NO764158L - - Google Patents

Info

Publication number
NO764158L
NO764158L NO764158A NO764158A NO764158L NO 764158 L NO764158 L NO 764158L NO 764158 A NO764158 A NO 764158A NO 764158 A NO764158 A NO 764158A NO 764158 L NO764158 L NO 764158L
Authority
NO
Norway
Prior art keywords
iron
ions
electrolyte
iii
active
Prior art date
Application number
NO764158A
Other languages
Norwegian (no)
Inventor
C Greaves
D J Spiers
Original Assignee
Inco Europ Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inco Europ Ltd filed Critical Inco Europ Ltd
Publication of NO764158L publication Critical patent/NO764158L/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • H01M4/29Precipitating active material on the carrier by electrochemical methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

"Fremgangsmåte til fremstilling av jernelektroder"Procedure for the production of iron electrodes

egnet for nikkel-jern-batterier".suitable for nickel-iron batteries".

Den foreliggende oppfinnelse angår en fremgangsmåte til fremstilling av jernelektroder egnet for nikkel-jern-batterier. The present invention relates to a method for producing iron electrodes suitable for nickel-iron batteries.

Det er ønskelig ved ethvert batteri at vektforholdet mellom aktiv masse og det metall som holder eller bærer denne, It is desirable for any battery that the weight ratio between active mass and the metal that holds or carries it,

er så høyt som mulig, samt at totalvekten er lavest mulig. For dette formål har man til dels anvendt folie som bærematerialet i nikkel-kadmium- og nikkel-jern-batterier. Man har imidlertid støtt på problemer når det gjelder å finne fremgangsmåter til avsetting av aktiv jernmasse på glatte ugjennomtrengelige overflater, så som metallfolie. is as high as possible, and that the total weight is as low as possible. For this purpose, foil has partly been used as the carrier material in nickel-cadmium and nickel-iron batteries. However, problems have been encountered when it comes to finding methods for depositing active iron mass on smooth impermeable surfaces, such as metal foil.

I det britiske patent nr. 1 392 188 og den britiske patentsøknad nr.54845/72 er det beskrevet prosesser hvor elektrolytter inneholdende toverdige jernioner anvendes under nøye regu-lerte pH- og strømtetthets-betingelser for avsetning av et godt vedheftende belegg av aktiv jernmasse på underlag så som metallfolie. Disse prosesser forløper ganske tilfredsstillende, men elektrolytter inneholdende toverdige jernioner er ustabile og tar skade etter noen tid. Under fremstillingen av den aktive jernmasse fra slike elektrolytter inneholdende toverdige jernioner, og særlig når kobber skal avsettes sammen med jernet, skjer det dessuten en betydelig anrikning av jern i elektrolytten p.g.a. oppløsning av jernanoden, slik at det ved kontinuerlig drift i større målestokk er vesentlig å ta skritt til å redusere jerninnholdet i elektrolytten med jevne mellomrom for oppnåelse av et tilfredsstillende avsatt materiale. In the British patent no. 1 392 188 and the British patent application no. 54845/72 processes are described in which electrolytes containing divalent iron ions are used under carefully regulated pH and current density conditions for the deposition of a well-adherent coating of active iron mass on substrate such as metal foil. These processes proceed quite satisfactorily, but electrolytes containing divalent iron ions are unstable and suffer damage after some time. During the production of the active iron mass from such electrolytes containing divalent iron ions, and especially when copper is to be deposited together with the iron, there is also a significant enrichment of iron in the electrolyte due to dissolution of the iron anode, so that with continuous operation on a larger scale it is essential to take steps to reduce the iron content in the electrolyte at regular intervals in order to achieve a satisfactory deposited material.

US-patent nr. 3 527 613 beskriver anvendelse av jern-(III)-elektrolytter ved elektrolytisk utfelling av et aktivt materiale basert på en jernforbindelse og svovel i en porøs elek-trodes porer. Forsøk på å avsette den aktive jernmasse på folie fra jern(III)ammoniumnitrat og jern(III)nitrat resulterte imidler tid i dannelse av bare meget tynne vedheftende avsetninger av jern(III)hydroksyd, og høye strømtettheter, over 100 mA/cm<2>, var påkrevet for oppnåelse av selv dette. Når et monomolekylært sjikt er avsatt, vil det avsatte jern(III)hydroksydets dårlige ledningsevne hindre videre avsetning. US Patent No. 3,527,613 describes the use of iron (III) electrolytes in the electrolytic precipitation of an active material based on an iron compound and sulfur in the pores of a porous electrode. Attempts to deposit the active iron mass on foil from iron (III) ammonium nitrate and iron (III) nitrate resulted, however, in time in the formation of only very thin adherent deposits of iron (III) hydroxide, and high current densities, above 100 mA/cm<2 >, was required to achieve even this. When a monomolecular layer has been deposited, the poor conductivity of the deposited iron(III) hydroxide will prevent further deposition.

Den foreliggende oppfinnelse er basert på den oppdagelse at jern(III)-elektrolytter kan modifiseres slik at det kan oppnås godt vedheftende, tilfredsstillende, avsetninger av aktiv jernmasse på glatte, ugjennomtrengelige overflater, så som på metall-, folie. The present invention is based on the discovery that iron (III) electrolytes can be modified so that well-adherent, satisfactory deposits of active iron mass can be obtained on smooth, impermeable surfaces, such as on metal foil.

Fremgangsmåten i følge foreliggende oppfinnelse, hvor en aktiv jernmasse avsettes på en glatt ugjennomtrengelig elektrisk ledende overflate, erkarakterisert vedat det elektrolytisk avsettes aktiv masse bestående av jern og jernoksyd og/eller -hydroksyd fra en elektrolytt som inneholder jern(III)-ioner og oppløselige karboksylat-ioner, og som har en pH under 4,0, under anvendelse av en katodestrømstetthet mellom 10 og 1 000 mA/cm<2>. Normalt anvendes et forhold mellom treverdige jernioner og karboksylat-ioner på minst 2:1. The method according to the present invention, where an active iron mass is deposited on a smooth impermeable electrically conductive surface, is characterized by electrolytically depositing an active mass consisting of iron and iron oxide and/or hydroxide from an electrolyte containing iron (III) ions and soluble carboxylate -ions, and having a pH below 4.0, using a cathode current density between 10 and 1000 mA/cm<2>. Normally, a ratio between trivalent iron ions and carboxylate ions of at least 2:1 is used.

Elektrolytten inneholder fortrinnsvis også et stort overskudd av ammonium-ioner. The electrolyte preferably also contains a large excess of ammonium ions.

Med oppløselige karboksylater menes i det foreliggende karboksylat-ioner av svake karboksylsyrer med pKa-verdier høyere enn elektrolyttens pH-verdi, og hvor både jern(III)karboksylatet og jern(II)karboksylatet er oppløselig i vandige løsninger. Slike oppløselige karboksylater er typisk tartrat, acetat, laktat og citrat. In this context, soluble carboxylates mean carboxylate ions of weak carboxylic acids with pKa values higher than the electrolyte's pH value, and where both the iron (III) carboxylate and the iron (II) carboxylate are soluble in aqueous solutions. Such soluble carboxylates are typically tartrate, acetate, lactate and citrate.

Når elektrolytten fremstilles, vil karboksylat-ionene kompleksbinde en støkiometrisk mengde av de tilgjengelige treverdige jern-ioner og derved stabilisere elektrolytten og medføre modifisering av elektrodereaksjonen. Dette skyldes at karboksylater danner mer stabile komplekser med treverdige jern-ioner enn med toverdige jern-ioner, slik at katodereaksjonen, reduksjonen av Fe (III) til Fe (II) i nærvær av karboksylat-ioner, medfører enøkning i pH ved elektrodeoverflaten på grunn avøkningen i konsentrasjonen av frie karboksylat-ioner. Under de sure betin-gelser, i elektrolytten blir disse karboksylat-ioner i stor grad protonisert, og den lokale økning i pH bevirker avsetning av jernoksyd og/eller -hydroksyd på katoden. Ved strømtettheter større enn den diffusjonsbegrensede verdi for reduksjon av Fe (III) til Fe (II), avsettes også jern, slik at den avsatte aktive masse er en blanding av jern og jernoksyd og/eller -hydroksyd, hvor mengdeforholdet mellom de to vil variere med strømtettheten. When the electrolyte is produced, the carboxylate ions will complex bind a stoichiometric amount of the available trivalent iron ions and thereby stabilize the electrolyte and lead to a modification of the electrode reaction. This is because carboxylates form more stable complexes with trivalent iron ions than with divalent iron ions, so that the cathode reaction, the reduction of Fe (III) to Fe (II) in the presence of carboxylate ions, causes an increase in pH at the electrode surface due to the increase in the concentration of free carboxylate ions. Under the acidic conditions, in the electrolyte these carboxylate ions are largely protonated, and the local increase in pH causes deposition of iron oxide and/or hydroxide on the cathode. At current densities greater than the diffusion-limited value for the reduction of Fe (III) to Fe (II), iron is also deposited, so that the deposited active mass is a mixture of iron and iron oxide and/or hydroxide, where the quantity ratio between the two will vary with the current density.

Det er blitt funnet at fremgangsmåten i følge oppfinnelsen vil gi avsetninger av aktiv masse med høy densitet og med god adhesjon til glatte ugjennomtrengelige overflater så som metallfolie. Den gode adhesjon kan tilskrives elektrolyttens svakt korroderende virkning, slik at overflaten av det metalliske.-underlag i noen grad etses før avsetningen begynner. It has been found that the method according to the invention will give deposits of active mass with high density and with good adhesion to smooth impermeable surfaces such as metal foil. The good adhesion can be attributed to the slightly corrosive effect of the electrolyte, so that the surface of the metallic substrate is etched to some extent before deposition begins.

Foretrukne elektrolytter til bruk ved fremgangsmåtenPreferred electrolytes for use in the method

i følge oppfinnelsen inneholder et stort overskudd av ammonium-ioner, dvs. opp til metningspunktet.Mengdeforholdet mellom ammonium-ioner og treverdige jernioner er av størrelsesorden 4:1. Dette høye ammoniumioninnhold stabiliserer elektrolytten ytterligere og minimerer eller hindrer utfelling av jern(III)hydroksyd ved henstand. Videre konkurrerer ammoniumionene med de toverdige og treverdige jernioner når det gjelder reaksjon med de frie hydroksylioner, hvilket medfører en økning i densiteten og metallinnholdet i den avsatte aktive masse for en gitt strømtetthet. according to the invention contains a large excess of ammonium ions, i.e. up to the saturation point. The quantity ratio between ammonium ions and trivalent iron ions is of the order of 4:1. This high ammonium ion content further stabilizes the electrolyte and minimizes or prevents precipitation of iron (III) hydroxide upon standing. Furthermore, the ammonium ions compete with the divalent and trivalent iron ions when it comes to reaction with the free hydroxyl ions, which leads to an increase in the density and metal content of the deposited active mass for a given current density.

De foretrukne elektrolytter som anvendes i følge oppfinnelsen, kan fremstilles ut fra hvilket som helst hensiktsmessig utgangsmateriale. Man foretrekker å bruke jern(III)- eller ammonium-halogenider, da eventuelle rester av halogenid-ioner etter aktiveringen kan forårsake korrosjon når jernelektroden senere anvendes i et batteri. Videre bør anioner som særlig lett redu-seres, f.eks. nitrat, ikke anvendes i elektrolytten. I alminnelighet foretrekker man å bruke jern(III)sulfat, ammoniakk, ammoniumsulfat og/eller jern(III)ammoniumsulfat i elektrolyttene, The preferred electrolytes used according to the invention can be prepared from any suitable starting material. It is preferred to use iron(III) or ammonium halides, as any residual halide ions after activation can cause corrosion when the iron electrode is later used in a battery. Furthermore, anions which are particularly easily reduced, e.g. nitrate, not used in the electrolyte. In general, it is preferred to use iron (III) sulphate, ammonia, ammonium sulphate and/or iron (III) ammonium sulphate in the electrolytes,

da disse er billige og lett tilgjengelige. Karboksylat-ionet kan tilsettes som hvilket som helst egnet oppløselig salt, f.eks. citrat som natriumcitrat, og pH-verdien reguleres normalt ved tilsetning av natriumhydroksyd. as these are cheap and easily available. The carboxylate ion may be added as any suitable soluble salt, e.g. citrate as sodium citrate, and the pH value is normally regulated by adding sodium hydroxide.

Elektrolyttens pH må ved fremgangsmåten i følge oppfinnelsen ikke overstige 4, da løsningen ved høyere pH-verdier blir altfor ustabil til å kunne brukes i praksis. In the method according to the invention, the pH of the electrolyte must not exceed 4, as the solution at higher pH values becomes far too unstable to be used in practice.

Ved pH-verdier lavere enn 4 vil imidlertid utfelling i noen grad kunne forekomme. Når forholdet mellom ammonium og treverdig jern i elektrolytten er under ca. 2,5:1, vil denne normalt være jern(III)hydroksyd. I de foretrukne elektrolytter med høyt innhold av ammoniumion vil basisk jern(III)sulfat utfelles. Skjønt denne utfelling ikke er ugunstig for aktiveringen, senker den dog innholdet av treverdig jern i løsningen, og det er vanlig å gjøre de derav følgende endringer i strømtettheten og aktiveringspro-sessens varighet etterhvert som innholdet av treverdig jern avtar. At pH values lower than 4, however, precipitation may occur to some extent. When the ratio between ammonium and trivalent iron in the electrolyte is below approx. 2.5:1, this will normally be iron (III) hydroxide. In the preferred electrolytes with a high content of ammonium ion, basic iron (III) sulphate will precipitate. Although this precipitation is not unfavorable for the activation, it does lower the content of trivalent iron in the solution, and it is common to make the resulting changes in the current density and the duration of the activation process as the content of trivalent iron decreases.

Hvis pH-verdien er for lav, blir metallinnholdet i det avsatte materiale høyt, og løsningen blir for sterkt korroderende. pH-verdien varierer i høy grad med det karboksylat-ion som anvendes og størrelsen av det tilgjengelige overskudd av ammonium-ion, men kan lett bestemmes eksperimentelt for en gitt elektrolytt til bruk i følge oppfinnelsen. Når en elektrolytt skal fremstilles under anvendelse av X mol/l jern(III)-ion, Y mol/l karboksylat-ion og Z mol/l ammonium-ion, tilberedes således en lignende løsning med unntagelse av at den inneholder X mol/l jern-(II)-ion istedenfor jern(III)-ion; deretter titreres med en standardløsning av natriumhydroksyd, og pH-verdien registreres under titreringen. Man observerer at pH-verdien stiger til et konstant nivå ved hvilket utfelling finner sted. Den mengde natriumhydroksyd som er tilsatt idet kurven flater ut, noteres, If the pH value is too low, the metal content of the deposited material becomes high, and the solution becomes too strongly corrosive. The pH value varies greatly with the carboxylate ion used and the size of the available excess of ammonium ion, but can easily be determined experimentally for a given electrolyte for use according to the invention. When an electrolyte is to be prepared using X mol/l iron(III) ion, Y mol/l carboxylate ion and Z mol/l ammonium ion, a similar solution is thus prepared with the exception that it contains X mol/l iron (II) ion instead of iron (III) ion; then titrate with a standard solution of sodium hydroxide, and the pH value is recorded during the titration. It is observed that the pH value rises to a constant level at which precipitation takes place. The amount of sodium hydroxide added as the curve flattens is noted,

og en like stor mengde tilsettes til en alikvot av jern(III)-elektrolytten. Den resulterende pH i jern(III)-løsningen er den laveste pH ved hvilken denne elektrolytt kan anvendes. Grunnen til dette er at det ved en lavere pH ikke kan skje noen jern(II)-hydroksyd-dannelse ved reduksjon. For de foretrukne elektrolytter v til bruk i følge oppfinnelsen bør pH-verdien i alminnelighet holdes innen området 2,2-3,5, fortrinnsvis 2,5-3,0. and an equal amount is added to an aliquot of the ferric electrolyte. The resulting pH of the iron(III) solution is the lowest pH at which this electrolyte can be used. The reason for this is that at a lower pH no iron(II) hydroxide formation can occur during reduction. For the preferred electrolytes v for use according to the invention, the pH value should generally be kept within the range 2.2-3.5, preferably 2.5-3.0.

Fremgangsmåten i følge oppfinnelsen utføres under be-tingelser ved hvilke den valgte strømtetthet er mellom 10 og 1000 mA/cm 2 og korreleres med jern(III)-innholdet i elektrolytten for oppnåelse av denønskede avsetning. Til veiledning nevnes en strømtetthet mellom 20 C og 200 C mA/cm<3>, hvor C er det molare innhold av treverdig jern i elektrolytten, slik at det ved et typisk jern(III)-innhold på 0,5 M anvendes strømtettheter innen området 10-100 mA/cm 2. Fortrinnsvis er strømtettheten innen området 25-40 mA/cm 2. Det er blitt funnet at elektrodereaksjonen Fe (III) 7» Fe (II) i alminnelighet favoriseres ved lave strøm-tettheter, mens reaksjonen Fe(II) > Fe gjør seg mindre gjel-dende. Fremgangsmåten utføres normalt ved romtemperatur eller nær romtemperatur. The method according to the invention is carried out under conditions in which the selected current density is between 10 and 1000 mA/cm 2 and is correlated with the iron (III) content in the electrolyte to achieve the desired deposit. For guidance, a current density between 20 C and 200 C mA/cm<3> is mentioned, where C is the molar content of trivalent iron in the electrolyte, so that with a typical iron (III) content of 0.5 M, current densities within the range 10-100 mA/cm 2 . Preferably the current density is within the range 25-40 mA/cm 2 . It has been found that the electrode reaction Fe (III) 7 » Fe (II) is generally favored at low current densities, while the reaction Fe (II) > Fe becomes less applicable. The procedure is normally carried out at room temperature or close to room temperature.

Fremgangsmåten i følge oppfinnelsen utføres normalt under anvendelse av en inert anode; hvis en anode av jern eller annet reaktivt metall anvendes, foreligger nemlig mulighet for reaksjon mellom treverdige jernioner i løsningen og anoden, slik at det dannes en skadelig mengde toverdige jernioner i elektrolytten. Foretrukne anoder innbefatter ruteniumdioksyd på titan og platinisert titan. The method according to the invention is normally carried out using an inert anode; if an anode of iron or other reactive metal is used, there is a possibility of reaction between trivalent iron ions in the solution and the anode, so that a harmful amount of divalent iron ions is formed in the electrolyte. Preferred anodes include ruthenium dioxide on titanium and platinized titanium.

Foretrukne elektrolytter til bruk ved fremgangsmåten i følge oppfinnelsen inneholder citrationer, fortrinnsvis i en konsentrasjon slik at forholdet Fe(III):citrat er mellom 10:1 Preferred electrolytes for use in the method according to the invention contain citrate ions, preferably in a concentration such that the ratio Fe(III):citrate is between 10:1

og 2:1, fortrinnsvis ca. 3:1.and 2:1, preferably approx. 3:1.

Som kjent fra teknikkens stand kan aktive jernmasser forbedres ved tilsetning av en liten mengde svovel i det avsatte materiale, enten som elementært svovel eller som et sulfid, hvorved eléktrodens begynnelseskapasitet og syklus-levetid kanøkes. En foretrukken måte til å inkorporere svovel kan være å oppløse egnede svovelholdige forbindelser, f.eks. natriumtiosulfat, tiourea eller dinatriumsaltet av naftalendisulfonat, i den elektrolytt fra hvilken avsetningen finner sted, i slike konsentrasjoner at en passende mengde svovel, normalt mellom 0,01 og 0,5 vekt-%, fortrinnsvis 0,01-0,1 vekt-%, beregnet på den aktive masse, inkorporeres i det avsatte materiale. Alternativt kan imidlertid fremgangsmåten i følge oppfinnelsen følges av et ytterligere trinn i hvilket den elektrode som fremstilles ved avsetnings-prosessen, dyppes i en løsning av et svovelholdig materiale, f.eks. et sulfid oppløst i kaliumhydroksyd, eller elektroden lades til å begynne med i en elektrolytt som inneholder en egnet kilde for svovel. En egnet elektrolytt til utførelse av den nevnte be-gynnelsesladning består av en løsning av kaliumhydroksyd og kan inneholde alkalimetallsulfid eller -polysulfid i én konsentrasjon mellom 10~3 og 10-1 mol/l. As is known from the prior art, active iron masses can be improved by adding a small amount of sulfur to the deposited material, either as elemental sulfur or as a sulphide, whereby the initial capacity and cycle life of the electrode can be increased. A preferred way of incorporating sulfur may be to dissolve suitable sulphur-containing compounds, e.g. sodium thiosulphate, thiourea or the disodium salt of naphthalenedisulfonate, in the electrolyte from which the deposition takes place, in such concentrations that a suitable amount of sulphur, normally between 0.01 and 0.5% by weight, preferably 0.01-0.1% by weight , calculated for the active mass, is incorporated into the deposited material. Alternatively, however, the method according to the invention can be followed by a further step in which the electrode produced by the deposition process is dipped in a solution of a sulphur-containing material, e.g. a sulphide dissolved in potassium hydroxide, or the electrode is initially charged in an electrolyte containing a suitable source of sulphur. A suitable electrolyte for carrying out the aforementioned initial charge consists of a solution of potassium hydroxide and may contain alkali metal sulphide or polysulphide in a concentration between 10-3 and 10-1 mol/l.

Fremgangsmåten i følge" oppfinnelsen kan anvnedes ved avsetning av aktiv jernmasse på hvilket som helst egnet underlag, men når det gjelder å oppnå best mulig forhold mellom kapa-sitet og vekt, er det ønskelig å bruke et metallfolie-underlag, hvor foliens tykkelse er forenlig med den strøm som batteriet påregnes å levere. Folien kan med fordel være perforert, og en stabel av folier påført aktiv masse kan så utgjøre en batteri-plate, som beskrevet i britisk patent nr. 1 246 048. The method according to the invention can be used for the deposition of active iron mass on any suitable substrate, but when it comes to achieving the best possible ratio between capacity and weight, it is desirable to use a metal foil substrate, where the thickness of the foil is compatible with the current that the battery is expected to deliver. The foil can advantageously be perforated, and a stack of foils applied with active mass can then constitute a battery plate, as described in British patent no. 1 246 048.

De følgende eksempler vil ytterligere belyse aktiverings-prosessen i følge oppfinnelsen. The following examples will further illustrate the activation process according to the invention.

EKSEMPEL 1EXAMPLE 1

De ble fremstilt en elektrolytt inneholdende 0,5 M jern-(III)ammoniumsulfat, 0,17 M trinatriumcitrat og 0,75 M ammoniumsulfat, og pH-verdien ble innstilt på 2,8 med natriumhydroksyd. An electrolyte containing 0.5 M ferric ammonium sulfate, 0.17 M trisodium citrate and 0.75 M ammonium sulfate was prepared, and the pH was adjusted to 2.8 with sodium hydroxide.

En nikkelfolie med dimensjonene 5 cm x 5 cm og tykkelse på 4yum ble anvendt som katode i en elektrolyse ved romtemperatur, hvor en inert motelektrode tjente som anode, og hvor katodestrømstett-heten var 30 mA/cm 2. Elektrolysen pågikk i 25 minutter. Katodens vektøkning var 0,2 0,04 g, og det avsatte materiales densitet var 2,8 1 6,5 g/cm . Elektroden ble fra først av syklus-behandlet i en elektrolytt bestående av natriumsulfid i 30%'s kaliumhydroksyd-løsning, og svovelinnholdet i elektrolytten var 4% av vekten av aktiv masse. Overflatekapasiteten etter 20 ladnings- og ut-ladnings-cykler til 0,7 9 volt ble målt mot en kvikksølv-kvikksølv-oksyd-elektrode og ble funnet å være 1,3 + - 0,2 mAh/cm 2. Utnyttingsfaktoren var 39 ± 5%. A nickel foil with dimensions 5 cm x 5 cm and a thickness of 4 µm was used as cathode in an electrolysis at room temperature, where an inert counter electrode served as anode, and where the cathode current density was 30 mA/cm 2. The electrolysis lasted for 25 minutes. The weight increase of the cathode was 0.2 0.04 g, and the density of the deposited material was 2.8 1 6.5 g/cm . The electrode was cycle-treated from the beginning in an electrolyte consisting of sodium sulphide in a 30% potassium hydroxide solution, and the sulfur content in the electrolyte was 4% of the weight of active mass. The surface capacity after 20 charge-discharge cycles to 0.79 volts was measured against a mercury-mercury-oxide electrode and was found to be 1.3 + - 0.2 mAh/cm 2 . The utilization factor was 39 ± 5%.

EKSEMPEL 2EXAMPLE 2

Det ble fremstilt en elektrolytt inneholdende 0,4 M jern(III)ammoniumsulfat og 0,4 M natriumlaktat, og pH ble innstilt på 3,0 med natriumhydroksyd. En nikkelfolie med dimensjonene 5 cm x 5 cm og en tykkelse på 4 ,um ble aktivert i 15 minutter ved en katodestrømstetthet på 50 mA/cm 2. Det erholdtes et avsatt materiale med samlet tykkelse på 40^um og med en 3,5 g/cm 3, og jerninnholdet var 86%. Overflatekapasiteten etter 20 cykler var 1,9 mAh/cm 2og utnyttingsfaktoren 3 2%. An electrolyte containing 0.4 M ferric ammonium sulfate and 0.4 M sodium lactate was prepared and the pH was adjusted to 3.0 with sodium hydroxide. A nickel foil with dimensions 5 cm x 5 cm and a thickness of 4 µm was activated for 15 minutes at a cathode current density of 50 mA/cm 2 . A deposited material with a total thickness of 40 µm and with a 3.5 g /cm 3, and the iron content was 86%. The surface capacity after 20 cycles was 1.9 mAh/cm 2 and the utilization factor 3 2%.

EKSEMPEL 3EXAMPLE 3

Det ble fremstilt en elektrolytt inneholdende 0,5 M jern-(III)ammoniumsulfat, 0,17 M trinatriumcitrat, 0,75 M ammoniumsulfat og 7,5 x 10 natriumtiosulf at, og pH ble innstilt på 2,8 med natriumhydroksyd. En nikkelfolie med dimensjonene 5 cm x 5 cm x 4 ,um ble anvendt som katode, platinisert titan som motelektrode og aktiveringen utført ved 30 mA/cm 2 ved romtemperatur, 20 oC, i 20 minutter. Det avsatte materiales densitet ble funnet å være 2,0 g/cm<3>, og den aktive masse inneholdt 0,04-0,05% S basert på vekten av aktiv masse. Overflatekapasiteten etter 5 ladnings- An electrolyte containing 0.5 M ferric (III) ammonium sulfate, 0.17 M trisodium citrate, 0.75 M ammonium sulfate and 7.5 x 10 sodium thiosulfate was prepared, and the pH was adjusted to 2.8 with sodium hydroxide. A nickel foil with the dimensions 5 cm x 5 cm x 4 µm was used as the cathode, platinized titanium as the counter electrode and the activation was carried out at 30 mA/cm 2 at room temperature, 20 oC, for 20 minutes. The density of the deposited material was found to be 2.0 g/cm<3> and the active pulp contained 0.04-0.05% S based on the weight of active pulp. The surface capacity after 5 charging

og utladningscykler.ble funnet å være 1,0 mAh/cm , og utnyttingsfaktoren var 35%. and discharge cycles. was found to be 1.0 mAh/cm , and the utilization factor was 35%.

Claims (12)

1. Fremgangsmåte til avsetting av en aktiv jernmasse på en glatt ugjennomtrengelig elektrisk ledende overflate, karakterisert ved at man elektrolytisk avsetter aktiv masse bestående av jern og jernoksyd og/eller -hydroksyd fra en elektrolytt bestående av jern(III)-ioner og oppløselige karboksylat-ioner, hvor elektrolyttens pH er under 4,00, under anvendelse av en katodestrø mstetthet mellom 10 og 1 000 mA/cm <2> .1. Method for depositing an active iron mass on a smooth impermeable electrically conductive surface, characterized by electrolytically depositing an active mass consisting of iron and iron oxide and/or hydroxide from an electrolyte consisting of iron (III) ions and soluble carboxylate ions, where the pH of the electrolyte is below 4.00, using a cathode current density between 10 and 1,000 mA/cm <2> . 2. Fremgangsmåte i følge krav 1, karakterisert ved at forholdet mellom treverdige jernioner og karboksylat-ioner i elektrolytten er minst 2:1.2. Method according to claim 1, characterized in that the ratio between trivalent iron ions and carboxylate ions in the electrolyte is at least 2:1. 3. Fremgangsmåte i følge krav 1 eller 2, karakterisert ved at elektrolytten også inneholder et stort overskudd av ammoniumioner.3. Method according to claim 1 or 2, characterized in that the electrolyte also contains a large excess of ammonium ions. 4. Fremgangsmåte i følge krav 3, karakterisert ved at forholdet mellom ammoniumioner og treverdige jernioner er av størrelsesorden 4:1.4. Method according to claim 3, characterized in that the ratio between ammonium ions and trivalent iron ions is of the order of 4:1. 5. Fremgangsmåte i følge et av de foregående krav, karakterisert ved at karboksylatet er tartrat og/eller acetat og/eller laktat og/eller citrat.5. Method according to one of the preceding claims, characterized in that the carboxylate is tartrate and/or acetate and/or lactate and/or citrate. 6. Fremgangsmåte i følge et av de foregående krav, karakterisert ved at elektrolytten inneholder jern-(III)ammoniumsulfat, ammoniumsulfat, natriumcitrat og at pH-verdien innstilles med natriumhydroksyd.6. Method according to one of the preceding claims, characterized in that the electrolyte contains iron (III) ammonium sulfate, ammonium sulfate, sodium citrate and that the pH value is adjusted with sodium hydroxide. 7. Fremgangsmåte i følge krav 6, karakterisert ved at forholdet mellom jern(III)-ion og citrat er mellom 10:1 og 2:1.7. Method according to claim 6, characterized in that the ratio between iron (III) ion and citrate is between 10:1 and 2:1. 8. Fremgangsmåte i følge krav 7, karakterisert ved at det nevnte forhold er ca. 3:1.8. Method according to claim 7, characterized in that the said ratio is approx. 3:1. 9. Fremgangsmåte i følge et av kravene 3-8, karakterisert ved at pH-verdien holdes innen området 2,2-3,5.9. Method according to one of claims 3-8, characterized in that the pH value is kept within the range 2.2-3.5. 10. Fremgangsmåte i følge et av de foregående krav, karakterisert ved at katodestrømstettheten er innen området 10-100 mA/cm .10. Method according to one of the preceding claims, characterized in that the cathode current density is within the range 10-100 mA/cm. 11. Fremgangsmåte i følge et av de foregående krav, karakterisert ved at natriumtiosulfat, tiourea eller dinatriumsaltet av naftalendisulfonat inkorporeres i elektro lytten, hvorved den erholdte aktive masse inneholder 0,01-0,5% S på vektbasis.11. Method according to one of the preceding claims, characterized in that sodium thiosulphate, thiourea or the disodium salt of naphthalenedisulfonate is incorporated in the electrolysis, whereby the obtained active mass contains 0.01-0.5% S on a weight basis. 12. Elektrode bestående av en nikkelfolie med en aktiv jernmasse bestående av jern og jernoksyd og/eller -hydroksyd fremstilt ved fremgangsmåten i følge et av de foregående krav.12. Electrode consisting of a nickel foil with an active iron mass consisting of iron and iron oxide and/or hydroxide produced by the method according to one of the preceding claims.
NO764158A 1975-12-09 1976-12-06 NO764158L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB50478/75A GB1566708A (en) 1975-12-09 1975-12-09 Electrodeposition of iron active mass

Publications (1)

Publication Number Publication Date
NO764158L true NO764158L (en) 1977-06-10

Family

ID=10456039

Family Applications (1)

Application Number Title Priority Date Filing Date
NO764158A NO764158L (en) 1975-12-09 1976-12-06

Country Status (16)

Country Link
JP (1) JPS5270340A (en)
AT (1) AT354540B (en)
AU (1) AU503728B2 (en)
BE (1) BE849226A (en)
CA (1) CA1072911A (en)
DE (1) DE2655577A1 (en)
DK (1) DK551476A (en)
ES (1) ES454048A1 (en)
FR (1) FR2335059A1 (en)
GB (1) GB1566708A (en)
IN (1) IN145470B (en)
LU (1) LU76346A1 (en)
NL (1) NL7613631A (en)
NO (1) NO764158L (en)
SE (1) SE7613783L (en)
ZA (1) ZA767110B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620179A (en) * 1979-07-26 1981-02-25 Showa Denko Kk Preparation of cathode for electrolysis of aqueous solution of alkali metal halogenide
CN106319591B (en) * 2016-09-19 2019-01-08 长春理工大学 A kind of Fe3O4The preparation method of pattern of nanoparticlesization distribution growth

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547787A (en) * 1967-03-31 1970-12-15 Oakite Prod Inc Hot dip tinning a high carbon ferrous metal

Also Published As

Publication number Publication date
DK551476A (en) 1977-06-10
GB1566708A (en) 1980-05-08
AT354540B (en) 1979-01-10
AU2026976A (en) 1978-06-08
NL7613631A (en) 1977-06-13
SE7613783L (en) 1977-06-10
AU503728B2 (en) 1979-09-20
IN145470B (en) 1978-10-21
ZA767110B (en) 1977-10-26
ATA910776A (en) 1979-06-15
FR2335059A1 (en) 1977-07-08
LU76346A1 (en) 1977-06-24
JPS5270340A (en) 1977-06-11
BE849226A (en) 1977-06-09
ES454048A1 (en) 1977-11-16
CA1072911A (en) 1980-03-04
DE2655577A1 (en) 1977-06-23

Similar Documents

Publication Publication Date Title
Piercy et al. The electrochemistry of indium
JPS59175571A (en) Nonaqueous electrochemical cell
Murase et al. Potential‐pH Diagram of the Cd‐Te‐NH 3‐H 2 O System and Electrodeposition Behavior of CdTe from Ammoniacal Alkaline Baths
Munichandraiah et al. Insoluble anode of α-lead dioxide coated on titanium for electrosynthesis of sodium perchlorate
Conway et al. Electrochemistry of the nickel oxide electrode: Part VIII. Stoichiometry of thin film oxide layers
CN117410437A (en) Antimony-based electrode and preparation method and application thereof
NO764158L (en)
Stefanov et al. Developing and studying the properties of Pb–TiO2 alloy coated lead composite anodes for zinc electrowinning
KR830000240B1 (en) Manufacturing method of nickel electrode
JPH05320926A (en) Method for reproducing electroless plating solution
Andrukaitis et al. Vanadium pentoxide electrodes. II. Cathodic electrodeposition of mixed-valence ammonium and alkali metal hexavanadates
EP0068634B1 (en) A process of making iron (iii) hexacyanoferrate (ii) and to iron (iii) hexacyanoferrate (ii) made thereby
US3930883A (en) Zinc-containing electrode
US3895961A (en) Electrodeposition of iron active mass
US6103088A (en) Process for preparing bismuth compounds
US2907702A (en) Anodes for electroplating bath
Bushrod et al. Stress in anodically formed lead dioxide
US2007170A (en) Oxide electrode for alkaline accumulators
US4119767A (en) Secondary battery
Afifi et al. The formation of lead dioxide electrodes by the planté process
US3392094A (en) Process for preconditioning lead or lead-alloy electrodes
SU574485A1 (en) Electrolyte for high-gloss tinning
US3505185A (en) Method of forming an interelectrode separator for an accumulator
SU1043187A1 (en) Electrolyte for applying thick-layer bronze coatings
US4053694A (en) Nickel activation battery component