 聚聯結子上,再以土壤桿菌Asrobacter ium T i質體的藍曙 红(nopaline)合成酶(NOS)基因的終止子(260bp)接在GUS 基因的3 ’端而成。因此,植物基因的啓動子能夠很容易地 在GUS基因的5 ’端的聚聯結子中插入,利用接上的啓動子 來帶動GUS基因的轉錄,而可從事基因調控方面的研究。 因為質體pB IN 19在細菌髏内複製效率很低不易大量純 化,所以利用限制酶Bam HI與spel分別將pBIIOI. 1、pBI 101.2及98101.3所包含的01^基因及以0終止子自?811&lt;19載 體分離出,來,其PBI 101.1及pB 101.3的0“片段插入以限 制酶及spel切開的質體pBluescritIKS( + )中,分 別得到質體PBS I及pBS I。 而pBI101.2的DNA片段插入以限制酶BamHI及XbaI 切開的質體pBlusecript I KS ( + ),得到質體pBX E (匾13A) 。pBSI、pBXI及pBSII的差異在於GUS基因的5’端的聚聯 結子部位,閲讀架構各有一個核苷酸的差異,因此植物的 啓動子可以選擇適當的閲讀架構插接而構築成一個GUS表 現載體。 B、將GUS基因轉殖到具有可供選擇的記號-抗潮徽素的基 '因的質體上 因為PBS I、pBX H、pBS III (圖13A)不具有可供選擇的 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) I 裝 I ;吞 . I 線 (請先閲讀背面之注意事^Λ填寫本頁) ( 經濟部中央標準局員工消費合作社印製 A 7 B7 五、發明説明(y) 記號的質體是非常重要的。 利用限制PVU Π將pBS I 、ρΒΧ ϋ及PBs ΠΙ中的GUS基因 連同T 7模版與T 3模版及其間的多重植入位自pBluescript 載體中分離出來(圖138),再插入以1^1^11[切開的?11^132 (圖 13C)(Hayashimoto et al, 1990)載體,結果得到pBX H -132及pBSIB -132(圖13D),此兩質體的GUS基因轉訊方 向與抗潮徽素基因(Hph)的轉訊方向相同,而pBS 1-132 (圖 13E)的GUS基因轉錄方向;PU與抗潮徽素基因的轉錄方向相 反,因此共獲得三種具有GUS及抗潮徽素基因的質體,其 DNA長度均為7.Okb,這三種質體可提供未來分析各種基因 啓動子功.能之用。 C、構築水稻α -澱粉水解酶基因啓動子與GUS基因的融合 載體 1、構築RAMYG17啓動子與GUS基因的融合載體 根據圔9,RAMYG17ai的限制酶圖譜及圖形説明,業已 獲得 pHE(0.88kb)、PAE(1.7kb)、pSE(2.4kb)等三段包含 α -澱粉水解酶基因啓動子的DNA片段。將此三段DNA分別 插入以限制酶Snia I切開的質髏pBS I (接合法請參考材料與 方法說明),根據基因三聯碼的原理,自pHE、pAE及pSE的 蛋白質轉譯起始點ATG開始譯碼*直到GUS基因的轉譯起始 點ATG均需符合三聯碼的閲讀架構。接合完成的啓動子-GUS 融合載體分別命名為pHE-Ι,pAE-Ι及pSE-Ι (請參考圖14A 、14B 、 14C卜 ' 實驗進行至此,本實驗室方獲得質體pTR A 1 32 (由 本紙張尺度適用中國國家標準(CNS〉A4規格(210X297公釐) 41 I I I n I I I —5 -n ^ I I n ϋ I n I I I I I I ^ (請先閲讀背面之注意事i-?.填寫本頁) 「 經濟部中央標準局員工消費合作杜印製 A7 B7 五、發明説明Up Hayashimoto所贈送)·利用限制酶 ρνιιΠ 將 pHE-I、pAE-I 及pSE-I中的啓動子-GUS基因的DNA片段連同T7啓動子與T3 啓動子及其間的多重植入位自pBluescript載體中分離出 來(圖14C),再插入以Hindi切開的pTR A 132載體上(圖14 D),結果分別得到 pSE 132(11.4kb),pAE 132 (9.7kb)及 pHE 132(7.9kb)等三種具有抗潮徽素基因的融合載體(圔 14E)。其中pSE 132及pAE 132的GUS基因轉譯方向和抗潮 徽素基因轉譯方向同向,但PHE 132的GlfS基因轉譯方向則 和抗潮徽素基因轉譯方向相反。 2、構築RAMYG6、RAMYG28啓動子與GUS基因的融合載體 RAMYG6及RAMYG28基因啓動子分別位於RAMYG6b及RAMY G28a25段DNA片段中(圖10),利用EcoNI及Sal I可將RAMY G6b的α -'澱粉水解酶基因5 ’端及訊號胜肽鏈的DNA序列(總 長約1.6kb)從質體pBluescript中分離出來。但RAMYG28aa 卻無法利用限制酶將α -澱粉水解酶基因5 '端及訊號胜呔 鏈的DN Α序列分離出來,因為訊號胜肽鏈的DN Α序列終端處 並無適當的限制酶可供使用。因此,利用Exo Μ核酸酶去除 的方法自RAMYG28a2的V端逐漸將DNA縮短,直到接近訊號 胜肽DNA序列附近為止(圖11,粗箭頭處)再以限制酶Apal 及EcoRV將α -澱粉水解酶基因的5 ”端與訊號胜肽鏈的DMA 序列自質體PB丨lies crip t分離出來。因此根據基因三聯碼 原理,將RAMYG6b及RAMYG28az分離出來的二段含啓動子及 訊號胜肽鍵的DN A片段插入以限制酶Η ί nd I切開的質體pBS _ 皿-132上,獲得 RAMYG6-132(8.61cb)(圖 15)與 RAMYG28-132 請先閲讀背面之注意事^-s -裝-- Λ填寫本頁) 訂 線 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 經濟部中央標準局員工消費合作社印製 321685 at _ B7 五、發明説明(么P) (I) (8.2kb)(圖16)的cx -澱粉水解酶基因啓動子與GUS基因 的融合載體。 RAMYG6-132與RAMYG28-132U)其GUS基因的轉譯方向 均與抗潮徽素基因轉譯方向相同,但於訊號胜肽鏈的DNA 序列與GOS基因之間卻都具有一値終止轉譯訊號TGA (圖15D 、18D) 〇 •為了使構築完成的融合載體在α-澱粉水解酶基因的 ' 訊號胜It鏈的DNA序列與GUS基因之間不致於産生终止轉譯 密碼,復將限制酶Apal及EcoRV自RAMYG28a2分離出來的α -澱粉水解酶基因的5 ’端與訊號胜肽鐽的DN A序列插入以限 制酶clal切開的質髏PBSI-132上,而得到RAMYG28-132 U ) (圖17C) ^其GUS基因的轉譯方向與抗潮黴素基因的轉譯方 向相反,·在訊號胜呔鏈的DNA序列與GUS基因之間則無終止 轉譯密碼的産生(圖1 7 D )。 六、利用電穿透法將GUS表現載體轉殖到水稻懸浮培養細 胞中。 利用電穿透法,已將PHE132、PAE132及RAMYG6-132等 三種GUS表镜載體轉殖到水稻懸浮培養細胞内。經過3天後 以X-g I u來反應呈色,測定GUS表現載體的短暫表現,結果 顯示.pHE 132、PAE132及RAMYG6-132等三種GUS表現載體的 轉殖細胞都有藍色表現(圖18B、18C),而對照組細胞用不 含cc -澱粉水解酶基因的啓動子,僅含GUS基因的載體來轉 殖,經過同樣處理後,並不會使細胞呈色(圖18A)。由此 &gt; ·證明PHE132、PAE132及RAMYG6-132在水稻細胞内都能正常 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -43 - I i I I I I I I I 裝 I I I 訂 __ I I &quot;線 (請先閲讀背面之注意事h填寫本頁) ^ ______B7 五、發明説明(么:/ ) 表現。而 PSE132、RAMYG23-132(I )及 RAMYG23-132(I )是 否在細胞内也能正常表現,則有待進一步的實驗證實。 ^ * 應用基因轉殖技術來研究真核生物基因的表現及功能 ,以促進對高等生物基因調控機制的瞭解。已知在水稻懸 浮培養細胞的培養基中施以缺糖處理,細胞中的某些α -澱粉水解酶基因會大量表現,α -澱粉水解酶也大量製造 及分泌到細胞外的培養基中(Kuo,1990)。這種由缺糖誘 導α -澱粉水解酶基因的大量表現的現象,到底細胞如何 傳遞缺糖的訊號,如何感應缺糖的訊號而調控持定的α-澱粉水解酶基因的大量表現,並將α-澱粉水解酶分泌到 細胞外.,這是我們有興趣研究的主題。 經濟部中央標準局員工消費合作社印製 本案已自水稻基因群DNA存庫中篩選得到12個不同的 α -澱粉水解酶基因群DNA純株,利用探針雜交法及DNA序 列分析更進一步確定這12値α -澱粉水解酶基因群純株中 至少有4艏純株包含有α -澱粉水解酶基因的5’端及訊號胜 肽鏈的DNA序列。這4個純株分別是RAMYG6、RAMYG8、RAMY G17及RAMYG28。其中值得注意的是,RAMYG8與RAMYC30 (Tzou, 1990)編碼區域所製成的探針雜交後,有五段DNA 片段呈現正反應(圖1 B ),五段D N A片段總長約為1 〇 k b *根 據DHA序列分析RAMYG8C的結果顯示(Lo,私人聯絡),RAMY C26(l^ou,1990)是源自 RAMYG8 的 cDNA純株,且 RAMYG8c 包 含RAMYC26基因的5 ’端部位及訊號胜肽鍵的DNA序列。圖3B /顯示RAMYG8b與RAMYC26的3 ’端所做成的特定基因探針呈現 本紙張尺度適用中國國家揉準(CNS ) A4規格(210 x 297公釐) 五、發明説明(么» A7 B7 經濟部中央標準局員工消费合作社印製 很強的雜交正反應,推測RAMYG8b至少含有RAMYC26基因的 3'端部位。因此,RAMYG8c及RAMYG8b分別包含RAMYC26基 因的5’端及3’端部位。除了 RAMYG8b及RAMYG8c外’ RAMYG8a 、RAMYG8d及RAMYG8e等三段DNA片段總長約為5.6kb,因此 推測這三段DNA片段至少包含有另一個ct -澱粉水解酶基因 ,所以RAMYG8是至少包含有2値ct -澱粉水解酶基因的基因 群E)NA純株。 表一中顯示RAMYG6與RAmy3D、RAMYG17與RiUylA、RAMY G28與RAmy3E分別是相同的水稻ct -澱粉水解酶基因群DNA 純株,P0S137 (RAMYC6)是源自 RAMYG6的 cDNA純株,P0S103 (RAMYC2 7.)是源自 RAMYG17的 cDHA純株,而 ct-Amy3(RAMYC26) 則是源.自RAMYG8的cDNA純株。RAmylA (RAMYG17)在水稻種 子發穿階段及根與葉片組織中,其DN A轉錄活力皆高於水 稻其他已知的α-澱粉水解酶基因。(Huang et al·,1990a) ◦RAiny3 (RAMYG28)在未成熟的水稻種子中(Huang et al., 1990a)以及培養基施以缺糖誘導時(Kuo,1990)表現最強。 RAmy3D (RAMYG6)則於水稻癒傷組織(cal lus)中表現量最 多(Huang etal., 1990a) ° RAMYG6 (RAmy3D)與 RAMYG28 (RAmy3E)相似之處包括有: (a)在染色體上兩者的轉錄方向相同,(b)均有2M内插子 且内插子長度相近,(c ,)未經修飾的蛋白質(P r· e p r· 〇 t e i η ) 其胺基酸數目相近,RAmy3D為435値胺基酸,RAmy3E為437 艏胺基酸,(d )在癒傷組織中均能大量表現(H u a n g e t a 1 ., 1990a)。雖然RAMYG6與RAMYG28有這些相似處且位於同一 請 先. 閲 背 Λ 之 注 意 事 項一S -¾ 填褒裝 f 訂 線 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 45 經濟部中央標準局員工消費合作社印製 A7 _____B7_五、發明説明(么今) 條染色體上,但以slot-blot方法經由DN A交互雜交結果郤 分屬不同的族群,RAMYG6為族群2,而RAMYG2S為族群5 (Huang et al ., 1990b)。比較訊號胜呔鏈的胺基酸序列 ’ RAMYG28較類似於小麥的Amy3 (表二),RAMYG6則與其他 穀類的α -澱粉水解酶基因有較大差異。 植物分泌到細胞外的醏蛋白依構造及功能可分為二類 。第一類是不具有酵素活性的蛋白質,其寡醏與胜肽鍵的 羥基脯胺酸藉著0-糖苷鍵結合在一起,形成一種非酵素的 分泌性蛋白質(Fincher et al., 1983)。第二類是具有酵 素活性的蛋白質,寡醣與胜肽鍵序列中Asn-X-Thr/Ser (X 代表除了i,Asp或pro以外的其他胺基酸)的Asn藉著N-糖苷鍵 結合在一起形成一種具有酵素活性的分泌蛋白質(Akazawa et al.,'1985).3 水稻種子的α -澱粉水解酶與其他穀類種子的α -澱粉 水解酶最主要的不同在於有許多的甘露糖及複合寡_會結 合到水稻成熟的聚胜肽鍵(Mitsui &amp; Akawaza, 1986)上, 但是大麥及小麥的成熟的α -澱粉水解酶並沒有被糖基化 作用的現象。 本案中,RAMYG17在DNA序列位置2450與3380處各有一 値假想的Ν-糖基化作用的位置(圖8),其胺基酸序列分別 是 Asn-Leu-thr 與 Asn-gly-Thr。Asn-Leu-Thr位於訊號胜 肽鏈中,當蛋白質分泌進入ER内腔時訊號胜狀键將被切除 ,因此由RAMYG17所製造出來的成熟的α -澱粉水解酶預測 將只在A s η - g 1 y - T h r處被Ν -糖基化作用成為一種_蛋白。 (請先閱讀背面之注意事項另填寫本頁) •裝·、 1T line paper size is applicable to China National Standard Falcon (CNS) A4 specification (2 丨 0 X 297 mm) 32 Printed A7 _____B7___ by the Beigong Consumer Cooperative of the Central Standards Bureau of the Ministry of Economy V. Description of invention Sequenase reaction buffer, mixed Evenly. 10. The remaining steps are the same as the steps 4, 5, 6, and 7 of the double-strand DNA sequence analysis. But in step 4, each tube needs to add 0.25 / 11 DMS0. 3.2.4. Computer analysis of DNA sequence: Computer analysis of DNA sequence was performed by GCG sequence analysis computer software (the Genetics Computer Group, University of Wisconsin, Version 5.0, June 1987) (Devereux et al., 1984). &lt; W. Transplantation of rice suspension culture cells-using the electro-penetration method: 4.1. Rice suspension culture · 1. In a 125ml Erlenmeyer flask, 25ml of MS (Appendix I) liquid medium containing 25% sucrose is added and added. .5m 丨 suspended rice (Tainong No. 67) fine monument (about 0.2 g). 2. Incubate at 25 ° C, 12 hours light and 12 hours darkness at 120 rpm with shaking. 3. Subculture every 7 days. 4.2. Transplant the gene into rice cells using the electric penetration method. 1. Take the suspension culture cells of rice grown on the third day, absorb the culture liquid in the triangular flask, wash it with the washing medium (Appendix II) CPW7.4. Wash it once, move the fine roar into the culture dish, and add 5 m I enzyme solution (Every 100 ml of CPW7.4 contains 4% cellulase RS, 1¾ macerozyme R-10) Reaction at room temperature for 30 minutes. 2. Collect the enzyme-treated cell solution, transfer it into a 15 ml centrifuge tube and centrifuge at 800 rpm for 3 minutes. -&quot; '3. Remove the supernatant and wash the pelleted cells twice with CP W7.4. After that, the paper size is applicable to China National Standard Falcon (CNS) A4 specification (210X 297mm) -33-(please first Read the precautions on the back (4) and write this page). Packing. 321685 A7 B7 Printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economics. 5. Description of the invention ($,) EPR buffer (10¾¾ glucose, 4inM CaCU, 10mM Hepes, p Η 7. 2) Wash once. 4. Add 5ιπ 1 EPR buffer to suspend the washed cells, and then add 20 α-starch hydrolase gene promoter-GUS gene fusion vector (PHHE132, ΡΕΕ132, etc.) and 10ug / ml The salmon sperm DNA was mixed evenly and incubated at room temperature for 1 hour. 5. 'Take 0.8ml of the cell suspension into the Gene Pulser cuvette with a 0.4cm electrode gap and let it stand in an ice bath for 15 minutes. 6. Place the cuvette in Gene Pulser (BIO-RAD), set the voltage: (Vo) to 150V, capacitance (Co) to 960uF, resistance (Ω) to 400 ohms, and shock time to 120msec. After the setting is completed, electric shock is applied to transfer the DNA into the cells. 7. Place the shocked cells in an ice bath for 15 minutes. 8. Transfer the cells to a Petri dish with 24 cells (Costar, No. 3424) +, add 3ml of KPR (Appendix III) liquid medium, seal the periphery of the Petri dish with paraffin film, and culture at 50 rpm in the dark at room temperature 3 husband. 4.3. GUS assay: 4.3.1 Preparation of 1 ^ color reaction solution (7-8 丨 11 reaction solution): 1. Dissolve 5mg X-glu in 100ttl DMS0. 2. Add 10 ml of reaction buffer (10 mM Na ^ EDTA, 100 mM NaHaPCU.HsO, 0.1% Triton, pH 7.0). '3. After mixing, each K5〇iii is packed in eppendorf test tubes' (please read the precautions on the back P% to write this page). Packing. The paper size of the binding book is applicable to the Chinese National Standard (CNS) A4 specification (210X297 Mm) -34- V. Description of invention A7 B7 Printed and stored in the -20TC refrigerator by the Employees Consumer Cooperative of the Central Bureau of Prospects of the Ministry of Economic Affairs. 4.3.2. GUS analysis: 1. After culturing the cells for 3 days, remove the culture solution, add 50 μl of X-glu reaction solution, and let it stand in the dark in the greenhouse to react for more than 3 hours. 2. Remove the cells, in Observe the staining of cells under a microscope.藠 詢 结 結 '1. Analysis of pure rice ot-starch hydrolase gene group DNA strains: using rice ct-starch hydrolase cDNA pure strains and RAMYC30 coding house as probes to screen the rice gene group DMA repository, A total of 16 pure strains of gene groups were obtained. The restriction enzyme "Sal I" was used to separate the rice genomic DNA from the bacteriophage DNA k, and it can be seen from the electropherograms (eg, 1A, 1C, 2E) that these genomic DNAs were cut into several segments. Among them, the electropherograms of RAMYG28 and RAMYG18 are the same, which may be the same pure strain. RAMYG17 and RAMYG19 may also be the same pure strain. 0 In order to determine what is obtained in the DMA repository of the obtained gene group, it is true that it contains rice α-starch hydrolase For pure strains of genes, after separating the DNA of Figures 1A, 1C, and 2E by colloid electrophoresis, transfer the DNA to the gene sieving membrane by Southern blotting, and then combine it with the RAMYC30 coding region or 5 'of the RAMYC28 coding region. The probes made at the end were hybridized, and the results (Figure IB, ID, 2F) showed that RAMYG10, RAMYG11, RAMYG14, RAMYG20 did not have a positive reaction, so it is inferred that these 4 pure strains may not contain the ct-starch hydrolase gene A total of 12 pure strains of α-starch hydrolase gene group were obtained. Figures IB, ID, and 2F show that some pure strains have a 2 to 5 painting hybridization positive reaction, (please read the precautions on the back to write this page) • The paper size of the binding and binding book is applicable to China National Standard (CNS) Α4 specifications (210X297mm) 35 B7_ V. Description of the invention (») It is speculated that the α-starch hydrolase gene contained in these pure strains may be divided into several segments by Sa 1 I, or that the same DH A contains more than one α- Starch hydrolase gene (Huang et al, 1990a). A ·· Identify the 5 'end of the α-starch hydrolase gene: The 5' and 3 'end probes used in this experiment are all DNA probes prepared by in vitro methods. This probe contains a Small plastid [pBI lies crip t &quot; H KS (+ /-)] multiple implanted DNA fragments, this section of DNA may have high homology with 1.6kb and 0.5kb in the label (lkb ladder, BRL) 0 'sequence, so there is a strong positive cross-reaction in the places marked 1.61 ^ and 0.51 ^. In order to determine the 5' end of the α-starch hydrolase gene of the pure strains of the selected rice gene group, In order to isolate the promoter site, the in vitro translation method was used to obtain the 5 'ends of the coding regions of RAMYC28 and RAMYC30, with lengths of 320b and 430b, respectively, plus the 3' end of HS501, with a length of 350b (Yu et al, 1990) Three kinds of DNA probes were made. Through the results of molecular hybridization (Figure 2B, 2D, 2F, 2H), it was found that RAMYG6, RAMYG8, RAMYG17, 1TAMYG18, RAMYG21 and RAMYG28 all have positive hybridization reactions. Printed by Beigong Consumer Cooperation, these pure strains may contain alpha- The promoter part of the powder hydrolase gene. Other pure strains may also contain the 5 'end of some α-starch hydrolase genes, but may have low homology to the DNA sequence of the probe used in this experiment, so there is no positive reaction. . In the two pure strains of RAMYG6 and RAMYG28, there are two DNA fragments showing _ • are now reacting (Figure 2F), so it is inferred that the probe used in the experiment (RAMYC28- This paper scale is applicable to the Chinese National Standard (CNS) Α4 Specifications (210x 297 mm) A7 B7_5, the invention of the consumer cooperation of the Central Bureau of Standards of the Ministry of Economic Affairs of the Ministry of Economic Affairs, the invention description (&gt; MO Ο 5 ·), in which the DNA sequence may be between the junction of the two DNA fragments or the second segment The DNA fragments are all highly similar in composition. Later experiments (Figures 11 and 12) confirmed that the DNA sequence of RAMYC28-5 'did have a high degree of homology with the DMA sequences of RAMYG28a and RAMYG6c. As for the RAMYG28b and RAMYG6a The weaker positive reaction may be due to the low degree of homology between the probe's DNA sequence and the two pieces of DNA. B. Determine whether the known &amp; ^ α-starch hydrolase cDNA may have been derived from Genomic DNA: use The α-starch hydrolase gene (RAMYC26, 27, 28, 30). The 3 'end is a gene-specific probe (gene-specific probe) for molecular hybridization to understand the four possible sources of cx-starch hydrolase cDNA From the isolated genome DNAs, the hybridization results (Figure 3B, 3D, 3F, 3G) show that RAMYC26 is a pure cDNA strain derived from RAMYG8, while RAMYC27 and RAMYC28 are pure cDNA derived from RAMYG17 and RAMYG28, respectively. Strain (please refer to Table 1). The results show that RAMYG6, RAMYG18 and RAMYG28 may be the gene group DNA containing RAMYC28, while RAMYG18 and RAMYG28 may be the same gene; RAMfGS may contain the gene group DNA of RAMYC26; RAMYG21, RAMYG22 and RAMYG23 may contain the gene group DHA of RAMYC27. In Fig. 3F, RAMYG18 also has a positive hybridization reaction with a held-in gene probe at the 3 'end of RAMYC27. It is possible that the 3' end of RAMYG18 and RAMYC27 also have a similar composition of DN A sequences to some extent, so they also exhibit a positive hybridization reaction. 3. Sub-transplantation of DHA fragments of rice α-starch hydrolase gene group ~ _ The pure strains of genomic DNA and α-screened from the rice genomic DNA library-(Please read the notes on the back to write this page)- · The paper size of the binding book is applicable to the Xinguo National Standard (〇 ^) 84 specifications (2〗 0/297 mm) 37 321685 A7 B7 The coding area of the starch hydrolase gene printed by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs The probes at the 5 'end and the 3' end were hybridized DNA fragments (Figure 5), part of which were transferred into pBluescript 11 (5 (+ /-) vector, as shown in Figure 6. Among them 1? / ^ ¥ 01732 (Figure 4 dagger) and RAMYG28a2 DNA fragments cut by restriction enzyme cleavage, and then transfected into pBluescript vector. Fourth, the DNA sequence analysis of the 5 ′ end of the rice ct-starch hydrolase gene: (A) DNA sequence analysis of the 5 'end of the RAMYG17' gene: The probe made at the 5 'end of the coding region of RAMYC30 has a positive hybridization reaction with 1? 4 »^ 01731 (Figure 2b), so 1 ^^^ 61731 may be Promoter site containing α-starch hydrolase gene. Using restriction Sal I and EcoRI can reduce 4.5kb RAMYGlJa! It is 1.2kb of RAMYG17a2 (Figure 4), and it can still react with the 5 'end of RAMYC30, indicating that RAMYG17a2 may still contain the promoter site of the α-starch hydrolase gene. The deletion of RAMY 01732 by Exo SI 1) ^^ Fragments are gradually shortened, and then the DNA sequence is analyzed by the Sanger double deoxyribonucleic acid bond termination method. The analyzed DNA sequence is then compared with the published rice O (-starch hydrolase gene using GCG system. RAMYG17 a2 Although the DNA sequence is only 1200bp, it has been found to be identical to the pure λ 0Sg2 strain (Huang eta 1., 1990) (Figures 7 and 8), which means that the RAMYG17 33 and the pure λ 0Sg2 strain should belong to the same gene According to published reports, the signal peptide site of the α-starch hydrolase gene can be found (as shown in Figure 8), and there is a brain EcoN I restriction enzyme on the DN Α sequence immediately after the signal peptide site The cutable part, so use EcoNI to cut at the 5 'end of 1? / \ 14th generation 1731 * This can cut the 5' end of different lengths containing different lengths of the cc-starch hydrolase gene promoter and please read the back Notes on binding book The paper scale is applicable to the Chinese National Standard (CNS) Α4 specification (210X297mm). The consumer consumption cooperation of the Central Bureau of Standards of the Ministry of Economic Affairs has printed the A7 _____B7_V. Invention description (#) The 3 'end contains the DH A fragment of the signal win chain. Figure 9) These DNA fragments can be connected to genes that want to express proteins in the future to construct a protein expression vector and secrete bamboo proteins out of cells by the function of signal peptide chain. (B) DNA sequence analysis of the 5 'end of the RAMYG6 and RAMYG28 genes: The probes made at the 5' end of the coding region of RAMYC28 and the RAMYG6 and RAMY G28 were hybridized with positive reactions, and the DNA fragments with positive reactions were named as RAMYG6a, RAMYG6c, RAMYG28a and RAMYG28M (Figure 2F). After DNA sequence analysis, it was found that both RAMYG28a and RAMYG6b contained the 5 'promoter site of the α-starch hydrolysis gene. RAMYG6b contains a 5 'promoter region that has no homology with the 5' end of the coding regions of RAMYC2 and 8. RAMYG6C does. There is no positive reaction between the former and the dish needle, and the latter does (Figure 10). During the experiment, Huang et al. Published the DNA sequences of two α-starch hydrolase genes, which they named RAmy3D and RAmy3E. After comparing the DNA sequences, we found that RAMYG28 and RAmy3E should be the same pure strain (Figure 10, 11), while RAMYG6 spans the 3 'end of RAmy3E and almost covers the entire RAmy3D gene (Figure 10, 11, 12). The research by Huang et al. (Huang et al., 1990) has pointed out that RAmy3D (= RAMYG6) and RAmy3E (= RAMYG28) are located on the same chromosome, and the distance between the two is about 4. Okb (Figure 10). DNA sequence analysis also confirmed this result. V. Construction of GUS expression vector: A. Construction of pBSI, pBXE and pBSfll (presented by Divid McEU "y") "pBI 101.1, pBI 101.2, pBI 101.3 (CLONTECH, No. Please read the notes on the back first" ^ 'Fill in this page)-Pack. The size of the line paper is applicable to the Chinese National Standard (CNS) A4 (210X297 mm). The selected or not printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs is based on common causes. Breaking tool-My I judged the species to be difficult to establish, and the change was due to the change. The neutrophilic fine plants were planted to the current plant. The number of the record was A7 _B7_ V. Invention description (&gt;;;) 6022) The E. coli GUS gene (2 kb) pseudo-deficient in the promoter was transfected on the polylinker of the Agrobacrteri um t umifaciens binary plastid vector pBIM19, and then the blue eosin (nopaline) of the Agrobacterium Asrobacter ium T plastid ) The terminator (260bp) of the synthase (NOS) gene is connected to the 3 'end of the GUS gene. Therefore, the promoter of the plant gene can be easily inserted into the polylinker at the 5' end of the GUS gene. Promoter Drive the transcription of the GUS gene, and can be engaged in the study of gene regulation. Because the replication efficiency of plastid pB IN 19 in bacterial skulls is very low and it is not easy to purify in large quantities, the restriction enzymes Bam HI and spel were used to separate pBIIOI. 1, pBI 101.2 and The 01 ^ gene contained in 98101.3 and the 0 terminator were isolated from the? 811 &lt; 19 vector, and the 0 "fragments of PBI 101.1 and pB 101.3 were inserted into pBluescritIKS (+), a plastid cut with restriction enzymes and spel, respectively Plastids PBS I and pBS I were obtained. The DNA fragment of pBI101.2 was inserted into the plastid pBlusecript I KS (+) cut with restriction enzymes BamHI and XbaI to obtain pBX E (plaque 13A). The difference between pBSI, pBXI, and pBSII lies in the 5 'end of the GUS gene, and the reading frame has a nucleotide difference. Therefore, the plant promoter can choose the appropriate reading frame to insert and construct a GUS expression vector . B. Transplant the GUS gene to a plastid with the gene of the alternative symbol-anti-moisture emblem because PBS I, pBX H, pBS III (Figure 13A) do not have an alternative paper size applicable China National Standard (CNS) Α4 specification (210X297mm) I installed I; swallowed. I line (please read the notes on the back ^ Λ fill in this page) (printed by the Ministry of Economic Affairs Central Standards Bureau employee consumer cooperatives A 7 B7 5 2. Description of the invention (y) The marked plastids are very important. The GUS genes in pBS I, ρΒΧ ϋ and PBs ΠΙ, together with the T 7 template and T 3 template and the multiple implanted sites between them are taken from the pBluescript vector using the restricted PVU Π Isolated from the medium (Figure 138), and then inserted into 1 ^ 1 ^ 11 [cut? 11 ^ 132 (Figure 13C) (Hayashimoto et al, 1990) vector, the result was pBX H-132 and pBSIB-132 (Figure 13D) , The GUS gene transmission direction of this diploid is the same as that of the moisture resistance gene (Hph), while the transcription direction of the GUS gene of pBS 1-132 (Figure 13E); the transcription of PU and moisture resistance gene In the opposite direction, a total of three plastids with GUS and anti-moisture emblem genes were obtained, and their DNA lengths were 7.Okb. The plastid can provide functions for analyzing various gene promoter functions in the future. C. Constructing a fusion vector of the rice α-starch hydrolase gene promoter and the GUS gene 1. Constructing a fusion vector of the RAMYG17 promoter and the GUS gene. The restriction enzyme map and graphic description of RAMYG17ai have obtained three DNA fragments containing pH- (0.88kb), PAE (1.7kb) and pSE (2.4kb) containing the promoter of α-starch hydrolase gene. Insert pBS I cut with restriction enzyme Snia I (please refer to the description of materials and methods for the joining method). According to the principle of gene triple code, decode from the starting point of protein translation ATG of pHE, pAE and pSE * until the GUS gene The translation start point of ATG must conform to the reading structure of the triple code. The promoter-GUS fusion vectors that have been joined are named pHE-Ι, pAE-Ι and pSE-Ι (please refer to Figure 14A, 14B, 14C Bu 'experiment At this point, the laboratory obtained plastid pTR A 1 32 (the Chinese standard (CNS> A4 specification (210X297 mm) is applicable to the paper standard 41 III n III —5 -n ^ II n ϋ I n IIIIII ^ (please Read the notes on the back first i- ?. Fill in this page) "A7 B7 by the consumer cooperation of the Central Bureau of Standards of the Ministry of Economic Affairs V. Presented by Up Hayashimoto) · The use of restriction enzymes ρνιιΠ in pHE-I, pAE-I and pSE-I The DNA fragment of the promoter-GUS gene, together with the T7 promoter and the T3 promoter and the multiple implantation sites were separated from the pBluescript vector (Figure 14C), and then inserted into the pTR A 132 vector cut with Hindi (Figure 14 D) , The results obtained pSE 132 (11.4 kb), pAE 132 (9.7 kb) and pHE 132 (7.9 kb) three kinds of fusion vectors with anti-moisture gene (圔 14E). Among them, the translation direction of the GUS gene of pSE 132 and pAE 132 is the same as the translation direction of the anti-moisture gene, but the translation direction of the GlfS gene of PHE 132 is opposite to that of the anti-moisture gene. 2. Construct the fusion vectors of RAMYG6, RAMYG28 promoter and GUS gene. The RAMYG6 and RAMYG28 gene promoters are located in the DNA fragments of RAMYG6b and RAMY G28a25, respectively (Figure 10). EcoNI and Sal I can be used to hydrolyze the α- 'starch of RAMY G6b. The DNA sequence of the enzyme gene 5'end and the signal peptide chain (total length about 1.6kb) was isolated from the plastid pBluescript. However, RAMYG28aa cannot use restriction enzymes to separate the 5 'end of the α-starch hydrolase gene and the DN A sequence of the signal win chain, because there is no suitable restriction enzyme available at the end of the DN A sequence of the signal win peptide chain. Therefore, using the method of Exo Μ nuclease removal, the DNA was gradually shortened from the V-end of RAMYG28a2 until it was near the signal peptide DNA sequence (Figure 11, thick arrow) and then the α-starch hydrolase was restricted with the restriction enzymes Apal and EcoRV The 5 ”end of the gene and the DMA sequence of the signal peptide chain are separated from the plastid PB | lies crip t. Therefore, according to the principle of the gene triple code, the two segments of DN containing the promoter and signal peptide bond separated by RAMYG6b and RAMYG28az A fragment was inserted into the plastid pBS _ dish-132 cut with restriction enzyme Η ί nd I to obtain RAMYG6-132 (8.61cb) (Figure 15) and RAMYG28-132. Please read the notes on the back ^ -s -install- -ΛFill in this page) The paper size of the binding book is in accordance with Chinese National Standard (CNS) Α4 specifications (210X297mm) Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 321685 at _ B7 V. Description of Invention (Mod P) (I) (8.2kb) (Figure 16) the fusion vector of cx-starch hydrolase gene promoter and GUS gene. RAMYG6-132 and RAMYG28-132U) The translation direction of the GUS gene is the same as the translation direction of the anti-moisture gene. DNA sequence and GOS gene of the signal peptide chain However, there is a terminating translation signal TGA (Figure 15D, 18D). In order to make the constructed fusion vector between the DNA sequence of the α-starch hydrolase gene's signal It chain and the GUS gene, there is no termination. Translate the code, and then insert the restriction enzymes Apal and EcoRV from the 5 'end of the alpha-amylase gene isolated from RAMYG28a2 and the DN A sequence of the signal peptide peptide into the plasmid PBSI-132 cut with the restriction enzyme clal to obtain RAMYG28-132 U) (Figure 17C) ^ The translation direction of the GUS gene is opposite to the translation direction of the hygromycin-resistant gene, and there is no termination of the translation code between the DNA sequence of the signal wins chain and the GUS gene (Figure 1 7 D) 6. Transplant the GUS expression vector into rice suspension culture cells using the electro-penetration method. Using the electro-penetration method, three GUS surface mirror vectors, such as PHE132, PAE132 and RAMYG6-132, have been transformed into rice Suspension cultured cells. After 3 days, the reaction was colored with Xg I u, and the transient performance of the GUS expression vector was measured. The results showed that the pHE 132, PAE132 and RAMYG6-132 and other three GUS expression vectors had blue cells. Performance (Figure 18B, 18C) In contrast, the cells in the control group were transformed with a promoter containing no cc-starch hydrolase gene and a vector containing only the GUS gene. After the same treatment, the cells were not colored (Figure 18A). From this &gt; · Prove that PHE132, PAE132 and RAMYG6-132 can be normal in rice cells. This paper scale is applicable to China National Standard (CNS) A4 specification (210X297mm) -43-I i IIIIIII Pack III Order __ II &quot; Line (please read the precautions on the back first and fill in this page) ^ ______B7 5. Description of the invention (what: /) performance. Whether PSE132, RAMYG23-132 (I) and RAMYG23-132 (I) can also perform normally in the cell, need to be confirmed by further experiments. ^ * The application of gene transfer technology to study the expression and function of eukaryotic genes to promote the understanding of the regulatory mechanism of higher biological genes. It is known that sugar-deficient treatment is applied to the culture medium of rice suspension culture cells, and certain α-starch hydrolase genes in the cells will be expressed in large quantities, and α-starch hydrolase is also produced and secreted in large amounts into the extracellular medium (Kuo, 1990). This phenomenon of massive expression of the α-starch hydrolase gene induced by sugar deficiency, in the end how cells transmit the signal of sugar deficiency, how to sense the signal of sugar deficiency and regulate the large expression of the retained α-starch hydrolase gene, and will α-starch hydrolase is secreted out of the cell. This is the subject of our interest. Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. This case has screened 12 different strains of pure α-starch hydrolase gene DNA from the rice genome DNA repository. This was further confirmed by probe hybridization and DNA sequence analysis. At least 4 out of 12 pure strains of the α-starch hydrolase gene group contain the DNA sequence of the 5 ′ end of the α-starch hydrolase gene and the signal peptide chain. The four pure strains are RAMYG6, RAMYG8, RAMY G17 and RAMYG28. It is worth noting that after the hybridization of the probes made by RAMYG8 with the coding region of RAMYC30 (Tzou, 1990), five DNA fragments showed a positive reaction (Figure 1B), and the total length of the five DNA fragments was about 10 kb * According to the results of DHA sequence analysis of RAMYG8C (Lo, personal contact), RAMY C26 (Louou, 1990) is a pure cDNA strain derived from RAMYG8, and RAMYG8c contains the DNA of the 5 ′ end of the RAMYC26 gene and the signal peptide bond sequence. Figure 3B / shows the specific gene probes made at the 3 'end of RAMYG8b and RAMYC26. The paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210 x 297 mm). V. Description of the invention (A »B7 Economy The Ministry of Central Standards Bureau employee consumer cooperative printed a strong hybrid positive reaction, speculating that RAMYG8b contains at least the 3 'end portion of the RAMYC26 gene. Therefore, RAMYG8c and RAMYG8b include the 5' end and 3 'end portions of the RAMYC26 gene. In addition to RAMYG8b and The total length of the three DNA fragments of RAMYG8c, RAMYG8a, RAMYG8d and RAMYG8e is about 5.6kb, so it is speculated that these three DNA fragments contain at least another ct-starch hydrolase gene, so RAMYG8 contains at least 2 ct-starch hydrolysis Gene group of enzyme gene E) NA pure strain. Table 1 shows that RAMYG6 and RAmy3D, RAMYG17 and RiUylA, RAMY G28 and RAmy3E are the same pure rice ct-starch hydrolase gene group DNA pure strain, P0S137 (RAMYC6) is a pure cDNA strain derived from RAMYG6, P0S103 (RAMYC2 7. ) Is a pure cDHA strain derived from RAMYG17, and ct-Amy3 (RAMYC26) is a pure cDNA strain derived from RAMYG8. RAmylA (RAMYG17) has a higher DNA transcriptional activity than other known α-starch hydrolase genes in rice during the piercing stage and root and leaf tissues of rice. (Huang et al., 1990a) ◦RAiny3 (RAMYG28) performed the most strongly in immature rice seeds (Huang et al., 1990a) and when the medium was subjected to sugar deficiency induction (Kuo, 1990). RAmy3D (RAMYG6) is the most expressed in rice callus (cal lus) (Huang etal., 1990a) ° The similarities between RAMYG6 (RAmy3D) and RAMYG28 (RAmy3E) include: (a) both on the chromosome The transcription direction is the same, (b) all have 2M inserts and the length of the inserts are similar, (c,) unmodified protein (Pr · epr · 〇tei η) the number of amino acids is similar, RAmy3D is 435 The amino acid, RAmy3E is 437 keto acid, (d) can be expressed in a large amount in callus (Huangeta 1., 1990a). Although RAMYG6 and RAMYG28 have these similarities and are in the same position, please read first. Please read the notes on the back Λ S-¾ fill in the package f. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 45 Ministry of Economic Affairs A7 _____B7_ printed on the chromosome of the invention by the Consumer Cooperative of the Central Bureau of Standards V. Invention description (Mojin), but the results of the cross-hybridization by DNA using the slot-blot method belong to different ethnic groups. Ethnic group 5 (Huang et al., 1990b). Comparison of the amino acid sequence of the signal wins chain ’RAMYG28 is more similar to wheat ’s Amy3 (Table 2), and RAMYG6 is significantly different from other cereal α-starch hydrolase genes. The protein secreted by plants out of cells can be divided into two categories according to their structure and function. The first type is proteins that do not have enzyme activity. The hydroxyproline of the oligosaccharide and the peptide bond are bound together via a 0-glycosidic bond to form a non-enzymatic secreted protein (Fincher et al., 1983). The second type is protein with enzyme activity. The oligosaccharide and Asn-X-Thr / Ser (X represents other amino acids except i, Asp or pro) in the peptide bond sequence are bound by N-glycosidic bond Together to form a secreted protein with enzyme activity (Akazawa et al., '1985). 3 The main difference between the α-starch hydrolase of rice seeds and the α-starch hydrolase of other cereal seeds is that there are many mannose and The compound oligo- will bind to the mature peptide bond of rice (Mitsui & Akawaza, 1986), but the mature α-starch hydrolase of barley and wheat has not been glycosylated. In this case, RAMYG17 has a hypothetical N-glycosylation position at positions 2450 and 3380 (Figure 8), and the amino acid sequences are Asn-Leu-thr and Asn-gly-Thr, respectively. Asn-Leu-Thr is located in the signal peptide chain, when the protein is secreted into the ER lumen, the signal-like bond will be cut off, so the mature α-starch hydrolase produced by RAMYG17 is predicted to be only at A s η- g 1 y-T hr is converted into a protein by N-glycosylation. (Please read the precautions on the back and fill in this page first)

,-ST 線 本紙張尺度適用中國國家標準(CNS ) A4規格(210x 297公釐) 321685 A7 ______B7_ 五、發明説明(必), -ST line This paper scale is applicable to China National Standard (CNS) A4 specification (210x 297 mm) 321685 A7 ______B7_ V. Description of invention (required)

Kumasai等人(199〇)營利用p〇sl〇3(RAMYC27)轉殖到酵母菌 細胞内’收集分泌到培養基中的α -澱粉水解酶,若以去 糖基化作用的藥物TFMS(三氟甲烷磺酸)處理ct -澱粉水解 酶’結果經由TFMS處理過的α -澱粉水解酶其分子量小於 未經TFMS處理的α -澱粉水解酶,證明p〇si03所製造的成 熟的α -澱粉水解酶確實經過糖基化作用。 RAMYG6只有在訊號胜狀鍵Asn-Thr-Ser處有一痼假想 的N-糖基化作用位置(圖12),而RAMYG28則預測沒有任何 一個地方可以被N-糖基化作用(圖11)。如果N-糖基化作用 位置遵循Asn-X-Thr/Ser的原則,RAMYG6及RAMYG28所製造 的成熟的,ex -澱粉水解酶將不被糖基化作用(0 ’ Ne Π I et a 1 . , 1.9邮)。這與Miyata等人(1982)認為所有水稻的α - 澱粉水解酶都有被Ν -糖基化作用的結論則有所差異。 表二中列出水稻、大麥、小麥訊號胜呔鏈胺基酸序列 的比較。RAMYG17有2値假想的轉譯起始點,轉譯起始點自 第一痼甲硫胺酸開始,其訊號胜呔鏈有3 1個胺基酸的長度 ,若轉譯起始點自第二値甲硫胺酸開始,則訊號胜呔鍵包 含有25個ί胺基酸。Von Heijne ( 1985)曾將訊號胜呔鏈分 為η、c及h等三値區域,η區域位於訊號胜肽鏈的N -末端, 由具有一或二値正電價的小段胜肽組成。c區域位於訊號 胜肽鐽的C-末端,由大約5値胺基酸所組成。h區域位於η 與c區域之間,由大約7個胺基酸組成一艏訊號胜肽鏈的疏 水性核心。 一 ·— 表二顯示大麥與小麥在訊號胜肽鏈的c區域幾乎都具 本紙張尺度適用中國國家樣準(CNS ) A4規格(210X297公釐) 請先閱讀背面之注意事 •裝-- 爿填寫本頁) 訂 經濟部中央標準局員工消費合作社印製 47 ^^1685 A7 B7 五、發明説明(么Γ) 有守恆性胺基酸序列(S-L-A-S-G),因此,推測此序列可 能是訊號胜肽鏈辨認的位置(Kumagai et al·,1990)。但 水稻中的訊號胜肽_被此的c區域則無此種守恒性的胺基 酸序列。表二中的ot_殿粉水解酶訊號胜肽鍵的η區域中除 RAMYG28帶有三個正電價外,其餘都具有一或二値正電價 。在所有的訊號胜肽鏈的h區域中,都具有一小段由連續 六或七個疏水性胺基酸所組成的疏水性核心。此段疏水性 胜肽可能擔任與内質網膜的疏水性雙層脂質结合的功能’ 進而引導聚胜肽鐽進入内質網的内腔中。另外表二中所列 的α -澱粉水解酶的訊號胜呔鍵都不具有酸性的胺基酸也 是值得注t意的。 經濟部中央標準局員工消費合作社印裝 本發朔所獲得的三値水稻α -澱粉水解酶啓動子皆已 構築成控制GUS表現的載體(圖14、15、16、17) ’其中RAMY G6-132及RAMYG23-132(I )等二個GUS表現載體在-澱粉 水解酶的訊號胜肽鏈的DNA序列與GUS基因相接處的多重植 入位的位置形成了一個终止轉譯訊號TGA (圖15D、16D), 因此由這二艏GUS表現載體所轉譯的GUS蛋白質前驅tt的N-末端應不包含α-澱粉水解酶的訊號胜呔鐽,所以GUS蛋白 質也不能被分泌到細胞外。 利用電穿透的方法將GUS表現載體轉殖到水稻懸浮培 養細胞内,已經確定pHE 132、pAE 132及RAMYG6-132皆能 使GUS基因表現(圖18),因此證明本實驗所構築的PHE132 .、pAE 132及RAMYG6-132等啓動子- GUS基因融合載體在水 _ '稻細胞内確實能夠正常表現’並且預測Ρ Η E 1 3 2及p A E 1 3 2 本紙張尺度適用中國國家標準(CMS ) A4規格(210X297公釐) -48 - A7 ___ _B7 五、發明説明(奴) 所製造的G US蛋白質將被分泌到細胞外。 基於本案發明人較早所發現的培養基缺磺源可誘發α -澱粉水解酶基因之表現以及以上的實驗結果可推知,利用 α -澱粉水解酶基因的啓動子及訊號胜肽鏈引導蛋白質分 泌的持性,可從事基因調控與蛋白質分泌機制的研究,進 而以有利於以其他所欲的人類的基因取代GUS基因,在α -澱粉水解酶基因的啓動子調控下,於植物(諸如水稻)懸浮 培養細胞中施以缺磺源處理,特別是缺糖處理,來從事遣 傳工程蛋白質的大量生産,俥造福人群。 本發明雖僳藉上述較佳實施例加以描述,惟如熟於此 項技藝人.士所能暸解的,經由以上之教示本案尚可産生多 種的變化ρ修改與等效置換,因此,本案所欲請求之專利 保護應以所附的申請專利範圍之定義及其等效置換物來限 定。 I---;-----------IT------ (請先閲讀背面之注意事h&quot;填寫本頁) ( 經濟部中央標準局貝工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) A7 _B7五、.發明説明($?) 申明事項: 一、關於本案發明說明書中所稱C(-澱粉水解酶基因純株 (clone)之命名: 在本案發明說明書中所稱之RAMYG-- 〃純株,其中 之G字母傜代表該純株傜為 '' 基因群D N A純株&quot;,而所稱之 '' RAMYC-- 〃純株,其中之C字母偽代表該純株偽為* cDNA 群純株〃。 - 二、本案申請專利範圍第1、10及26項獨立請求項中所定 義之 ''包含有α -澱粉水解酶基因啓動子區域的a Amy 6、 ot Aray7、ot Ainy8或ct AmylO基因&quot;,實傜相應於本案發明 人於本發明中所獲得的1 2値純株(請參見本案説明書第44 頁下方至第45頁上方之載述)。本案發明人對所獲得的純 株原先偽’採用其實驗室自行之命名符號來作標識,而後為 發表論文,乃將此等純株改採國際命名方式而予以重新命 名,其中: ot iUy6對應於本案説明書中所載述之RAMYG26 ; a Amy7對應於本案說明書中所載述之RAMYG17 ; cx Amy8對應於本案說明書中所載述之RAMYG28 ; a AmyiO對應於本案說明書中所載述之RAMYC30,以及 a Amy30]對應於本案說明書中所載述之RAMYG6。 三、在本案圖式圖18B與18C中所示之結果傜為、' PHE132 &quot; 轉殖至水稻懸浮培養細胞内所産生之表現結果,而有關另 外二種GUS表現載體PAE132及RAMYG6-132之轉殖,因為結 果偽為相同,故未再另予以出示照片。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 32^685 A7 B7 五、發明説明(政) 表一 :水稻α -澱粉水解酶基因的命名及其在培養的水稻 細胞中的表現。 表中列出本實驗室及美國R 〇 d r i g U e ζ的實驗室所個別 擁有的水稻ct -澱粉水解酶基因群DNA純株及cDNA純株。由 本表可知 RAMYG6 與 RAmy3D,RAMYG17 與 RAmylA,RAMYG28 與 RAmy3E是相同的ot _殿粉水解酶基因群DNA純株。而RAMYC6 與口05137,1?0¥027與?05103、[^«¥〇26與《-3 11^3則是相 同的 cc -澱粉水解酶 cDNA純株。RAMYC6、RAMYC26、RAMYC27 、.RAMYC28等ct -澱粉水解酶cDNA純株分別源自RAMYG6、 RAMYG8、RAMYG17及RAMYG28等a -澱粉水解酶基因群DNA純 株。在水稻癒傷組織中以RAmy3D(RAMYG6)表現最強’於水 稻懸浮培養細胞的培養基中施以缺糖處理’則RAmy3E (RAMY G28)表現最強。 表一Kumasai et al. (199〇) used p〇sl〇3 (RAMYC27) to colonize yeast cells' to collect the secreted α-starch hydrolase in the medium, if the deglycosylated drug TFMS (trifluoro Methanesulfonic acid) treated ct-starch hydrolase 'result Alpha-starch hydrolase treated with TFMS has a molecular weight lower than that of alpha-starch hydrolase without TFMS treatment, proving that mature alpha-starch hydrolase produced by p〇si03 Indeed after glycosylation. RAMYG6 only has a hypothetical N-glycosylation site at the signal winning bond Asn-Thr-Ser (Figure 12), while RAMYG28 predicts that no place can be N-glycosylated (Figure 11). If the N-glycosylation site follows the Asn-X-Thr / Ser principle, the mature, ex-starch hydrolase produced by RAMYG6 and RAMYG28 will not be glycosylated (0 'Ne Π I et a 1. , 1.9 post). This is different from Miyata et al. (1982) 's conclusion that all rice α-starch hydrolases have N-glycosylation. Table 2 lists the comparison of the amino acid sequences of the rice, barley and wheat signals. RAMYG17 has 2 hypothetical translation starting points. The translation starting point starts from the first methionine, and its signal winning chain has a length of 31 amino acids. When thiamine starts, the signal wins key contains 25 amino acids. Von Heijne (1985) once divided the signal winning chain into three value regions of η, c and h. The η region is located at the N-terminus of the signal winning peptide chain, and consists of small peptides with one or two positive electric valences. The c region is located at the C-terminus of the signal peptide, consisting of approximately 5 amino acids. The h region is located between the η and c regions, and is composed of about 7 amino acids to form a hydrophobic core of the signal peptide chain. 1.—Table 2 shows that barley and wheat are almost in the c region of the signal peptide chain. The paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm). Please read the notes on the back • Install-爿Fill in this page) Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy 47 ^^ 1685 A7 B7 V. Description of Invention (Mo Γ) Conserved amino acid sequence (SLASG), therefore, it is speculated that this sequence may be a signal peptide The position of the chain identification (Kumagai et al., 1990). However, the signal peptide in rice _ this region of c has no such conservative amino acid sequence. In the η region of the peptide bond of the ot_dian powder hydrolase signal in Table 2, except that RAMYG28 has three positive electricity prices, the rest have one or two positive electricity prices. In the h region of all signal peptide chains, there is a small hydrophobic core composed of six or seven consecutive hydrophobic amino acids. This hydrophobic peptide may serve to bind to the hydrophobic bilayer lipid of the endoplasmic reticulum membrane, thereby guiding the polypeptide into the lumen of the endoplasmic reticulum. In addition, the signals of α-starch hydrolase listed in Table 2 do not have acidic amino acids, which is worth noting. The Sanya rice α-starch hydrolase promoters obtained by the Employees ’Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs printed this issue have been constructed as vectors to control GUS performance (Figures 14, 15, 16, 17). Among them, RAMY G6- Two GUS expression vectors such as 132 and RAMYG23-132 (I) form a termination translation signal TGA at the position of multiple implantation sites where the DNA sequence of the peptide chain of the starch hydrolase and the GUS gene are connected (Figure 15D , 16D), therefore, the N-terminus of the GUS protein precursor tt translated by these two bow GUS expression vectors should not contain the signal of α-starch hydrolase, so the GUS protein cannot be secreted out of the cell. Using the method of electric penetration to transfer GUS expression vector into rice suspension culture cells, it has been determined that pHE 132, pAE 132 and RAMYG6-132 can make the GUS gene express (Figure 18), so it is proved that the PHE132 constructed in this experiment. , PAE 132 and RAMYG6-132 and other promoters-GUS gene fusion vector in water _ 'rice cells can indeed perform normally' and predicted ΡΗΕ 1 3 2 and p AE 1 3 2 This paper scale is applicable to the Chinese national standard (CMS ) A4 specification (210X297 mm) -48-A7 ___ _B7 5. Description of invention (slave) The G US protein produced will be secreted out of the cell. Based on the discovery that the lack of sulphur source in the medium earlier by the inventors of this case can induce the expression of the α-starch hydrolase gene and the above experimental results, it can be concluded that the promoter and signal peptide chain of the α-starch hydrolase gene are used to guide protein secretion Persistent, can be engaged in the study of gene regulation and protein secretion mechanism, and then replace the GUS gene with other desired human genes, under the control of the promoter of α-amylase gene, suspended in plants (such as rice) Cultured cells are treated with sulphur-deficient treatments, especially sugar-deficient treatments, to engage in mass production of engineered proteins for the benefit of the population. Although the present invention is described by the above preferred embodiment, but as can be understood by those skilled in the art, through the above teachings, this case can still produce various changes. The patent protection to be claimed shall be limited by the definition of the attached patent application scope and its equivalent replacements. I ---; ----------- IT ------ (please read the precautions on the back h &quot; fill in this page) (printed copy of Beigong Consumer Cooperative, Central Bureau of Standards, Ministry of Economic Affairs The paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X 297mm) A7 _B7 V. Description of the invention ($?) Statement of matters: 1. About the C (-starch hydrolase gene pure strain mentioned in the description of the invention of the case ( The name of clone): RAMYG-- 〃pure strain referred to in the description of the invention of this case, where the letter G in the letter represents the pure strain is `` genome DNA pure strain &quot;, and it is called `` RAMYC-- 〃Pure strain, where the C letter pseudo represents the pure strain as * cDNA group pure strain〃.-2. The definition in the independent claims of items 1, 10 and 26 of the scope of the patent application of this case includes "α-starch" The a Amy 6, ot Aray 7, ot Ainy 8 or ct AmylO gene in the promoter region of the hydrolase gene, which corresponds to the 12-value pure strain obtained by the inventor of the present invention in the present invention (please refer to the 44th specification of the present case) The description at the bottom of the page to the top of page 45). The inventor of the present case adopted the name of his laboratory for the original pseudo of the obtained pure strain. No. to mark, and then to publish a paper, rename these pure strains to the international naming method and rename them, where: ot iUy6 corresponds to RAMYG26 described in the specification of this case; a Amy7 corresponds to the description in this specification The described RAMYG17; cx Amy8 corresponds to the RAMYG28 described in the specification of this case; a AmyiO corresponds to the RAMYC30 described in the specification of this case, and a Amy30] corresponds to the RAMYG6 described in the specification of this case. 3. In this case The results shown in Figures 18B and 18C are the performance results of 'PHE132 &quot; transfer into rice suspension culture cells, and the transfer of the other two GUS expression vectors PAE132 and RAMYG6-132, because The results are assumed to be the same, so no photos will be presented. The paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X 297mm) 32 ^ 685 A7 B7 V. Invention description (political) Table 1: Rice α-starch The nomenclature of the hydrolase gene and its performance in the cultured rice cells. The table lists the rice ct-starch hydrolase bases individually owned by this laboratory and the laboratory of R 〇drig U e ζ in the United States DNA and cDNA group of pure strains of pure strains. Table understood by those with RAMYG6 RAmy3D, RAMYG17 and RAmylA, RAMYG28 the same OT _ RAmy3E temple powder hydrolase gene cluster DNA pure strains. And RAMYC6 and mouth 05137, 1? 0 ¥ 027 and? 05103, [^ «¥ 〇26 and" -3 11 ^ 3 are the same pure cc-starch hydrolase cDNA strains. The pure ct-starch hydrolase cDNA strains such as RAMYC6, RAMYC26, RAMYC27, and .RAMYC28 are derived from pure DNA strains of a-starch hydrolase gene groups such as RAMYG6, RAMYG8, RAMYG17, and RAMYG28, respectively. RAmy3D (RAMYG6) showed the strongest performance in rice calli 'and the sugar-deficient treatment in the culture medium of rice suspension culture cells' RAmy3E (RAMY G28) performed the strongest. Table I

Rodriguez fs Lab* 癒傷組班內表現 位準b 蔗糖-缺乏 誘發z 經濟部中央標準局員工消費合作社印製Rodriguez fs Lab * Calligraphic performance in the class Level b Sucrose-deficiency induced z Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs

Til’s Lab 基因群的 cDNA 基因群的 RAMYG6 RAMYC6X b RAmy3D RAMYG5 (RAMYG26) RAMYC267 RAMYGI7 RAMYC277 RAmvlAc (RAMYG27) (X0Sg2) RAMYG25 RAMYC26y RAmy3Eb RAMYC3〇y cDNA pOS137 ot-Amy3e pOSl〇3d 'Department of Genetics, Universit/ oi Caliiornia,Davis, &lt; bHuangetal&quot;199〇a cHuang etal.,1990!, d〇 Neill etal.,199〇 •GenBank Data XHwa,1991 * rT2〇u,199〇 E Kuo, 1990 (?)Til's Lab Genome cDNA Genome RAMYG6 RAMYC6X b RAmy3D RAMYG5 (RAMYG26) RAMYC267 RAMYGI7 RAMYC277 RAmvlAc (RAMYG27) (X0Sg2) RAMYG25 RAMYC26y RAmy3Eb RAMYC3〇y cDNA pOS137 ot-Amyd , Davis, &lt; bHuangetal &quot; 199〇a cHuang etal., 1990 !, d〇Neill etal., 199〇 • GenBank Data XHwa, 1991 * rT2〇u, 199〇E Kuo, 1990 (?)

95616, USA (?) I —訂 線 --Η i 「 (請先閱讀背面之注意事展丨填寫本頁) 本紙張尺度適用中國國家標準(CNS〉A4規格(210X 297公釐) 51 A 7 B7 五、發明説明(么f) 表二:禾本科植物cc -澱粉水解酶的訊號胜肽鍵胺基酸序 列的比較。 細橫線表示在穀類的α-澱粉水解酶訊號胜肽鐽胺基酸序 列的C端區域中的守恒性序列。但水稻的訊號胜呔鍵似乎 並無此守恆性序列。 粗橫線表示在訊號胜肽鐽中由大約6到7値胺基酸所構成的 疏水性核心。 在訊號胜呔鍵的Ν端區域中,除了 RAMYG28具有三値 正電價外,其餘的都帶有一或二値正電價。 表二 (請先閱讀背面之注意事項再填寫本頁) .裝· 經濟部中央標準局員工消費合作社印製95616, USA (?) I —Line setting--Η i "(Please read the notice on the back side first and fill in this page) This paper size is applicable to the Chinese National Standard (CNS> A4 specification (210X 297mm) 51 A 7 B7 5. Description of the invention (f) Table 2: Comparison of the amino acid sequence of the peptide peptide bond of the cc-starch hydrolase of gramineous plants. Conserved sequence in the C-terminal region of the acid sequence. However, there is no such conserved sequence in the rice signal bond. The thick horizontal line indicates the hydrophobicity composed of about 6 to 7 amino acids in the signal peptide. The core of the signal. In the N-terminal area of the signal win key, except RAMYG28 has three positive electricity prices, the rest have one or two positive electricity prices. Table 2 (please read the precautions on the back before filling this page) · Printed by the Employees Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs

種屬 異構物 純株 胺基酸序列 水稻 未知 RAMYG17 ++ MQVLNTMVNKHFLSLSVL IVLLGLSSNLTAG 水稻 未知 RAMVG6 MKNTSSLCLLXLVVLCSLTCNSGGA 水稻 未知 RAnRG28 十十肀 MGKHHVTLCCVVFAVLCLASS LAQA 小麥 未知 Amy3 nGKHSATLCGLLVVVL CLASS LAQA 大麥 高pi pHVI9 4-4- nANKHLSLSL-FLVLLGLSASLASG 大麥 高pi ρΠ/匚 ++ nANKHLSLSLFLVLLGLSASLASG 大麥 高pi Amy64 nANKHLSLSL.FLVLLGLSASLASG 大麥 高Pi Amy46 十十 MANKHMSKSLFIV.LLGLSCSLASG 大麥 高Pl 1-28 十十 MANKHLSLSL.FLVLLGLSAGLASG 小麥 高Pi Amy I MANKHLSLSL.FLVLLGLSASLASG 小麥 高pl Amy 1-t3 MASLHLSLS .FLVLLGLSASLASG 大麥 低pl CloneE nGKNGSLCCFSLLLLLLLAGLLASG 大麥 低pl Amy32/B nGKNGNLCCFSLLLLLL AGL ASG 小麥 低ρί Amy2/54 hGKNGNLCCFSLLLLLL GF ASG 訂 線 本紙張尺度適用中國國家標準(CNS ) A4規格(210&gt;&lt; 297公釐) 五、發明説明(α) Α7Β7 MS培養基 nh4no3 KN〇3 原液 62.5 g / 1L 95g / 1L (5〇X) MS培養基' : No. 1 ——5 : No. 6 ΎΡΝ. 肌薛 : (1000 ml) 20ml Ξ Cacl2-H20 22 g / 1L (5〇X) 10ml (lOg/iL) (10 uM) a MgS04*7H20 MnS04H20 ZnS04* 7H-0 15.5g/ 1L 〇.545g/ 1L 0.425 g / 1L (5〇X) 2.4 -D : 10 ml 蔗糖- : 3〇 g 調節 ρΗξ:5.δ Θ kh2po4Species isomers Pure strain amino acid sequence Rice Unknown RAMYG17 ++ MQVLNTMVNKHFLSLSVL IVLLGLSSNLTAG Rice Unknown RAMVG6 MKNTSSLCLLXLVVLCSLTCNSGGA Rice Unknown RAnRG28 Shishichuang MGKHHVTLCCVVFAVLCLASS LAQA Wheat Unknown Amy3 nGKHSATLCGLLVVVL Wheat High Class LAGGPI-LAGGLA4 ρΠ / 匚 ++ nANKHLSLSLFLVLLGLGLLASLASG Barley high pi Amy64 nANKHLSLSL.FLVLLGLSASLASG Barley high Pi Amy46 Ten ten MANKHMSKSLFIV.LLGLSCSLASG Barley high Pl 1-28 Ten ten MANKHLSLSL.FLVLLGLSAGLASG Wheat high Pi Amy I MANK FLVLLGLSASLASG Barley low pl CloneE nGKNGSLCCFSLLLLLLLAGLLASG Barley low pl Amy32 / B nGKNGNLCCFSLLLLLL AGL ASG Wheat low p Amy2 / 54 hGKNGNLCCFSLLLLLL GF ASG Threading This paper size is applicable to Chinese national standards (CNS) A4 specifications (210 &gt; Description (α) Α7Β7 MS medium nh4no3 KN〇3 stock solution 62.5 g / 1L 95g / 1L (5〇X) MS medium ': No. 1 ——5: No. 6 ΎΡΝ. Muscle: (1000 ml) 2 0ml Ξ Cacl2-H20 22 g / 1L (5〇X) 10ml (lOg / iL) (10 uM) a MgS04 * 7H20 MnS04H20 ZnS04 * 7H-0 15.5g / 1L 〇.545g / 1L 0.425 g / 1L (5〇 X) 2.4 -D: 10 ml sucrose-: 3〇g adjustment pHξ: 5.δ Θ kh2po4

_ 6,5g/lL H3BO3 0.31 g / 1L KI 41.5 mg / 1L Na2M〇〇4· 2H2〇 12.5 mg / 1L (5〇X)_ 6,5g / lL H3BO3 0.31 g / 1L KI 41.5 mg / 1L Na2M〇〇4 · 2H2〇 12.5 mg / 1L (5〇X)

0 Na2-EDTA Fe2S04- 7H20 14.65 g / 1L 1.39 mg / 1L (5〇X) ΕΓ CuS04'5H20 'c〇a2- 6h2o 25 mg / 1L 2¾ mg / 1L (1000X) [7] T-PJi-: 維生素BrHCl ig / 1L 維生素B6 -HC1 lg/ 1L (100 X ) 煙酸 log/ 1L 附銳一 (請先閱讀背面之注意事s j填寫本頁) -裝. 訂 線 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 53 經濟部中央標準局員工消費合作社印製 B7 五、發明説明(r/) 洗滌培養基」 CPW7.4 ! 1. CPW A : X / 1000 ml KH2P〇4 1-36 g 1 KN〇3 〇-5〇5g 1 MgS04· 7H2〇 12.3 g ; KI Ο.ΟΟδ g CuS04-5H2〇 0.00125 g 加 H20至 1000 ml 2. CPW B : 5〇X / l〇〇〇ml0 Na2-EDTA Fe2S04- 7H20 14.65 g / 1L 1.39 mg / 1L (5〇X) ΕΓ CuS04'5H20 'c〇a2- 6h2o 25 mg / 1L 2¾ mg / 1L (1000X) [7] T-PJi-: Vitamin BrHCl ig / 1L Vitamin B6 -HC1 lg / 1L (100 X) Niacin log / 1L Fu Ruiyi (please read the notes on the back to fill in this page)-Pack. Printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economics The size of the paper used is in accordance with the Chinese National Standard (CNS) A4 (210X297 mm). 53 Printed by the Ministry of Economic Affairs, Central Standards Bureau, Employee Consumer Cooperative. B. V. Description of Invention (r /) Washing Medium ”CPW7.4! 1. CPW A: X / 1000 ml KH2P〇4 1-36 g 1 KN〇3 〇-5〇5g 1 MgS04 · 7H2〇12.3 g; KI ΟΟΟδδ CuS04-5H2〇0.00125 g plus H20 to 1000 ml 2. CPW B: 5 〇X / l〇〇〇ml

Cad2-2H20 74 g 加-H20 至 1000 ml 3- CPW 7.4 CPW A : 2 c.c. CPWB : 2 c.c. 甘露糖醇·· 7.29g 加H20至100ml並調節—PH至 附銳二 54 本紙張尺度適用中國國家標準(CNS ) Α4規格(2丨0Χ 297公釐) 五、發明説明(Ο) A7 B7Cad2-2H20 74 g plus -H20 to 1000 ml 3- CPW 7.4 CPW A: 2 cc CPWB: 2 cc mannitol · 7.29g plus H20 to 100ml and adjust—PH to Fu Rui II 54 Standard (CNS) Α4 specification (2 丨 0Χ 297mm) V. Description of invention (Ο) A7 B7

平皿培養培養基 KPR ΚΠ 50 X / 100 ml NH4N〇3 3g kno3 9.5 9 MgS04- 7H20 1.5 g KH2PO4 0.05 g Kcl 1.5 9 6. 加H20至彳00 ml 2. B5 : 50 X / 100 ml Νθ2Μ〇04· H2 0 12.5 mg KI 3.75 mg h3bo3 15 mg MnSQ4-H2〇 50 mg 2nS04- 7H20 10 mg CuS04-5H20 0.125 mg l C〇Cl2- 6H2〇 0.125 mg ; 加.h2〇 至 100 ml 3. MS2 5- T.P.N. : 100 X / 100ml 煙酸 10 mg 維生素B6 10 mg 維生素· 1〇〇mg 加 H2〇 至 100 ml KPR ( IX ):. KM B5 MS2 MS5 T.P.N. 肌醇 2.4-D NAA 激動素 葡萄糖 蔗糖 2 ml 2 ml 2.8 m】· 2 ml 1 ml 1ml ( Ig / l〇〇ml ) 1 ml ( 22mg/100ml) I ml ( 1S.6mg/100ml) 0.25 ml (21.5mg/i〇〇mi) 10 g 0.025 gPlate culture medium KPR ΚΠ 50 X / 100 ml NH4N〇3 3g kno3 9.5 9 MgS04- 7H20 1.5 g KH2PO4 0.05 g Kcl 1.5 9 6. Add H20 to 彳 00 ml 2. B5: 50 X / 100 ml Νθ2Μ〇04 · H2 0 12.5 mg KI 3.75 mg h3bo3 15 mg MnSQ4-H2〇50 mg 2nS04- 7H20 10 mg CuS04-5H20 0.125 mg l C〇Cl2- 6H20.10.1 mg; add .h2〇 to 100 ml 3. MS2 5- TPN: 100 X / 100ml Niacin 10 mg Vitamin B6 10 mg Vitamin · 100mg with H2〇 to 100 ml KPR (IX): KM B5 MS2 MS5 TPN Inositol 2.4-D NAA kinetin glucose sucrose 2 ml 2 ml 2.8 m ] 2 ml 1 ml 1ml (Ig / 100ml) 1 ml (22mg / 100ml) 1 ml (1S.6mg / 100ml) 0.25 ml (21.5mg / i〇〇mi) 10 g 0.025 g

Cac]2- 2H20 加 50 X / 100 ml 2.2 g 加H20至100 ml並 調節 pH to 5.8 H2〇 至 100 ml 4. MS5 50 X / 100 ml ^ 0.139 ( Ne2ED下A 1.Θ63 ! 加 H20 至 100 ml 經濟部中央標準局員工消費合作社印製 附銳三 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29?公釐) 55 經濟部中央標準局員工消費合作社印製 Α7 Β7 五、發明説明(广&gt;) 圓式説昍: 圖1 :利用1?/\&gt;^030編碼區域為探針所篩選得到的14艏基 因群純株,進一步分析其是否為α-澱粉水解酶基 因。 (A) (C):自水稻基因群存庫篩選出來的基因群DNA純株以 限制酶Sa I I自噬菌髏DNA中切開後,經瓊脂膠體電泳 分開及溴化乙錠染色後之〇“電泳照片,其中RAMYG19 與RAMYG17可能為相同的純株。 (B) (D)利用南方墨點法將(A)及(C)中的瓊脂膠體上的DNA . 轉移到基因篩析膜上,再與RAMYC30編碼區域所做的 探針雜交,可發現 4a (9kb), 4b (2.3kb),5a (6.5 kb)、 5b (3.2kb), 5c (2.3kb), 8a (4.8kb), 8b (3 kb), 8c (1.2kb), 8d (0.5kb), 8e (0.35kb), 15a (4.5kb), 17a (4.3kb), 21a (7.0kb), 22a (4.5kb), 22b (3.0kb), 23a (3.8kb), 23b (2.2kb)均呈現雜 交反應,因此推斷這些DNA片段可能含有〇t -澱粉水解 酶基因。他的幾個純株,如RAMYG10、RAMYG11、RAMYG 14、RAMYG18及RAMYG20均無正反應,因此可能不包含 ct-澱粉水解酶基因,或其包含的澱粉水解酶基因 與探針的DNA同源性很低。 圖1 (A)及(C)中的DNA片段與探針有反應者,皆以圓圈檫 識,“M”表示Ikb ladder的DNA標記。 圖2 ··確定α -澱粉水解酶基因的5 ’端部位: &lt; _ (A) (C) (Ε) (G):使用Sal ί將水稻基因群DNA自噬菌體 本紙浪尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -----------裝-- (請先閲讀背面之注意事t填寫本頁) ,11 線· ----- 82^685 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(ίζο DN Α中分離。經瓊脂膠體電泳分開及溴化乙錠染色後 之電泳照片,其中RAMYG18與RAMYG28可能為相同的純 株。 (B) (D) (F) (H):利用 RAMYG28及 RAMYG30編碼區域的 5, 端以及HS 501的3 ’端(HK350)所做的三種探針,經由 分子雜交結果,得到RAMYG6、RAMYG8、RAMYG 17、 RAMYG18、RAMYG21、RAMYG28,均呈現雜交正反應, 所以這五値純株s極可能含有α -澱粉水解酶基因的起 動子部位。圖1 (D)中的RAMYG18與RAMYG30的編碼區域 . 不呈雜交正反應,但在此與RAMYC28的5 ’端呈雜交正 反應。 圖3 篩選出來的α -澱粉水解酶基因群DNA與四種α -澱 粉水解酶 cDNA(RAMYC26、RAMYC27、RAMYC28、RAMY C30)的3’端做成的持定其因探針進行雜交反應,以 .便確認這些cDN A是否可能源自已分離出來的基因群 DNA ° (A) (C) (E):水稻基因群DN A純株經限制酶Sal I自噬薗 體DN A中切開後,經瓊脂膠體電泳分開及溴化乙錠染 色後之DN A電泳照片。圖中的DN A片段與探針有反應者 ,皆以圓圈標識。 (B ) (D ) (F ) ( G ):圖(A) ( C ) ( E )中的 D N A 與四種 c D N A 的待 定基因的持定基因探針雜交後的X光底片圖。 圖4·: (A) ( B ) R A Μ Y G 1 7 a ( 4 . 3 k b )與 R A Μ Y C 3 0 编碼區域的 5,端 本紙張尺度適用中國國家標準(CNS ) A4規格(210X:!97公釐) 57 ---------7裝-- (請先閲讀背面之注意事填寫本頁) 訂 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(ο 有雜交正反應,利用Sal I及EcoRI兩種限制酶的雙重 消化作用,可將DNA自4.3kb減小為1.2kb而仍具有雜 交反應,藉此以方便DNA的序列分析。 (C) (D)RAMYG18a (7.5kb)與 RAMYC23編碼區域的 5 ’ 端有 雜交正反應,利用Sa 1 I及EcoRV兩種限制酶的雙重消 化作用,可再將DNA自7.5kb減小為1.8kb而仍具有雜 • 交正反應,藉此以方便D N A的序列分析。 圖5 自圖1、2、3中的雜交反應結果,簡單歸纳如圖所示。 . 實驗中所使用的七種探針,皆以不同的長方形圖案來 表审。而長方形圖案的大小,代表雜交正反應的強弱 ,.圔案愈大者表示雜交正反應愈弱。圖中框虛線處, 表示同一 DNA片段與虛線内的二或三種探針皆有雜交 正反應。 圖6 : 於圖1及圖2中,部分與α-澱粉水解酶基因的编碼及5’ 端部位的探針呈雜交正反應的DNΑ片段,以限制酶Sal I 自噬菌體DNA中切開,經電泳法在瓊脂膠體上分開後 ,再自膠體中分離出來[詳情見材料與方法(1.2.3.1)] ,然後插入以限制切開的質體PB 1 uescr i Pt中。這些 DNA片段的大小及在pBluescript中插入的位置如圖(A) 至(Μ)所示。 圖7 : ' RAMYG17a t 與 λ 0Sg2 (Huang et a 1 ·,1 990b.)的 DNA序 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 58 ---------裝-- :- ( (請先閲讀背面之注意事項再填寫本頁) 訂 線 經濟部中央標準局員工消費合作社印装 A7 ______B7 五、發明説明(/4) 列比較。RAMYG17a與λ 0Sg2的DNA長度均為4.3kb,但 兄肫代1731的5'端比λ 0Sg2長lkb,而在3’端則比λ 0Sg2 短lkb,虛線内的DNA片段(約3.3kb)表示RAMYG17a與 λ 〇Sg2的DNA序列完全相同。 圖8:已發表之人〇3叾2(1^”(:1合)(1^3“61:3 1.,199013) 的DNA序列分析 大括號1? $處(2100〜3250)表示RAMYG17a2,為已被 本發明人定出DN A序列的DN A片段。雙線表示TATA box ,向右箭頭表示轉錄起始位序列,曲線表示水稻、大 . 麥、小麥的α -澱粉水解酶基因5 ’端部位皆含有的守 恆性序列。 棺線處為pyrimidine box,是許多受GA誘導而表現的 基因的5 '端部位皆含有的守恒性序列。單線標示訊號 胜肽鏈的胺基酸序列,向上箭頭處為EcoN I所切割的 DNA序列位置。而(1590),(770)處則有Hind Μ及AccI 的作用位置。 虛線標示處為可能與鈣離子結合的胺基酸序列位,粗 線標示可能之N-糖基化作用的位置。 圖9 : RAMYG 17的5 ’端包含啓動子的部位可用限制酶切出不 同的長度,RAMYG17的總長約為12.6kb,黒色實心區 域為RAMYG17a2,也就是完成DNA序列分析,並發現與 λ 〇Sg2的DHA序列完全相同的DHA片段。使用Sa 1 I可 ' 將 RAMYG17ai (4.3kb)自 RAMYG17分離出來,RAMYG17ai --------r—裝------訂------線 -- i f (請先閲讀背面之注意事承&quot;填寫本頁) 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X29*7公釐) -59 - 59 經濟部中央標準局員工消費合作社印製 A 7 B7 五、發明説明(β) 的限制圖譜如圖所示。利用H i n d Π、A c c I、S a 1 I及 EcoHI可將RAMYG17ai切成含不同長度端部位及訊 號胜肽鐽的DNA片段,分別稱為pHE (〇.88kb),pAE (1.7kb),pSE(3.4kb)。圖中 B、E、S、X、Xh,分別 代表限制酶 BamHI、EcoRI、Sail、Xbal、Xhol。 圖10 : RAMYG6及 RAMYG28與已發表之 RAmy3D、RAmy3E (Huang et al., 1990a)之相關位置及長度。RAMYG28a與RAMY G6a為相鄰的兩値α -澱粉水解酶基因,中間尚有27bp . 未被轉移到質體上。而RAMYG6a與RAMYG6b可能是相互 連接也可能有所間隔,尚待限制酶圖譜分析才能知曉 。,R^YG6b與RAMYG6c則是相接的二個DHA片段。 RAM'YG6b及RAMYG28az為本案發明人已定出DNA序列的 部位,長度為1.8 k b。 圖中 RAMYG28a、RAMYG28a2、RAMYG6a 及 RAMYG6c 皆以 同一圔形表示,代表這些DNA片段與RAMYC28編碼區域 的5 '端做成的探針都呈現雜交正反應。 _ 11 :水稻α -澱粉水解酶基因RAray3E (Huang et al ., 1990)及RAMYG28aa的DNA序列分析 大括號g $内的DNA (790-1 1 10)表示圖2中所使用 的探針RAMYC28编碼區域的5端之位置。自1320以上 (向左箭頭)到-630的DNA序列為R/\MYG28a2(圖11)的位 置,負號表示!^1^02832的5’端比RAiny3E多出的DNA序 ' 列,約有6 3 0個核苷酸。自1 5 9 0以下的3 ’端(向右箭頭 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 60 1 I nΛ— 裝 n I n n I I -.- I 線 : ( f (請先閲讀背面之注意事項-ff填寫本頁) A7 B7 五、發明説明(ff) )則與RAMYG6a (請參考圖10)的DNA序列相同。雙線表 示TATAbox,曲線代表水稻、大麥、小麥的α -澱粉水 解酶基因的5 ’端部位皆含有的類似性序列。橫線標示 可能之訊號胜呔鏈的胺基酸序列共有25個胺基酸。虛 線樣示可能與鈣離子結合的胺基酸序列部位。 圖12 :水稻α -澱粉水解酶基因〇my3E (Huang et al ., 1990a)與 RAMYG6b、R A M YG 6 c 的 D N A序列分析 矢括號(ξ $處内的DNA(1350〜2130)表示其DMA序列 與RAMYG6c相同,而自1350以上的5 '端其DNA序列則與 . RAMYG6b完全相同。 i?AM:YG6b與RAMYG6C以限制酶Sail的辨識位相聯接。兩 粗箭頭間的DNA ( 1380〜1650)表示與圔2中所用探針 RAMYC28编碼區域的5’端具有高度同源性的DNA序列。 雙線表示TATA box,曲線為水稻、大麥、小麥的α -澱粉水解酶基因的V端部位皆含有的守恒性序列。單 線標示可能之訊號胜肽鏈的胺基酸序列,共有2個胺 基酸。虛線標示可能之鈣離子結合的胺基酸序列位置 。组巍代表可能之糖基化作用的部位。 經濟部中央標準局員工消費合作社印製 圖1 3 : GUS基因轉殖到具有可供選擇的記號一抗潮黴素基 因的質體上 (A)質體pBSI,pBXE、pBSI的圖譜。在GUS基因的5’端 聚聯結子部位PBXE比pBSI多了一個核苦酸,而pBS II也比P B X ϋ多出一値核苷酸,因此造成其閲讀架構 …- 各有一値核苷酸的差異,以便外來基因的啓動子及部 61 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 經濟部中央標準局負工消費合作社印裝 A7 _B7_ 五、發明説明(ff) 分基因能夠適當的與GUS基因接合而仍符合基因三聯 碼原則。 (B)(C)(D)(E):利用Pvul將GUS基因及NOS終止子自pBSI 、pBXI及pBSM中分離(圖B),而此DNA片段的5’端及 3 '端仍帶有質體p B 1 u e s c r i p t的多重轉殖位。將此段 DNA插入以Hindi切開的質體pTRA132 (圖C),得到 pBXH -132與pBSDI -132 (圖D),其GUS基因的轉譯方 向與抗潮徽素基因的轉譯方向相同。pBSI -132 (圖E) 的GUS基因的轉譯方向與抗潮徽素基因的轉譯方向相 . 反。 圖14: q-澱粉水解酶基因5'端包含啓動子的部位轉接到 含GUS及抗潮黴素基因的質體上。 (A)(B)(C)(D)(E):利用限制酶將RAMYG17切出不同的 .啓動子長度pHE、pAE及pSE (圖B),再分別插人以Smal 切開的質體pBSI (圖A)中。結果獲得pHE-I(5.95kb), pAE-I (6.85kb)及 pSE-I (8.55kb)(圖 C)等三種沒有 可供選擇的記號的GUS表現載體。再利用限制酶PVU I 的作南將不同長度的啓動子連同GUS基因分別自pHE-I 、pHE-I及pSE-I分離出來,再轉殖到以限制酶Hindi 切開的質體PTRA132 (圖D)上,結果分別獲得三値具 有抗潮徽素基因的GUS表現載體(圖E),其中PAE132 與PSE132其GUS基因轉譯方向與抗潮徽素基因轉譯方 向相同,而PHE132的GUS基因轉譯方向則與抗潮徽素 — 基因的轉譯方向相反。 (請先聞讀背面之注意事項再填寫本頁) •裝· 訂 線 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨Ο X 297公釐) -62- 五、發明説明(60 A7 B7 經濟部中央標準局員工消費合作社印製 (F) : pSE132,pAE132 及 pHE132 等三段 DNA 與 GUS 基因 的5 ’端相接處之DNA序列分析。第一個ATG是α -澱粉 水解酶基因的轉譯起始點,第二個ATG則是GUS基因的 轉譯起始點,橫線_表示預期之訊號胜呔鏈的D H Α序列。 圖1 5 : ex -澱粉水解酶基因5 ’端包含啓動子的部位轉接到 含G US及抗潮黴素基因的質體上。 (A) (B) (C)利用限制酶 EcoNI及 Sal I將 RAMYG6b (圖 10) 的啓動子部位連同訊號胜呔鏈的DNA序列自質體pBlue-scr ipt中分離。然後再將分離的啓動子(圖B)插入以 限制酶Hindi切開的pBSJI-132 (圔A)載體上,得到 RAM,/G6-132 (836kb)的 GUS 表現載體(圖 C)。RAMYG6-132其GUS基因的轉譯方向相同。 (D)· : RAMYG6-132與GUS基因的5 ’端相接處之DNA序列 分析,橫線表示預测的訊號胜呔鍵的DNA序列。框虛 線處的核苷酸序列TGA代表终止密碼。 圖1 6 : α -澱粉水解酶基因5 ’端包含啓動子的部位轉接到 含GUS及抗潮徽素基因的質體上。 Uj(B)(C):利用限制酶 Apal 及 EcoRV 將 RAMYG28a2 (圖10)的啓動子部位連同訊號胜呔鍵的DNA序列自質 體pBluescript中分離。然後再將分離的啓動子(圖B) 插入以限制酶H ind SI切開的pBS BI -132 (圖A&gt;載體上 ,得到 RAMYG28-132 ( I ) (8. 2kb)的 GUS表現載體(圖 C) 。RAMYG28-132 ( I )其GUS基因的轉譯方向與抗潮徽素 基因的轉譯方向相同。 請- 先 閱- 讀 背* 面 之 注 意 事 項^ 者' 填 寫 本 頁 裝 訂 本紙悵尺度適用中國國家標準(CNS ) A4規格(210X29*7公釐) 63 五、發明説明(6/) A7 B7 (D) : RAMYG23-132(I )與GUS基因的5’端相接處之DNA 序列分析,橫線表示預測的訊號胜肽鍵的DN A序列。 框虛線處的核苷酸序列TG A代表終止密碼。 圖1 7 : α -澱粉水解酶基因V端包含啓動子的部位轉接到 含GUS及抗潮徽素基因的質體上。 U)(B)(C):利用限制酶 Apal 及 EcoRV 將 RAMYG28A2 (圖10)的啓動子部位連同訊號胜肽鏈的DMA序列自質 體pBluescript中分離。然後再將分離的啓動子(圔B) 插入以限制酶CUI切開的pBSI-132 (圖C)。RAMYG28-132 ( I )其GUS細胞的轉譯方向與抗潮黴素基因的轉譯 方向相反。 (D)i: RAMYG28-132 U )與GUSGUS基因的5’端相接處之 DNA序列分析。橫線表示預測的訊號胜肽鏈的DNA序列 ----^-----^裝 — I * I ( (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部中央標準局員工消費合作社印裝 圖18 :用電穿透法將GUS表現載體轉殖到水稻懸浮培養細 胞内,培養3天後進行G U S分析。 (A) 對照組細胞用不含ct-澱粉水解酶基因的啓動子, 僅备GUS基因的載體來轉殖,培養3天後以X-glu反應 ,並沒有藍色出現。 (B) 經過GUS表現載體轉殖後的細胞,培養3天後以 X-g lu來反應呈色。圖中呈藍色者表示GUS基因能夠表 現的細胞團粒。 (C )經由!&lt;-g 1 u反應呈色後的藍色細咆圍粒的放大照Η 線 本紙掁尺度適用中國國家標準(CNS ) Α4規格(210Χ 297公釐) 64 3幻 685 經濟部中央標準局員工消費合作社印製 A7 ____B7_ 五、發明説明(έχ) 圖式之概悪說Β日 圖1 :利用RAMYC30編碼區域為探針所篩選得到的14痼基 因群純株,其中(A)、(C)為經瓊脂膠體電泳分開及 溴化乙錠染色後之DNA電泳照片,(B)、(D)為(Α)、 (C)之瓊脂膠體上的DHΑ之南方墨點法雜交結果,圓 圈標識表示DNA片段與探針有反應,“ M”表示lkb ladder的 DNA標記。 ^ 圖2 :確定α -澱粉水解酶基因的5 ’端部位: U) (C) (E) (G):使用Sal I將水稻基因群DNA自噬菌 、 體DNA中分離,並經瓊脂膠體電泳分開及溴化乙錠 _色後之電泳照Η ; (B)(D)(F)(H):利用 RAMYG28 及 RAMYG30 编碼區域的 5’端以及HS 501的3’端(HK350)所做的三種探針之 分子雜交結果。 圔3 :篩選出來的α -澱粉水解酶基因群DNA與四種α -澱 粉水解酶 cDNA(RAMYC26、RAMYC27'、RAMYC28、RAMY C30)的3’端做成的特定基因探針之雜交結果,其中 U Γ( C)(E):水稻基因群DNA純株經限制酶Sail自噬 菌體DN A中切開後,經瓊脂膠體電泳分開及溴化乙 錠染色後之DNA電泳照片,圓圏標識表示DNA片段與 探針有反應; 、(B) (D) (F) (G):圔(A) (C) (E)中的 DNA與四種 cDHA的 持定基因的持定基因探針雜交後的X光底片圖。 一—圖 4 : (請先聞讀背面之注意事項召填寫本頁) 裝- 訂 -線- 本紙張又度適用中國國家標準(CNS ) Α4規格(210X297公釐) A7 B7 經濟部中夬標準局員工消費合作杜印製 五、發明説明α冬) U)、(Β)顯示 RAMYG17a(4.3kb)與 RAMYC30 编碼區域 的5 '端有雜交正反應,利用Sal I及EcoRI兩種限制 酶的雙重消化作用; (C)、(D)顯示 RAMYG18a(7.5kb)與 RAMYC28 编碼區域 的5 ’端,利用Sal I及EcoRV兩種限制酶的雙重消化 作用之雜交反應。 圖.5 : &quot; '簡單歸納源自自圖1、2、3中的雜交反應結果,其 中實驗中所使用的七種探針以不同的長方形圖案來 表示,而長方形圖案的大小傜代表雜交正反應的強 琴,圔中框虛線處,表示同一 DMA片段與虛線内的 q或三種探針皆有雜交正反應。 圖6 :- 圖1及圖2中所示之部分與α-澱粉水解酶基因的编 .碼及5 ’端部&gt; 的探針呈雜交正反應的DNΑ片段,被 插入以限制酶Sail切開的質體pBluescript中,而 且這些DNA片段的大小及在pBluescript中插入的位 j 置為如圖(A)至(M)所示。 圔7 : RAMYG17ai與 A0Sg2 (Huang et al., 1990b)的DNA 序列比較,其中虛線内的DNA片段(約3.3kb)表示 RAMYG17a與λ 0Sg2的DNA序列完全相同。 圖8 : ' 已發表之 A0sg2 (RAMYClA)(Huangetal·, 1990b&gt; (請先閱讀背面之注意事項-S填寫本莧) .裝. 訂 線 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 經濟部中央標準局員工消費合作社印製 A7 _____B7__ 五、發明説明(6么) 的DNA序列分析,其中大括號(J $處(2100〜3250) 表示RAM YG17a2,雙線表示TATA box,向右箭頭表 示轉錄起始位序列,曲線表示水稻、大麥、小麥的 α -澱粉水解酶基因5 ’端部位皆含有的守恆性序列 ,框線處為pyrimidine box,單線標示訊號胜肽鏈 的胺基酸序列,向上箭頭處為EcoNI所切割的DNA 序列位置,而(1590)、(770)^則有Hind H[及AccI '的作用位置,虛線標示處為可能與鈣離子結合的胺 基酸序列位,粗線標示可能之N -糖基化作用的位置 Ο 圖9 :, MMYG 17的5 ’端包含啓動子的部位可用限制酶切出 不同的長度(總長约為12. 6kb),其中黑色實心區域 為RAMYG17a2,RAMYG17ai的限制圖譜如圖所示,而 v Hindi、AccI、Sail及 EcoNI將 RAMYG17adJ〇成分別 稱為 PHE (0.38kb),PAE(1.7kb),PSE(3.4kb)的片 段,B、E、S、X、Xh分別代表限制酶BamH I、EcoRI 、Sail' Xbal、X h ο I ° 圖10 : RAMYG6 及 RAMYG28 與已發表之 RAmy3D、RAmy3E (Huang et al., 1990a)之相關位置及長度,其中RAMYG28a 與RAMYG6a為相鄰的兩値α -澱粉水解酶基因,RAMY G6b與RAMYG6c則是相接的二個DNA片段;圖中RAMY • G28a、RAMYG28a2、RAMYG6a 及 RAMYG6c 皆以同一圖形 (請先閲讀背面之注意事項再填寫本頁) -裝· 订 線 本紙乐尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -67 - 五、發明説明(&lt;Γ) 表示 圖11 圖12 A7 B7 經濟部中央標準局員工消費合作社印製 水稻α-澱粉水解酶基因RAmy3E(Huang et al.,1990) 及RAMYG28aa的DNA序列分析,其中大括號g $内 的DNA(790-11 10)表示圖2中所使用的探針RAMYC28 编碼區域的5端之位置,自1320以上(向左箭頭)到 -630的DNA序、列為RAMYG28a2的位置,負號表示RAMY 02832的5’端比RAmy3E多出的DNA序列,自1590以下 的3 ’端(向右箭頭)則與R AM YG 6 a的D N A序列相同,雙 線表示TATA box,曲線代表水稻、大麥、小麥的α -澱粉水解酶基因的5 ’端部位皆含有的類似性序列, 橫線標示可能之訊號胜呔鍵的胺基酸序列共有25値 胺基酸,虛線標示可能與鈣離子結合的胺基酸序列 部位。 f ' 水稻ct-澱粉水解酶基因R Amy 3E (Huang et al., 1990a)及 RAMYG6b,RAMYG6c 的 DNA 序列分析,其中 大捨號ξ $處内的DNA ( 1350〜2130)表示其DNA序 列與RAMYG6c相同,自1350以上的5 &gt;端其DNA序列 則與RAMYG6b完全相同,RAMYG6b與RAMYG6C以限制 酶Sa Π的辨識位相聯接,湳粗箭頭間的DNA (1380 〜1650)表示與圖2中所用探針RAM YC2 8編碼區域的 5 ’端具有高度同源性的DN A序列,雙線表示TATA box ,曲線為水稻、大麥、小麥的α -澱粉水解酶基因 請- 先 閱- % 背- έ 之 注 意 事 項 裝 訂 線 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 68 A7 _B7 _ 五、發明説明) 的5 '端部位皆含有的守恆性序列,單線檫示可能之 訊號胜肽鏈的胺基酸序列,虛線標示可能之鈣離子 結合的胺基酸序列位置,粗線代表可能之糖基化作 用的部位。 圔13 : GUS基因轉殖到具有可供選擇的記號一抗潮徽素基 因的質髏上,其中 ' ' (A):質體 P B S I、p B X Π、p B S H[的圖譜; (B) :利用Pvul將GUS基因及NOS終止子自pBSI、 pBX 1及pBS I中分離,♦ (C) :將此段DNA插入以Hind Π切開的質體PTRA132 ; (〇):得到 ρΒΧΙ -132 與 pBSltt -132 (圖 D),其 GUS 基 因的轉譯方向與抗潮徽素基因的轉譯方向相 同。 .(E) : pBS I -132的GUS基因的轉譯方向與抗潮徽素 基因的轉譯方向相反。 画14 : 經濟部中央標準局員工消費合作社印製 &amp; -殿粉水解酶基因5 ’端包含啓動子的部位轉接到 含GUS及抗潮徽素基因的質體上,其中 (A) (B) (C) (D) (Ε):利用限制酶將RAMYG17切出不同 的啓動子長度Ρ Η Ε、ρ A Ε及p S Ε (圖Β ),再分別插入 以Smal切開的質體pBSI (圖/\)中。結果獲得pHE-I (5.95kb) 、 pAE-I (6.85kb)fepSE-I (8.55kb)(圖 ' C )等三種沒有可供選擇的記號的G U S表現載體。再 69 本纸張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 3^1685 A7 B7 五、發明説明U;?) 1 利用限制酶pvu I的作用將不同長度的啓動子連同 GUS基因分別自pHE-I、pHE-I及pSE-I分離出來, 再轉殖到以限制酶Hind DI切開的質體pTRA132 (圖D) 上,結果分別獲得三艏具有抗潮徽素基因的GUS表 現載體(圖E);Cac) 2- 2H20 plus 50 X / 100 ml 2.2 g add H20 to 100 ml and adjust the pH to 5.8 H2〇 to 100 ml 4. MS5 50 X / 100 ml ^ 0.139 (A 1.Θ63 under Ne2ED! Add H20 to 100 ml Three copies of the paper printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs are printed in accordance with the Chinese National Standard (CNS) A4 specifications (210X29? mm) 55 The A7 Β7 printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs Guang &gt;) Round-shaped illustration: Figure 1: Using the 1? / \ &Gt; ^ 030 coding region as a probe to screen a pure strain of the 14 bowel gene group, further analyze whether it is an α-starch hydrolase gene. A) (C): The pure strain of genomic DNA screened from the rice genomic library was cut with the restriction enzyme Sa II autophagic phage DNA, separated by agar colloid electrophoresis and stained with ethidium bromide. Photos, where RAMYG19 and RAMYG17 may be the same pure strains. (B) (D) Transfer the DNA from the agar colloids in (A) and (C) to the gene sieve membrane by Southern blot method. The probe hybridization of the RAMYC30 coding region revealed 4a (9kb), 4b (2.3kb), 5a (6.5 kb), 5b (3.2k b), 5c (2.3kb), 8a (4.8kb), 8b (3 kb), 8c (1.2kb), 8d (0.5kb), 8e (0.35kb), 15a (4.5kb), 17a (4.3kb) , 21a (7.0kb), 22a (4.5kb), 22b (3.0kb), 23a (3.8kb), 23b (2.2kb) all showed hybridization reactions, so it is inferred that these DNA fragments may contain 〇t-starch hydrolase gene. Several of his pure strains, such as RAMYG10, RAMYG11, RAMYG 14, RAMYG18 and RAMYG20, have no positive reaction, so they may not contain the ct-starch hydrolase gene, or the gene homology of the starch hydrolase gene and probe DNA Very low. Figure 1 (A) and (C) the DNA fragments and probes are reacted, all identified by circles, "M" represents the DNA marker of the Ikb ladder. Figure 2 ·· Determine the α-starch hydrolase gene The 5 'end part: &lt; _ (A) (C) (Ε) (G): Use Sal ί to adapt the rice genome DNA autophages to the original paper wave scale to the Chinese National Standard (CNS) A4 specification (210X297 mm)- ---------- Install-(please read the notes on the back t fill in this page), 11 lines · ----- 82 ^ 685 Printed A7 B7 by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Fifth, the description of the invention (ίζο DN Α separation. Electrophoresis pictures after separation by agar colloid electrophoresis and staining with ethidium bromide, among which RAMYG18 and RAMYG28 may be the same pure strain. (B) (D) (F) (H): Using the three probes made at the 5 'end of the coding region of RAMYG28 and RAMYG30 and the 3' end (HK350) of HS 501, through the results of molecular hybridization, RAMYG6, RAMYG8, RAMYG 17, RAMYG18, RAMYG21, and RAMYG28 all show positive hybridization reactions, so these five strains of pure strains are likely to contain the promoter site of the α-starch hydrolase gene. The coding regions of RAMYG18 and RAMYG30 in Figure 1 (D) do not show a positive hybridization reaction, but here show a positive hybridization reaction with the 5 'end of RAMYC28. Figure 3 The selected α-starch hydrolase gene group DNA and the four α-starch hydrolase cDNA (RAMYC26, RAMYC27, RAMYC28, RAMY C30) 3 'end of the fixed probe caused by the hybridization reaction, to . To confirm whether these cDN A may be derived from the DNA of the isolated gene group ° (A) (C) (E): After the pure plant of rice gene group DNA was cut through the restriction enzyme Sal I autophagophyte DNA, DNA electrophoresis photos after separation by agar colloid electrophoresis and staining with ethidium bromide. The DNA fragments and the probes in the figure have responders, which are marked by circles. (B) (D) (F) (G): The X-ray film after the hybridization of D N A in Figure (A) (C) (E) with the holding gene probes of four c D N A to-be-determined genes. Figure 4: (A) (B) RA Μ YG 1 7 a (4.3 kb) and RA Μ YC 3 0 coding area 5, the original paper size is applicable to China National Standards (CNS) A4 specifications (210X: ! 97mm) 57 --------- 7 outfit-(please read the notes on the back first and fill in this page) A7 B7 printed by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of invention (ο There is a hybridization reaction, and the double digestion of two restriction enzymes, Sal I and EcoRI, can reduce DNA from 4.3 kb to 1.2 kb and still have a hybridization reaction, thereby facilitating DNA sequence analysis. (C) (D ) RAMYG18a (7.5kb) has a positive hybridization reaction with the 5 'end of the RAMYC23 coding region. Using the double digestion of Sa 1 I and EcoRV restriction enzymes, the DNA can be further reduced from 7.5 kb to 1.8 kb while still having impurities • Orthogonal reaction to facilitate DNA sequence analysis. Figure 5 The results of the hybridization reactions in Figures 1, 2, and 3 are briefly summarized as shown. The seven probes used in the experiment are all different The size of the rectangular pattern represents the strength of the positive and negative reactions of the hybridization. The larger the case, the positive and negative of the hybridization. The weaker. The dotted line in the figure indicates that the same DNA fragment has a positive hybridization reaction with the two or three probes in the dotted line. Figure 6: In Figures 1 and 2, part of the coding with the α-starch hydrolase gene The probe at the 5 'end is a hybridized DNA fragment, which is cleaved with the restriction enzyme Sal I autophages DNA, separated by electrophoresis on agar colloid, and then separated from the colloid [for details, see materials and methods ( 1.2.3.1)], and then insert to limit the cut plastid PB 1 uescr i Pt. The size of these DNA fragments and the position of insertion in pBluescript are shown in (A) to (Μ). Figure 7: 'RAMYG17a t and λ 0Sg2 (Huang et a 1 ·, 1 990b.) DNA sequence paper scale is applicable to China National Standard (CNS) A4 specification (210X 297 mm) 58 --------- installed-: -((Please read the precautions on the back before filling in this page) A7 ______B7 printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economics. Comparison of the invention description (/ 4). The DNA lengths of RAMYG17a and λ 0Sg2 are 4.3 kb, but the 5 'end of the elder brother 1731 is lkb longer than λ 0Sg2, and at the 3' end is shorter than λ 0Sg2 lkb DNA fragment (about 3.3 kb) within the dotted line represents the DNA sequence identical RAMYG17a 〇Sg2 of λ. Figure 8: DNA sequence analysis of published person 〇3 叾 2 (1 ^ ”(: 1 go) (1 ^ 3“ 61: 3 1., 199013) braces 1? $ At (2100 ~ 3250) means RAMYG17a2 , Is a DNA fragment that has been determined by the inventors of the DNA sequence. The double line indicates the TATA box, the right arrow indicates the transcription initiation sequence, and the curve indicates the α-starch hydrolase gene of rice, barley, wheat 5 Conserved sequences are contained in the 'terminal part. The pyrimidine box at the coffin line is a conserved sequence contained in the 5' terminal part of many genes induced by GA. The single line indicates the amino acid sequence of the signal peptide chain, The upward arrow is the position of the DNA sequence cut by EcoN I. And (1590) and (770) are the positions of Hind M and AccI. The dotted line indicates the amino acid sequence position that may bind to calcium ions, the thick line Mark the location of possible N-glycosylation. Figure 9: The 5 'end of RAMYG 17 contains a promoter that can be cut to different lengths using restriction enzymes. The total length of RAMYG17 is about 12.6 kb, and the black solid area is RAMYG17a2. Is to complete the DNA sequence analysis and found that the DHA sequence with λ 〇Sg2 is completely The same DHA fragment. Using Sa 1 I can 'separate RAMYG17ai (4.3kb) from RAMYG17, RAMYG17ai -------- r—installed ------ ordered ------ line-- if (please read the notice on the back &quot; fill in this page first) The paper size is applicable to China National Standard (CNS) Λ4 specification (210X29 * 7mm) -59-59 Printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 7 B7 5. The restriction map of the invention (β) is shown in the figure. Using Hind Π, A cc I, Sa 1 I and EcoHI, RAMYG17ai can be cut into DNA fragments with different lengths and signal peptides. , Respectively called pHE (0.88kb), pAE (1.7kb), pSE (3.4kb). B, E, S, X, Xh in the figure represent the restriction enzymes BamHI, EcoRI, Sail, Xbal, Xhol. 10: The relative positions and lengths of RAMYG6 and RAMYG28 and the published RAmy3D and RAmy3E (Huang et al., 1990a). RAMYG28a and RAMY G6a are two adjacent α-starch hydrolase genes with 27bp in the middle. Transferred to the plastid. RAMYG6a and RAMYG6b may be connected to each other or there may be a gap, which is still to be known by restriction enzyme analysis. , R ^ YG6b and RAMYG6c are two connected DHA fragments. RAM'YG6b and RAMYG28az are the sites where the inventor of the present invention has determined the DNA sequence, and the length is 1.8 kb. In the figure, RAMYG28a, RAMYG28a2, RAMYG6a and RAMYG6c are all represented by the same sigmoid shape, which means that these DNA fragments and the probes made of the 5 'end of the RAMYC28 coding region all show a positive hybridization reaction. _ 11: DNA sequence analysis of rice α-starch hydrolase gene RAray3E (Huang et al., 1990) and RAMYG28aa DNA (790-1 1 10) in braces g $ represents the probe used in Figure 2 The position of the 5 end of the code area. The DNA sequence from above 1320 (left arrow) to -630 is the position of R / \ MYG28a2 (Figure 11), the minus sign indicates! ^ 1 ^ 02832 has more DNA sequences at the 5 'end than RAiny3E, with about 6 30 nucleotides. From the 3 'end below 1 5 9 0 (the arrow pointing to the right applies to the Chinese national standard (CNS) A4 specification (210X297 mm) 60 1 I nΛ— installed n I nn II -.- I line: (f ( Please read the precautions on the back-ff fill in this page) A7 B7 5. The description of the invention (ff)) is the same as the DNA sequence of RAMYG6a (please refer to Figure 10). The double line represents TATAbox, the curve represents rice, barley, wheat The 5 'end of the α-starch hydrolase gene contains similar sequences. The horizontal line indicates the possible amino acid sequence of the signal chain. There are 25 amino acids in total. The dotted line shows the amino groups that may bind to calcium ions Acid sequence part. Figure 12: DNA sequence analysis of rice α-starch hydrolase gene 〇my3E (Huang et al., 1990a) and RAMYG6b, RAM YG 6 c. Braces (ξ DNA at 1350 ~ 2130) The DMA sequence is the same as RAMYG6c, and the DNA sequence from the 5 'end above 1350 is exactly the same as RAMYG6b. I? AM: YG6b and RAMYG6C are connected by the recognition site of restriction enzyme Sail. The DNA between the two thick arrows (1380 ~ 1650) indicates the 5 'end of the RAMYC28 coding region used in the probe 2 Highly homologous DNA sequence. The double line represents the TATA box, and the curve is the conserved sequence contained in the V-terminal part of the α-starch hydrolase gene of rice, barley, and wheat. The single line indicates the possible signal of the amine group of the peptide chain Acid sequence, there are 2 amino acids in total. The dotted line indicates the possible calcium ion binding amino acid sequence position. Group Wei represents the possible glycosylation site. Printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 13: Transplantation of GUS gene onto plastids with alternative marker-hygromycin resistance gene (A) Map of plastids pBSI, pBXE, pBSI. At the 5 'end of GUS gene, there are more PBXE than pBSI A bitter acid, and pBS II also has one more nucleotide than PBX ϋ, thus causing its reading structure ...- Each has a difference in the nucleotide, so that the promoter and part of the foreign gene 61 paper size is suitable for China National Standard (CNS) Α4 specification (210X297 mm) A7 _B7_ printed by the Consumer Labor Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs V. Invention description (ff) The gene can be properly combined with the GUS gene and still conform to the gene triple code (B) (C) (D) (E): Using Pvul to separate the GUS gene and the NOS terminator from pBSI, pBXI, and pBSM (Figure B), and the 5 'and 3' ends of this DNA fragment still carry There are multiple colonization sites of plastid p B 1 uescript. Insert this piece of DNA into pTRA132 (Figure C) cut with Hindi to obtain pBXH-132 and pBSDI-132 (Figure D). The translation direction of the GUS gene is the same as the translation direction of the anti-moisture gene. The translation direction of the GUS gene of pBSI-132 (Figure E) is opposite to that of the anti-moisture emblem gene. Figure 14: The site containing the promoter at the 5 'end of the q-starch hydrolase gene was transferred to a plastid containing the GUS and hygromycin resistance genes. (A) (B) (C) (D) (E): RAMYG17 was cut out with restriction enzymes. The promoter lengths pHE, pAE and pSE (Figure B), and then inserted into pBSI plastids cut with Smal (Figure A). As a result, three GUS expression vectors with no selectable symbols such as pHE-I (5.95 kb), pAE-I (6.85 kb) and pSE-I (8.55 kb) (Figure C) were obtained. Reuse the restriction enzyme PVU I to isolate the promoters of different lengths together with the GUS gene from pHE-I, pHE-I and pSE-I, and then re-transplanted to the restriction enzyme Hindi cut plastid PTRA132 (Figure D ), The results obtained three GUS expression vectors with anti-moisture emblem gene (Figure E), of which PAE132 and PSE132 have the same GUS gene translation direction and anti-moisture gene translation direction, while PHE132 GUS gene translation direction is Contrary to the anti-moisture emblem-gene translation direction. (Please read the precautions on the back first and then fill out this page) • The size of the paper for binding and binding is applicable to the Chinese National Standard (CNS) A4 specification (2 丨 Ο X 297mm) -62- V. Description of the invention (60 A7 B7 Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs (F): DNA sequence analysis at the junction of the three DNA segments pSE132, pAE132 and pHE132 with the 5 'end of the GUS gene. The first ATG is the α-starch hydrolase gene The starting point of the translation, the second ATG is the starting point of the translation of the GUS gene, the horizontal line _ indicates the DH Α sequence of the expected signal win chain. Figure 15: the ex-starch hydrolase gene 5 'end contains the start The position of the promoter is transferred to the plastid containing the G US and hygromycin resistance genes. (A) (B) (C) Using the restriction enzymes EcoNI and Sal I, the promoter portion of RAMYG6b (Figure 10) together with the signal wins. The DNA sequence of the strand is isolated from the plastid pBlue-scr ipt. Then the isolated promoter (Figure B) is inserted into the pBSJI-132 (圔 A) vector cleaved by the restriction enzyme Hindi to obtain RAM, / G6-132 ( 836kb) GUS expression vector (Figure C). The translation direction of GUS gene of RAMYG6-132 is the same. (D) ·: RAMYG6-132 and GU Analysis of DNA sequence at the 5 'end of the S gene. The horizontal line indicates the predicted DNA sequence of the signal. The nucleotide sequence TGA at the dotted line represents the stop code. Figure 16: α-starch hydrolase The 5 'end of the gene containing the promoter was transferred to the plastid containing the GUS and moisture resistance gene. Uj (B) (C): Using the restriction enzymes Apal and EcoRV, the promoter part of RAMYG28a2 (Figure 10) was combined with The DNA sequence of the signal winning bond was isolated from pBluescript plastid. Then the isolated promoter (Figure B) was inserted into pBS BI-132 (Figure A &gt; vector cut with restriction enzyme Hind SI) to obtain RAMYG28-132 ( I) (8.2 kb) GUS expression vector (Figure C). RAMYG28-132 (I) The translation direction of the GUS gene is the same as the translation direction of the anti-moisture emblem gene. Please-read first-read back * Note Matters ^ Who's Filling This page of the bound paper The size of the paper applies to the Chinese National Standard (CNS) A4 (210X29 * 7mm) 63 V. Description of the invention (6 /) A7 B7 (D): RAMYG23-132 (I) and GUS DNA sequence analysis at the 5 'end of the gene. The horizontal line indicates the predicted DNA sequence of the peptide bond. The nucleotide sequence TGA at the dotted line of the box represents the stop code. Figure 17: The promoter region at the V-terminus of the α-amylase gene is transferred to the plastids containing GUS and anti-hygromycin genes. U) (B) (C): Using the restriction enzymes Apal and EcoRV, the promoter part of RAMYG28A2 (Figure 10) and the DMA sequence of the signal peptide chain were separated from pBluescript. Then, the isolated promoter (圔 B) was inserted into pBSI-132 cleaved by the restriction enzyme CUI (Figure C). The translation direction of RAMYG28-132 (I) GUS cells is opposite to that of the hygromycin resistance gene. (D) i: RAMYG28-132 U) DNA sequence analysis at the 5 'end of the GUSGUS gene. The horizontal line represents the predicted DNA sequence of the signal peptide chain ---- ^ ----- ^ installed — I * I ((Please read the precautions on the back before filling out this page) Order the consumption of employees of the Central Bureau of Standards of the Ministry of Economic Affairs Printed by Cooperative Society Figure 18: Transplanting GUS expression vector into rice suspension culture cells by electro-penetration method, and performing GUS analysis after 3 days of culture. (A) Control cells use a promoter without ct-starch hydrolase gene , Only the vector with GUS gene was used for transfection, and it was reacted with X-glu after 3 days of culture, and no blue appeared. (B) The cells transformed with GUS expression vector were reacted with Xg lu after 3 days of culture. The blue ones in the figure indicate the cell pellets that the GUS gene can express. (C) The magnification of the blue fine roars after coloration by the &lt; -g 1 u reaction is suitable for China. Standard (CNS) Α4 specification (210Χ 297 mm) 64 3 Magic 685 Printed by A7 Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economics A7 ____B7_ V. Description of the Invention (έχ) Outline of the Diagram Β 日 Figure 1: Using RAMYC30 coding area 14 strains of pure strains selected by the probe, of which (A) and (C) are Photographs of DNA electrophoresis after separation by lipid colloid electrophoresis and staining with ethidium bromide, (B), (D) are the results of Southern blotting hybridization of DHA on agar colloids of (Α) and (C), and circle marks indicate DNA fragments Reacts with the probe, "M" indicates the DNA label of the lkb ladder. ^ Figure 2: Identify the 5 'end of the α-starch hydrolase gene: U) (C) (E) (G): Use Sal I to transfer rice Genome DNA is separated from phagocytic and somatic DNA, and separated by agar colloid electrophoresis and electrophoresis after ethidium bromide-color electrophoresis; (B) (D) (F) (H): using RAMYG28 and RAMYG30 encoding Molecular hybridization results of the three probes made at the 5 'end of the region and at the 3' end (HK350) of HS 501.圔 3: The hybridization results of the selected α-starch hydrolase gene group DNA and specific gene probes made at the 3 'end of four α-starch hydrolase cDNAs (RAMYC26, RAMYC27', RAMYC28, RAMY C30), of which U Γ (C) (E): The pure DNA of rice genomic DNA is cut by restriction enzyme Sail autophages DNA, separated by agar colloid electrophoresis and stained with ethidium bromide. The circle mark indicates DNA fragments Reacts with probes;, (B) (D) (F) (G): 圔 (A) (C) (E) DNA after hybridization with four cDHA holding gene probe hybridization X-ray film. Figure 1-(Please read the precautions on the back to fill out this page) Binding-Binding-Line-This paper is again applicable to China National Standards (CNS) Α4 specifications (210X297 mm) A7 B7 Ministry of Economic Affairs Standards The bureau employee's consumer cooperation du printed five, invention description α winter) U), (B) shows that RAMYG17a (4.3kb) and RAMYC30 coding region 5 'end hybridization positive reaction, using Sal I and EcoRI two restriction enzymes Double digestion; (C), (D) shows the hybridization of double digestion of the two restriction enzymes Sal I and EcoRV at the 5 'end of the coding regions of RAMYG18a (7.5kb) and RAMYC28. Fig. 5: &quot; 'Simple summary of the results of the hybridization reaction from Figures 1, 2, and 3, where the seven probes used in the experiment are represented by different rectangular patterns, and the size of the rectangular pattern represents the hybridization The Qiangqin of the positive reaction, the dotted line in the middle of the box, indicates that the same DMA fragment and the q or three probes in the dotted line have hybridized positive reactions. Fig. 6:-The part shown in Fig. 1 and Fig. 2 and the coding of α-starch hydrolase gene. The probe at the 5 'end> was a hybridization positive reaction DNA fragment, which was inserted to cut with restriction enzyme Sail The plastid of pBluescript, and the size of these DNA fragments and the position j inserted in pBluescript are shown in (A) to (M). Fig. 7: Comparison of the DNA sequences of RAMYG17ai and A0Sg2 (Huang et al., 1990b), where the DNA fragment (approximately 3.3 kb) in the dotted line indicates that the DNA sequences of RAMYG17a and λ OSg2 are identical. Figure 8: 'Published A0sg2 (RAMYClA) (Huangetal ·, 1990b &gt; (please read the notes on the back-S to fill in this amaranth). Binding. The paper size of the binding book is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) A7 _____B7__ printed by the Employees ’Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. DNA sequence analysis of the invention description (6?), In which the braces (J $ place (2100 ~ 3250) indicate RAM YG17a2, and the double line indicates TATA box , The right arrow indicates the transcription initiation sequence, and the curve indicates the conserved sequence contained in the 5 ′ end of the α-starch hydrolase gene of rice, barley, and wheat. The frame line is the pyrimidine box, and the single line indicates the signal of the peptide chain. Amino acid sequence, the position of the DNA sequence cut by EcoNI is at the upward arrow, while (1590) and (770) ^ have the role of Hind H [and AccI ', the dotted line indicates the amino group that may bind to calcium ion The acid sequence position, the thick line indicates the possible N-glycosylation position Ο Figure 9 :, MMYG 17 5 'end containing the promoter site can be cut out with restriction enzymes of different lengths (total length is about 12. 6kb), Where the black solid area For RAMYG17a2, the restriction map of RAMYG17ai is shown in the figure, while v Hindi, AccI, Sail, and EcoNI refer to RAMYG17adJ〇 as fragments called PHE (0.38kb), PAE (1.7kb), PSE (3.4kb), B, E , S, X, Xh represent the restriction enzymes BamH I, EcoRI, Sail 'Xbal, X h ο I ° Figure 10: The relative position and length of RAMYG6 and RAMYG28 and the published RAmy3D, RAmy3E (Huang et al., 1990a) , Where RAMYG28a and RAMYG6a are two adjacent α-starch hydrolase genes, and RAMY G6b and RAMYG6c are two DNA fragments that are connected; in the figure, RAMY • G28a, RAMYG28a2, RAMYG6a and RAMYG6c are all in the same pattern (please first Read the precautions on the back and then fill out this page) -The size of the binding and binding paper paper is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) -67-V. Description of the invention (&lt; Γ) Figure 11 Figure 12 A7 B7 DNA sequence analysis of the rice alpha-starch hydrolase gene RAmy3E (Huang et al., 1990) and RAMYG28aa printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs, in which DNA (790-11 10) in braces g $ indicates Figure 2 of the coding region of the probe RAMYC28 used in Figure 2 The position of the DNA sequence from above 1320 (left arrow) to -630 is listed as the position of RAMYG28a2. The minus sign indicates that the 5 'end of RAMY 02832 has more DNA sequences than RAmy3E, from the 3' end below 1590 (to Right arrow) is the same as the DNA sequence of R AM YG 6 a, the double line indicates the TATA box, the curve represents the similar sequence contained in the 5 ′ end of the α-starch hydrolase gene of rice, barley, and wheat, and the horizontal line indicates The amino acid sequence of the possible signal wins bond has a total of 25 amino acids, and the dotted line indicates the amino acid sequence part that may bind to calcium ions. f 'Rice ct-starch hydrolase gene R Amy 3E (Huang et al., 1990a) and RAMYG6b, RAMYG6c DNA sequence analysis, in which the DNA within the large house number ξ $ (1350 ~ 2130) represents its DNA sequence and RAMYG6c The DNA sequence from the 5 &gt; end above 1350 is exactly the same as RAMYG6b. RAMYG6b and RAMYG6C are connected by the recognition site of restriction enzyme Sa Π. The DNA between the thick arrows (1380 ~ 1650) represents the probes used in FIG. 2. The 5 ′ end of the coding region of the RAM YC2 8 has a highly homologous DNA sequence. The double line indicates the TATA box, and the curve is the α-starch hydrolase gene of rice, barley, and wheat. Please-read first-% 背-έ 之Matters needing attention The paper size of the binding line is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 68 A7 _B7 _ V. Description of invention) Conserved sequences are contained at the 5 'end of the single line, and a single line may indicate a possible signal peptide The amino acid sequence of the chain, the dotted line indicates the position of the possible calcium ion-bound amino acid sequence, and the thick line represents the site of possible glycosylation.圔 13: Transplantation of GUS gene into a plastid skeleton with an alternative symbol of a moisture-resistant emblem gene, where '(A): map of plastid PBSI, p BX Π, p BSH [; (B): Use Pvul to separate the GUS gene and NOS terminator from pBSI, pBX 1 and pBS I. (C): Insert this DNA segment into the plastid PTRA132 cut with Hind Π; (〇): get ρΒΧΙ -132 and pBSltt- 132 (Figure D), the translation direction of the GUS gene is the same as the translation direction of the anti-moisture gene. (E): The translation direction of the GUS gene of pBS I-132 is opposite to the translation direction of the anti-moisture emblem gene. Picture 14: Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs &amp;-the powdery hydrolase gene 5 'end containing the promoter is transferred to the plastid containing the GUS and anti-moisture emblem gene, where (A) ( B) (C) (D) (Ε): Using restriction enzymes, RAMYG17 was cut out of different promoter lengths ΡΗΕ, ρΑΕ, and pSΕ (Figure B), and then inserted into pBSI plastids cut with Smal (Picture / \). As a result, three GUS expression vectors, pHE-I (5.95kb), pAE-I (6.85kb), fepSE-I (8.55kb) (Fig. C), which were not available for selection, were obtained. Re-69 The paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) 3 ^ 1685 A7 B7 5. Invention description U ;?) 1 Use the restriction enzyme pvu I to combine promoters of different lengths with GUS The genes were isolated from pHE-I, pHE-I, and pSE-I, and then transferred to pTRA132 (Figure D), which was cut with the restriction enzyme Hind DI. Performance carrier (Figure E);

、(F) : PSE132、PAE132 及 PHE132 等三段 DNA 與 GUS 基 因的5 ’端相接處之DNA序列分析。第一値ATG是ct -' '澱粉水解酶基因的轉譯起始點*第二M ATG則是G US 基因的轉譯起始點,橫線表示預期之訊號胜肽鏈的 DNA序列。 圖1 5 : « 經濟部中央標準局員工消費合作社印製 .C4 -澱粉水解酶基因5 ’端包含啓動子的部位轉接到 含GUS及抗潮黴素基因的質體上,其中 (A) (B) (C)利用限制酶 EcoNI及 Sal I將 RAMYG6b (圖 .1 0)的啓動子部位連同訊號胜呔鏈的DN A序列自質體 pBlu-escript中分離。然後再將分離的啓動子(圖B) 插入以限制酶Hindll切開的pBSDI -132 (画A)載體上 # 到 RAMYG6-132 (836kb)的 GUS表現載體(圖 C); (D) : RAMYG6-132與GUS基因的5’端相接處之DNA序 列分析,橫線表^預測的訊號胜肽鍵的DNA序列, 框虛線處的核苷酸序列TG A代表终止密碼。 圖16 : α -澱粉水解酶基因5 '端包含啓動子的部位轉接到 ' 含G US及抗潮徽素基因的質體上•其中 本纸張尺度適用中國國家標準(CNS ) Α4規格(210Χ 297公釐) A7 B7 五、發明説明(么P) (A) (B) (C):利用限制酶 Apal及 EcoRV將 RAHYG28a2 (圖10)的啓動子部位連同訊號胜肽鐽的DNA序列自 質體pBluescript中分離,然後再將分離的啓動子 (圖B)插入以限制酶HindDI切開的pBSM -132 (圖A) 載體上,得到 RAMYG28-132 (I )(8.2kb)的 GUS 表現 載體(圖C); (D) : RAMYG28-132 (I )與GUS基因的5’端相接處之 DNA序列分析,橫線表示預測的訊號胜肽鏈的DNA序 列,框虛線處的核苷酸序列TGA代表終止密碼。 圖17 經濟部中央標準局員工消費合作社印製 圖18 ct -澱粉水解酶基因5 ’端包含啓動子的部位轉接到 食GUS及抗潮徽素基因的質體上,其中 (A)(B)(C):利用限制酶 Apal 及 EcoRV 將 RAMYG28A2 (圖10)的啓動子部位連同訊號胜肽鐽的DNA序列自 質體pBluescript中分離,然後再將分離的啓動子 (圖B)插入以限制酶Clal切開的pBSI-132 (圖C); (D) : RAMYG28-132 (I )與 GUSGUS 基因的 5'端相接處 之DNA序列分析,横線表示預測的訊號胜呔鏈的DNA 序列。 用電穿透法將GUS表現載體轉殖到水稻懸浮培養細 胞内,培養3天後進行G U S分析。 U)對照組細胞用不含α -澱粉水解酶基因的啓動子 ,僅含GUS基因的載體來轉殖,培養3天後以X-glu 71 本紙張尺度適用中國國家樣準(CNS ) A4規格(210X297公釐) A7 B7 五、發明説明(6$ ) 反應,並没有藍色出現。 (B )經過G U S表現載體轉殖後的細胞,培養3天後以 X-slu來反應呈色,圖中呈藍色者表示GUS基因能夠 表現的細胞團粒。 (C)經由X-g 1 u反應呈色後的藍色細胞團粒的放大照 片° (請先閱讀背面之注意事項再填寫本頁) .裝· 訂 經濟部中央標準局員工消費合作社印製 72 本紙張尺度適用中國國家標準(CNS ) A4規格(2〖0X29?公釐) 經濟部中央樣準局身工消費合作社印製 A 7' -------B7 五、發明説明W) 參考文獻, (F): DNA sequence analysis where the three DNA segments of PSE132, PAE132 and PHE132 meet the 5 'end of the GUS gene. The first value ATG is the translation starting point of the ct- 'starch hydrolase gene * the second M ATG is the translation starting point of the G US gene, and the horizontal line represents the DNA sequence of the expected signal peptide chain. Figure 15: «Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. The C4 -starch hydrolase gene 5 'end containing the promoter is transferred to the plastids containing the GUS and hygromycin resistance genes, where (A) (B) (C) Using the restriction enzymes EcoNI and Sal I, the promoter part of RAMYG6b (Fig. 10) and the DNA sequence of the signal winning chain were separated from the plastid pBlu-escript. Then insert the isolated promoter (Figure B) into the pBSDI-132 (paint A) vector cleaved by the restriction enzyme Hindll # to the GUS expression vector of RAMYG6-132 (836kb) (Figure C); (D): RAMYG6- 132 DNA sequence analysis at the junction of the 5 'end of the GUS gene, the horizontal line represents the predicted DNA sequence of the signal peptide bond, and the nucleotide sequence TGA at the dotted line represents the stop code. Figure 16: The 5 'end of the α-starch hydrolase gene is transferred to the plastid containing G US and the anti-moisture emblem gene at the 5' end of the gene. Among which, the size of this paper is in accordance with the Chinese National Standard (CNS) A4 specifications ( 210Χ 297 mm) A7 B7 V. Description of the invention (MoP) (A) (B) (C): Using the restriction enzymes Apal and EcoRV, the promoter sequence of RAHYG28a2 (Figure 10) together with the DNA sequence of the signal peptide peptide from Plastid was isolated from pBluescript, and then the isolated promoter (Figure B) was inserted into the pBSM-132 (Figure A) vector cleaved by the restriction enzyme HindDI to obtain the GUS expression vector of RAMYG28-132 (I) (8.2kb) ( (Figure C); (D): DNA sequence analysis of RAMYG28-132 (I) at the 5 'end of the GUS gene, the horizontal line represents the predicted DNA sequence of the signal peptide chain, and the nucleotide sequence at the dotted line TGA stands for termination code. Figure 17 Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. 18 The ct-starch hydrolase gene 5 'end containing the promoter is transferred to the plastids that eat GUS and anti-moisture emblem genes, of which (A) (B ) (C): Use the restriction enzymes Apal and EcoRV to separate the promoter part of RAMYG28A2 (Figure 10) and the DNA sequence of the signal peptide from pBluescript plastid, and then insert the isolated promoter (Figure B) to restrict PBSI-132 cleaved by enzyme Clal (Figure C); (D): DNA sequence analysis of RAMYG28-132 (I) at the 5 'end of the GUSGUS gene. The horizontal line indicates the predicted DNA sequence of the signal winning chain. The GUS expression vector was transformed into rice suspension culture cells by electro-penetration method, and the GUS analysis was performed after 3 days of culture. U) Control cells were transformed with a promoter containing no α-starch hydrolase gene, and a vector containing only the GUS gene. After 3 days of cultivation, X-glu 71 was used as the paper standard for China National Standards (CNS) A4 (210X297mm) A7 B7 Fifth, the description of the invention (6 $) reaction, and no blue appears. (B) Cells transfected with GUS expression vectors are colored with X-slu after 3 days of culture. The blue cells in the figure indicate cell pellets that can be expressed by the GUS gene. (C) Enlarged photo of blue cell pellets colored by Xg 1 u reaction ° (please read the precautions on the back before filling out this page). Packing and ordering 72 copies of paper printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs The scale is applicable to the Chinese National Standard (CNS) A4 specification (2 〖0X29? Mm) Printed by the Central Sample Bureau of the Ministry of Economic Affairs, the Consumer Labor Cooperative A 7 '------- B7 V. Description of invention W) References

Akazawa,T. and Hara-Nishimura,I. (1985). Topographic aspects of biosynthesis, extracellular, and intracellular stroage of proteins in plant cells. Ann. Rev. Plant Physiol. 36:441-472.Akazawa, T. and Hara-Nishimura, I. (1985). Topographic aspects of biosynthesis, extracellular, and intracellular stroage of proteins in plant cells. Ann. Rev. Plant Physiol. 36: 441-472.

Baulcombe,D.C., Huttly,A.K.f Martienssen,R.A., Barker,R.F. and Jarvis^l.G. (1987). A novel wheat α-amylase gene (a-Amy3). Mol. Gen.Genet. 209:33-40.Baulcombe, D.C., Huttly, A.K.f Martienssen, R.A., Barker, R.F. And Jarvis ^ l.G. (1987). A novel wheat α-amylase gene (a-Amy3). Mol. Gen.Genet. 209: 33-40.

Bevan,M.W.and Chilton,M-D. (1982). T-DNA of the agrobacterium Ti and Ri plasmids. Annu. Rev. Genet. 16:357-384.Bevan, M.W. And Chilton, M-D. (1982). T-DNA of the agrobacterium Ti and Ri plasmids. Annu. Rev. Genet. 16: 357-384.

Bevan,M.W., Barnes,W. and Chilton,M-D. (1983). Structure and transcription of the nopaline synthase gene region of T-DNA. Nucl. Acids Res. 11:369-385.Bevan, M.W., Barnes, W. And Chilton, M-D. (1983). Structure and transcription of the nopaline synthase gene region of T-DNA. Nucl. Acids Res. 11: 369-385.

Bush,D.S.,Biswas’A.K.and Jones’R丄.(1989). Gibberellic acid-stimulated Ca+2 accumulation in barley aleurone endoplasmic reticulum:Ca+2 -transport and steady-state levels. Planta.Bush, D.S., Biswas’A.K. And Jones’R 丄. (1989). Gibberellic acid-stimulated Ca + 2 accumulation in barley aleurone endoplasmic reticulum: Ca + 2 -transport and steady-state levels. Planta.

Chandler,P.M.,ZwarJ.A.JacobsenJ.V. and Higgins,T.J.V. (1984). The effects of gibberellic acid and abscisic acid on α-amylase mRNA levels in baxley aleurone layers using and a -amylase cDNA clone. Plant Molecular Biology. 3:401-418.Chandler, PM, ZwarJ.A. JacobsenJ.V. And Higgins, TJV (1984). The effects of gibberellic acid and abscisic acid on α-amylase mRNA levels in baxley aleurone layers using and a -amylase cDNA clone. Plant Molecular Biology. 3: 401-418.

Crossway,A., Oakes,J.V., Irvine,J.M., Ward,B.» Knauf, V.C. and Shewmaker.C.K. (1986). Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol.Gen. Genet. 202:179-185.Crossway, A., Oakes, JV, Irvine, JM, Ward, B. »Knauf, VC and Shewmaker.CK (1986). Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol.Gen. Genet. 202: 179- 185.

Degreve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. ¢1982). Nucleotide sequence and transcripts maps of the Agrobacterium tumefaciens Tl plasmid-encoded octopine synthase gene. J. Mol. Appl. Genet. 1: 499-513Degreve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. ¢ 1982). Nucleotide sequence and transcripts maps of the Agrobacterium tumefaciens Tl plasmid-encoded octopine synthase gene . J. Mol. Appl. Genet. 1: 499-513

DeikmanJ.and Jones, R.L. (1985). Control of α-amylase mRNA accumulation by gibberellic acid and calcium in barley aleurone layers. Plant Physiol. 78:192-198.DeikmanJ. And Jones, R.L. (1985). Control of α-amylase mRNA accumulation by gibberellic acid and calcium in barley aleurone layers. Plant Physiol. 78: 192-198.

Dekeyser,R.A., Clase,B·, Marichal,M., Montagu,M.V. and Caplan,A.(1989) Evaluation of selectable markers for rice transformation. Plant Physiol. 90:217-223.Dekeyser, R.A., Clase, B ·, Marichal, M., Montagu, M.V. And Caplan, A. (1989) Evaluation of selectable markers for rice transformation. Plant Physiol. 90: 217-223.

Devercux,J.,Haeberli,P. and Smithies, 0. (1984). A comprehensive set of ' sequence analysis programs for the VAX. Nucleic Acids Res. 12:387-395. 本紙張尺度適用申國國家標準(CNS ) Α4规格(21〇&gt;&lt;297公釐) —'1-1-------- f ——! (請先閱讀背面之注意事項4:^-寫本頁) 訂-------d¥-----r — Lr_____ΓΜ·! 五、發明説明(夕/ )Devercux, J., Haeberli, P. and Smithies, 0. (1984). A comprehensive set of 'sequence analysis programs for the VAX. Nucleic Acids Res. 12: 387-395. This paper scale is applicable to the National Standards of China (CNS ) Α4 specifications (21〇 &lt; 297mm) —'1-1 -------- f ——! (Please read the note 4 on the back first: ^ -write this page) order-- ----- d ¥ ----- r — Lr _____ ΓΜ ·! V. Description of the invention (Xi /)

Feiberg ,Α.Ρ. and Vogelstein,B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analy. Biochem. 132:6-13.Feiberg, Α.Ρ. and Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analy. Biochem. 132: 6-13.

Fincher,G.B., Stone,B-A. and Clarke,A.E. (1983). Arabinogalactan- proteins:structure biosynthesis and function. Ann. Rev.Plant Physiol. 34:47-70.Fincher, G.B., Stone, B-A. And Clarke, A.E. (1983). Arabinogalactan- proteins: structure biosynthesis and function. Ann. Rev. Plant Physiol. 34: 47-70.

Fromm,M.E., Taylor,L.P. and walbot, V. (1986). Stable transformation of maize after gene transfer by electroporation. 319:791-793.Fromm, M.E., Taylor, L.P. And walbot, V. (1986). Stable transformation of maize after gene transfer by electroporation. 319: 791-793.

Gopalakrishnan’B.', Sonthayanon,B.,Rahmatullah,R. and Muthukrishnan.S. (1991). Barley aleurone layer cell protoplasts as a transient expression system. Plant Mol. Bio. 16:463-467.Gopalakrishnan’B. ', Sonthayanon, B., Rahmatullah, R. And Muthukrishnan.S. (1991). Barley aleurone layer cell protoplasts as a transient expression system. Plant Mol. Bio. 16: 463-467.

Corman,C.M., Moffatt,L.F. and Howard,B-H. (1982). Recombinant genomes which express chloramphenicol acetyl transfease in mammalian cells. Mol. Cell. Biol. 2:1044.Corman, C.M., Moffatt, L.F. And Howard, B-H. (1982). Recombinant genomes which express chloramphenicol acetyl transfease in mammalian cells. Mol. Cell. Biol. 2: 1044.

Hain,R” Stabefl^P” Czemilofsky’AP” Steinbiss,H.H” Herrera-Estrella,L. and Schell,L. (1985). Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts. Mol. Gen. Genet. 199:161-168.Hain, R ”Stabefl ^ P” Czemilofsky'AP ”Steinbiss, HH” Herrera-Estrella, L. and Schell, L. (1985). Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts. Mol. Gen. Genet. 199: 161-168.

Hauptmann, R.M. , Vasil,V., Ozias-akins, P., Tabaeizadehm,ZM Rogers,S.G., Fraley,R.T., Horsch,R.B. and Vasil,I.K. (1988). Evaluation of selectable markers for obtaining stable transformants in the Graminae. Plant Physiol. 86:602-606:Hauptmann, RM, Vasil, V., Ozias-akins, P., Tabaeizadehm, ZM Rogers, SG, Fraley, RT, Horsch, RB and Vasil, IK (1988). Evaluation of selectable markers for obtaining stable transformants in the Graminae. Plant Physiol. 86: 602-606:

Hayashimoto,A.* Li,Z. and Murai,N. (1990). A polyethylene glycol-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiol. 93:857-863. 經濟部中央標準局貝工消費合作社印袋Hayashimoto, A. * Li, Z. and Murai, N. (1990). A polyethylene glycol-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiol. 93: 857-863. Central Bureau of Standards, Ministry of Economic Affairs Consumer Cooperative Printed Bag

Helmer.G., Gasadaban,MM Bevan^l.W., Kayes,L. and Chilton,M-D. (1984). A new chimeric gene as a marker for plant transformation: the expression of Escbericbia coli β-galactosidase in sunflower and tobacco cells. Bioltechnology. 2:520-527.Helmer.G., Gasadaban, MM Bevan ^ lW, Kayes, L. and Chilton, MD. (1984). A new chimeric gene as a marker for plant transformation: the expression of Escbericbia coli β-galactosidase in sunflower and tobacco cells. Bioltechnology. 2: 520-527.

Heirera-Estrella L., De Block M. Messens E., HeroalsteensJ-P., Van Montagu?M. and Schell,J. (1983). Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2:987-995.Heirera-Estrella L., De Block M. Messens E., HeroalsteensJ-P., Van Montagu? M. And Schell, J. (1983). Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2: 987- 995.

Ho,T.H.D., Nolan,R.C., LinJ-.S., Brodl,M.R. and Brown J*.!!. (1987).Regulation -.of gene expression in barley aleurone layers. In &quot; Molecular Biology of plant Growth Control &quot; (Liss,A.R.eds ), pp:35-49. Louis, Missouri. 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29Z公釐) 經濟部中央標準局負工消費合作社印製 A7 B7 五、發明説明(;?&gt;) Hu,C.Y., Chee,P.PM Chesney,R.H., ZhouJ.H., Miller,P.D. and O'Brien,W.T.(1990). Intrinsic GUS-like activities in seed plants. Plant Cell Reprots. 9:1-5. Huang,J” Swegel,M” Dandeker,A,.M. and Muthukrishnan,S. (1984). Expression and regulation of a-amylase gene family in barley aleurones. J. Mol. Appl. Genet. 2:579-588. Huang,N” Koizumi,N” Reinl’S. and Rodriguez’R丄·(1990a). Structural organizaiton and differential expression of rice α-amylase genes. Nucleic Acids Research. 18(23);7007-7014. Huang,N., Sutliff.T.D., LittsJ.C. and Rodriguez,R.L. (1990b). aassification and characterization of the rice α-amylase multigene family. Plant Molecular Biology. 14: 655-668. Huttly,A.K” Martienssen,R.A. and Baulcombe’D.C. (1988). Sequence heterogeneity and differential expression of the a-Amy2 gene family in wheat. Mol. Gen. Genet. 214:232-240. Jacobsen,J.V. and Chandler,P.M. (1987). Gibberellin and Abscisic acid in germinating cereals. Plant hormones and their role in plant growth and development, pp 164-193. Jacobsen,J.V. and Higgins,TJ.V. (1982). Characterizaion of the a· amylases synthesized by aleurone layers of Hilmalaya barley in response to GA3. Plant Physiol. 70:1647-1653. Jacobsen,J.V., Bush,D.S., SticherJ-. and Jones,R.L. (1988). Evidence for precursor forms of low-pi a-amylase isozymes secreted by barley aleurone layer. Plant Physiol. 88:1168-1174. Jefferson,R.A., Burgess,S.M. and Hirsch,D. (1986). β-glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl. Acad. Sci. USA. 83:8417-8451. Jefferson, R.A., Kavanagh,T.A. and Bevan,M.W. (1987) GUS Fusions: β-Glucuronidase as a sensitive and versatrile gene marker in higher plantts. EMBO J. 6:3901-3907. Jefferson,R.A. (1987). Assaying Chimeric Genes in Plants: The GUS Gene Fusion System, Plant Mol. Bio. Reporter. 5(4):387-405. Joersbo.M. and Brunstedt,J. (1990). Direct gene transfer to plant protoplasts by mild sonication. Plant Cell Reports. 9:207-210. (請先閱讀背面之注意事項再填寫本頁) -裝. 訂 旅 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部中央標準局負工消費合作社印裝 A7 B7五、發明説明(;?&gt;) Khursheed,B· and Rogers,J.C. (1988). Barley &lt;x-amylase genes. J. Biol· Chem. 263:18593-18960. Klein,T.M., Wolf,E.D., Wu,R. and Sanford J.C (1987). High-velocity microprojectiles for delivering nucleic acids into living cells. Nature. 327:70-73. Knox,C.A.P., Somthayanon,B·, Chandra,G.R. and Muthukrishna,S. (1987). Structure and organization of two divergent a-amylase genes from barley. Plant Mol. Biol. 9:3-17. Krens,F.A., Molendijk,L., Wullems.GJ. and Schilperoort,R.A.(1987). In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature. 296:72-74. Kumagai,M.H., Shah,M.f Terashima,M., Vrklian^., WhitakerJ.R., and Rodriguez,R.L. (1990). Expression and secretion of rice α-amylase by Saccharomyces cerevisiae. Gene. 94:209-216. Kuo.Y.H. (1990). Regulation of a-amylase gene expression by sucrose starvation ^in the suspension-cultured rice cells. Taiwan University. Master Thesis. Kyozuka, J., Hayashi, Y. and Shimamoto, K. (1987). High frequency plant regeneration from rice protoplasts by novel nurse methods. Mol. Gen. Genet. 206:408-413. Lazarus, C. M., Baulcombe, D, C. and Martienssen, R, A. (1985) a-Amylase genes of wheat are two multigene families which are differentially expressed. Plant Mol. Bio. 5:13-24. Leon, P., Planckaert, F. and Walbot, V. (1991). Transient gene expression in protoplasts of Phaseolus vulgaris isolated from a cell suspension culture. Plant Phisology. 95:968-972. Li,Z. and Murai, N. (1990). Efficient plant regeneration from rice protoplasts in general medium. Plant Cell Reports. 9:216-220. Liu,L.F.,Wang,K.C., and Lai,K.L. (1989). Rice protoplast culture and plant regeneration. J.Agri. Associ. China. 147:1-9. Lorz,H., Barker,B·» and Schell,J. (1985). Gene transfer to cereal cells mediated by protoplast transformation. Mol. Gen. Genet. 199:178-182. (請先閱讀背面之注意事項再填寫本頁) •裝· 訂 線 本紙浪尺度適用中國國家標準(CMS ) A4規格(,·-…·'公釐) % 經濟部中央標準局員工消費合作社印製 A7 B7 ____ · 五、發明説明(夕么)Ho, THD, Nolan, RC, LinJ-.S., Brodl, MR and Brown J *. !!. (1987) .Regulation -.of gene expression in barley aleurone layers. In &quot; Molecular Biology of plant Growth Control &quot; (Liss, AReds), pp: 35-49. Louis, Missouri. This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X29Z mm). The A7 B7 is printed by the Consumer Labor Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. Description of the invention (;?>) Hu, CY, Chee, P.PM Chesney, RH, ZhouJ.H., Miller, PD and O'Brien, WT (1990). Intrinsic GUS-like activities in seed plants. Plant Cell Reprots. 9: 1-5. Huang, J ”Swegel, M” Dandeker, A ,. M. and Muthukrishnan, S. (1984). Expression and regulation of a-amylase gene family in barley aleurones. J. Mol. Appl Genet. 2: 579-588. Huang, N ”Koizumi, N” Reinl'S. And Rodriguez'R 丄 · (1990a). Structural organizaiton and differential expression of rice α-amylase genes. Nucleic Acids Research. 18 (23); 7007-7014. Huang, N., Sutliff.TD, LittsJ.C. And Rodriguez, RL (1990b). Aassification and characte rization of the rice α-amylase multigene family. Plant Molecular Biology. 14: 655-668. Huttly, AK ”Martienssen, RA and Baulcombe'DC (1988). Sequence heterogeneity and differential expression of the a-Amy2 gene family in wheat. Mol. Gen. Genet. 214: 232-240. Jacobsen, JV and Chandler, PM (1987). Gibberellin and Abscisic acid in germinating cereals. Plant hormones and their role in plant growth and development, pp 164-193. Jacobsen, JV and Higgins, TJ.V. (1982). Characterizaion of the a · amylases synthesized by aleurone layers of Hilmalaya barley in response to GA3. Plant Physiol. 70: 1647-1653. Jacobsen, JV, Bush, DS, SticherJ-. and Jones, RL (1988). Evidence for precursor forms of low-pi a-amylase isozymes secreted by barley aleurone layer. Plant Physiol. 88: 1168-1174. Jefferson, RA, Burgess, SM and Hirsch, D. (1986). β-glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl. Acad. Sci. USA. 83: 8417-8451. Jefferson, RA, Kavanagh, TA and Bevan, MW (1 987) GUS Fusions: β-Glucuronidase as a sensitive and versatrile gene marker in higher plantts. EMBO J. 6: 3901-3907. Jefferson, RA (1987). Assaying Chimeric Genes in Plants: The GUS Gene Fusion System, Plant Mol. Bio. Reporter. 5 (4): 387-405. Joersbo.M. And Brunstedt, J. (1990). Direct gene transfer to plant protoplasts by mild sonication. Plant Cell Reports. 9: 207-210. (Please read first Note on the back and then fill out this page)-Packing. The size of the book book is applicable to the Chinese National Standard (CNS) A4 (210X297 mm). The A7 B7 printed by the Consumer Labor Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of invention (; ?> Khursheed, B · and Rogers, JC (1988). Barley &lt; x-amylase genes. J. Biol · Chem. 263: 18593-18960. Klein, TM, Wolf, ED, Wu, R. and Sanford JC (1987). High-velocity microprojectiles for delivering nucleic acids into living cells. Nature. 327: 70-73. Knox, CAP, Somthayanon, B ·, Chandra, GR and Muthukrishna, S. (1987). Structure and organization of two divergent a-amylase genes from barley. Plant Mol. Biol. 9: 3-17. Krens, FA, Molendijk, L., Wullems.GJ. And Schilperoort, RA (1987). In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature. 296: 72-74 . Kumagai, MH, Shah, Mf Terashima, M., Vrklian ^., WhitakerJ.R., And Rodriguez, RL (1990). Expression and secretion of rice α-amylase by Saccharomyces cerevisiae. Gene. 94: 209-216. Kuo.YH (1990). Regulation of a-amylase gene expression by sucrose starvation ^ in the suspension-cultured rice cells. Taiwan University. Master Thesis. Kyozuka, J., Hayashi, Y. and Shimamoto, K. (1987). High frequency plant regeneration from rice protoplasts by novel nurse methods. Mol. Gen. Genet. 206: 408-413. Lazarus, CM, Baulcombe, D, C. and Martienssen, R, A. (1985) a-Amylase genes of wheat are two multigene families which are differentially expressed. Plant Mol. Bio. 5: 13-24. Leon, P., Planckaert, F. and Walbot, V. (1991). Transient gene expression in protoplasts of Phaseolus vulgaris isolated from a cell suspension culture. Plant Phisology. 95: 968-972. Li, Z. and Murai, N. (1990). Efficient plant regeneration from rice protoplasts in general medium. Plant Cell Reports. 9: 216-220. Liu, LF, Wang, KC, and Lai, KL (1989). Rice protoplast culture and plant regeneration. J. Agri. Associ. China. 147: 1-9. Lorz, H., Barker, B · »and Schell, J. (1985). Gene transfer to Cereal cells mediated by protoplast transformation. Mol. Gen. Genet. 199: 178-182. (Please read the precautions on the back before filling out this page) • The size of the paper for the binding and binding is applicable to the Chinese national standard (CMS) A4 specification ( , · -... · 'mm)% A7 B7 ____ printed by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs

Mauiatis’T.,Fristsch,E.F. and SambrookJ. (1989). Molecular cloning: a Laboratory Mannual, Cold Spring Harbor Lab.Mauiatis’T., Fristsch, E.F. and SambrookJ. (1989). Molecular cloning: a Laboratory Mannual, Cold Spring Harbor Lab.

MacGgregor,A.W., Marchylo,B-A. and KrugerJ.E. (1988). Mutiple a-amylase components in germinated cereal grains determined by isoelectric focusing and chromatofocusing. Cereal Chem. 65:326-323.MacGgregor, A.W., Marchylo, B-A. And KrugerJ.E. (1988). Mutiple a-amylase components in germinated cereal grains determined by isoelectric focusing and chromatofocusing. Cereal Chem. 65: 326-323.

Markovitz,A., Klein,H.P. and fischeer,E.H. (1956). Purification, crystallization and properties of α-amylase of Pseudomonas saccharophila. Biochim. Biophys. Acta. 19:267-273.Markovitz, A., Klein, H.P. And fischeer, E.H. (1956). Purification, crystallization and properties of α-amylase of Pseudomonas saccharophila. Biochim. Biophys. Acta. 19: 267-273.

McElory,D., Zhang,W., Cao,J. and Wu,R. (1990). Isolation of an efficient acdn promoter for nee use in rice transformation. The Plant Cell. 2:163-171.McElory, D., Zhang, W., Cao, J. And Wu, R. (1990). Isolation of an efficient acdn promoter for nee use in rice transformation. The Plant Cell. 2: 163-171.

Melton,D.A·, KriegiP.A., Rebagliati^MiL, Maniatis,T., Zinn^ and GreenM.R· (1984). Effident in vitro synthesis of biologically activity KNA and KNA hybridization probes from plasmids contaming a bacteriophage sp6 promter. Nudeic Acids Res. 12:7035-7056.Melton, DA ·, KriegiP.A., Rebagliati ^ MiL, Maniatis, T., Zinn ^ and GreenM.R · (1984). Effident in vitro synthesis of biologically activity KNA and KNA hybridization probes from plasmids contaming a bacteriophage sp6 promter. Nudeic Acids Res. 12: 7035-7056.

Mitsui,T. and Akazawa, T. (1986). Perferential secretion of R-type alpha-amylase molecules in rice seed scutellum at high temperatures. Plant PhysioL 82:880-Mitsui, T. And Akazawa, T. (1986). Perferential secretion of R-type alpha-amylase molecules in rice seed scutellum at high temperatures. Plant PhysioL 82: 880-

MiyateiS. and Akazavva, T. (1982). Enzymic mechanism of starch breakdown in geraminating rice seeds. Plant Physiol. 70:147-153. O’Neill/S.D., Kumagai/M.H., MajumdarnvA., Huang^N., Sutliff,T.D. and Rodriguez,RX. (1990). The α-amylase genes in Oryza sativa: Characterization of cDNA Clones and mRNA expression during seed germination.· Mol. Gene. Genet. 221:235-244.MiyateiS. And Akazavva, T. (1982). Enzymic mechanism of starch breakdown in geraminating rice seeds. Plant Physiol. 70: 147-153. O'Neill / SD, Kumagai / MH, MajumdarnvA., Huang ^ N., Sutliff, TD and Rodriguez, RX. (1990). The α-amylase genes in Oryza sativa: Characterization of cDNA Clones and mRNA expression during seed germination. · Mol. Gene. Genet. 221: 235-244.

Ou-Lee,T.M., Turgeon,R. and Wu,R. (1988). Interaction of a gibberellin-induced factor with the upstream region of an α-amylase gene in rice aleurone tissue. Proc. Natl. Acad. Sci. USA. 85:6366-6370. OW,d.w., wood, K.V., Deluca,M., De Wet,J.R., Helinski,D.R. and HowellmS.H. (1986). Transient and stable expression of the firefly Luciferase gene in plant cells and transgenic plants. Science. 234:856-859.Ou-Lee, TM, Turgeon, R. And Wu, R. (1988). Interaction of a gibberellin-induced factor with the upstream region of an α-amylase gene in rice aleurone tissue. Proc. Natl. Acad. Sci. USA . 85: 6366-6370. OW, dw, wood, KV, Deluca, M., De Wet, JR, Helinski, DR and HowellmS.H. (1986). Transient and stable expression of the firefly Luciferase gene in plant cells and transgenic plants. Science. 234: 856-859.

Potrykus,I. Saul,M.W., PetruskaJ., PaszkowskiJ. and Shillito, R.D. (1985). Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 199:183-188.Potrykus, I. Saul, M.W., PetruskaJ., PaszkowskiJ. And Shillito, R.D. (1985). Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 199: 183-188.

Reiss,B.,Sprengel,R.,Will,H. and Schaller,H. (1984). A new sensitive method for qualitative and quantitative assay of neomycin 本紙張尺度適用t國國家標準(CNS ) A4規格(2. .產) -77 - (請先閱讀背面之注意事項再填寫本頁) -裝. 訂 線 經濟部中央標準局貝工消費合作社印製 A7 B7 五、發明説明(7〇 phosphotransferase in crude cell extracts. Gene. 30:211-218. Rogers,J.C. and Milliman.C. (1984). Coordinate increase in major transcripts from the high pi a-amylase multigene family in barley aleurone cells stimulated with gibberellic acid. J. Bio. Chem. 259(19):12234-12240. Rogers,J.C.(1985). Two barley α-amylase gene families are regulated differently in aleurone cells. J. Biol. Chem. 260:3731-3738. Rothstein,SJ., Lahners,K.N., Lazarus,Baulcombe,D.C. and Gatenby,A-A. (1987). Synthesis and secretion of wheat a-amylase in Saccharomyces cerevisiae. Gene. 55:353-356. Salmenkallio,M., Hannus,R., Teeri,T.H. and Kaupinen. (1990). Regulation of a-amylase promoter by gibberellic acid and abscisic acid in barley protoplasts transformed by electroporation. Plant Cell Reports. 9:352-355. Sogaard,M. amd Svensson,B· (1990). Expression of cDNAs encoding barley a-amylase 1 and 2 in yeast and characteization of the secreted proteins. Qene. 94:173-179. Tkachuk,R. and Kruger,J.E. (1974). Wheat a-amylase.II. Physical characterization. Cereal Chemistry.51:508-529. Tzou,W.S.(1990). Expression of α-amylase genes in rice aleurone layer. Tsing Hua University. Master Thesis. Von,H.G.(1984)* Analysis of the distribution of charged residues in the N-tenninal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. European Molecular Biology Organizational Journal 3:2315-2318. Von,H-G· (1985) Signal sequences. The limits of variation. J. Mol. Biol. 184:99-105. Waldron,C., Murphy,E.B., RobertsJ.L., Gustafson,G.D., Armour,S.L. and Malcolm,S.K. (1985). Resistance to hygromycin B: a new marker for plant transformation studies. Plant Mol. Biol. 5:103-108. Weickert,MJ. and Chambliss,G.H. (1990). Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc. Natl. --Acad. Sci. USA. 87:6238-6244. (請先閱讀背面之注意事項再填寫本頁) -裝- 訂 線 本紙張尺度適用中國國家標準(CNS ) A4規格(21 .* ) - 78 - A7 ___B7 五、發明説明)Reiss, B., Sprengel, R., Will, H. and Schaller, H. (1984). A new sensitive method for qualitative and quantitative assay of neomycin This paper scale is applicable to the national standard (CNS) A4 specification (2. .Produce) -77-(Please read the precautions on the back before filling in this page)-Install. A7 B7 printed by the Beigong Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economics 5. Description of invention (7〇phosphotransferase in crude cell extracts. Gene. 30: 211-218. Rogers, JC and Milliman.C. (1984). Coordinate increase in major transcripts from the high pi a-amylase multigene family in barley aleurone cells stimulated with gibberellic acid. J. Bio. Chem. 259 (19): 12234-12240. Rogers, JC (1985). Two barley α-amylase gene families are regulated differently in aleurone cells. J. Biol. Chem. 260: 3731-3738. Rothstein, SJ., Lahners, KN, Lazarus, Baulcombe, DC and Gatenby, AA. (1987). Synthesis and secretion of wheat a-amylase in Saccharomyces cerevisiae. Gene. 55: 353-356. Salmenkallio, M., Hannus, R., Teeri, TH and Kaupinen. (1990). Regula tion of a-amylase promoter by gibberellic acid and abscisic acid in barley protoplasts transformed by electroporation. Plant Cell Reports. 9: 352-355. Sogaard, M. amd Svensson, B · (1990). Expression of cDNAs encoding barley a-amylase 1 and 2 in yeast and characteization of the secreted proteins. Qene. 94: 173-179. Tkachuk, R. and Kruger, JE (1974). Wheat a-amylase.II. Physical characterization. Cereal Chemistry.51: 508-529 . Tzou, WS (1990). Expression of α-amylase genes in rice aleurone layer. Tsing Hua University. Master Thesis. Von, HG (1984) * Analysis of the distribution of charged residues in the N-tenninal region of signal sequences: Implications for protein export in prokaryotic and eukaryotic cells. European Molecular Biology Organizational Journal 3: 2315-2318. Von, HG · (1985) Signal sequences. The limits of variation. J. Mol. Biol. 184: 99-105. Waldron, C., Murphy, EB, RobertsJ.L., Gustafson, GD, Armour, SL and Malcolm, SK (1985). Resistance to hygromycin B: a new marker for pl ant transformation studies. Plant Mol. Biol. 5: 103-108. Weickert, MJ. and Chambliss, GH (1990). Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc. Natl. --Acad. Sci . USA. 87: 6238-6244. (Please read the notes on the back before filling in this page)-Binding-The paper size of this book is applicable to the Chinese National Standard (CNS) A4 specification (21. *)-78-A7 ___B7 5. , Description of invention)

Yu,S.M., Tai,Y.S., Goldman,S., Chuu,YJ., Ou-Lee,T.M. and Wu,R. (1990). Analysis of the promoter region of rice α-amylase genes. Structure and Function of Nucleic Acids and Proteins. 287-295.Yu, SM, Tai, YS, Goldman, S., Chuu, YJ., Ou-Lee, TM and Wu, R. (1990). Analysis of the promoter region of rice α-amylase genes. Structure and Function of Nucleic Acids and Proteins. 287-295.

Zhang,H.M., Yang.H·» Rech,E.L., Golds,TJ., Davis,A.S., Mulligan,B-J·»Zhang, H.M., Yang.H · »Rech, E.L., Golds, TJ., Davis, A.S., Mulligan, B-J ·»

Cocking,E-C. and Darey,M.R. (1988) Transgenic rice plants produced by electroporation-mediated. Plant Cell Reports. 7:379-384.Cocking, E-C. And Darey, M.R. (1988) Transgenic rice plants produced by electroporation-mediated. Plant Cell Reports. 7: 379-384.

Zhang,W. and Wu,R. (1988). Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor Appl. Genet. 76:835-840. ; 裝·! *. i - ^ (請先閱讀背面之注意事項再填寫本頁) i r 經濟部中央標準局貝工消費合作社印製 ?&gt;r 訂 本紙張尺度適用中國國家標準(CNs ) A4規格(2Zhang, W. And Wu, R. (1988). Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor Appl. Genet. 76: 835-840 .; outfit ·! *. i-^ (Please read the precautions on the back before filling in this page) ir Printed by the Beigong Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs?

Claims (1)

32铷浩本 i ___1 D8 經濟部中央標準局貞工消費合作社印製 夂、申請專利範圍 第8 1 1 0 1 029號專利申請案申請專利範圍修正本 修正日期·· 86年6月 1. 一種製備一具增強的基因表現能力之載體的方法’其包 括將編碼源自於水稻植物的α -澱粉水解酶基因之啓動 子與信號胜肽鏈之D Ν Α序列整合至一載髏内以調節該載 體内编碼一所欲蛋白質之結構基因的表現,於是當在無 糖或缺糖之狀況下,該源自水稻植物的α -澱粉水解酶 基因之啓動子可誘發编碼該所欲蛋白質之基因的表現, 而該源自水稻植物的《 -澱粉水解酶基因之信號胜呔鐽 Ν可利於該所欲蛋白質被分泌至宿主細胞外以便自該培養 基回收該所欲蛋白質, 其中,該α -澱粉水解酶基因啓動子區域傺衍生自水稻之 aAmy6、a Amy 7 ' a Amy8 aAmylO 或 aAmy3 基因0 2 .如申請專利範圍第1項之方法,其中編碼該所欲蛋白質 之基因表現的誘發傜在該培養基中缺糖之狀況下發生。 3 ·如申請專利範圍第2項之方法,其中編碼該所欲蛋白質 之基因表現的誘發傜έ該培養基中缺蔗糖、葡萄糖或果 糖之狀況下發生。 4 .如申請專利範圍第1項之方法,其中該載體進一步含有 . 一値標識基因、報導基因、抗生素-抗性基因,加強子 或調節序列以作為一選殖攘記,俾利於選殖被該載體所 轉殖的被子植物宿主細胞。 ‘ 5 ·如申請專利範圍第4項之方法,其中該載體傺進一步含 一- 有一傾抗生素-抗性基因以作為一選殖標記。 (請先閲讀背面之注意事項再填寫本頁) •裝· 訂 線 本纸張尺度適用中國國家標準(CNS ) A4规格(210X297公釐) 321685 A8 B8 C8 D8 經濟部中央標準局員工消費合作社印製 六、申請專利範圍 6. 如申請專利範圍第5項之方法,其中該抗生素-抗性基因 所針對之抗生素係為康那徽素(kanamycin)或是潮徽素 (hygr omyc i η ) ° 7. 如申請專利範圍第4項之方法,其中該載體傜進一步含 有一値報導基因以作為一選殖檫記。 8 .如申請專利範圍第7項之方法,其中該報導基因為召―葡 糖醒酸酐酶(/3 -glucuronidase)基因。 ^9.如申請專利範圍第1項之方法,其中該所欲蛋白質為召_ «糖醛酸酐酶。 1〇.—種藉由於被子植物細胞内表現一编碼一所欲蛋白質的 基因.而獲得該所欲蛋白質之方法,其包括: a) 構,建一能於被子植物細胞内表現基因之載體,該載體 包括一衍生自水稻植物ct -澱粉水解酶基因之啓動子 區域以及一編碼一所欲蛋白質的基因; b) 以該載體性狀轉變一適當之被子植物宿主細胞; 、c)培育所形成的性狀轉變宿主細胞; d) 將該培育的性狀轉變宿主細胞引至缺搪或無糖之狀況 以促發在該啓動子區域控制下該基因之表現;以及 e) 回收由該基因所表現出的基因産物, 其中該〇(-澱粉水解酶基因啓動子區域傜衍生自水稻之 a A ray 6 ' a Aray7、α Amy8、ot AraylO 或 ot Amy3 基因。 11 .如申請專利範圍第10項之方法,其中該啓動子區域僳衍 生自水稻之a Aniy8基因。 ' 12 ,如申請專利範圍第9、10或1 1項之方法,其中該衍生自 J-----j?—裝— (請先閲讀背面之注意事項再填寫本頁) -訂 線 本紙浪尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) 2 321685 A8 B8 C8 D8 經濟部中夬標準局貝工消費合作社印製 π、申請專利範園 Ot -殿粉水解酶基因之啓動子區域包括α -源粉水解酶基 因之啓動子以及一编碼α -澱粉水解酶信號胜肽鍵之DNA 序列。 13 .如申請專利範圍第9項之方法,其中該基因産物偽從該 性狀轉變宿主細胞之細胞培養基中回收而得。 14. 如申請專利範圍第9項之方法,其中該載體至該宿主細 胞之轉移偽藉由土壤桿菌屬(Agrobacter i »m)-調節的性 狀轉變条統、聚乙二醇(PEG)-調節的性狀轉變、聚-L鳥 胺酸法、磷酸鈣法、顯微注射法、粒子撞擊法、電穿透 法以及超音波法。 15. 如申請專利範圍第14項之方法,其中該載體至該宿主細 胞之t轉移傜藉由土壤桿®屬-調節的性狀轉變条統。 1 6 .如申請專利範圍第.9項之方法,其中該適當的被子植物 宿主細胞為水稻、大麥或小麥懸浮培養細胞。 17 .如申請專利範圍第16項之方法,其中該適當的被子植物 宿主細胞為水稻懸浮培養細胞。 18·如申諳專利範圍第9項之方法,其中該缺糖或無糖之狀 況傜為一缺乏蔗糖、葡萄糖或果糖之狀況。 19.如申請專利範圍第9項之方法,其中該基因産物傜為一 動物、植物或撤生物來源之蛋白質。 20 .如申請專利範圍第9項之方法,其中該載體進一步含有 —値標識基因、報導基因、抗生素-抗性基因、加強子 或調節序列以作為一選殖標記,俥利於選殖被該載體所 ' 轉殖的被子植物宿主細胞。 L· (請先閲讀背面之注意事項再填寫本頁) .裝· 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 3 ABCD 321685 六、申請專利範圍 21.如申請專利範圍第2〇項之方法,其中該載體偽含有—抗 生素-抗性基因以作為—選殖標記。 22 .如申請專利範圍第21項之方法,其中該抗生素-抗性基 因所針對之抗生素傜為康那徽素或是潮黴素。 23.如申請專利範圍第2〇項之方法,其中該載體傜進—步含 有一値報導基因以作為一選殖標記。 2-4.如申請專利範圍第23項之方法,其中該報導基因為召-»'糖醛酸酔酶基因。 25 .如申請專利範圍第9項之方法,其中該所欲蛋白質為冷_ 葡糖醛酸酐酶。 26.—種藉由於被子植物細胞内表現一编碼一所欲蛋白質的 基因i而獲得該所欲蛋白質之方法,其包括: a) 構建一能於被子植物細胞内基因表現之載體,該載體 包括一衍生自水稻植物〇c -澱粉水解酶基因之啓動子 J 區域以及一编碼一所欲蛋白質的基因,該衍生自α -澱粉水解酶i因之啓動子區域包括該ct -澱粉水解酶 基因之啓動子以及一編碼該α -澱粉水解酶的信號胜 呔鍵之DNΑ序列; b) 以該載體性狀轉變一適當之被子植物宿主細胞; c) 於一細胞培養基内培育所形成的性狀轉變宿主細胞; 以及 d) 將該培育的性狀轉變宿主細胞引至缺搪或無糖之狀況 以促發在該啓動子區域控制下該基因之表現;以及 -' e )自該培養基回收由該基因所表現出的基因産物, 本紙張尺度適用十國國家標準(CNS ) A4規格(210X297公釐) -4 - ΙΓ-----^I裝-- (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部中央標準局負工消費合作社印製 321685 經濟部中央標準局員工消費合作社印製 A8 B8 C8 D8 、申請專利範圍 1 其中該Cf -澱粉水解酶基因啓動子區域像衍生自水稻之 a Amy6 Λ a Amy7 ^ a Amy8 ^ a AinylO^d a Aray3$S 0 27 ·如申請專利範圍第26項之方法,其中該啓動子區域傜衍 生自水稻之a Amy8基因。 28 .如申請專利範圍第26項之方法,其中該載體至該宿主細 胞之轉移偽藉由土壤桿_屬-調節的性狀轉變条統、聚 •乙二醇(PEG)-調節的性狀轉變、聚-L鳥胺酸法、磷酸惩 法、顯微注射法、粒子撞擊法、電穿透法以及超音波法 〇 〜29·如申請專利範圍第28項之方法,其中該載體至該宿主細 胞之轉移係藉由土壤捍菌屬-調節的性狀轉變条統。 30.如申請專利範圍第26項之方法,其中該適當的植物宿主 細胞為水稻、大麥或小麥懸浮培養細胞。 31 ·如申請專利範圍第30項之方法,其中該適當的植物宿主 細胞為水稻懸浮培養細胞。 32.如申請專利範圍第26項之方法,其中該缺糖或無糖之狀 況像為一缺乏蔗糖、葡萄糖或果糖之狀況。 33 .如申請專利範圍第26項之方法,其中該基因産物傜為一 動物、植物或徹生物來源之蛋白質。 34 .如申請專利範圍第26項之方法,其中該載體進一步含有 一個標識基因、報導基因、抗生素-抗性基因、加強子 或調節序列以作為一選殖標記,俾利於選殖被該載體所 轉殖的被子植物宿主細胞。 _ 35 .如申請專利範圍第34項之方法,其中該載體偽進一步含 (請先閲讀背面之注意事項再填寫本頁)32 Rbhomoto i ___1 D8 Printed and applied for patent scope No. 8 1 1 0 1 029 by the Zhenggong Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. The date of amendment of the scope of application for the patent application was revised. June 1. 86. A method of preparing a vector with enhanced gene expression ability 'which includes integrating the promoter encoding the α-starch hydrolase gene derived from rice plants and the D ΝΑ sequence of the signal peptide chain into a carrier to regulate The expression of the structural gene encoding a desired protein in the vector, so that in the absence of sugar or sugar deficiency, the promoter of the α-starch hydrolase gene derived from rice plants can induce the encoding of the desired protein The expression of the gene of the rice plant, and the signal of the "-starch hydrolase gene derived from rice plants is better than N, can facilitate the secretion of the desired protein outside the host cell in order to recover the desired protein from the culture medium, wherein the alpha -The promoter region of the starch hydrolase gene is derived from rice aAmy6, a Amy 7 'a Amy8 aAmylO or aAmy3 gene 0 2. The method as claimed in item 1 of the patent application, which encodes the desired protein The induction of qualitative gene expression occurs under the condition of sugar deficiency in the medium. 3. A method as claimed in item 2 of the patent application, in which the induction of the expression of the gene encoding the desired protein occurs in the absence of sucrose, glucose or fructose in the medium. 4. The method as claimed in item 1 of the patent application, wherein the vector further contains a value marker gene, a reporter gene, an antibiotic-resistance gene, an enhancer or a regulatory sequence as a selection colony, so as to facilitate selection colonization Angiosperm host cells transfected by this vector. ‘5. The method as claimed in item 4 of the patent application, in which the vector Ye further contains a one-pump antibiotic-resistance gene as a selection marker. (Please read the precautions on the back before filling out this page) • The paper size of the binding and binding book applies to the Chinese National Standard (CNS) A4 (210X297 mm) 321685 A8 B8 C8 D8 Printed by the Employees Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 6. The scope of patent application 6. The method of item 5 of the patent application scope, wherein the antibiotics targeted by the antibiotic-resistance gene is kanamycin or hygr omyc i η ° 7. The method as claimed in item 4 of the patent application, in which the vector 傜 further contains a reporter gene as a selection record. 8. The method as claimed in item 7 of the patent application, wherein the reporter gene is a call-glucuronidase (/ 3-glucuronidase) gene. ^ 9. The method as claimed in item 1 of the patent application, wherein the desired protein is called _ glucuronidase. 1〇. A method for obtaining a desired protein by expressing a gene encoding a desired protein in the angiosperm cell, which includes: a) constructing a vector capable of expressing the gene in the angiosperm cell The vector includes a promoter region derived from the rice plant ct-starch hydrolase gene and a gene encoding a desired protein; b) transforming an appropriate angiosperm host cell with the characteristics of the vector; and c) formed by cultivation Trait-transforming host cells; d) introducing the cultivated trait-transforming host cells to a lack or sugar-free condition to promote the expression of the gene under the control of the promoter region; and e) recovering the expression of the gene Gene product, wherein the O (-starch hydrolase gene promoter region 傜 is derived from rice a A ray 6 'a Aray7, α Amy8, ot AraylO or ot Amy3 gene. 11. Such as the method of claim 10 , Where the promoter region is derived from a Aniy8 gene of rice. '12, such as the method of claim 9, 9 or 10, wherein the derivative is derived from J ----- j? — 装 — (please Read back first Please pay attention to this page and then fill out this page.) -The standard of the paper-based line is applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm) 2 321685 A8 B8 C8 D8 Printed by Patent application Fanyuan Ot-Dan powder hydrolase gene promoter region includes the promoter of α-source powder hydrolase gene and a DNA sequence encoding a peptide bond of α-starch hydrolase signal. The method of item 9, wherein the gene product is pseudo-recovered from the cell culture medium of the trait-transforming host cell. 14. The method of item 9 of the patent application scope, wherein the transfer of the vector to the host cell is pseudo-Agrobacterium Genus (Agrobacter i »m) -regulated trait transformation system, polyethylene glycol (PEG) -regulated trait transformation, poly-L ornithine method, calcium phosphate method, microinjection method, particle impact method, electricity Penetration method and ultrasonic method. 15. The method as claimed in item 14 of the patent application, wherein the transfer of the vector to the host cell is transformed by the soil rod®-regulated traits. 1 6. Upon application Patent scope The method of item 9, wherein the appropriate angiosperm host cell is rice, barley or wheat suspension culture cell. 17. The method of item 16 of the scope of the patent application, wherein the appropriate angiosperm host cell is a rice suspension culture cell. 18. The method as claimed in item 9 of the patent scope, wherein the lack of sugar or sugar-free condition is a condition of lack of sucrose, glucose or fructose. 19. The method as claimed in item 9 of the patent scope, wherein the gene product Yu is a protein of animal, plant or biological origin. 20. The method according to item 9 of the patent application scope, wherein the vector further contains a marker gene, a reporter gene, an antibiotic-resistance gene, an enhancer or a regulatory sequence as a colonization marker, which facilitates colonization by the vector The angiosperm host cells that have been transferred. L · (please read the precautions on the back before filling in this page). The paper size of the booklet is applicable to the Chinese National Standard (CNS) A4 specification (210X297mm) 3 ABCD 321685 6. Patent application scope 21. If the patent application scope The method of item 20, wherein the vector pseudo contains an antibiotic-resistance gene as a colonization marker. 22. The method as claimed in item 21 of the patent scope, wherein the antibiotic-resistance gene targets the antibiotic antibiotic kang Hui Su or hygromycin. 23. The method as claimed in item 20 of the Patent Scope, wherein the vector 傜 进 -step contains a value reporter gene as a selection marker. 2-4. The method as claimed in item 23 of the patent application, wherein the reporter gene is a Zhao- »'uronic acid oxonase gene. 25. The method of claim 9, wherein the desired protein is cold glucuronidase. 26. A method for obtaining a desired protein by expressing a gene i encoding a desired protein in angiosperm cells, which includes: a) constructing a vector capable of expressing genes in the angiosperm cells, the vector It includes a promoter J region derived from rice plant oc-starch hydrolase gene and a gene encoding a desired protein, the promoter region derived from α-starch hydrolase i includes the ct-starch hydrolase The promoter of the gene and a DNA sequence encoding the signal-bonding bond of the α-starch hydrolase; b) transforming an appropriate angiosperm host cell with the vector trait; c) transforming the trait resulting from cultivation in a cell culture medium Host cells; and d) introducing the cultivated traits into host cells to a lack of or sugar-free condition to promote the expression of the gene under the control of the promoter region; and-'e) recovering the gene from the culture medium The displayed gene products are in accordance with the National Standards (CNS) A4 specification (210X297mm) of this country. -4-ΙΓ ----- ^ I 装-(Please read the notes on the back first (Fill in this page again) Ordered by the Ministry of Economic Affairs, Central Standards Bureau, Negative Labor Cooperative Printing 321685 Printed by the Ministry of Economic Affairs, Central Standards Agency, Employee Consumer Cooperatives A8 B8 C8 D8, Patent Application Scope 1 where the Cf-amylase gene promoter region is derived A Amy6 Λ a Amy7 ^ a Amy8 ^ a AinylO ^ da Aray3 $ S 0 27 from rice • As in the method of claim 26, the promoter region 傜 is derived from the a Amy8 gene of rice. 28. The method of claim 26, wherein the transfer of the vector to the host cell is pseudo-regulated by the soil-genus-regulated trait transformation system, polyethylene glycol (PEG) -regulated trait transformation, Poly-L ornithine method, phosphoric acid punishment method, microinjection method, particle impact method, electro-penetration method, and ultrasonic method 〇 ~ 29 · The method as claimed in item 28 of the patent application, wherein the vector to the host cell The transfer is through the soil to maintain the genus-regulated traits to transform the system. 30. The method of claim 26, wherein the appropriate plant host cell is rice, barley or wheat suspension culture cell. 31. The method of claim 30, wherein the suitable plant host cell is a rice suspension culture cell. 32. The method of claim 26, wherein the sugar-deficient or sugar-free condition is a condition lacking sucrose, glucose, or fructose. 33. The method of claim 26, wherein the gene product is a protein of animal, plant or biological origin. 34. The method of claim 26, wherein the vector further contains a marker gene, a reporter gene, an antibiotic-resistance gene, an enhancer, or a regulatory sequence to serve as a colonization marker to facilitate colonization by the vector Transplanted angiosperm host cells. _ 35. For example, the method of applying for item 34 of the patent scope, in which the carrier further contains pseudo (please read the precautions on the back before filling this page) 本紙浪尺度適用中國國家標準(CNS ) A4規格(210X297公釐〉 5 ®2l685 A8 B8 C8 D8 、申請專利範圍 有一抗生素-抗性基因以作為一標記。 N \ . 36.如申請專利範圍笫35項之方法,其中該抗生素-抗性基 因所針對之抗生素傜為康那徽素或是潮徽素。 37·如申請專利範圍第34項之方法,其中該載體係進—步含 有一値報導基因以作為一選殖標記。 38. 如申請專利範圍第37項之方法,其中該報導基因為々-•葡糖醛酸酐酶基因。 39. 如ΐ請專利範圍第26項之方法,其中該所欲蛋白質為 召_葡糖醛酸酑酶。 請 先 閱、-讀 ; 背 面 I 之 f I 意 I 事 項 I 再/' 禽T 本. I 訂 經濟部t央標隼局員工消費合作社印製 I - I —^7/, I! -I I -Is 11 I— j H 本紙張尺度適用中國國家標準(CNS ) Μ洗格(210 X 297公釐〉 6This paper wave scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297mm> 5 ® 2l685 A8 B8 C8 D8, and the patent application has an antibiotic-resistance gene as a marker. N \. 36. If the patent application scope is 35 The method of item 1, wherein the antibiotic-resistance gene is targeted to antibiotics such as konanaxin or hygroxin. 37. The method of item 34 of the patent application scope, wherein the vector further contains a value report The gene is used as a selection marker. 38. The method according to item 37 of the patent application scope, wherein the reported gene is a glucuronidase gene. 39. The method according to item 26 of the patent application scope, wherein The desired protein is called _glucuronidase. Please read first, -read; f on the back I, I, I, I, I, I //, poultry, T, I. Printed by the Ministry of Economic Affairs, printed by the Employee Consumer Cooperative I-I — ^ 7 /, I! -II -Is 11 I— j H This paper scale is applicable to the Chinese National Standard (CNS) Μ wash grid (210 X 297 mm) 6
TW81101029A 1992-02-13 1992-02-13 Gene expression system comprising the promoter region of alpha-amylase gene TW321685B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW81101029A TW321685B (en) 1992-02-13 1992-02-13 Gene expression system comprising the promoter region of alpha-amylase gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW81101029A TW321685B (en) 1992-02-13 1992-02-13 Gene expression system comprising the promoter region of alpha-amylase gene

Publications (1)

Publication Number Publication Date
TW321685B true TW321685B (en) 1997-12-01

Family

ID=51567083

Family Applications (1)

Application Number Title Priority Date Filing Date
TW81101029A TW321685B (en) 1992-02-13 1992-02-13 Gene expression system comprising the promoter region of alpha-amylase gene

Country Status (1)

Country Link
TW (1) TW321685B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295337C (en) * 2005-06-27 2007-01-17 江南大学 Expression vector for secreting expression of exogenous gene in Escherichia coli or bacillus and its construction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295337C (en) * 2005-06-27 2007-01-17 江南大学 Expression vector for secreting expression of exogenous gene in Escherichia coli or bacillus and its construction

Similar Documents

Publication Publication Date Title
ES2293649T3 (en) METHOD THAT USES A SPECIFIC TISSUE PROMOTER.
US5712112A (en) Gene expression system comprising the promoter region of the alpha-amylase genes
Supartana et al. Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens
US5569597A (en) Methods of inserting viral DNA into plant material
Verma et al. Plant callose synthase complexes
AU695526B2 (en) Promoter from a lipid transfer protein gene
Sun et al. OsmiR530 acts downstream of OsPIL15 to regulate grain yield in rice
Chowdhury et al. Stably transformed herbicide resistant callus of sugarcane via microprojectile bombardment of cell suspension cultures and electroporation of protoplasts
US5460952A (en) Gene expression system comprising the promoter region of the α-amylase genes
US6037526A (en) Method of inserting viral DNA into plant material
Meyer et al. Horizontal gene transfer: regulated expression of a tobacco homologue of the Agrobacterium rhizogenes rolC gene
JPH09182589A (en) Molecular method for producing hybrid seed
BRPI0608829A2 (en) method for transgenic expression with enhanced specificity in a plant, use of a chimeric nucleic acid construct, chimeric ribonucleotide sequence, expression construct, expression vector, nonhuman organism or transformed cell, transformed seed, and pharmaceutical preparation
TW201040275A (en) Manipulating fructan biosynthesis and enhancing plant biomass
Mitsui et al. The α-amylase multigene family
JPS61502166A (en) Improved methods and vectors for transformation of plant cells
CN101379080B (en) Nucleic acids and methods for producing seeds having a all-diploid of the maternal genome in the embryo
Gines et al. Aspergillus oryzae has two nearly identical Taka-amylase genes, each containing eight introns
JPH01500242A (en) Host organism transformed by recombinant DNA method and method for producing α-galactosidase from the transformed host organism
PT97965B (en) PROCESS FOR THE PREPARATION OF NEW PEPTIDIC FRAGMENTS, OF DNA SEQUENCES THAT CODE THEM, OF DNA MOLECULES THAT CONTAIN THEM AND TRANSGENIC PLANTS THAT UNDERSTAND THESE MOLECULES
Xiao et al. Intrachromosomal homologous recombination in Arabidopsis induced by a maize transposon
CN108192920A (en) A kind of method that disease resistance of plant is improved using NDR1 genes
CN101503468B (en) Protein related to pollen germination and/or pollen tube growth, coding gene and use thereof
US7223901B2 (en) Soybean FGAM synthase promoters useful in nematode control
TW321685B (en) Gene expression system comprising the promoter region of alpha-amylase gene

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent