TW299508B - - Google Patents
Download PDFInfo
- Publication number
- TW299508B TW299508B TW84109281A TW84109281A TW299508B TW 299508 B TW299508 B TW 299508B TW 84109281 A TW84109281 A TW 84109281A TW 84109281 A TW84109281 A TW 84109281A TW 299508 B TW299508 B TW 299508B
- Authority
- TW
- Taiwan
- Prior art keywords
- indium
- zinc
- hydrogen
- battery
- amount
- Prior art date
Links
Landscapes
- Primary Cells (AREA)
Description
A 7 B7 經濟部中央標準局員工消费合作社印製 五、- 發明説明( 1 ) 1 I 發 明 背 景 1 I 本 發 明 有 關 一 種 鹼 性 電 池 其 使 用 m 汞 鋅 粉 作 爲 陰 極 1 1 1 活 性 物 質 9 且 使 用 氧 化 銀 二 氧 化 錳 氧 等 作 爲 陽 極 活 性 1 I 請 1 | 物 質 以 及 使 用 該 .1?人 m 性 電 池 之 鐘 或 鑛 〇 先 閲 1 I $ 1 I 巨 前 之 問 題 是 鹼 性 電 池 中 所 用 之 鋅 粉 被 電 解 質 溶 液 ( 背 之 1 1 鹼 ) 所 腐 蝕 並 溶 解 且 產 生 之 氫 氣 及 在 電 池 性 能 中 之 白 身 注 意 1 1 事 1 放 電 極 大 〇 此 外 由 集 極 諸 如 銅 等 與 鋅 接 觸 者 形 成 電 池 » 項 再 1 導 且 氫 氣 亦 由 彼 產 生 〇 在 先 刖 技 藝 中 預 防 上 述 缺 點 之 方 法 本 裝 I 是 以 具 有 高 氫 過 電 壓 之 汞 將 鋅 汞 齊 化 或 在 電 解 質 溶 液 中 添 Ά 1 1 I 加 約 略 飽 和 之 氧 化 鋅 〇 1 1 但 是 9 近 年 來 廢 棄 乾 電 池 所 產 生 之 汞 所 造 成 之 環 境 污 1 1 染 令 人 憂 慮 故 積 極 進 行 各 種 還 原 汞 或 減 少 汞 之 研 究 〇 其 訂 1 中 包 括 由 鋅 形 成 合 金 集 極 電 鍍 及 添 加 有 機 或 jfrrT: m 機 抑 制 1 | 劑 於 電 解 質 溶 液 中 0 1 I 鋅 合 金 形 成 法 已 進 行 相 當 長 之 時 間 而 已 研 究 諸 如 鉍 1 , 銦 > 鉛 等 金 屬 0 亦 有 許 多 專 利 串 請 案 例 如 曰 本 專 利 1 公 告 2 5 — 2 7 8 2 2 ( 1 9 5 0 ) 曰 本 專 利 公 告 1 3 3 — 3 2 0 4 ( 1 9 5 8 ) 曰 本 專 利 公 告 1 1 6 3 — 3 9 4 2 ( 1 9 8 8 ) 曰 本 專 利 公 開 串 請 案 1 | 1 — 1 0 8 6 1 ( 1 9 8 9 ) 等 〇 1 I 而 最 常 研 究 之 jfrrT. 挑 機 抑 制 劑 爲 銦 氧 化 物 及 銦 氫 氧 化 物 等 1 1 I 銦 化 合 物 » 亦 已 有 許 多 專 利 串 請 案 〇 例 如 曰 本 專 利 公 告 1 1 5 1 — 3 6 4 5 0 ( 1 9 7 6 ) 曰 本 專 利 公 開 串 請 案 1 4 9 — 9 3 8 3 1 ( 1 9 7 4 ) t 曰 本 專 利 公 開 串 請 案 1 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29*7公釐) -4 - 2〇95ϋ A7 B7 經濟部中央標準局員工消費合作社印製 五、 發明説明( 2 ) 1 1 4 9 — 1 1 2 1 2 5 ( 1 9 7 4 ) 曰 本 專 利 公 開 串 請 案 1 I 5 9 — 1 8 6 2 5 5 曰 本 專 利 公 開 中 請 案 1 I 5 9 — 1 8 6 2 5 6 ( 1 9 8 4 ) 及 曰 本 專 利 公 開 串 請 諸 1 案 2 先 1 4 6 0 6 1 ( 1 9 9 2 ) 〇 而 使 用 鹸 土 金 屬 化 合 物 閱 1 I 者 爲 曰 本 專 利 公 開 串 請 案 4 9 _ 8 7 2 7 ( 1 9 7 4 ) > 背 面 1 I 之 1 1 曰 本 專 利 公 開 串 請 案 4 9 — 9 3 8 3 1 ( 1 9 7 4 ) 曰 */王 意 事 1 1 本 專 利 公 開 串 請 案 4 9 — 1 2 1 9 2 6 ( 1 9 7 4 ) 等 〇 再 ii 1 而 有 機 抑 制 劑 爲 曰 本 專 利 公 開 串 請 案 2 _ 8 6 0 6 4 ( 寫 本 裝 頁 1 1 9 9 0 ) 曰 本 專 利 公 開 串 請 案 3 — 2 9 2 7 0 ( 1 I 1 9 9 1 ) 等 〇 1 1 I 另 一 方 面 就 集 極 之 係 以 電 鍍 等 方 法 將 高 氫 過 電 1 1 抑 訂 壓 之 銦 或 錫 塗 於 表 面 上 並 防 止 與 鋅 接 觸 形 成 電 池 以 1 制 氫 之 產 生 0 相 關 專 利 爲 曰 本 專 利 公 開 串 請 案 1 1 5 2 — 7 4 8 3 4 ( 1 9 7 7 ) 曰 本 專 利 公 開 串 請 案 1 I 5 2 — 9 8 9 2 9 曰 本 專 利 公 開 串 請 案 丄 6 0 — 2 2 1 9 5 8 ( 1 9 8 5 ) 曰 本 專 利 串 請 案 公 告 1 I 5 2 — 4 2 2 1 1 ( 1 9 7 7 ) 等 0 1 在 先 、身· 刖 技 藝 中 如 前 述 般 對 各 技 術 進 行 研 究 但 是 » 1 1 有 一 種 強 抗 腐 蝕 劑 爲 水 銀 故 在 瞭 解 各 技術 之 特 性 後 常 不 1 | 能 作 最 佳 組 合 〇 1 I 用 以 防 止 腐 蝕 並 溶 解 鋅 之 汞 不 僅 成 本 昂 貴 亦 包 括 環 1 1 I 境 污 染 的 大 問 題 〇 此 外 添 加 氧 化 鋅 亦 使 電 解 質 粘 度 增 加 1 1 » 導 電 度 降 低 〇 1 作 爲 /rrt. m 機 抑 制 之 Μ 化 姻 及 氫 氧— it Μ 亦 有 許 多 問 題 〇 1 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -5 - 經濟部中央標隼局員工消費合作社印製 A7 B7 五、發明説明(3 ) 氧化銦極難溶於電解質溶液(苛性鹼)中,結果因氧 化銦與鋅粉或集極接觸產生氫氣。此因氧化銦之溶解度差 ,故不能提供足以塗覆鋅面及集極面之量的銦離子,因爲 在產製中不可避免之雜質與鋅及集極接觸使氧化銦具導電 性,故形成局部電池。 根據記載,與氧化銦比較,氫氧化銦稍溶於苛性鹼電 解質溶液中,且其溶解度與顆粒大小及結晶度有關,但是 ,與銦化合物諸如硫酸銦,胺基磺酸銦,氯化銦等比較時 ,係極難溶解者。因此,仍有與氧化銦相同之問題。此外 ,作爲兩性化合物之銦產生聚離子以及羥離子(如Inorg-anic Chemistry Series 7, Coordinate Stereochemist-r y, written by Yoichi NI I MURA, published by Baihu-kan Co. Ltd.,65-66所述者),且增加電解質之濃度, 因而降低電解質溶液之導電度且破壞電池性能。 使用易溶於電解質溶液中之銦化合物作爲抑制劑之情 況比使用習用難溶性抑制劑之情況佳。但是,爲了進一步 利用銦化合物之特性,亦需解決以下問題。 鋅之電極電位低於銦之澱積電位,故當電解質中存有 銦離子時,銦金屬澱積於鋅及與鋅接觸之集極上。但是, 產生氫爲銦之澱積反應的競爭反應,故爲產生缺陷諸如液 體洩漏及鹼性電池膨脹之原因。此外,另有不能澱積銦氫 氧化物沈澱物及電解質溶液導電性減少之問題/ 除了銦化合物外,使用氫過電壓極高之金屬化合物諸 如錫及鉛作爲抑制劑,但是,仍有以下問題。 本紙張尺度適用中國國家橾率(CNS ) A4規格(210'〆297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝· 訂 -6 一 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(4 ) 由此類金屬之金屬化合物提供於電解質溶液中之金屬 離子在鋅及集極表面還原,並澱積金屬。但是,當表面上 塗上一種金屬時,晶粒變粗,且效果減半。使用單一金屬 難以抑制氫產生及改善放電性質》此外,銦化合物極昂貴 ,故僅使用一種之成本高昂。 就鋅之腐蝕及溶解言之,公認之情況是鋅本身會被鹼 液中之水及羥基腐蝕,且與比鋅惰性高之集極金靥諸如銅 ,黃銅等金屬接觸形成局部電池而使鋅溶解。因此,最常 嚐試者是在鋅中添加高氧過電壓之金屬以形成合金,藉以 抑制腐蝕及溶解。已知在添加銦時之效果特別明顯。使用 添加高濃度(例如,不少於4 0 0 p pm)之銦的鋅時, 部分銦及鋅一旦與集極銅等金靥接觸即溶解。據說溶解之 銦離子澱積於集極上且在集極上形成銦膜之機構會抑制鋅 之腐蝕及溶解。但是,問題是在鋅與集極接觸初期,在集 極上還原之銦離子的量極小,故氫還原產生氫氣》 此種嚐試係欲.抑制鲜及使用惰性比鋅高之金屬化合物 作爲抑制劑之崖極腐蝕及溶解時最常用者。但是,若爲具 多量雜質諸如鐵之習用鋅,則需使用大量抑制劑,除非( 例如)使用無藥害且可能污染環境之物質的大量一氧化鉛 ,否則不能抑制鋅之腐蝕及溶解。此外,若添加大量一氧 化鉛及銦化合物,則澱積針狀結晶,此者破壞隔板而造成 短路。 其次,將問題集中在鹸性電池中之硬幣型或鈕扣型氧 化銀電池時,硬幣型或鈕扣型氧化銀電池中必然使用經汞 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝. 訂 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(5 ) 齊化之鋅’故可避免諸如產生氫氣,自身放電等問題。 近年來,因爲致力改善在鋅粉,隔板,密封劑等之中 之添加物,改變膠凝劑等,故圓柱狀鹼性電池中已可無亲: 。但是,若爲因結構因素故無氫氣釋放空間的硬幣型或鈕 扣型氧化銀電池,則因氣壓所致膨脹及洩液,自身放電的 問題,無法得到無汞者。 目前,已描述了在電池中習用抑制劑及水量之問題。 使用改良法,可得到鹼性電池特性經相當程度改良者。但 是,不能滿足去除汞之缺陷。此外,下文詳述達成該改良 法之努力。 僅使用習用無機抑制劑時,因爲真實電池中電解質溶 液之量極少,故抑制劑不能均勻分佈於集極上,且無金屬 塗層,或若在陰極組合劑與集極間有氣泡,則僅在完全無 金靥塗層時產生此種情況。 使用銦及錫,或以此類金屬電鍍,係產製集極相當有 效之方式。 但是,使用錫時,比使用銅之集極更可抑制氫氣產生 ,但是,不能達到使用汞之效果。 使用銦時,雖然效果固定大於錫者,但問題是原料昂 貴,故成本增加。若電鍍銦,則問題是施用性差,不能形 成均勻膜,雜質殘留於表面上,且效果變差。 此外,僅使用塗有金屬之集極而不使用抑制劑時,問 題是不足以解決在放電儲存時形成氫氣之問題。 此外,即使是使用先前技藝中認爲有效之有機抑制劑 (請先閱讀背面之注意事項再填寫本頁)A 7 B7 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V.-Description of the invention (1) 1 I Background of the invention 1 I The present invention relates to an alkaline battery which uses m mercury zinc powder as the cathode 1 1 1 active material 9 and uses Silver oxide, manganese dioxide, oxygen, etc. as anode activity 1 I Please 1 | Substances and the use of this. 1? The clock or mine of a human battery. First read 1 I $ 1 I The problem before the giant is the zinc powder used in alkaline batteries The hydrogen gas corroded and dissolved by the electrolyte solution (back 1 1 alkali) and the hydrogen generated in the performance of the battery and the white body in the performance of the battery. Note 1 1 Event 1. The discharge is extremely large. In addition, the collector, such as copper, is in contact with zinc to form the battery. Item 1 Hydrogen is also produced by one another. Methods to prevent the above-mentioned shortcomings in the prior art skills Mercury with high hydrogen overvoltage will amalgamate zinc or add Ά 1 1 I to the electrolyte solution. Slightly saturated zinc oxide 〇1 1 But 9 In recent years, environmental pollution caused by mercury produced by abandoned dry batteries 1 1 People are worried, so they are actively conducting various studies on reducing mercury or reducing mercury. The set 1 includes the formation of alloy collector plating from zinc and the addition of organic or jfrrT: m machine suppression 1 | agent in electrolyte solution 0 1 I zinc alloy formation method has been I have been studying for quite a long time such as bismuth 1, indium > lead and other metals. 0 There are also many patent applications such as Japanese Patent 1 Announcement 2 5 — 2 7 8 2 2 (1 9 5 0) Japanese Patent Announcement 1 3 3 — 3 2 0 4 (1 9 5 8) Japanese Patent Announcement 1 1 6 3 — 3 9 4 2 (1 9 8 8) Japanese Patent Disclosure Case 1 | 1 — 1 0 8 6 1 (1 9 8 9) Wait 〇1 I and most often The jfrrT. The pick-up inhibitors are indium oxide and indium hydroxide, etc. 1 1 I Indium compounds »There are also many patent applications. For example, this patent announcement 1 1 5 1 — 3 6 4 5 0 (1 9 7 6) Japanese patent disclosure request 1 4 9 — 9 3 8 3 1 (1 9 7 4) t Japanese patent disclosure request 1 This paper size is applicable to China National Standard (CNS) A4 (210X29 * 7 Mm) -4-2〇95ϋ A7 B7 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of Invention (2) 1 1 4 9 — 1 1 2 1 2 5 (1 9 7 4) Japanese Patent Publication Application 1 I 5 9 — 1 8 6 2 5 5 In the Japanese patent disclosure application 1 I 5 9 — 1 8 6 2 5 6 (1 9 8 4) and the Japanese patent disclosure request 1 case 2 first 1 4 6 0 6 1 (1 9 9 2) 〇While using an earth metal compound 1 1 is Japanese Patent Publication 4 9 _ 8 7 2 7 (1 9 7 4) > back 1 1 of 1 1 Japanese Patent Public case request 4 9 — 9 3 8 3 1 (1 9 7 4) * * Wang Yishi 1 1 This patent case request 4 9 — 1 2 1 9 2 6 (1 9 7 4) etc. ii 1 The organic inhibitor is the Japanese patent disclosure request 2 _ 8 6 0 6 4 (writing page 1 1 9 9 0) The Japanese patent disclosure request 3-2 9 2 7 0 (1 I 1 9 9 1) etc. 〇1 1 I On the other hand, the collector is coated with high hydrogen over-charge 1 1 indium or tin by plating and other methods to prevent contact with zinc to form a battery to produce hydrogen. Generate 0 related patents as Japanese patent disclosure string 1 1 5 2 — 7 4 8 3 4 (1 9 7 7) Japanese patent disclosure string 1 I 5 2 — 9 8 9 2 9 Japanese patent disclosure string Request 6 0 — 2 2 1 9 5 8 (1 9 8 5) Japanese Patent Announcement 1 I 5 2 — 4 2 2 1 1 (1 9 7 7) etc. 0 1 Priority, Body · 刖Skill Art has studied the technologies as described above, but »1 1 has a strong anti-corrosion agent for mercury, so it often fails after understanding the characteristics of each technology 1 | can be the best combination 〇1 I used to prevent corrosion and dissolve mercury in zinc Not only is the cost expensive, but also includes a major problem of environmental pollution. In addition, the addition of zinc oxide also increases the viscosity of the electrolyte. 1 1 »The conductivity decreases. 1 As / rrt. M machine inhibits the M marriage and hydroxide-it Μ also There are many problems 〇1 The paper standard is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) -5-A7 B7 printed by the Employee Consumer Cooperative of the Central Standard Falcon Bureau of the Ministry of Economy V. Invention description (3) Indium oxide is extremely insoluble In the electrolyte solution (caustic), the result is that hydrogen gas is generated due to the contact of indium oxide with zinc powder or collector. Because of the poor solubility of indium oxide, it cannot provide enough indium ions to coat the zinc surface and collector surface, because inevitable impurities in production contact with zinc and collector to make indium oxide conductive, so it is formed Local battery. According to records, compared with indium oxide, indium hydroxide is slightly soluble in caustic electrolyte solution, and its solubility is related to particle size and crystallinity, but it is related to indium compounds such as indium sulfate, indium sulfamate, indium chloride, etc. When comparing, it is extremely difficult to dissolve. Therefore, there are still the same problems as indium oxide. In addition, indium as an amphoteric compound generates poly ions and hydroxyl ions (as described in Inorg-anic Chemistry Series 7, Coordinate Stereochemist-r y, written by Yoichi NI I MURA, published by Baihu-kan Co. Ltd., 65-66 ), And increase the electrolyte concentration, thereby reducing the conductivity of the electrolyte solution and destroying the battery performance. The use of indium compounds that are easily soluble in electrolyte solutions as inhibitors is better than the use of conventionally insoluble inhibitors. However, in order to further utilize the characteristics of the indium compound, the following problems need to be solved. The electrode potential of zinc is lower than the deposition potential of indium, so when indium ions are present in the electrolyte, indium metal is deposited on zinc and the collector in contact with zinc. However, the generation of hydrogen is a competitive reaction of the deposition reaction of indium, so it is a cause of defects such as liquid leakage and expansion of alkaline batteries. In addition, there is another problem that the indium hydroxide precipitate cannot be deposited and the conductivity of the electrolyte solution is reduced. In addition to the indium compound, metal compounds with extremely high hydrogen overvoltage such as tin and lead are used as inhibitors, but the following problems still exist . This paper scale is applicable to China National Atomic Rate (CNS) A4 specification (210'〆297mm) (Please read the notes on the back before filling out this page) Binding · Order-6 Printed by an employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs A7 B7 V. Description of the invention (4) The metal ions provided by the metal compound of this metal in the electrolyte solution are reduced on the surface of zinc and collector, and the metal is deposited. However, when a metal is coated on the surface, the grains become coarse and the effect is halved. It is difficult to suppress the generation of hydrogen and improve the discharge properties using a single metal. In addition, indium compounds are extremely expensive, so the cost of using only one is high. As far as the corrosion and dissolution of zinc is concerned, it is generally accepted that zinc itself will be corroded by water and hydroxyl groups in the lye, and it will form a local battery in contact with a metal such as copper and brass that is more inert than zinc. Zinc dissolves. Therefore, the most common attempt is to add metals with high oxygen overvoltage to zinc to form alloys to suppress corrosion and dissolution. It is known that the effect when adding indium is particularly significant. When using zinc with a high concentration (for example, not less than 400 p pm) of indium, part of the indium and zinc will dissolve once they come into contact with gold, such as collector copper. It is said that the mechanism in which dissolved indium ions are deposited on the collector and an indium film is formed on the collector inhibits corrosion and dissolution of zinc. However, the problem is that in the initial contact between zinc and the collector, the amount of indium ions reduced on the collector is extremely small, so hydrogen reduction generates hydrogen gas. Such attempts are intended to suppress freshness and use metal compounds with higher inertness than zinc as inhibitors. The most commonly used when the cliff is corroded and dissolved. However, if it is a conventional zinc with a large amount of impurities such as iron, a large amount of inhibitors must be used. Unless, for example, a large amount of lead monoxide, which is non-toxic and potentially polluting the environment, the corrosion and dissolution of zinc cannot be suppressed. In addition, if a large amount of lead monoxide and indium compounds are added, needle-like crystals are deposited, which breaks the separator and causes a short circuit. Secondly, when focusing on the coin-type or button-type silver oxide battery in the battery, the coin-type or button-type silver oxide battery must use mercury. This paper standard is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm ) (Please read the precautions on the back before filling in this page) Pack. Order A7 B7 Printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Invention Description (5) Zinc Zinc 'can avoid the generation of hydrogen and self-discharge And other issues. In recent years, due to efforts to improve additives in zinc powder, separators, sealants, etc., and to change gelling agents, etc., cylindrical alkaline batteries have become unfriendly. However, if it is a coin-type or button-type silver oxide battery that does not have a hydrogen-releasing space due to structural factors, it will not be able to obtain mercury-free batteries due to the problems of self-discharge due to inflation and discharge due to air pressure. At present, the problem of conventional use of inhibitors and water in batteries has been described. Using the improved method, it is possible to obtain those whose alkaline battery characteristics have been considerably improved. However, the defect of removing mercury cannot be satisfied. In addition, the efforts to reach this improved law are detailed below. When only conventional inorganic inhibitors are used, because the amount of electrolyte solution in the real battery is very small, the inhibitor cannot be evenly distributed on the collector and there is no metal coating, or if there are bubbles between the cathode combination agent and the collector, then only This situation occurs when there is no coating of gold. The use of indium and tin, or the electroplating of such metals, is a very effective way of producing and producing collectors. However, when tin is used, the generation of hydrogen gas can be suppressed more than using copper collectors, but the effect of using mercury cannot be achieved. When using indium, although the effect is fixed more than tin, the problem is that the raw materials are expensive, so the cost increases. If indium is electroplated, the problem is that the applicability is poor, a uniform film cannot be formed, impurities remain on the surface, and the effect becomes poor. In addition, when only a metal-coated collector is used without an inhibitor, the problem is not enough to solve the problem of hydrogen gas formation during discharge storage. In addition, even if the organic inhibitors considered to be effective in the prior art are used (please read the notes on the back before filling in this page)
L -βL -β
T 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -8 _ A7 __B7___ 五、發明説明(6 ) ,氟碳化物/聚氧化乙烯系列,聚氧化乙烯烷醯胺等物’ 仍不能充分確定完全防止自身放電減少。 即,已發現在使用先前技藝防蝕法時,不能得到充分 之效果。再考慮則各抑制劑之角色的結果發現使用集極( 塗有鋅或氫過電壓高於鋅之金屬)以及各種抑制劑時’效 果較佳。 針對高容量時,因爲需捕償無汞之缺憾,故電池容量 減少。若爲圓柱型鹼性乾電池,則需增加作爲活性材料之 鋅粉,但是,若爲無空間之鈕扣型或硬幣型鹸性電池,則 此者幾乎不可能完成。 另一方面,就具有含汞鹼性電池之鐘或錶而言,若爲 電池交換,則在零售商店回收含汞電池,但是,問題是在 丟棄鐘或錶之主體時,亦丟棄了污染環境之汞。尤其,隨 著錶或鐘之低價化,鐘或錶因電池使用期限而丟棄之數目 愈來愈多" 發明總論 經濟部中央標準局員工消費合作社印製 (请先閲讀背面之注意事項#填寫本頁) 本發明標的是提出一種不含汞之鹼性電池。 本發明另一標的是一種以無汞鋅粉爲陰極活性物質之 鹸性電池。 本發明另一種標的是提出一種使用不含汞鹼性電池之 產物。 本發明另一標的是一種使用鹼性電池之產物,該鹼性 電池係以無汞鋅粉作爲陰極活性物質。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部中央標準局員工消費合作社印製 A7 _B7 五、發明説明(7 ) 在電解質溶液或陰極活性物質中添加硫酸銦,氨基礎 酸銦,氯化銦等銦化合物,使電解質溶液中之銦離子的量 足以塗覆鋅及集極時,則銦可立即澱積於鋅及陰極集極上 。使用具有高氫超電壓之銦塗覆鋅及集極時,可防止其腐 蝕及溶解。 此外,爲有效利用此類抑制劑,事先在電解質溶液中 添加錯合劑,使因銦化合物溶解產生之銦離子進行錯合, 藉以解決在銦澱積時形成氫氣及因爲澱積銦非氫氧化物而 減低電解質溶液之導電度的問題。 僅使用一種金屬化合物抑制劑所造成之問題的解決方 » 式是添加二種或多種選自銦化合物,含四價錫之錫化合物 及氧化鉛之化合物於電解質溶液或陰極活性材料中,並在 鋅及陰極集極上澱積此類化合物中所含之金屬的合金。不 能由單一金屬塗覆得到之特性可藉澱積二或多種金屬獲得 〇 當使用銦之添加濃度極高之鋅時,因爲由鋅溶出之銦 離子澱積於集極上之機構會抑制〔(鋅或集極)之(腐蝕 及溶解)〕,在集極上形成銦膜。但是,在鋅與集極接觸 初期,在集極上還原之銦離子的量極小。因此,在電解質 溶液或陰極活性材料中添加一或多種選自惰性比鋅高之銦 化合物,含四價錫之錫化合物及氧化鉛中之化合物作爲抑 制劑,且使電解質溶液中存在之金屬離子之量足以塗覆鋅 及集極,則可立即將鉛澱積於鋅及陰極集極上,且可抑制 產生氫。此情況下,根據在鋅粉中之銦量,較好添加相對 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ---------{裝------訂------{.·>(» (請先閱讀背面之注意事項再填寫本頁) 一 10 - A7 B7 經濟部中央標準局員工消費合作杜印製 五、發明説明(8 ) 於鋅粉約1 0 _ 1 0 0 0 P P m之抑制劑。若添加量少, 則不能充分塗覆鋅及集極,而添加量太大時,則會形成穿 透隔板之針狀結晶而造成短路。 當使用相對於鋅重量之含量不大於4 p pm之鐵的無 汞鋅粉,在電解質溶液或陰極活性物質中添加一或多種選 自惰性高於鋅之銦化合物,含四價錫之錫化合物及氧化鉛 之化合物作爲抑制劑,且使電解質溶液中存在之離子量足 以塗覆鋅及集極時,則可立即在鋅及陰極集極上澱積惰性 比鋅高之金屬塗膜,且可抑制鋅之腐蝕及溶解及產生氫氣 。此情況下,較好添加相對於鋅粉約1 0 - 1 0 0 0 P P m之抑制劑。若添加量少,則不能充分塗覆鋅及集極 ,且會使針狀結晶穿透隔板,造成短路。 使用含有至少一種選自鎵,銦,鉛,鉍,鋁,鈣等金 屬(據說有增加氫過電壓之效果及在產製陰極活性材料時 調整顆粒形狀之效果)之無汞鋅,若爲氫氧化鉀型之電解 質溶液,則電池中之水量爲0 . 31 — 0 . 57mg (或在 室溫下之0 . 31 — 0 . 57β$)每lmg重之無汞鋅, 或若爲氫氧化鈉型之電解質溶液,則電池中之水量爲 0 . 32 — 0 . 59mg(或在常溫下爲〇 · 32 — 0 . 5 9 4 5 )每lmg重之無汞鋅,由是可產製之硬幣或 鈕扣型氧化銀電池中之氣體產生量不大於〇 . 0 3 JW g/day ,且自身放電率不大於4%/year。 此外,爲評估含汞電池之性能,需組合並使用各種技 術。 (請先閲讀背面之注意事項再填寫本頁) 裝.T This paper scale applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -8 _ A7 __B7___ 5. Description of the invention (6), fluorocarbon / polyoxyethylene series, polyoxyethylene alkylamide etc. It cannot be fully determined that the reduction of self-discharge is completely prevented. That is, it has been found that when the prior art anti-corrosion method is used, a sufficient effect cannot be obtained. Reconsidering the results of the role of each inhibitor, it is found that the collector (coated with zinc or a metal whose hydrogen overvoltage is higher than zinc) and various inhibitors have a better effect. In the case of high capacity, the battery capacity is reduced because of the lack of mercury-free capture. If it is a cylindrical alkaline dry battery, it is necessary to add zinc powder as an active material, but if it is a button-type or coin-type battery with no space, this is almost impossible to complete. On the other hand, in the case of clocks or watches with mercury-containing alkaline batteries, if the batteries are exchanged, the mercury-containing batteries are recovered in retail stores, but the problem is that when the main body of the clock or watch is discarded, the environment is also discarded Of mercury. In particular, as the price of watches or clocks becomes lower, the number of discarded watches or clocks due to the battery life is increasing. "General invention. Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs (please read the notes on the back first #Fill in this page) The subject of the present invention is to propose an alkaline battery that does not contain mercury. Another subject of the present invention is a chrysanthemum battery using mercury-free zinc powder as a cathode active material. Another subject of the present invention is to propose a product using mercury-free alkaline batteries. Another subject of the present invention is a product using an alkaline battery which uses mercury-free zinc powder as a cathode active material. This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm). The A7 _B7 is printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy. V. Description of the invention (7) Adding indium sulfate to the electrolyte solution or cathode active material, ammonia based Indium compounds such as indium acid, indium chloride, etc., when the amount of indium ions in the electrolyte solution is sufficient to coat zinc and collector, then indium can be deposited on zinc and cathode collector immediately. When zinc and collectors are coated with indium with high hydrogen overvoltage, they can be prevented from corrosion and dissolution. In addition, in order to effectively use such inhibitors, a complexing agent is added to the electrolyte solution in advance to dissolve the indium ions generated by the dissolution of the indium compound, thereby solving the formation of hydrogen gas during indium deposition and the deposition of indium non-hydroxide And reduce the problem of the conductivity of the electrolyte solution. The solution to the problem caused by using only one metal compound inhibitor »is to add two or more compounds selected from indium compounds, tin compounds containing tetravalent tin, and lead oxide compounds to the electrolyte solution or cathode active material, and An alloy of metals contained in such compounds is deposited on zinc and the cathode collector. Characteristics that cannot be obtained by coating with a single metal can be obtained by depositing two or more metals. When zinc with an extremely high concentration of indium is used, the mechanism in which the indium ions eluted from zinc are deposited on the collector will inhibit [(zinc Or collector) (corrosion and dissolution)], an indium film is formed on the collector. However, during the initial contact of zinc with the collector, the amount of indium ions reduced on the collector is extremely small. Therefore, one or more compounds selected from indium compounds with higher inertness than zinc, tin compounds containing tetravalent tin, and lead oxide are added to the electrolyte solution or cathode active material as inhibitors, and the metal ions present in the electrolyte solution are added The amount is sufficient to coat zinc and collector, then lead can be immediately deposited on zinc and cathode collector, and the generation of hydrogen can be suppressed. In this case, according to the amount of indium in the zinc powder, it is better to add the Chinese national standard (CNS) A4 specification (210X297mm) relative to the paper size --------- {装 ----- -Subscribe ------ {. · ≫ (»(please read the precautions on the back before filling out this page) 1:10-A7 B7 Central Government Bureau of Economic Affairs Employee consumption cooperation du printing 5. Invention description (8 ) Inhibitor of zinc powder about 1 0 _ 1 0 0 0 PP m. If the added amount is small, the zinc and collector cannot be fully coated, and when the added amount is too large, it will form a needle shape that penetrates the separator Crystallization causes a short circuit. When using iron-free mercury-free zinc powder with a content not greater than 4 p pm relative to the weight of zinc, add one or more inert compounds selected from inerts higher than zinc to the electrolyte solution or cathode active material When tin compounds and tin oxide compounds are used as inhibitors and the amount of ions present in the electrolyte solution is sufficient to coat zinc and collectors, metal coatings with higher inertness than zinc can be deposited on zinc and cathode collectors immediately Film, and can inhibit the corrosion and dissolution of zinc and generate hydrogen. In this case, it is better to add about 1 to zinc powder 0-1 0 0 0 Inhibitor for PP m. If the added amount is small, zinc and collector cannot be fully coated, and needle crystals can penetrate the separator, causing a short circuit. Use contains at least one selected from gallium and indium , Lead, bismuth, aluminum, calcium and other metals (it is said to have the effect of increasing hydrogen overvoltage and the effect of adjusting the shape of particles when producing cathode active materials) mercury-free zinc, if it is a potassium hydroxide type electrolyte solution, the battery The amount of water in it is 0.31-0.57mg (or 0.31-0.57β $ at room temperature) per 1mg of mercury-free zinc, or if it is an electrolyte solution of sodium hydroxide type, then the battery The amount of water is 0.32-0.59 mg (or 0.32-0.59 4 5 at normal temperature) per 1 mg of mercury-free zinc, which is produced in the gas of coin or button-type silver oxide batteries The generated amount is not greater than 0.03 JW g / day, and the self-discharge rate is not greater than 4% / year. In addition, in order to evaluate the performance of mercury-containing batteries, various technologies need to be combined and used. (Please read the precautions on the back first (Fill in this page)
、1T • tn 1^1 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -11 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(9 ) 使用添加有銦,鉛,鉍,鈣,鋁等金屬及用以保持電 池溼度之膠凝劑的無汞鋅合金粉作爲陰極組合劑,使用最 外層塗有鋅或氫超電壓高於鋅之金屬的集極,且在電解質 溶液或陰極活性材料中添加選自銦化合物,氧化鉛,鹼土 金屬氫氧化物,及具有聚氧化乙烯基之表面活性劑中之抑 制劑,可得到之電池中產生之氫氣少,且電性質良好。 尤其,提出一種必要組份爲鋅且選擇性組份爲一或多 種選自銦,鉛及錫中之金屬的合金層爲集極極塗層,以提 供可抑制氫氣產生之有成本優點的鹼性電池。 此外,因爲無汞使自身放電增加且容量減少之問題, 可使集極鋅合金層厚至某一程度,由是增加電池容量而不 使電池空間改變太多。 將銦化合物諸如硫酸銦,胺基磺酸銦,氯化銦等溶於 濃苛性鹼溶液中,此液形成可在電鍍中陰極還原之鹼錯合 離子。 銦之鹼錯合離子進行鋅表面還原(電位低於本身之還 原電位),且立即澱積銦金屬。此外,集極諸如銅等物與 鋅接觸,故其有同於鋅之電位,且同樣澱積銦。當鋅及集 極表面初與銦接觸時,所有表面皆具銦電位,且喪失電化 驅動力,故銦停止再澱積。但是,當鋅表面初放電時,鹼 錯合離子型之銦立即還原並澱積。 銦化合物抑制劑因添加錯合劑而更有效。此因銦之鹸 錯合離子及水合銦離子不安定,故無錯合劑則沈澱而不溶 於電解質溶液中,或即使溶解,但在環境稍有變化時即沈 本紙張尺度適用中國國家標準(CNS > A4規格(210X297公釐) _____ -12 - (請先閱讀背面之注意事項再填寫本頁) 裝- 訂 經濟部中央標準局員工消費合作杜印製 一 ΰ95ϋ8 Α7 Β7 五、發明説明(10 ) 澱(氫氧化物),或易變成粘稠之聚離子溶液(此者同於 Inorganic Chemistry Series 7, Coordinate Stereochemistry, written by Yoichi NIIMURA, published by Baihukan Co. Ltd·, 65-66所述者)。此外,銦之鹼錯合 離子水及水合銦離子不安定且澱積電位低,但電位範圍廣 ,且在澱積時亦誘發產生氫氣。因此,以酒石酸鹽或 E DTA進行錯合時,產生安定之錯合離子,可縮小銦澱 積電位之範圍,可由氫之澱積電位分離,且可僅澱積銦而 不產生氫氣》 除了銦外,錫及鉛之離子化傾向亦小於鋅,故當電解 質溶液中存有此類金屬之離子時,此類金屬可澱積於鋅表 面上。此外,因爲集極與鋅接觸,電位變成同於鋅,且澱 積上述金屬。但是,混合銦化合物,含有四價錫之錫化合 物,氧化鉛等以進一步抑制腐蝕及溶解之功能不固定,但 是,可考慮以下因素。 其一是在此類金靥澱積於鋅及集極上時形成合金。在 形成合時,澱積金靥之結晶變細,鋅及集極表面塗有無缺 陷之均勻膜。例如,若爲銦一錫合金,當組成接近5 0 : 5 0原子%之低共熔點時,結晶度變細。若爲三組份系統 之合金,結晶更複雜,防止形成結晶粗粒,故易得到均勻 膜。 另一者爲可在混合時同時利用各金屬之特性。尤其, 若爲鉛,若單獨使用,澱積針狀結晶,則不能均勻塗覆鋅 及集極之表面,且效果不大。但是,在組合電池時,若預 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝. 、1Τ 13 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(11 ) 先添加含銦化合物及錫化合物(含四價錫)之電解質溶液 ;接著添加含氧化鉛之電解質溶液,則鋅及集極塗上銦及 錫(形成極均勻之薄膜),然後塗上鉛針狀結晶之膜。銦 及錫之均勻膜抑制鋅或集極之腐蝕及溶解,且具針狀結晶 之鉛膜強化綷與集極之電性接觸,且改善耐震性及放電性 〇 若爲產生大量氫之陰極活性材料諸如純鋅等,則因產 生氫氣(金屬澱積於表面上的競爭反應)且澱積金屬變少 之效應,故難以形成均勻膜。因此,使用之陰極活性材料 中之鋅若添加銦,鉍,鉛,鋁,鈣,鎵等物,則可適度抑 制氫氣產生。 最常嚐試者是在鋅中添加高氫過電壓之金屬,形成合 金以抑制腐蝕與溶解。已知在添加銦時之效果特別明顯。 使用添加極高濃度,例如,不少於4 0 0 p pm,之銦的 鋅時,因爲與集極之銅等金屬接觸,故銦及鋅立即溶解。 溶解之銦離子澱積於集極上,且在集極上形成銦膜之機構 公認可抑制鋅之腐蝕及溶解。但是,在鋅與集極接觸初期 ,在集極上還原之銦離子量極少。因此,在電解質溶液或 陰極活性材料中添加一或多種選自惰性比鋅高之銦化合物 ,含四價錫之錫化合物及氧化鉛之化合物作爲抑制劑,使 電解質溶液中之金屬離子的量足以塗覆鋅及集極時,則可 立即將鉛澱積於鋅及陰極集極上,且可抑制氫之產生。 當鋅中富含鐵時,有許多將鐵曝於鋅表面之處。表面 上之鋅及鐵在電解質溶液中形成局部電池,鋅溶解,且由 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝-、 1T • tn 1 ^ 1 The paper size is in accordance with Chinese National Standard (CNS) A4 (210X297mm) -11-A7 B7 printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of invention (9) Use of indium added , Lead, bismuth, calcium, aluminum and other metals and mercury-free zinc alloy powder used as a gelling agent to maintain the humidity of the battery as the cathode combination agent, the outermost layer is coated with zinc or the collector of the metal whose hydrogen overvoltage is higher than zinc, In addition, an inhibitor selected from indium compounds, lead oxides, alkaline earth metal hydroxides, and surfactants with polyoxyethylene groups is added to the electrolyte solution or the cathode active material, resulting in less hydrogen generated in the battery, and The electrical properties are good. In particular, an alloy layer in which the necessary component is zinc and the selective component is one or more metals selected from indium, lead, and tin is a collector coating, to provide a cost-effective alkalinity that can suppress hydrogen generation battery. In addition, because of the problem of mercury-free self-discharge and reduced capacity, the collector zinc alloy layer can be made thicker to a certain extent, because the battery capacity is increased without changing the battery space too much. Indium compounds such as indium sulfate, indium sulfamate, indium chloride, etc. are dissolved in a concentrated caustic solution, which forms alkali complex ions that can be reduced by cathode in electroplating. The complex ion of the base of indium undergoes zinc surface reduction (the potential is lower than the reduction potential of itself), and indium metal is immediately deposited. In addition, the collector such as copper is in contact with zinc, so it has the same potential as zinc and indium is also deposited. When the zinc and collector surfaces come into contact with indium initially, all surfaces have indium potential and lose the driving force for electrochemistry, so indium stops re-depositing. However, when the zinc surface is initially discharged, the alkali dislocation ionic indium is immediately reduced and deposited. The indium compound inhibitor is more effective by adding a complexing agent. This is due to the instability of the indium complex ions and hydrated indium ions, so no complexing agent precipitates and does not dissolve in the electrolyte solution, or even if it is dissolved, it will sink when the environment changes slightly. The paper standard is applicable to the Chinese National Standard (CNS > A4 specification (210X297mm) _____ -12-(please read the precautions on the back before filling in this page) Binding-Order a copy of the consumer cooperation of the Central Bureau of Standards of the Ministry of Economic Affairs, du printing a ΰ95ϋ8 Α7 Β7 V. Invention description (10 ) Lake (hydroxide), or easily become a viscous polyion solution (the same as Inorganic Chemistry Series 7, Coordinate Stereochemistry, written by Yoichi NIIMURA, published by Baihukan Co. Ltd., 65-66) In addition, the indium base complex ion water and indium ion hydrate are unstable and have a low deposition potential, but the potential range is wide, and hydrogen is also induced during deposition. Therefore, when using tartrate or E DTA for the complex, Stable complex ion is generated, which can narrow the range of indium deposition potential, can be separated by hydrogen deposition potential, and can only deposit indium without generating hydrogen gas. In addition to indium, the separation of tin and lead The tendency of chemical transformation is also less than zinc, so when the ions of such metals exist in the electrolyte solution, such metals can be deposited on the surface of zinc. In addition, because the collector is in contact with zinc, the potential becomes the same as zinc, and the above deposits Metal. However, the function of mixing indium compounds, tin compounds containing tetravalent tin, lead oxide, etc. to further inhibit corrosion and dissolution is not fixed, but the following factors may be considered. One is that such gold is deposited on zinc and An alloy is formed on the collector. During the formation, the crystals of the deposited gold are thinned, and the surface of the zinc and collector is coated with a uniform film without defects. For example, if it is an indium-tin alloy, when the composition is close to 50:50 atoms When the eutectic point of% is low, the crystallinity becomes fine. If it is an alloy with a three-component system, the crystallization is more complicated, preventing the formation of coarse crystal grains, so it is easy to obtain a uniform film. The other is the one that can use each metal at the same time when mixing In particular, if it is lead, if it is used alone, the needle-like crystals are deposited, the surface of zinc and the collector cannot be uniformly coated, and the effect is not great. However, when combining batteries, if the pre-printed paper size is suitable for China Standard (CNS) Α4 specification (210X297mm) (Please read the precautions on the back before filling in this page), installed., 1Τ 13-A7 B7 printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of invention (11) First Add electrolyte solution containing indium compound and tin compound (including tetravalent tin); then add electrolyte solution containing lead oxide, then zinc and collector are coated with indium and tin (forming a very uniform film), and then coated with lead needles Crystallized film. A uniform film of indium and tin suppresses the corrosion and dissolution of zinc or the collector, and a lead film with needle crystals strengthens the electrical contact between the collector and the collector, and improves the shock resistance and discharge performance. Hydrogen cathode active materials such as pure zinc, etc., produce hydrogen gas (competitive reaction of metal deposition on the surface) and the effect of less deposited metal, so it is difficult to form a uniform film. Therefore, if indium, bismuth, lead, aluminum, calcium, gallium, etc. are added to zinc in the cathode active material used, the generation of hydrogen gas can be suppressed appropriately. The most common attempt is to add high hydrogen overvoltage metals to zinc to form alloys to suppress corrosion and dissolution. It is known that the effect when adding indium is particularly significant. When zinc with indium added at a very high concentration, for example, not less than 400 p pm, is in contact with metals such as copper of the collector, the indium and zinc dissolve immediately. The dissolved indium ions are deposited on the collector, and the organization that forms the indium film on the collector is recognized to suppress corrosion and dissolution of zinc. However, during the initial contact between zinc and the collector, the amount of indium ions reduced on the collector is extremely small. Therefore, one or more compounds selected from indium compounds with higher inertness than zinc, tin compounds containing tetravalent tin, and lead oxide compounds are added to the electrolyte solution or cathode active material as inhibitors, so that the amount of metal ions in the electrolyte solution is sufficient When zinc and collector are coated, lead can be deposited on zinc and cathode collector immediately, and the generation of hydrogen can be suppressed. When zinc is rich in iron, there are many places where the iron is exposed to the zinc surface. The zinc and iron on the surface form a local battery in the electrolyte solution, and the zinc dissolves, and the Chinese standard (CNS) Α4 specification (210Χ297mm) is applicable to this paper standard (please read the precautions on the back before filling this page).
、1T 14 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(12 ) 鐵產生氫。在產生氫氣處,難以形成抑制塗膜,且難以得 到抑制劑之效果。 使用之無汞鋅粉中鐵含量相對於鋅重不大於4 p pm ,且在電解質溶液或陰極材料中添加一或多種選自惰性高 於鋅之銦化合物,含四價錫之錫化合物及氧化鉛中之化合 物爲抑制劑,且電解質溶液中之離子量足以塗覆鋅及集極 時,則可立即在鋅及陰極活性材料上澱積惰性高於鋅之金 屬膜,且可抑制鋅之腐蝕及溶解及伴隨之氫氣產生。 較佳之抑制劑添加量相對於鋅粉約1 0 — 1 0 0 〇 p pm。若添加量少,則不能有效塗覆鋅及集極,且缺點 是針狀結晶穿透隔板,造成短路。 一般認爲鎵,銦,鉛及鉍之氫過電壓高,且添加於鋅 時,可抑制氫氣之產生。據說鋁及鈣在鋅粉產製時可霧化 ,使表面平滑,減少鋅粉之表面積,並同法抑制氫氣產生 〇 此外,雖然功能不確定,但使電解質液達最大漏液量 ,則可抑制氫氣產生及自身放電。此外,增加電解質溶液 ,亦可增加用以抑制氫氣產生及自身放電之抑制劑的絕對 量,而增加抑制劑效果。 爲使無汞電池接近含有汞齊鋅之電池性能,需瞭解各 種技術之特性,將彼組合並加以運用。以下顯示各技術之 功能8 大體言之,在鋅中添加銦,鉛,鉍,鈣,鋁等金靥係 防止腐蝕及溶解且抑制氫氣產生。但是,各種添加金靥之 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝· 、?τ* -15 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(13 ) 角色有變化。氫過電壓高之金屬諸如銦,鉛及鉍與鋅形成 合金,增加氫過電壓,且防止腐蝕及溶解。另一方面,因 爲鈣及鋁在產製中藉霧化使合金表面平滑,使電位分佈均 勻,減少鋅粒之表面積,故可防止腐蝕及溶解。此外,當 鋅表面因腐蝕及溶解產生氫時,其上無抑制劑且亦無抑制 劑之效果。就此言之,添加本發明金屬對形成鋅合金而言 極爲重要。 用爲膠凝劑之交聯型聚丙烯酸吸水性聚合物之保溼性 強,防止電解質溶液蒸發及相對於隔板及陽極面之不利的 移動》因此,可使抑制劑全部分佈並抑制內電阻之增加( 在放電後期時積液所致)。 在集極最外層形成鋅層或氫過電壓高於鋅之金屬層之 原因是防止作爲陰極活性材料之無汞鋅粉與集極銅接觸形 成電池,亦由彼產生氫氣。 此外,在含集極之陰極加壓加工後形成鋅或氫過電壓 高於鋅之金屬層時,可防止雜質諸如鐵等物在加工中粘附 於集極面上》 尤其是可在集極表面上提供一種含有必要組份鋅及一 或多種選自銦,鉛及錫之選擇性元素之合金層。此因集極 表面電位實質同於作爲陰極活性材料之無汞鋅表面者。因 此,即使是集極與作爲陰極活性材料之無汞鋅粉接觸時, 仍可避免形成局部電池及產生氫氣。 假設即使在集極上僅電鍍鋅,仍可使電位差消失且有 效果,但是由電鍍等法澱積之鋅活性極高且易腐蝕,故抑 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝-、 1T 14-Printed by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs A7 B7 V. Description of invention (12) Iron produces hydrogen. Where hydrogen gas is generated, it is difficult to form a suppression coating film, and it is difficult to obtain the effect of an inhibitor. The iron content of the mercury-free zinc powder used is not more than 4 p pm relative to the weight of zinc, and one or more inert compounds selected from inerts higher than zinc, tin compounds containing tetravalent tin and oxidation are added to the electrolyte solution or cathode material When the compound in lead is an inhibitor and the amount of ions in the electrolyte solution is sufficient to coat zinc and collector, a metal film with higher inertness than zinc can be immediately deposited on zinc and the cathode active material, and the corrosion of zinc can be suppressed And the generation of dissolved and accompanying hydrogen. The preferred amount of inhibitor added is about 10 to 100 ppm relative to zinc powder. If the added amount is small, zinc and collector cannot be effectively coated, and the disadvantage is that the needle crystal penetrates the separator, causing a short circuit. It is generally believed that gallium, indium, lead, and bismuth have a high hydrogen overvoltage, and when added to zinc, the generation of hydrogen gas can be suppressed. It is said that aluminum and calcium can be atomized during the production of zinc powder to smooth the surface, reduce the surface area of the zinc powder, and suppress the generation of hydrogen in the same way. In addition, although the function is uncertain, the maximum amount of electrolyte leakage can be achieved. Suppression of hydrogen generation and self-discharge. In addition, increasing the electrolyte solution can also increase the absolute amount of inhibitor used to suppress hydrogen generation and self-discharge, and increase the inhibitor effect. In order to make mercury-free batteries close to the performance of batteries containing zinc amalgam, it is necessary to understand the characteristics of various technologies and combine and use them. The following shows the function of each technology. 8 In general, adding zinc, indium, lead, bismuth, calcium, aluminum, and other gold to prevent corrosion and dissolution and suppress the generation of hydrogen. However, the standard of various papers with added gold is applicable to the Chinese National Standard (CNS) A4 (210X297mm) (please read the precautions on the back before filling in this page). A7 B7 printed by the Bureau ’s Consumer Cooperatives V. Description of the invention (13) The role has changed. Metals with high hydrogen overvoltage, such as indium, lead, and bismuth, form an alloy with zinc, increase the hydrogen overvoltage, and prevent corrosion and dissolution. On the other hand, because calcium and aluminum are atomized during production to smooth the surface of the alloy, the potential distribution is uniform, and the surface area of the zinc particles is reduced, so corrosion and dissolution can be prevented. In addition, when the zinc surface produces hydrogen due to corrosion and dissolution, there is no inhibitor and no inhibitor effect on the zinc surface. In this regard, the addition of the metal of the present invention is extremely important for forming a zinc alloy. The cross-linked polyacrylic acid water-absorbing polymer used as a gelling agent has strong moisture retention, prevents evaporation of the electrolyte solution and unfavorable movement relative to the separator and the anode surface. Therefore, the inhibitor can be fully distributed and the internal resistance can be suppressed The increase (due to the accumulation of fluid in the late stage of discharge). The reason why a zinc layer or a metal layer with a hydrogen overvoltage higher than that of zinc is formed on the outermost layer of the collector is to prevent the mercury-free zinc powder as the cathode active material from contacting the collector copper to form a battery, which also generates hydrogen gas. In addition, when a metal layer with zinc or hydrogen overvoltage higher than zinc is formed after the cathode-containing cathode is processed by pressure, impurities such as iron and the like can be prevented from adhering to the collector surface during processing. Especially at the collector An alloy layer containing the necessary components zinc and one or more selective elements selected from indium, lead and tin is provided on the surface. This is because the collector surface potential is substantially the same as the mercury-free zinc surface as the cathode active material. Therefore, even when the collector is in contact with the mercury-free zinc powder as the cathode active material, the formation of local batteries and the generation of hydrogen can be avoided. It is assumed that even if only zinc electroplating on the collector can make the potential difference disappear and have an effect, but the zinc deposited by electroplating and other methods is extremely active and easy to corrode, so the paper size is applicable to China National Standard (CNS) A4 specification (210X297 Mm) (Please read the precautions on the back before filling out this page)
,1T -16 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(14 ) 制氫氣形成之效果極小》因此,需電鍍在鋅中添加量不少 於數1 0 p pm之鉛及銦的合金。在電鍍法中,電鑛液可 能需爲在一般鋅電鍍液中添加數1 〇至數1 〇 〇 〇 p pm 之銦化合物,鉛化合物及錫化合物者,而陽極可爲鲜合金 。例如,若爲硫酸鋅型電鍍液,則可添加硫酸銦,若爲氰 化物型電鍍液,則可添加氰化銦。 至於抑制劑,有無機型及有機型。其中,無機抑制劑 粗分爲兩種。其一爲惰性比鋅高且氫過電壓高之金屬的化 合物。例如,其爲上述銦化合物諸如硫酸銦,胺基磺酸銦 ,氯化銦,氫氧化銦等,且其溶於濃苛性鹸溶液中,形成 可進行在電鍍中所謂之陰極還原的鹼錯合離子》銦之鹼錯 合離子在電位低於本身還原電位之鋅表面還原,立即澱積 金屬銦。鋅塗銦之初,所有表面皆具有銦之電位,喪失電 化驅動力,故不再澱積銦。但是,鋅表面因放電而初曝露 時,以鹼錯合離子形式存在之銦立即還原並澱積。因此, 即使是在中途停止放電而存放時,產生之氫氣仍少,自身 放電率亦小。 因爲與鋅接觸之集極(諸如銅等)上亦顯示比本身還 原電位低之電位,故銦之鹼錯合離子被還原,且立即澱積 銦金靥。但是,實際電池中之電解質溶液量相當少。故抑 制劑不能均勻分佈於集極上以致無金屬塗層,當陰極組合 劑與集極間存有氣泡時,產生完全無金屬塗層之處’故不 可能有充分效果。此種無機抑制劑中包括一氧化鉛及四價 錫化合物》 本紙張尺度逋用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝· -17 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(15 ) 其他無機抑制劑爲比鋅或非金屬鹼性強之金屬的氧化 物及氫氧化物。雖然其功能不明確,但有抑制氫氣產生及 改善電性質之效果,代表例爲氫氧化鋇或鹼土金屬氫氧化 物。但是,使用無鋅層或氫過電壓高於鋅之金屬層最外層 之集極時,因爲集極與鋅間接觸產生之氫氣太多,故其效 果極微。 有機型表面活性劑因爲親水性基附於鋅表面且疏水性 基抑制水及羥基接近表面,故可抑制鋅之腐蝕及溶解。效 果同於鹼金屬氫氧化物者。故需與具有鋅或氫過電壓高於 鋅之金屬最外層的集極組合使用。 此外,雖然其功能不確定,但當組合使用聚氧化乙嫌 烷醯胺,氫氧化鋇等物時,得到明顯之抑制氫氣產生的效 果。但是,有機表面活性劑對鋅與集極表面之粘附性極強 ,且抑制銦化合物或一氧化鉛在表面上還原,故添加量需 儘可能小至有效果之範圍。 已發現在集極上塗覆鋅或氫過電壓高於鋅之金屬時, 因爲鋅與集極接觸,故抑制氫氣產生,銦化合物及一氧化 鉛則抑制在部分放電後之自身放電,且鹸土氫氧化物改善 電性質,且在組合使用時得到最大效果》即,使用具有鋅 或氫過電壓高於鋅之金屬最外層之集極產製鹼性電池時, 可得到在使用前及部分放電後自身放電率小且電性良好者 〇 當集極塗上鋅合金時,鋅合金本身變成陰極活性材料 ,故在集極表面將鋅合金層稠化,故可補充因無汞所缺少 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝-, 1T -16-A7 B7 printed by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of the invention (14) The effect of hydrogen production is extremely small. Therefore, lead should be added to zinc in an amount of not less than 10 p pm And alloys of indium. In the electroplating method, the electro-ore fluid may need to be added with an indium compound, a lead compound, and a tin compound in the range of 100 to 1000 ppm in a general zinc plating solution, and the anode may be a fresh alloy. For example, if it is a zinc sulfate type plating solution, indium sulfate can be added, and if it is a cyanide type plating solution, indium cyanide can be added. As for inhibitors, there are inorganic and organic types. Among them, inorganic inhibitors are roughly classified into two types. One is a compound of a metal that is more inert than zinc and has a high hydrogen overvoltage. For example, it is the above-mentioned indium compound such as indium sulfate, indium sulfamate, indium chloride, indium hydroxide, etc., and it is dissolved in a concentrated caustic soda solution to form an alkali complex that can perform so-called cathode reduction in electroplating Ions "The indium complex ion of indium is reduced on the surface of zinc whose potential is lower than its own reduction potential, and immediately deposits metal indium. When zinc was coated with indium, all surfaces had the potential of indium and lost the driving force for electrochemistry, so no indium was deposited. However, when the zinc surface is initially exposed by discharge, indium in the form of alkali complex ions is immediately reduced and deposited. Therefore, even when the discharge is stopped halfway and stored, the generated hydrogen gas is still small, and the self-discharge rate is also small. Since the collector (such as copper, etc.) that is in contact with zinc also shows a lower potential than its own reduction potential, the base complex ion of indium is reduced, and indium gold is immediately deposited. However, the amount of electrolyte solution in the actual battery is quite small. Therefore, the inhibitor cannot be evenly distributed on the collector so that there is no metal coating. When there are bubbles between the cathode assembly and the collector, a completely metal-free coating is produced. Therefore, it is impossible to have a sufficient effect. Such inorganic inhibitors include lead monoxide and tetravalent tin compounds. "This paper uses the Chinese National Standard (CNS) A4 specifications (210X297mm) (please read the precautions on the back before filling out this page). 17-A7 B7 printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of the invention (15) Other inorganic inhibitors are oxides and hydroxides of metals stronger than zinc or non-metallic alkalinity. Although its function is not clear, it has the effect of suppressing the generation of hydrogen gas and improving the electrical properties. Typical examples are barium hydroxide or alkaline earth metal hydroxide. However, when using a zinc-free layer or a collector whose hydrogen overvoltage is higher than the outermost layer of the metal layer of zinc, because the contact between the collector and zinc generates too much hydrogen gas, the effect is minimal. Organic type surfactants have a hydrophilic group attached to the zinc surface and a hydrophobic group inhibits water and hydroxyl groups from approaching the surface, so it can suppress corrosion and dissolution of zinc. The effect is the same as the alkali metal hydroxide. Therefore, it needs to be used in combination with the outermost collector of the metal with zinc or hydrogen overvoltage higher than zinc. In addition, although its function is uncertain, when polyoxyethylene, alkylamide, barium hydroxide, etc. are used in combination, a significant effect of suppressing the generation of hydrogen is obtained. However, organic surfactants have extremely strong adhesion to zinc and the collector surface, and inhibit the reduction of indium compounds or lead monoxide on the surface, so the addition amount needs to be as small as possible to the effective range. It has been found that when zinc or a metal whose hydrogen overvoltage is higher than zinc is coated on the collector, because zinc contacts the collector, the generation of hydrogen gas is suppressed, and indium compounds and lead monoxide suppress self-discharge after partial discharge The hydroxide improves the electrical properties and obtains the greatest effect when used in combination. That is, when using an alkaline battery with a zinc or hydrogen overvoltage that is the outermost layer of the metal produced by the collector, it can be discharged before use and partially After the self-discharge rate is small and the electrical properties are good. When the collector is coated with a zinc alloy, the zinc alloy itself becomes a cathode active material, so the zinc alloy layer is thickened on the collector surface, so it can be added because the mercury-free lack of this paper The standard is applicable to the Chinese National Standard (CNS) A4 specification (210X297mm) (please read the precautions on the back before filling in this page)
,1T 一 18 - A7 B7 五、發明説明(16 ) 之電池能力。例如’在直徑6隨之集極上鍍上1 〇 #111時 ’因爲辞之比重爲7 · 1 3 ’故陰極活性材料之量增加2 mg。若陰極活性材料(鋅粉)之量爲3 0 mg,則可使能力 增加約6 . 7% ’而不使電池空間改變太多。但是,與粉 狀陰極活性材料比較’表面積小,故不能得到大的電流。 值是,最適合增加微量放電之電池容量諸如鐘及錶所用之 電池。 此外,將鋅合金電鍍稠化亦有利於電池罐之加工。通 常,具有陰極集極之陰極罐係將環狀材料打孔製得。此情 況下,若作爲集極之環狀材料面事先鍍上某一厚度之鋅合 金,則基質金靥(例如銅)在加工時曝露之機率減低。 附圖簡述 圖1爲產生之氫氣量相對於經過日數之圖。 圖2爲產生之氫氣量相對於硫酸銦濃度之圖。 圖3爲在常溫氫氧化鉀溶液中之電流-電位曲線。 圖4爲在常溫氫氧化鉀溶液(溶有幾近飽和之氧化鋅 )中之電流一電位曲線。 圖5爲產生之氫氣量相對於經過日數之圖》 圖6爲產生之氫氣量相對於硫酸銦濃度之圖。 圖7爲產生之氫氣量相對於在本發明電解質溶液中所 添加之一氧化鉛之量的圖。 圖8爲產生之氫氣量相對於電解質溶液中所添加之一 氧化鉛之量的圖。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 、-0, 1T 18-A7 B7 5. The battery capacity of the invention description (16). For example, 'When the diameter 6 is plated with 1 〇 # 111 on the collector,' because the specific gravity is 7 · 1 3 ', the amount of cathode active material increases by 2 mg. If the amount of cathode active material (zinc powder) is 30 mg, the capacity can be increased by about 6.7% without changing the battery space too much. However, the surface area is smaller than that of the powdery cathode active material, so a large current cannot be obtained. The value is the most suitable for increasing the battery capacity of the micro discharge such as batteries used in clocks and watches. In addition, the thickening of zinc alloy plating is also beneficial to the processing of battery cans. Generally, a cathode can having a cathode collector is made by punching a ring-shaped material. In this case, if the ring-shaped material surface as the collector is previously coated with a certain thickness of zinc alloy, the probability of exposure of the matrix gold (such as copper) during processing decreases. Brief Description of the Drawings Figure 1 is a graph of the amount of hydrogen produced versus the number of days elapsed. Figure 2 is a graph of the amount of hydrogen gas generated versus the concentration of indium sulfate. Fig. 3 is the current-potential curve in potassium hydroxide solution at normal temperature. Figure 4 is the current-potential curve in a normal temperature potassium hydroxide solution (with nearly saturated zinc oxide dissolved). Figure 5 is a graph of the amount of generated hydrogen versus the number of days passed. Figure 6 is a graph of the amount of generated hydrogen versus the concentration of indium sulfate. Fig. 7 is a graph of the amount of hydrogen gas generated relative to the amount of lead oxide added to the electrolyte solution of the present invention. Fig. 8 is a graph of the amount of hydrogen gas generated relative to the amount of lead oxide added to the electrolyte solution. This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297mm) (Please read the precautions on the back before filling this page), -0
T 經濟部中央標準局員工消費合作社印製 19 - A7 B7 五、發明説明(17 ) 圖9爲在使用氫氧化鉀型電解質溶液時,產生之氫氣 量相對於每1 mg鋅所添加之水量的圖。 圖1 0爲在使用氫氧化鈉型電解質溶液時,產生之氫 量相對於每1 mg鋅所添加之水量的圖。 圖1 1爲在經電鍍之銅板上添加本發明抑制劑時,產 生之氫量相對於經過日數之圖。 圖12爲無電鍍銅板上添加本發明抑制劑時,形成之 氫氣量相對於經過日數之圖。 圖13爲自身放電率之變化相對於抑制劑濃度之圖。 圖1 4爲在5 0%深度放電後自身放電率變化相對於 抑制劑濃度之圖》 圖1 5爲在經電鍍之銅板上添加本發明抑制劑時,產 生之氫氣量相對於經過日數之圖。 圖1 6爲在無電鍍銅板上添加本發明抑制劑時,產生 之氫氣量相對於經過日數之圖。 圖1 7爲自身放電率之變化相對於抑制劑濃度之圖》 經濟部中央標準局員工消費合作社印製 (請先閱讀背面之注意事項再填寫本頁) 圖1 8爲在5 0%深度放電後之自身放電率變化相對 於抑制劑濃度之圖。 圖1 9爲顯示氫氣產生量相對於氫氧化鋇之圖。 較佳實例詳述 以下參考實例說明本發明。 使用本發明銦化合物之效果說明於實施例1_3 ,及 比較例1 » 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) -20 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(18 ) <實施例1 > 在體積2 5 m P且加上刻度以測知氣體產生量之特製 試管中預先添加2 g鋅粉(含各爲5 0 0 p pm之由噴霧 法製得之鉍,銦及鉛),及材料同於集極且面積0.6 cm2而厚0 . 1mm之銅片,添加試驗用之電解質溶液並加 熱至6 0°C,測量氫氣產生體積_7日。重複試驗1 0次, 結果使用其平.均_值。電解質溶液之製法,若爲氫氧化鉀型 ,則使用氫氧化鉀爲3 0%重且添加氧化鋅至接近飽和之 溶液,若爲氫氧化鈉型,則使用氫氧化鈉爲2 5%重且添 加氧化鋅至幾近飽和之溶液,作爲基質,然後添加銦化合 物。 使用 Nihon Kagaku Sangyo Co.,Ltd.,所製之硫酸銦 ,Nihon Kagaku Sangyo Co.,Ltd.,所製之胺基礎酸銦 3 5 % 溶液,Wako Pure Chemical Industries.,Ltd., 所製之氯化銦,及Ito Phamaceutical Co.,Ltd.所製之 氰化銦。銦化合物相對於電解質溶液之添.加量爲1 0 0 0 p pm。結果示於表1中之氫產生量。單位爲β L/g/ d a y ° <比較例1 > 試驗同於例1,但以未添加本發明銦化合物者,及氧 化銦相對於電解質溶液之添加量爲1 0 0 0 p pm者進行 測量。使用Kanto Chemical Co.,Ltd.所製之氧化銦。結 果同樣以表1中氫產生量表示。單位爲;a L/g/day* 本紙張尺度適用中國國家標率(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝· 訂 五、發明説明(19 ) 表1 .實驗電池之產生氫體積及放電容量比較 經濟部中央標準局員工消費合作社印製 本發明 實 例 電解質 銦化合物 1 0 0 0 ppm 產生之 氫體積 ML/g/day 放電容 量比較 1 Κ0Η I nS〇4 硫酸銦 24. 29 102 2 Κ0Η In(NH2S〇3)3 胺基磺酸銦 30.5 1 102 3 Κ0Η 氯化銦 35.40 101 4 Κ0Η 氰化銦 20.66 103 5 NaOH I nS〇4 硫酸銦 18.11 102 6 NaOH I n(NH2S〇3)3 胺基磺酸銦 27.43 102 7 NaOH 氯化銦 29.67 102 8 NaOH 氣化銦 14.21 103 比較例 9 KOH — 516.63 100 10 KOH M3M 196. 10 97 11 NaOH — 420.36 100 12 NaOH 氧化銦 150.88 97 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) $ Γ -22 - 經濟部中央標隼局β:工消費合作社印製 A 7 B7 五、發明説明(20 ) 圖1顯示使用氫氧化鉀系列之電解質溶液時,氫產生 量相對於試樣之試驗日數的圖。已發現不添加銦化合物者 示於圖中之1 ,氫產生量相對於試驗日數指數性地增加。 已知圖之2添加本發明銦化合物(硫酸銦)者,抑制氫氣 產生。若爲圖之3添加氧化銦者,則前半段產生之氫氣多 。公認因爲氧化銦溶解度差,故對電解質溶液之銦離子供 應不足,且塗覆鋅及銅表面所需之時間長。 此外,公認前半段與無添加者比較時結果較差之原因 是氧化銦亦與鋅及集極接觸,形成局部電池。氰化銦顯示 良好特性,但是,因爲可能會有新的污染問題,故不需使 用。 <實施例2 > 在陽極罐中添加部分電解質液及1 1 6mg將組合劑添 加於氧化銀中所模製之片粒(氧化銀含量9 8%),並放 置聚乙烯隔板及玻璃紙隔板。其次,將耐綸墊料推入陽極 罐中,添加滲透劑,膠凝劑,3 0 mg鋅粉,抑制劑等物, 逐滴添加其餘電解質溶液,並放置陰極密封產生1 〇 〇個 各種鈕扣型氧化銀電池。使用同於例1之鋅及表1之電解 質溶液,製得之電池大小同於SR6 2 1型。 但是,相對於鋅量之銦添加量爲1 0 0 0 p pm。結 果示於表1之放電指數中。放電特性係使用2 Ο Ο Ω電阻 測量’當電解質溶液爲氫氧化鉀系列時使用直流電法,或 爲氫氧化鈉時使用脈衝法。在所有情況下,不添加抑制劑 本紙張尺度適用中國國家標準(CNS ) A4規格(210'乂297公釐) (請先閱讀背面之注意事項再填轉本頁) 、-° -23 - 經濟部中央標隼局員工消費合作社印製 A7 B7 五、發明説明(21 ) 者皆視其放電指數爲1 0 0。如結果所示,已發現本發明 銦化合物亦有放電特性。 <實施例3 > 使用例2方法製備使用可使氫滲透的聚丙烯襯墊的鈕 扣型氧化銀電池。將1 0個所製之氧化銀電池置入位於高 溫槽中且裝有液體石蠟之玻璃容器中,附上頂部具有刻度 之收集管,並測量產生之氫氣量。此狀態在6 0°C保持 20日(據說約相當於一年時間),評估20日後產生之 氫氣量。至於抑制劑,使用相對於鋅重爲1 0 p pm之硫 酸銦評估。評估結果示於圖2。根據該圖,已知抑制劑有 效濃度爲1 0 0 p pm至1%。 聚丙烯襯墊換回耐綸製者,在硫酸銦濃度爲1 0 0 P pm至1 %範圍中產製鈕扣型氧化銀電池,此時產生之 氣體少。同樣將1 0個所製之電池置入位於2 5 °C高溫槽 中之填有液體石蠟的玻璃容器中,在頂端附上收集氫氣用 之收集管。在6 0°C經2 0日後未發現產生氫氣,罐身膨 脹及液體洩露。而硫酸銦有效濃度爲1 OOppm至1% (相對於鋅),但是,藉著調整莫耳數並決定濃度範圍亦 可使其他銦化合物具相同效果。 實際試製電池時,產生之值小於在實施例1實驗中所 產生之氫氣量。基於此項事實,公認實例1所用之銅片結 構異於實際集極,且產生之氫氣部分因氧化銀還原而消耗 °實例1方法之氫氣產生量相異,但足以用以觀察預測真 本紙張尺度適用中國國家樣準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 4° Λ -24 - 經濟部中央樣準局員工消費合作社印製 A7 B7 五、發明説明(22 ) »電池中氫氣產生之取代特性的方法。 根據實例4- 7,說明使用銦化合物及本發明錯合劑 之效果。 <實施例4 > 3 0%重氫氧化鉀電解質溶液,使用1 c rri鉑電極作 爲操作電極,同法以1 c rri鉑電極爲計數電極,且以Toa Electronics Ltd•所製之比較電極H C - 2 0 5 C爲參考 電極,決定銦澱積時之電流—電位曲線。以1 0 OmV/ s e c之速度由正端至負端掃描電位。各電位下之電流顯 示電極之反應,例如,若發生還原反應諸如銦澱積及產生 氫氣,則造成電流。 結果示於圖3。圖中之1爲電解質溶液中添加0 . 1 m 〇 之胺基磺酸銦,此情況下,電流由相對於參考 電極爲一 1 · IV處開始流動,銦澱積且同時產生氫。2 爲電解質溶液中添加0 . lm〇5/L酒石酸鉀,然後添 加0 . lm〇P/L胺基磺酸銦所得之電流—電位曲線》 已知銦在約一1 . 4V澱積,而氫約在_2 . 0V下產生 。公認是因氫過電壓高之銦澱積於電極表面上,故產生氫 氣之電位向負端移動。 因此,可由產生氫氣之電位分離銦之澱積電位。若先 澱積銦,則氫氣產生量更小係公認之事實。若在電解質溶 液中添加胺基磺酸銦及酒石酸鉀,先添加胺基磺酸銦時, 產生氫氧化銦及聚離子而變混濁,但先添加酒石酸鉀時, 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ---------(裝------訂------ί i (請先閲讀背面之注意事項再填寫本頁) -25 - 經濟部中央標準局員工消費合作社印策 A7 B7 五、發明説明(23 ) 則不混濁。 圖3之3顯示將0·lmop/L胺基磺酸銦添加於 電解質溶液,然後添加0 · lmoj?/L酒石酸鉀時之電 流一電位曲線。在圖中_1.4V附近可能因有銦造成小 型尖峰,但是,與不添加酒石酸鉀之情況相同地,在相對 於參考電極爲_1.IV附近,澱積銦,同時產生氫氣, 添加錯合劑之效果變小。與其他銦化合物及錯合劑相同地 ’爲立即形成銦錯合離子並防止沈澱,需先使錯合劑溶於 電解質溶液中。 <實施例5 > 3 0 %重之氫氧化鉀電解質溶液(添加氧化鋅至接近 飽和),使用lciri鉑電極作爲操作電極,同樣使用1 c m之銷電極爲計數電極,且以T〇a Electronics Ltd.所 製之比較電極HC — 2 0 5 C作爲參考電極,決定銦澱積 時之電流一電位曲線。結果示於表4。圖中4爲在電解質 溶液中添加0 . 1 m 〇 j?/L胺基磺酸銦者,相對於參考 電極爲一 1 . 56V時,金屬澱積,同時產生氫氣。金屬 之澱積電位低於不添加氧化鋅者,故可能爲鋅與銦之合金 〇 5爲在電解質溶液中添加〇 . lmoj?/L酒石酸紳 ,然後添加0 _ lmoi/L胺基磺酸銦之狀況下的電流 一電位曲線。在一1.5V附近有公認爲銦澱積之尖峰, 然後在約- 1 . 56V下澱積金屬,同時產生氫氣。爲確 本紙張尺度適用中國國家標準(CNS ) Μ規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) -'β -26 - 經濟部中央標準局員工消費合作社印製 A7 B7_ 五、發明説明(24 ) 認在約1 . 5V之澱積物質,電位在一 1 · 5V保持30 秒,將澱積金屬浸於硝酸中。若爲鋅,則應可立即溶解, 但難其以溶解,故假定澱積物爲銦或含有大量銦之合金。 測量結果,相對於參考電極之鋅電極電位爲 一 1 · 5 0 9 V。恰對應於僅有銦或具大量銦之合金澱積 於含錯合劑之溶液中之電位。即,銦或具大量銦之合金澱 積於在鋅及與鋅接觸之集極上,可防止鋅及集極腐蝕及溶 解。 <實施例6 > 在體積2 且加上刻度以測知氣體產生量之特製 試管中預先添加2 g鋅粉(含各5 0 0 P pm之以噴霧法 製得之鉍,銦及鉛),及面積〇 . 6cma且厚0 . lram之 集極材料銅片,添加試驗用之電解質溶液並加熱至6 0°C ,產生之氫氣體積測量7日。試驗重複1 0次,使用其平 均值作爲結果。 電解質溶液之製法,若爲氫氧化鉀系列,則在3 0% 重之氫氧化鉀溶液添加約飽和之..氧化鋅,若爲氫氧化鈉系 列,則在2 5 %重氫氧化鈉溶液中添加約飽和之氧化鋅, 作爲基質,並添加錯合劑及銦化^合物。 使用 Nihon Kagaku Sangyo Co., Ltd.所製之硫酸銦 ,Nihon Kagaku Sangyo Co.,Ltd.所製之 3 5 % 胺基礎 酸銦溶液,Wako Pure Chemical Industries., Ltd.所製 之氯化銦,及Ito Phamaceutical Co.,Ltd.所製之氣化 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 袈. 訂 -27 - Α7 Β7 五、發明説明(25 ) 銦。 銦化合物之添加量相對於電解質溶液爲1 〇 〇 0 p pm,錯合劑添加量超過銦離子莫耳比之2倍。 若添加銦化合物而不添加錯合劑之結果示於表2中。 添加錯合劑時之氫氣產生量示於表3氫氣_產_生指.屋爲.將 使用不添加戴.合劑之電迤置溶液的試_驗、_虫之氫產牛骨視爲 」υϋ。 觀察氫氣產生量時,由電流一電位曲線估計,已知氫 氣產生被抑制。雖然氰化物系列亦有效果,但是,氰化物 可能會有污染問題,故不使用較安全》 (請先閱讀背面之注意事項再填寫本頁) t· -9T Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 19-A7 B7 V. Description of the invention (17) Figure 9 shows the amount of hydrogen produced relative to the amount of water added per 1 mg of zinc when using potassium hydroxide electrolyte solution Figure. Figure 10 is a graph of the amount of hydrogen produced relative to the amount of water added per 1 mg of zinc when using a sodium hydroxide electrolyte solution. Fig. 11 is a graph of the amount of hydrogen produced relative to the number of elapsed days when the inhibitor of the present invention is added to a plated copper plate. Fig. 12 is a graph of the amount of hydrogen gas formed with the elapsed days when the inhibitor of the present invention is added on an electroless copper plate. Fig. 13 is a graph of change in self-discharge rate against inhibitor concentration. Fig. 14 is a graph of the change of self-discharge rate with respect to the inhibitor concentration after 50% deep discharge. "Fig. 15 is the amount of hydrogen gas generated relative to the number of elapsed days when the inhibitor of the present invention is added on a plated copper plate Figure. Fig. 16 is a graph of the amount of hydrogen gas generated with the elapsed days when the inhibitor of the present invention is added to an electroless copper plate. Figure 17 is a graph of the change in self-discharge rate versus inhibitor concentration. Printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling in this page). Figure 18 shows the discharge at 50% depth A plot of the change in self-discharge rate after the concentration of the inhibitor. Figure 19 is a graph showing the amount of hydrogen gas generated relative to barium hydroxide. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following reference examples illustrate the invention. The effect of using the indium compound of the present invention is illustrated in Examples 1_3 and Comparative Example 1 »This paper scale is applicable to the Chinese National Standard (CNS) A4 (210X297 mm) -20-A7 printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs B7 V. Description of the invention (18) < Example 1 > 2 g of zinc powder (containing 5 0 0 p pm each) is pre-added to a special test tube with a volume of 25 m P and a scale to measure the amount of gas generated Bismuth, indium and lead prepared by spray method), and the same material as the collector and a copper sheet with an area of 0.6 cm2 and a thickness of 0.1 mm, add an electrolyte solution for the test and heat to 60 ° C to measure the volume of hydrogen generated _7th. The test was repeated 10 times, and the average value was used as the result. The preparation method of electrolyte solution, if it is potassium hydroxide type, use potassium hydroxide 30% by weight and add zinc oxide to near saturation solution, if it is sodium hydroxide type, use sodium hydroxide 25% by weight and Add zinc oxide to a nearly saturated solution as a matrix, then add the indium compound. Nihon Kagaku Sangyo Co., Ltd., Indium Sulfate, Nihon Kagaku Sangyo Co., Ltd., Indium Amine Basic Acid 35% Solution, Wako Pure Chemical Industries., Ltd., Chlorine Indium cyanide, and indium cyanide manufactured by Ito Phamaceutical Co., Ltd. The indium compound is added to the electrolyte solution. The added amount is 100 ppm. The results are shown in Table 1 for the amount of hydrogen produced. The unit is β L / g / day ° < Comparative Example 1 > The test is the same as Example 1, except that the indium compound of the present invention is not added, and the amount of indium oxide added to the electrolyte solution is 1 0 0 0 p pm Take measurements. Indium oxide manufactured by Kanto Chemical Co., Ltd. was used. The results are also expressed in the amount of hydrogen produced in Table 1. The unit is; a L / g / day * This paper scale is applicable to China National Standard (CNS) A4 specification (210X 297mm) (please read the precautions on the back before filling out this page) 19) Table 1. Comparison of hydrogen generation volume and discharge capacity of experimental batteries The Central Standards Bureau of the Ministry of Economic Affairs, Employee Consumer Cooperative printed the example of the present invention Electrolyte indium compound 100 ppm Hydrogen volume generated ML / g / day Comparison of discharge capacity 1 Κ0Η I nS〇4 indium sulfate 24. 29 102 2 Κ0Η In (NH2S〇3) 3 indium sulfamate 30.5 1 102 3 Κ0Η indium chloride 35.40 101 4 Κ0Η indium cyanide 20.66 103 5 NaOH I nS〇4 indium sulfate 18.11 102 6 NaOH In (NH2S〇3) 3 Indium Aminosulfonate 27.43 102 7 NaOH Indium Chloride 29.67 102 8 NaOH Indium Vaporization 14.21 103 Comparative Example 9 KOH — 516.63 100 10 KOH M3M 196. 10 97 11 NaOH — 420.36 100 12 NaOH indium oxide 150.88 97 The paper size is in accordance with Chinese National Standard (CNS) A4 specification (210X 297 mm) (please read the precautions on the back before filling this page) $ Γ -22-Central Bureau of Economics and Trade Beta : A 7 B printed by industrial and consumer cooperatives 7 5. Description of the invention (20) Figure 1 shows a graph of the amount of hydrogen produced relative to the number of test days of the sample when using an electrolyte solution of the potassium hydroxide series. It has been found that those without the addition of indium compounds are shown in Fig. 1, and the amount of hydrogen generation increases exponentially with respect to the number of test days. It is known that the addition of the indium compound (indium sulfate) of the present invention in Fig. 2 suppresses the generation of hydrogen gas. If indium oxide is added as shown in Figure 3, more hydrogen is generated in the first half. It is recognized that because of the poor solubility of indium oxide, the supply of indium ions to the electrolyte solution is insufficient, and it takes a long time to coat the surfaces of zinc and copper. In addition, it is recognized that the reason for the poorer results in the first half compared with those without additives is that indium oxide also contacts zinc and the collector to form a local battery. Indium cyanide shows good properties, but it may not need to be used because it may have new pollution problems. < Example 2 > A part of the electrolyte solution and 116 mg added to the anode can were added to the anode pellets, and the molded tablets (silver oxide content 98%) were placed, and a polyethylene separator and cellophane were placed Clapboard. Secondly, push the nylon pad into the anode tank, add penetrant, gelling agent, 30 mg zinc powder, inhibitor, etc., add the remaining electrolyte solution drop by drop, and place the cathode seal to produce 100 various buttons Type silver oxide battery. Using the same zinc solution as in Example 1 and the electrolytic solution in Table 1, the size of the battery produced was the same as that of the SR6 2 1 type. However, the amount of indium added relative to the amount of zinc is 100 ppm. The results are shown in the discharge index in Table 1. The discharge characteristics are measured using a 2 Ο Ω resistance. The DC method is used when the electrolyte solution is potassium hydroxide series, or the pulse method is used when it is sodium hydroxide. In all cases, no inhibitors are added. The paper size applies to the Chinese National Standard (CNS) A4 specification (210 '297 mm) (please read the precautions on the back before filling this page),-° -23-Economy A7 B7 is printed by the Employee Consumer Cooperative of the Central Standard Falcon Bureau. V. Invention Instructions (21) All of them regard their discharge index as 100. As shown in the results, it has been found that the indium compound of the present invention also has discharge characteristics. < Example 3 > Using the method of Example 2, a button-type silver oxide battery using a polypropylene gasket permeable to hydrogen was prepared. Place 10 silver oxide batteries made in a glass container in a high-temperature bath filled with liquid paraffin, attach a graduated collection tube at the top, and measure the amount of hydrogen produced. This state is maintained at 60 ° C for 20 days (it is said to be approximately equivalent to one year), and the amount of hydrogen generated after 20 days is evaluated. As for inhibitors, indium sulfate with a weight of 10 p pm relative to zinc was used for evaluation. The evaluation results are shown in Figure 2. According to this graph, the known effective concentration of inhibitors is 100 p pm to 1%. The polypropylene gasket is replaced by those made of nylon, and the button-type silver oxide battery is produced in the range of indium sulfate concentration of 100 P pm to 1%. At this time, little gas is generated. Similarly, 10 batteries were placed in a glass container filled with liquid paraffin in a high-temperature bath at 25 ° C, and a collecting tube for collecting hydrogen was attached to the top. No hydrogen was found after 60 days at 60 ° C, the tank swelled and liquid leaked. The effective concentration of indium sulfate is 100 ppm to 1% (relative to zinc). However, by adjusting the molar number and determining the concentration range, other indium compounds can have the same effect. When the battery was actually trial-produced, the value generated was less than the amount of hydrogen generated in the experiment of Example 1. Based on this fact, it is recognized that the copper sheet structure used in Example 1 is different from the actual collector, and the hydrogen generated is partially consumed by the reduction of silver oxide. The amount of hydrogen generated by the method of Example 1 is different, but it is sufficient to observe and predict the original paper. Standards apply to China National Standards (CNS) A4 (210X297mm) (Please read the notes on the back before filling this page) 4 ° Λ -24-A7 B7 printed by the Employee Consumer Cooperative of the Central Bureau of Standards, Ministry of Economic Affairs DESCRIPTION OF THE INVENTION (22) »A method of replacing the characteristics of hydrogen produced in a battery. According to Examples 4 to 7, the effect of using the indium compound and the complexing agent of the present invention will be described. < Example 4 > 30% potassium hydroxide electrolyte solution, using 1 cri platinum electrode as the operating electrode, the same method using 1 cri platinum electrode as the counter electrode, and using a comparative electrode manufactured by Toa Electronics Ltd • HC-2 0 5 C is the reference electrode and determines the current-potential curve during indium deposition. The potential is scanned from the positive terminal to the negative terminal at a speed of 10 OmV / s e c. The current at each potential shows the reaction of the electrode. For example, if a reduction reaction occurs such as indium deposition and the generation of hydrogen gas, it causes a current. The results are shown in Figure 3. 1 in the figure is 0.1 mO indium sulfamate added to the electrolyte solution. In this case, the current begins to flow at a point of 1. IV relative to the reference electrode, indium is deposited and hydrogen is generated at the same time. 2 The current-potential curve obtained by adding 0.1 lm〇5 / L potassium tartrate to the electrolyte solution and then adding 0.1 lm〇P / L indium sulfamate is known to deposit indium at about 1.4 V, and Hydrogen is produced at about -2.0V. It is recognized that because indium with a high hydrogen overvoltage is deposited on the electrode surface, the potential for generating hydrogen gas moves to the negative terminal. Therefore, the deposition potential of indium can be separated from the potential of generating hydrogen gas. If indium is deposited first, it is a recognized fact that the amount of hydrogen produced is smaller. If indium sulfamate and potassium tartrate are added to the electrolyte solution, when indium sulfamate is added first, indium hydroxide and poly ions are generated and become turbid, but when potassium tartrate is added first, the paper scale applies to the Chinese national standard ( CNS) A4 specification (210X297mm) --------- (install ------ order ------ ί i (please read the precautions on the back before filling this page) -25 -Printed by the Ministry of Economic Affairs, Central Bureau of Standards, Employee and Consumer Cooperative A7 B7 V. The description of the invention (23) is not turbid. Figure 3-3 shows the addition of 0 · lmop / L indium aminosulfonate to the electrolyte solution, then 0 · lmoj ? / L Potassium tartrate current-potential curve. In the figure, there may be a small spike caused by indium near _1.4V, but, as in the case of not adding potassium tartrate, it is near _1.IV relative to the reference electrode , Indium is deposited, hydrogen is generated at the same time, and the effect of adding a complexing agent is reduced. In the same way as other indium compounds and complexing agents, in order to immediately form indium complexing ions and prevent precipitation, the complexing agent needs to be dissolved in the electrolyte solution first. ; Example 5 > 30% by weight of potassium hydroxide electrolyte solution (added Zinc oxide to near saturation), using the lciri platinum electrode as the operating electrode, also using the 1 cm pin electrode as the counting electrode, and using the comparison electrode HC — 2 0 5 C made by Toa Electronics Ltd. as the reference electrode, decided Current-potential curve during indium deposition. The results are shown in Table 4. In the figure, 4 is the addition of 0.1 m 〇j · / L indium sulfamate to the electrolyte solution, which is a 1.56V relative to the reference electrode. When the metal is deposited, hydrogen is generated at the same time. The metal deposition potential is lower than that without zinc oxide, so it may be an alloy of zinc and indium. 〇5 is added to the electrolyte solution. The current-potential curve under the condition of 0 _ lmoi / L indium sulfamate. There is a peak known as indium deposition near 1.5V, and then the metal is deposited at about -1.56V, and hydrogen is generated at the same time. The size of the paper is applicable to the Chinese National Standard (CNS) Μ specifications (210X297 mm) (please read the precautions on the back before filling in this page) -'β -26-A7 B7_5 printed by the Employees Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 2. Description of invention (24) Recognized at about 1. 5V of the deposited substance, the potential is kept at 1.5V for 30 seconds, and the deposited metal is immersed in nitric acid. If it is zinc, it should be dissolved immediately, but it is difficult to dissolve, so it is assumed that the deposit is indium or contains A large number of indium alloys. The measurement result shows that the potential of the zinc electrode relative to the reference electrode is a 1.59 V. This corresponds to the potential of only indium or an alloy with a large amount of indium deposited in a solution containing a complexing agent. Indium or alloys with a large amount of indium are deposited on zinc and the collector in contact with zinc, which can prevent corrosion and dissolution of zinc and collector. < Example 6 > 2 g of zinc powder (containing bismuth, indium and lead prepared by spray method at 500 Ppm each) was pre-added to a special test tube of volume 2 and scaled to measure the amount of gas generated , And a collector material copper sheet with an area of 0.6 cma and a thickness of 0.1 lram, adding an electrolyte solution for the test and heating to 60 ° C. The volume of hydrogen gas produced is measured for 7 days. The test was repeated 10 times and the average value was used as the result. The preparation method of electrolyte solution, if it is potassium hydroxide series, add about saturation in 30% potassium hydroxide solution .. zinc oxide, if it is sodium hydroxide series, in 25% heavy sodium hydroxide solution Add approximately saturated zinc oxide as a matrix, and add the complexing agent and indium compound. Indium sulfate made by Nihon Kagaku Sangyo Co., Ltd., 35% indium amine basic acid solution made by Nihon Kagaku Sangyo Co., Ltd., and indium chloride made by Wako Pure Chemical Industries., Ltd., And Ito Phamaceutical Co., Ltd.'s gasification paper standard is applicable to China National Standard (CNS) A4 specification (210X 297mm) (please read the precautions on the back before filling in this page) 袈. End -27- Α7 Β7 5. Description of the invention (25) Indium. The added amount of the indium compound is 100,000 ppm relative to the electrolyte solution, and the added amount of the complexing agent exceeds twice the molar ratio of indium ions. The results of adding the indium compound without adding the complexing agent are shown in Table 2. The amount of hydrogen gas produced when the complexing agent is added is shown in Table 3. Hydrogen_production_production index. . When observing the amount of generated hydrogen, it is estimated from the current-potential curve that it is known that the generation of hydrogen is suppressed. Although the cyanide series is also effective, cyanide may have pollution problems, so it is not safe to use "(please read the precautions on the back before filling this page) t · -9
T 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 一 28 -T Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs
A7 B 五、發明説明(26 ) 表2.無錯合劑之氫釋出體積及實驗電池之放電容量之比 較 經濟部中央標準局員工消費合作社印製 發明 實例 電解 質 銦化合物 1 0 0 Oppm 錯合劑 氫釋出體積 ML/g/day 放電容量 之比較 1 K0H 硫酸銦 — 24. 29 100 2 K0H 胺基磺酸 銦 — 30.51 100 3 K0H 氯化銦 — 35.40 100 4 K0H 氰化銦 — 20. 66 100 5 NaOH 硫酸銦 ~ 18.11 100 6 NaOH 胺基磺酸 銦 — 27. 43 100 7 NaOH 氯化銦 — 29.67 100 8 NaOH 氰化銦 — 14.21 100 本紙張尺度適用中國國家標準(CNS ) A4規格(21 OX 297公釐) (請先閱讀背面之注意事項再填寫本貢)A7 B V. Description of the invention (26) Table 2. Comparison of hydrogen release volume without complexing agent and discharge capacity of experimental battery. Examples of inventions printed by the Ministry of Economic Affairs Central Bureau of Standards Employees Consumer Cooperatives. Release volume ML / g / day Comparison of discharge capacity 1 K0H indium sulfate — 24. 29 100 2 K0H indium sulfamate — 30.51 100 3 K0H indium chloride — 35.40 100 4 K0H indium cyanide — 20. 66 100 5 NaOH indium sulfate ~ 18.11 100 6 NaOH indium sulfamate — 27. 43 100 7 NaOH indium chloride — 29.67 100 8 NaOH indium cyanide — 14.21 100 This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (21 OX 297 Mm) (Please read the notes on the back before filling in this tribute)
bL 、\s° -29 - 五 3 表 明伊發實bL 、 \ s ° -29-5 3 shows that Yi Yi is real
A B 童 容 放 之 池 電 驗實 及 較 比童 出 釋 氫 之 劑 合 錯 解 電質 物 合 化 銦 ftay d 之/ g 出潰/ 電量較 放容比 酸 磺 基 胺銦 鉀 酸 石 酒 酸 磺 基 胺銦 鈉 酸 石 酒 酸 磺 基 胺銦 (請先閲讀背面之注意事項再填寫本頁) 裝. 酸 磺 基 胺銦AB Tong Rong Fang's pool is verified and compared with Tong Rong's hydrogen-releasing agent combined with the misinterpretation of the chemical substance and indium ftay d / g out of the ulcer / the amount of electricity is lower than that of the R-specific acid sulfoamine indium potassium acid tartaric acid Sulfonamide Indium Sodium Tartrate Intarate (Please read the notes on the back before filling this page)
A T D ,ιτ 酸 磺 基 胺銦 .丄 酸 磺 基 胺銦 經濟部中央標準局員工消費合作社印製 酸 磺 基 胺銦 酸 磺 基 胺銦 鉀 化氰 鈉 化氰 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 29"?公釐) -30 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(28 ) 在陽極罐中添加部分電解質液及1 1 6mg將組合劑添 加於氧化銀中所模製之片粒(氧化銀含量9 8%),並放 置聚乙烯隔板及玻璃紙隔板。其次,將耐綸墊料推入陽極 罐中,添加滲透劑,膠凝劑,3 0 mg鋅粉,抑制劑等物, 逐滴添加其餘電解質溶液,並放置陰極密封產生1 〇 〇個 各種鈕扣型氧化銀電池。使用同於例6之鋅及表2之電解 質溶液,製得之電池大小同於S R 6 2 1型。 但是,相對於鋅量之銦添加量爲1 0 0 0 p pm,錯 合劑之添加量爲銦離子莫耳比之2倍。放電特性係使用 2 Ο Ο Ω電阻測量,當電解質溶液爲氫氧化鉀系列時使用 直流電法,或爲氫氧化鈉時使用脈衝法。在所有情況下, 不添加錯合劑者皆視其放電指數爲1 0 0。結果以放電指 數示於表2中。但是,甘胺酸效果極小,而所有試驗錯合 物皆有效果。 基於上述代表性銦化合物及錯合劑實例作說明,若以 例4及5之方式決定電流一電位曲線,則可輕易決定銦化 合物及錯合劑之效果。故其他具有相同效果之銦化合物及 錯合劑亦可應用於本發明。此外,銀電池實例已述於例4 中,但是,即使是使用鋅之鹼性錳電池,空氣電池等亦有 相同效果。 此外,若爲產生之氫量極大的陰極活性材料諸如純鋅 等,則因在表面上有與銦澱積競爭之氫氣產生,故難以形 成均勻膜,故銦澱積效果變小。因此可使用在鋅中添加銦 ,鉍,鉛,鋁,鎵,鈣等物以將氫氣產生抑制至某一程度 本紙張尺度適用中國國家揉準(CNS ) A4规格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝· 訂 -31 - 經濟部中央標準局員工消費合作社印製 A7 __B7 j明説明(29 ) 之陰極活性材料。 \ ^ 在實施例8 — 1 1中,說明使用自銦化合 物’含四價錫之錫化合物及氧化鉛者爲本發明和之效 果。 <實施例8 > 在2 5 m J?體積且加刻度以知氣體產生量之特製試管 中預先添加2 g鮮勞(含有各5 0 0 p pm之以噴霧法製 得之鉍’銦及鉛),及面積0 . 6cm2且厚0 . 1mm之與 集極材料相同的銅片,添加試驗電解質溶液並加熱至6 0 °C,產生之氫氣體積測17—日。 重複試驗1 0次,以其平均值作爲結果。電解質溶液 之製法是,若爲氫氧化鉀系統,則在3 0%重氫氧化鉀溶 液中添加接近飽和之氧化鋅,若爲氫氧化鈉系列,則在 2 5 %重氫氧化鈉溶液中添加接近飽和之氧化鋅,作爲基 質,並添加選自硫盟屬,遐基磺^酸銦,錫鼠鈉及氧化鉛_之. 化合—物。 使用 Nihon Kagaku Sangyo Co.,Ltd.所製之硫酸銦 及錫酸鈉,Nihon Kagaku Sangyo Co.,Ltd.所製之 3 5 %胺基磺酸銦溶液,及Wako Pure Chemical, Ltd.所製之 氧化鉛》化合物添加量相對於電解質溶液爲.1 .0.0 0 B. D...m。結果以氫產生量示於表4中。 本紙張尺度適用中國國家揉準(CNS ) A4规格(210X297公釐) --------{ 裝------訂------{ | (請先閱讀背面之注意事項再填寫本頁) -32 -ATD, ιτ acid sulfonamide indium. Acid sulfonamide indium sulfonamide indium acid sulfonamide indium potassium cyanide sodium cyanide printed by the employee consumer cooperative of the Central Standards Bureau of the Ministry of Economy ) A4 specification (210X 29 "? Mm) -30-A7 B7 printed by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of the invention (28) Add part of the electrolyte solution and 116 mg to the anode canister to add the combination agent to The pellets (silver oxide content 98%) molded in silver oxide are placed with polyethylene separator and cellophane separator. Secondly, push the nylon pad into the anode tank, add penetrant, gelling agent, 30 mg zinc powder, inhibitor, etc., add the remaining electrolyte solution drop by drop, and place the cathode seal to produce 100 various buttons Type silver oxide battery. Using the same zinc solution as in Example 6 and the electrolytic solution in Table 2, the size of the fabricated battery was the same as that of S R 6 21 type. However, the added amount of indium relative to the amount of zinc is 100 ppm, and the added amount of the complexing agent is twice the molar ratio of indium ions. The discharge characteristic is measured using a 2 Ο Ω resistance. The DC method is used when the electrolyte solution is potassium hydroxide series, or the pulse method is used when it is sodium hydroxide. In all cases, those who did not add the complexing agent regarded the discharge index as 100. The results are shown in Table 2 in terms of discharge index. However, the effect of glycine is extremely small, and all test complexes are effective. Based on the above representative examples of indium compounds and complexing agents, if the current-potential curve is determined in the manner of Examples 4 and 5, the effects of the indium compounds and complexing agents can be easily determined. Therefore, other indium compounds and complexing agents having the same effect can also be applied to the present invention. In addition, examples of silver batteries have been described in Example 4, but even alkaline manganese batteries using zinc, air batteries, etc. have the same effect. In addition, if it is a cathode active material with a large amount of generated hydrogen, such as pure zinc, etc., since hydrogen gas that competes with indium deposition is generated on the surface, it is difficult to form a uniform film, so the effect of indium deposition becomes small. Therefore, indium, bismuth, lead, aluminum, gallium, calcium, etc. can be added to zinc to suppress the generation of hydrogen gas to a certain extent. This paper standard is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please first Read the precautions on the back and then fill out this page) Binding · Order -31-A7 __B7 j cathode active material with clear instructions (29) printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. \ ^ In Example 8-11, it is explained that the use of a tin compound containing lead tetravalent tin and lead oxide from an indium compound is the effect of the present invention. < Example 8 > In a special test tube with a volume of 25 m J? and a scale to know the amount of gas produced, 2 g of fresh labor (containing bismuth'indium prepared by spray method at 500 ppm each and Lead), and a copper sheet with the same material as the collector and an area of 0.6 cm2 and a thickness of 0.1 mm. Add the test electrolyte solution and heat to 60 ° C. The volume of hydrogen produced is measured for 17 days. The test was repeated 10 times, and the average value was used as the result. The preparation method of the electrolyte solution is, if it is a potassium hydroxide system, add near-saturated zinc oxide to the 30% potassium hydroxide solution, if it is a sodium hydroxide series, add it to the 25% sodium hydroxide solution Nearly saturated zinc oxide is used as a matrix, and it is added with a compound selected from the group consisting of thiomenium, indium sulfonate, indium tin oxide and lead oxide. Indium sulfate and sodium stannate made by Nihon Kagaku Sangyo Co., Ltd., 35% indium sulfamate solution made by Nihon Kagaku Sangyo Co., Ltd., and made by Wako Pure Chemical, Ltd. The amount of lead oxide added to the electrolyte solution is .1.0.0 0 BD..m. The results are shown in Table 4 as the amount of hydrogen generated. The size of this paper is applicable to the Chinese National Standard (CNS) A4 (210X297mm) -------- {装 装 -------- 定 ------ {| (Please read the notes on the back first Please fill in this page again) -32-
7 7 A B 五、發明説明(30 )7 7 A B V. Description of the invention (30)
/A 經濟部中央標準局員工消費合作社印製/ A Printed by the Employees Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs
表4·實驗電池之氫釋出體積及放電容量比較 發明 實例 硫酸銦 化合物添力 胺基磺酸銦 口量 氧化鉛 錫酸鈉 電解質 浸於電解質 中之銅片數 氫釋出量 H /g/day 放電容量 比較 1 1000 ΚΟΗ 0 37. 86 — 2 1000 ΚΟΗ 0 27. 14 — 3 ΚΟΗ 0 457.-36 — 4 1000 ΚΟΗ 0 26.81 一 5 1000 ΚΟΗ 5 24.29 102 6 1000 ΚΟΗ 5 30.51 102 7 _ ΚΟΗ 上 ..55, 5fi 103 8 1000 ΚΟΗ 5 39. 15 101 9 -500 ^QSL ΚΟΗ 5 ?Λ 43 103 10 500 500 ΚΟΗ 5 35.71 102 11 500 500 ΚΟΗ 5 50.00 103 12 500 500 ΚΟΗ 5 18.57 103 13 500 500 ΚΟΗ 5 46,43 102 14 333 333 333 ΚΟΗ 5 42.86 103 15 333 333 333 ΚΟΗ 5 42.86 103 16 1000 NaOH 0 35.26 — 17 1000 NaOH 0 23.85 — 18 ΛΜϋ NaOH 0 103.45 - 19 1000 NaOH 0 24. 17 — 20 1000 NaOH 5 22.14 102 21 1000 NaOH 5 27.51 102 22 1000 NaOH Λ 48.23 103 23 1000 NaOH 5 35. 12 101 24 500 500 NaOH 5 αβ. 82 100 25 500 500 NaOH 5 31, 48 J02 26 500 500 NaOH 5 44.-22 103 27 500 500 NaOH 5 16.11 103 28 500 500 NaOH 5 39.64 102 29 333 333 333 NaOH 5 37. 26 103 30 333 333 333 NaOH 5 35. 12 103 31 <·- KOH 5 ^6,_63_ li)(L (請先閱讀背面之注意事項再填寫本頁) 聲-Table 4. Comparison of Hydrogen Release Volume and Discharge Capacity of Experimental Cells Inventive Example Indium Sulfate Compound Adding Indium Amino Sulfosulfonate Amount of Lead Oxide Sodium Tin Oxide Electrolyte Copper Pieces Immersed in Electrolyte Hydrogen Release Amount H / g / day discharge capacity comparison 1 1000 ΚΟΗ 0 37. 86 — 2 1000 ΚΟΗ 0 27. 14 — 3 ΚΟΗ 0 457.-36 — 4 1000 ΚΟΗ 0 26.81 1 5 1000 ΚΟΗ 5 24.29 102 6 1000 ΚΟΗ 5 30.51 102 7 _ ΚΟΗ on ..55, 5fi 103 8 1000 ΚΟΗ 5 39. 15 101 9 -500 ^ QSL ΚΟΗ 5? Λ 43 103 10 500 500 ΚΟΗ 5 35.71 102 11 500 500 ΚΟΗ 5 50.00 103 12 500 500 ΚΟΗ 5 18.57 103 13 500 500 ΚΟΗ 5 46,43 102 14 333 333 333 ΚΟΗ 5 42.86 103 15 333 333 333 ΚΟΗ 5 42.86 103 16 1000 NaOH 0 35.26 — 17 1000 NaOH 0 23.85 — 18 ΛΜϋ NaOH 0 103.45-19 1000 NaOH 0 24. 17 — 20 1000 NaOH 5 22.14 102 21 1000 NaOH 5 27.51 102 22 1000 NaOH Λ 48.23 103 23 1000 NaOH 5 35. 12 101 24 500 500 NaOH 5 αβ. 82 100 25 500 500 NaOH 5 31, 48 J02 26 500 500 NaOH 5 44.-22 103 27 500 500 NaOH 5 16.11 103 28 500 500 NaOH 5 39.64 102 29 333 333 333 NaOH 5 37. 26 103 30 333 333 333 NaOH 5 35. 12 103 31 < ·-KOH 5 ^ 6, _63_ li) (L (Please read the precautions on the back before filling in this page) Sound-
L 、τ Γ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -33 - A 7 B7 五、發明説明(31 ) 爲用以比較,同於例8之實驗中不添加銅板之實驗結 果示於表4中之1 — 4及1 6_ 1 9。此外,不添加化合 物之結果示於表4中之3 1中。表4中3 1及表4中1 2 之氫氣產生量相對於試驗日數(組合胺基磺酸銦及氧化鉛 ,氣體產生量少)示於圖5中。已.知不添加北一合i物時,氫 氣產_.生遣祖對於試驗日-數J旨激性增加,且若添加胺基磺酸 銦及氧化農,則氣、激生受Μ制。 如表4中3及4之數據顯示,氧化鉛產生相當大量之 氫氣。此因當鉛澱積時,產生針狀結晶,故不能均勻塗覆 鋅及集極表面。就組合物m言·之,已知i化合物與氧 化_船組^.搜.1」可抑制氫產生,且改善放電特性。 <實施例9 > 經濟部中央標準局負工消費合作社印製 (請先閱讀背面之注意事項再填寫本頁) 在陽極罐中添加部分電解質液及1 1 6mg將組合劑添 加於氧化銀中所模製之片粒(氧化銀含量9 8%),並放 置聚乙烯隔板及玻璃紙隔板。其次,將耐綸墊料推入陽極 罐中,添加滲透劑,膠凝劑,3 0 mg鋅粉,抑制劑等物, 逐滴添加其餘電解質溶液,此液中添加選自硫酸銦,胺基 磺酸銦,錫酸鈉及氧化鉛之化合物,並放置陰極密封產生 1 0 0個各種鈕扣型氧化銀電池。 使用同於例8之鋅及表4之電解質溶液,製得之電池 大小同於SR6 2 1型。但是,相對於鋅量之化合物添加 量爲1 0 0 0 P pm »結果示於表4之放電指數中。放電 特性係使用2 Ο Ο Ω電阻測量,當電解質溶液爲氫氧化鉀 本紙張尺度逋用中國國家揉準(CNS ) A4規格(210X297公釐) -34 — A7 A7 經濟部中央標準局員工消費合作社印製 B7 五、發明説明(32 ) 系列時使用直流電法’或爲氫氧化鈉時使用脈衝法。在所 有情況下,不添加抑制劑者皆視其放電指數爲1 〇 0。如 結果所示,已發現本發明亦有放電特性。 尤其,添加氧化船者之電指數優於其者,因爲針 狀結晶所I之電性接觸已有改善。就組合物言—之,組合銦 化合物〜及、氧剔有-效,可抑—制—氫省產名,並改善放電 楚胜。據推論,顧抑制鋅及集極產生氣體,,而敵_則政善放 —電―特_&。 〈實施例1 〇 > 使用例9方法製備使用可使氫滲透的聚丙烯襯墊的鈕 扣型氧化銀電池。將1 0個所製之氧化銀電池置入位於高 溫槽中且裝有液體石蠟之玻璃容器中,附上頂部具有刻度 之收集管,並測量產生之氫氣量。此狀態在6 0°C保持 20日(據說約相當於一年時間),評估20日後產生之 氫氣量。至於添加化合物,使用相對於鋅重之總濃度爲 lOppm至5%之硫酸銦及氧化鉛(重量比1 : 1)評 估。評估結果示於圖6。根據該圖,已知添加化合物有效 濃度爲50ppm至1%。 聚丙烯襯墊換回耐綸製者,在硫酸銦及氧化鉛濃度爲 5 0 p pm至1 %範圍中產製鈕扣型氧化銀電池,此時產 生之氣體少。同樣將1 0個所製之電池置入位於6 0°C高 溫槽中之填有液體石蠟的玻璃容器中,在頂端附上收集氫 氣用之收集管。在6 0°C經2 0日後未發現產生氫氣,罐 本紙張尺度適用中國國家榡準(CNS ) A4规格(21〇X297公嫠〉 (請先閲讀背面之注意事項再填寫本頁) 訂 -35 - 經濟部中央標準局員工消費合作社印製 Α7 Β7 五、發明説明(33 ) 身膨脹及液體洩露。 而硫酸銦及氧化鉛有效濃度爲5 0 p pm至1%,但 是,藉著調整莫耳數並決定濃度範圍亦可使其他化合物組 合物具相同效果。 實際試製電池時,產生之值小於在實施例8實驗中所 產生之氫氣量。基於此項事實,公認實例8所用之銅片結 構異於實際集極,且產生之氫氣部分因氧化銀還原而消耗 。實例8方法之氫氣產生量相異,但足以用以觀察預測真 實電池中氫氣產生之取代特性的方法》 <實施例1 1 > 使用如例9所特製之使氫滲透之聚丙烯襯墊,產製鈕 扣型氧化銀電池。但是,製得相對於鋅爲5 0 p pm之兩 種電解質溶液硫酸銦及氧化鉛,分兩次改變順序添加。所 製之鈕扣型氧化銀電池以例9方式在6 0°C試驗2 0日。 先添加硫酸銦者之氫產生量爲0 · 1 0 // L/g/d a y ,而先添加氧化鉛者爲Ο · 15;wL/g/day。結果 得知,先添加硫酸銦者對氫氣產生之效果較大^ 根據實例1 2- 1 4,說明同時使用含銦之鋅與一或 多種選自銦化合物,含有四價錫之錫化合物及氧化鉛(作 爲本發明抑制劑)之效果。 <實施例1 2 > 在2 5mj2體積且加刻度以知氣體產生量之特製試管 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝-L, τ Γ This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297mm) -33-A 7 B7 5. Invention description (31) For comparison, the same as the experiment of Example 8 without adding copper plate The experimental results are shown in Table 1-4 and 1-6_19. In addition, the result of not adding the compound is shown in 31 of Table 4. The amount of hydrogen gas generated by 3 1 in Table 4 and 1 2 in Table 4 with respect to the number of test days (combining indium sulfamate and lead oxide with a small amount of gas generated) is shown in FIG. 5. It has been known that the hydrogen production is not produced when the Beiyihe is not added _. Shengqianzu is more irritating to the test day-number J, and if indium amine sulfonate and oxidized agriculture are added, the gas and stimulation are produced . As shown by the data of 3 and 4 in Table 4, lead oxide produces a considerable amount of hydrogen. This is because when lead deposits, needle-like crystals are generated, so the zinc and collector surfaces cannot be uniformly coated. As far as the composition m is concerned, it is known that the i-compound and the oxidation_ship ^ .search.1 "can suppress the generation of hydrogen and improve the discharge characteristics. < Example 9 > Printed by the Consumer Labor Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs (please read the precautions on the back before filling out this page) Add some electrolyte solution and 1 16mg to the anode can to add the combination agent to the silver oxide The pellets (silver oxide content 98%) molded in the middle are placed with polyethylene separator and cellophane separator. Secondly, push the nylon pad into the anode tank, add penetrant, gelling agent, 30 mg zinc powder, inhibitor, etc., and add the rest of the electrolyte solution drop by drop. Compounds of indium sulfonate, sodium stannate and lead oxide, and placed in a cathode seal to produce 100 various button-type silver oxide batteries. Using the same zinc solution as in Example 8 and the electrolyte solution in Table 4, the size of the resulting battery was the same as that of SR621. However, the compound addition amount relative to the zinc amount is 100 0 0 P pm »The results are shown in the discharge index in Table 4. The discharge characteristics are measured using a 2 Ο Ω resistance. When the electrolyte solution is potassium hydroxide, the paper size is based on the China National Standard (CNS) A4 specification (210X297 mm) -34 — A7 A7 Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Print B7 5. Description of invention (32) Use DC method when using series or pulse method when using sodium hydroxide. In all cases, those who did not add inhibitors regarded the discharge index as 100. As shown in the results, it has been found that the present invention also has discharge characteristics. In particular, the electrical index of those who added the oxidation boat is better than that, because the electrical contact of the needle crystal I has been improved. As far as the composition is concerned, the combination of indium compounds ~, and oxygen is effective, can suppress-produce-hydrogen production name, and improve discharge Chu Sheng. It is inferred that Gu suppresses the production of zinc and the gas produced by the collector, while the enemy _ is politically good-electricity _ special _ &. <Example 1 〇> Using the method of Example 9, a button-type silver oxide battery using a polypropylene gasket permeable to hydrogen was prepared. Place 10 silver oxide batteries made in a glass container in a high-temperature bath filled with liquid paraffin, attach a graduated collection tube at the top, and measure the amount of hydrogen produced. This state is maintained at 60 ° C for 20 days (it is said to be approximately equivalent to one year), and the amount of hydrogen generated after 20 days is evaluated. As for the added compound, indium sulfate and lead oxide (weight ratio 1: 1) with a total concentration of 10 ppm to 5% relative to the weight of zinc are used for evaluation. The evaluation results are shown in Figure 6. According to the graph, it is known that the effective concentration of the added compound is 50 ppm to 1%. The polypropylene gasket is replaced by those made of nylon, and the button-type silver oxide battery is produced in the range of indium sulfate and lead oxide with a concentration of 50 p pm to 1%, and little gas is generated at this time. Similarly, 10 batteries were placed in a glass container filled with liquid paraffin in a high-temperature bath at 60 ° C, and a collecting tube for collecting hydrogen gas was attached to the top. No hydrogen is found after 60 days at 60 ° C. The paper size of the tank is applicable to the Chinese National Standard (CNS) A4 (21〇X297). (Please read the precautions on the back and fill in this page) Order- 35-Printed Α7 Β7 by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of the invention (33) Body swelling and liquid leakage. The effective concentration of indium sulfate and lead oxide is 50 p pm to 1%, but, by adjusting The number of ears and the determination of the concentration range can also make other compound compositions have the same effect. When the actual trial battery was produced, the value produced was less than the amount of hydrogen produced in the experiment of Example 8. Based on this fact, it is recognized that the copper sheet used in Example 8 The structure is different from the actual collector, and the generated hydrogen is partially consumed by the reduction of silver oxide. The amount of hydrogen generated by the method of Example 8 is different, but it is sufficient to observe the method of predicting the substitution characteristics of hydrogen generated in a real battery. 1 1 > Using a polypropylene gasket made of hydrogen permeable as in Example 9, a button-type silver oxide battery was produced. However, two electrolyte solutions of 50 p pm relative to zinc were prepared, indium sulfate and oxygen Lead is added in two changes in sequence. The button-shaped silver oxide battery produced was tested at 60 ° C for 20 days in the manner of Example 9. The hydrogen generation amount of the first added indium sulfate was 0 · 1 0 // L / g / day, and the first to add lead oxide is Ο · 15; wL / g / day. The result shows that the effect of adding indium sulfate first to hydrogen gas is greater ^ According to Examples 1 2- 1 4, it shows that the use of indium-containing The effect of zinc and one or more compounds selected from indium compounds, tin compounds containing tetravalent tin and lead oxide (as the inhibitor of the present invention). ≪ Example 1 2 > At a volume of 25 mj2 and a scale to know the gas generation The size of the special test tube paper is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the precautions on the back before filling this page).
、1T -36 - A7 B7 五、發明説明() 34 中預先添加2 g以噴霧法製得之鋅粉(含有各5 0 0 Ppm之銦),及面積0 . 6cnf且厚0 . 1mm之與集極 材料相同的銅片,添加試驗電解質溶液並加熱至6 0°C, 產生之氫氣體積測量7日。重複試驗1 0次,以其平均值 作爲結果。電解質溶液之製法是,若爲氫氧化鉀系統,貝IJ 在3 0%重氫氧化鉀溶液中添加接近飽和之氧化鋅,若爲 氫氧化鈉系列,則在2 5 %重氫氧化鈉溶液中添加接近飽 和之氧化鋅,作爲基質,並添加本發明抑制劑諸如一氧化 鉛等。 表5中,顯示鋅粉中之銦添加量及產生之氫量相對於 一氧化鉛添加量之值。一氧化鉛添加量以相對於電解質溶 液之p pm表示。氫氣產生量之結果亦示於表5中。 (請先閲讀背面之注意事項再填寫本頁) -s 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) -37 - A7 B7 五、發明説明(35 ) 經濟部中央標準局員工消費合作社印製 表 5 .鋅粉產生之氫體稹 實驗 編號 電解質 鋅粉中銦 之含置 ppm 電解質中 P b 0之漢度 ppm 榑出氫之 體稹 ML/g/day 1 Κ 0 Η 2 0 0 0 6 0 3. 3 1 2 Κ 0 Η 2 0 0 10 3 9 8. 8 8 3 Κ 0 Η 2 0 0 5 0 10 2. 56 4 Κ 0 Η 2 0 0 10 0 14.29 5 Κ 0 Η 2 0 0 5 0 0 8 7.01 6 Κ 0 Η 2 0 0 10 0 0 10 5. 70 7 Κ 0 Η 2 0 0 5 0 0 0 12 2.43 8 Κ 0 Η 5 0 0 0 5 16. 92 9 Κ 0 Η 5 0 0 10 3 0.01 10 Κ 0 Η 5 0 0 5 0 2 0.13 11 Κ 0 Η 5 0 0 10 0 6.21 12 Κ 0 Η 5 0 0 5 0 0 14.73 13 Κ 0 Η 5 0 0 10 0 0 4 0.56 14 Κ 0 Η 5 0 0 5 0 0 0 14 3.32 15 Κ 0 Η 18 0 0 0 9 9.21 16 Κ 0 Η 18 0 0 10 10.05 17 Κ 0 Η 18 0 0 5 0 5.33 18 Κ 0 Η 18 0 0 10 0 5.05 19 Κ 0 Η 18 0 0 5 0 0 10.11 2 0 Κ 0 Η 18 0 0 10 0 0 3 1.01 2 1 Κ 0 Η 18 0 0 5 0 0 0 14 2.58 2 2 Ν a 0 Η 2 0 0 0 5 5.01 2 3 Ν a 0 Η 2 0 0 10 3 2 7.3 8 2 4 Ν a 0 Η 2 0 0 5 0 7 0.25 2 5 Ν a 0 Η 2 0 0 10 0 10.67 2 6 Ν a 0 Η 2 0 0 5 0 0 6 2.98 2 7 Ν a 0 Η 2 0 0 10 0 0 8 5.22 2 8 Ν a 0 Η 2 0 0 5 0 0 0 110. 12 2 9 Ν a 0 Η 5 0 0 0 5 0 1. 3 9 3 0 Ν a 0 Η 5 0 0 10 2 5.52 3 1 Ν a 0 Η 5 0 0 5 0 16.33 3 2 Ν a 0 Η 5 0 0 10 0 3.99 3 3 Ν a 0 Η 5 0 0 5 0 0 9.63 3 4 Ν a 0 Η 5 0 0 10 0 0 2 5.42 3 5 Ν a 0 Η 5 0 0 5 0 0 0 10 3.44 3 6 Ν a 0 Η 18 0 0 0 8 2.54 3 7 Ν a 0 Η 18 0 0 10 10.11 3 8 Ν a 0 Η 18 0 0 5 0 4.87 3 9 Ν a 0 Η 18 0 0 10 0 4.51 4 0 Ν a 0 Η 18 0 0 5 0 0 8.73 4 1 Ν a 0 Η 18 0 0 10 0 0 2 4.42 4 2 Ν a 0 Η 18 0 0 5 0 0 0 12 1.12 { 裝-- (請先閱讀背面之注意事項再填寫本頁), 1T -36-A7 B7 5. Description of invention () 34 pre-add 2 g of zinc powder (containing indium of each 500 Ppm) prepared by spray method, and the area of 0.6cnf and thickness of 0.1mm Copper sheet with the same polar material, add test electrolyte solution and heat to 60 ° C, and measure the volume of generated hydrogen for 7 days. The test was repeated 10 times, and the average value was used as the result. The preparation method of the electrolyte solution is that if it is a potassium hydroxide system, Bayi IJ adds near-saturated zinc oxide to a 30% potassium hydroxide solution, and if it is a sodium hydroxide series, it is added to a 25% sodium hydroxide solution Nearly saturated zinc oxide is added as a matrix, and the inhibitor of the present invention such as lead monoxide is added. Table 5 shows the values of the amount of indium added in the zinc powder and the amount of hydrogen generated relative to the amount of lead monoxide added. The amount of lead monoxide added is expressed in p pm relative to the electrolyte solution. The results of hydrogen generation are also shown in Table 5. (Please read the precautions on the back before filling in this page) -s The paper standard printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs is applicable to the Chinese National Standard (CNS) A4 (210X297mm) Description of the invention (35) Printed by the Consumers ’Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Hydrogen gas produced by zinc powder Experiment No. Content of indium contained in electrolyte zinc powder ppm Pb 0 in the electrolyte. Zhen ML / g / day 1 Κ 0 Η 2 0 0 0 6 0 3. 3 1 2 Κ 0 Η 2 0 0 10 3 9 8. 8 8 3 Κ 0 Η 2 0 0 5 0 10 2. 56 4 Κ 0 Η 2 0 0 10 0 14.29 5 Κ 0 Η 2 0 0 5 0 0 8 7.01 6 Κ 0 Η 2 0 0 10 0 0 10 5. 70 7 Κ 0 Η 2 0 0 5 0 0 0 12 2.43 8 Κ 0 Η 5 0 0 0 5 16. 92 9 Κ 0 Η 5 0 0 10 3 0.01 10 Κ 0 Η 5 0 0 5 0 2 0.13 11 Κ 0 Η 5 0 0 10 0 6.21 12 Κ 0 Η 5 0 0 5 0 0 14.73 13 Κ 0 Η 5 0 0 10 0 0 4 0.56 14 Κ 0 Η 5 0 0 5 0 0 0 14 3.32 15 Κ 0 Η 18 0 0 0 9 9.21 16 Κ 0 Η 18 0 0 10 10.05 17 Κ 0 Η 18 0 0 5 0 5.33 18 Κ 0 Η 18 0 0 10 0 5.05 19 Κ 0 Η 18 0 0 5 0 0 10.11 2 0 Κ 0 Η 18 0 0 10 0 0 3 1.01 2 1 Κ 0 Η 18 0 0 5 0 0 0 14 2.58 2 2 Ν a 0 Η 2 0 0 0 5 5.01 2 3 Ν a 0 Η 2 0 0 10 3 2 7.3 8 2 4 Ν a 0 Η 2 0 0 5 0 7 0.25 2 5 Ν a 0 Η 2 0 0 10 0 10.67 2 6 Ν a 0 Η 2 0 0 5 0 0 6 2.98 2 7 Ν a 0 Η 2 0 0 10 0 0 8 5.22 2 8 Ν a 0 Η 2 0 0 5 0 0 0 110. 12 2 9 Ν a 0 Η 5 0 0 0 5 0 1. 3 9 3 0 Ν a 0 Η 5 0 0 10 2 5.52 3 1 Ν a 0 Η 5 0 0 5 0 16.33 3 2 Ν a 0 Η 5 0 0 10 0 3.99 3 3 Ν a 0 Η 5 0 0 5 0 0 9.63 3 4 Ν a 0 Η 5 0 0 10 0 0 2 5.42 3 5 Ν a 0 Η 5 0 0 5 0 0 0 10 3.44 3 6 Ν a 0 Η 18 0 0 0 8 2.54 3 7 Ν a 0 Η 18 0 0 10 10.11 3 8 Ν a 0 Η 18 0 0 5 0 4.87 3 9 Ν a 0 Η 18 0 0 10 0 4.51 4 0 Ν a 0 Η 18 0 0 5 0 0 8.73 4 1 Ν a 0 Η 18 0 0 10 0 0 2 4.42 4 2 Ν a 0 Η 18 0 0 5 0 0 0 12 1.12 { Install-(please read the notes on the back before filling this page)
、1T 本紙張尺度適用中國國家標準(CNS〉A4規格(210X297公釐) -38 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(36 ) 氫氧化鉀系列之電解質溶液中之氫氣產生結果示於圖 7 *圖中1爲使用添加2 0 0 p pm銦之鋅粉的情況,而 添加約1 0 0 — 4 0 0 p pm氧化鉛時有抑制氫產生之效 果。2爲使用添加5 0 0 p pm銦之鋅粉的情況,而一氧 化鉛之添加量不少於1 0 P P m時有抑制氫產生之效果。 3爲使用添加1 8 0 0 P pm銦之鋅粉的情況,而濃度範 圍同於2時有效。尤其是添加高濃度銦時,一氧化鉛添加 量不大於1 0 0 P pm時之效果極明顯,故可減少環境污 染物質鉛之添加量》 <實施例Γ 3 > 在陽極罐中添加部分電解質液及1 1 6mg將組合劑添 加於氧化銀中所模製之片粒(氧化銀含量9 8%),並放 置聚乙烯隔板及玻璃紙隔板。其次,將耐綸墊料推入陽極 罐中,添加滲透劑,膠凝劑,30mg鋅粉,抑制劑等物, 逐滴添加其餘電解質溶液,並放置陰極密封產生1 0 0個 各種鈕扣型氧化銀電池。電池尺寸同於SR6 2 1型。再 製得電解質溶液使一氧化鉛添加量爲鋅量。在6 0°C儲存 2 0日,自身放電率之測量結果示於表6。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝· 五、發明説明(37 ) A7 B7 經濟部中央標準局員工消費合作社印製 表 6 •電池自身放電率及氫釋出率 實驗 編號 電解 質 鋅粉 ΐ 銦之去 置 ppm 電解質中 P b 0添加童 (P b 0重對鋅 重 ) ppm 自身 放電 率 % 1祟M之 ML/g/day 1 Κ 0 Η 2 0 0 0 12.1 1.23 2 Κ 0 Η 2 0 0 10 9 . 9 0.95 3 Κ 0 Η 2 0 0 5 0 7 . 4 0.88 4 Κ 0 Η 2 0 0 10 0 4 . 1 0.50 5 Κ 0 Η 2 0 0 5 0 0 8 . 7 0.71 6 Κ 0 Η 2 0 0 10 0 0 9 . 1 0.91 7 Κ 0 Η 2 0 0 5 0 0 0 15.8 1.56 8 Κ 0 Η 5 0 0 0 11.2 1.11 9 Κ 0 Η 5 0 0 10 4 . 2 0.56 10 Κ 0 Η 5 0 0 5 0 3 . 5 0.41 11 Κ 0 Η 5 0 0 10 0 2 . 5 0.35 12 Κ 0 Η 5 0 0 5 0 0 2 . 9 0.32 13 Κ 0 Η 5 0 0 10 0 0 3 . 6 0.47 14 Κ 0 Η 5 0 0 5 0 0 0 18.9 1.49 15 Κ 0 Η 18 0 0 0 10.3 1.02 16 Κ 0 Η 18 0 0 10 2 . 2 0.30 1 7 Κ 0 Η 18 0 0 5 0 1 . 7 0.25 18 Κ 0 Η 18 0 0 10 0 1 . 5 0.22 19 Κ 0 Η 18 0 0 5 0 0 2 . 1 0.28 2 0 Κ 0 Η 18 0 0 10 0 0 3 . 7 0.39 2 1 Κ 0 Η 18 0 0 5 0 0 0 16.6 1.70 2 2 Ν a 0 Η 2 0 0 0 10.3 1.15 2 3 Ν a 0 Η 2 0 0 10 8 . 2 0.90 2 4 Ν a 0 Η 2 0 0 5 0 6 . 5 0.74 2 5 Ν a 0 Η 2 0 0 10 0 3 . 3 0.42 2 6 Ν a 0 Η 2 0 0 5 0 0 7 . 5 0.72 2 7 Ν a 0 Η 2 0 0 10 0 0 8 . 1 0.86 2 8 Ν a 0 Η 2 0 0 5 0 0 0 13.2 1.35 2 9 Ν a 0 Η 5 0 0 0 10.2 1.00 3 0 Ν a 0 Η 5 0 0 10 4 . 0 0.44 3 1 Ν a 0 Η 5 0 0 5 0 2 . 9 0.32 3 2 Ν a 0 Η 5 0 0 10 0 2 . 2 0.30 3 3 Ν a 0 Η 5 0 0 5 0 0 2 3 0.29 3 4 Ν a 0 Η 5 0 0 10 0 0 3 . 1 0.48 3 5 Ν a 0 Η 5 0 0 5 0 0 0 16.7 1.38 3 6 Ν a 0 Η 18 0 0 0 8 . 9 0.90 3 7 Ν a 0 Η 18 0 0 10 1 . 9 0.31 3 8 Ν a 0 Η 18 0 0 5 0 1 . 3 0.21 3 9 Ν a 0 Η 18 0 0 10 0 0 . 9 0.19 4 0 Ν a 0 Η 18 0 0 5 0 0 1 . 5 0.25 4 1 Ν a 0 Η 18 0 0 10 0 0 2 . 9 0.33 4 2 Ν a 0 Η 18 0 0 5 0 0 0 12.3 1.54 ( 裝 訂 { (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4规格(210X 297公釐) -40 - 經濟部中央標準局員工消費合作社印製 A7 _B7______ 五、發明说明(38 ) 如其結果所示,已知若爲添加5 0 0 P pm銦之鋅粉 ,則1 0 0_ 1 0 0 0 p pm之一氧化鉛添加量可抑制電 池容量減低,若爲添加1 8 0 0 p p m銦之鋅粉,則1 0 一 1 0 0 0 P pm —氧化鉛即可。添加高濃度一氧化鉛時 之電池容量減低係因在過量添加時產生鉛之針狀結晶,故 可能造成短路。 <實施例1 4 > 使用例1 3方法製備使用可使氫滲透的聚丙烯襯墊的 鈕扣型氧化銀電池。將1 0個所製之氧化銀電池置入位於 高溫槽中且裝有液體石蠟之玻璃容器中,附上頂部具有刻 度之收集管,並測量產生之氫氣量。此狀態在6 0°C保持 20日(據說約相當於一年時間),評估20日後產生之 氫氣量。結果示於表6。 由實例得知,電解質溶液之氫氣產生溫和且氫氧化鈉 系列者之自身放電亦少於氫氧化鉀系列者。此外,鋅粉中 銦含量愈高,則結果愈佳,一氧化鉛之添加量愈少。 實際試產電池時,產生之值小於例1 2之實驗中之氫 氣產生量。因爲例1 2所用之銅片異於實際集極之結構, 產生之氫氣部分因氧化銀還原等因素而消耗。 例1 2之方法之氫氣產生量有異,但足以作爲預測實 際電池氫氣產生量所用之觀察取代特性的方法。 相同實驗亦用於銦化合物,含四價錫之錫化合物,及 其除一氧化鉛外之混合物。結果實質同於一氧化鉛者,已 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝. 訂 -41 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(3g) 發現電池能力之減低,在添加5 0 0 p pm銦之鋅粉情況 下可添加1 0 0 - 1 0 0 0 P pm抑制劑,而在添加 1 8 0 0 P pm銦之鋅粉的情況下,可添加1 〇 — 1 0 0 0 P P m抑制劑抑制。 實施例1 5 — 1 7說明使用含有不多於4 p pm鐵及 一或多.種選自銦化合物,含四價錫之錫化合物,及氧化錯 中之化合物作爲本發明抑制劑之鋅時的效果。 <實施例1 5 > 使用含有lOOppm噴霧法所製之鎵,200 ppm銦,500ppm鉛及450ppm銀,且另含5 p p m鐵之鋅粉。鋅粉中鐵濃度藉磁石移除而調整。去除 鐵後之濃度以原子吸收法確認。 氫氣產生試驗係在2 體積且加刻度以知氣體產 生量之特製試管中預先添加2 g鋅粉,及面積0 · 6 cm2 且厚0 · lmra之與集極材料相同的銅片,添加試驗電解質 溶液並加熱至6 0 °C,產生之氫氣體積測量7日。重複試 驗1 0次,以其平均值作爲結果。電解質溶液之製法是, 若爲氫氧化鉀系統,則在3 0%重氫氧化鉀溶液中添加接 近飽和之氧化鋅,若爲氫氧化鈉系列,則在2 5 %重氫氧 化鈉溶液中添加接近飽和之氧化鋅,作爲基質,並添加一 氧化鉛等物作爲抑制劑。 鋅粉中之鐵濃度及相對於抑制劑添加量的氫氣產生量 示於表7。抑制劑添加量以相對於電解質溶液之p P m表 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先聞讀背面之注意事項再填寫本頁) •裝. 訂 A7 B7 五、發明説明(40 ) 示。氫產生量之結果亦示於表7中。 (請先閱讀背面之注意事項再填寫本頁) 裝 -s 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 43 - 經濟部中央標準局員工消費合作社印製 2 ⑽ 5 Ο 8 Α7 Β7 五、發明説明(41 ) 表 7 · 鋅粉產生之氫速率 實驗 編號 電解質 鋅粉中銦 之含重 ppm 電解質中 P b 0之澳度 ppm 氫釋出之 速率 ML/g/day 1 K 0 Η 5 5 0 5 7 0. 0 0 2 Κ 0 Η 5 10 0 5 3.75 3 Κ 0 Η 5 5 0 0 5 6.25 4 Κ 0 Η 5 10 0 0 7 9.29 5 Κ 0 Η 5 5 0 0 0 12 0. 85 6 Κ 0 Η 5 0 15 8.92 7 Κ 0 Η 5 10 2 8 4.2 8 8 Κ 0 Η 4 5 0 5 0 8.9 4 Θ Κ 0 Η 4 10 0 2 1.14 10 Κ 0 Η 4 5 0 16.13 11 Κ 0 Η 4 10 0 2 0.15 12 Κ 0 Η 4 5 0 0 4 5.21 13 Κ 0 Η 4 10 0 0 5 0.56 14 Κ 0 Η 4 5 0 0 0 2 0 1.73 15 Κ 0 Η 2 0 5 16.92 16 Κ 0 Η 2 10 12.50 17 Κ 0 Η 2 5 0 12.50 18 Κ 0 Η 2 10 0 14.29 1 9 Κ 0 Η 2 5 0 0 3 0.21 2 0 Κ 0 Η 2 10 0 0 5 3.57 2 1 Κ 0 Η 2 5 0 0 0 16 2.85 2 2 Ν a 0 Η 5 0 4 2 3. 8 5 2 3 Ν a 0 Η 5 10 4 2.36 2 4 Ν a 0 Η 5 5 0 4 0.23 2 5 Ν a 0 Η 5 10 0 6 6.34 2 6 Ν a 0 Η 5 5 0 0 10 0.25 2 7 Ν a 0 Η 5 10 0 0 13 2.58 2 8 Ν a 0 Η 5 5 0 0 0 2 7 8.9 0 2 9 Ν a 0 Η 4 0 3 9 6.3 7 3 0 Ν a 0 Η 4 10 19.36 3 1 Ν a 0 Η 4 5 0 12.72 3 2 Ν a 0 Η 4 10 0 15.64 3 3 Ν a 0 Η 4 5 0 0 3 8.38 3 4 Ν a 0 Η 4 10 0 0 4 7.25 3 5 Ν a 0 Η 4 5 0 0 0 19 0. 01 3 6 Ν a 0 Η 2 0 4 3.56 3 7 Ν a 0 Η 2 10 11.23 3 8 Ν a 0 Η 2 5 0 10.12 3 9 Ν a 0 Η 2 10 0 12.93 4 0 Ν a 0 Η 2 5 0 0 2 7.81 4 1 Ν a 0 Η 2 10 0 0 4 2.21 4 2 Ν a 0 Η 2 5 0 0 0 13 0.10 --------(裝------訂------{ I (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -44 - 經濟部中央橾準局員工消費合作社印製 A7 B7 五、發明説明(42 ) 氫氧化鉀系列之電解質溶液中之氫氣產生結果示於圖 8。圖中1爲使用含有5 p pm鐵之鋅粉的情況,此者產 生之氫氣通常大於其他二者。2爲使用含4 p pm鐵之鋅 粉的情況,而一氧化鉛之添加量不少於1 0 P pm時有抑 制氫產生之效果。3爲使用含2 p pm鐵之鋅粉的情況, 而濃度範圍同於2時有效》尤其是鐵雜質不大於4 p pm 時,一氧化鉛添加量不大於1 0 0 P pm時之效果極明顯 ,故可減少環境污染物質鉛之添加量。 本例係以磁石去除鐵且使鐵濃度降低,但是,亦可使 用在鋅粉產製步驟中以純化去除鐵之鋅作爲鋅粉,得到實 質相同的結果。 <實施例1 6 > 在陽極罐中添加部分電解質液及1 1 6mg將組合劑添 加於氧化銀中所模製之片粒(氧化銀含量9 8%),並放 置聚乙烯隔板及玻璃紙隔板。其次,將耐綸墊料推入陽極 罐中,添加滲透劑,膠凝劑,30呢鋅粉,抑制劑等物, 逐滴添加其餘電解質溶液,並放置陰極密封產生1 〇 〇個 各種鈕扣型氧化銀電池。製得之電池大小同於S R 6 2 1 型。再製得電解質溶液,使一氧化鉛添加量爲相對於鋅量 之量。 在60 °C儲存20日(據說相當於在室溫1年),測 量自身放電率,結果示於表8。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公嫠1 (請先閱讀背面之注意事項再填寫本頁) 裝. 訂 -45 - ,^ A7B7 經濟部中央標準局員工消費合作社印製 五、發明説明(43 ) 表 8 •電池自身放電率及氫釋出率 實驗 編號 電解 質 鋅粉宁 銦之含 童 ppm 電解質中 P b 0之潰度 ppm 自身 放髦 率 % 氫釋出之 速率 KL/g/day 1 K 0 Η 5 0 13.2 0.98 2 Κ 0 Η 5 10 8 . 7 0.76 3 Κ 0 Η 5 5 0 7 . 2 0.79 4 Κ 0 Η 5 1 0 0 4 . 0 0.48 5 Κ 0 Η 5 5 0 0 8 . 6 0.64 6 Κ 0 Η 5 10 0 0 8 . 5 0.77 7 Κ 0 Η 5 5 0 0 0 16.2 1.48 8 Κ 0 Η 4 0 13.0 0.89 9 Κ 0 Η 4 10 3 . 8 0.45 10 Κ 0 Η 4 5 0 3 . 5 0.37 11 Κ 0 Η 4 10 0 2 . 2 0.33 12 Κ 0 Η 4 5 0 0 2 . 8 0.29 13 Κ 0 Η 4 10 0 0 3 . 9 0.40 14 Κ 0 Η 4 5 0 0 0 17.6 1.42 15 Κ 0 Η 2 0 11.0 0.82 16 Κ 0 Η 2 10 2 . 2 0.24 17 Κ 0 Η 2 5 0 1 . 5 0.23 18 Κ 0 Η 2 10 0 1 . 4 0.21 19 Κ 0 Η 2 5 0 0 2 . 2 0.25 2 0 Κ 0 Η 2 10 0 0 3 . 5 0.33 2 1 Κ 0 Η 2 5 0 0 0 17.2 1.62 2 2 Ν a 0 Η 5 0 10.1 0.92 2 3 Ν a 0 Η 5 10 8 . 0 0.72 2 4 Ν a 0 Η 5 5 0 5 . 5 0.67 2 5 Ν a 0 Η 5 10 0 4 . 1 0.40 2 6 Ν a 0 Η 5 5 0 0 7 . 4 0.65 2 7 Ν a 0 Η 5 10 0 0 7 . 2 0.73 2 8 Ν a 0 Η 5 5 0 0 0 14.2 1.28 2 9 Ν a 0 Η 4 0 9 . 2 0.80 3 0 Ν a 0 Η 4 10 3 . 7 0.35 3 1 Ν a 0 Η 4 5 0 2 . 0 0.29 3 2 Ν a 0 Η 4 10 0 2 . 0 0.29 3 3 Ν a 0 Η 4 5 0 0 2 . 2 0.26 3 4 Ν a 0 Η 4 10 0 0 3 . 2 0.41 3 5 Ν a 0 Η 4 5 0 0 0 15.2 1.31 3 6 Ν a 0 Η 2 0 7 . 1 0.72 3 7 Ν a 0 Η 2 10 1 . 5 0.25 3 8 Ν a 0 Η 2 5 0 0 . 8 0.19 3 9 Ν a 0 Η 2 10 0 0 . 7 0.18 4 0 Ν a 0 Η 2 5 0 0 1 . 1 0.23 4 1 Ν a 0 Η 2 10 0 0 2 . 9 0.28 4 2 Ν a 0 Η 2 5 0 0 0 9 . 8 1.46 { 裝 訂 ^ ^ (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 一 46 - 經濟部中央標準局貝工消費合作社印製 A7 B7 五、發明説明(44 ) 結果顯示,使用鐵含量不大於4 p pm之鋅粉時,在 電池中添加1 0_ 1 0 0 P pm —氧化鉛即可將自身放電 率抑制在不大於4 %。添加高濃度一氧化鉛使電池容量減 低之原因是在過量添加時產生鉛之針狀結晶,故可能造成 短路。 <實施例1 7 > 使用例1 6方法製備使用可使氫滲透的聚丙烯襯墊的 鈕扣型氧化銀電池。將1 0個所製之氧化銀電池置入位於 高溫槽中且裝有液體石蠟之玻璃容器中,附上頂部具有刻 度之收集管,並測量產生之氫氣量。此狀態在6 0°C保持 20日(據說約相當於一年時間),評估20日後產生之 氫氣量。結果示於表8。 由實例得知,電解質溶液之氫氣產生溫和且氫氧化鈉 系列者之自身放電亦少於氫氧化鉀系列者。此外,鋅粉中 銦含量愈高,則結果愈佳,一氧化鉛之添加量愈少。 實際試產電池時,產生之值小於例1 5之實驗中之氫 氣產生量。因爲例1 5所用之銅片異於實際集極之結構, 產生之氫氣部分因氧化銀還原等因素而消耗。 例1 5之方法之氫氣產生量有異,但足以作爲預測實 際電池氫氣產生量所用之觀察取代特性的方法。 相同實驗亦用於銦化合物,含四價錫之錫化合物,及 其除一氧化鉛外之混合物。結果實質同於一氧化鉛者,已 發現電池能力之減低,添加1 0 - 1 0 0 〇 p pm抑制劑 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝i、 1T This paper scale is applicable to Chinese national standard (CNS> A4 specification (210X297mm) -38-A7 B7 printed by the employee consumer cooperative of the Central Standards Bureau of the Ministry of Economic Affairs V. Invention description (36) Among the electrolyte solutions of potassium hydroxide series The result of hydrogen generation is shown in Fig. 7 * 1 in the figure is the case of using zinc powder with the addition of 2 0 0 p pm indium, while adding about 1 0 0 — 4 0 0 p pm lead oxide has the effect of suppressing the generation of hydrogen. 2 is In the case of using zinc powder with addition of 5 0 0 p pm indium, and the addition of lead monoxide is not less than 10 PP m, it has the effect of suppressing the generation of hydrogen. 3 is the use of zinc powder with addition of 1 8 0 0 pm pm indium. In the case of the same concentration range, it is effective when the concentration range is 2. Especially when adding high concentration of indium, the effect of the addition of lead monoxide is not more than 100 P pm, so it can reduce the amount of environmental pollutant lead. "& Lt Example Γ 3 > A part of the electrolyte solution and 116 mg added to the anode can were added to the silver oxide molded pellets (silver oxide content 98%), and a polyethylene separator and cellophane were placed Separator. Secondly, push nylon padding into the anode tank and add penetrant Gelling agent, 30mg zinc powder, inhibitors, etc., add the remaining electrolyte solution drop by drop, and place the cathode to seal to produce 100 various button-type silver oxide batteries. The battery size is the same as SR6 2 1. The electrolyte solution is prepared The amount of lead monoxide added is the amount of zinc. Storage at 60 ° C for 20 days, the measurement results of the self-discharge rate are shown in Table 6. This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X 297mm) (please Read the precautions on the back before filling in this page) Fifth, the description of the invention (37) A7 B7 Printed form 6 of the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs • Battery self-discharge rate and hydrogen release rate experiment number Electrolyte zinc powder Indium is removed in ppm. Pb 0 is added to the electrolyte. (P b 0 weight to zinc weight) ppm Self-discharge rate% 1 ML of ML / g / day 1 Κ 0 Η 2 0 0 0 12.1 1.23 2 Κ 0 Η 2 0 0 10 9. 9 0.95 3 Κ 0 Η 2 0 0 5 0 7. 4 0.88 4 Κ 0 Η 2 0 0 10 0 4. 1 0.50 5 Κ 0 Η 2 0 0 5 0 0 8. 7 0.71 6 Κ 0 Η 2 0 0 10 0 0 9. 1 0.91 7 Κ 0 Η 2 0 0 5 0 0 0 15.8 1.56 8 Κ 0 Η 5 0 0 0 11.2 1.11 9 Κ 0 Η 5 0 0 10 4. 2 0.56 10 Κ 0 Η 5 0 0 5 0 3. 5 0.41 11 Κ 0 Η 5 0 0 10 0 2. 5 0.35 12 Κ 0 Η 5 0 0 5 0 0 2. 9 0.32 13 Κ 0 Η 5 0 0 10 0 0 3. 6 0.47 14 Κ 0 Η 5 0 0 5 0 0 0 18.9 1.49 15 Κ 0 Η 18 0 0 0 10.3 1.02 16 Κ 0 Η 18 0 0 10 2. 2 0.30 1 7 Κ 0 Η 18 0 0 5 0 1. 7 0.25 18 Κ 0 Η 18 0 0 10 0 1. 5 0.22 19 Κ 0 Η 18 0 0 5 0 0 2. 1 0.28 2 0 Κ 0 Η 18 0 0 10 0 0 3. 7 0.39 2 1 Κ 0 Η 18 0 0 5 0 0 0 16.6 1.70 2 2 Ν a 0 Η 2 0 0 0 10.3 1.15 2 3 Ν a 0 Η 2 0 0 10 8. 2 0.90 2 4 Ν a 0 Η 2 0 0 5 0 6. 5 0.74 2 5 Ν a 0 Η 2 0 0 10 0 3. 3 0.42 2 6 Ν a 0 Η 2 0 0 5 0 0 7. 5 0.72 2 7 Ν a 0 Η 2 0 0 10 0 0 8. 1 0.86 2 8 Ν a 0 Η 2 0 0 5 0 0 0 13.2 1.35 2 9 Ν a 0 Η 5 0 0 0 10.2 1.00 3 0 Ν a 0 Η 5 0 0 10 4. 0 0.44 3 1 Ν a 0 Η 5 0 0 5 0 2. 9 0.32 3 2 Ν a 0 Η 5 0 0 10 0 2. 2 0.30 3 3 Ν a 0 Η 5 0 0 5 0 0 2 3 0.29 3 4 Ν a 0 Η 5 0 0 10 0 0 3. 1 0.48 3 5 Ν a 0 Η 5 0 0 5 0 0 0 16.7 1.38 3 6 Ν a 0 Η 18 0 0 0 8. 9 0.90 3 7 Ν a 0 Η 18 0 0 10 1. 9 0.31 3 8 Ν a 0 Η 18 0 0 5 0 1. 3 0.21 3 9 Ν a 0 Η 18 0 0 10 0 0. 9 0.19 4 0 Ν a 0 Η 18 0 0 5 0 0 1 . 5 0.25 4 1 Ν a 0 Η 18 0 0 10 0 0 2. 9 0.33 4 2 Ν a 0 Η 18 0 0 5 0 0 0 12.3 1.54 (binding {(please read the precautions on the back before filling this page) This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X 297mm) -40-Printed by A7 _B7______ by the Employees ’Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 5. Description of the invention (38) 5 0 0 P pm zinc powder of indium, then 1 0 0_ 1 0 0 0 p pm One of the lead oxide additions can suppress the reduction of battery capacity. If it is 1 800 0 ppm indium zinc powder, then 1 0 1 1 0 0 0 P pm-Lead oxide is enough. The reduction in battery capacity when high concentrations of lead monoxide are added is due to the formation of needle-like crystals of lead when excessively added, which may cause a short circuit. < Example 1 4 > Using the method of Example 1 3, a button-type silver oxide battery using a polypropylene gasket permeable to hydrogen was prepared. Place 10 silver oxide batteries prepared in a high-temperature bath in a glass container filled with liquid paraffin, attach a graduated collecting tube at the top, and measure the amount of hydrogen produced. This state is maintained at 60 ° C for 20 days (it is said to be approximately equivalent to one year), and the amount of hydrogen generated after 20 days is evaluated. The results are shown in Table 6. It is known from the examples that the hydrogen produced by the electrolyte solution is mild and the self-discharge of the sodium hydroxide series is also less than that of the potassium hydroxide series. In addition, the higher the indium content in the zinc powder, the better the result, and the smaller the amount of lead monoxide added. When the battery was actually trial-produced, the generated value was less than the amount of hydrogen gas generated in the experiment of Example 12. Because the copper sheet used in Example 12 is different from the actual collector structure, the generated hydrogen is partially consumed due to factors such as silver oxide reduction. The method of Example 12 has different hydrogen production, but it is sufficient as a method for observing the substitution characteristics used to predict the actual hydrogen production of batteries. The same experiment is also used for indium compounds, tin compounds containing tetravalent tin, and mixtures other than lead monoxide. If the result is substantially the same as lead monoxide, the paper size is in accordance with Chinese National Standard (CNS) A4 specification (210X297mm) (please read the precautions on the back before filling in this page). Binding-41-Central Standards of Ministry of Economic Affairs A7 B7 printed by the Bureau ’s Consumer Cooperative. V. Description of the invention (3g) It is found that the battery capacity is reduced. When adding zinc oxide powder of 5 0 0 p pm indium, 1 0 0-1 0 0 0 P pm inhibitor can be added, and In the case of adding 1 800 0 P pm indium zinc powder, you can add 1 〇 1 0 0 0 0 PP m inhibitor to inhibit. Example 1 5-1 7 illustrates the use of zinc containing no more than 4 p pm iron and one or more species selected from indium compounds, tin compounds containing tetravalent tin, and oxidized compounds as zinc inhibitors of the present invention Effect. < Example 1 5 > Zinc powder containing gallium produced by a 100 ppm spray method, 200 ppm indium, 500 ppm lead and 450 ppm silver, and additionally containing 5 ppm iron. The iron concentration in the zinc powder is adjusted by removing the magnet. The concentration after removing iron was confirmed by atomic absorption method. Hydrogen generation test is to add 2 g of zinc powder in advance to a special test tube with a volume of 2 to know the amount of gas generated, and a copper sheet with the area of 0 · 6 cm2 and a thickness of 0 · lmra that is the same as the collector material, and add the test electrolyte The solution was heated to 60 ° C, and the volume of hydrogen produced was measured for 7 days. Repeat the test 10 times, and take the average value as the result. The preparation method of the electrolyte solution is, if it is a potassium hydroxide system, add nearly saturated zinc oxide to the 30% potassium hydroxide solution, if it is a sodium hydroxide series, add it to the 25% sodium hydroxide solution Nearly saturated zinc oxide is used as a matrix, and lead monoxide and other substances are added as inhibitors. Table 7 shows the iron concentration in the zinc powder and the amount of hydrogen generated relative to the amount of inhibitor added. The amount of inhibitor added is relative to the p P m table size of the electrolyte solution. The paper size is applicable to the Chinese National Standard (CNS) Α4 specification (210X297 mm) (please read the precautions on the back and fill in this page) • Pack. Order A7 B7 V. Description of invention (40). The results of the hydrogen generation amount are also shown in Table 7. (Please read the precautions on the back and then fill out this page) 装 -s The paper standard printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) 43-Central Standard of the Ministry of Economic Affairs Printed by the Bureau ’s Consumer Cooperatives 2 ⑽ 5 Ο 8 Α7 Β7 V. Description of the invention (41) Table 7 · Hydrogen rate test number produced by zinc powder Electrolyte content in electrolyte zinc powder ppm ppm Pb 0 in Australia electrolyte ppm hydrogen Release rate ML / g / day 1 K 0 Η 5 5 0 5 7 0. 0 0 2 Κ 0 Η 5 10 0 5 3.75 3 Κ 0 Η 5 5 0 0 5 6.25 4 Κ 0 Η 5 10 0 0 7 9.29 5 Κ 0 Η 5 5 0 0 0 12 0. 85 6 Κ 0 Η 5 0 15 8.92 7 Κ 0 Η 5 10 2 8 4.2 8 8 Κ 0 Η 4 5 0 5 0 8.9 4 Θ Κ 0 Η 4 10 0 2 1.14 10 Κ 0 Η 4 5 0 16.13 11 Κ 0 Η 4 10 0 2 0.15 12 Κ 0 Η 4 5 0 0 4 5.21 13 Κ 0 Η 4 10 0 0 5 0.56 14 Κ 0 Η 4 5 0 0 0 2 0 1.73 15 Κ 0 Η 2 0 5 16.92 16 Κ 0 Η 2 10 12.50 17 Κ 0 Η 2 5 0 12.50 18 Κ 0 Η 2 10 0 14.29 1 9 Κ 0 Η 2 5 0 0 3 0.21 2 0 Κ 0 Η 2 10 0 0 5 3.57 2 1 Κ 0 Η 2 5 0 0 0 16 2.85 2 2 Ν a 0 Η 5 0 4 2 3. 8 5 2 3 Ν a 0 Η 5 10 4 2.36 2 4 Ν a 0 Η 5 5 0 4 0.23 2 5 Ν a 0 Η 5 10 0 6 6.34 2 6 Ν a 0 Η 5 5 0 0 10 0.25 2 7 Ν a 0 Η 5 10 0 0 13 2.58 2 8 Ν a 0 Η 5 5 0 0 0 2 7 8.9 0 2 9 Ν a 0 Η 4 0 3 9 6.3 7 3 0 Ν a 0 Η 4 10 19.36 3 1 Ν a 0 Η 4 5 0 12.72 3 2 Ν a 0 Η 4 10 0 15.64 3 3 Ν a 0 Η 4 5 0 0 3 8.38 3 4 Ν a 0 Η 4 10 0 0 4 7.25 3 5 Ν a 0 Η 4 5 0 0 0 19 0. 01 3 6 Ν a 0 Η 2 0 4 3.56 3 7 Ν a 0 Η 2 10 11.23 3 8 Ν a 0 Η 2 5 0 10.12 3 9 Ν a 0 Η 2 10 0 12.93 4 0 Ν a 0 Η 2 5 0 0 2 7.81 4 1 Ν a 0 Η 2 10 0 0 4 2.21 4 2 Ν a 0 Η 2 5 0 0 0 13 0.10 -------- (installed- ----- Subscribe ------ {I (Please read the precautions on the back before filling in this page) This paper size is applicable to China National Standard (CNS) A4 specification (210X 297mm) -44-Ministry of Economic Affairs A7 B7 printed by the Central Consumer Service Cooperative Employees V. Description of Invention (42) The results of hydrogen generation in the electrolyte solution of the potassium hydroxide series are shown in Figure 8. Figure 1 is the case of using zinc powder containing 5 p pm iron, which usually produces more hydrogen than the other two. 2 is the case of using zinc powder containing 4 p pm iron, and the addition of lead monoxide is not less than 10 P pm has the effect of suppressing the generation of hydrogen. 3 is the case of using zinc powder containing 2 p pm iron, and the concentration range is the same as when 2 "especially when the iron impurity is not more than 4 p pm, the effect of adding lead monoxide is not more than 1 0 0 P pm Obviously, it can reduce the amount of environmental pollutant lead. In this example, the iron was removed by magnetite to reduce the iron concentration. However, it can also be used in the zinc powder production step to purify iron-removed zinc as the zinc powder, and obtain substantially the same results. < Example 16 > A part of the electrolyte solution and 116 mg were added to the anode can in the anode can, and the pellets (silver oxide content 98%) were added to the silver oxide, and the polyethylene separator and Cellophane separator. Next, push the nylon pad into the anode tank, add penetrant, gelling agent, 30 zinc powder, inhibitor, etc., add the remaining electrolyte solution drop by drop, and place the cathode seal to produce 100 various button types Silver oxide battery. The size of the battery produced is the same as S R 6 2 1 type. Then, an electrolyte solution was prepared so that the amount of lead monoxide added was an amount relative to the amount of zinc. After storing at 60 ° C for 20 days (reportedly equivalent to 1 year at room temperature), the self-discharge rate was measured. The results are shown in Table 8. This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 public daughter 1 (please read the precautions on the back and then fill out this page). Binding -45-, ^ A7B7 Printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Description of the invention (43) Table 8 • Battery self-discharge rate and hydrogen release rate experiment number Electrolyte zinc powder Ning indium contains child ppm Pb 0 in the electrolyte degree of collapse ppm self-releasing rate% hydrogen release rate KL / g / day 1 K 0 Η 5 0 13.2 0.98 2 Κ 0 Η 5 10 8. 7 0.76 3 Κ 0 Η 5 5 0 7. 2 0.79 4 Κ 0 Η 5 1 0 0 4. 0 0.48 5 Κ 0 Η 5 5 0 0 8. 6 0.64 6 Κ 0 Η 5 10 0 0 8. 5 0.77 7 Κ 0 Η 5 5 0 0 0 16.2 1.48 8 Κ 0 Η 4 0 13.0 0.89 9 Κ 0 Η 4 10 3. 8 0.45 10 Κ 0 Η 4 5 0 3. 5 0.37 11 Κ 0 Η 4 10 0 2. 2 0.33 12 Κ 0 Η 4 5 0 0 2. 8 0.29 13 Κ 0 Η 4 10 0 0 3. 9 0.40 14 Κ 0 Η 4 5 0 0 0 17.6 1.42 15 Κ 0 Η 2 0 11.0 0.82 16 Κ 0 Η 2 10 2. 2 0.24 17 Κ 0 Η 2 5 0 1.5 .3 0.23 18 Κ 0 Η 2 10 0 1. .4 0.21 19 Κ 0 Η 2 5 0 0 2. 2 0.25 2 0 Κ 0 Η 2 10 0 0 3. 5 0.33 2 1 Κ 0 Η 2 5 0 0 0 17.2 1.62 2 2 Ν a 0 Η 5 0 10.1 0.92 2 3 Ν a 0 Η 5 10 8. 0 0.72 2 4 Ν a 0 Η 5 5 0 5. 5 0.67 2 5 Ν a 0 Η 5 10 0 4. 1 0.40 2 6 Ν a 0 Η 5 5 0 0 7. 4 0.65 2 7 Ν a 0 Η 5 10 0 0 7. 2 0.73 2 8 Ν a 0 Η 5 5 0 0 0 14.2 1.28 2 9 Ν a 0 Η 4 0 9. 2 0.80 3 0 Ν a 0 Η 4 10 3. 7 0.35 3 1 Ν a 0 Η 4 5 0 2. 0 0.29 3 2 Ν a 0 Η 4 10 0 2. 0 0.29 3 3 Ν a 0 Η 4 5 0 0 2. 2 0.26 3 4 Ν a 0 Η 4 10 0 0 3. 2 0.41 3 5 Ν a 0 Η 4 5 0 0 0 15.2 1.31 3 6 Ν a 0 Η 2 0 7. 1 0.72 3 7 Ν a 0 Η 2 10 1. 5 0.25 3 8 Ν a 0 Η 2 5 0 0. 8 0.19 3 9 Ν a 0 Η 2 10 0 0. 7 0.18 4 0 Ν a 0 Η 2 5 0 0 1 . 1 0.23 4 1 Ν a 0 Η 2 10 0 0 2. 9 0.28 4 2 Ν a 0 Η 2 5 0 0 0 9. 8 1.46 {Binding ^ ^ (please read the precautions on the back before filling this page) this The paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X 297mm) I 46-A7 B7 printed by the Beigong Consumer Cooperative of the Central Standards Bureau of the Ministry of Economy V. Description of the invention (44) The results show that the iron content is not more than 4 p pm of When the powder is added in the battery 1 0_ 1 0 0 P pm - lead oxide to suppress the self-discharge rate of not more than 4%. The reason why the addition of high concentration of lead monoxide reduces the battery capacity is that needle-shaped crystals of lead are generated when excessively added, so it may cause a short circuit. < Example 1 7 > Using the method of Example 16 a button-type silver oxide battery using a polypropylene liner permeable to hydrogen was prepared. Place 10 silver oxide batteries prepared in a high-temperature bath in a glass container filled with liquid paraffin, attach a graduated collecting tube at the top, and measure the amount of hydrogen produced. This state is maintained at 60 ° C for 20 days (it is said to be approximately equivalent to one year), and the amount of hydrogen generated after 20 days is evaluated. The results are shown in Table 8. It is known from the examples that the hydrogen produced by the electrolyte solution is mild and the self-discharge of the sodium hydroxide series is also less than that of the potassium hydroxide series. In addition, the higher the indium content in the zinc powder, the better the result, and the smaller the amount of lead monoxide added. When the battery was actually trial-produced, the generated value was less than the amount of hydrogen gas generated in the experiment of Example 15. Because the copper sheet used in Example 15 is different from the actual collector structure, the generated hydrogen is partially consumed by the reduction of silver oxide and other factors. The method of Example 15 differs in the amount of hydrogen produced, but it is sufficient as a method for observing the substitution characteristics used to predict the actual amount of hydrogen produced by the battery. The same experiment is also used for indium compounds, tin compounds containing tetravalent tin, and mixtures other than lead monoxide. The results are essentially the same as those of lead monoxide. It has been found that the battery capacity has been reduced. Add 10-1 0 0 〇p pm inhibitor. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the back (Please fill in this page again)
、1T -47 - A 7 B7 五、發明説明(45) ’可將自身放電率抑制不大於4%。 本發明已就最容易存在之污染物且產生氫氣之危險性 最高之鐵進行說明,但是,較佳者必然是儘可能減少雜質 諸如鎳,鈷,銻等物者。此外,若爲氫氣產生量大之陰極 活性材料諸如鋅等,則因表面上有與鉛澱積競爭之氫氣產 生反應,難以形成均勻膜,故鉛澱積效果變小。因此,使 用鋅中添加銦,鉍,鉛,鋁,鎵,鈣等物之陰極活性材料 更可對氫氣產生作某程度之抑制。 實施例1 8 - 2 1說明控制電池溼度之效果。 <實施例1 8 > 在陽極罐中添加部分電解質液及1 1 6mg將組合劑添 加於氧化銀中所模製之片粒(氧化銀含量9 8 % ),並放 置聚乙烯隔板及玻璃紙隔板。 其次,將耐綸墊料推入陽極罐中,添加滲透劑,膠凝 劑’ 3 0 mg鋅粉,抑制劑等物,逐滴添加其餘電解質溶液 ,並放置陰極密封產生鈕扣型氧化銀電池》 經濟部中央標準局貝工消費合作社印製 (請先閲讀背面之注意事項再填寫本頁) 電解質製法是,若爲氫氧化鉀系列,則在3 0%重氫 氧化鉀溶液中添加接近飽和之氧化鋅,若爲氫氧化鈉系統 ,則在2 5 %重之氫氧化鈉溶液中添加接近飽和之氧化鋅 ’作爲基質,並隨意添加抑制劑。添加抑制劑時,相對於 鋅重爲1 0 0 0 p pm,且溶於電解質溶液中。 將1 0個所製硬幣型或鈕扣型氧化銀電池置入位於高 溫槽中之填有液體石蠟的玻璃容器中,附上頂端有刻度之 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 一 48 - A7 ___B7 五、發明説明(46) 收集管,測量產生之氫量。此情況下,在6 0°C保持2 0 曰(據說相當於約1年),在20日後評估氫氣產生量及 自身放電率。連結2 5 Ω電阻並使之放電,以測量電池容 量。由相同電池在6 0°C儲存2 0日前後之電池容量變化 計算自身放電率。 所產製且評估之硬幣型或鈕扣型氧化銀電池大小,所 用鋅粉中金屬含量,電解質溶液,溼度,添加之抑制劑, 及在6 0°C儲存2 0日後產生之氫量與自身放電率示於表 9及表1 〇。 (請先閲讀背面之注意事項再填寫本頁) 裝_ ,訂 經濟部中央樣準局貝工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -49 - B7 五、發明説明(47 ) 經濟部中央標準局員工消費合作社印製 表9.電池之氫釋出率及自身放電率 實驗 爾池麵 麟質 在lmg碎 抑制率 在60°C儲存20曰 在室溫齡率 編號 (ppm vs 鲜) 中所添加 之水量 氫釋出率 白身放電率 氫釋出率 白身放電率 G a In Pb B i A 1 ML/g/day % ^L/g/day % 1 SR626 500 500 500 NaOH 0.448 - 0.37 3.00 0.00 3.10 2 SR626 500 500 500 KOH 0.428 - 0.39 2.50 0.00 2.50 3 SR626 500 500 NaOH 0.448 — 0.41 2. 70 0.00 2.60 4 SR626 500 500 KOH 0.428 — 0.47 2.40 0.00 2. 50 5 SR626 100 200 500 450 NaOH 0.448 — 0.40 2.50 0.00 2.60 6 SR626 100 200 500 450 KOH 0.428 - 0.46 2.60 0.00 2.60 7 SR621 500 500 500 NaOH 0.459 — 0.38 2.10 0.00 2.10 8 SR621 500 500 500 KOH 0.440 — 0.40 3.10 0.00 3.30 9 SR621 500 500 NaOH 0.459 - 0.43 2.80 0.00 2. 70 10 SR621 500 500 KOH 0.440 - 0.45 2.70 0.00 2.70 11 SR516 500 500 500 NaOH 0.476 - 0.35 2.80 0.00 2.70 12 SR516 500 500 500 KOH 0.455 — 0.37 2.80 0.00 2.60 13 SR516 500 500 NaOH 0.476 - 0.41 2.90 0.00 2.50 14 SR516 500 500 KOH 0.455 — 0.45 3.00 0.00 2.90 15 SR527 500 500 500 NaOH 0.488 - 0.38 2. 70 0.00 2.80 16 SR527 500 500 500 KOH 0.463 - 0.39 2.60 0.00 2.60 17 SR527 500 500 NaOH 0.488 - 0.43 2.50 0.00 2.40 18 SR527 500 500 KOH 0.463 - 0.47 2. 70 0.00 2.60 19 SR726 500 500 500 NaOH 0.441 - 0.35 2.10 0.00 2.50 (請先閱讀背面之注意事項再填寫本頁) 裝· 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨0'乂297公釐) 50 經濟部中央標準局員工消費合作社印製 A7 _B7 五、發明説明(48 ) 表1〇.電池之氣稈出率及自身放電率 實驗 電池觀 _金靥 mmn 在lmg鲜 抑制率 在60°C儲存20曰 在室溫儲存/年 編猇 (ppm vs 粹) 中添加之 水置 氫搏出率 白身放電率 率 白身放電率 Ga In Pb B i A 1 ^L/g/day % ML/g/day % 20 SR726 500 500 500 KOH 0.423 - 0.36 1.50 0.00 2.00 21 SR726 500 500 NaOH 0.441 — 0.37 1.90 0.00 1.80 22 SR726 500 500 KOH 0.423 - 0.45 2.20 0. 00 2.10 23 SR1120 500 500 500 NaOH 0.441 - 0.35 1.90 0.00 2.10 24 SR1120 500 500 500 KOH 0.423 一 0.34 2.60 0.00 2.10 25 SR1120 500 500 NaOH 0.441 - 0.37 2.30 0.00 2.20 26 SR1120 500 500 KOH 0. 423 — 0.38 2. 40 0. 00 2.50 27 SR626 500 500 500 NaOH 0.448 硫麵 0.33 2.50 0.00 2,50 28 SR626 500 500 500 KOH 0.428 硫麵 0.35 2.30 0.00 2.60 29 SR626 500 500 NaOH 0. 448 硫醜 0.38 2.70 0.00 2.50 30 SR626 500 500 KOH 0.428 mm 0.42 2,80 0.00 2. 90 31 SR626 100 200 500 450 NaOH 0.448 硫麵 0. 37 2.70 0.00 2. 70 32 SR826 100 200 500 450 KOH 0.428 硫_ 0.41 2.80 0.00 2.80 33 SR626 500 NaOH 0.448 硫麵 0. 39 2.80 0.00 2.70 34 SR626 500 KOH 0.428 硫麵 0.42 2.60 0.00 2.60 35 SR626 500 NaOH 0.448 胺獅麵 0.42 2. 70 0.00 2.50 36 SR626 500 KOH 0.428 胺基確麵 0. 45 2.70 0.00 2.40 37 SR626 500 NaOH 0.448 PbO 0.42 2. 50 0. 00 2. 90 38 SR626 500 KOH 0.428 PbO 0. 44 2.50 0.00 2. 20 (請先閱讀背面之注意事項再填寫本頁) 裝. 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -51 - 五、發明説明(49) 表9及表1 0中,相對於添加之金屬組成物,鋅重量 以p pm表示。溼度以每1 mg鋅中所含之水mg量表示。氫 氣產生量之單位爲/z/g/d a y,在表中右欄在6 0°C 經2 0日及在常溫經一年處列出相對於鋅量每日產生之氫 量,而自身放電率之單位爲%。I η —硫酸鹽爲硫酸銦, I η_胺基磺酸鹽爲胺基磺酸銦,而PbO爲氧化鉛,將 氫氣產生量換算成常溫值時,所有值皆抑制至不大於 0 . 03#j?/g/day。此外,亦可使自身放電率不 大於4 % /年。 <實施例1 9 > 爲確認例1 8中在6 0°C儲存2 0日是否確實相當於 在常溫1年,實際試驗1年。 例18所用之襯墊換成在一般氧化銀電池產製中所用 之耐綸製者,同法產製硬幣型或鈕扣型氧化銀電池。將 經濟部中央梯準局貝工消費合作社印製 (請先閲讀背面之注意事項再填寫本頁) 1 0個所製之氧化銀電池置入位於2 5 °C高溫槽中之填有 液體石蠟的玻璃容器中,頂端附上產生氫氣用之收集管。 此狀況保持1年,在1年後評估氫氣產生量及自身放電率 。測量法同於例1 8。氫氣產生量及自身放電率之結果示 於表9及表10之右端》 試驗結果,所有試樣皆未產生氣體。此因電池中所產 生之微量氫氣因氧化銀還原而消耗。自身放電率實質同於 在6 0°C保持2 0日者,而所有值皆不大於4%。 本紙張尺度適用中國國家揉準(CNS ) A4規格(210X 297公釐) -52 - 經濟部中央標準局貝工消費合作社印製 A7 B7 五、發明説明(5〇 ) <實施例2 0 > 電解質溶液若爲氫氧化鉀系統,則使用在氫氧化鉀中 添加氧化鋅至接近飽和者。每lmg鋅中欲加之電解質溶液 量爲0 · 37至0 . 96mg,換算成水量則爲0 . 25至 0.65 1^,同於例18,使用含各500口口111銦,錯 及鉍之鋅以及聚丙烯襯墊,製得S R 6 2 6尺寸之氧化銀 電池,在6 0°C進行儲存試驗2 0日。 相對於添加之水量的氫氣產生量示於圖9。氫產生量 爲每日由lg鋅產生者,單位爲/zj/g/day。根據 該結果,已知當水量不少於0 . 3 lmg時,氫產生量減低 至不大於0 · 5 4/zi?/g/day (換算爲常溫值爲 0.03vi?/g/day)。此外,當水量不少於 0 . 5 7 mg時,發現液體滲漏。 同法,使用氫氧化鈉系統之電解質溶液,每1 mg鋅所 添加之電解質溶液的量由0 . 3 6變成0 . 9 2mg (計算 成水量時爲0 · 25至0 . 65mg),在60°C儲存20 曰。結果τκ於圖1 0。已知當水量不少於〇 . 3 2mg時, 氫產生量減少至不大於0 · 54;ae/g/day。此外 ’當水量變成不少於0 · 5 9 mg時,則發生液體滲漏現象 〇 即,當電解質溶液爲氫氧化鉀系統時,每1呢鋅所添 加之水量爲0 . 3 1 — 0 . 57mg’而若爲氫氧化鈉則爲 0 . 32 — 0 . 59 mg。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝· 訂 -53 - 經濟部中央橾準局貝工消費合作社印製 A7 B7 五、發明説明(51 ) <實施例2 1 > 爲確知在例2 0之水量範圍中的氫產生量是否不大於 0 · 54ee/g/day且液體是否無滲漏,以例19 方法進行常溫儲存試驗1年並試驗。若爲氫氧化鉀系統, 則電解質溶液之添加量是使1 mg鋅中之添加水量變成 0 . 31 ,0 . 44及0 . 57mg。同法,若爲氫氧化鈉 系統,則電解質溶液添加量是使水量變成0 . 3 2, 0 . 45及0 · 59 mg。同於例20,將襯墊換成耐綸, 個別產製1 0個氧化銀電池。根據所製氧化銀電池在常溫 儲存1年之試驗結果,不產生氫,自身放電率亦皆不大於 4%,已發現無實際問題。 根據實例22 - 24,說明將各技術組合之效果》 實際評估電池特性以前,先使用特製試管評估各抑制 劑及經電鍍銅板所產生之氫氣量。以下描述所用方法。 在體積2 5 m 5且加刻度以認知產生之氣體量的特製 試管中預先置入2 g含各5 0 0 p pm之噴霧法所製之鉍 ,銦及鉛的鋅粉,及面積0 . 6 cm2且厚0 . 1 mm的銅片 (材料同於集極),添加試驗用之電解質溶液並加熱至 6 0°C,測量產生之氫氣體積經7日。試驗重複1 〇次, 結果爲其平均值。電解質溶液之製法是,若爲氫氧化鉀系 列’則在3 0 %重之氫氧化鉀溶液中添加接近飽和之氧化 鋅’若爲氫氧化鈉系列,則在2 5 %氫氧化鈉溶液中添加 接近飽和之氧化鋅,作爲基質,且隨意添加抑制劑。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝· 訂 -54 - 經濟部中央標準局員工消費合作社印製 A 7 B7 五、發明説明(52 ) <實施例3 2 > 同時使用經電鍍及取代性電鍍之銅板及抑制劑,測量 由鋅產生之氫。電鍍處理如下。 *銦(I η )電鍍、 1T -47-A 7 B7 V. Description of the invention (45) ‘It can suppress the self-discharge rate not more than 4%. The present invention has described iron which is the most likely pollutant and has the highest risk of hydrogen generation. However, it is preferable to reduce impurities such as nickel, cobalt, and antimony as much as possible. In addition, in the case of a cathode active material with a large amount of hydrogen generation, such as zinc, it is difficult to form a uniform film due to a hydrogen generation reaction on the surface that competes with lead deposition, so the effect of lead deposition becomes small. Therefore, the use of cathode active materials in which zinc is added with indium, bismuth, lead, aluminum, gallium, calcium, etc. can suppress the generation of hydrogen gas to some extent. Example 1 8-2 1 illustrates the effect of controlling battery humidity. < Example 18 > A part of the electrolyte solution and 116 mg were added to the anode can, and the pellets (silver oxide content 98%) were added to the silver oxide, and the polyethylene separator and Cellophane separator. Secondly, push the nylon pad into the anode can, add penetrant, gelling agent '30 mg zinc powder, inhibitors, etc., add the remaining electrolyte solution drop by drop, and place the cathode seal to produce a button-type silver oxide battery. " Printed by the Beigong Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling out this page). For the electrolyte preparation method, if it is a potassium hydroxide series, add a solution close to saturation in a 30% potassium hydroxide solution. For zinc oxide, if it is a sodium hydroxide system, add nearly saturated zinc oxide 'as a matrix to the 25% sodium hydroxide solution, and optionally add inhibitors. When the inhibitor is added, it weighs 1000 ppm with respect to zinc and dissolves in the electrolyte solution. Place 10 coin-shaped or button-shaped silver oxide batteries in a glass container filled with liquid paraffin in a high-temperature bath, and attach the paper with scales at the top to the Chinese National Standard (CNS) A4 (210X297 %) I 48-A7 ___B7 V. Description of the invention (46) Collection tube, measure the amount of hydrogen produced. In this case, maintain the temperature at 60 ° C for 20 days (it is said to be equivalent to about 1 year), and evaluate the amount of generated hydrogen gas and the self-discharge rate after 20 days. Connect and discharge a 2 5 Ω resistor to measure the battery capacity. The self-discharge rate was calculated from the battery capacity change of the same battery stored at 60 ° C for about 20 days. The size of the coin-shaped or button-shaped silver oxide battery produced and evaluated, the metal content in the zinc powder used, the electrolyte solution, the humidity, the added inhibitor, and the amount of hydrogen generated after storage at 60 ° C for 20 days and self-discharge The rates are shown in Table 9 and Table 10. (Please read the precautions on the back before filling out this page) Install _, set the size of the paper printed by the Beigong Consumer Cooperative of the Central Bureau of Prototyping of the Ministry of Economic Affairs. The paper standard is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) -49-B7 V. Description of the invention (47) Printed by the Employees ’Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 9. The hydrogen release rate and self-discharge rate of the battery The experiment of the pond surface quality at lmg fragmentation inhibition rate is stored at 60 ° C for 20 days in the room Aging rate number (ppm vs. fresh) The amount of water added in the hydrogen release rate White body discharge rate White body discharge rate White body discharge rate Ga In Pb B i A 1 ML / g / day% ^ L / g / day% 1 SR626 500 500 500 NaOH 0.448-0.37 3.00 0.00 3.10 2 SR626 500 500 500 KOH 0.428-0.39 2.50 0.00 2.50 3 SR626 500 500 NaOH 0.448 — 0.41 2. 70 0.00 2.60 4 SR626 500 500 KOH 0.428 — 0.47 2.40 0.00 2. 50 5 SR626 100 200 500 450 NaOH 0.448 — 0.40 2.50 0.00 2.60 6 SR626 100 200 500 450 KOH 0.428-0.46 2.60 0.00 2.60 7 SR621 500 500 500 NaOH 0.459 — 0.38 2.10 0.00 2.10 8 SR621 500 500 500 KOH 0.4 40 — 0.40 3.10 0.00 3.30 9 SR621 500 500 NaOH 0.459-0.43 2.80 0.00 2. 70 10 SR621 500 500 KOH 0.440-0.45 2.70 0.00 2.70 11 SR516 500 500 500 NaOH 0.476-0.35 2.80 0.00 2.70 12 SR516 500 500 500 KOH 0.455 — 0.37 2.80 0.00 2.60 13 SR516 500 500 NaOH 0.476-0.41 2.90 0.00 2.50 14 SR516 500 500 KOH 0.455 — 0.45 3.00 0.00 2.90 15 SR527 500 500 500 NaOH 0.488-0.38 2. 70 0.00 2.80 16 SR527 500 500 500 KOH 0.463-0.39 2.60 0.00 2.60 17 SR527 500 500 NaOH 0.488-0.43 2.50 0.00 2.40 18 SR527 500 500 KOH 0.463-0.47 2. 70 0.00 2.60 19 SR726 500 500 500 NaOH 0.441-0.35 2.10 0.00 2.50 (Please read the notes on the back before filling this page ) The size of the bound and printed paper is in accordance with the Chinese National Standard (CNS) A4 specification (2 丨 0 '297 mm) 50 Printed by the employee consumer cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A7 _B7 V. Description of invention (48) Table 10. Battery's gas stalk output rate and self-discharge rate experimental battery view / Year edition 猇 (ppm vs crude) Water added hydrogen stroke rate White body discharge rate White body discharge rate Ga In Pb B i A 1 ^ L / g / day% ML / g / day% 20 SR726 500 500 500 KOH 0.423-0.36 1.50 0.00 2.00 21 SR726 500 500 NaOH 0.441 — 0.37 1.90 0.00 1.80 22 SR726 500 500 KOH 0.423-0.45 2.20 0. 00 2.10 23 SR1120 500 500 500 NaOH 0.441-0.35 1.90 0.00 2.10 24 SR1120 500 500 500 KOH 0.423 -0.34 2.60 0.00 2.10 25 SR1120 500 500 NaOH 0.441-0.37 2.30 0.00 2.20 26 SR1120 500 500 KOH 0. 423-0.38 2. 40 0. 00 2.50 27 SR626 500 500 500 NaOH 0.448 Sulfur surface 0.33 2.50 0.00 2,50 28 SR626 500 500 500 KOH 0.428 Sulphur surface 0.35 2.30 0.00 2.60 29 SR626 500 500 NaOH 0.48 Sulphur 0.38 2.70 0.00 2.50 30 SR626 500 500 KOH 0.428 mm 0.42 2,80 0.00 2. 90 31 SR626 100 200 500 450 NaOH 0.448 Sulphur surface 0. 37 2.70 0.00 2. 70 32 SR826 100 200 500 450 KOH 0.428 sulfur_ 0.41 2.80 0.00 2.80 33 SR626 500 NaOH 0.448 sulfur surface 0.39 2.80 0.00 2.70 34 SR626 500 KOH 0.428 Sulphur surface 0.42 2.60 0.00 2.60 35 SR626 500 NaOH 0.448 Amino lion surface 0.42 2. 70 0.00 2.50 36 SR626 500 KOH 0.428 Amino surface 0. 45 2.70 0.00 2.40 37 SR626 500 NaOH 0.448 PbO 0.42 2. 50 0. 00 2 . 90 38 SR626 500 KOH 0.428 PbO 0. 44 2.50 0.00 2. 20 (please read the precautions on the back before filling in this page). Packing. The size of this paper is applicable to China National Standard (CNS) A4 specification (210X297mm)- 51-V. Description of the Invention (49) In Tables 9 and 10, the weight of zinc is expressed in p pm relative to the added metal composition. Humidity is expressed in mg of water per 1 mg of zinc. The unit of hydrogen production is / z / g / day. In the right column of the table, the daily hydrogen production relative to the zinc production is listed at 60 ° C for 20 days and at room temperature for one year. The unit of rate is%. I η — sulfate is indium sulfate, I η_ aminosulfonate is indium aminosulfonate, and PbO is lead oxide. When the amount of hydrogen gas is converted to normal temperature value, all values are suppressed to no more than 0.03 #j? / g / day. In addition, the self-discharge rate can be no more than 4% / year. < Example 1 9 > In order to confirm whether the storage at 60 ° C for 20 days in Example 18 is indeed equivalent to one year at normal temperature, the actual test is one year. The gasket used in Example 18 was replaced with a nylon made in the production of general silver oxide batteries, and coin-shaped or button-shaped silver oxide batteries were produced in the same way. Printed by the Beigong Consumer Cooperative of the Central Bureau of Economic Affairs of the Ministry of Economic Affairs (please read the precautions on the back before filling out this page) 10 silver oxide batteries made in a liquid paraffin filled in a high temperature bath at 25 ° C In the glass container, a collection tube for generating hydrogen is attached to the top. This condition is maintained for 1 year, and the hydrogen generation amount and self-discharge rate are evaluated after 1 year. The measurement method is the same as in Example 18. The results of hydrogen generation and self-discharge rate are shown on the right side of Table 9 and Table 10. Test results, all samples did not generate gas. This is because the trace hydrogen produced in the battery is consumed by the reduction of silver oxide. The self-discharge rate is substantially the same as that maintained at 60 ° C for 20 days, and all values are not greater than 4%. This paper scale is applicable to China National Standard (CNS) A4 specification (210X 297mm) -52-A7 B7 printed by the Beigong Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (5〇) < Example 2 0 > If the electrolyte solution is a potassium hydroxide system, use zinc oxide in potassium hydroxide to near saturation. The amount of electrolyte solution to be added per 1 mg of zinc is 0. 37 to 0.96 mg, which is 0.25 to 0.65 1 ^ when converted to water. It is the same as in Example 18, using zinc containing 111 indium, bismuth and bismuth in each 500 ports And polypropylene liner, silver oxide battery with SR 6 2 6 size was prepared, and storage test was carried out at 60 ° C for 20 days. The amount of generated hydrogen gas relative to the amount of added water is shown in Fig. 9. The amount of hydrogen produced is produced daily by lg zinc in units of / zj / g / day. According to this result, it is known that when the amount of water is not less than 0.3 lmg, the amount of hydrogen generation is reduced to not more than 0.54 / zi? / G / day (converted to a normal temperature value of 0.03vi? / G / day). In addition, when the amount of water was not less than 0.57 mg, liquid leakage was found. In the same way, using the electrolyte solution of the sodium hydroxide system, the amount of electrolyte solution added per 1 mg of zinc changes from 0.3 6 to 0.9 2 mg (calculated as the amount of water from 0. 25 to 0.65 mg), at 60 Store at 20 ° C for 20 days. Results τκ in Figure 10. It is known that when the amount of water is not less than 0.32 mg, the amount of generated hydrogen is reduced to not more than 0.54; ae / g / day. In addition, when the amount of water becomes not less than 0.59 mg, liquid leakage occurs. That is, when the electrolyte solution is a potassium hydroxide system, the amount of water added per 1 zinc is 0.3 1 — 0. 57mg 'and if it is sodium hydroxide it is 0.32-0.59 mg. This paper scale is applicable to the Chinese National Standard (CNS) A4 (210X 297mm) (please read the precautions on the back before filling in this page) Binding · Order-53-A7 printed by Beigong Consumer Cooperatives, Central Bureau of Economics and Trade, Ministry of Economic Affairs B7 V. Description of the invention (51) < Example 2 1 > To confirm whether the amount of hydrogen generated in the water range of Example 20 is not greater than 0.554ee / g / day and the liquid is not leaking, take Example 19 Methods The room temperature storage test was conducted for 1 year and tested. In the case of a potassium hydroxide system, the amount of electrolyte solution added is such that the amount of added water in 1 mg of zinc becomes 0.31, 0.44 and 0.57 mg. In the same way, if it is a sodium hydroxide system, the amount of electrolyte solution added is such that the amount of water becomes 0.32, 0.45 and 0 · 59 mg. As in Example 20, the gasket was replaced with nylon, and 10 silver oxide batteries were individually produced. According to the test results of the silver oxide battery manufactured at room temperature for 1 year, no hydrogen is generated, and the self-discharge rate is not more than 4%, and no practical problems have been found. According to Examples 22-24, the effect of combining each technology will be described. Before actually evaluating the battery characteristics, a special test tube is used to evaluate the amount of hydrogen generated by each inhibitor and the plated copper plate. The method used is described below. In a special test tube with a volume of 25 m 5 and a scale to recognize the amount of gas produced, 2 g of zinc powder containing bismuth, indium and lead prepared by a spray method of 500 p pm each, and an area of 0. A copper sheet of 6 cm2 and a thickness of 0.1 mm (the material is the same as the collector), add the electrolyte solution used for the test and heat to 60 ° C, and measure the volume of hydrogen produced over 7 days. The test was repeated 10 times and the result was the average value. The preparation method of electrolyte solution is, if it is potassium hydroxide series, then add nearly saturated zinc oxide in 30% potassium hydroxide solution. If it is sodium hydroxide series, add it in 25% sodium hydroxide solution. Nearly saturated zinc oxide is used as a matrix and inhibitors are added at will. This paper scale is applicable to the Chinese National Standard (CNS) A4 (210X297mm) (please read the precautions on the back before filling out this page) Binding · Order -54-Printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs A 7 B7 Five 2. Description of the invention (52) < Example 3 2 > At the same time, a copper plate subjected to electroplating and substitution electroplating and an inhibitor were used to measure the hydrogen produced by zinc. The plating process is as follows. * Indium (I η) electroplating
方法:電鍍 鍍浴:2 5 °C :硫酸銦60g/i? :硫酸鈉1 0 g /又 鍍膜厚度:0.3em *錫(S η )電鍍Method: Electroplating Plating bath: 2 5 ° C: Indium sulfate 60g / i ?: Sodium sulfate 10 g / thickness: 0.3em * Tin (S η) electroplating
方法:電鍍 鍍浴:7 0 °C :錫酸鉀100g/i2 :氫氧化鉀1 5 g/i? :乙酸鉀5 g / i? 鍍膜厚度:0 . 3/zm *鋅銦(Zn— In)電鍍 方法:接觸電鍍(銅板與鋅置入加熱至6 0°C之以 下鍍浴中並放置1小時) 鍍浴:KOH 30% :Ζ η Ο 飽和 :硫酸銦 0.3% 鍍膜厚度:0.3em 在銅板上之電銨物及相對於抑制劑之氫氣產生結果示 本紙張尺度適用中國國家橾準(CNS ) Μ規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -a -55 - A7 B7 經濟部中央標準局員工消費合作社印製 ^9508 五、發明説明(53 ) 於表11 (使用KOH系列)及表12 (使用NaOH系 列)中。 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -56 - A7 B7 五、發明説明(54 ) 表1 1 ·經電鍍之銅板之氫釋出率 經濟部中央標準局員工消費合作社印製 實驗 編號 電鍍種類 電解質 抑制劑 (濃度:100ppm) 氫產生率 KL/g/曰 1 In KOH — 3 1.43 2 In KOH 硫酸銦 14. 28 3 In KOH 胺基磺酸銦 12.41 4 In KOH 氫氧化銦 16.73 5 In KOH 氧化鉛 17.85 6 In KOH 氫氧化鋇 8.57 7 In KOH 氟化碳 12.14 8 Sn KOH — 35. 78 9 Sn KOH 硫酸銦 16.11 10 Sn KOH 胺基磺酸銦 17.72 11 Sn KOH 氫氧化銦 16.53 12 Sn KOH 氧化鉛 17.91 13 Sn KOH 氫氧化鋇 10.89 14 Sn KOH 氟化碳 14.38 15 Zn * In KOH — 32. 34 16 Zn * In KOH 硫酸銦 15.27 17 Zn * In KOH 胺基磺酸銦 13.35 18 Zn * In KOH 氫氧化銦 18.83 19 Zn · In KOH 氧化鉛 16.82 20 Zn · In KOH 氫氧化鋇 11.30 21 Zn * In KOH 氟化碳 13.01 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨0X297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝. ,ιτ A7Method: Electroplating bath: 70 ° C: potassium stannate 100g / i2: potassium hydroxide 15 g / i ?: potassium acetate 5 g / i? Coating thickness: 0.3 / zm * zinc indium (Zn—In ) Plating method: contact plating (copper plate and zinc are placed in a plating bath heated to below 60 ° C and left for 1 hour) Plating bath: KOH 30%: Z η Ο Saturation: Indium sulfate 0.3% Coating thickness: 0.3em in The results of the electro-ammonium compound on the copper plate and the generation of hydrogen relative to the inhibitor indicate that the paper size is applicable to the Chinese National Standard (CNS) Μ specification (210X 297mm) (please read the precautions on the back before filling this page) -a -55-A7 B7 Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy ^ 9508 V. Invention description (53) is shown in Table 11 (using KOH series) and Table 12 (using NaOH series). (Please read the precautions on the back before filling this page) This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297mm) -56-A7 B7 5. Invention description (54) Table 1 1 Hydrogen release rate of copper plate Printed by the Ministry of Economy Central Standards Bureau Staff Consumer Cooperative Experiment Number Electrolytic Inhibitor (Concentration: 100ppm) Hydrogen Generation Rate KL / g / day 1 In KOH — 3 1.43 2 In KOH Indium Sulphate 14. 28 3 In KOH indium sulfamate 12.41 4 In KOH indium hydroxide 16.73 5 In KOH lead oxide 17.85 6 In KOH barium hydroxide 8.57 7 In KOH carbon fluoride 12.14 8 Sn KOH — 35. 78 9 Sn KOH indium sulfate 16.11 10 Sn KOH indium sulfamate 17.72 11 Sn KOH indium hydroxide 16.53 12 Sn KOH lead oxide 17.91 13 Sn KOH barium hydroxide 10.89 14 Sn KOH carbon fluoride 14.38 15 Zn * In KOH — 32. 34 16 Zn * In KOH sulfuric acid Indium 15.27 17 Zn * In KOH indium sulfamate 13.35 18 Zn * In KOH indium hydroxide 18.83 19 Zn · In KOH lead oxide 16.82 20 Zn · In KOH barium hydroxide 11.30 21 Zn * In KOH fluorocarbon 13.01 This paper Scale applies to Chinese countries Associate (CNS) A4 size (2 Shu 0X297 mm) (Please read the back of the precautions to fill out this page) installed., Ιτ A7
7 B 五、發明説明(55 ) 表1 2 ·經電鍍銅板之氫釋出率 經濟部中央標準局員工消費合作社印製 實驗 編號 電鍍種類 電解質 抑制劑 (濃度:100ppm) 氫釋出率 ML/g/日 22 In NaOH — 29.41 23 In NaOH 硫酸銦 14. 75 24 In NaOH 胺基磺酸銦 10.58 25 In NaOH 氫氧化銦 15.37 26 In NaOH 氧化鉛 14.14 27 In NaOH 氫氧化鋇 7. 82 28 In NaOH 氟化碳· P0E 9.34 29 Sn NaOH — 30.10 30 Sn NaOH 硫酸銦 15.03 31 Sn NaOH 胺基磺酸銦 15.28 32 Sn NaOH 氫氧化銦 15.38 33 Sn NaOH 氧化鉛 14. 53 34 Sn NaOH 氫氧化鋇 8.72 35 Sn NaOH 氟化碳· P 0 E 12.43 36 Zn · In NaOH — 32.83 37 Zn * In NaOH 硫酸銦 14.98 38 Zn * In NaOH 胺基磺酸銦 13.19 39 Zn * I n NaOH 氫氧化銦 14.13 40 Zn · In NaOH 氧化鉛 14. 27 41 Zn · In NaOH 氫氧化鋇 9.98 42 Zn · In NaOH 氟化碳· P 0 E 9.84 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 、\-° -58 - A7 B7 五、發明説明(56) 抑制劑濃度以相對於電解質溶液之值表示。至於氟碳 化物(氟化碳)_聚氧化乙烯(POE)系列之表面活性 劑,則使用氟碳化物之碳數10且POE聚合度50者。 通常,若氟碳化物之碳數爲4_2 0且POE聚合度爲3 —1 0 0者,可得到相同效果。 與不添加抑制劑者比較,添加本發明抑制劑者,氫氣 產生量減至約1/3至1/2,故知抑制氫氣產生之效果 。因電鍍或抑制劑所致之差異不大。此外,相對於試驗曰 數之氫氣產生量試於圖1 1中,使用經銦電鍍之銅板的測 量結果。而銦化合物中,僅有硫酸銦示於圖中。 本例中,顯示使用電鍍膜厚0 . 3 所得之結果, 但是,實際上,膜厚0 . 者之結果差異極小。 <比較例3 > 爲比較計,依例2 2方法使用無電鍍之銅板進行實驗 。實驗結果示於表13及圖12中。 (請先閱讀背面之注意事項再填寫本頁) 4β7 B V. Description of invention (55) Table 1 2 · Hydrogen release rate of electroplated copper plate Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economy Experiment number Electrolytic inhibitor (concentration: 100ppm) Hydrogen release rate ML / g / Day 22 In NaOH — 29.41 23 In NaOH indium sulfate 14.75 24 In NaOH indium sulfamate 10.58 25 In NaOH indium hydroxide 15.37 26 In NaOH lead oxide 14.14 27 In NaOH barium hydroxide 7. 82 28 In NaOH fluorine Carbonization · P0E 9.34 29 Sn NaOH — 30.10 30 Sn NaOH Indium sulfate 15.03 31 Sn NaOH Indium sulfamate 15.28 32 Sn NaOH Indium hydroxide 15.38 33 Sn NaOH Lead oxide 14.53 34 Sn NaOH Barium hydroxide 8.72 35 Sn NaOH Carbon fluoride · P 0 E 12.43 36 Zn · In NaOH — 32.83 37 Zn * In NaOH indium sulfate 14.98 38 Zn * In NaOH indium sulfamate 13.19 39 Zn * I n NaOH indium hydroxide 14.13 40 Zn · In NaOH oxidation Lead 14.27 41 Zn · In NaOH Barium Hydroxide 9.98 42 Zn · In NaOH Carbon Fluoride · P 0 E 9.84 The paper size is applicable to China National Standard (CNS) A4 specification (210X 297mm) (please read the back Matters needing attention Page), \-° -58-A7 B7 V. Description of the invention (56) The concentration of the inhibitor is expressed in terms of the value relative to the electrolyte solution. As for the fluorocarbon (fluorocarbon) -polyoxyethylene (POE) series of surfactants, the one with a fluorocarbon carbon number of 10 and a POE polymerization degree of 50 is used. In general, if the carbon number of the fluorocarbon is 4_2 0 and the POE polymerization degree is 3-1 0 0, the same effect can be obtained. Compared with those who do not add an inhibitor, the addition of the inhibitor of the present invention reduces the amount of hydrogen generated to about 1/3 to 1/2, so the effect of suppressing the generation of hydrogen is known. The difference due to plating or inhibitors is not significant. In addition, the amount of hydrogen gas generated relative to the test date is shown in Fig. 11 using the measurement results of indium-plated copper plates. Among indium compounds, only indium sulfate is shown in the figure. In this example, the results obtained using a plating thickness of 0.3 are shown. However, in practice, the results with a thickness of 0.3 have very little difference. < Comparative Example 3 > For comparison, the experiment was carried out using the electroless copper plate according to the method of Example 22. The experimental results are shown in Table 13 and FIG. 12. (Please read the precautions on the back before filling this page) 4β
T 經濟部中央標準局員工消費合作社印製 本紙張尺度逋用中國國家標準(CNS ) A4規格(210X297公釐) -59 - A7 B7 五、發明説明(57 ) 表1 3 ·未電鍍之銅板的氫釋出率 經濟部中央標準局員工消費合作社印製 實例 電解質 抑制劑 (濃度:1 0 0 ρ ρ m ) 氫產生率 K L / g / 曰 1 Κ 0 Η — 5 16. 00 2 Κ 0 Η 硫酸銦 3 0.56 3 Κ 0 Η 胺基磺酸銦 2 8.73 4 Κ 0 Η 氫氧化銦 2 9.07 5 Κ 0 Η 氧化鉛 2 4.15 6 Κ 0 Η 氫氧化鋇 480. 32 7 Κ 0 Η 氟化碳· P 0 E 465.29 8 Ν a 0 Η — 450. 24 9 Ν a 0 Η 硫酸銦 2 5.86 10 Ν a 0 Η 胺基磺酸銦 2 7.59 11 Ν a 0 Η 氫氧化銦 2 5.48 12 Ν a 0 Η 氧化鉛 2 0.25 13 Ν a 0 Η 氫氧化鋇 400. 44 14 Ν a 0 Η 氣化碳· P 0 E 392.91 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝_ ,ιτ A7 B7 五、發明説明(58) 已知不添加抑制劑且添加氫氧化鋇或氟碳化物一聚氧 化乙烯系列之表面活性劑時,氫氣產生量隨著試驗日數指 數性增加。另一方面,已知若添加硫酸銦及氧化鉛,則抑 制氫氣產生。此因銦或鉛化合物具有塗覆銅板之功能,但 氫氧化鋇及表面活性劑無此功能。 <實施例2 3 > 使用依例2 2方式電鍍之銅板,組合抑制劑所產生之 氫氣量使用KOH系列電解質溶液測量。結果示於表i 4 (請先閲讀背面之注意事項再填寫本頁) 裝· 訂 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS > A4規格(210X297公釐) -61 五、發明説明(59 ) 表14·使用鍍銦之銅板與抑制劑之氫釋出率 經濟部中央標準局員工消費合作社印製 實驗 抑制劑濃度P P m 氫產生率 編號 硫酸銦 氧化鉛 氫氧化鋇 氟化碳· POE PL/g/日 43 100 100 0 0 15. 82 44 100 0 100 0 10.10 45 100 0 0 100 13.41 46 0 100 100 0 14. 64 47 0 100 0 100 15. 54 48 0 0 100 100 12.47 49 100 100 100 0 14. 87 50 100 100 0 100 12.21 51 100 0 100 100 13.05 52 100 100 100 100 13.94 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) ·-*絮- i t' -3T The Ministry of Economic Affairs, Central Standards Bureau, Employee Consumer Cooperative printed this paper using the Chinese National Standard (CNS) A4 specification (210X297 mm) -59-A7 B7 V. Description of invention (57) Table 1 3 · Unplated copper plate Hydrogen release rate Printed example of an electrolyte inhibitor (concentration: 1 0 0 ρ ρ m) printed by the Employee Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Hydrogen generation rate KL / g / 1 Κ 0 Η — 5 16. 00 2 Κ 0 Η sulfuric acid Indium 3 0.56 3 Κ 0 Η Indium sulfamate 2 8.73 4 Κ 0 Η Indium hydroxide 2 9.07 5 Κ 0 Η Lead oxide 2 4.15 6 Κ 0 Η Barium hydroxide 480.32 7 Κ 0 Η Fluorocarbon · P 0 E 465.29 8 Ν a 0 Η — 450. 24 9 Ν a 0 Η indium sulfate 2 5.86 10 Ν a 0 Η indium sulfamate 2 7.59 11 Ν a 0 Η indium hydroxide 2 5.48 12 Ν a 0 Η lead oxide 2 0.25 13 Ν a 0 Η barium hydroxide 400. 44 14 Ν a 0 Η vaporized carbon · P 0 E 392.91 The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the notes on the back first Please fill out this page again) 装 _, ιτ A7 B7 V. Description of invention (58) It is known that no inhibitor is added and hydrogen hydroxide is added When fluorocarbon or a series of polymerization of ethylene oxide surfactant, the amount of hydrogen gas generated as the number of days refers to the number of trials increases. On the other hand, it is known that the addition of indium sulfate and lead oxide suppresses the generation of hydrogen gas. This is because indium or lead compounds have the function of coating copper plates, but barium hydroxide and surfactants do not. < Example 23 > A copper plate plated in the manner of Example 22 was used, and the amount of hydrogen gas generated by combining the inhibitors was measured using a KOH series electrolyte solution. The results are shown in Table i 4 (please read the precautions on the back and then fill out this page). Binding and ordering. This paper is printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. The paper standard is applicable to the Chinese National Standard (CNS> A4 specification (210X297 mm) -61 V. Description of the invention (59) Table 14. Hydrogen release rate using indium-plated copper plate and inhibitor Inhibitor concentration printed by the Ministry of Economic Affairs Central Standards Bureau Employee Consumer Cooperatives PP m Hydrogen generation rate number Indium lead oxide hydrogen sulfate Barium Oxide Carbon FluoridePOE PL / g / day 43 100 100 0 0 15. 82 44 100 0 100 0 10.10 45 100 0 0 100 13.41 46 0 100 100 0 14. 64 47 0 100 0 100 15. 54 48 0 0 100 100 12.47 49 100 100 100 0 14. 87 50 100 100 0 100 12.21 51 100 0 100 100 13.05 52 100 100 100 100 13.94 The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please first Read the precautions on the back and then fill out this page) ·-* Xu- it '-3
I i- -62 - A7 B7 五、發明説明(60) 表中抑制劑欄中顯示相對於電解質溶液的抑制劑添加 濃度。已知氫氣產生量與實例同樣極低,而即使使用多種 抑制劑,效果仍不太差。 其次,實際產製電池,並評估集極上之電鍍效應及抑 制劑效果。 <實施例2 4 > 在陽極罐中添加部分電解質液及1 1 6rag將組合劑添 加於氧化銀中所模製之片粒(氧化銀含量9 8%),並放 置聚乙烯隔板及玻璃紙隔板。其次,將耐綸墊料推入陽極 罐中,添加滲透劑,膠凝劑,3 0 mg鋅粉,抑制劑等物, 逐滴添加其餘隨意添加抑制劑之電解質溶液,並放置陰極 密封產生1 0 0個各種鈕扣型氧化銀電池。 陰極罐上電鍍種類及膜厚,添加之抑制劑的種類及濃 度,閉路電壓及自身放電率示於表1 5及1 6。 (請先閲讀背面之注意事項再填寫本頁) 裝. 訂 經濟部中央標準局貝工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210'〆297公釐) -63 - 五、發明説明(61 ) A7 B7 經濟部中央標準局員工消費合作社印製 表15.具Κ〇Η電解質之電池特性 實驗 編號 電解質種類 抑制劑濃度 ppm 白身放電率 % 閉路電壓 V 硫酸銦 氧化鉛 氫氧 化鋇 氟化碳 •POE 新電池 部份放電 後之電池 新電池 經部分放電 之電池 53 — 0 0 0 0 5.6 9.4 1.159 1.180 54 In 0 0 0 0 4.5 6.2 1.165 1.192 55 In 1000 0 0 0 2.6 2.7 1.169 1.198 56 In 0 1000 0 0 2.7 2.8 1.168 1.197 57 In 0 0 1000 0 2.5 4.9 1.185 1.198 58 In 0 0 0 1000 2.9 5.1 1.165 1.185 59 In 1000 1000 0 0 2.5 2.6 1.168 1.198 60 In 1000 0 1000 0 2.4 2.6 1.185 1.239 61 In 1000 0 0 1000 2.5 2.7 1.168 1.198 62 In 0 1000 0 1000 2.6 2.7 1.167 1.197 63 In 0 1000 1000 0 2.7 2.7 1.167 1.238 64 In 0 1000 1000 1000 2.6 2.6 1.186 1.238 65 In 1000 1000 1000 0 2.6 2.7 1.186 1.129 66 In 1000 1000 0 1000 2.7 2.7 1.168 1.198 67 In 1000 0 1000 1000 2.6 2.6 1.185 1.238 68 In 1000 1000 1000 1000 2.6 2.7 1.185 1.238 69 Sn 0 0 0 0 5.7 10.5 1.160 1.181 70 Sn 1000 0 0 0 4.7 6.8 1.166 1.193 71 Sn 0 1000 0 0 2.7 2.7 1.171 1.198 72 Sn 0 0 1000 0 2.7 2.8 1.170 1.198 73 Sn 0 0 0 1000 2.6 5.0 1.186 1.197 74 Sn 1000 1000 0 0 3.0 5.3 1.165 1.187 75 Sn 1000 0 1000 0 2.6 2.7 1.169 1.199 {裝------訂------ί W (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) 64 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(62 ) 表1 5 (續) 實驗 編故 電解質種類 抑制劑濃度 ppm 白身放電率 % 閉路電壓 V 硫酸銦 氧化鉛 氫氧 化鋇 氟化碳 •POE 新電池 部份放電 後之電池 新電池 經部分放電 之電池 76 Sn 1000 0 0 1000 2.4 2.5 1.187 1.240 77 Sn 0 1000 0 1000 2.4 2.8 1.169 1.200 78 Sn 0 1000 1000 0 2.5 2.6 1.168 1.197 79 Sn 0 1000 1000 1000 2.7 2.8 1.169 1.240 80 Sn 1000 0 1000 0 2.5 2.8 1.188 1.240 81 Sn 1000 1000 0 1000 2.8 2.8 1.186 1.131 82 Sn 1000 0 1000 1000 2.8 2.8 1.170 1.199 83 Sn 1000 1000 1000 1000 2.7 2.6 1.186 1.239 84 Zn · In 0 0 0 0 5.7 9.8 1.166 1.193 85 Zn · In 1000 0 0 0 4.9 7.1 1.170 1.199 86 Zn · In 0 1000 0 0 2.8 2.7 1.170 1.197 87 Zn · In 0 0 1000 0 2.9 2.9 1.187 1.199 88 Zn · In 0 0 0 1000 2.6 4.8 1.166 1.184 89 Zn · In 1000 1000 0 0 2.9 5.3 1.168 1.200 90 Zn · In 1000 0 1000 0 2.6 2.7 1.186 1.240 91 Zn · In 1000 0 0 1000 2.6 2.7 1.170 1.199 92 Zn · In 0 1000 0 1000 2.6 2.9 1.168 1.199 93 Zn · In 0 1000 1000 0 2.7 2.7 1.168 1.238 94 Zn · In 0 1000 1000 1000 2.9 2.9 1.188 1.240 95 Zn · In 1000 1000 1000 0 2.8 2.8 1.188 1.131 96 Zn . In 1000 1000 0 1000 2.6 2.9 1.168 1.200 97 Zn · In 1000 0 1000 1000 2.9 2.8 1.187 1.239 98 Zn · In 1000 1000 1000 1000 2.7 2.7 1.186 1.239 (請先閱讀背面之注意事項再填寫本頁) 裝- 、vs 丄 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -65 - A7 B7 五、發明説明(63) 經濟部中央標準局員工消費合作社印製 表16 ·使用N a Ο Η電解質之電池特性 實驗 編號 電MS 抑制劑濃度 P pm 白身放電率 % 閉路電壓 V 硫酸銦 氧化鉛 氫氧 化鋇 氟化碳 •POE 新電池 部份放電 後之電池 新電池 部分放電後 之電池 99 — 0 0 0 0 5.3 9.0 1.158 1.180 100 In 0 0 0 0 4.2 5.9 1.164 1.193 101 In 1000 0 0 0 2.2 2.3 1.169 1.199 102 In 0 1000 0 0 2.2 2.4 1.167 1.197 103 In 0 0 1000 0 2.2 4.6 1.187 1.199 104 In 0 0 0 1000 2.5 4.8 1.166 1.186 105 In 1000 1000 0 0 2.1 2.3 1.169 1.199 106 In 1000 0 1000 0 1.9 2.2 1.186 1.239 107 In 1000 0 0 1000 2.0 2.5 1.169 1.197 108 In 0 1000 0 1000 2.3 2.6 1.169 1.196 109 In 0 1000 1000 0 2.3 2.2 1.169 1.238 110 In 0 1000 1000 1000 2.0 2.1 1.187 1.237 111 In 1000 1000 1000 0 2.4 2.4 1.186 1.131 112 In 1000 1000 0 1000 2.4 2.3 1.170 1.198 113 In 1000 0 1000 1000 2.3 2.0 1.187 1.239 114 In 1000 1000 1000 1000 2.2 2.5 1.186 1.237 115 Sn 0 0 0 0 5.5 10.2 1.160 1.183 116 Sn 1000 0 0 0 4.4 6.5 1.167 1.194 117 Sn 0 1000 0 0 2.4 2.3 1.173 1.199 118 Sn 0 0 1000 0 2.5 2.6 1.171 1.200 119 Sn 0 0 0 1000 2.4 4.7 1.186 1.197 120 Sn 1000 1000 0 0 2.7 5.0 1.166 1.186 121 Sn 1000 0 1000 0 2.2 2.5 1.170 1.201 (請先閱讀背面之注意事項再填寫本頁) 裝.I i- -62-A7 B7 5. Description of the invention (60) The inhibitor column in the table shows the concentration of inhibitor added relative to the electrolyte solution. It is known that the amount of generated hydrogen gas is extremely low as in the example, and even if various inhibitors are used, the effect is not too bad. Secondly, the battery is actually produced, and the plating effect and inhibitor effect on the collector are evaluated. < Example 2 4 > A part of the electrolyte solution and 1 16 rag were added to the anode can to add the combination agent to the tablets molded in silver oxide (silver oxide content 98%), and a polyethylene separator and Cellophane separator. Secondly, push the nylon pad into the anode tank, add penetrant, gelling agent, 30 mg zinc powder, inhibitor, etc., add the rest of the electrolyte solution with inhibitor added drop by drop, and place the cathode seal to produce 1 0 0 various button-type silver oxide batteries. The types and thickness of the plating on the cathode can, the type and concentration of the added inhibitor, the closed circuit voltage and the self-discharge rate are shown in Tables 15 and 16. (Please read the precautions on the back before filling in this page). Packing. This paper is printed by the Beigong Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. The paper standard is applicable to the Chinese National Standard (CNS) A4 specification (210'〆297mm) -63- 5. Description of the invention (61) A7 B7 Printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 15. Battery characteristics with K〇Η electrolyte test number electrolyte type inhibitor concentration ppm white body discharge rate% closed circuit voltage V indium sulfate hydrogen oxide Barium Oxide Carbon Fluoride • POE Partially Discharged New Battery Battery Newly Discharged Battery 53 — 0 0 0 0 5.6 9.4 1.159 1.180 54 In 0 0 0 0 4.5 6.2 1.165 1.192 55 In 1000 0 0 0 2.6 2.7 1.169 1.198 56 In 0 1000 0 0 2.7 2.8 1.168 1.197 57 In 0 0 1000 0 2.5 4.9 1.185 1.198 58 In 0 0 0 1000 2.9 5.1 1.165 1.185 59 In 1000 1000 0 0 2.5 2.6 1.168 1.198 60 In 1000 0 1000 0 2.4 2.6 1.185 1.239 61 In 1000 0 0 1000 2.5 2.7 1.168 1.198 62 In 0 1000 0 1000 2.6 2.7 1.167 1.197 63 In 0 1000 1000 0 2.7 2.7 1.167 1.238 64 In 0 1000 1000 1000 2.6 2.6 1.186 1.2 38 65 In 1000 1000 1000 0 2.6 2.7 1.186 1.129 66 In 1000 1000 0 1000 2.7 2.7 1.168 1.198 67 In 1000 0 1000 1000 2.6 2.6 1.185 1.238 68 In 1000 1000 1000 1000 2.6 2.7 1.185 1.238 69 Sn 0 0 0 0 5.7 10.5 1.160 1.181 70 Sn 1000 0 0 0 4.7 6.8 1.166 1.193 71 Sn 0 1000 0 0 2.7 2.7 1.171 1.198 72 Sn 0 0 1000 0 2.7 2.8 1.170 1.198 73 Sn 0 0 0 1000 2.6 5.0 1.186 1.197 74 Sn 1000 1000 0 0 3.0 5.3 1.165 1.187 75 Sn 1000 0 1000 0 2.6 2.7 1.169 1.199 {install ------ order ------ ί W (please read the precautions on the back first and then fill out this page) This paper scale is applicable to China National Standards (CNS ) Α4 specification (210X 297 mm) 64-A7 B7 printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of invention (62) Table 1 5 (continued) Experimental editor electrolyte type inhibitor concentration ppm white body discharge rate% closed circuit Voltage V Indium Sulfate Lead Oxide Barium Hydroxide Carbon Fluoride • POE New Battery Partially Discharged New Battery Partially Discharged Battery 76 Sn 1000 0 0 1000 2.4 2.5 1.187 1.240 77 Sn 0 1000 0 1000 2.4 2.8 1.169 1.200 78Sn 0 1000 1000 0 2.5 2.6 1.168 1.197 79 Sn 0 1000 1000 1000 2.7 2.8 1.169 1.240 80 Sn 1000 0 1000 0 2.5 2.8 1.188 1.240 81 Sn 1000 1000 0 1000 2.8 2.8 1.186 1.131 82 Sn 1000 0 1000 1000 2.8 2.8 1.170 1.199 83 Sn 1000 1000 1000 1000 2.7 2.6 1.186 1.239 84 Zn · In 0 0 0 0 5.7 9.8 1.166 1.193 85 Zn · In 1000 0 0 0 4.9 7.1 1.170 1.199 86 Zn · In 0 1000 0 0 2.8 2.7 1.170 1.197 87 Zn 0 1000 0 2.9 2.9 1.187 1.199 88 ZnIn In 0 0 0 1000 2.6 4.8 1.166 1.184 89 ZnIn 1000 1000 0 0 2.9 5.3 1.168 1.200 90 ZnIn 1000 0 1000 0 2.6 2.7 1.186 1.240 91 ZnIn 1000 0 0 1000 2.6 2.7 1.170 1.199 92 ZnIn 0 1000 0 1000 2.6 2.9 1.168 1.199 93 ZnIn In 0 1000 1000 0 2.7 2.7 1.168 1.238 94 ZnIn 0 1000 1000 1000 2.9 2.9 1.188 1.240 95 ZnIn 1000 1000 1000 0 2.8 2.8 1.188 1.131 96 Zn. In 1000 1000 0 1000 2.6 2.9 1.168 1.200 97 Zn · In 1000 0 1000 1000 2.9 2.8 1.187 1.239 98 Zn · In 1000 1000 1000 1000 2.7 2.7 1.186 1.239 (Please read the precautions on the back first (Write this page) Binding-, vs. Standard paper size is in accordance with Chinese National Standard (CNS) A4 specification (210X297mm) -65-A7 B7 V. Description of invention (63) Printed by the Consumers Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 16 · Battery characteristics using N a Ο Η electrolyte Experiment number Electric MS Inhibitor concentration P pm White body discharge rate% Closed circuit voltage V Indium sulfate lead oxide barium hydroxide carbon fluoride • POE New battery partially discharged New battery partially discharged After the battery 99 — 0 0 0 0 5.3 9.0 1.158 1.180 100 In 0 0 0 0 4.2 5.9 1.164 1.193 101 In 1000 0 0 0 2.2 2.2 1.169 1.199 102 In 0 1000 0 0 2.2 2.4 1.167 1.197 103 In 0 0 1000 0 2.2 4.6 1.187 1.199 104 In 0 0 0 1000 2.5 4.8 1.166 1.186 105 In 1000 1000 0 0 2.1 2.3 1.169 1.199 106 In 1000 0 1000 0 1.9 2.2 1.186 1.239 107 In 1000 0 0 1000 2.0 2.5 1.169 1.197 108 In 0 1000 0 1000 2.3 2.6 1.169 1.196 109 In 0 1000 1000 0 2.3 2.2 1.169 1.238 110 In 0 1000 1000 1000 2.0 2.1 1.187 1.237 111 In 1000 1000 1000 0 2.4 2.4 1.186 1.131 112 In 1000 1000 0 1000 2.4 2.3 1.170 1.198 113 In 1000 0 1000 1000 2.3 2.0 1.187 1.239 114 In 1000 1000 1000 1000 2.2 2.5 1.186 1.237 115 Sn 0 0 0 0 5.5 10.2 1.160 1.183 116 Sn 1000 0 0 0 4.4 6.5 1.167 1.194 117 Sn 0 1000 0 0 2.4 2.3 1.173 1.199 118 Sn 0 0 1000 0 2.5 2.6 1.171 1.200 119 Sn 0 0 0 1000 2.4 4.7 1.186 1.197 120 Sn 1000 1000 0 0 2.7 5.0 1.166 1.186 121 Sn 1000 0 1000 0 2.2 2.5 1.170 1.201 (Please read the notes on the back first (Fill in this page again)
*tT 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 〇〇 CU 5 9 C5 9>* tT The size of this paper is applicable to China National Standard (CNS) Α4 specification (210Χ297mm) 〇〇 CU 5 9 C5 9>
7 B 經濟部中央標準局負工消費合作社印製 五、發明説明(64 ) 表1 6 (續) 實驗 編號 電鍍種類 抑制劑濃度 ppm 白身放電率 % 閉路電壓 V 硫酸銦 氧化鉛 氫氧 化鋇 氟化碳 •POE 新電池 部份放電 後之電池 新電池 部分放電後 之電池 122 Sn 1000 0 0 1000 2.1 2.3 1.187 1.241 123 Sn 0 1000 0 1000 2.2 2.5 1.170 1.201 124 Sn 0 1000 1000 0 2.2 2.2 1.167 1.198 125 Sn 0 1000 1000 1000 2.2 2.5 1.171 1.241 126 Sn 1000 1000 1000 0 2.3 2.6 1.189 1.242 127 Sn 1000 1000 0 1000 2.6 2.5 1.187 1.133 128 Sn 1000 0 1000 1000 2.6 2.3 1.172 1.200 129 Sn 1000 1000 1000 1000 2.4 2.4 1.186 1.239 130 Zn · In 0 0 0 0 5.3 9.5 1.168 1.194 131 Zn * In 1000 0 0 0 4.6 6.6 1.171 1.201 132 Zn · In 0 1000 0 0 2.4 2.5 1.172 1.198 133 Zn · In 0 0 1000 0 2.5 2.7 1.187 1.200 134 Zn · In 0 0 0 1000 2.3 4.6 1.168 1.185 135 Zn · In 1000 1000 0 0 2.6 5.0 1.170 1.200 136 Zn · In 1000 0 1000 0 2.3 2.3 1.188 1.241 137 Zn · In 1000 0 0 1000 2.2 2.4 1.171 1.198 138 Zn In 0 1000 0 1000 2.4 2.5 1.169 1.199 139 Zn In 0 1000 1000 0 2.6 2.5 1.167 1.237 140 Zn In 0 1000 1000 1000 2.7 2.6 1.187 1.242 141 Zn In 1000 1000 1000 0 2.4 2.3 1.188 1.132 142 Zn In 1000 1000 0 1000 2.6 2.7 1.167 1.201 143 Zn In 1000 0 1000 1000 2.6 2.6 1.189 1.240 144 Zn · In 1000 1000 1000 1000 2.5 2.5 1.186 1.240 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -67 - A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明( 65 ) 1 1 表 中 抑 制 劑 濃 度 爲 相 對 於 鋅 重 量 之 值 0 白 身 放 電 率 係 1 1 在 6 0 °C 保 持 2 0 曰 後 測 量 據 說 相 當 於 1 年 〇 1 I 部 分 放 電 後 之 白 身 放 電 率 係 在 5 0 % 深 度 放 電 ( 部 分 請 1 I 放 電 ) 後 在 6 0 °c 放 置 2 0 曰 測 得 〇 在 放 電 -a-/·» 刖 及 部 分 放 先 閱 讀 1 1 背 1 電 後 在 _ 1 0 °c 測 量 閉 路 電 壓 0 之 1 與 不 添 加 抑 制 劑 者 ( 表 1 5 中 實 例 5 4 6 9 及 8 4 注 意 事 1 1 及 表 1 6 中 實 例 1 0 0 1 1 5 及 1 3 0 ) 比 較 添 加 抑 項 再 填 1 制 劑 者 之 白 身 放 電 率 小 0 至 於 部 分 放 電 若 添 加 一 種 塗 覆 寫 本 頁 裝 | 陰 極 罐 ( 銅 ) 者 諸 如 硫 酸 銦 及 一 氧 化 鉛 者 則 改 善 白 身 放 V_ 1 I 電 率 〇 已 知 添 加 氫 氧 化 鋇 者 之 閉 路 電 壓 變 高 0 由 附 表 得 知 1 1 | 在 添 加 塗 附 型 抑 制 劑 及 氫 氧 化 鋇 時 在 放 電 前 之 白 身 放 電 1 1 訂 1 率 部 分 放 電 後 之 白 身 放 電 率 及 閉 路 電 壓 皆 有 改 善 〇 本 例 中 與 使 用 汞 齊 鋅 之 情 況 相 反 地 出 現 部 分 放 電 後 之 閉 1 1 路 電 壓 比 放 電 if- 刖 商 之 現 象 〇 原 因 巨 刖 仍 待 研 究 〇 1 I 陰 極 上 之 電 鍍 方 式 同 於 例 2 2 顯 示 各 膜 厚 0 3 上 β m 之 結 果 〇 即 使 膜 厚 0 1 — 1 β m 結 果 差 異 仍 極 小 、、》·!、 1 1 〇 此 外 使 用 K 0 Η 型 電 解 質 及 鍍 銦 之 陰 極 罐 相 對 於 1 1 1 抑 制 劑 濃 度 測 量 經 1 年 後 之 白 身 放 電 率 及 部 分 放 電 後 之 白 1 1 身 放 電 率 〇 1 | 結 果 示 於 圖 1 3 及 1 4 0 只 要 貢 際 範 圍 不 大 於 白 身 放 1 I 電 率 之 約 3 % > 則 發 現 有 效 範 圍 硫 酸 銦 爲 5 0 — 5 0 0 0 1 1 1 Ρ P m > 一 氧 化 鉛 爲 2 0 — 5 0 0 0 P Ρ m 氫 氧 化 鋇 不 1 1 少 於 5 0 P P m 9 而 氣 碳 化 物 — 聚 氧 化 乙 烯 型 表 面 活 性 劑 1 1 本紙張尺度適用中國國家標準(CNS ) A4規格(2l〇X 297公釐) _ 68 - A 7 B7 五、發明説明(66) 則不少於1 0 0 p pm (相對於鋅之濃)。至於在5 0% 深度放電後之自身放電率,有效範圍係硫酸銦5 0 -5000ppm,而一氧化錯 20 — 5000ppm。在 部分放電後氫氧化鋇及氟碳化物-聚氧化乙烯系列表面活 性劑之效果較不大。顯示銦化合物中之硫酸銦的結果,但 是,在實質相同範圍中之其他化合物亦有效。此外,即使 使用N a OH系列之電解質溶液及其他陰極罐電鍍,抑制 劑之有效濃度仍實質相同。 實施例2 5 - 2 9說明組合各技術之效果。實施例 22—24中,使用變化表面活性劑之組合物評估。試製 電池時,亦改變鋅種類評估》 實際評估使用電池之特性前,使用特製試管評估各抑 制劑及經電鍍之銅板所產生之氫氣量》所用方法說明如下 在體積2 5mj?且加刻度以認知產生之氣體量的特製 試管中預先置入2 g含各5 0 0 p pm之噴霧法所製之鉍 ,銦及鉛的鋅粉,及面積0 . 6cm2且厚〇 . 1 mm的銅片 (材料同於集極),添加試驗用之電解質溶液並加熱至 6 0°C ’測量產生之氫氣體積經7日。試驗重複1 0次, 結果爲其平均值。電解質溶液之製法是,若爲氫氧化鉀系 列’則在3 0%重之氫氧化鉀溶液中添加接近飽和之氧化 鋅’若爲氫氧化鈉系列,則在2 5 %氫氧化鈉溶液中添加 接近飽和之氧化鋅,作爲基質,且隨意添加抑制劑。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) -'β 經濟部中央標準局貝工消費合作社印裝 —69 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(67) <實施例2 5 > 同時使用經電鍍及取代性電鍍之銅板及抑制劑,測量 由鋅產生之氫。電鍍處理如下。 *銦(I η )電鍍 方法:電鍍 銨浴:7 B Printed by the Consumer Labor Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of the invention (64) Table 1 6 (continued) Experiment number Plating type inhibitor concentration ppm White body discharge rate% Closed circuit voltage V Indium sulfate lead oxide barium hydroxide fluoride Carbon • POE New battery partially discharged battery New battery partially discharged battery 122 Sn 1000 0 0 1000 2.1 2.3 1.187 1.241 123 Sn 0 1000 0 1000 2.2 2.5 1.170 1.201 124 Sn 0 1000 1000 0 2.2 2.2 1.167 1.198 125 Sn 0 1000 1000 1000 2.2 2.5 1.171 1.241 126 Sn 1000 1000 1000 0 2.3 2.6 1.189 1.242 127 Sn 1000 1000 0 1000 2.6 2.5 1.187 1.133 128 Sn 1000 0 1000 1000 2.6 2.3 1.172 1.200 129 Sn 1000 1000 1000 1000 2.4 2.4 1.186 1.239 130 Zn · In 0 0 0 0 5.3 9.5 1.168 1.194 131 Zn * In 1000 0 0 0 0 4.6 6.6 1.171 1.201 132 Zn · In 0 1000 0 0 2.4 2.5 1.172 1.198 133 Zn · In 0 0 1000 0 2.5 2.7 1.187 1.200 134 Zn · In 0 0 0 1000 2.3 4.6 1.168 1.185 135 Zn · In 1000 1000 0 0 2.6 5.0 1.170 1.200 136 Zn · In 1000 0 1000 0 2.3 2.3 1.188 1.241 137 Zn · In 1000 0 0 1000 2. 2 2.4 1.171 1.198 138 Zn In 0 1000 0 1000 2.4 2.5 1.169 1.199 139 Zn In 0 1000 1000 0 2.6 2.5 1.167 1.237 140 Zn In 0 1000 1000 1000 2.7 2.6 1.187 1.242 141 Zn In 1000 1000 1000 0 2.4 2.3 1.188 1.132 142 Zn In 1000 1000 0 1000 2.6 2.7 1.167 1.201 143 Zn In 1000 0 1000 1000 2.6 2.6 1.189 1.240 144 Zn · In 1000 1000 1000 1000 2.5 2.5 1.186 1.240 (please read the precautions on the back before filling this page) This paper size is applicable to China National Standard (CNS) A4 Specification (210X297mm) -67-A7 B7 Printed by the Employee Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs V. Invention Instructions (65) 1 1 The concentration of inhibitors in the table is the value relative to the weight of zinc 0 white body The discharge rate is 1 1 maintained at 60 ° C for 2 days after measurement. It is said that it is equivalent to 1 year. The discharge rate of the white body after partial discharge is 50% deep discharge (partially please 1 I discharge) at 60 ° c Place 2 0 and measure it. Discharge-a- / · »first read 1 1 Measure the closed-circuit voltage 1 of 0 and do not add the inhibitor at _ 1 0 ° c after charging 1 (Example 1 5 4 6 9 and 8 4 in Table 1 5 Note 1 1 and Example 1 0 0 1 1 in Table 1 6 5 and 1 3 0) Compare the addition of inhibitors and then fill 1 The white body discharge rate of the preparation is small 0 As for partial discharge, if you add a coating to write this page | Cathode can (copper) such as indium sulfate and lead monoxide will improve White body put V_ 1 I electrical rate 〇 The closed circuit voltage of those who are known to add barium hydroxide becomes higher 0 Known from the attached table 1 1 | White body discharge before discharge when adding coated inhibitor and barium hydroxide 1 1 Order 1 The white body discharge rate and closed circuit voltage after partial discharge are improved. In this case, the reverse of the partial discharge occurs in the reverse of the case of using amalgam zinc. 1 1 The voltage is more than the discharge if-commercial phenomenon. The reason is huge. Still to be studied 〇1 I on the cathode The plating method is the same as that in Example 2 2. The results of β m on each film thickness 0 3 are shown. Even if the film thickness is 0 1 — 1 β m, the difference in results is still very small. In addition, K 0 Η type electrolyte and plating are used. The cathode can of indium is measured with respect to 1 1 1 inhibitor concentration. The white body discharge rate after 1 year and the partial discharge white 1 1 body discharge rate 〇1 | The results are shown in Figures 1 3 and 1 4 0 as long as the tributary range is not More than about 3% of the white body put 1 I electric power > it is found that the effective range of indium sulfate is 5 0-5 0 0 0 1 1 1 PP M > lead monoxide is 2 0-5 0 0 0 P Ρ m hydrogen Barium oxide is not less than 1 1 less than 5 0 PP m 9 and gas carbide-polyethylene oxide surfactant 1 1 This paper size is applicable to China National Standard (CNS) A4 specifications (2l〇X 297 mm) _ 68-A 7 B7 V. Description of the invention (66) No less than 100 p pm (relative to zinc concentration). As for the self-discharge rate after 50% deep discharge, the effective range is indium sulfate 50-5000ppm, and monoxide 20-5000ppm. After partial discharge, barium hydroxide and fluorocarbon-polyoxyethylene series surfactants are less effective. The results of indium sulfate in the indium compound are shown, but other compounds in the substantially same range are also effective. In addition, even if the electrolytic solution of the NaOH series and other cathode cans are used for plating, the effective concentration of the inhibitor is still substantially the same. Example 2 5-2 9 illustrates the effects of combining various technologies. In Examples 22-24, compositions using varying surfactants were evaluated. During the trial production of the battery, the type of zinc is also changed. "Before actually evaluating the characteristics of the battery, use a special test tube to evaluate the amount of hydrogen produced by each inhibitor and the electroplated copper plate." The method used is described below at a volume of 25mj? A special test tube of the amount of gas generated was pre-placed with 2 g of zinc powder containing bismuth, indium and lead made by a spray method of 500 p pm each, and a copper sheet with an area of 0.6 cm2 and a thickness of 0.1 mm ( The material is the same as the collector), add the electrolyte solution used for the test and heat to 60 ° C 'to measure the volume of hydrogen produced over 7 days. The test was repeated 10 times and the result was the average value. The preparation method of electrolyte solution is, if it is potassium hydroxide series, then add nearly saturated zinc oxide in 30% potassium hydroxide solution. If it is sodium hydroxide series, add it in 25% sodium hydroxide solution. Nearly saturated zinc oxide is used as a matrix and inhibitors are added at will. This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297mm) (please read the precautions on the back before filling in this page) -'β Printed by Beigong Consumer Cooperative, Central Bureau of Standards, Ministry of Economic Affairs-69-Central Ministry of Economic Affairs Printed by the Bureau of Standards and Staff Consumer Cooperative A7 B7 V. Description of the invention (67) < Example 2 5 > At the same time, electroplated and substituted electroplated copper plates and inhibitors were used to measure the hydrogen produced by zinc. The plating process is as follows. * Indium (I η) electroplating method: electroplating ammonium bath:
:硫酸銦60g/义 :硫酸鈉1 0 g /又 2 5 °C 鍍膜厚度:0 · 3/zm *錫(S η )電鍍 方法:電鍍 鍍浴: :錫酸鉀100g /又 :氫氧化鉀15g/5 :乙酸鉀5 g /又 7 0。。 鍍膜厚度:0.3#m *鋅銦(Zn_In)電鍍 方法:接觸電鍍(銅板與鋅置入加熱至6 0°C之以 下鍍浴中並放置1小時) 鍍浴:KOH 30% :Ζ η 0 飽和 :硫酸銦 0.3% 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) A 裝 訂 ί·ν< (請先閱讀背面之注意事項再填寫本頁) -70 - A7 B7 五、發明説明(68) 鍍膜厚度:0.3em 在銅板上之電鍍物及相對於抑制劑之氫氣產生結果示 於表17 (使用KOH系列)及表18 (使用NaOH系 列)中。抑制劑濃度以相對於電解質溶液之值表示。 (請先閱讀背面之注意事項再填寫本頁) 裝·: Indium sulfate 60g / Sense: Sodium sulfate 1 0 g / 2 5 ° C Coating thickness: 0 · 3 / zm * Tin (S η) Plating method: Electroplating bath:: Potassium stannate 100g / Another: Potassium hydroxide 15g / 5: Potassium acetate 5g / 70. . Coating thickness: 0.3 # m * Zinc indium (Zn_In) plating method: contact plating (copper plate and zinc are placed in a plating bath heated to below 60 ° C and placed for 1 hour) Plating bath: KOH 30%: Zn η 0 saturated : Indium sulfate 0.3% This paper scale is applicable to the Chinese National Standard (CNS) Α4 specification (210Χ297mm) A binding ί · ν < (please read the precautions on the back before filling in this page) -70-A7 B7 V. Description of invention (68) Coating thickness: 0.3em The electroplated product on the copper plate and the hydrogen generation relative to the inhibitor are shown in Table 17 (using KOH series) and Table 18 (using NaOH series). The inhibitor concentration is expressed as a value relative to the electrolyte solution. (Please read the precautions on the back before filling out this page)
、1T 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -71, 1T Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs
AA
7 B 五、發明説明(69) 表1 7 ·經電鍍之銅板的氫釋出率 經濟部中央標準局員工消費合作社印製 實驗 編號 電鍍種類 電解質 抑制率 (濃度:100ppm) 氫產生率 PL/g/曰 1 In KOH — 31.43 2 In KOH 硫酸銦 14.28 3 In KOH 氣基擴酸銦 12.41 4 In KOH 氫氧化銦 16.73 5 In KOH 氧化鉛 17.85 6 In KOH 氫氧化鋇 8.57 7 In KOH P0ERA 8. 42 8 Sn KOH — 35.78 9 Sn KOH 硫酸銦 16.11 10 Sn KOH 氨基磺酸銦 17.72 11 Sn KOH 氫氧化銦 16.53 12 Sn KOH 氧化鉛 17.91 13 Sn KOH 氫氧化鋇 10.89 14 Sn KOH P0ERA 10.02 15 Zn * In KOH — 32.34 16 Zn * In KOH 硫酸銦 15.27 17 Zn · In KOH 氨基磺酸銦 13.35 18 Zn * In KOH 氫氧化絪 18.83 19 Zn * In KOH 氧化鉛 16.82 20 Zn · In KOH 氫氧化鋇 11.30 2 1 Zn * In KOH P0ERA 10.98 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 、一=° Γ 72 -7 B V. Description of the invention (69) Table 1 7 · Hydrogen release rate of plated copper plate Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economy Experiment number of plating type Electrolyte suppression rate (concentration: 100ppm) Hydrogen generation rate PL / g / Said 1 In KOH — 31.43 2 In KOH indium sulfate 14.28 3 In KOH gas-based indium acid expansion 12.41 4 In KOH indium hydroxide 16.73 5 In KOH lead oxide 17.85 6 In KOH barium hydroxide 8.57 7 In KOH P0ERA 8. 42 8 Sn KOH — 35.78 9 Sn KOH indium sulfate 16.11 10 Sn KOH indium sulfamate 17.72 11 Sn KOH indium hydroxide 16.53 12 Sn KOH lead oxide 17.91 13 Sn KOH barium hydroxide 10.89 14 Sn KOH P0ERA 10.02 15 Zn * In KOH — 32.34 16 Zn * In KOH indium sulfate 15.27 17 Zn · In KOH indium sulfamate 13.35 18 Zn * In KOH hydroxide 18.83 19 Zn * In KOH lead oxide 16.82 20 Zn · In KOH barium hydroxide 11.30 2 1 Zn * In KOH P0ERA 10.98 The size of this paper is in accordance with Chinese National Standard (CNS) A4 (210X297mm) (please read the precautions on the back before filling in this page), 一 = ° Γ 72-
A7 7 B 五、發明説明(7〇 ) 表1 8 ·經電鍍之銅板的氫釋出率 經濟部中央標準局員工消費合作社印製 實驗 編號 電鍍種類 電解質 抑制率 (濃度:100ppm) 氫產生率 ML/g/曰 22 In NaOH — 29.41 23 In NaOH 硫酸銦 14.75 24 In NaOH 氨基磺酸銦 10.58 25 In NaOH 氫氧化銦 15.37 26 In NaOH 氧化鉛 14.14 27 In NaOH 氫氧化鋇 7.82 28 In NaOH P0ERA 8.13 29 Sn NaOH — 30.10 30 Sn NaOH 硫酸銦 15.03 31 Sn NaOH 氨基磺酸銦 15.28 32 Sn NaOH 氫氧化銦 15.38 33 Sn NaOH 氧化鉛 14.53 34 Sn NaOH 氫氧化鋇 8.72 35 Sn NaOH P0ERA 9.52 36 Zn * In NaOH — 32.83 37 Zn * In NaOH 硫酸銦 14.98 38 Zn * In NaOH 氨基磺酸銦 13.19 39 Zn · In NaOH 氫氧化銦 14.13 40 Zn · In NaOH 氧化鉛 14.27 41 Zn · In NaOH 氫氧化鋇 8.98 42 Zn · In NaOH P0ERA 8.95 本紙張尺度適用中國國家標準(CNS ) A4規格(21 OX 297公釐) (請先閱讀背面之注意事項再填寫本頁) 、τ Γ -73 - A7 _B7 五、發明説明(71 ) 聚氧化乙烯烷醯胺爲(表中及圖中以Ρ 〇 E RA表示 )者,其中兩個聚氧化乙烯(POE)經醯胺鍵鍵結於氮 之烷基。此情況下,使用烷基碳數爲11且POE聚合度 爲1 5者。通常,當使用烷基碳數爲3 — 3 0且POE聚 合度爲2 — 5 0者時,得到相同效果。 與不添加抑制劑者比較,添加本發明抑制劑者,氫氣 產生量減至約1/3至1/2,故知抑制氫氣產生之效果 。因電鍍或抑制劑所致之差異不大。此外’相對於試驗曰 數之氫氣產生量試於圖1 5中,使用經銦電鍍之銅板的測 量結果。而銦化合物中,僅有硫酸銦示於圖中。 本例中,顯示使用電鍍膜厚0 · 3 所得之結果’ 但是,實際上,膜厚0 . l_lMm者之結果差異極小。 <比較例3 > 爲比較計,依例2 5方法使用無電鍍之銅板進行實驗 。實驗結果示於表19及圖16中。 (請先閱讀背面之注意事項再填寫本頁) 裝· 訂 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -74 - A7 B7 五、發明説明(72) 表1 9 .未電鍍之銅板的氫釋出率 經濟部中央標準局員工消費合作社印裝 例 電解質 抑制劑(濃度: 氫產生率 1 0 0 p p m ) μ L/g/日 1 Κ0Η — 516.00 2 Κ0Η 硫酸銦 30.56 3 Κ0Η 胺基磺酸銦 28.73 4 Κ0Η 氫氧化銦 29.07 5 Κ0Η 氧化鉛 24.15 6 Κ0Η 氫氧化鋇 480.32 7 Κ0Η 氟化碳· P 0 E 432.19 已知不添加抑制劑且添加氫氧化鋇或氟碳化物-聚氧 化乙烯系列之表面活性劑時,氫氣產生量隨著試驗日數指 數性增加。另一方面,已知若添加硫酸銦及氧化鉛,則抑 制氫氣產生。此因銦或鉛化合物具有塗覆銅板之功能,但 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝. 、tr -75 - A7 B7 五、發明説明(73 ) 氫氧化鋇及表面活性劑無此功能。 <實施例2 6 > 使用依例2 5方式電鍍之銅板,組合抑制劑所產生之 氫氣量使用Κ Ο Η系列電解質溶液測量。結果示於表2 0 (請先閱讀背面之注意事項再填寫本頁) 裝· 訂 經濟部中央標準局員工消費合作社印褽 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 76 - 8 ϋ 5 9 Qv οί B7 五、發明説明(74 ) 表2 0 ·鍍銦之銅板與銦之氫釋出率 經濟部中央標準局員工消費合作社印製 實驗 抑制劑濃度P P m 氫產生率 編號 硫酸銦 氧化船 氫氧化銦 P0ERA hL/g/日 43 100 100 0 0 15.82 44 100 0 100 0 10.10 45 100 0 0 100 12.28 46 0 100 100 0 14.64 47 0 100 0 100 15.40 48 0 0 100 100 9. 28 49 100 100 100 0 14.87 50 100 100 0 100 12.12 5 1 100 0 100 100 8.88 52 100 100 100 100 8.54 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 一一丨》 、τ Γ i -77 - 經濟部中央棣準局貝工消费合作社印製 A7 B7 五、發明説明(75 ) 表中抑制劑欄中顯示相對於電解質溶液的抑制劑添加 濃度。已知氫氣產生量與實例同樣極低,而即使使用多種 抑制劑,效果仍不太差。尤其,同時添加氫氧化鋇及聚院 化乙烯烷醢胺者之氫氣產生量少。 其次,實際產製電池,並評估集極上之電鍍效應及抑 制劑效果》 <實施例2 7 > 在陽極罐中添加部分電解質液及1 1 6mg將組合劑添 加於氧化銀中所模製之片粒(氧化銀含量9 8%),並放 置聚乙烯隔板及玻璃紙隔板。其次,將耐綸墊料推入陽極 罐中,添加滲透劑,膠凝劑,30mg鋅粉,抑制劑等物, 逐滴添加隨意加有抑制劑之其餘電解質溶液,並放置陰極 密封產生1 0 0個各種鈕扣型氧化銀電池。 所用鋅粉爲含1 3 0 p pm鉍,5 0 0 p pm銦及 30ppm鋁(噴霧法所製)者。 陰極罐上電鍍種類及膜厚,所添加之抑制劑之種類及 濃度,閉路電壓及自身放電率示於表2 1及2 2。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝A7 7 B V. Description of invention (7〇) Table 1 8 • Hydrogen release rate of electroplated copper plate Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economy Experiment number Plating type Electrolyte inhibition rate (concentration: 100 ppm) Hydrogen generation rate ML / g / Yue 22 In NaOH — 29.41 23 In NaOH Indium sulfate 14.75 24 In NaOH Indium sulfamate 10.58 25 In NaOH Indium hydroxide 15.37 26 In NaOH Lead oxide 14.14 27 In NaOH Barium hydroxide 7.82 28 In NaOH P0ERA 8.13 29 Sn NaOH — 30.10 30 Sn NaOH indium sulfate 15.03 31 Sn NaOH indium sulfamate 15.28 32 Sn NaOH indium hydroxide 15.38 33 Sn NaOH lead oxide 14.53 34 Sn NaOH barium hydroxide 8.72 35 Sn NaOH P0ERA 9.52 36 Zn * In NaOH — 32.83 37 Zn * In NaOH indium sulfate 14.98 38 Zn * In NaOH indium sulfamate 13.19 39 Zn · In NaOH indium hydroxide 14.13 40 Zn · In NaOH lead oxide 14.27 41 Zn · In NaOH barium hydroxide 8.98 42 Zn · In NaOH P0ERA 8.95 This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (21 OX 297 mm) (please read the precautions on the back before filling this page), τ Γ -73-A7 _B7 5. Description of the Invention (71) acyl polyoxyethylene alkyl amine (tables and figures to represent Ρ square E RA) by which two polyethylene oxide (POE) via Amides bonded to a nitrogen of the group. In this case, those having an alkyl carbon number of 11 and a POE polymerization degree of 15 are used. Generally, the same effect is obtained when the alkyl group has a carbon number of 3 to 30 and the POE polymerization degree is 2 to 50. Compared with those who do not add an inhibitor, the addition of the inhibitor of the present invention reduces the amount of hydrogen generated to about 1/3 to 1/2, so the effect of suppressing the generation of hydrogen is known. The difference due to plating or inhibitors is not significant. In addition, the amount of hydrogen generated relative to the test number is shown in Fig. 15 using the measurement results of indium-plated copper plates. Among indium compounds, only indium sulfate is shown in the figure. In this example, the results obtained using a plating thickness of 0.3 are shown. However, in practice, the difference between the results of the thickness of 0.1 mm and 1 mm is extremely small. < Comparative Example 3 > For comparison purposes, an electroless copper plate was used for the experiment according to the method of Example 25. The experimental results are shown in Table 19 and Figure 16. (Please read the precautions on the back and then fill out this page) Binding · Order The paper standard printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) -74-A7 B7 5. 2. Description of the invention (72) Table 1 9. Hydrogen release rate of unplated copper plate Electrolyte inhibitor printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs (concentration: hydrogen generation rate 100 ppm) μ L / g / day 1 Κ0Η — 516.00 2 Κ0Η Indium sulfate 30.56 3 Κ0Η Indium sulfamate 28.73 4 Κ0Η Indium hydroxide 29.07 5 Κ0Η Lead oxide 24.15 6 Κ0Η Barium hydroxide 480.32 7 Κ0Η Carbon fluoride · P 0 E 432.19 Known not to add inhibitors When adding barium hydroxide or fluorocarbon-polyoxyethylene series surfactants, the amount of hydrogen generated increases exponentially with the number of test days. On the other hand, it is known that the addition of indium sulfate and lead oxide suppresses the generation of hydrogen gas. This is because the indium or lead compound has the function of coating the copper plate, but the paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) (please read the precautions on the back before filling in this page). 75-A7 B7 5. Description of the invention (73) Barium hydroxide and surfactant do not have this function. < Example 2 6 > A copper plate electroplated in the same manner as in Example 25 was used, and the amount of hydrogen gas generated by combining the inhibitors was measured using a K Ο Η series electrolyte solution. The results are shown in Table 20 (please read the precautions on the back before filling in this page). Binding and ordering The printed paper size of the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. The standard of the Chinese National Standard (CNS) Α4 specification (210 × 297 mm) 76 -8 ϋ 5 9 Qv οί B7 V. Description of the invention (74) Table 2 0 · Release rate of indium-plated copper plate and indium hydrogen The experimental inhibitor concentration PP m hydrogen production rate number is printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs Indium sulfate oxidation boat indium hydroxide P0ERA hL / g / day 43 100 100 0 0 15.82 44 100 0 100 0 10.10 45 100 0 0 100 12.28 46 0 100 100 0 14.64 47 0 100 0 100 15.40 48 0 0 100 100 9. 28 49 100 100 100 0 14.87 50 100 100 0 100 12.12 5 1 100 0 100 100 8.88 52 100 100 100 100 8.54 The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) (please read the back (Notes and fill in this page again) 11.11 丨, τ Γ i -77-Printed by the Ministry of Economic Affairs, Central Bureau of Industry and Commerce Beigong Consumer Cooperative A7 B7 V. Description of the invention (75) The inhibitor column in the table shows the relative electrolyte solution Of inhibitors added concentration. It is known that the amount of generated hydrogen gas is extremely low as in the example, and even if various inhibitors are used, the effect is not too bad. In particular, the addition of barium hydroxide and poly (vinylalkylamide) simultaneously produces less hydrogen. Second, the battery was actually produced, and the plating effect and inhibitor effect on the collector were evaluated. "≪ Example 2 7 > A part of the electrolyte solution and 116 mg were added to the anode can and the combination agent was added to the silver oxide and molded The particles (silver oxide content 98%), and placed polyethylene separator and cellophane separator. Next, push the nylon pad into the anode tank, add penetrant, gelling agent, 30mg zinc powder, inhibitor, etc., add the rest of the electrolyte solution with the inhibitor added drop by drop, and place the cathode seal to produce 10 0 various button-type silver oxide batteries. The zinc powder used is one containing 1300 p pm bismuth, 500 p pm indium and 30 ppm aluminum (made by spray method). The type and thickness of the plating on the cathode can, the type and concentration of the added inhibitor, the closed circuit voltage and the self-discharge rate are shown in Tables 21 and 22. The size of this paper is applicable to the Chinese National Standard (CNS) A4 (210X297mm) (please read the precautions on the back before filling in this page)
、1T -78 - A7, 1T -78-A7
7 B 五、發明説明(76 ) 經濟部中央標準局員工消費合作社印製 表21 ·使用Κ Ο Η電解質之電池特性 實驗 編號 電解質種類 抑制劑濃度 ppm 自身放電率 % 閉路電壓 V 硫酸銦 氧化鉛 氫氧 化鋇 POERA 新電池 部份放電 後之電池 新電池 部分放電後 之電池 53 — 0 0 0 0 5.8 9.9 1.158 1.179 54 In 0 0 0 0 4.3 5.9 1.165 1.192 55 In 1000 0 0 0 2.7 2.7 1.169 1.198 56 In 0 1000 0 0 2.7 2.8 1.168 1.197 57 In 0 0 1000 0 2.5 4.9 1.186 1.198 58 In 0 0 0 1000 2.6 5.0 1.165 1.185 59 In 1000 1000 0 0 2.5 2.6 1.168 1.197 60 In 1000 0 1000 0 2.4 2.6 1.186 1.239 61 In 1000 0 0 1000 2.4 2.5 1.168 1.199 62 In 0 1000 0 1000 2.4 2.6 1.168 1.197 63 In 0 1000 1000 0 2.6 2.7 1.167 1.238 64 In 0 1000 1000 1000 2.4 2.4 1.188 1.239 65 In 1000 1000 1000 0 2.6 2.6 1.186 1.240 66 In 1000 1000 0 1000 2.5 2.6 1.170 1.200 67 In 1000 0 1000 1000 2.3 2.5 1.185 1.240 68 In 1000 1000 1000 1000 2.4 2.4 1.186 1.238 69 Sn 0 0 0 0 4.7 6.8 1.167 1.193 70 Sn 1000 0 0 0 2.8 2.7 1.168 1.198 71 Sn 0 1000 0 0 2.7 2.8 1.170 1.199 72 Sn 0 0 1000 0 2.6 5.0 1.187 1.199 73 Sn 0 0 0 1000 2.6 5.1 1.165 1.185 74 Sn 1000 1000 0 0 2.6 2.7 1.168 1.197 75 Sn 1000 0 1000 0 2.4 2.5 1.187 1.240 (請先閱讀背面之注意事項再填寫本頁) r>w 、τ Γ i 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨Ο X 297公釐) -79 -7 B V. Description of the invention (76) Printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. 21 • Battery characteristics using K Ο Η electrolyte test number. Electrolyte type inhibitor concentration ppm Self-discharge rate% closed circuit voltage V indium sulfate hydrogen oxide Barium oxide POERA New battery partially discharged battery New battery partially discharged battery 53 — 0 0 0 0 0 5.8 9.9 1.158 1.179 54 In 0 0 0 0 4.3 5.9 1.165 1.192 55 In 1000 0 0 0 2.7 2.7 1.169 1.198 56 In 0 1000 0 0 2.7 2.8 1.168 1.197 57 In 0 0 1000 0 2.5 4.9 1.186 1.198 58 In 0 0 0 1000 2.6 5.0 1.165 1.185 59 In 1000 1000 0 0 2.5 2.6 1.168 1.197 60 In 1000 0 1000 0 2.4 2.6 1.186 1.239 61 In 1000 0 0 1000 2.4 2.5 1.168 1.199 62 In 0 1000 0 1000 2.4 2.6 1.168 1.197 63 In 0 1000 1000 0 2.6 2.7 1.167 1.238 64 In 0 1000 1000 1000 2.4 2.4 1.188 1.239 65 In 1000 1000 1000 0 2.6 2.6 1.186 1.240 66 In 1000 1000 0 1000 2.5 2.6 1.170 1.200 67 In 1000 0 1000 1000 2.3 2.3 1.185 1.240 68 In 1000 1000 1000 1000 2.4 2.4 1.186 1.238 69 Sn 0 0 0 0 4.7 6.8 1.167 1.193 70 Sn 1000 0 0 0 2.8 2.7 1.168 1.198 71 Sn 0 1000 0 0 2.7 2.8 1.170 1.199 72 Sn 0 0 1000 0 2.6 5.0 1.187 1.199 73 Sn 0 0 0 1000 2.6 5.1 1.165 1.185 74 Sn 1000 1000 0 0 2.6 2.7 1.168 1.197 75 Sn 1000 0 1000 0 2.4 2.5 1.187 1.240 (Please read the precautions on the back before filling in this page) r > w, τ Γ i This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (2 丨 Ο X 297 Mm) -79-
A B 經濟部中央標準局員工消費合作社印製 五、發明説明(77 ) 表2 1 (續) 實驗 編號 電解質麵 抑制劑濃度 ppm 白身放電率 % 閉路電壓 V 硫酸銦 氧化鉛 氫氧 化鋇 POERA 新電池 部份放電 後之電池 新電池 部分放電 後之電池 76 Sn 1000 0 0 1000 2.4 2.4 1.168 1.201 77 Sn 0 1000 0 1000 2.4 2.6 1.169 1.196 78 Sn 0 1000 1000 0 2.7 2.8 1.167 1.240 79 Sn 0 1000 1000 1000 2.6 2.5 1.189 1.240 80 Sn 1000 1000 1000 0 2.7 2.6 1.185 1.240 81 Sn 1000 1000 0 1000 2.5 2.6 1.172 1.200 82 Sn 1000 0 1000 1000 2.3 2.6 1.186 1.241 83 Sn 1000 1000 1000 1000 2.4 2.5 1.188 1.241 84 Zn · In 0 0 0 0 4.9 7.1 1.171 1.199 85 Zn · In 1000 0 0 0 2.6 2.7 1.167 1.197 86 Zn . In 0 1000 0 0 2.9 3.0 1.188 1.200 87 Zn · In 0 0 1000 0 2.6 5.0 1.166 1.186 88 Zn · In 0 0 0 1000 2.6 5.0 1.168 1.197 89 Zn · In 1000 1000 0 0 2.5 2.6 1.186 1.239 90 Zn · In 1000 0 1000 0 2.5 2.7 1.169 1.200 91 Zn In 1000 0 0 1000 2.4 2.7 1.168 1.199 92 Zn · In 0 1000 0 1000 2.5 2.5 1.168 1.237 93 Zn In 0 1000 1000 0 2.6 2.9 1.188 1.241 94 Zn · In 0 1000 1000 1000 2.5 2.5 1.187 1.241 95 Zn In 1000 1000 1000 0 2.5 2.6 1.169 1.200 96 Zn · In 1000 1000 0 1000 2.7 2.6 1.187 1.240 97 Zn · In 1000 0 1000 1000 2.4 2.6 1.187 1.239 98 Zn · In 1000 1000 1000 1000 2.5 2.6 1.188 1.240 (請先閱讀背面之注意事項再填寫本頁) 、τ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -80 - A7 五、發明説明(78 ) 經濟部中央標準局員工消費合作社印製 表2 2 .使用N a ΟΗ電解質之電池特性 實驗 編號 電解質種類 抑制劑濃度 ppm 自身放電率 % 閉路電壓 V 硫酸銦 氧化鉛 氫氧 化鋇 POERA 新電池 部份放電 後之電池 新電池 部分放電 後之電池 99 — 0 0 0 0 5.5 9.6 1.157 1.181 100 In 0 0 0 0 4.0 5.5 1.167 1.194 101 In 1000 0 0 0 2.3 2.4 1.169 1.199 102 In 0 1000 0 0 2.2 2.5 1.169 1.198 103 In 0 0 1000 0 2.2 4.7 1.185 1.199 104 In 0 0 0 1000 2.2 4.8 1.166 1.184 105 In 1000 1000 0 0 2.1 2.3 1.169 1.199 106 In 1000 0 1000 0 1.9 2.2 1.188 1.240 107 In 1000 0 0 1000 1.9 2.2 1.168 1.200 108 In 0 1000 0 1000 2.1 2.4 1.167 1.199 109 In 0 1000 1000 0 2.2 2.4 1.169 1.238 110 In 0 1000 1000 1000 1.8 1.9 1.189 1.240 111 In 1000 1000 1000 0 2.4 2.2 1.187 1.241 112 In 1000 1000 0 1000 2.2 2.1 1.171 1.202 113 In 1000 0 1000 1000 2.0 2.2 1.186 1.240 114 In 1000 1000 1000 1000 2.0 2.0 1.188 1.240 115 Sn 0 0 0 0 4.4 6.4 1.169 1.195 116 Sn 1000 0 0 0 2.5 2.2 1.169 1.200 117 Sn 0 1000 0 0 2.5 2.3 1.170 1.200 118 Sn 0 0 1000 0 2.4 4.7 1.189 1.200 119 Sn 0 0 0 1000 2.3 4.7 1.167 1.184 120 Sn 1000 1000 0 0 2.2 2.1 1.169 1.196 121 Sn 1000 0 1000 0 2.1 2.3 1.188 1.240 (請先閱讀背面之注意事項再填寫本頁) r」 、τ Γ 4- 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 81AB Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of the invention (77) Table 2 1 (continued) Experiment number Electrolyte surface inhibitor concentration ppm White body discharge rate% Closed circuit voltage V Indium sulfate lead oxide barium hydroxide POERA New Battery Partially discharged battery New battery Partially discharged battery 76 Sn 1000 0 0 1000 2.4 2.4 1.168 1.201 77 Sn 0 1000 0 1000 2.4 2.6 1.169 1.196 78 Sn 0 1000 1000 0 2.7 2.8 1.167 1.240 79 Sn 0 1000 1000 1000 2.6 2.5 1.189 1.240 80 Sn 1000 1000 1000 0 2.7 2.6 1.185 1.240 81 Sn 1000 1000 0 1000 2.5 2.6 1.172 1.200 82 Sn 1000 0 1000 1000 2.3 2.6 1.186 1.241 83 Sn 1000 1000 1000 1000 2.4 2.5 1.188 1.241 84 Zn · In 0 0 0 0 4.9 7.1 1.171 1.199 85 Zn · In 1000 0 0 0 2.6 2.7 1.167 1.197 86 Zn. In 0 1000 0 0 2.9 3.0 1.188 1.200 87 Zn · In 0 0 1000 0 2.6 5.0 1.166 1.186 88 Zn · In 0 0 0 1000 2.6 5.0 1.168 1.197 89 Zn · In 1000 1000 0 0 2.5 2.6 1.186 1.239 90 Zn · In 1000 0 1000 0 2.5 2.7 1.169 1.200 91 Zn In 1000 0 0 1000 2.4 2.7 1.168 1.199 92 Zn · In 0 1000 0 1000 2.5 2.5 1.168 1.237 93 Zn In 0 1000 1000 0 2.6 2.9 1.188 1.241 94 ZnIn 0 1000 1000 1000 2.5 2.5 1.187 1.241 95 Zn In 1000 1000 1000 0 2.5 2.6 1.169 1.200 96 ZnIn 1000 1000 0 1000 2.7 2.6 1.187 1.240 97 Zn · In 1000 0 1000 1000 2.4 2.6 1.187 1.239 98 Zn · In 1000 1000 1000 1000 2.5 2.6 1.188 1.240 (please read the precautions on the back before filling in this page), τ This paper size applies to Chinese national standards (CNS) A4 specification (210X 297 mm) -80-A7 V. Description of invention (78) Printed form 2 of the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 2 2. Battery characteristics test number using N a ΟΗ electrolyte Concentration ppm Self-discharge rate% Closed circuit voltage V Indium sulfate lead oxide barium hydroxide POERA New battery partially discharged battery New battery partially discharged battery 99 — 0 0 0 0 5.5 9.6 1.157 1.181 100 In 0 0 0 0 4.0 5.5 1.167 1.194 101 In 1000 0 0 0 2.3 2.3 1.169 1.199 102 In 0 1000 0 0 2.2 2.5 1.169 1.198 103 In 0 0 1000 0 2.2 4.7 1.185 1.199 104 In 0 0 0 10 00 2.2 4.8 1.166 1.184 105 In 1000 1000 0 0 2.1 2.3 1.169 1.199 106 In 1000 0 1000 0 1.9 2.2 1.188 1.240 107 In 1000 0 0 1000 1.9 2.2 1.168 1.200 108 In 0 1000 0 1000 2.1 2.4 1.167 1.199 109 In 0 1000 1000 0 2.2 2.4 1.169 1.238 110 In 0 1000 1000 1000 1.8 1.9 1.189 1.240 111 In 1000 1000 1000 0 2.4 2.2 1.187 1.241 112 In 1000 1000 0 1000 2.2 2.1 1.171 1.202 113 In 1000 0 1000 1000 2.0 2.2 1.186 1.240 114 In 1000 1000 1000 1000 2.0 2.0 1.188 1.240 115 Sn 0 0 0 0 4.4 6.4 1.169 1.195 116 Sn 1000 0 0 0 2.5 2.2 1.169 1.200 117 Sn 0 1000 0 0 2.5 2.3 1.170 1.200 118 Sn 0 0 1000 0 2.4 4.7 1.189 1.200 119 Sn 0 0 0 1000 2.3 4.7 1.167 1.184 120 Sn 1000 1000 0 0 2.2 2.1 1.169 1.196 121 Sn 1000 0 1000 0 2.1 2.3 1.188 1.240 (Please read the precautions on the back before filling this page) r '', τ Γ 4- This paper size is applicable to China National Standard (CNS) A4 Specification (210X297mm) 81
7 7 A B 經濟部中央標準局員工消費合作社印製 五、發明説明(79 ) 表22(續) 實驗 編號 電解質種類 抑制劑濃度 ppm 自身放電率 % 閉路電壓 V 硫酸銦 氧倾 氫氧 化鋇 P0ERA 新電池 部份放電 後之電池 新電池 部分放電 後之電池 122 Sn 1000 0 0 1000 1.9 2.1 1.169 1.200 123 Sn 0 1000 0 1000 2.2 2.3 1.168 1.198 124 Sn 0 1000 1000 0 2.5 2.4 1.169 1.240 125 Sn 0 1000 1000 1000 2.4 2.2 1.190 1.240 126 Sn 1000 1000 1000 0 2.4 2.3 1.186 1.241 127 Sn 1000 1000 0 1000 2.3 2.4 1.174 1.199 128 Sn 1000 0 1000 1000 2.0 2.4 1.186 1.241 129 Sn 1000 1000 1000 1000 2.1 2.2 1.89 1.241 130 Zn · In 0 0 0 0 4.6 6.7 1.172 1.201 131 Zn In 1000 0 0 0 2.3 2.4 1.169 1.198 132 Zn · In 0 1000 0 0 2.7 2.5 1.188 1.201 133 Zn · In 0 0 1000 0 2.4 4.8 1.168 1.187 134 Zn In 0 0 0 1000 2.3 4.8 1.170 1.197 135 Zn · In 1000 1000 0 0 2.1 2.4 1.188 1.240 136 Zn · In 1000 0 1000 0 2.2 2.4 1.170 1.199 137 Zn · In 1000 0 0 1000 2.2 2.5 1.169 1.199 138 Zn In 0 1000 0 1000 2.2 2.2 1.167 1.236 139 Zn · In 0 1000 1000 0 2.1 2.6 1.187 1.243 140 Zn In 0 1000 1000 1000 2.3 2.0 1.187 1.242 141 Zn · In 1000 1000 1000 0 2.3 2.4 1.168 1.201 142 Zn · In 1000 1000 0 1000 2.2 2.4 1.189 1.241 143 Zn · In 1000 0 1000 1000 2.2 2.4 1.187 1.240 144 Zn · In 1000 1000 1000 1000 2.3 2.3 1.187 1.241 (請先閲讀背面之注意事項再填寫本頁) r>i Γ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -82 - 經濟部中央標準局員工消費合作社印製 A 7 B7 五、發明説明(80 ) 表中抑制劑濃度爲相對於鋅重量之值。自身放電率係 在6 0°C保持2 0日後測量’據說相當於1年。部分放電 後之自身放電率係在5 0%深度放電(部分放電)後’在 6 0°C放置2 0日測得。在放電前及部分放電後,在 —1 0 °C測量閉路電壓。 與不添加抑制劑者(表1 5中實例5 4,6 9及8 4 及表22中實例100 ’ 115及130)比較’添加抑 制劑者之自身放電率小。至於部分放電,若添加一種塗覆 陰極罐(銅)者諸如硫酸銦及一氧化鉛者,則改善自身放 電率。已知添加氫氧化鋇者之閉路電壓變高。由附表得知 在添加塗附型抑制劑及氫氧化鋇時,在放電前之自身放電 率,部分放電後之自身放電率,及閉路電壓皆有改善。本 例中,與使用汞齊鋅之情況相反地,出現部分放電後之閉 路電壓比放電前高之現象。原因目前仍待研究。 陰極上之電鍍方式同於例2 5,顯示各膜厚0 . 3 之結果。即使膜厚〇·1-l#m,結果差異仍極小 〇 <實施例2 8 > 此外,使用KO Η型電解質及鍍銦之陰極罐產製電池 ,相對於抑制劑濃度測量經1年後之自身放電率及部分放 電後之自身放電率。 結果示於圖1 7及1 8。根據圖1 7,只要實際範圍 不大於自身放電率之約3 %,則發現有效範圍硫酸銦爲 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ 297公釐) (請先閱讀背面之注意事項再填寫本頁) -'9 -83 - Ο 508 A7 B7 五、發明説明(81 5 0- Ρ Ρ m 則不少 至 有效範 2 0-化乙烯 電率, 鋇一聚 烯胺需 合物之 。此外 鍍,但 5 0 0 0 ,氫氧化 於5 ρ ρ 於在5 0 圍係硫酸 5 0 0 0 烷醯胺之 已發現可 氧化乙烯 不超過1 情況,但 ,即使使 抑制劑之 ppm 鋇不少 m (相 %深度 銦5 0 ppm 效果較 有效組 烷醯胺 0 0 0 是,其 用N a 有效濃 一氧化鉛爲20—5000 氧化乙烯烷醯胺 於5 0 對於鋅 Ρ P m,聚 之濃)。 放電後之自身放電率,根 0 0 ρ p m,而一 分放電後 -50 。在部 不大。 合使用 。但是ppm 他化合 Ο Η型 度範圍 爲降低部分 硫酸銦或一 ,組合使用 。結果係使 物之有效濃 電解質溶液 實質相同。 氫氧化 放電後 氧化鉛 之聚氧 用硫酸 度範圍 或其他 據圖1 8 氧化鉛 鋇及聚氧 之自身放 及氫氧化 化乙烯烷 姻爲姻化 實質相同 陰極罐電 (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部中央標準局員工消費合作社印裝 <實施例2 9 > 以例2 7之方式改變鋅組成以試製電池。使用ΚΟΗ 型電解質溶液且在陰極罐上鍍銦,抑制劑爲相對於鋅各爲 1 0 0 0 p pm之硫酸銦,一氧化鉛,氫氧化鋇及聚氧化 乙稀院醯胺。結果示於表2 3。 本紙張尺度適用中國國家樣準(CNS ) A4規格(210X297公董) -84 -7 7 AB Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of the invention (79) Table 22 (continued) Experiment number Type of electrolyte Inhibitor concentration ppm Self-discharge rate% Closed circuit voltage V Indium oxysulfate barium hydroxide P0ERA new battery Partially discharged battery New battery Partially discharged battery 122 Sn 1000 0 0 1000 1.9 2.1 1.169 1.200 123 Sn 0 1000 0 1000 2.2 2.3 1.168 1.198 124 Sn 0 1000 1000 0 2.5 2.4 1.169 1.240 125 Sn 0 1000 1000 1000 2.4 2.2 1.190 1.240 126 Sn 1000 1000 1000 0 2.4 2.3 1.186 1.241 127 Sn 1000 1000 0 1000 2.3 2.4 1.174 1.199 128 Sn 1000 0 1000 1000 2.0 2.4 1.186 1.241 129 Sn 1000 1000 1000 1000 2.1 2.2 1.89 1.241 130 ZnIn 0 0 0 0 4.6 6.7 1.172 1.201 131 Zn In 1000 0 0 0 2.3 2.3 1.169 1.198 132 Zn · In 0 1000 0 0 2.7 2.5 1.188 1.201 133 Zn · In 0 0 1000 0 2.4 4.8 1.168 1.187 134 Zn In 0 0 0 1000 2.3 4.8 1.170 1.197 135 Zn · In 1000 1000 0 0 2.1 2.4 1.188 1.240 136 Zn · In 1000 0 1000 0 2.2 2.4 1.170 1.199 137 Zn · In 1000 0 0 1000 2.2 2.5 1.169 1.1 99 138 Zn In 0 1000 0 1000 2.2 2.2 1.167 1.236 139 ZnIn 0 1000 1000 0 2.1 2.6 1.187 1.243 140 Zn In 0 1000 1000 1000 2.3 2.0 1.187 1.242 141 ZnIn 1000 1000 1000 0 2.3 2.4 1.168 1.201 142 Zn In 1000 1000 0 1000 2.2 2.4 1.189 1.241 143 ZnIn 1000 0 1000 1000 2.2 2.4 1.187 1.240 144 ZnIn 1000 1000 1000 1000 2.3 2.3 1.187 1.241 This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X 297mm) -82-Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs A 7 B7 V. Description of invention (80) The inhibitor concentration in the table is relative to zinc The value of weight. The self-discharge rate is measured at 60 ° C for 20 days. It is said to be equivalent to 1 year. The self-discharge rate after partial discharge was measured after 50% deep discharge (partial discharge) at 60 ° C for 20 days. Before and after partial discharge, measure the closed circuit voltage at –10 ° C. Compared with those who did not add inhibitors (Examples 5, 4, 9 and 8 4 in Table 15 and Examples 100 in Table 22, '115 and 130), the self-discharge rate of the inhibitors was small. As for partial discharge, if a cathode can (copper) coating such as indium sulfate and lead monoxide is added, the self-discharge rate is improved. It is known that the closed circuit voltage of those who add barium hydroxide becomes high. According to the attached table, the self-discharge rate before discharge, the self-discharge rate after partial discharge, and the closed circuit voltage are improved when the coating type inhibitor and barium hydroxide are added. In this example, contrary to the case of using amalgam zinc, the closed circuit voltage after partial discharge is higher than before discharge. The reason is still to be studied. The electroplating method on the cathode is the same as in Example 25, showing the results of each film thickness 0.3. Even if the film thickness is 〇.1-l # m, the difference in results is still very small. <Example 28> In addition, batteries were produced using KO H-type electrolytes and indium-plated cathode cans, and the concentration of the inhibitor was measured over 1 year The self-discharge rate after the partial discharge and the self-discharge rate after the partial discharge. The results are shown in Figures 17 and 18. According to Figure 17, as long as the actual range is not greater than about 3% of the self-discharge rate, the effective range of indium sulfate is found to be the paper standard applicable to the Chinese National Standard (CNS) Α4 specification (210Χ 297 mm) (please read the notes on the back first Please fill in this page again) -'9 -83-Ο 508 A7 B7 V. Description of the invention (81 5 0- Ρ Ρ m is not less than the effective range 20-Ethylene electrical conductivity, barium-polyenamine demand compound In addition, in addition to plating, but 5 0 0 0 0, 5 ρ ρ OH in 5 0 surrounding sulfuric acid 5 0 0 0 Alkylamide has been found that the oxidizable ethylene does not exceed 1, but, even if the inhibitor ppm A lot of barium m (phase% depth indium 50 ppm is more effective than the effective group alkylamide 0 0 0 Yes, it is effective with Na a concentrated lead monoxide is 20-5000 ethylene oxide alkylamide is less than 50 for zinc P P m , The concentration of poly). The self-discharge rate after discharge, root 0 0 ρ pm, and -50 after one minute discharge. Not large in part. Combined use. But ppm other compounds Ο Η type degree range is to reduce part of indium sulfate or One, use in combination. The result is that the effective concentrated electrolyte solution of the substance is substantially the same. After discharge, the sulfuric acid range of lead oxide polyoxygen or other according to Figure 18. The self-discharge of lead barium oxide and polyoxygen and the oxidation of ethylene alkane are the same as the cathode can. (Please read the precautions on the back first (Fill in this page) Ordered by the Ministry of Economic Affairs, Central Bureau of Standards, Consumer Cooperative Printing < Example 2 9 > The zinc composition was changed as in Example 2 7 to trial-produce the battery. Use ΚΟΗ type electrolyte solution and indium plating on the cathode can The agent is indium sulfate, lead monoxide, barium hydroxide, and polyoxyethylene acetylamine relative to zinc at 1000 p pm each. The results are shown in Table 2. 3. The paper scale is applicable to the Chinese National Standard (CNS) ) A4 specification (210X297 company director) -84-
AA
7 B 五、發明説明(82 ) 表2 3 .具有KOΗ電解質之電池特性 經濟部中央標準局員工消費合作社印製 實驗 添加於鋅中之金屬濃度P P m 自身放電率% 閉路電壓V 編號 P b B i In A 1 C a 新電池 經部分放 電之電池 新電池 經部分放 電之電池 145 500 - - - - 2.9 2.8 1.186 1.200 146 500 50 - - - 2.8 2.8 1.187 1.235 147 500 - — 250 - 2.8 2.7 1.186 1.235 148 500 500 500 - - 2.3 2.5 1.186 1.234 149 10 100 515 30 - 2.7 2.7 1.188 1.222 150 23 240 - - - 2.9 2.9 1.189 1.200 151 28 240 1780 - — 2.5 2.6 1.189 1.240 152 - 140 480 - - 2.4 2.6 1.185 1.239 153 - 130 500 30 ~ 2.4 2.4 1.186 1.238 154 - 130 500 - 50 2.3 2.4 1.188 1.236 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 、-° Γ j -85 - 經濟部中央標準局員工消費合作社印製 五、發明説明(83) 顯然在申請專利範圍所定義之添加物的組成物中,包 括於實際範圍內之自身放電率不大於3 %。爲降低自身放 電率,需形成各種合金。 實例3 0 — 3 1中,爲組合膠凝劑之主要評估結果。 <實施例3 0 > 在實際產製電池前’以氫氣產生試驗確定本發明之效 果。使用鋅粉,本發明膠凝劑,氫氧化鋇及同於集極材料 之銅板的組合物。在2 5 m j?體積且加刻度以知氣體產生 量之特製試管中預先添加2 g鋅粉(含有各5 0 0 p pm 之以噴霧法製得之鉍,銦及鉛),添加試驗電解質溶液並 加熱至6 0°C,產生之氫氣體積測量7日。使用2 g鋅粉 及5個材料同於集極且面積0 · 6 cma而厚〇 . lmm之銅 片以使陰極鋅重對電池陰極集極表面積比例相同,同法測 量氣體產生量。重複試驗6次,以其平均值作爲結果。 電解質溶液之製法是,若爲氫氧化鉀系統,則在3 0 %重氫氧化鉀溶液中添加接近飽和之氧化鋅,若爲氫氧化 鈉系列,則在2 5 %重氫氧化鈉溶液中添加接近飽和之氧 化鋅,作爲基質,並添加氫氧化鋇。使用Wako Pure Chemical Industries., Ltd.所製之氫氧化鋇, C M C 爲〇8-icel Chemical Industries, Ltd.所製之 Ν ο . 1 2 6 0 及 No . 1380 ,且 PAS 爲 Wako Pure Chemical In-dustries., Ltd.所製之試劑,而Rheogic 2 5 0 H 爲 N ihon Pure Chemicals Co., Ltd.所製。氫氧化鋇之添 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 、-β7 B V. Description of the invention (82) Table 2 3. Battery characteristics with KOΗ electrolyte Printed by the Ministry of Economic Affairs Central Standards Bureau Employee Consumer Cooperative Printed experiment Metal concentration added to zinc PP m Self-discharge rate% Closed circuit voltage V number P b B i In A 1 C a New battery partially discharged battery New battery partially discharged battery 145 500----2.9 2.8 1.186 1.200 146 500 50---2.8 2.8 1.187 1.235 147 500-— 250-2.8 2.7 1.186 1.235 148 500 500 500--2.3 2.5 1.186 1.234 149 10 100 515 30-2.7 2.7 1.188 1.222 150 23 240---2.9 2.9 1.189 1.200 151 28 240 1780--2.5 2.6 1.189 1.240 152-140 480--2.4 2.6 1.185 1.239 153-130 500 30 ~ 2.4 2.4 1.186 1.238 154-130 500-50 2.3 2.4 1.188 1.236 The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297mm) (Please read the notes on the back before filling this page ),-° Γ j -85-Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Description of Invention (83) Obviously included in the composition of additives defined in the scope of patent application, included in Self discharge rate within the range of not more than 3 occasion%. In order to reduce the self-discharge rate, various alloys need to be formed. Examples 3 0-3 1 are the main evaluation results of the combined gelling agent. < Example 3 0 > The hydrogen production test was used to determine the effect of the present invention before the actual production of the battery. A composition of zinc powder, the gelling agent of the present invention, barium hydroxide and a copper plate which is the same as the collector material is used. Pre-add 2 g of zinc powder (containing bismuth, indium and lead prepared by spray method at 500 p pm each) in a special test tube with a volume of 25 mj? Heat to 60 ° C and measure the volume of hydrogen produced for 7 days. Use 2 g of zinc powder and five copper sheets with the same material as the collector and an area of 0.6 cma and a thickness of 0.1 mm to make the ratio of cathode zinc weight to the surface area of the cathode collector of the battery the same. Repeat the test 6 times and take the average value as the result. The preparation method of the electrolyte solution is that if it is a potassium hydroxide system, add near-saturated zinc oxide to the 30% potassium hydroxide solution, if it is a sodium hydroxide series, add it to the 25% sodium hydroxide solution Nearly saturated zinc oxide is used as a matrix and barium hydroxide is added. Barium hydroxide made by Wako Pure Chemical Industries., Ltd. was used, CMC was N. 1 2 6 0 and No. 1380 made by icel Chemical Industries, Ltd., and PAS was Wako Pure Chemical In- The reagents made by dustries., Ltd., and Rheogic 2 50 H are made by Nihon Pure Chemicals Co., Ltd. Addition of barium hydroxide The standard of this paper is the Chinese National Standard (CNS) Α4 specification (210X297mm) (please read the precautions on the back before filling this page), -β
T -86 - 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(84) 加量相對於電解質溶液爲9 一 5 0 0 0 p pm。氫氣產生 量之結果示於表2 4。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) --------《裝------訂------{ k (請先閱讀背面之注意事項再填寫本頁) -87 -T -86-Printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs A7 B7 V. Description of invention (84) The amount added is 9 to 5 0 0 0 p pm relative to the electrolyte solution. The results of hydrogen production are shown in Table 24. The size of this paper is applicable to China National Standard (CNS) A4 specification (210X 297mm) -------- "installed ------ ordered ------ {k (please read the note on the back first Please fill in this page again) -87-
Claims (1)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20792792 | 1992-08-04 | ||
JP20792592 | 1992-08-04 | ||
JP20792692 | 1992-08-04 | ||
JP20900892 | 1992-08-05 | ||
JP23826392 | 1992-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW299508B true TW299508B (en) | 1997-03-01 |
Family
ID=51397106
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW84109281A TW299508B (en) | 1992-08-04 | 1993-08-05 | |
TW84109283A TW272323B (en) | 1992-08-04 | 1993-08-05 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW84109283A TW272323B (en) | 1992-08-04 | 1993-08-05 |
Country Status (1)
Country | Link |
---|---|
TW (2) | TW299508B (en) |
-
1993
- 1993-08-05 TW TW84109281A patent/TW299508B/zh not_active IP Right Cessation
- 1993-08-05 TW TW84109283A patent/TW272323B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW272323B (en) | 1996-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6723469B1 (en) | Alkaline battery without mercury and electronic apparatus powered thereby | |
Li et al. | Aluminum as anode for energy storage and conversion: a review | |
BR112019022887A2 (en) | electrolyte additives for metallic zinc electrodes | |
Younes et al. | Electroplating of Ni/W alloys: I. Ammoniacal citrate baths | |
JP5825649B2 (en) | Negative electrode material for magnesium fuel cell and magnesium fuel cell | |
CN100533822C (en) | Anode active substance and its preparing method and anode and battery | |
US6193871B1 (en) | Process of forming a nickel electrode | |
Loukil et al. | Zn–Mn electrodeposition: a literature review | |
Nelson et al. | The removal of cobalt from zinc electrolyte by cementation: a critical review | |
TW299508B (en) | ||
JPS5825083A (en) | Zinc powder cathode not amalgamed for battery having alkaline electrolyte and method of producing same | |
JP3647980B2 (en) | Anode material for alkaline manganese batteries | |
JPH07211344A (en) | Electrolyte for battery | |
Kosanovic et al. | Soft growth of the ZnSe compound from alkaline selenosulfite solutions | |
Chen et al. | Tin-Manganese Alloy Electrodeposits: I. Electrodeposition and Microstructural Characterization | |
Rubin et al. | Study of the influence of a boric–sorbitol complex on Zn–Mn electrodeposition and on the morphology, chemical composition, and structure of the deposits | |
Xia et al. | Corrosion Resistance of Electrodeposited Nanocrystalline Ni from Citrate Baths | |
von Fraunhofer | Lead as an anode—Part 1 | |
Jordović et al. | MECHANISM OF ELECTROCHEMICAL FORMATION OF PURE METAL AND ALLOY POWDER | |
CN112151805A (en) | Negative electrode current collector and aqueous battery | |
JPH01315962A (en) | Alkali secondary battery | |
JPS6290860A (en) | Zinc alkaline cell | |
JPS63248065A (en) | Zinc alkaline battery | |
NO764158L (en) | ||
JPS6290856A (en) | Zinc alkaline cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |