TW202421656A - Combination therapies for the treatment of cancer - Google Patents

Combination therapies for the treatment of cancer Download PDF

Info

Publication number
TW202421656A
TW202421656A TW112138751A TW112138751A TW202421656A TW 202421656 A TW202421656 A TW 202421656A TW 112138751 A TW112138751 A TW 112138751A TW 112138751 A TW112138751 A TW 112138751A TW 202421656 A TW202421656 A TW 202421656A
Authority
TW
Taiwan
Prior art keywords
kras
inhibitor
cancer
mtor
albumin
Prior art date
Application number
TW112138751A
Other languages
Chinese (zh)
Inventor
侯世和
安德魯 權
尼爾 P 德賽
Original Assignee
美商阿冶迪生物科技份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商阿冶迪生物科技份公司 filed Critical 美商阿冶迪生物科技份公司
Publication of TW202421656A publication Critical patent/TW202421656A/en

Links

Abstract

Provided are methods of treating cancer ( e.g., a cancer that comprises one or more cancer cells that express a KRAS G12C mutant protein and/or have at least one mTOR-activating aberration) in an individual that comprise administering a composition comprising nanoparticles that comprise an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative thereof) and an albumin in combination with a KRAS G12C inhibitor to the individual. Also provided are related kits.

Description

用於癌症治療之組合療法Combination therapy for cancer treatment

本申請案係關於用於癌症治療之組合療法,例如藉由KRAS突變蛋白(例如,KRAS G12C突變蛋白)之表現及mTOR信號傳導失調(例如,活化)表徵之癌症。This application relates to combination therapy for the treatment of cancer, such as cancer characterized by expression of KRAS mutant protein (e.g., KRAS G12C mutant protein) and dysregulated (e.g., activated) mTOR signaling.

哺乳動物雷帕黴素標靶(mammalian target of rapamycin,mTOR)為一種保守的絲胺酸/蘇胺酸激酶,其充當細胞中信號傳導之中樞以整合胞內及胞外信號且調節細胞生長及內穩態。mTOR路徑之活化與細胞增殖及存活相關,而mTOR信號傳導之抑制引起發炎及細胞死亡。mTOR信號傳導路徑之失調與愈來愈多的人類疾病有關,包括癌症及自體免疫病症。因此,已發現mTOR抑制劑廣泛應用於治療不同病理性病狀,諸如實體腫瘤、血液惡性病、器官移植、再狹窄及類風濕性關節炎。Mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that acts as a signaling hub in cells to integrate intracellular and extracellular signals and regulate cell growth and homeostasis. Activation of the mTOR pathway is associated with cell proliferation and survival, while inhibition of mTOR signaling causes inflammation and cell death. Dysregulation of the mTOR signaling pathway is associated with an increasing number of human diseases, including cancer and autoimmune disorders. Therefore, mTOR inhibitors have found wide application in the treatment of different pathological conditions, such as solid tumors, hematological malignancies, organ transplantation, restenosis, and rheumatoid arthritis.

西羅莫司(Sirolimus)(INN/USAN),亦稱為雷帕黴素,為一種用於防止器官移植排斥反應之免疫抑制藥物;其尤其適用於腎臟移植。西羅莫司溶離支架在美國經批准以治療冠狀動脈再狹窄。另外,西羅莫司已被證明為各種細胞株及動物模型中腫瘤生長之有效抑制劑。已設計諸如西羅莫司類似物之其他利莫司藥物以改良西羅莫司之藥物動力學及藥效學特性。舉例而言,坦羅莫司(Temsirolimus)在美國及歐洲經批准用於治療腎細胞癌。依維莫司(Everolimus)在美國經批准用於治療晚期乳癌、胰臟神經內分泌腫瘤、晚期腎細胞癌及與結節性硬化症(Tuberous Sclerosis)相關之室管膜下巨細胞星形細胞瘤(SEGA)。西羅莫司之作用模式係結合胞質蛋白FK結合蛋白12 (FKBP12),且西羅莫司-FKBP12複合物繼而藉由直接結合至mTOR複合物1 (mTORC1)來抑制mTOR路徑。Sirolimus (INN/USAN), also known as rapamycin, is an immunosuppressive drug used to prevent organ transplant rejection; it is particularly useful in kidney transplants. Sirolimus dissolving stent is approved in the United States for the treatment of coronary artery restenosis. In addition, sirolimus has been shown to be an effective inhibitor of tumor growth in various cell lines and animal models. Other limus drugs, such as sirolimus analogs, have been designed to improve the pharmacokinetic and pharmacodynamic properties of sirolimus. For example, temsirolimus is approved in the United States and Europe for the treatment of renal cell carcinoma. Everolimus is approved in the United States for the treatment of advanced breast cancer, pancreatic neuroendocrine tumors, advanced renal cell carcinoma, and subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis. The mode of action of sirolimus is binding to the cytoplasmic protein FK binding protein 12 (FKBP12), and the sirolimus-FKBP12 complex then inhibits the mTOR pathway by directly binding to mTOR complex 1 (mTORC1).

基於白蛋白之奈米粒子組合物已研發為用於遞送實質上不溶於水之藥物的藥物遞送系統。參見例如美國專利第5,916,596號;第6,506,405號;第6,749,868號,以及第6,537,579號、第7,820,788號及第7,923,536號。Abraxane®為一種含有紫杉醇之白蛋白穩定奈米粒子組合物,於2005年在美國且隨後在其他多個國家經批准用於治療轉移性乳癌、胰臟癌及非小細胞肺癌。FYARRO®為一種含有西羅莫司之白蛋白穩定奈米粒子組合物,最近經批准用於治療血管周上皮樣細胞腫瘤(PEcoma)。Albumin-based nanoparticle compositions have been developed as drug delivery systems for the delivery of substantially water-insoluble drugs. See, e.g., U.S. Patent Nos. 5,916,596; 6,506,405; 6,749,868, and 6,537,579, 7,820,788, and 7,923,536. Abraxane® is an albumin-stabilized nanoparticle composition containing paclitaxel that was approved in the U.S. in 2005 and subsequently in several other countries for the treatment of metastatic breast cancer, pancreatic cancer, and non-small cell lung cancer. FYARRO® is an albumin-stabilized nanoparticle composition containing sirolimus, recently approved for the treatment of perivascular epithelioid cell neoplasm (PEcoma).

KRAS突變亦在一些最常見且致命的癌症中起一定作用,包括肺癌、大腸癌、大腸直腸癌及直腸癌。KRAS突變據估計存在於大致25%之腫瘤中。一種單一類型的KRAS突變,亦即KRAS G12C突變,佔所有KRAS突變之約44%。G12C為KRAS蛋白之密碼子12處甘胺酸至半胱胺酸取代之單點突變。此取代有利於KRAS之活性GTP結合構形,從而放大導致瘤形成之信號傳導路徑。KRAS G12C在非小細胞肺癌(NSCLC)中尤其普遍,佔美國所有肺癌病例之約85%。大致13%之患有NSCLC之美國人具有KRAS G12C突變,且僅在美國每年就有約23,000例新診斷之KRAS G12C NSCLC病例。KRAS G12C對偶基因特異性抑制劑阿達格拉西布(adagrasib)及索托拉西布(sotorasib)之臨床試驗已展示在表現KRAS G12C突變蛋白之癌症中有前景的活性。然而,臨床試驗資料亦表明,在用KRAS G12C抑制劑治療之患者當中反應存在顯著差異且KRAS G12C抑制劑單一療法不大可能足以引發持續治療反應。KRAS mutations also play a role in some of the most common and deadly cancers, including lung, colorectal, and colorectal cancers. KRAS mutations are estimated to be present in approximately 25% of tumors. A single type of KRAS mutation, the KRAS G12C mutation, accounts for approximately 44% of all KRAS mutations. G12C is a single-point mutation that substitutes a glycine to a cysteine at codon 12 of the KRAS protein. This substitution favors the active GTP-bound conformation of KRAS, thereby amplifying the signaling pathway that leads to tumorigenesis. KRAS G12C is particularly prevalent in non-small cell lung cancer (NSCLC), which accounts for approximately 85% of all lung cancer cases in the United States. Approximately 13% of Americans with NSCLC have the KRAS G12C mutation, and approximately 23,000 new cases of KRAS G12C NSCLC are diagnosed each year in the U.S. alone. Clinical trials of the KRAS G12C allele-specific inhibitors adagrasib and sotorasib have demonstrated promising activity in cancers expressing the KRAS G12C mutant protein. However, clinical trial data also suggest that there is significant variability in responses among patients treated with KRAS G12C inhibitors and that KRAS G12C inhibitor monotherapy is unlikely to be sufficient to induce sustained treatment responses.

因此,此項技術中持續需要治療展現mTOR信號傳導路徑之失調且表現KRAS G12C突變蛋白之癌症的方法。Therefore, there remains a need in the art for methods of treating cancers that exhibit dysregulation of the mTOR signaling pathway and express the KRAS G12C mutant protein.

本文所引用之所有參考文獻(包括專利申請案、專利公開案及UniProtKB/Swiss-Prot登錄號)均以全文引用之方式併入本文中,就像各個別參考文獻特定地且個別地以引用之方式併入一般。All references cited herein (including patent applications, patent publications, and UniProtKB/Swiss-Prot accession numbers) are hereby incorporated by reference in their entirety to the same extent as if each individual reference was specifically and individually indicated to be incorporated by reference.

在一些實施例中,提供一種治療個體之癌症的方法,其包含向個體投與:(a)有效量之包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物及(b)有效量之KRAS抑制劑。在一些實施例中,癌症包含表現KRAS突變蛋白之一或多種癌細胞。在一些實施例中,癌症包含(諸如進一步包含)具有至少一種mTOR活化畸變之一或多種癌細胞。在一些實施例中,個體為人類。In some embodiments, a method of treating cancer in an individual is provided, comprising administering to the individual: (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor and albumin and (b) an effective amount of a KRAS inhibitor. In some embodiments, the cancer comprises one or more cancer cells expressing a KRAS mutant protein. In some embodiments, the cancer comprises (e.g., further comprises) one or more cancer cells having at least one mTOR activating aberration. In some embodiments, the individual is a human.

在一些實施例中,mTOR抑制劑為利莫司藥物。在一些實施例中,利莫司藥物為西羅莫司。在一些實施例中,組合物中奈米粒子之平均直徑不超過約150 nm。在一些實施例中,組合物中奈米粒子之平均直徑不超過約120 nm。在一些實施例中,奈米粒子組合物中白蛋白與mTOR抑制劑之重量比不超過約10:1。在一些實施例中,奈米粒子包含與白蛋白締合之mTOR抑制劑。在一些實施例中,奈米粒子包含包覆有白蛋白之mTOR抑制劑。在一些實施例中,mTOR抑制劑奈米粒子組合物係靜脈內或皮下投與。在一些實施例中,mTOR抑制劑奈米粒子組合物係靜脈內投與。In some embodiments, the mTOR inhibitor is a limus drug. In some embodiments, the limus drug is sirolimus. In some embodiments, the average diameter of the nanoparticles in the composition does not exceed about 150 nm. In some embodiments, the average diameter of the nanoparticles in the composition does not exceed about 120 nm. In some embodiments, the weight ratio of albumin to mTOR inhibitor in the nanoparticle composition does not exceed about 10:1. In some embodiments, the nanoparticles include an mTOR inhibitor conjugated to albumin. In some embodiments, the nanoparticles include an mTOR inhibitor coated with albumin. In some embodiments, the mTOR inhibitor nanoparticle composition is administered intravenously or subcutaneously. In some embodiments, the mTOR inhibitor nanoparticle composition is administered intravenously.

在一些實施例中,KRAS抑制劑為抑制KRAS突變蛋白之活性之抗體、肽、蛋白質、反義寡核苷酸或小分子。在一些實施例中,KRAS抑制劑為小分子。在一些實施例中,KRAS抑制劑為選自由以下組成之群的小分子KRAS G12C抑制劑:索托拉西布、阿達格拉西布、JAB-21822、GDC-6036、JDQ443、D-1553、GH35、GFH925、BPI-421286以及LY3537982、RMC-6291、RMC-8839、HBI-2438及JNJ-74699157。在一些實施例中,小分子KRAS G12C抑制劑為索托拉西布或阿達格拉西布。在一些實施例中,索托拉西布或阿達格拉西布係經口投與。在一些實施例中,癌症包含表現KRAS G12C突變蛋白之一或多種癌細胞。在一些實施例中,KRAS抑制劑為選自由以下組成之群的小分子KRAS G12D抑制劑:MRTX1133及RMC-6236。在一些實施例中,癌症包含表現KRAS G12D突變蛋白之一或多種癌細胞。在一些實施例中,KRAS抑制劑為小分子KRAS G12V抑制劑,且其中小分子KRAS G12V抑制劑為JAB-23000。在一些實施例中,癌症包含表現KRAS G12V突變蛋白之一或多種癌細胞。In some embodiments, the KRAS inhibitor is an antibody, peptide, protein, antisense oligonucleotide or small molecule that inhibits the activity of KRAS mutant protein. In some embodiments, the KRAS inhibitor is a small molecule. In some embodiments, the KRAS inhibitor is a small molecule KRAS G12C inhibitor selected from the group consisting of: sotolacib, adagracib, JAB-21822, GDC-6036, JDQ443, D-1553, GH35, GFH925, BPI-421286 and LY3537982, RMC-6291, RMC-8839, HBI-2438 and JNJ-74699157. In some embodiments, the small molecule KRAS G12C inhibitor is sotolacib or adagracib. In some embodiments, sotolacib or adagracib is administered orally. In some embodiments, the cancer comprises one or more cancer cells expressing KRAS G12C mutant proteins. In some embodiments, the KRAS inhibitor is a small molecule KRAS G12D inhibitor selected from the group consisting of: MRTX1133 and RMC-6236. In some embodiments, the cancer comprises one or more cancer cells expressing KRAS G12D mutant proteins. In some embodiments, the KRAS inhibitor is a small molecule KRAS G12V inhibitor, and wherein the small molecule KRAS G12V inhibitor is JAB-23000. In some embodiments, the cancer comprises one or more cancer cells expressing KRAS G12V mutant proteins.

在一些實施例中,包含表現KRAS突變蛋白及/或具有至少一種mTOR活化畸變之一或多種癌細胞之癌症為實體腫瘤、肺癌、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌、子宮癌、子宮內膜癌、子宮頸癌、睾丸癌、膽管癌、骨髓發育不良癌或來源未知的腫瘤。在一些實施例中,癌症為實體腫瘤、肺癌、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌或來源未知的腫瘤。在一些實施例中,癌症或腫瘤(諸如前述癌症或腫瘤中之任一者)為晚期、不可切除性及/或轉移性的。在一些實施例中,癌症為實體腫瘤(例如,晚期、不可切除性及/或轉移性實體腫瘤)、肺癌(例如,晚期、不可切除性及/或轉移性肺癌)或膀胱癌(例如,晚期、不可切除性及/或轉移性膀胱癌)。在一些實施例中,肺癌為非小細胞肺癌(NSCLC),例如晚期、不可切除性及/或轉移性NSCLC。In some embodiments, the cancer comprising one or more cancer cells expressing KRAS mutant protein and/or having at least one mTOR activation aberration is a solid tumor, lung cancer, bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, uterine cancer, endometrial cancer, cervical cancer, testicular cancer, bile duct cancer, myelodysplastic cancer, or a tumor of unknown origin. In some embodiments, the cancer is a solid tumor, lung cancer, bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, or a tumor of unknown origin. In some embodiments, the cancer or tumor (such as any of the aforementioned cancers or tumors) is advanced, unresectable, and/or metastatic. In some embodiments, the cancer is a solid tumor (e.g., an advanced, unresectable and/or metastatic solid tumor), lung cancer (e.g., advanced, unresectable and/or metastatic lung cancer), or bladder cancer (e.g., advanced, unresectable and/or metastatic bladder cancer). In some embodiments, the lung cancer is non-small cell lung cancer (NSCLC), e.g., advanced, unresectable and/or metastatic NSCLC.

在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS抑制劑係同時投與。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS抑制劑係並行投與。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS抑制劑係依序投與。在一些實施例中,mTOR抑制劑奈米粒子組合物係每週投與、每三週投與一次或每三週投與兩次。在一些實施例中,KRAS抑制劑係每日投與或每日投與兩次。In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS inhibitor are administered simultaneously. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS inhibitor are administered in parallel. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS inhibitor are administered sequentially. In some embodiments, the mTOR inhibitor nanoparticle composition is administered weekly, once every three weeks, or twice every three weeks. In some embodiments, the KRAS inhibitor is administered daily or twice daily.

在一些實施例中,該方法包含在投與mTOR抑制劑奈米粒子組合物及KRAS抑制劑之前基於具有至少一種mTOR活化畸變之一或多種癌細胞之存在而選擇個體進行治療。在一些實施例中,mTOR活化畸變包含mTOR相關基因之突變。在一些實施例中,mTOR活化畸變係在選自由以下組成之群的至少一種mTOR相關基因中:AKT1、FLT-3、MTOR、PIK3CA、PIK3CG、TSC1、TSC2、RHEB、STK11、NF1、NF2、TP53、FGFR4、BAP1、KRAS、NRAS、NRF2、KEAP1及PTEN。在一些實施例中,mTOR活化畸變係在TSC1及/或TSC2中。在一些實施例中,該方法包含(諸如進一步包含)基於表現KRAS突變蛋白之一或多種癌細胞之存在而選擇個體進行治療。在一些實施例中,KRAS突變蛋白為KRAS G12C突變蛋白、KRAS G12D突變蛋白或KRAS G12V突變蛋白。In some embodiments, the method comprises selecting an individual for treatment based on the presence of one or more cancer cells having at least one mTOR activating aberration prior to administering the mTOR inhibitor nanoparticle composition and the KRAS inhibitor. In some embodiments, the mTOR activating aberration comprises a mutation in an mTOR-related gene. In some embodiments, the mTOR activating aberration is in at least one mTOR-related gene selected from the group consisting of: AKT1, FLT-3, MTOR, PIK3CA, PIK3CG, TSC1, TSC2, RHEB, STK11, NF1, NF2, TP53, FGFR4, BAP1, KRAS, NRAS, NRF2, KEAP1, and PTEN. In some embodiments, the mTOR activating aberration is in TSC1 and/or TSC2. In some embodiments, the method comprises (e.g., further comprises) selecting an individual for treatment based on the presence of one or more cancer cells expressing a KRAS mutant protein. In some embodiments, the KRAS mutant protein is a KRAS G12C mutant protein, a KRAS G12D mutant protein, or a KRAS G12V mutant protein.

在一些實施例中,提供一種用於治療個體之癌症的套組,其包含:(a)包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物,及(b)用於向患有包含一或多種癌細胞(其表現KRAS突變蛋白及/或具有至少一種mTOR活化畸變)之癌症之個體投與有效量之mTOR抑制劑奈米粒子組合物及有效量之KRAS抑制劑的說明書。在一些實施例中,癌症為實體腫瘤、肺癌、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌、子宮癌、子宮內膜癌、子宮頸癌、睾丸癌、膽管癌、骨髓發育不良癌或來源未知的腫瘤。在一些實施例中,個體為人類。In some embodiments, a kit for treating cancer in an individual is provided, comprising: (a) a composition comprising nanoparticles comprising an mTOR inhibitor and albumin, and (b) instructions for administering an effective amount of the mTOR inhibitor nanoparticle composition and an effective amount of the KRAS inhibitor to an individual having a cancer comprising one or more cancer cells that express KRAS mutant proteins and/or have at least one mTOR activating aberration. In some embodiments, the cancer is a solid tumor, lung cancer, bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, uterine cancer, endometrial cancer, cervical cancer, testicular cancer, bile duct cancer, myelodysplastic cancer, or a tumor of unknown origin. In some embodiments, the individual is a human.

在一些實施例中,mTOR抑制劑為利莫司藥物。在一些實施例中,利莫司藥物為西羅莫司。在一些實施例中,組合物中奈米粒子之平均直徑不超過約150 nm。在一些實施例中,組合物中奈米粒子之平均直徑不超過約120 nm。在一些實施例中,奈米粒子組合物中白蛋白與mTOR抑制劑之重量比不超過約10:1。在一些實施例中,奈米粒子包含與白蛋白締合之mTOR抑制劑。在一些實施例中,奈米粒子包含包覆有白蛋白之mTOR抑制劑。In some embodiments, the mTOR inhibitor is a limus drug. In some embodiments, the limus drug is sirolimus. In some embodiments, the average diameter of the nanoparticles in the composition does not exceed about 150 nm. In some embodiments, the average diameter of the nanoparticles in the composition does not exceed about 120 nm. In some embodiments, the weight ratio of albumin to mTOR inhibitor in the nanoparticle composition does not exceed about 10:1. In some embodiments, the nanoparticles include an mTOR inhibitor conjugated to albumin. In some embodiments, the nanoparticles include an mTOR inhibitor coated with albumin.

在一些實施例中,KRAS抑制劑為抑制KRAS突變蛋白之活性之抗體、肽、蛋白質、反義寡核苷酸或小分子。在一些實施例中,KRAS抑制劑為小分子。在一些實施例中,KRAS抑制劑為選自由以下組成之群的小分子KRAS G12C抑制劑:索托拉西布、阿達格拉西布、JAB-21822、GDC-6036、JDQ443、D-1553、GH35、GFH925、BPI-421286以及LY3537982、RMC-6291、RMC-8839、HBI-2438及JNJ-74699157。在一些實施例中,KRAS抑制劑為選自由以下組成之群的小分子KRAS G12D抑制劑:MRTX1133及RMC-6236。在一些實施例中,KRAS抑制劑為小分子KRAS G12V抑制劑,且其中小分子KRAS G12V抑制劑為JAB-23000。In some embodiments, the KRAS inhibitor is an antibody, peptide, protein, antisense oligonucleotide or small molecule that inhibits the activity of KRAS mutant protein. In some embodiments, the KRAS inhibitor is a small molecule. In some embodiments, the KRAS inhibitor is a small molecule KRAS G12C inhibitor selected from the group consisting of: sotolacib, adagracib, JAB-21822, GDC-6036, JDQ443, D-1553, GH35, GFH925, BPI-421286 and LY3537982, RMC-6291, RMC-8839, HBI-2438 and JNJ-74699157. In some embodiments, the KRAS inhibitor is a small molecule KRAS G12D inhibitor selected from the group consisting of: MRTX1133 and RMC-6236. In some embodiments, the KRAS inhibitor is a small molecule KRAS G12V inhibitor, and wherein the small molecule KRAS G12V inhibitor is JAB-23000.

相關申請案之交互參考Cross-references to related applications

本申請案主張2022年10月11日申請之美國專利申請案序號63/415,252及2023年4月21日申請之美國專利申請案序號63/461,145之優先權權益,該等美國專利申請案之全部內容出於所有目的以引用之方式併入本文中。 概述 This application claims the benefit of priority to U.S. Patent Application Serial No. 63/415,252 filed on October 11, 2022 and U.S. Patent Application Serial No. 63/461,145 filed on April 21, 2023, the entire contents of which are incorporated herein by reference for all purposes. Overview

本申請案係基於以下出人意料的發現:包含有包含奈米粒子(包含mTOR抑制劑及白蛋白)之組合物(例如,「mTOR抑制劑奈米粒子組合物」,諸如西羅莫司/白蛋白奈米粒子組合物)及KRAS抑制劑(例如,KRAS G12C抑制劑,諸如索托拉西布或阿達格拉西布)的組合治療在抑制腫瘤生長方面比單獨任一藥劑明顯更有效。申請人亦發現,此類組合治療在抑制腫瘤生長方面比包含非奈米粒子mTOR抑制劑(例如,依維莫司)及KRAS抑制劑(例如,KRAS G12C抑制劑,諸如索托拉西布或阿達格拉西布)之組合治療更有效。包含mTOR抑制劑奈米粒子組合物及KRAS抑制劑(例如,KRAS G12C抑制劑)之組合治療的改善之腫瘤生長抑制(tumor growth inhibition,TGI)與比用mTOR抑制劑奈米粒子組合物之單一藥劑治療、用KRAS抑制劑(例如,KRAS G12C抑制劑)之單一藥劑治療及包含非奈米粒子mTOR抑制劑及KRAS G12C抑制劑(例如,KRAS G12C抑制劑)之組合治療顯著較高的腫瘤反應率(例如,腫瘤體積變化超過-30%之腫瘤消退)相關。 This application is based on the unexpected discovery that combination therapy comprising a composition comprising nanoparticles (comprising an mTOR inhibitor and albumin) (e.g., an "mTOR inhibitor nanoparticle composition", such as a sirolimus/albumin nanoparticle composition) and a KRAS inhibitor (e.g., a KRAS G12C inhibitor, such as sotolacizumab or adagracib) is significantly more effective in inhibiting tumor growth than either agent alone. The applicant also found that such combination therapy is more effective in inhibiting tumor growth than combination therapy comprising a non-nanoparticle mTOR inhibitor (e.g., everolimus) and a KRAS inhibitor (e.g., a KRAS G12C inhibitor, such as sotolacizumab or adagracib). Improved tumor growth inhibition (TGI) of combination therapy comprising an mTOR inhibitor nanoparticle composition and a KRAS inhibitor (e.g., a KRAS G12C inhibitor) is associated with significantly higher tumor response rates (e.g., tumor regression with a tumor volume change greater than -30%) than single-agent treatment with an mTOR inhibitor nanoparticle composition, single-agent treatment with a KRAS inhibitor (e.g., a KRAS G12C inhibitor), and combination therapy comprising a non-nanoparticle mTOR inhibitor and a KRAS G12C inhibitor (e.g., a KRAS G12C inhibitor).

因此,在一個態樣中,本申請案提供治療個體之癌症之方法,包含向個體投與(a)有效量之包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物(例如,奈米粒子白蛋白結合型西羅莫司)及(b)有效量之KRAS抑制劑(例如,KRAS G12C抑制劑)。在一些實施例中,癌症包含表現KRAS突變蛋白(例如,KRAS G12C突變蛋白)之一或多種細胞。mTOR路徑常常在具有 KRAS突變之癌症患者中經活化且有助於對KRAS抑制劑之自適應抗性(Byun等人(2019),「致癌KRAS信號傳導經由COUP-TFII介導之乳酸產生活化mTORC1」,歐洲分子生物學學會報告20(6))。另外或替代地,在一些實施例中,腫瘤包含具有至少一種mTOR活化畸變之一或多種癌細胞。在另一態樣中,提供用於治療癌症,例如包含表現KRAS突變蛋白(例如,KRAS G12C突變蛋白)及/或具有至少一種mTOR活化畸變之一或多種細胞之癌症的套組及製品,其包括包含奈米粒子(包含mTOR抑制劑及白蛋白)之組合物(例如,奈米粒子白蛋白結合型西羅莫司)。在一些實施例中,套組及製品包含用於向個體投與包含mTOR抑制劑及白蛋白之組合物結合KRAS抑制劑(例如,KRAS G12C抑制劑)以治療癌症的說明書,例如包含表現KRAS突變蛋白(例如,KRAS G12C突變蛋白)及/或具有至少一種mTOR活化畸變之一或多種細胞之癌症。在一些實施例中,套組及製品進一步包含KRAS抑制劑(例如,KRAS G12C抑制劑)。 定義 Thus, in one aspect, the present application provides a method for treating cancer in an individual, comprising administering to the individual (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor and albumin (e.g., nanoparticle albumin-bound sirolimus) and (b) an effective amount of a KRAS inhibitor (e.g., a KRAS G12C inhibitor). In some embodiments, the cancer comprises one or more cells expressing a KRAS mutant protein (e.g., a KRAS G12C mutant protein). The mTOR pathway is often activated in cancer patients with KRAS mutations and contributes to adaptive resistance to KRAS inhibitors (Byun et al. (2019), "Oncogenic KRAS signaling activates mTORC1 via COUP-TFII-mediated lactate production", European Society for Molecular Biology Report 20 (6)). Additionally or alternatively, in some embodiments, the tumor comprises one or more cancer cells having at least one mTOR activating aberration. In another aspect, kits and articles for treating cancer, such as cancers comprising one or more cells expressing KRAS mutant proteins (e.g., KRAS G12C mutant proteins) and/or having at least one mTOR activating aberration, are provided, comprising a composition comprising nanoparticles (comprising an mTOR inhibitor and albumin) (e.g., nanoparticle albumin-bound sirolimus). In some embodiments, kits and articles of manufacture include instructions for administering a composition comprising an mTOR inhibitor and albumin in combination with a KRAS inhibitor (e.g., a KRAS G12C inhibitor) to a subject to treat cancer, such as a cancer comprising one or more cells expressing a KRAS mutant protein (e.g., a KRAS G12C mutant protein) and/or having at least one mTOR activating aberration. In some embodiments, kits and articles of manufacture further comprise a KRAS inhibitor (e.g., a KRAS G12C inhibitor). Definitions

詳細描述實施例之前,應理解,本發明不限於特定組合物或生物系統,其當然可變化。亦應理解,本文所用術語僅為了描述特定實施例,而非為了限制。Before describing the embodiments in detail, it should be understood that the present invention is not limited to specific compositions or biological systems, which may of course vary. It should also be understood that the terminology used herein is for the purpose of describing specific embodiments only and is not intended to be limiting.

如本文所用,「 nab」代表奈米粒子白蛋白結合型,且「奈米粒子白蛋白結合型西羅莫司」為西羅莫司(雷帕黴素)之白蛋白穩定奈米粒子調配物。奈米粒子白蛋白結合型西羅莫司亦稱為奈米粒子白蛋白結合型雷帕黴素,其先前已描述。參見例如WO2008109163A1、WO2014151853、WO2008137148A2及WO2012149451A1,其中之各者以全文引用之方式併入本文中。 As used herein, " nab " stands for nanoparticle albumin bound, and "nanoparticle albumin bound sirolimus" is an albumin-stable nanoparticle formulation of sirolimus (rapamycin). Nanoparticle albumin bound sirolimus is also known as nanoparticle albumin bound rapamycin, which has been described previously. See, e.g., WO2008109163A1, WO2014151853, WO2008137148A2, and WO2012149451A1, each of which is incorporated herein by reference in its entirety.

如本文所用,「治療(treatment/treating)」為用於獲得有益或所需結果(包括臨床結果)之方法。出於本發明之目的,有益或所需臨床結果包括但不限於以下一或多種:減輕由疾病引起之一或多種症狀、降低疾病程度、使疾病穩定(例如預防或延遲疾病之惡化)、預防或延遲疾病之擴散(例如轉移)、預防或延遲疾病之復發、降低疾病之復發率、延遲或減慢疾病之進展、改善疾病狀態、使疾病緩解(部分或總體緩解)、減少治療疾病所需之一或多種其他藥物之劑量、延遲疾病之進展、提高生活品質及/或延長存活期。在一些實施例中,與同一個體在治療之前的對應症狀相比或與未接受治療之其他個體之對應症狀相比,治療會使與癌症相關之一或多種症狀之嚴重性降低至少約10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或100%中之任一者。「治療」亦涵蓋癌症病理結果之減輕。本文所描述之方法涵蓋此等治療態樣中之任何一或多者。As used herein, "treatment" or "treating" is a method for obtaining beneficial or desired results (including clinical results). For the purposes of the present invention, beneficial or desired clinical results include, but are not limited to, one or more of the following: alleviating one or more symptoms caused by a disease, reducing the severity of the disease, stabilizing the disease (e.g., preventing or delaying the worsening of the disease), preventing or delaying the spread of the disease (e.g., metastasis), preventing or delaying the recurrence of the disease, reducing the recurrence rate of the disease, delaying or slowing the progression of the disease, improving the disease state, alleviating the disease (partial or total), reducing the dosage of one or more other drugs required to treat the disease, delaying the progression of the disease, improving the quality of life and/or prolonging survival. In some embodiments, treatment reduces the severity of one or more symptoms associated with cancer by at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% compared to the corresponding symptoms in the same individual before treatment or compared to the corresponding symptoms in other individuals not receiving treatment. "Treatment" also encompasses a reduction in pathological findings of cancer. The methods described herein encompass any one or more of these treatment aspects.

如本文所用,「處於風險下」之個體為處於罹患癌症之風險下的個體。「處於風險下」之個體在本文所描述之治療方法之前可患有或可未患有可偵測之疾病,且可已顯示或可未顯示可偵測之疾病。「處於風險下」表示個體具有一或多種所謂的風險因素,其為本文所描述之與罹患癌症相關之可量測參數。具有此等風險因素中之一或多者之個體比不具有此等一或多種風險因素之個體具有更高的罹患癌症之機率。As used herein, an individual "at risk" is an individual who is at risk for developing cancer. An individual "at risk" may or may not have had a detectable disease prior to treatment as described herein, and may or may not have demonstrated detectable disease. "At risk" means that the individual has one or more so-called risk factors, which are measurable parameters described herein that are associated with developing cancer. An individual who has one or more of these risk factors has a higher chance of developing cancer than an individual who does not have these one or more risk factors.

如本文所使用,「延遲」罹患癌症意謂延緩、阻礙、減緩、阻滯、穩定及/或推遲罹患該疾病。此延遲可具有不同時間長度,視所治療之疾病及/或個體之病史而定。如熟習此項技術者顯而易見,充分或顯著延遲可實際上涵蓋預防,使得該個體不會罹患該疾病。「延遲」罹患癌症之方法為在與不使用該方法時相比,在既定時間範圍內降低罹患疾病機率及/或在既定時間範圍內減輕疾病程度之方法。此類比較通常基於臨床研究,使用統計顯著數目之個體。罹患癌症可使用標準方法偵測,該等標準方法包括但不限於:電腦化斷層掃描(CAT掃描)、磁共振成像(MRI)、超音波、凝血測試、動脈攝影術、活組織檢查、尿液細胞學檢查及膀胱鏡檢查。罹患亦可指可能最初不可偵測之癌症進展且包括出現、復發及發作。As used herein, "delaying" the onset of cancer means delaying, impeding, slowing, arresting, stabilizing and/or postponing the onset of the disease. This delay may be of varying lengths of time, depending on the disease being treated and/or the individual's medical history. As will be apparent to one skilled in the art, a sufficient or significant delay may actually encompass prevention, such that the individual would not develop the disease. A method for "delaying" the onset of cancer is one that reduces the chance of developing the disease within a given time frame and/or reduces the severity of the disease within a given time frame, compared to not using the method. Such comparisons are typically based on clinical studies using a statistically significant number of individuals. Cancer prevalence may be detected using standard methods including, but not limited to, computerized tomography (CAT scan), magnetic resonance imaging (MRI), ultrasound, coagulation tests, arteriovenous imaging, biopsy, urine cytology, and cystoscopy. Prevalence may also refer to the progression of cancer that may not initially be detectable and includes emergence, recurrence, and relapse.

本文所使用之術語「有效量」係指足以治療指定病症、病狀或疾病,諸如改善、緩和、減輕及/或延遲其症狀中之一或多者的化合物或組合物之量。就癌症而言,有效量包含足以使腫瘤縮小及/或降低腫瘤生長速率(由此遏制腫瘤生長)或者預防或延遲癌症中其他不想要的細胞增殖之量。在一些實施例中,有效量係足以延遲罹患癌症的量。在一些實施例中,有效量為足以預防或延遲復發的量。在一些實施例中,有效量為足以降低個體中之復發率的量。有效量可以一或多次投與來投與。藥物或組合物之有效量可:(i)減少癌細胞之數目;(ii)減小腫瘤尺寸;(iii)在一定程度上抑制、延緩、減緩且較佳地停止癌細胞浸潤至周邊器官中;(iv)抑制(亦即在一定程度上減緩且較佳地停止)腫瘤轉移;(v)抑制腫瘤生長;(vi)預防或延遲腫瘤之出現及/或復發;(vii)降低腫瘤之復發率;及/或(viii)在一定程度上緩解一或多種與癌症相關之症狀。The term "effective amount" as used herein refers to an amount of a compound or composition sufficient to treat a specified disorder, condition or disease, such as to improve, alleviate, reduce and/or delay one or more of its symptoms. In the case of cancer, an effective amount includes an amount sufficient to shrink a tumor and/or reduce the rate of tumor growth (thereby curbing tumor growth) or to prevent or delay other unwanted cell proliferation in cancer. In some embodiments, an effective amount is an amount sufficient to delay the onset of cancer. In some embodiments, an effective amount is an amount sufficient to prevent or delay recurrence. In some embodiments, an effective amount is an amount sufficient to reduce the recurrence rate in an individual. An effective amount can be administered in one or more administrations. An effective amount of the drug or composition can: (i) reduce the number of cancer cells; (ii) reduce the size of tumors; (iii) inhibit, delay, slow down and preferably stop the infiltration of cancer cells into peripheral organs to a certain extent; (iv) inhibit (i.e., slow down and preferably stop to a certain extent) tumor metastasis; (v) inhibit tumor growth; (vi) prevent or delay the appearance and/or recurrence of tumors; (vii) reduce the recurrence rate of tumors; and/or (viii) relieve to a certain extent one or more symptoms associated with cancer.

如此項技術中所理解,「有效量」可為一或多個劑量,亦即,可能需要單次劑量或多次劑量以實現所需治療指標。有效量可在投與一或多種治療劑的情況下考慮,且若與一或多種其他藥劑結合可達成或達成所需或有益結果,則奈米粒子組合物(例如,包括西羅莫司及白蛋白之組合物)可視為以有效量給與。本文中所描述之組合療法中之組分(例如,第一及第二療法)可針對各組分使用相同或不同投與途徑依序、同時或並行投與。因此,有效量之組合療法包括一定量之第一療法及一定量之第二療法,其在依序、同時或並行投與時產生所需結果。 As understood in the art, an "effective amount" can be one or more doses, i.e., a single dose or multiple doses may be required to achieve the desired therapeutic indicator. An effective amount can be considered in the context of administering one or more therapeutic agents, and a nanoparticle composition (e.g., a composition including sirolimus and albumin) can be considered to be administered in an effective amount if the desired or beneficial result can be achieved or achieved in combination with one or more other agents. The components of the combination therapy described herein (e.g., the first and second therapy) can be administered sequentially, simultaneously, or concurrently using the same or different routes of administration for each component. Thus, an effective amount of the combination therapy includes an amount of the first therapy and an amount of the second therapy that produce the desired result when administered sequentially, simultaneously, or concurrently.

「與……結合」或「與……組合」係指除一種治療模式之外亦投與另一種治療模式,諸如在相同治療計劃下除向同一個體投與其他藥劑之外亦投與本文中所描述之奈米粒子組合物。因此,「與……結合」或「與……組合」係指在向個體遞送一種治療模式之前、期間或之後投與另一種治療模式。 "In conjunction with" or "in combination with" means administering a therapeutic modality in addition to another therapeutic modality, such as administering a nanoparticle composition described herein in addition to other agents to the same subject under the same treatment regimen. Thus, "in conjunction with" or "in combination with" means administering a therapeutic modality before, during, or after delivery of another therapeutic modality to a subject.

如本文所用,術語「同時投與」意謂以不超過約15分鐘(諸如不超過約10分鐘、5分鐘或1分鐘中之任一者)之時間間隔投與組合療法中之第一療法及第二療法。當同時投與第一及第二療法時,第一及第二療法可包含於同一組合物(例如包含第一及第二療法兩者之組合物)或分開之組合物中(例如,第一療法含於一種組合物中且第二療法含於另一組合物中)。 As used herein, the term "simultaneous administration" means that the first therapy and the second therapy in the combination therapy are administered with a time interval of no more than about 15 minutes (e.g., no more than about any of 10 minutes, 5 minutes, or 1 minute). When the first and second therapies are administered simultaneously, the first and second therapies may be contained in the same composition (e.g., a composition comprising both the first and second therapies) or in separate compositions (e.g., the first therapy is contained in one composition and the second therapy is contained in another composition).

如本文所用,術語「依序投與」意謂以超過約15分鐘(諸如超過約20分鐘、30分鐘、40分鐘、50分鐘、60分鐘或更長時間中之任一者)之時間間隔投與組合療法中之第一療法及第二療法。可首先投與第一療法或第二療法。第一及第二療法含於分開之組合物中,其可含於相同或不同包裝或套組中。 As used herein, the term "sequential administration" means that the first therapy and the second therapy in the combination therapy are administered with a time interval of more than about 15 minutes (such as more than about 20 minutes, 30 minutes, 40 minutes, 50 minutes, 60 minutes or more). The first therapy or the second therapy can be administered first. The first and second therapies are contained in separate compositions, which can be contained in the same or different packages or kits.

如本文所用,術語「並行投與」意謂組合療法中之第一療法之投與及第二療法之投與彼此重疊。As used herein, the term "concurrent administration" means that the administration of a first therapy and the administration of a second therapy in the combination therapy overlap each other.

如本文所使用,出於治療目的之術語「個體」係指經分類為以下之任何動物:包括人類、家畜及農場動物之哺乳動物以及諸如狗、馬、貓、母牛等之動物園動物、運動動物或寵物動物。哺乳動物較佳為人類。As used herein, the term "subject" for therapeutic purposes refers to any animal classified as follows: mammals including humans, domestic and farm animals, and zoo, sport or pet animals such as dogs, horses, cats, cows, etc. The mammal is preferably a human.

如本文所用,當將化合物描述為抑制劑時所使用之「特異性(specific)」、「特異性(specificity)」或「選擇性(選擇性)」或「選擇性(selectivity)」意謂相較於非標靶,化合物較佳地與特定標靶(例如,蛋白質及酶)相互作用(例如,結合至、調節及抑制該標靶)。舉例而言,化合物對特定標靶具有較高親和性、較高結合性、較高結合係數或較低解離係數。可藉由使用此項技術中熟知之各種方法量測、測定或評估化合物對特定標靶之特異性或選擇性。舉例而言,可藉由量測化合物針對標靶之IC50量測、測定或評估特異性或選擇性。當化合物針對標靶之IC50比同一化合物針對非標靶之IC50低2倍、4倍、6倍、8倍、10倍、20倍、50倍、100倍、500倍、1000倍或更多倍時,化合物對標靶具有特異性或選擇性。舉例而言,KRAS G12C抑制劑之IC50比同一KRAS G12C抑制劑針對野生型KRAS之IC50低2倍、4倍、6倍、8倍、10倍、20倍、50倍、100倍、500倍、1000倍或更多倍。IC50可藉由此項技術中通常已知之方法測定。As used herein, "specificity", "specificity" or "selectivity" or "selectivity" when describing a compound as an inhibitor means that the compound interacts with (e.g., binds to, modulates and inhibits) a specific target (e.g., proteins and enzymes) better than non-targets. For example, the compound has a higher affinity, higher binding, higher binding coefficient or lower dissociation coefficient for a specific target. The specificity or selectivity of a compound for a specific target can be measured, determined or evaluated by using various methods well known in the art. For example, the specificity or selectivity can be measured, determined or evaluated by measuring the IC50 of the compound for the target. A compound is specific or selective for a target when its IC50 for a target is 2-fold, 4-fold, 6-fold, 8-fold, 10-fold, 20-fold, 50-fold, 100-fold, 500-fold, 1000-fold or more lower than the IC50 of the same compound for a non-target. For example, the IC50 of a KRAS G12C inhibitor is 2-fold, 4-fold, 6-fold, 8-fold, 10-fold, 20-fold, 50-fold, 100-fold, 500-fold, 1000-fold or more lower than the IC50 of the same KRAS G12C inhibitor for wild-type KRAS. IC50 can be determined by methods generally known in the art.

如本文所用,「醫藥學上可接受」或「藥理學相容性」意謂在生物學上或在其他方面無不良影響之材料,亦即,該材料可併入投與患者之醫藥組合物中而不會引起任何顯著不良生物學效應或以有害方式與含有其之組合物中的任何其他組分相互作用。醫藥學上可接受之載劑或賦形劑較佳滿足毒理學及製造測試之所要求標準及/或包括於美國食品藥物管理局(U.S. Food and Drug administration)制定之非活性成分指南(Inactive Ingredient Guide)中。As used herein, "pharmaceutically acceptable" or "pharmacologically compatible" means a material that is biologically or otherwise non-adverse, i.e., the material can be incorporated into a pharmaceutical composition for administration to a patient without causing any significant adverse biological effect or interacting in a deleterious manner with any other component of the composition in which it is contained. Pharmaceutically acceptable carriers or formulations preferably meet the required standards for toxicology and manufacturing testing and/or are included in the Inactive Ingredient Guide established by the U.S. Food and Drug Administration.

應理解,本發明之態樣及實施例包括「包含」態樣及實施例、「由態樣及實施例組成」及/或「基本上由態樣及實施例組成」。It should be understood that aspects and embodiments of the present invention include “comprising” aspects and embodiments, “consisting of” aspects and embodiments, and/or “consisting essentially of” aspects and embodiments.

本文中,提及「約」一值或參數包括(且描述)針對該值或參數本身之變化形式。舉例而言,提及「約X」之描述包括「X」之描述。As used herein, reference to "about" a value or parameter includes (and describes) variations with respect to that value or parameter itself. For example, description referring to "about X" includes description of "X".

如本文所使用,提及「不為」一值或參數一般意謂且描述「除一值或參數外」。舉例而言,方法不用於治療X型癌症意謂該方法用於治療除X型外的類型之癌症。As used herein, reference to "not being" a value or parameter generally means and describes "except for a value or parameter." For example, a method not being used to treat type X cancer means that the method is used to treat cancers of types other than type X.

除非上下文另外明確指示,否則如在本文及所附申請專利範圍中所用,單數形式「一個(種)(a)」、「或(or)」及「該(the)」包括複數個(種)指示物。 癌症治療之方法 As used herein and in the appended claims, the singular forms "a," "or," and "the" include plural referents unless the context clearly indicates otherwise. Methods of treating cancer

在一些實施例中,提供一種治療個體(例如,人類)之癌症的方法,其包含向個體投與(a)有效量之包含有包含mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」);以及(b)有效量之KRAS抑制劑(例如,KRAS G12C抑制劑、KRAS G12A抑制劑、KRAS G12D抑制劑、KRAS G12F抑制劑、KRAS G12L抑制劑、KRAS G12R抑制劑、KRAS G12S抑制劑、KRAS G12V抑制劑、KRAS G13A抑制劑、KRAS G13C抑制劑、KRAS G13D抑制劑、KRAS G13P抑制劑、KRAS G13R抑制劑、KRAS G13S抑制劑、KRAS G13V抑制劑、KRAS Q61E抑制劑、KRAS Q61H抑制劑、KRAS Q61K抑制劑、KRAS Q61L抑制劑、KRAS Q61P抑制劑、KRAS Q61R抑制劑、KRAS K117N抑制劑、KRAS K117R抑制劑、KRAS A146E抑制劑、KRAS A146G抑制劑、KRAS A146P抑制劑、KRAS A146S抑制劑、KRAS A146T抑制劑或KRAS A146V抑制劑)。在一些實施例中,癌症包含表現KRAS突變蛋白(例如,分別為KRAS G12C突變蛋白、KRAS G12A突變蛋白、KRAS G12D突變蛋白、KRAS G12F突變蛋白、KRAS G12L突變蛋白、KRAS G12R突變蛋白、KRAS G12S突變蛋白、KRAS G12V突變蛋白、KRAS G13A突變蛋白、KRAS G13C突變蛋白、KRAS G13D突變蛋白、KRAS G13P突變蛋白、KRAS G13R突變蛋白、KRAS G13S突變蛋白、KRAS G13V突變蛋白、KRAS Q61E突變蛋白、KRAS Q61H突變蛋白、KRAS Q61K突變蛋白、KRAS Q61L突變蛋白、KRAS Q61P突變蛋白、KRAS Q61R突變蛋白、KRAS K117N突變蛋白、KRAS K117R突變蛋白、KRAS A146E突變蛋白、KRAS A146G突變蛋白、KRAS A146P突變蛋白、KRAS A146S突變蛋白、KRAS A146T突變蛋白或KRAS A146V突變蛋白)之一或多種細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,癌症為實體腫瘤、肺癌、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌、子宮癌、子宮內膜癌、子宮頸癌、睾丸癌、膽管癌、骨髓發育不良癌或來源未知的腫瘤。在一些實施例中,癌症或腫瘤(諸如前述癌症或腫瘤中之任一者)為晚期、不可切除性及/或轉移性的。在一些實施例中,癌症為實體腫瘤(例如,晚期、不可切除性及/或轉移性實體腫瘤)、肺癌(例如,晚期、不可切除性及/或轉移性肺癌)或膀胱癌(例如,晚期、不可切除性及/或轉移性膀胱癌)。在一些實施例中,肺癌為非小細胞肺癌(NSCLC),例如晚期、不可切除性及/或轉移性NSCLC。In some embodiments, a method of treating cancer in an individual (e.g., a human) is provided, comprising administering to the individual (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor (e.g., a limus drug, such as sirolimus or a derivative or analog thereof) and albumin ("mTOR inhibitor nanoparticle composition"); and (b) an effective amount of a KRAS inhibitor (e.g., a KRAS G12C inhibitor, a KRAS G12A inhibitor, a KRAS G12D inhibitor, a KRAS G12F inhibitor, a KRAS G12L inhibitor, a KRAS G12R inhibitor, a KRAS G12S inhibitor, a KRAS G12V inhibitor, a KRAS G13A inhibitor, a KRAS G13C inhibitor, a KRAS G13A inhibitor, a KRAS G13B inhibitor, a KRAS G13C inhibitor, a KRAS G13C inhibitor, a KRAS G13C inhibitor, a KRAS G13A ... KRAS G13D inhibitor, KRAS G13P inhibitor, KRAS G13R inhibitor, KRAS G13S inhibitor, KRAS G13V inhibitor, KRAS Q61E inhibitor, KRAS Q61H inhibitor, KRAS Q61K inhibitor, KRAS Q61L inhibitor, KRAS Q61P inhibitor, KRAS Q61R inhibitor, KRAS K117N inhibitor, KRAS K117R inhibitor, KRAS A146E inhibitor, KRAS A146G inhibitor, KRAS A146P inhibitor, KRAS A146S inhibitor, KRAS A146T inhibitor or KRAS A146V inhibitor). In some embodiments, the cancer comprises a cell line that expresses a KRAS mutant protein (e.g., a KRAS G12C mutant protein, a KRAS G12A mutant protein, a KRAS G12D mutant protein, a KRAS G12F mutant protein, a KRAS G12L mutant protein, a KRAS G12R mutant protein, a KRAS G12S mutant protein, a KRAS G12V mutant protein, a KRAS G13A mutant protein, a KRAS G13C mutant protein, a KRAS G13D mutant protein, a KRAS G13P mutant protein, a KRAS G13R mutant protein, a KRAS G13S mutant protein, a KRAS G13V mutant protein, a KRAS Q61E mutant protein, a KRAS Q61H mutant protein, a KRAS Q61K mutant protein, a KRAS Q61L mutant protein, a KRAS Q61P mutant protein, a KRAS In some embodiments, the cancer comprises one or more cells having at least one mTOR activation aberration. In some embodiments, the cancer comprises one or more cells having at least one mTOR activation aberration. In some embodiments, the cancer is a solid tumor, lung cancer, bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, uterine cancer, endometrial cancer, cervical cancer, testicular cancer, bile duct cancer, myelodysplastic cancer, or a tumor of unknown origin. In some embodiments, the cancer or tumor (such as any of the aforementioned cancers or tumors) is advanced, unresectable and/or metastatic. In some embodiments, the cancer is a solid tumor (e.g., an advanced, unresectable and/or metastatic solid tumor), lung cancer (e.g., advanced, unresectable and/or metastatic lung cancer), or bladder cancer (e.g., advanced, unresectable and/or metastatic bladder cancer). In some embodiments, the lung cancer is non-small cell lung cancer (NSCLC), such as advanced, unresectable and/or metastatic NSCLC.

在一些實施例中,提供一種治療個體(例如,人類)之癌症的方法,其包含向個體投與(a)有效量之包含有包含mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」),其中奈米粒子中之mTOR抑制劑與白蛋白締合(例如,包覆有白蛋白);以及(b)有效量之KRAS抑制劑(例如,KRAS G12C抑制劑、KRAS G12A抑制劑、KRAS G12D抑制劑、KRAS G12F抑制劑、KRAS G12L抑制劑、KRAS G12R抑制劑、KRAS G12S抑制劑、KRAS G12V抑制劑、KRAS G13A抑制劑、KRAS G13C抑制劑、KRAS G13D抑制劑、KRAS G13P抑制劑、KRAS G13R抑制劑、KRAS G13S抑制劑、KRAS G13V抑制劑、KRAS Q61E抑制劑、KRAS Q61H抑制劑、KRAS Q61K抑制劑、KRAS Q61L抑制劑、KRAS Q61P抑制劑、KRAS Q61R抑制劑、KRAS K117N抑制劑、KRAS K117R抑制劑、KRAS A146E抑制劑、KRAS A146G抑制劑、KRAS A146P抑制劑、KRAS A146S抑制劑、KRAS A146T抑制劑或KRAS A146V抑制劑)。在一些實施例中,該方法包含向個體投與(a)有效量之包含有包含mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」),其中奈米粒子具有不超過約150 nm (諸如不超過約120 nm)之平均粒徑;以及(b)有效量之KRAS抑制劑(例如,KRAS G12C抑制劑、KRAS G12A抑制劑、KRAS G12D抑制劑、KRAS G12F抑制劑、KRAS G12L抑制劑、KRAS G12R抑制劑、KRAS G12S抑制劑、KRAS G12V抑制劑、KRAS G13A抑制劑、KRAS G13C抑制劑、KRAS G13D抑制劑、KRAS G13P抑制劑、KRAS G13R抑制劑、KRAS G13S抑制劑、KRAS G13V抑制劑、KRAS Q61E抑制劑、KRAS Q61H抑制劑、KRAS Q61K抑制劑、KRAS Q61L抑制劑、KRAS Q61P抑制劑、KRAS Q61R抑制劑、KRAS K117N抑制劑、KRAS K117R抑制劑、KRAS A146E抑制劑、KRAS A146G抑制劑、KRAS A146P抑制劑、KRAS A146S抑制劑、KRAS A146T抑制劑或KRAS A146V抑制劑)。在一些實施例中,該方法包含向個體投與(a)有效量之包含有包含mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」),其中奈米粒子包含與白蛋白締合(例如,包覆有白蛋白)之mTOR抑制劑,且其中奈米粒子具有不超過約150 nm (諸如不超過約120 nm)之平均粒徑;以及(b)有效量之KRAS抑制劑(例如,KRAS G12C抑制劑、KRAS G12A抑制劑、KRAS G12D抑制劑、KRAS G12F抑制劑、KRAS G12L抑制劑、KRAS G12R抑制劑、KRAS G12S抑制劑、KRAS G12V抑制劑、KRAS G13A抑制劑、KRAS G13C抑制劑、KRAS G13D抑制劑、KRAS G13P抑制劑、KRAS G13R抑制劑、KRAS G13S抑制劑、KRAS G13V抑制劑、KRAS Q61E抑制劑、KRAS Q61H抑制劑、KRAS Q61K抑制劑、KRAS Q61L抑制劑、KRAS Q61P抑制劑、KRAS Q61R抑制劑、KRAS K117N抑制劑、KRAS K117R抑制劑、KRAS A146E抑制劑、KRAS A146G抑制劑、KRAS A146P抑制劑、KRAS A146S抑制劑、KRAS A146T抑制劑或KRAS A146V抑制劑)。在一些實施例中,該方法包含向個體投與(a)有效量之包含有包含mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」),其中奈米粒子包含與白蛋白締合(例如,包覆有白蛋白)之mTOR抑制劑,其中奈米粒子具有不超過約150 nm (諸如不超過約120 nm,例如約100 nm)之平均粒徑,且其中mTOR抑制劑奈米粒子組合物中白蛋白與mTOR抑制劑之重量比為約10:1或更小(諸如約10:1或約9:1或約8:1);以及(b)有效量之KRAS G12C抑制劑。在一些實施例中,mTOR抑制劑為利莫司藥物。在一些實施例中,mTOR抑制劑為西羅莫司(雷帕黴素)或其衍生物或類似物。在一些實施例中,mTOR抑制劑奈米粒子組合物包含奈米粒子白蛋白結合型西羅莫司。在一些實施例中,mTOR抑制劑奈米粒子組合物為奈米粒子白蛋白結合型西羅莫司。可與本文所提供之方法一起使用的例示性mTOR抑制劑奈米粒子組合物進一步詳細描述於下文中。在一些實施例中,癌症包含表現KRAS突變蛋白(例如,KRAS G12C突變蛋白、KRAS G12A突變蛋白、KRAS G12D突變蛋白、KRAS G12F突變蛋白、KRAS G12L突變蛋白、KRAS G12R突變蛋白、KRAS G12S突變蛋白、KRAS G12V突變蛋白、KRAS G13A突變蛋白、KRAS G13C突變蛋白、KRAS G13D突變蛋白、KRAS G13P突變蛋白、KRAS G13R突變蛋白、KRAS G13S突變蛋白、KRAS G13V突變蛋白、KRAS Q61E突變蛋白、KRAS Q61H突變蛋白、KRAS Q61K突變蛋白、KRAS Q61L突變蛋白、KRAS Q61P突變蛋白、KRAS Q61R突變蛋白、KRAS K117N突變蛋白、KRAS K117R突變蛋白、KRAS A146E突變蛋白、KRAS A146G突變蛋白、KRAS A146P突變蛋白、KRAS A146S突變蛋白、KRAS A146T突變蛋白或KRAS A146V突變蛋白)之一或多種細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。根據本文所描述之方法治療的例示性癌症描述於本文其他處。In some embodiments, a method of treating cancer in an individual (e.g., a human) is provided, comprising administering to the individual (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor (e.g., a limus drug, such as sirolimus or a derivative or analog thereof) and albumin ("mTOR inhibitor nanoparticle composition"), wherein the mTOR inhibitor in the nanoparticles is associated with the albumin (e.g., coated with the albumin); and (b) an effective amount of a KRAS inhibitor (e.g., a KRAS G12C inhibitor, a KRAS G12A inhibitor, a KRAS G12D inhibitor, a KRAS G12F inhibitor, a KRAS G12L inhibitor, a KRAS G12R inhibitor, a KRAS G12S inhibitor, a KRAS G12V inhibitor, a KRAS G12C inhibitor, a KRAS G12A inhibitor, a KRAS G12D inhibitor, a KRAS G12F inhibitor, a KRAS G12L inhibitor, a KRAS G12R inhibitor, a KRAS G12S inhibitor, a KRAS G12V inhibitor, a KRAS G12 G13A inhibitor, KRAS G13C inhibitor, KRAS G13D inhibitor, KRAS G13P inhibitor, KRAS G13R inhibitor, KRAS G13S inhibitor, KRAS G13V inhibitor, KRAS Q61E inhibitor, KRAS Q61H inhibitor, KRAS Q61K inhibitor, KRAS Q61L inhibitor, KRAS Q61P inhibitor, KRAS Q61R inhibitor, KRAS K117N inhibitor, KRAS K117R inhibitor, KRAS A146E inhibitor, KRAS A146G inhibitor, KRAS A146P inhibitor, KRAS A146S inhibitor, KRAS A146T inhibitor or KRAS A146V inhibitor). In some embodiments, the method comprises administering to a subject (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor (e.g., a limus drug, such as sirolimus or a derivative or analog thereof) and albumin ("mTOR inhibitor nanoparticle composition"), wherein the nanoparticles have an average particle size of no more than about 150 nm (e.g., no more than about 120 nm); and (b) an effective amount of a KRAS inhibitor (e.g., a KRAS G12C inhibitor, a KRAS G12A inhibitor, a KRAS G12D inhibitor, a KRAS G12F inhibitor, a KRAS G12L inhibitor, a KRAS G12R inhibitor, a KRAS G12S inhibitor, a KRAS G12V inhibitor, a KRAS G13A inhibitor, a KRAS G14 inhibitor, a KRAS G15A inhibitor, a KRAS G16 inhibitor, a KRAS G17 inhibitor, a KRAS G18 inhibitor, a KRAS G19 inhibitor, a KRAS G20 inhibitor, a KRAS G21 inhibitor, a KRAS G22A inhibitor, a KRAS G22D inhibitor, a KRAS G23 inhibitor, a KRAS G24 inhibitor, a KRAS G25 inhibitor, a KRAS G26 inhibitor, a KRAS G27 inhibitor, a KRAS G28 inhibitor, a KRAS G29 inhibitor, a KRAS G30 inhibitor, a KRAS G31 inhibitor, a KRAS G32 inhibitor, a KRAS G33 inhibitor, a KRAS G34 inhibitor, a KRAS G35 inhibitor, a KRAS G36 inhibitor, a KRAS G37 inhibitor, a KRAS G38 inhibitor, a KRAS G39 inhibitor, a KRAS G40 inhibitor, a KRAS G41 inhibitor, a KRAS G42 inhibitor, a KRAS G43 inhibitor, a KRAS G44 inhibitor, a KRA KRAS G13C inhibitor, KRAS G13D inhibitor, KRAS G13P inhibitor, KRAS G13R inhibitor, KRAS G13S inhibitor, KRAS G13V inhibitor, KRAS Q61E inhibitor, KRAS Q61H inhibitor, KRAS Q61K inhibitor, KRAS Q61L inhibitor, KRAS Q61P inhibitor, KRAS Q61R inhibitor, KRAS K117N inhibitor, KRAS K117R inhibitor, KRAS A146E inhibitor, KRAS A146G inhibitor, KRAS A146P inhibitor, KRAS A146S inhibitor, KRAS A146T inhibitor or KRAS A146V inhibitor). In some embodiments, the method comprises administering to a subject (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor (e.g., a limus drug, such as sirolimus or a derivative or analog thereof) and albumin ("mTOR inhibitor nanoparticle composition"), wherein the nanoparticles comprise an mTOR inhibitor associated with albumin (e.g., coated with albumin), and wherein the nanoparticles have an average particle size of no more than about 150 nm (e.g., no more than about 120 nm); and (b) an effective amount of a KRAS inhibitor (e.g., a KRAS G12C inhibitor, a KRAS G12A inhibitor, a KRAS G12D inhibitor, a KRAS G12F inhibitor, a KRAS G12L inhibitor, a KRAS G12R inhibitor, a KRAS G12 G12S inhibitors, KRAS G12V inhibitors, KRAS G13A inhibitors, KRAS G13C inhibitors, KRAS G13D inhibitors, KRAS G13P inhibitors, KRAS G13R inhibitors, KRAS G13S inhibitors, KRAS G13V inhibitors, KRAS Q61E inhibitors, KRAS Q61H inhibitors, KRAS Q61K inhibitors, KRAS Q61L inhibitors, KRAS Q61P inhibitors, KRAS Q61R inhibitors, KRAS K117N inhibitors, KRAS K117R inhibitors, KRAS A146E inhibitors, KRAS A146G inhibitors, KRAS A146P inhibitors, KRAS A146S inhibitor, KRAS A146T inhibitor, or KRAS A146V inhibitor). In some embodiments, the method comprises administering to a subject (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) and albumin ("mTOR inhibitor nanoparticle composition"), wherein the nanoparticles comprise an mTOR inhibitor associated with albumin (e.g., coated with albumin), wherein the nanoparticles have an average particle size of no more than about 150 nm (e.g., no more than about 120 nm, e.g., about 100 nm), and wherein the weight ratio of albumin to mTOR inhibitor in the mTOR inhibitor nanoparticle composition is about 10:1 or less (e.g., about 10:1 or about 9:1 or about 8:1); and (b) an effective amount of a KRAS G12C inhibitor. In some embodiments, the mTOR inhibitor is a limus drug. In some embodiments, the mTOR inhibitor is sirolimus (rapamycin) or a derivative or analog thereof. In some embodiments, the mTOR inhibitor nanoparticle composition comprises nanoparticle albumin-bound sirolimus. In some embodiments, the mTOR inhibitor nanoparticle composition is nanoparticle albumin-bound sirolimus. Exemplary mTOR inhibitor nanoparticle compositions that can be used with the methods provided herein are described in further detail below. In some embodiments, the cancer comprises a cell line that expresses a KRAS mutant protein (e.g., a KRAS G12C mutant protein, a KRAS G12A mutant protein, a KRAS G12D mutant protein, a KRAS G12F mutant protein, a KRAS G12L mutant protein, a KRAS G12R mutant protein, a KRAS G12S mutant protein, a KRAS G12V mutant protein, a KRAS G13A mutant protein, a KRAS G13C mutant protein, a KRAS G13D mutant protein, a KRAS G13P mutant protein, a KRAS G13R mutant protein, a KRAS G13S mutant protein, a KRAS G13V mutant protein, a KRAS Q61E mutant protein, a KRAS Q61H mutant protein, a KRAS Q61K mutant protein, a KRAS Q61L mutant protein, a KRAS Q61P mutant protein, a KRAS In some embodiments, the cancer comprises one or more cells having at least one mTOR activating aberration. Exemplary cancers treated according to the methods described herein are described elsewhere herein.

在一些實施例中,KRAS抑制劑(例如,KRAS G12C抑制劑、KRAS G12A抑制劑、KRAS G12D抑制劑、KRAS G12F抑制劑、KRAS G12L抑制劑、KRAS G12R抑制劑、KRAS G12S抑制劑、KRAS G12V抑制劑、KRAS G13A抑制劑、KRAS G13C抑制劑、KRAS G13D抑制劑、KRAS G13P抑制劑、KRAS G13R抑制劑、KRAS G13S抑制劑、KRAS G13V抑制劑、KRAS Q61E抑制劑、KRAS Q61H抑制劑、KRAS Q61K抑制劑、KRAS Q61L抑制劑、KRAS Q61P抑制劑、KRAS Q61R抑制劑、KRAS K117N抑制劑、KRAS K117R抑制劑、KRAS A146E抑制劑、KRAS A146G抑制劑、KRAS A146P抑制劑、KRAS A146S抑制劑、KRAS A146T抑制劑或KRAS A146V抑制劑)為例如抑制KRAS突變蛋白(例如,分別為KRAS G12C突變蛋白、KRAS G12A突變蛋白、KRAS G12D突變蛋白、KRAS G12F突變蛋白、KRAS G12L突變蛋白、KRAS G12R突變蛋白、KRAS G12S突變蛋白、KRAS G12V突變蛋白、KRAS G13A突變蛋白、KRAS G13C突變蛋白、KRAS G13D突變蛋白、KRAS G13P突變蛋白、KRAS G13R突變蛋白、KRAS G13S突變蛋白、KRAS G13V突變蛋白、KRAS Q61E突變蛋白、KRAS Q61H突變蛋白、KRAS Q61K突變蛋白、KRAS Q61L突變蛋白、KRAS Q61P突變蛋白、KRAS Q61R突變蛋白、KRAS K117N突變蛋白、KRAS K117R突變蛋白、KRAS A146E突變蛋白、KRAS A146G突變蛋白、KRAS A146P突變蛋白、KRAS A146S突變蛋白、KRAS A146T突變蛋白或KRAS A146V突變蛋白)之活性的多肽(諸如抗體)、肽、反義寡核苷酸或小分子。In some embodiments, a KRAS inhibitor (e.g., a KRAS G12C inhibitor, a KRAS G12A inhibitor, a KRAS G12D inhibitor, a KRAS G12F inhibitor, a KRAS G12L inhibitor, a KRAS G12R inhibitor, a KRAS G12S inhibitor, a KRAS G12V inhibitor, a KRAS G13A inhibitor, a KRAS G13C inhibitor, a KRAS G13D inhibitor, a KRAS G13P inhibitor, a KRAS G13R inhibitor, a KRAS G13S inhibitor, a KRAS G13V inhibitor, a KRAS Q61E inhibitor, a KRAS Q61H inhibitor, a KRAS Q61K inhibitor, a KRAS A KRAS Q61L inhibitor, a KRAS Q61P inhibitor, a KRAS Q61R inhibitor, a KRAS K117N inhibitor, a KRAS K117R inhibitor, a KRAS A146E inhibitor, a KRAS A146G inhibitor, a KRAS A146P inhibitor, a KRAS A146S inhibitor, a KRAS A146T inhibitor or a KRAS A146V inhibitor) is, for example, an inhibitor of a KRAS mutant protein (e.g., a KRAS G12C mutant protein, a KRAS G12A mutant protein, a KRAS G12D mutant protein, a KRAS G12F mutant protein, a KRAS G12L mutant protein, a KRAS G12R mutant protein, a KRAS G12S mutant protein, a KRAS G12V mutant protein, a KRAS KRAS G13A mutant protein, KRAS G13C mutant protein, KRAS G13D mutant protein, KRAS G13P mutant protein, KRAS G13R mutant protein, KRAS G13S mutant protein, KRAS G13V mutant protein, KRAS Q61E mutant protein, KRAS Q61H mutant protein, KRAS Q61K mutant protein, KRAS Q61L mutant protein, KRAS Q61P mutant protein, KRAS Q61R mutant protein, KRAS K117N mutant protein, KRAS K117R mutant protein, KRAS A146E mutant protein, KRAS A146G mutant protein, KRAS A146P mutant protein, KRAS A146S mutant protein, KRAS A146T mutant protein or KRAS A146V mutant protein) by targeting a polypeptide (such as an antibody), peptide, antisense oligonucleotide or small molecule.

關於癌症治療中可使用之例示性藥劑的額外資訊可在例如www.mycancergenome.org/content/biomarkers/找到,癌症包含表現KRAS突變蛋白(例如,KRAS G12C突變蛋白、KRAS G12A突變蛋白、KRAS G12D突變蛋白、KRAS G12F突變蛋白、KRAS G12L突變蛋白、KRAS G12R突變蛋白、KRAS G12S突變蛋白、KRAS G12V突變蛋白、KRAS G13A突變蛋白、KRAS G13C突變蛋白、KRAS G13D突變蛋白、KRAS G13P突變蛋白、KRAS G13R突變蛋白、KRAS G13S突變蛋白、KRAS G13V突變蛋白、KRAS Q61E突變蛋白、KRAS Q61H突變蛋白、KRAS Q61K突變蛋白、KRAS Q61L突變蛋白、KRAS Q61P突變蛋白、KRAS Q61R突變蛋白、KRAS K117N突變蛋白、KRAS K117R突變蛋白、KRAS A146E突變蛋白、KRAS A146G突變蛋白、KRAS A146P突變蛋白、KRAS A146S突變蛋白、KRAS A146T突變蛋白或KRAS A146V突變蛋白)之一或多種細胞。Additional information about exemplary agents that can be used in the treatment of cancer can be found, for example, at www.mycancergenome.org/content/biomarkers/. Cancers comprising cells expressing a KRAS mutant protein (e.g., a KRAS G12C mutant protein, a KRAS G12A mutant protein, a KRAS G12D mutant protein, a KRAS G12F mutant protein, a KRAS G12L mutant protein, a KRAS G12R mutant protein, a KRAS G12S mutant protein, a KRAS G12V mutant protein, a KRAS G13A mutant protein, a KRAS G13C mutant protein, a KRAS G13D mutant protein, a KRAS G13P mutant protein, a KRAS G13R mutant protein, a KRAS G13S mutant protein, a KRAS G13V mutant protein, a KRAS Q61E mutant protein, a KRAS KRAS A146E mutant protein, KRAS A146G mutant protein, KRAS A146P mutant protein, KRAS A146S mutant protein, KRAS A146T mutant protein or KRAS A146V mutant protein) or more cells.

在一些實施例中,KRAS抑制劑為KRAS G12C抑制劑。在一些實施例中,KRAS G12C抑制劑為小分子。可與本文所提供之方法一起使用之例示性小分子KRAS G12C抑制劑包括但不限於例如索托拉西布,其亦稱為AMG 510 (安進/百濟神州);MRTX849,其亦稱為阿達格拉西布(Mirati/再鼎醫藥)、JAB-21822 (加科思藥業)、GDC-6036 (基因泰克)、JDQ443 (諾華)、D-1553 (益方生物及默沙東)、GH35 (勤浩醫藥)、GFH925 (勁方醫藥)、BPI-421286 (貝達藥業)、LY3537982、RMC-6291 (Revolution Medicine)、RMC-8839 (Revolution Medicine)、HBI-2438 (滬亞生物科學國際有限責任公司)及JNJ-74699157 (強生公司)。可與本文所提供之方法一起使用之例示性小分子KRAS G12D抑制劑包括但不限於MRTX1133 (Mirati Therapeutics)及RMC-6236 (Revolution Medicines)。可與本文所提供之方法一起使用之例示性小分子KRAS G12V抑制劑包括但不限於JAB-23000。關於此等及其他例示性KRAS抑制劑之額外細節在下文中進一步詳細描述。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS抑制劑(例如,KRAS G12C抑制劑、KRAS G12A抑制劑、KRAS G12D抑制劑、KRAS G12F抑制劑、KRAS G12L抑制劑、KRAS G12R抑制劑、KRAS G12S抑制劑、KRAS G12V抑制劑、KRAS G13A抑制劑、KRAS G13C抑制劑、KRAS G13D抑制劑、KRAS G13P抑制劑、KRAS G13R抑制劑、KRAS G13S抑制劑、KRAS G13V抑制劑、KRAS Q61E抑制劑、KRAS Q61H抑制劑、KRAS Q61K抑制劑、KRAS Q61L抑制劑、KRAS Q61P抑制劑、KRAS Q61R抑制劑、KRAS K117N抑制劑、KRAS K117R抑制劑、KRAS A146E抑制劑、KRAS A146G抑制劑、KRAS A146P抑制劑KRAS A146S抑制劑、KRAS A146T抑制劑或KRAS A146V抑制劑)係依序投與(亦即,mTOR抑制劑奈米粒子組合物與KRAS抑制劑之投與時段並不彼此重疊)。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS抑制劑係同時投與。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS抑制劑係並行投與(亦即,mTOR抑制劑奈米粒子組合物與KRAS抑制劑之投與時段彼此重疊)。In some embodiments, the KRAS inhibitor is a KRAS G12C inhibitor. In some embodiments, the KRAS G12C inhibitor is a small molecule. Exemplary small molecule KRAS G12C inhibitors that can be used with the methods provided herein include, but are not limited to, for example, sotolacib, also known as AMG 510 (Amgen/Beiji Shenzhou); MRTX849, also known as adagracib (Mirati/Zai Lab), JAB-21822 (Jacob Pharmaceuticals), GDC-6036 (Genentech), JDQ443 (Novartis), D-1553 (Invitrogen and Merck), GH35 (Qinhao Pharmaceuticals), GFH925 (Jinfang Pharmaceuticals), BPI-421286 (Beida Pharmaceuticals), LY3537982, RMC-6291 (Revolution Medicine), RMC-8839 (Revolution Medicine), HBI-2438 (Shanghai Asia Bioscience International Co., Ltd.) and JNJ-74699157 (Johnson & Johnson). Exemplary small molecule KRAS G12D inhibitors that can be used with the methods provided herein include, but are not limited to, MRTX1133 (Mirati Therapeutics) and RMC-6236 (Revolution Medicines). Exemplary small molecule KRAS G12V inhibitors that can be used with the methods provided herein include, but are not limited to, JAB-23000. Additional details about these and other exemplary KRAS inhibitors are described in further detail below. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS inhibitor (e.g., KRAS G12C inhibitor, KRAS G12A inhibitor, KRAS G12D inhibitor, KRAS G12F inhibitor, KRAS G12L inhibitor, KRAS G12R inhibitor, KRAS G12S inhibitor, KRAS G12V inhibitor, KRAS G13A inhibitor, KRAS G13C inhibitor, KRAS G13D inhibitor, KRAS G13P inhibitor, KRAS G13R inhibitor, KRAS G13S inhibitor, KRAS G13V inhibitor, KRAS Q61E inhibitor, KRAS Q61H inhibitor, KRAS In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS inhibitor are administered sequentially (i.e., the administration periods of the mTOR inhibitor nanoparticle composition and the KRAS inhibitor do not overlap with each other). In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS inhibitor are administered simultaneously. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS inhibitor are administered concurrently (ie, the administration periods of the mTOR inhibitor nanoparticle composition and the KRAS inhibitor overlap with each other).

在一些實施例中,提供一種治療個體(例如,人類)之癌症的方法,其包含向個體投與(a)有效量之包含有包含mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」);以及(b)有效量之KRAS抑制劑(例如,KRAS G12C抑制劑、KRAS G12A抑制劑、KRAS G12D抑制劑、KRAS G12F抑制劑、KRAS G12L抑制劑、KRAS G12R抑制劑、KRAS G12S抑制劑、KRAS G12V抑制劑、KRAS G13A抑制劑、KRAS G13C抑制劑、KRAS G13D抑制劑、KRAS G13P抑制劑、KRAS G13R抑制劑、KRAS G13S抑制劑、KRAS G13V抑制劑、KRAS Q61E抑制劑、KRAS Q61H抑制劑、KRAS Q61K抑制劑、KRAS Q61L抑制劑、KRAS Q61P抑制劑、KRAS Q61R抑制劑、KRAS K117N抑制劑、KRAS K117R抑制劑、KRAS A146E抑制劑、KRAS A146G抑制劑、KRAS A146P抑制劑、KRAS A146S抑制劑、KRAS A146T抑制劑或KRAS A146V抑制劑),其中mTOR抑制劑奈米粒子組合物及KRAS抑制劑係並行投與。在一些實施例中,癌症包含表現KRAS突變蛋白(例如,分別為KRAS G12C突變蛋白、KRAS G12A突變蛋白、KRAS G12D突變蛋白、KRAS G12F突變蛋白、KRAS G12L突變蛋白、KRAS G12R突變蛋白、KRAS G12S突變蛋白、KRAS G12V突變蛋白、KRAS G13A突變蛋白、KRAS G13C突變蛋白、KRAS G13D突變蛋白、KRAS G13P突變蛋白、KRAS G13R突變蛋白、KRAS G13S突變蛋白、KRAS G13V突變蛋白、KRAS Q61E突變蛋白、KRAS Q61H突變蛋白、KRAS Q61K突變蛋白、KRAS Q61L突變蛋白、KRAS Q61P突變蛋白、KRAS Q61R突變蛋白、KRAS K117N突變蛋白、KRAS K117R突變蛋白、KRAS A146E突變蛋白、KRAS A146G突變蛋白、KRAS A146P突變蛋白、KRAS A146S突變蛋白、KRAS A146T突變蛋白或KRAS A146V突變蛋白)之一或多種細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,在約相同時間(例如,1、2、3、4、5、6或7天中之任一者內)起始mTOR抑制劑奈米粒子組合物及KRAS抑制劑之投與。在一些實施例中,在約相同時間(例如,1、2、3、4、5、6或7天中之任一者內)終止mTOR抑制劑奈米粒子組合物及KRAS抑制劑之投與。在一些實施例中,KRAS抑制劑之投與在mTOR抑制劑奈米粒子組合物之投與終止之後持續(例如,約0.5、1、2、3、4、5、6、7、8、9、10、11或12個月中之任一者)。在一些實施例中,在mTOR抑制劑奈米粒子組合物之投與起始之後(例如,在約0.5、1、2、3、4、5、6、7、8、9、10、11或12個月中之任一者之後)起始KRAS抑制劑之投與。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS抑制劑之投與在約相同時間起始及終止。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS抑制劑之投與在約相同時間起始,且KRAS抑制劑之投與在mTOR奈米粒子組合物之投與終止之後持續(例如,約0.5、1、2、3、4、5、6、7、8、9、10、11或12個月中之任一者)。在一些實施例中,mTOR奈米粒子組合物及KRAS抑制劑之投與在約相同時間停止,且在mTOR抑制劑奈米粒子組合物之投與起始之後(例如,在約0.5、1、2、3、4、5、6、7、8、9、10、11或12個月中之任一者之後)起始KRAS抑制劑之投與。在一些實施例中,奈米粒子組合物及KRAS抑制劑之投與在約相同時間停止,且在KRAS抑制劑之投與起始之後(例如,在約0.5、1、2、3、4、5、6、7、8、9、10、11或12個月中之任一者之後)起始mTOR抑制劑奈米粒子組合物之投與。In some embodiments, a method of treating cancer in an individual (e.g., a human) is provided, comprising administering to the individual (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor (e.g., a limus drug, such as sirolimus or a derivative or analog thereof) and albumin ("mTOR inhibitor nanoparticle composition"); and (b) an effective amount of a KRAS inhibitor (e.g., a KRAS G12C inhibitor, a KRAS G12A inhibitor, a KRAS G12D inhibitor, a KRAS G12F inhibitor, a KRAS G12L inhibitor, a KRAS G12R inhibitor, a KRAS G12S inhibitor, a KRAS G12V inhibitor, a KRAS G13A inhibitor, a KRAS G13C inhibitor, a KRAS G13A inhibitor, a KRAS G13B inhibitor, a KRAS G13C inhibitor, a KRAS G13C inhibitor, a KRAS G13C inhibitor, a KRAS G13A ... G13D inhibitor, KRAS G13P inhibitor, KRAS G13R inhibitor, KRAS G13S inhibitor, KRAS G13V inhibitor, KRAS Q61E inhibitor, KRAS Q61H inhibitor, KRAS Q61K inhibitor, KRAS Q61L inhibitor, KRAS Q61P inhibitor, KRAS Q61R inhibitor, KRAS K117N inhibitor, KRAS K117R inhibitor, KRAS A146E inhibitor, KRAS A146G inhibitor, KRAS A146P inhibitor, KRAS A146S inhibitor, KRAS A146T inhibitor, or KRAS A146V inhibitor), wherein the mTOR inhibitor nanoparticle composition and the KRAS inhibitor are administered concurrently. In some embodiments, the cancer comprises a cell line that expresses a KRAS mutant protein (e.g., a KRAS G12C mutant protein, a KRAS G12A mutant protein, a KRAS G12D mutant protein, a KRAS G12F mutant protein, a KRAS G12L mutant protein, a KRAS G12R mutant protein, a KRAS G12S mutant protein, a KRAS G12V mutant protein, a KRAS G13A mutant protein, a KRAS G13C mutant protein, a KRAS G13D mutant protein, a KRAS G13P mutant protein, a KRAS G13R mutant protein, a KRAS G13S mutant protein, a KRAS G13V mutant protein, a KRAS Q61E mutant protein, a KRAS Q61H mutant protein, a KRAS Q61K mutant protein, a KRAS Q61L mutant protein, a KRAS Q61P mutant protein, a KRAS In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS inhibitor are administered at about the same time (e.g., within 1, 2, 3, 4, 5, 6, or 7 days). In some embodiments, administration of the mTOR inhibitor nanoparticle composition and the KRAS inhibitor are terminated at about the same time (e.g., within any of 1, 2, 3, 4, 5, 6, or 7 days). In some embodiments, administration of the KRAS inhibitor continues after administration of the mTOR inhibitor nanoparticle composition is terminated (e.g., any of about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months). In some embodiments, administration of the KRAS inhibitor is initiated after administration of the mTOR inhibitor nanoparticle composition is initiated (e.g., after any of about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months). In some embodiments, administration of the mTOR inhibitor nanoparticle composition and the KRAS inhibitor is initiated and terminated at about the same time. In some embodiments, administration of the mTOR inhibitor nanoparticle composition and the KRAS inhibitor is initiated at about the same time, and administration of the KRAS inhibitor continues after administration of the mTOR nanoparticle composition is terminated (e.g., any of about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months). In some embodiments, administration of the mTOR nanoparticle composition and the KRAS inhibitor is stopped at about the same time, and administration of the KRAS inhibitor is initiated after administration of the mTOR inhibitor nanoparticle composition is initiated (e.g., after any of about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months). In some embodiments, administration of the nanoparticle composition and the KRAS inhibitor is stopped at about the same time, and administration of the mTOR inhibitor nanoparticle composition is initiated after administration of the KRAS inhibitor is initiated (e.g., after any of about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months).

在本文所描述之任何方法之一些實施例中,個體(例如,人類)已診斷患有或疑似患有癌症。在一些實施例中,癌症包含表現KRAS突變蛋白之一或多種細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,該個體為人類。在一些實施例中,個體為臨床患者、臨床試驗志願者、實驗動物等。In some embodiments of any of the methods described herein, the individual (e.g., human) has been diagnosed with or is suspected of having cancer. In some embodiments, the cancer comprises one or more cells expressing a KRAS mutant protein. Additionally or alternatively, in some embodiments, the cancer comprises one or more cells having at least one mTOR activation aberration. In some embodiments, the individual is a human. In some embodiments, the individual is a clinical patient, a clinical trial volunteer, an experimental animal, etc.

在本文所描述之任何方法之一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS抑制劑(例如,KRAS G12C抑制劑、KRAS G12A抑制劑、KRAS G12D抑制劑、KRAS G12F抑制劑、KRAS G12L抑制劑、KRAS G12R抑制劑、KRAS G12S抑制劑、KRAS G12V抑制劑、KRAS G13A抑制劑、KRAS G13C抑制劑、KRAS G13D抑制劑、KRAS G13P抑制劑、KRAS G13R抑制劑、KRAS G13S抑制劑、KRAS G13V抑制劑、KRAS Q61E抑制劑、KRAS Q61H抑制劑、KRAS Q61K抑制劑、KRAS Q61L抑制劑、KRAS Q61P抑制劑、KRAS Q61R抑制劑、KRAS K117N抑制劑、KRAS K117R抑制劑、KRAS A146E抑制劑、KRAS A146G抑制劑、KRAS A146P抑制劑、KRAS A146S抑制劑、KRAS A146T抑制劑或KRAS A146V抑制劑)之前基於個體樣本中具有至少一種mTOR活化畸變之一或多種癌細胞之存在而選擇個體進行治療。在一些實施例中,mTOR活化畸變包含mTOR相關基因之突變。在一些實施例中,mTOR活化畸變包含mTOR相關基因之複本數變化。在一些實施例中,mTOR活化畸變包含mTOR相關基因之異常表現量。在一些實施例中,mTOR活化畸變包含mTOR相關基因之異常活性水平。在一些實施例中,至少一種mTOR活化畸變包含由mTOR相關基因編碼之蛋白質之異常磷酸化水平。在一些實施例中,mTOR活化畸變係在選自由以下組成之群的至少一種mTOR相關基因中:AKT1、FLT-3、MTOR、PIK3CA、PIK3CG、TSC1、TSC2、RHEB、STK11、NF1、NF2、TP53、FGFR4、BAP1、KRAS、NRAS、NRF2、KEAP1及PTEN。在一些實施例中,至少一種mTOR相關基因為TSC1及/或TSC2。在一些實施例中,藉由基因定序(例如,下一代定序或「NGS」)評估(諸如偵測) mTOR活化畸變。在一些實施例中,藉由對來自個體之腫瘤樣本(例如,福馬林固定石蠟包埋腫瘤樣本)中之DNA進行定序來評估(諸如偵測) mTOR活化畸變。在一些實施例中,藉由對來自個體之血液樣本中之循環或游離DNA進行定序來評估(諸如偵測) mTOR活化畸變。關於mTOR活化畸變及評估/偵測自患有癌症之個體獲得之樣本(例如,腫瘤樣本或血液樣本)中之mTOR活化畸變的另外細節描述於下文及WO 2017/004267中,該案之內容以全文引用的方式併入本文中。In some embodiments of any of the methods described herein, the method comprises (e.g., further comprises) administering an mTOR inhibitor nanoparticle composition and a KRAS inhibitor (e.g., a KRAS G12C inhibitor, a KRAS G12A inhibitor, a KRAS G12D inhibitor, a KRAS G12F inhibitor, a KRAS G12L inhibitor, a KRAS G12R inhibitor, a KRAS G12S inhibitor, a KRAS G12V inhibitor, a KRAS G13A inhibitor, a KRAS G13C inhibitor, a KRAS G13D inhibitor, a KRAS G13P inhibitor, a KRAS G13R inhibitor, a KRAS G13S inhibitor, a KRAS G13V inhibitor, a KRAS Q61E inhibitor, a KRAS In some embodiments, the subject is selected for treatment based on the presence of one or more cancer cells having at least one mTOR activating aberration in a sample from the subject prior to administration of a KRAS Q61H inhibitor, a KRAS Q61K inhibitor, a KRAS Q61L inhibitor, a KRAS Q61P inhibitor, a KRAS Q61R inhibitor, a KRAS K117N inhibitor, a KRAS K117R inhibitor, a KRAS A146E inhibitor, a KRAS A146G inhibitor, a KRAS A146P inhibitor, a KRAS A146S inhibitor, a KRAS A146T inhibitor, or a KRAS A146V inhibitor. In some embodiments, the mTOR activating aberration comprises a mutation in an mTOR-related gene. In some embodiments, the mTOR activation aberration comprises a change in the number of copies of an mTOR-related gene. In some embodiments, the mTOR activation aberration comprises an abnormal expression of an mTOR-related gene. In some embodiments, the mTOR activation aberration comprises an abnormal activity level of an mTOR-related gene. In some embodiments, at least one mTOR activation aberration comprises an abnormal phosphorylation level of a protein encoded by an mTOR-related gene. In some embodiments, the mTOR activation aberration is in at least one mTOR-related gene selected from the group consisting of: AKT1, FLT-3, MTOR, PIK3CA, PIK3CG, TSC1, TSC2, RHEB, STK11, NF1, NF2, TP53, FGFR4, BAP1, KRAS, NRAS, NRF2, KEAP1 and PTEN. In some embodiments, at least one mTOR-related gene is TSC1 and/or TSC2. In some embodiments, mTOR activation aberrations are assessed (e.g., detected) by gene sequencing (e.g., next generation sequencing or "NGS"). In some embodiments, mTOR activation aberrations are assessed (e.g., detected) by sequencing DNA in a tumor sample (e.g., a formalin-fixed paraffin-embedded tumor sample) from an individual. In some embodiments, mTOR activation aberrations are assessed (e.g., detected) by sequencing circulating or free DNA in a blood sample from an individual. Additional details regarding mTOR activation aberrations and assessing/detecting mTOR activation aberrations in samples obtained from individuals with cancer (e.g., tumor samples or blood samples) are described below and in WO 2017/004267, the contents of which are incorporated herein by reference in their entirety.

在本文所描述之任何方法之一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS抑制劑之前基於個體樣本中表現KRAS突變蛋白(例如,KRAS G12C突變蛋白、KRAS G12A突變蛋白、KRAS G12D突變蛋白、KRAS G12F突變蛋白、KRAS G12L突變蛋白、KRAS G12R突變蛋白、KRAS G12S突變蛋白、KRAS G12V突變蛋白、KRAS G13A突變蛋白、KRAS G13C突變蛋白、KRAS G13D突變蛋白、KRAS G13P突變蛋白、KRAS G13R突變蛋白、KRAS G13S突變蛋白、KRAS G13V突變蛋白、KRAS Q61E突變蛋白、KRAS Q61H突變蛋白、KRAS Q61K突變蛋白、KRAS Q61L突變蛋白、KRAS Q61P突變蛋白、KRAS Q61R突變蛋白、KRAS K117N突變蛋白、KRAS K117R突變蛋白、KRAS A146E突變蛋白、KRAS A146G突變蛋白、KRAS A146P突變蛋白、KRAS A146S突變蛋白、KRAS A146T突變蛋白或KRAS A146V突變蛋白)之一或多種癌細胞之存在而選擇個體進行治療。在一些實施例中,藉由基因定序(例如,下一代定序或「NGS」)評估(諸如偵測) KRAS突變。在一些實施例中,藉由對來自個體之癌症樣本(例如,福馬林固定石蠟包埋癌症樣本)中之DNA進行定序來評估(諸如偵測) KRAS突變。在一些實施例中,藉由對來自個體之血液樣本中之循環或游離DNA進行定序來評估(諸如偵測) KRAS突變。In some embodiments of any of the methods described herein, the method comprises (e.g., further comprises) determining, prior to administering the mTOR inhibitor nanoparticle composition and the KRAS inhibitor, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, whether or not the mTOR inhibitor is present in the sample from the individual, In some embodiments, the present invention selects an individual for treatment by detecting the presence of one or more cancer cells of a KRAS mutant protein (e.g., KRAS Q61H mutant protein, KRAS Q61K mutant protein, KRAS Q61L mutant protein, KRAS Q61P mutant protein, KRAS Q61R mutant protein, KRAS K117N mutant protein, KRAS K117R mutant protein, KRAS A146E mutant protein, KRAS A146G mutant protein, KRAS A146P mutant protein, KRAS A146S mutant protein, KRAS A146T mutant protein, or KRAS A146V mutant protein). In some embodiments, the KRAS mutation is assessed (e.g., detected) by genetic sequencing (e.g., next generation sequencing or "NGS"). In some embodiments, KRAS mutations are assessed (e.g., detected) by sequencing DNA in a cancer sample (e.g., a formalin-fixed paraffin-embedded cancer sample) from an individual. In some embodiments, KRAS mutations are assessed (e.g., detected) by sequencing circulating or cell-free DNA in a blood sample from an individual.

舉例而言,可藉由腫瘤消退、腫瘤重量或尺寸收縮、進展時間(TTP)、存活持續時間(DOS)、無進展存活期(PFS)、總存活期(OS)、客觀反應率(ORR)、反應持續時間(DOR)、生活品質(QoL)、蛋白質表現及/或活性來評估癌症治療。可採用測定療法功效之方法,包括例如經由放射成像量測反應。在一些實施例中,治療功效量測為腫瘤生長抑制百分比(TGI %),其使用方程式100×(ΔC-ΔT)/ΔC計算,其中ΔT及ΔC分別為鹽水組或對照組中之所有動物存活的最後一天與治療組及對照組量測之第一天之間平均腫瘤體積之變化。在一些實施例中,TGI %為約10%、20%、30%、40%、50%、60%、70%、80%、90%、91%、92%、93%、94%、95%或超過95%中之任一者(例如,超過約96%、97%、98%或99%中之任一者)。在一些實施例中,總存活期(OS)定義為自治療開始至由任何原因所致之死亡日期的時間。在一些實施例中,無進展存活期(PFS)定義為自治療開始至疾病進展(PD)或由任何原因所致之死亡日期(以先者為準)的時間。在一些實施例中,反應持續時間(DOR)定義為自治療開始至第一次記錄客觀腫瘤反應(完全反應(「CR」)或部分反應(「PR」))至第一次記錄PD或由任何原因所致之死亡(以先者為準)的時間。在一些實施例中,客觀反應率(ORR)定義為在自第一次治療劑量直至最後一次治療劑量的時段期間基於RECIST v1.1標準經歷確認完全反應(CR)或部分反應(PR)之個體(例如,患者、個體)的比例。 包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物 mTOR抑制劑 For example, cancer treatment can be evaluated by tumor regression, tumor weight or size reduction, time to progression (TTP), duration of survival (DOS), progression-free survival (PFS), overall survival (OS), objective response rate (ORR), duration of response (DOR), quality of life (QoL), protein expression and/or activity. Methods for determining efficacy of treatments can be employed, including, for example, measuring responses via radiographic imaging. In some embodiments, treatment efficacy is measured as percent tumor growth inhibition (TGI %), which is calculated using the formula 100×(ΔC-ΔT)/ΔC, where ΔT and ΔC are the change in mean tumor volume between the last day that all animals in the saline or control groups survived and the first day of measurement for the treatment and control groups, respectively. In some embodiments, TGI% is about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95% or more than 95% (e.g., more than about 96%, 97%, 98% or 99%). In some embodiments, overall survival (OS) is defined as the time from the start of self-treatment to the date of death from any cause. In some embodiments, progression-free survival (PFS) is defined as the time from the start of self-treatment to the date of disease progression (PD) or death from any cause, whichever comes first. In some embodiments, duration of response (DOR) is defined as the time from the start of autonomous treatment to the first documented objective tumor response (complete response ("CR") or partial response ("PR")) to the first documented PD or death from any cause, whichever comes first. In some embodiments, objective response rate (ORR) is defined as the proportion of individuals (e.g., patients, individuals) who experience a confirmed complete response (CR) or partial response (PR) based on RECIST v1.1 criteria during the period from the first treatment dose to the last treatment dose. Composition comprising nanoparticles comprising an mTOR inhibitor and albumin mTOR inhibitor

本文所提供之方法包含向患有癌症之個體投與有效量之mTOR抑制劑奈米粒子組合物。在一些實施例中,癌症包含表現KRAS突變蛋白(例如,KRAS G12C突變蛋白、KRAS G12A突變蛋白、KRAS G12D突變蛋白、KRAS G12F突變蛋白、KRAS G12L突變蛋白、KRAS G12R突變蛋白、KRAS G12S突變蛋白、KRAS G12V突變蛋白、KRAS G13A突變蛋白、KRAS G13C突變蛋白、KRAS G13D突變蛋白、KRAS G13P突變蛋白、KRAS G13R突變蛋白、KRAS G13S突變蛋白、KRAS G13V突變蛋白、KRAS Q61E突變蛋白、KRAS Q61H突變蛋白、KRAS Q61K突變蛋白、KRAS Q61L突變蛋白、KRAS Q61P突變蛋白、KRAS Q61R突變蛋白、KRAS K117N突變蛋白、KRAS K117R突變蛋白、KRAS A146E突變蛋白、KRAS A146G突變蛋白、KRAS A146P突變蛋白、KRAS A146S突變蛋白、KRAS A146T突變蛋白或KRAS A146V突變蛋白)之一或多種癌細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,「mTOR抑制劑」係指mTOR抑制劑。mTOR為在磷脂醯肌醇3-激酶(PI3K)/Akt (蛋白激酶B)路徑下游之絲胺酸/蘇胺酸特異性蛋白激酶,且為細胞存活、增殖、應激及代謝之關鍵調節因子。mTOR路徑失調已發現於許多人類癌瘤中,且mTOR抑制對腫瘤進展產生顯著抑制作用。The methods provided herein comprise administering to a subject having cancer an effective amount of an mTOR inhibitor nanoparticle composition. In some embodiments, the cancer comprises a cell line that expresses a KRAS mutant protein (e.g., a KRAS G12C mutant protein, a KRAS G12A mutant protein, a KRAS G12D mutant protein, a KRAS G12F mutant protein, a KRAS G12L mutant protein, a KRAS G12R mutant protein, a KRAS G12S mutant protein, a KRAS G12V mutant protein, a KRAS G13A mutant protein, a KRAS G13C mutant protein, a KRAS G13D mutant protein, a KRAS G13P mutant protein, a KRAS G13R mutant protein, a KRAS G13S mutant protein, a KRAS G13V mutant protein, a KRAS Q61E mutant protein, a KRAS Q61H mutant protein, a KRAS Q61K mutant protein, a KRAS Q61L mutant protein, a KRAS Q61P mutant protein, a KRAS In some embodiments, the invention relates to a method for treating a cancer cell that is at least one of a plurality of mTOR-activating aberrations and a plurality of mTOR-activating aberrations. In some embodiments, the invention relates to a method for treating a cancer cell that is at least one of a plurality of mTOR-activating aberrations and a plurality of mTOR-activating aberrations. In some embodiments, the invention relates to a method for treating a cancer cell that is at least one of a plurality of mTOR-activating aberrations and a plurality of mTOR-activating aberrations. In some embodiments, the invention relates to a method for treating a cancer cell that is at least one of a plurality of mTOR-activating aberrations and a plurality of mTOR-activating aberrations. In some embodiments, the invention relates to a method for treating a cancer cell that is at least one of a plurality of mTOR-activating aberrations and a plurality of mTOR-activating aberrations. mTOR is a serine/threonine-specific protein kinase downstream of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B) pathway and is a key regulator of cell survival, proliferation, stress, and metabolism. Dysregulation of the mTOR pathway has been found in many human carcinomas, and mTOR inhibition produces a significant inhibitory effect on tumor progression.

哺乳動物雷帕黴素標靶(mTOR) (亦稱為雷帕黴素之機制性標靶或FK506結合蛋白12-雷帕黴素相關蛋白1 (FRAP1))為存在於兩種不同複合物,mTOR複合物1 (mTORC1)及mTOR複合物2 (mTORC2)中之非典型絲胺酸/蘇胺酸蛋白激酶。mTORC1係由mTOR、mTOR之調節相關蛋白(Raptor)、哺乳動物致死性SEC13蛋白8 (MLST8)、PRAS40及DEPTOR構成(Kim等人(2002),Cell 110:163-75;Fang等人(2001),Science 294 (5548):1942-5)。mTORC1整合四種主要信號輸入:營養物(諸如胺基酸及磷脂酸)、生長因子(胰島素)、能量及應激(諸如低氧及DNA損傷)。胺基酸可用性經由涉及Rag及Ragulator (LAMTOR1-3)生長因子之路徑傳信至mTORC1且激素(例如胰島素)經由Akt傳信至mTORC1,Akt不活化TSC2以防止mTORC1抑制。替代地,低ATP水平導致TSC2之AMPK依賴性活化及raptor之磷酸化以減少mTORC1信號傳導蛋白。Mammalian target of rapamycin (mTOR) (also known as mechanistic target of rapamycin or FK506 binding protein 12-rapamycin-associated protein 1 (FRAP1)) is an atypical serine/threonine protein kinase present in two different complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 is composed of mTOR, regulatory-associated protein of mTOR (Raptor), mammalian lethal SEC13 protein 8 (MLST8), PRAS40 and DEPTOR (Kim et al. (2002), Cell 110:163-75; Fang et al. (2001), Science 294 (5548):1942-5). mTORC1 integrates four major signaling inputs: nutrients (such as amino acids and phosphatidic acid), growth factors (insulin), energy, and stress (such as hypoxia and DNA damage). Amino acid availability signals to mTORC1 via pathways involving Rag and Ragulator (LAMTOR1-3) growth factors and hormones (such as insulin) signal to mTORC1 via Akt, which does not activate TSC2 to prevent mTORC1 inhibition. Instead, low ATP levels lead to AMPK-dependent activation of TSC2 and phosphorylation of raptor to reduce mTORC1 signaling proteins.

活性mTORC1具有多種下游生物效應,包括經由下游標靶(4E-BP1及p70 S6激酶)之磷酸化轉譯mRNA、自噬抑制(Atg13,ULK1)、核糖體生物合成及導致粒線體代謝或脂肪生成之轉錄的活化。因此,mTORC1活性在條件有利時促進細胞生長或在應激期間或在條件不利時促進分解代謝過程。Active mTORC1 has multiple downstream biological effects, including activation of mRNA translation via phosphorylation of downstream targets (4E-BP1 and p70 S6 kinase), autophagy inhibition (Atg13, ULK1), ribosome biogenesis, and transcription leading to mitochondrial metabolism or lipogenesis. Thus, mTORC1 activity promotes cell growth when conditions are favorable or promotes catabolic processes during stress or when conditions are unfavorable.

mTORC2係由mTOR、mTOR之雷帕黴素不敏感性伴侶(RICTOR)、GβL及哺乳動物應激活化蛋白激酶相互作用蛋白1 (mSIN1)構成。相比於許多上游信號及細胞功能已經定義(參見上文)之mTORC1,關於mTORC2生物學已知的相對極少。mTORC2經由其對F-肌動蛋白應力纖維、樁蛋白(paxillin)、RhoA、Rac1、Cdc42及蛋白激酶Cα (PKCα)之刺激來調節細胞骨架組織。已觀測到阻斷mTORC2組分之基因表現影響肌動蛋白聚合且干擾細胞形態(Jacinto等人(2004),Nat. Cell Biol. 6, 1122-1128;Sarbassov等人(2004),Curr. Biol. 14, 1296-1302)。此表明mTORC2藉由促進蛋白激酶Cα (PKCα)磷酸化、樁蛋白磷酸化及其重定位至局部黏著斑及RhoA及Rac1之GTP負載而控制肌動蛋白細胞骨架。mTORC2調節此等過程之分子機制尚未測定。 mTORC2 is composed of mTOR, the rapamycin-insensitive partner of mTOR (RICTOR), GβL, and mammalian stress-activated protein kinase-interacting protein 1 (mSIN1). Compared to mTORC1, for which many upstream signals and cellular functions have been defined (see above), relatively little is known about the biology of mTORC2. mTORC2 regulates cytoskeletal organization through its stimulation of F-actin stress fibers, paxillin, RhoA, Rac1, Cdc42, and protein kinase Cα (PKCα). It has been observed that blocking the gene expression of mTORC2 components affects actin polymerization and interferes with cell morphology (Jacinto et al. (2004), Nat. Cell Biol. 6 , 1122-1128; Sarbassov et al. (2004), Curr. Biol. 14 , 1296-1302). This suggests that mTORC2 controls the actin cytoskeleton by promoting protein kinase Cα (PKCα) phosphorylation, staphylin phosphorylation and its relocalization to focal adhesions and GTP loading of RhoA and Rac1. The molecular mechanism by which mTORC2 regulates these processes has not yet been determined.

在一些實施例中,mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)為mTORC1之抑制劑。在一些實施例中,mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)為mTORC2之抑制劑。在一些實施例中,mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)為mTORC1及mTORC2兩者之抑制劑。In some embodiments, the mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) is an inhibitor of mTORC1. In some embodiments, the mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) is an inhibitor of mTORC2. In some embodiments, the mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) is an inhibitor of both mTORC1 and mTORC2.

在一些實施例中,mTOR抑制劑為利莫司藥物,其包括西羅莫司(亦稱為雷帕黴素及雷帕鳴)以及其衍生物及類似物。其他例示性利莫司藥物包括但不限於坦羅莫司(亦稱為CCI-779及馱瑞塞爾)、依維莫司(亦稱為RAD001、Zortress、Certican及Afinitor)、地磷莫司(AP-23573)、德佛莫司(MK-8669)、佐他莫司(ABT-578)、吡美莫司及他克莫司(FK-506)。在一些實施例中,利莫司藥物選自由以下組成之群:坦羅莫司(CCI-779)、依維莫司(RAD001)、地磷莫司(AP-23573)、德佛莫司(MK-8669)、佐他莫司(ABT-578)、吡美莫司及他克莫司(FK-506)。在一些實施例中,mTOR抑制劑為mTOR激酶抑制劑,諸如CC-115或CC-223。In some embodiments, the mTOR inhibitor is a limus drug, including sirolimus (also known as rapamycin and rapamycin) and its derivatives and analogs. Other exemplary limus drugs include, but are not limited to, temsirolimus (also known as CCI-779 and urosel), everolimus (also known as RAD001, Zortress, Certican and Afinitor), defostiolimus (AP-23573), deferolimus (MK-8669), zotarolimus (ABT-578), pimecrolimus and tacrolimus (FK-506). In some embodiments, the limus drug is selected from the group consisting of temsirolimus (CCI-779), everolimus (RAD001), dafolimus (AP-23573), deferolimus (MK-8669), zotarolimus (ABT-578), pimecrolimus and tacrolimus (FK-506). In some embodiments, the mTOR inhibitor is an mTOR kinase inhibitor, such as CC-115 or CC-223.

在一些實施例中,mTOR抑制劑為西羅莫司(雷帕黴素)。西羅莫司為巨環內酯抗生素,其與FKBP-12複合且藉由結合mTORC1抑制mTOR路徑。In some embodiments, the mTOR inhibitor is sirolimus (rapamycin). Sirolimus is a macrolide antibiotic that complexes with FKBP-12 and inhibits the mTOR pathway by binding to mTORC1.

其他例示性mTOR抑制劑包括但不限於BEZ235 (NVP-BEZ235)、AZD8055、PI-103、Ku-0063794、INK 128、AZD2014、NVP-BGT226、PF-04691502、CH5132799、GDC-0980 (RG7422)、Torin 1、WAY-600、WYE-125132、WYE-687、GSK2126458、PF-05212384 (PKI-587)、PP-121、OSI-027、Palomid 529、PP242、XL765、GSK1059615及WYE-354。Other exemplary mTOR inhibitors include, but are not limited to, BEZ235 (NVP-BEZ235), AZD8055, PI-103, Ku-0063794, INK 128, AZD2014, NVP-BGT226, PF-04691502, CH5132799, GDC-0980 (RG7422), Torin 1, WAY-600, WYE-125132, WYE-687, GSK2126458, PF-05212384 (PKI-587), PP-121, OSI-027, Palomid 529, PP242, XL765, GSK1059615, and WYE-354.

BEZ235 (NVP-BEZ235)為咪唑并喹啉衍生物,其為mTORC1催化抑制劑(Roper J等人,PLoS One,2011,6(9),e25132)。依維莫司為西羅莫司之40-O-(2-羥乙基)衍生物且結合親環蛋白FKBP-12,且此複合物亦為mTORC1。AZD8055為抑制mTORC1磷酸化之小分子(p70S6K及4E-BP1)。坦羅莫司為與FK506-結合蛋白形成複合物且當其存在於mTORC1複合物中時阻止mTOR活化之小分子。PI-103為抑制雷帕黴素敏感性(mTORC1)複合物之活化的小分子(Knight等人(2006),Cell. 125: 733-47)。KU-0063794為以劑量依賴性及時間依賴性方式在Ser2448處抑制mTORC1之磷酸化的小分子。INK 128、AZD2014、NVP-BGT226、CH5132799、WYE-687及各自為mTORC1之小分子抑制劑。PF-04691502抑制mTORC1活性。GDC-0980為抑制I類PI3激酶及TORC1之口服生物可用小分子。Torin 1為mTOR之強力小分子抑制劑。WAY-600為mTOR之強力、ATP競爭性及選擇性抑制劑。WYE-125132為mTORC1之ATP競爭性小分子抑制劑。GSK2126458為mTORC1之抑制劑。PKI-587為PI3Kα、PI3Kγ及mTOR之高度強力雙重抑制劑。PP-121為PDGFR、Hck、mTOR、VEGFR2、Src及Abl之多標靶抑制劑。OSI-027為分別具有22 nM及65 nM之IC50的mTORC1及mTORC2之選擇性及強力雙重抑制劑。Palomid 529為mTORC1之小分子抑制劑,其對ABCB1/ABCG2不具有親和性且具有良好腦滲透(Lin等人(2013),Int J Cancer DOI: 10.1002/ijc. 28126 (電子版先於印刷版))。PP242為選擇性mTOR抑制劑。XL765為針對mTOR、p110α、p110β、p110γ及p110δ的mTOR/PI3k之雙重抑制劑。GSK1059615為PI3Kα、PI3Kβ、PI3Kδ、PI3Kγ及mTOR之新穎及雙重抑制劑。WYE-354抑制Hek293細胞(0.2 μM-5 μM)及HUVEC細胞(10 nM-1 μM)中之mTORC1。WYE-354為mTOR之強力、特異性及ATP競爭性抑制劑。德佛莫司(地磷莫司、AP23573、MK-8669)為選擇性mTOR抑制劑。BEZ235 (NVP-BEZ235) is an imidazoquinoline derivative that is an inhibitor of mTORC1 catalysis (Roper J et al., PLoS One, 2011, 6(9), e25132). Everolimus is a 40-O-(2-hydroxyethyl) derivative of sirolimus and binds to the cyclophilin FKBP-12, and this complex is also mTORC1. AZD8055 is a small molecule that inhibits mTORC1 phosphorylation (p70S6K and 4E-BP1). Temsirolimus is a small molecule that forms a complex with FK506-binding protein and prevents mTOR activation when it is present in the mTORC1 complex. PI-103 is a small molecule that inhibits the activation of the rapamycin-sensitive (mTORC1) complex (Knight et al. (2006), Cell. 125: 733-47). KU-0063794 is a small molecule that inhibits phosphorylation of mTORC1 at Ser2448 in a dose-dependent and time-dependent manner. INK 128, AZD2014, NVP-BGT226, CH5132799, WYE-687 and each are small molecule inhibitors of mTORC1. PF-04691502 inhibits mTORC1 activity. GDC-0980 is an orally bioavailable small molecule that inhibits class I PI3 kinases and TORC1. Torin 1 is a potent small molecule inhibitor of mTOR. WAY-600 is a potent, ATP-competitive and selective inhibitor of mTOR. WYE-125132 is an ATP-competitive small molecule inhibitor of mTORC1. GSK2126458 is an inhibitor of mTORC1. PKI-587 is a highly potent dual inhibitor of PI3Kα, PI3Kγ, and mTOR. PP-121 is a multi-target inhibitor of PDGFR, Hck, mTOR, VEGFR2, Src, and Abl. OSI-027 is a selective and potent dual inhibitor of mTORC1 and mTORC2 with IC50 of 22 nM and 65 nM, respectively. Palomid 529 is a small molecule inhibitor of mTORC1 that has no affinity for ABCB1/ABCG2 and has good brain penetration (Lin et al. (2013), Int J Cancer DOI: 10.1002/ijc. 28126 (electronic version ahead of print)). PP242 is a selective mTOR inhibitor. XL765 is a dual inhibitor of mTOR/PI3k targeting mTOR, p110α, p110β, p110γ, and p110δ. GSK1059615 is a novel and dual inhibitor of PI3Kα, PI3Kβ, PI3Kδ, PI3Kγ, and mTOR. WYE-354 inhibits mTORC1 in Hek293 cells (0.2 μM-5 μM) and HUVEC cells (10 nM-1 μM). WYE-354 is a potent, specific, and ATP-competitive inhibitor of mTOR. Deferolimus (defolimus, AP23573, MK-8669) is a selective mTOR inhibitor.

在一些實施例中,mTOR抑制劑為本文中所描述之mTOR抑制劑中之任一者的衍生物或類似物。在一些實施例中,mTOR抑制劑之「衍生物」或「類似物」係指在結構上類似於mTOR抑制劑或與mTOR抑制劑處於相同通用化學類別之化合物。在一些實施例中,mTOR抑制劑之衍生物或類似物保持第二治療劑或部分之類似化學及/或物理特性(包括例如功能性)。In some embodiments, the mTOR inhibitor is a derivative or analog of any of the mTOR inhibitors described herein. In some embodiments, a "derivative" or "analog" of an mTOR inhibitor refers to a compound that is structurally similar to an mTOR inhibitor or is in the same general chemical class as an mTOR inhibitor. In some embodiments, a derivative or analog of an mTOR inhibitor retains similar chemical and/or physical properties (including, for example, functionality) of a second therapeutic agent or moiety.

在一些實施例中,提供一種治療個體(例如,人類)之癌症的方法,其包含向個體投與(a)有效量之包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」),其中mTOR抑制劑選自由以下組成之群:西羅莫司(亦稱為雷帕黴素及雷帕鳴)或其衍生物或類似物、坦羅莫司(亦稱為CCI-779及馱瑞塞爾)、依維莫司(亦稱為RAD001、Zortress、Certican及Afinitor)、地磷莫司(AP-23573)、德佛莫司(MK-8669)、佐他莫司(ABT-578)、吡美莫司及他克莫司(FK-506)、BEZ235 (NVP-BEZ235)、AZD8055、PI-103、Ku-0063794、INK 128、AZD2014、NVP-BGT226、PF-04691502、CH5132799、GDC-0980 (RG7422)、Torin 1、WAY-600、WYE-125132、WYE-687、GSK2126458、PF-05212384 (PKI-587)、PP-121、OSI-027、Palomid 529、PP242、XL765、GSK1059615及WYE-354;以及(b)有效量之KRAS抑制劑(例如,KRAS G12C抑制劑、KRAS G12A抑制劑、KRAS G12D抑制劑、KRAS G12F抑制劑、KRAS G12L抑制劑、KRAS G12R抑制劑、KRAS G12S抑制劑、KRAS G12V抑制劑、KRAS G13A抑制劑、KRAS G13C抑制劑、KRAS G13D抑制劑、KRAS G13P抑制劑、KRAS G13R抑制劑、KRAS G13S抑制劑、KRAS G13V抑制劑、KRAS Q61E抑制劑、KRAS Q61H抑制劑、KRAS Q61K抑制劑、KRAS Q61L抑制劑、KRAS Q61P抑制劑、KRAS Q61R抑制劑、KRAS K117N抑制劑、KRAS K117R抑制劑、KRAS A146E抑制劑、KRAS A146G抑制劑、KRAS A146P抑制劑、KRAS A146S抑制劑、KRAS A146T抑制劑或KRAS A146V抑制劑)。在一些實施例中,mTOR抑制劑為西羅莫司。在一些實施例中,癌症包含表現KRAS突變蛋白(例如,分別為KRAS G12C突變蛋白、KRAS G12A突變蛋白、KRAS G12D突變蛋白、KRAS G12F突變蛋白、KRAS G12L突變蛋白、KRAS G12R突變蛋白、KRAS G12S突變蛋白、KRAS G12V突變蛋白、KRAS G13A突變蛋白、KRAS G13C突變蛋白、KRAS G13D突變蛋白、KRAS G13P突變蛋白、KRAS G13R突變蛋白、KRAS G13S突變蛋白、KRAS G13V突變蛋白、KRAS Q61E突變蛋白、KRAS Q61H突變蛋白、KRAS Q61K突變蛋白、KRAS Q61L突變蛋白、KRAS Q61P突變蛋白、KRAS Q61R突變蛋白、KRAS K117N突變蛋白、KRAS K117R突變蛋白、KRAS A146E突變蛋白、KRAS A146G突變蛋白、KRAS A146P突變蛋白、KRAS A146S突變蛋白、KRAS A146T突變蛋白或KRAS A146V突變蛋白)之一或多種癌細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,癌症為實體腫瘤、肺癌、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌、子宮癌、子宮內膜癌、子宮頸癌、睾丸癌、膽管癌、骨髓發育不良癌或來源未知的腫瘤。在一些實施例中,癌症或腫瘤(諸如前述癌症或腫瘤中之任一者)為晚期、不可切除性及/或轉移性的。在一些實施例中,癌症為實體腫瘤(例如,晚期、不可切除性及/或轉移性實體腫瘤)、肺癌(例如,晚期、不可切除性及/或轉移性肺癌)或膀胱癌(例如,晚期、不可切除性及/或轉移性膀胱癌)。在一些實施例中,肺癌為非小細胞肺癌(NSCLC),例如晚期、不可切除性及/或轉移性NSCLC。mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)可經由此項技術中已知之所接受投與模式或藥劑中之任一者來投與。在一些實施例中,mTOR抑制劑奈米粒子組合物係靜脈內或皮下投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)及KRAS抑制劑以單一單位劑量投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)及KRAS抑制劑以單獨劑型投與。In some embodiments, a method of treating cancer in an individual (e.g., a human) is provided, comprising administering to the individual (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor and albumin ("mTOR inhibitor nanoparticle composition"), wherein the mTOR inhibitor is selected from the group consisting of sirolimus (also known as rapamycin and rapamycin) or a derivative or analog thereof, temsirolimus (also known as CCI-779 and urosel), everolimus (also known as RAD001, Zortress, Certican and Afinitor), dafolimus (AP-23573), deferolimus (MK-8669), zotarolimus (ABT-578), pimecrolimus and tacrolimus (FK-506), BEZ235 (NVP-BEZ235), AZD8055, PI-103, Ku-0063794, INK 128, AZD2014, NVP-BGT226, PF-04691502, CH5132799, GDC-0980 (RG7422), Torin 1, WAY-600, WYE-125132, WYE-687, GSK2126458, PF-05212384 (PKI-587), PP-121, OSI-027, Palomid 529, PP242, XL765, GSK1059615 and WYE-354; and (b) an effective amount of a KRAS inhibitor (e.g., a KRAS G12C inhibitor, a KRAS G12A inhibitor, a KRAS KRAS G12D inhibitor, KRAS G12F inhibitor, KRAS G12L inhibitor, KRAS G12R inhibitor, KRAS G12S inhibitor, KRAS G12V inhibitor, KRAS G13A inhibitor, KRAS G13C inhibitor, KRAS G13D inhibitor, KRAS G13P inhibitor, KRAS G13R inhibitor, KRAS G13S inhibitor, KRAS G13V inhibitor, KRAS Q61E inhibitor, KRAS Q61H inhibitor, KRAS Q61K inhibitor, KRAS Q61L inhibitor, KRAS Q61P inhibitor, KRAS Q61R inhibitor, KRAS K117N inhibitor, KRAS In some embodiments, the mTOR inhibitor is sirolimus. In some embodiments, the cancer comprises a cell line that expresses a KRAS mutant protein (e.g., a KRAS G12C mutant protein, a KRAS G12A mutant protein, a KRAS G12D mutant protein, a KRAS G12F mutant protein, a KRAS G12L mutant protein, a KRAS G12R mutant protein, a KRAS G12S mutant protein, a KRAS G12V mutant protein, a KRAS G13A mutant protein, a KRAS G13C mutant protein, a KRAS G13D mutant protein, a KRAS G13P mutant protein, a KRAS G13R mutant protein, a KRAS G13S mutant protein, a KRAS G13V mutant protein, a KRAS Q61E mutant protein, a KRAS Q61H mutant protein, a KRAS Q61K mutant protein, a KRAS Q61L mutant protein, a KRAS Q61P mutant protein, a KRAS In some embodiments, the invention relates to a method for treating a cancerous cell or a tumor of unknown origin. The method comprises one or more cancer cells of a type 2 cancerous cell or a type 2 cancerous cell ... In some embodiments, the cancer or tumor (such as any of the aforementioned cancers or tumors) is advanced, unresectable and/or metastatic. In some embodiments, the cancer is a solid tumor (e.g., an advanced, unresectable and/or metastatic solid tumor), lung cancer (e.g., advanced, unresectable and/or metastatic lung cancer) or bladder cancer (e.g., advanced, unresectable and/or metastatic bladder cancer). In some embodiments, the lung cancer is non-small cell lung cancer (NSCLC), such as advanced, unresectable and/or metastatic NSCLC. The mTOR inhibitor nanoparticle composition (such as sirolimus/albumin nanoparticle composition) can be administered via any of the accepted modes of administration or medicaments known in the art. In some embodiments, the mTOR inhibitor nanoparticle composition is administered intravenously or subcutaneously. In some embodiments, the mTOR inhibitor nanoparticle composition (such as sirolimus/albumin nanoparticle composition) and the KRAS inhibitor are administered in a single unit dose. In some embodiments, the mTOR inhibitor nanoparticle composition (such as sirolimus/albumin nanoparticle composition) and the KRAS inhibitor are administered in separate dosage forms.

在一些實施例中,提供一種治療個體(例如,人類)之癌症的方法,其包含向個體投與(a)有效量之包含有包含mTOR抑制劑(例如,西羅莫司或其衍生物或類似物)及白蛋白之奈米粒子之組合物,及(b)KRAS G12C抑制劑(例如,索托拉西布或阿達格拉西布)。在一些實施例中,奈米粒子每週投與一次、每三週投與兩次(例如,21天週期之第1天及第8天)或每三週投與一次(例如,靜脈內或皮下投與)。在一些實施例中,每次投與之mTOR抑制劑(例如,西羅莫司)之量為約1-75 mg/m 2。在一些實施例中,KRAS G12C抑制劑每日投與一次或每日投與兩次(例如,經口)。在一些實施例中,每次投與之KRAS G12C抑制劑之量為約200-800 mg,視情況其中KRAS G12C抑制劑每日投與兩次(例如,間隔12小時)。在一些實施例中,每次投與之KRAS G12C抑制劑之量為約100-2000 mg,視情況其中KRAS G12C抑制劑每日投與一次。在一些實施例中,癌症為局部晚期或轉移性癌症。在一些實施例中,癌症為實體腫瘤(例如,肺癌,例如NSCLC,例如膀胱癌)。在一些實施例中,癌症包含STK11、TP53、ATM、CDKN2A或UGT2B17中之mTOR活化畸變。在一些實施例中,癌症包含選自由以下組成之群的一或多種基因中之mTOR活化畸變:TP53、STK11、PTEN、ATM、CDKN2A及UGT2B17。 奈米粒子組合物 In some embodiments, a method of treating cancer in an individual (e.g., a human) is provided, comprising administering to the individual (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor (e.g., sirolimus or a derivative or analog thereof) and albumin, and (b) a KRAS G12C inhibitor (e.g., sotolacib or adagraciib). In some embodiments, the nanoparticles are administered once a week, twice every three weeks (e.g., day 1 and day 8 of a 21-day cycle), or once every three weeks (e.g., intravenously or subcutaneously). In some embodiments, the amount of mTOR inhibitor (e.g., sirolimus) administered each time is about 1-75 mg/m 2 . In some embodiments, the KRAS G12C inhibitor is administered once a day or twice a day (e.g., orally). In some embodiments, the amount of the KRAS G12C inhibitor administered each time is about 200-800 mg, where the KRAS G12C inhibitor is administered twice a day (e.g., 12 hours apart) as appropriate. In some embodiments, the amount of the KRAS G12C inhibitor administered each time is about 100-2000 mg, where the KRAS G12C inhibitor is administered once a day as appropriate. In some embodiments, the cancer is a locally advanced or metastatic cancer. In some embodiments, the cancer is a solid tumor (e.g., lung cancer, such as NSCLC, such as bladder cancer). In some embodiments, the cancer comprises an mTOR activation aberration in STK11, TP53, ATM, CDKN2A, or UGT2B17. In some embodiments, the cancer comprises mTOR activating aberrations in one or more genes selected from the group consisting of TP53, STK11, PTEN, ATM, CDKN2A, and UGT2B17. Nanoparticle Compositions

可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含有包含mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白(諸如人類血清白蛋白)在各種實施例中基本上由其組成或由其組成)之奈米粒子。水溶性不佳之藥物(諸如巨環內酯)之奈米粒子已揭示於例如美國專利第5,916,596號、第6,506,405號、第6,749,868號、第6,537,579號、第7,820,788號及第8,911,786號,以及美國專利公開案第2006/0263434號及第2007/0082838號;PCT專利申請案W008/137148中,其各自以全文引用之方式併入本文中。mTOR inhibitor nanoparticle compositions that can be used with the methods described herein include nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) and an albumin (such as human serum albumin, in various embodiments consisting essentially of or consisting of the same). Nanoparticles of poorly water-soluble drugs such as macrolides have been disclosed in, for example, U.S. Pat. Nos. 5,916,596, 6,506,405, 6,749,868, 6,537,579, 7,820,788, and 8,911,786, and U.S. Patent Publication Nos. 2006/0263434 and 2007/0082838; PCT Patent Application WO 08/137148, each of which is incorporated herein by reference in its entirety.

在一些實施例中,mTOR抑制劑奈米粒子組合物包含平均直徑不超過約1000奈米(nm),諸如不超過約900、800、700、600、500、400、300、200及100 nm中之任一者的奈米粒子。在一些實施例中,奈米粒子之平均直徑不超過約200 nm。在一些實施例中,奈米粒子之平均直徑不超過約150 nm。在一些實施例中,奈米粒子之平均直徑不超過約100 nm。在一些實施例中,奈米粒子之平均直徑為約10至約400 nm。在一些實施例中,奈米粒子之平均直徑為約10至約150 nm。在一些實施例中,奈米粒子之平均直徑為約40至約120 nm。在一些實施例中,奈米粒子不小於約50 nm。在一些實施例中,奈米粒子為可無菌過濾的。In some embodiments, the mTOR inhibitor nanoparticle composition comprises nanoparticles having an average diameter of no more than about 1000 nanometers (nm), such as no more than about any one of 900, 800, 700, 600, 500, 400, 300, 200, and 100 nm. In some embodiments, the average diameter of the nanoparticles is no more than about 200 nm. In some embodiments, the average diameter of the nanoparticles is no more than about 150 nm. In some embodiments, the average diameter of the nanoparticles is no more than about 100 nm. In some embodiments, the average diameter of the nanoparticles is about 10 to about 400 nm. In some embodiments, the average diameter of the nanoparticles is about 10 to about 150 nm. In some embodiments, the average diameter of the nanoparticles is about 40 to about 120 nm. In some embodiments, the nanoparticles are no smaller than about 50 nm. In some embodiments, the nanoparticles are sterile filterable.

在一些實施例中,mTOR抑制劑奈米粒子組合物中之奈米粒子之平均直徑不超過約200 nm,包括例如不超過約190、180、170、160、150、140、130、120、110、100、90、80、70或60 nm中之任一者。在一些實施例中,mTOR抑制劑奈米粒子組合物中至少約50% (例如,至少約60%、70%、80%、90%、95%或99%中之任一者)之奈米粒子的直徑不超過約200 nm,包括例如不超過約190、180、170、160、150、140、130、120、110、100、90、80、70或60 nm中之任一者。在一些實施例中,mTOR抑制劑奈米粒子組合物中至少約50% (例如,至少60%、70%、80%、90%、95%或99%中之任一者)之奈米粒子在約10 nm至約400 nm,包括例如約10 nm至約200 nm、約20 nm至約200 nm、約30 nm至約180 nm、約40 nm至約150 nm、約40 nm至約120 nm及約60 nm至約100 nm範圍內。In some embodiments, the average diameter of the nanoparticles in the mTOR inhibitor nanoparticle composition is no more than about 200 nm, including, for example, no more than about 190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 90, 80, 70, or 60 nm. In some embodiments, at least about 50% (e.g., at least about 60%, 70%, 80%, 90%, 95%, or 99%) of the nanoparticles in the mTOR inhibitor nanoparticle composition have a diameter of no more than about 200 nm, including, for example, no more than about 190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 90, 80, 70, or 60 nm. In some embodiments, at least about 50% (e.g., at least any of 60%, 70%, 80%, 90%, 95%, or 99%) of the nanoparticles in the mTOR inhibitor nanoparticle composition are within the range of about 10 nm to about 400 nm, including, for example, about 10 nm to about 200 nm, about 20 nm to about 200 nm, about 30 nm to about 180 nm, about 40 nm to about 150 nm, about 40 nm to about 120 nm, and about 60 nm to about 100 nm.

在一些實施例中,mTOR抑制劑奈米粒子組合物中之白蛋白具有可形成雙硫鍵之硫氫基。在一些實施例中,組合物之奈米粒子部分中至少約5% (包括例如至少約10%、15%、20%、25%、30%、40%、50%、60%、70%、80%或90%中之任一者)之白蛋白交聯(例如,經由一或多個雙硫鍵交聯)。In some embodiments, the albumin in the mTOR inhibitor nanoparticle composition has sulfhydryl groups that can form disulfide bonds. In some embodiments, at least about 5% (including, for example, at least about 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%) of the albumin in the nanoparticle portion of the composition is cross-linked (e.g., via one or more disulfide bonds).

在一些實施例中,包含本文中所描述之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之奈米粒子與白蛋白(諸如人類白蛋白或人類血清白蛋白)締合(例如包覆有白蛋白)。在一些實施例中,組合物包含呈奈米粒子及非奈米粒子形式(例如,呈溶液形式或呈可溶白蛋白/奈米粒子複合物形式)兩者之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中組合物中至少約50%、60%、70%、80%、90%、95%或99%中之任一者之mTOR抑制劑呈奈米粒子形式。在一些實施例中,奈米粒子中之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)按重量計佔奈米粒子之超過約50%、60%、70%、80%、90%、95%或99%中之任一者。在一些實施例中,奈米粒子具有非聚合基質。在一些實施例中,奈米粒子包含實質上不含聚合材料(諸如聚合基質)之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之核心。In some embodiments, nanoparticles comprising an mTOR inhibitor described herein (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) are associated with (e.g., coated with) an albumin (e.g., human albumin or human serum albumin). In some embodiments, the composition comprises an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) in both nanoparticle and non-nanoparticle form (e.g., in solution or in the form of a soluble albumin/nanoparticle complex), wherein at least about any one of 50%, 60%, 70%, 80%, 90%, 95%, or 99% of the mTOR inhibitor in the composition is in nanoparticle form. In some embodiments, the mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) in the nanoparticles comprises more than about any of 50%, 60%, 70%, 80%, 90%, 95%, or 99% by weight of the nanoparticles. In some embodiments, the nanoparticles have a non-polymeric matrix. In some embodiments, the nanoparticles comprise a core of an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) that is substantially free of polymeric material (such as a polymeric matrix).

在一些實施例中,mTOR抑制劑奈米粒子組合物包含組合物之奈米粒子及非奈米粒子部分兩者中之白蛋白,其中組合物中至少約50%、60%、70%、80%、90%、95%或99%中之任一者之白蛋白處於組合物之非奈米粒子部分中。In some embodiments, the mTOR inhibitor nanoparticle composition comprises albumin in both the nanoparticle and non-nanoparticle portions of the composition, wherein at least about any of 50%, 60%, 70%, 80%, 90%, 95%, or 99% of the albumin in the composition is in the non-nanoparticle portion of the composition.

在一些實施例中,mTOR抑制劑奈米粒子組合物中白蛋白(諸如人類白蛋白或人類血清白蛋白)與mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之重量比為約18:1或更小,諸如約15:1或更小,例如約10:1或更小。在一些實施例中,mTOR抑制劑奈米粒子組合物中白蛋白(諸如人類白蛋白或人類血清白蛋白)與mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之重量比在約1:1至約18:1、約2:1至約15:1、約3:1至約13:1、約4:1至約12:1、約5:1至約10:1中之任一者的範圍內。在一些實施例中,mTOR抑制劑奈米粒子組合物之奈米粒子部分中白蛋白與mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之重量比為約1:2、1:3、1:4、1:5、1:9、1:10、1:15或更小中之任一者。在一些實施例中,mTOR抑制劑奈米粒子組合物中白蛋白(諸如人類白蛋白或人類血清白蛋白)與mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之重量比為以下中之任一者:約1:1至約18:1、約1:1至約15:1、約1:1至約12:1、約1:1至約10:1、約1:1至約9:1、約1:1至約8:1、約1:1至約7:1、約1:1至約6:1、約1:1至約5:1、約1:1至約4:1、約1:1至約3:1、約1:1至約2:1、約1:1至約1:1。In some embodiments, the weight ratio of albumin (such as human albumin or human serum albumin) to mTOR inhibitor (such as limus drug, such as sirolimus or its derivative or analog) in the mTOR inhibitor nanoparticle composition is about 18: 1 or less, such as about 15: 1 or less, such as about 10: 1 or less. In some embodiments, the weight ratio of albumin (such as human albumin or human serum albumin) to mTOR inhibitor (such as limus drug, such as sirolimus or its derivative or analog) in the mTOR inhibitor nanoparticle composition is about 1: 1 to about 18: 1, about 2: 1 to about 15: 1, about 3: 1 to about 13: 1, about 4: 1 to about 12: 1, about 5: 1 to about 10: 1. In some embodiments, the weight ratio of albumin to mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) in the nanoparticle portion of the mTOR inhibitor nanoparticle composition is about any of 1:2, 1:3, 1:4, 1:5, 1:9, 1:10, 1:15 or less. In some embodiments, the weight ratio of albumin (such as human albumin or human serum albumin) to mTOR inhibitor (such as limus drugs, such as sirolimus or its derivatives or analogs) in the mTOR inhibitor nanoparticle composition is any one of the following: about 1:1 to about 18:1, about 1:1 to about 15:1, about 1:1 to about 12:1, about 1:1 to about 10:1, about 1:1 to about 9:1, about 1:1 to about 8:1, about 1:1 to about 7:1, about 1:1 to about 6:1, about 1:1 to about 5:1, about 1:1 to about 4:1, about 1:1 to about 3:1, about 1:1 to about 2:1, about 1:1 to about 1:1.

在一些實施例中,mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)包含上述特徵中之一或多者。In some embodiments, the mTOR inhibitor nanoparticle composition (such as sirolimus/albumin nanoparticle composition) comprises one or more of the above characteristics.

在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物呈乾燥調配物(諸如凍乾組合物)。在一些實施例中,mTOR抑制劑奈米粒子組合物懸浮於生物相容性介質中。適合的生物相容性介質包括但不限於:水、緩衝水性介質、鹽水、緩衝鹽水、視情況經緩衝之胺基酸溶液、視情況經緩衝之蛋白質溶液、視情況經緩衝之糖溶液、視情況經緩衝之維生素溶液、視情況經緩衝之合成聚合物溶液、含脂質乳液及其類似物。In some embodiments, the mTOR inhibitor nanoparticle composition that can be used with the methods described herein is a dry formulation (such as a lyophilized composition). In some embodiments, the mTOR inhibitor nanoparticle composition is suspended in a biocompatible medium. Suitable biocompatible media include, but are not limited to: water, buffered aqueous media, saline, buffered saline, optionally buffered amino acid solutions, optionally buffered protein solutions, optionally buffered sugar solutions, optionally buffered vitamin solutions, optionally buffered synthetic polymer solutions, lipid-containing emulsions, and the like.

在一些實施例中,mTOR抑制劑奈米粒子組合物包含白蛋白(諸如人類白蛋白或人類血清白蛋白)。白蛋白可為天然來源的或以合成方式製備。在一些實施例中,白蛋白為人類白蛋白或人類血清白蛋白。在一些實施例中,白蛋白為重組白蛋白。In some embodiments, the mTOR inhibitor nanoparticle composition comprises albumin (such as human albumin or human serum albumin). The albumin can be of natural origin or prepared synthetically. In some embodiments, the albumin is human albumin or human serum albumin. In some embodiments, the albumin is recombinant albumin.

人類血清白蛋白(HSA)為Mr 65K之高度可溶球狀蛋白質且由585個胺基酸組成。HSA為血漿中最豐富之蛋白質且導致人類血漿之膠體滲透壓為70%-80%。HSA之胺基酸序列含有總共17個雙硫橋鍵、一個游離巰基(Cys 34)及單個色胺酸(Trp 214)。靜脈內使用HSA溶液已指示用於預防及治療血容積過少性休克(參見例如Tullis, JAMA, 237: 355-360, 460-463, (1977)及Houser等人, Surgery, Gynecology and Obstetrics, 150: 811-816 (1980))及與交換輸注結合用於治療新生仔高膽紅質血症(參見例如Finlayson, Seminars in Thrombosis and Hemostasis, 6, 85-120, (1980))。涵蓋其他白蛋白,諸如牛血清白蛋白。使用此類非人類白蛋白可例如在將此等組合物用於非人類哺乳動物之情形,諸如獸醫學(包括家養寵物及農用情形)下為適當的。人類血清白蛋白(HSA)具有多個疏水性結合位點(對於脂肪酸(HSA之內源性配位體)為總共八個)且結合多種多樣的藥物,尤其為中性及帶負電疏水性化合物(Goodman等人, The Pharmacological Basis of Therapeutics, 第9版, McGraw-Hill New York (1996))。已在HSA之子域IIA及IIIA中提出兩個高親和性結合位點,其為高度細長的疏水袋,在表面附近具有出於極性配位體特徵充當連接點之帶電離胺酸及精胺酸殘基(參見例如Fehske等人, Biochem. Pharmcol., 30, 687-92 (198a);Vorum, Dan. Med. Bull., 46, 379-99 (1999);Kragh-Hansen, Dan. Med. Bull., 1441, 131-40 (1990);Curry等人, Nat. Struct. Biol., 5, 827-35 (1998);Sugio等人, Protein. Eng., 12, 439-46 (1999);He等人, Nature, 358, 209-15 (199b);以及Carter等人, Adv. Protein. Chem., 45, 153-203 (1994))。已展示雷帕黴素及異丙酚結合HSA (參見例如Paal等人, Eur. J. Biochem., 268(7), 2187-91 (200a);Purcell等人, Biochim. Biophys. Acta, 1478(a), 61-8 (2000);Altmayer等人, Arzneimittelforschung, 45, 1053-6 (1995);以及Garrido等人, Rev. Esp. Anestestiol. Reanim., 41, 308-12 (1994))。另外,已展示多烯紫杉醇結合至人類血漿蛋白質(參見例如Urien等人, Invest. New Drugs, 14(b), 147-51 (1996))。 Human serum albumin (HSA) is a highly soluble globular protein with Mr 65K and is composed of 585 amino acids. HSA is the most abundant protein in plasma and is responsible for 70%-80% of the colloidal osmotic pressure of human plasma. The amino acid sequence of HSA contains a total of 17 disulfide bridges, a free thiol (Cys 34) and a single tryptophan (Trp 214). Intravenous use of HSA solutions has been indicated for the prevention and treatment of hypovolemic shock (see, e.g., Tullis, JAMA, 237: 355-360, 460-463, (1977) and Houser et al., Surgery, Gynecology and Obstetrics, 150: 811-816 (1980)) and in combination with exchange transfusion for the treatment of neonatal hypercholesterolemia (see, e.g., Finlayson, Seminars in Thrombosis and Hemostasis, 6, 85-120, (1980)). Other albumins are contemplated, such as bovine serum albumin. The use of such non-human albumins may be appropriate, for example, in situations where such compositions are to be used in non-human mammals, such as in veterinary medicine (including domestic pets and agricultural situations). Human serum albumin (HSA) has multiple hydrophobic binding sites (eight in total for fatty acids, the endogenous ligands of HSA) and binds a wide variety of drugs, especially neutral and negatively charged hydrophobic compounds (Goodman et al., The Pharmacological Basis of Therapeutics, 9th edition, McGraw-Hill New York (1996)). Two high affinity binding sites have been proposed in subdomains IIA and IIIA of HSA, which are highly elongated hydrophobic pockets with charged lysine and arginine residues near the surface that serve as attachment points for polar ligand characteristics (see, e.g., Fehske et al., Biochem. Pharmcol., 30, 687-92 (198a); Vorum, Dan. Med. Bull., 46, 379-99 (1999); Kragh-Hansen, Dan. Med. Bull., 1441, 131-40 (1990); Curry et al., Nat. Struct. Biol., 5, 827-35 (1998); Sugio et al., Protein. Eng., 12, 439-46 (1999); He et al., Nature, 358, 359-47 (1999). 209-15 (199b); and Carter et al., Adv. Protein. Chem., 45, 153-203 (1994)). Rapamycin and propofol have been shown to bind to HSA (see, e.g., Paal et al., Eur. J. Biochem., 268(7), 2187-91 (200a); Purcell et al., Biochim. Biophys. Acta, 1478(a), 61-8 (2000); Altmayer et al., Arzneimittelforschung, 45, 1053-6 (1995); and Garrido et al., Rev. Esp. Anestestiol. Reanim., 41, 308-12 (1994)). Additionally, docetaxel has been shown to bind to human plasma proteins (see, e.g., Urien et al., Invest. New Drugs, 14(b), 147-51 (1996)).

mTOR抑制劑奈米粒子組合物中之白蛋白(諸如人類白蛋白或人類血清白蛋白)大體上充當mTOR抑制劑之載劑,亦即相較於不包含白蛋白之組合物,組合物中之白蛋白使得mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)可更易於懸浮於水性介質中或有助於維持懸浮液。此可避免使用毒性溶劑(或界面活性劑)用於溶解mTOR抑制劑,且藉此可減少向個體(諸如人類)投與mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物)之一或多種副作用。因此,在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物實質上不含(諸如不含)界面活性劑,諸如十六醇聚氧乙烯醚(或聚氧乙烯化蓖麻油,包括Cremophor EL® (巴斯夫(BASF)))。在一些實施例中,mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)實質上不含(諸如不含)界面活性劑。若當向個體投與mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)時,組合物中十六醇聚氧乙烯醚或界面活性劑之量不足以在個體中引起一或多種副作用,則組合物「實質上不含十六醇聚氧乙烯醚」或「實質上不含界面活性劑」。在一些實施例中,mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)含有小於約20%、15%、10%、7.5%、5%、2.5%或1%中之任一者的有機溶劑或界面活性劑。在一些實施例中,白蛋白為人類白蛋白或人類血清白蛋白。在一些實施例中,白蛋白為重組白蛋白。The albumin (such as human albumin or human serum albumin) in the mTOR inhibitor nanoparticle composition generally acts as a carrier for the mTOR inhibitor, that is, the albumin in the composition allows the mTOR inhibitor (such as a limus drug, such as sirolimus or a derivative or analog thereof) to be more easily suspended in an aqueous medium or helps maintain the suspension compared to a composition that does not contain albumin. This can avoid the use of toxic solvents (or surfactants) for dissolving the mTOR inhibitor, and thereby reduce one or more side effects of administering an mTOR inhibitor (such as a limus drug, such as sirolimus or a derivative thereof) to an individual (such as a human). Thus, in some embodiments, the mTOR inhibitor nanoparticle compositions that can be used with the methods described herein are substantially free of (e.g., free of) surfactants, such as cetyl alcohol polyoxyethylene ether (or polyoxyethylated castor oil, including Cremophor EL® (BASF)). In some embodiments, the mTOR inhibitor nanoparticle compositions (e.g., sirolimus/albumin nanoparticle compositions) are substantially free of (e.g., free of) surfactants. If the amount of cetyl alcohol polyoxyethylene ether or surfactant in the composition is insufficient to cause one or more side effects in the individual when the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition) is administered to the individual, the composition is "substantially free of cetyl alcohol polyoxyethylene ether" or "substantially free of surfactants". In some embodiments, the mTOR inhibitor nanoparticle composition (such as sirolimus/albumin nanoparticle composition) contains less than about 20%, 15%, 10%, 7.5%, 5%, 2.5% or 1% of any one of organic solvents or surfactants. In some embodiments, the albumin is human albumin or human serum albumin. In some embodiments, the albumin is recombinant albumin.

可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物中白蛋白之量將取決於組合物中之其他組分而變化。在一些實施例中,mTOR抑制劑奈米粒子組合物包含足以使mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)在水性懸浮液中穩定,例如呈穩定膠態懸浮液(諸如奈米粒子之穩定懸浮液)形式之量的白蛋白。在一些實施例中,白蛋白呈降低mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物)於水性介質中之沉降速率的量。對於含有粒子之組合物,白蛋白之量亦取決於mTOR抑制劑之奈米粒子的尺寸及密度。The amount of albumin in the mTOR inhibitor nanoparticle composition that can be used with the methods described herein will vary depending on the other components in the composition. In some embodiments, the mTOR inhibitor nanoparticle composition comprises an amount of albumin sufficient to stabilize the mTOR inhibitor (such as a limus drug, such as sirolimus or a derivative or analog thereof) in an aqueous suspension, for example, in the form of a stable colloidal suspension (such as a stable suspension of nanoparticles). In some embodiments, the albumin is in an amount that reduces the sedimentation rate of the mTOR inhibitor (such as a limus drug, such as sirolimus or a derivative thereof) in an aqueous medium. For compositions containing particles, the amount of albumin also depends on the size and density of the nanoparticles of the mTOR inhibitor.

在使mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)保持懸浮於水性介質中(諸如無可見沉澱或沉降)持續延長時段,諸如至少約0.1、0.2、0.25、0.5、1、2、3、4、5、6、7、8、9、10、11、12、24、36、48、60或72小時中之任一者的情況下,使該mTOR抑制劑在水性懸浮液中「穩定」。懸浮液一般(但未必)適合於向個體(諸如人類)投與。懸浮液之穩定性一般(但未必)在儲存溫度(諸如室溫(諸如20-25℃)或冷凍條件(諸如4℃))下評估。舉例而言,若懸浮液在懸浮液製備之後約十五分鐘處不展現肉眼可見之絮凝或粒子聚結或在光學顯微鏡下以1000x放大率查看時不展現絮凝或粒子聚結,則其在儲存溫度下穩定。穩定性亦可在加速測試條件下,諸如在高於約40℃之溫度下評估。An mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) is "stable" in an aqueous suspension when it remains suspended in an aqueous medium (e.g., without visible precipitation or sedimentation) for an extended period of time, such as at least about any of 0.1, 0.2, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, 36, 48, 60, or 72 hours. The suspension is generally (but not necessarily) suitable for administration to a subject (e.g., a human). The stability of a suspension is generally (but not necessarily) evaluated at a storage temperature, such as room temperature (e.g., 20-25°C) or refrigerated conditions (e.g., 4°C). For example, if the suspension does not exhibit flocculation or particle agglomeration visible to the naked eye about fifteen minutes after the suspension is prepared or does not exhibit flocculation or particle agglomeration when viewed under an optical microscope at 1000x magnification, it is stable at the storage temperature. Stability can also be evaluated under accelerated testing conditions, such as at temperatures above about 40°C.

在一些實施例中,白蛋白以足以使mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)在水性懸浮液中以一定濃度穩定的量存在於mTOR抑制劑奈米粒子組合物中。舉例而言,組合物中mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之濃度為約0.1 mg/ml至約100 mg/ml,包括例如約0.1 mg/ml至約50 mg/ml、約0.1 mg/ml至約20 mg/ml、約1 mg/ml至約10 mg/ml、約2 mg/ml至約8 mg/ml、約4 mg/ml至約6 mg/ml或約5 mg/ml中之任一者。在一些實施例中,mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之濃度為至少約1.3 mg/ml、1.5 mg/ml、2 mg/ml、3 mg/ml、4 mg/ml、5 mg/ml、6 mg/ml、7 mg/ml、8 mg/ml、9 mg/ml、10 mg/ml、15 mg/ml、20 mg/ml、25 mg/ml、30 mg/ml、40 mg/ml及50 mg/ml中之任一者。在一些實施例中,白蛋白以避免使用界面活性劑(諸如十六醇聚氧乙烯醚),以使得組合物不含或實質上不含界面活性劑(諸如十六醇聚氧乙烯醚)之量存在。In some embodiments, albumin is present in the mTOR inhibitor nanoparticle composition in an amount sufficient to stabilize the mTOR inhibitor (e.g., limus drug, e.g., sirolimus or a derivative or analog thereof) at a certain concentration in an aqueous suspension. For example, the concentration of the mTOR inhibitor (e.g., limus drug, e.g., sirolimus or a derivative or analog thereof) in the composition is about 0.1 mg/ml to about 100 mg/ml, including, for example, about 0.1 mg/ml to about 50 mg/ml, about 0.1 mg/ml to about 20 mg/ml, about 1 mg/ml to about 10 mg/ml, about 2 mg/ml to about 8 mg/ml, about 4 mg/ml to about 6 mg/ml, or about 5 mg/ml. In some embodiments, the concentration of the mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) is at least about any one of 1.3 mg/ml, 1.5 mg/ml, 2 mg/ml, 3 mg/ml, 4 mg/ml, 5 mg/ml, 6 mg/ml, 7 mg/ml, 8 mg/ml, 9 mg/ml, 10 mg/ml, 15 mg/ml, 20 mg/ml, 25 mg/ml, 30 mg/ml, 40 mg/ml, and 50 mg/ml. In some embodiments, the albumin is present in an amount such that the composition is free of or substantially free of a surfactant (such as cetyl alcohol polyoxyethylene ether) in order to avoid the use of a surfactant (such as cetyl alcohol polyoxyethylene ether).

在一些實施例中,呈液體形式之mTOR抑制劑奈米粒子組合物包含約0.1%至約50% (w/v)(例如約0.5% (w/v)、約5% (w/v)、約10% (w/v)、約15% (w/v)、約20% (w/v)、約30% (w/v)、約40% (w/v)或約50% (w/v))之白蛋白。在一些實施例中,呈液體形式之mTOR抑制劑奈米粒子組合物包含約0.5%至約5% (w/v)之白蛋白。In some embodiments, the mTOR inhibitor nanoparticle composition in liquid form comprises about 0.1% to about 50% (w/v) (e.g., about 0.5% (w/v), about 5% (w/v), about 10% (w/v), about 15% (w/v), about 20% (w/v), about 30% (w/v), about 40% (w/v), or about 50% (w/v)) albumin. In some embodiments, the mTOR inhibitor nanoparticle composition in liquid form comprises about 0.5% to about 5% (w/v) albumin.

在一些實施例中,mTOR抑制劑奈米粒子組合物中白蛋白與mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之重量比為使得足夠量之mTOR抑制劑結合至細胞或藉由細胞轉運。儘管白蛋白與mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之重量比必須針對不同白蛋白及mTOR抑制劑組合最佳化,但通常白蛋白與mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之重量比(w/w)為約0.01:1至約100:1、約0.02:1至約50:1、約0.05:1至約20:1、約0.1:1至約20:1、約1:1至約18:1、約2:1至約15:1、約3:1至約12:1、約4:1至約11:1、約5:1至約10:1,或約10:1。在一些實施例中,白蛋白與mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之重量比為約18:1或更小、15:1或更小、14:1或更小、13:1或更小、12:1或更小、11:1或更小、10:1或更小、9:1或更小、8:1或更小、7:1或更小、6:1或更小、5:1或更小、4:1或更小及3:1或更小中之任一者。在一些實施例中,組合物中白蛋白(諸如人類白蛋白或人類血清白蛋白)與mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之重量比為以下中之任一者:約1:1至約18:1、約1:1至約15:1、約1:1至約12:1、約1:1至約10:1、約1:1至約9:1、約1:1至約8:1、約1:1至約7:1、約1:1至約6:1、約1:1至約5:1、約1:1至約4:1、約1:1至約3:1、約1:1至約2:1、約1:1至約1:1。In some embodiments, the weight ratio of albumin to mTOR inhibitor (e.g., limus drug, e.g., sirolimus or a derivative or analog thereof) in the mTOR inhibitor nanoparticle composition is such that a sufficient amount of the mTOR inhibitor is bound to or transported by cells. Although the weight ratio of albumin to mTOR inhibitor (such as limus drugs, e.g., sirolimus or a derivative or analog thereof) must be optimized for different albumin and mTOR inhibitor combinations, generally the weight ratio (w/w) of albumin to mTOR inhibitor (such as limus drugs, e.g., sirolimus or a derivative or analog thereof) is about 0.01:1 to about 100:1, about 0.02:1 to about 50:1, about 0.05:1 to about 20:1, about 0.1:1 to about 20:1, about 1:1 to about 18:1, about 2:1 to about 15:1, about 3:1 to about 12:1, about 4:1 to about 11:1, about 5:1 to about 10:1, or about 10:1. In some embodiments, the weight ratio of albumin to mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) is about any of 18: 1 or less, 15: 1 or less, 14: 1 or less, 13: 1 or less, 12: 1 or less, 11: 1 or less, 10: 1 or less, 9: 1 or less, 8: 1 or less, 7: 1 or less, 6: 1 or less, 5: 1 or less, 4: 1 or less, and 3: 1 or less. In some embodiments, the weight ratio of albumin (such as human albumin or human serum albumin) to mTOR inhibitor (such as limus drug, e.g., sirolimus or a derivative or analog thereof) in the composition is any one of: about 1:1 to about 18:1, about 1:1 to about 15:1, about 1:1 to about 12:1, about 1:1 to about 10:1, about 1:1 to about 9:1, about 1:1 to about 8:1, about 1:1 to about 7:1, about 1:1 to about 6:1, about 1:1 to about 5:1, about 1:1 to about 4:1, about 1:1 to about 3:1, about 1:1 to about 2:1, about 1:1 to about 1:1.

在一些實施例中,白蛋白允許向個體(諸如人類)投與mTOR抑制劑奈米粒子組合物而無顯著副作用。在一些實施例中,白蛋白(諸如人類血清白蛋白或人類白蛋白)呈有效減少向人類投與mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之一或多種副作用的量。在一些實施例中,術語「減少」投與mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)之「一或多種副作用」係指減少、減輕、消除或避免由mTOR抑制劑引起之一或多種非所需作用,以及由用於遞送mTOR抑制劑之遞送媒劑(諸如使得利莫司藥物適合於注射之溶劑)引起之副作用。此類副作用包括例如骨髓抑制、神經毒性、過敏性、發炎、靜脈刺激、靜脈炎、疼痛、皮膚刺激、周邊神經病變、嗜中性白血球減少性發熱、過敏性反應、靜脈栓塞、外滲以及其組合。然而,此等副作用僅為例示性的且與利莫司藥物(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)相關之其他副作用或副作用之組合可減少。In some embodiments, albumin allows administration of the mTOR inhibitor nanoparticle composition to an individual (e.g., a human) without significant side effects. In some embodiments, the albumin (e.g., human serum albumin or human albumin) is in an amount effective to reduce one or more side effects of administering an mTOR inhibitor (e.g., a limus drug, e.g., sirolimus or a derivative or analog thereof) to a human. In some embodiments, the term "reducing" one or more side effects of administering an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) refers to reducing, alleviating, eliminating, or avoiding one or more undesirable effects caused by the mTOR inhibitor, as well as side effects caused by the delivery vehicle used to deliver the mTOR inhibitor (such as a solvent that makes the limus drug suitable for injection). Such side effects include, for example, bone marrow suppression, neurotoxicity, allergy, inflammation, venous irritation, phlebitis, pain, skin irritation, peripheral neuropathy, neutropenic fever, allergic reaction, venous embolism, extravasation, and combinations thereof. However, these side effects are merely exemplary and other side effects or combinations of side effects associated with limus drugs (e.g., limus drugs, such as sirolimus or a derivative or analog thereof) may be reduced.

在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含有包含mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白(諸如人類白蛋白或人類血清白蛋白)之奈米粒子,其中奈米粒子之平均直徑不超過約200 nm。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白(諸如人類白蛋白或人類血清白蛋白),其中奈米粒子之平均直徑不超過約150 nm。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含有包含mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白(諸如人類白蛋白或人類血清白蛋白)之奈米粒子,其中奈米粒子之平均直徑不超過約150 nm (例如,約100 nm)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含有包含西羅莫司及人類白蛋白(諸如人類血清白蛋白)之奈米粒子,其中奈米粒子之平均直徑不超過約150 nm (例如,約100 nm)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含有包含西羅莫司及人類白蛋白(諸如人類血清白蛋白)之奈米粒子,其中奈米粒子之平均直徑為約10 nm至約150 nm。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含有包含西羅莫司及人類白蛋白(諸如人類血清白蛋白)之奈米粒子,其中奈米粒子之平均直徑為約40 nm至約120 nm。In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) and an albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles is no more than about 200 nm. In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) and an albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles is no more than about 150 nm. In some embodiments, the mTOR inhibitor nanoparticle compositions that can be used with the methods described herein include nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) and an albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles does not exceed about 150 nm (e.g., about 100 nm). In some embodiments, the mTOR inhibitor nanoparticle compositions that can be used with the methods described herein include nanoparticles comprising sirolimus and human albumin (such as human serum albumin), wherein the average diameter of the nanoparticles does not exceed about 150 nm (e.g., about 100 nm). In some embodiments, the mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising sirolimus and human albumin (such as human serum albumin), wherein the average diameter of the nanoparticles is about 10 nm to about 150 nm. In some embodiments, the mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising sirolimus and human albumin (such as human serum albumin), wherein the average diameter of the nanoparticles is about 40 nm to about 120 nm.

在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白(諸如人類白蛋白或人類血清白蛋白),其中該等奈米粒子之平均直徑不超過約200 nm,其中組合物中白蛋白與mTOR抑制劑(例如,西羅莫司)之重量比不超過約10:1 (諸如約10:1或約9:1或約8:1)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白(諸如人類白蛋白或人類血清白蛋白),其中該等奈米粒子之平均直徑不超過約150 nm,其中組合物中白蛋白與mTOR抑制劑(例如,西羅莫司)之重量比不超過約10:1 (諸如約10:1或約9:1或約8:1)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白(諸如人類白蛋白或人類血清白蛋白),其中該等奈米粒子之平均直徑為約150 nm,其中組合物中白蛋白與mTOR抑制劑(例如,西羅莫司)之重量比不超過約10:1 (諸如約10:1或約9:1或約8:1)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含西羅莫司及人類白蛋白(諸如人類血清白蛋白),其中奈米粒子之平均直徑不超過約150 nm (例如約100 nm),其中組合物中白蛋白與mTOR抑制劑之重量比為約10:1或約9:1或約8:1。在一些實施例中,奈米粒子之平均直徑為約10 nm至約150 nm。在一些實施例中,奈米粒子之平均直徑為約40 nm至約120 nm。In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (e.g., a limus drug, e.g., sirolimus, or a derivative or analog thereof) and albumin (e.g., human albumin or human serum albumin), wherein the average diameter of the nanoparticles is no more than about 200 nm, wherein the weight ratio of albumin to mTOR inhibitor (e.g., sirolimus) in the composition is no more than about 10:1 (e.g., about 10:1 or about 9:1 or about 8:1). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (e.g., a limus drug, e.g., sirolimus, or a derivative or analog thereof) and albumin (e.g., human albumin or human serum albumin), wherein the average diameter of the nanoparticles is no more than about 150 nm, wherein the weight ratio of albumin to mTOR inhibitor (e.g., sirolimus) in the composition is no more than about 10:1 (e.g., about 10:1 or about 9:1 or about 8:1). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (e.g., a limus drug, e.g., sirolimus or a derivative or analog thereof) and albumin (e.g., human albumin or human serum albumin), wherein the nanoparticles have an average diameter of about 150 nm, wherein the weight ratio of albumin to mTOR inhibitor (e.g., sirolimus) in the composition is no more than about 10:1 (e.g., about 10:1 or about 9:1 or about 8:1). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein include nanoparticles comprising sirolimus and human albumin (e.g., human serum albumin), wherein the average diameter of the nanoparticles is no more than about 150 nm (e.g., about 100 nm), wherein the weight ratio of albumin to mTOR inhibitor in the composition is about 10:1, or about 9:1, or about 8:1. In some embodiments, the average diameter of the nanoparticles is about 10 nm to about 150 nm. In some embodiments, the average diameter of the nanoparticles is about 40 nm to about 120 nm.

在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含與白蛋白(諸如人類白蛋白或人類血清白蛋白)締合(例如用其包覆)之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含與白蛋白(諸如人類白蛋白或人類血清白蛋白)締合(例如,用其包覆)之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中奈米粒子之平均直徑不超過約200 nm。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含與白蛋白(諸如人類白蛋白或人類血清白蛋白)締合(例如,用其包覆)之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中奈米粒子之平均直徑不超過約150 nm。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含與白蛋白(諸如人類白蛋白或人類血清白蛋白)締合(例如,用其包覆)之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中奈米粒子之平均直徑為約10 nm至約150 nm。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含與白蛋白(諸如人類白蛋白或人類血清白蛋白)締合(例如,用其包覆)之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中奈米粒子之平均直徑為約40 nm至約120 nm。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含與人類白蛋白(諸如人類血清白蛋白)締合(例如,用其包覆)之西羅莫司,其中奈米粒子之平均直徑不超過約150 nm (例如,約100 nm)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含與人類白蛋白(諸如人類血清白蛋白)締合(例如,用其包覆)之西羅莫司,其中奈米粒子之平均直徑為約10 nm至約150 nm。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含與人類白蛋白(諸如人類血清白蛋白)締合(例如,用其包覆)之西羅莫司,其中奈米粒子之平均直徑為約40 nm至約120 nm。In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) conjugated to (e.g., coated with) an albumin (such as human albumin or human serum albumin). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) conjugated to (e.g., coated with) an albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles is no more than about 200 nm. In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) conjugated to (e.g., coated with) an albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles is no more than about 150 nm. In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) conjugated to (e.g., coated with) an albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles is about 10 nm to about 150 nm. In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein include nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) conjugated to (e.g., coated with) an albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles is about 40 nm to about 120 nm. In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein include nanoparticles comprising sirolimus conjugated to (e.g., coated with) a human albumin (such as human serum albumin), wherein the average diameter of the nanoparticles is no more than about 150 nm (e.g., about 100 nm). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising sirolimus conjugated to (e.g., coated with) human albumin (e.g., human serum albumin), wherein the average diameter of the nanoparticles is from about 10 nm to about 150 nm. In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising sirolimus conjugated to (e.g., coated with) human albumin (e.g., human serum albumin), wherein the average diameter of the nanoparticles is from about 40 nm to about 120 nm.

在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含與白蛋白(諸如人類白蛋白或人類血清白蛋白)締合(例如,用其包覆)之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中組合物中白蛋白與mTOR抑制劑之重量比不超過約10:1 (諸如約10:1或約9:1或約8:1)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含與白蛋白(諸如人類白蛋白或人類血清白蛋白)締合(例如,用其包覆)之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中該等奈米粒子之平均直徑不超過約200 nm,其中組合物中白蛋白與mTOR抑制劑之重量比不超過約10:1 (諸如約10:1或約9:1或約8:1)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含與白蛋白(諸如人類白蛋白或人類血清白蛋白)締合(例如,用其包覆)之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中該等奈米粒子之平均直徑不超過約150 nm,其中組合物中白蛋白與mTOR抑制劑之重量比不超過約10:1 (諸如約10:1或約9:1或約8:1)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含與白蛋白(諸如人類白蛋白或人類血清白蛋白)締合(例如,用其包覆)之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中該等奈米粒子之平均直徑為約150 nm,其中組合物中白蛋白與mTOR抑制劑之重量比不超過約10:1 (諸如約10:1或約9:1或約8:1)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含與人類白蛋白(諸如人類血清白蛋白)締合(例如,用其包覆)之西羅莫司,其中奈米粒子之平均直徑不超過約150 nm (例如約100 nm),其中組合物中白蛋白與西羅莫司之重量比為約10:1或約9:1或約8:1。在一些實施例中,奈米粒子之平均直徑為約10 nm至約150 nm。在一些實施例中,奈米粒子之平均直徑為約40 nm至約120 nm。In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) associated with (e.g., coated with) an albumin (such as human albumin or human serum albumin), wherein the weight ratio of albumin to mTOR inhibitor in the composition does not exceed about 10:1 (e.g., about 10:1 or about 9:1 or about 8:1). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) conjugated to (e.g., coated with) an albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles is no more than about 200 nm, wherein the weight ratio of albumin to mTOR inhibitor in the composition is no more than about 10:1 (e.g., about 10:1 or about 9:1 or about 8:1). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) associated with (e.g., coated with) an albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles is no more than about 150 nm, wherein the weight ratio of albumin to mTOR inhibitor in the composition is no more than about 10:1 (e.g., about 10:1 or about 9:1 or about 8:1). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) conjugated to (e.g., coated with) an albumin (such as human albumin or human serum albumin), wherein the nanoparticles have an average diameter of about 150 nm, wherein the weight ratio of albumin to mTOR inhibitor in the composition does not exceed about 10:1 (e.g., about 10:1 or about 9:1 or about 8:1). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein include nanoparticles comprising sirolimus associated with (e.g., coated with) human albumin (e.g., human serum albumin), wherein the average diameter of the nanoparticles is no more than about 150 nm (e.g., about 100 nm), wherein the weight ratio of albumin to sirolimus in the composition is about 10:1, or about 9:1, or about 8:1. In some embodiments, the average diameter of the nanoparticles is about 10 nm to about 150 nm. In some embodiments, the average diameter of the nanoparticles is about 40 nm to about 120 nm.

在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含經白蛋白(諸如人類白蛋白或人類血清白蛋白)穩定之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含經白蛋白(諸如人類白蛋白或人類血清白蛋白)穩定之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中奈米粒子之平均直徑不超過約200 nm。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含經白蛋白(諸如人類白蛋白或人類血清白蛋白)穩定之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中奈米粒子之平均直徑不超過約150 nm。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含經白蛋白(諸如人類白蛋白或人類血清白蛋白)穩定之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中奈米粒子之平均直徑不超過約150 nm (例如,約100 nm)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含經人類白蛋白(諸如人類血清白蛋白)穩定之西羅莫司,其中奈米粒子之平均直徑不超過約150 nm (例如,約100 nm)。在一些實施例中,奈米粒子之平均直徑為約10 nm至約150 nm。在一些實施例中,奈米粒子之平均直徑為約40 nm至約120 nm。In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) stabilized with albumin (such as human albumin or human serum albumin). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) stabilized with albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles is no more than about 200 nm. In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) stabilized with albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles is no more than about 150 nm. In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) stabilized with albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles is no more than about 150 nm (e.g., about 100 nm). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein include nanoparticles comprising sirolimus stabilized by human albumin (e.g., human serum albumin), wherein the average diameter of the nanoparticles is no more than about 150 nm (e.g., about 100 nm). In some embodiments, the average diameter of the nanoparticles is about 10 nm to about 150 nm. In some embodiments, the average diameter of the nanoparticles is about 40 nm to about 120 nm.

在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含經白蛋白(諸如人類白蛋白或人類血清白蛋白)穩定之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中組合物中白蛋白與mTOR抑制劑之重量比不超過約10:1 (諸如約10:1或約9:1或約8:1)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含經白蛋白(諸如人類白蛋白或人類血清白蛋白)穩定之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中該等奈米粒子之平均直徑不超過約200 nm,其中組合物中白蛋白與mTOR抑制劑之重量比不超過約10:1 (諸如約10:1或約9:1或約8:1)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含經白蛋白(諸如人類白蛋白或人類血清白蛋白)穩定之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中該等奈米粒子之平均直徑不超過約150 nm,其中組合物中白蛋白與mTOR抑制劑之重量比不超過約10:1 (諸如約10:1或約9:1或約8:1)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含經白蛋白(諸如人類白蛋白或人類血清白蛋白)穩定之mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物),其中該等奈米粒子之平均直徑為約150 nm,其中組合物中白蛋白與mTOR抑制劑之重量比不超過約10:1 (諸如約10:1或約9:1或約8:1)。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子,該等奈米粒子包含經人類白蛋白(諸如人類血清白蛋白)穩定之西羅莫司,其中奈米粒子之平均直徑不超過約150 nm (例如約100 nm),其中組合物中白蛋白與西羅莫司之重量比為約10:1或約9:1或約8:1。在一些實施例中,奈米粒子之平均直徑為約10 nm至約150 nm。在一些實施例中,奈米粒子之平均直徑為約40 nm至約120 nm。In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) stabilized by albumin (such as human albumin or human serum albumin), wherein the weight ratio of albumin to mTOR inhibitor in the composition does not exceed about 10:1 (such as about 10:1 or about 9:1 or about 8:1). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) stabilized by albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles is no more than about 200 nm, wherein the weight ratio of albumin to mTOR inhibitor in the composition is no more than about 10:1 (such as about 10:1 or about 9:1 or about 8:1). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) stabilized by albumin (such as human albumin or human serum albumin), wherein the average diameter of the nanoparticles is no more than about 150 nm, wherein the weight ratio of albumin to mTOR inhibitor in the composition is no more than about 10:1 (such as about 10:1 or about 9:1 or about 8:1). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein comprise nanoparticles comprising an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) stabilized by albumin (such as human albumin or human serum albumin), wherein the nanoparticles have an average diameter of about 150 nm, wherein the weight ratio of albumin to mTOR inhibitor in the composition does not exceed about 10:1 (such as about 10:1 or about 9:1 or about 8:1). In some embodiments, mTOR inhibitor nanoparticle compositions useful with the methods described herein include nanoparticles comprising sirolimus stabilized by human albumin (e.g., human serum albumin), wherein the average diameter of the nanoparticles is no more than about 150 nm (e.g., about 100 nm), wherein the weight ratio of albumin to sirolimus in the composition is about 10: 1, or about 9: 1, or about 8: 1. In some embodiments, the average diameter of the nanoparticles is about 10 nm to about 150 nm. In some embodiments, the average diameter of the nanoparticles is about 40 nm to about 120 nm.

在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包含奈米粒子白蛋白結合型西羅莫司。在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物為奈米粒子白蛋白結合型西羅莫司。奈米粒子白蛋白結合型西羅莫司為經人類白蛋白USP穩定之西羅莫司調配物,其可分散於可直接注射生理溶液中。人類白蛋白與西羅莫司之重量比為約8:1至約10:1。當分散於適合的水性介質(諸如0.9%氯化鈉注射液或5%右旋糖注射液)中時,奈米粒子白蛋白結合型西羅莫司形成西羅莫司之穩定膠態懸浮液。膠態懸浮液中之奈米粒子之平均粒徑為約100奈米。由於HSA可自由地溶於水中,因此奈米粒子白蛋白結合型西羅莫司可在介於稀(0.1 mg/ml西羅莫司或其衍生物)至濃(20 mg/ml西羅莫司或其衍生物),包括例如約2 mg/ml至約8 mg/ml,或約5 mg/ml範圍內之廣泛濃度範圍中復原。In some embodiments, the mTOR inhibitor nanoparticle composition that can be used with the methods described herein comprises nanoparticle albumin-bound sirolimus. In some embodiments, the mTOR inhibitor nanoparticle composition that can be used with the methods described herein is nanoparticle albumin-bound sirolimus. Nanoparticle albumin-bound sirolimus is a sirolimus formulation stabilized by human albumin USP that can be dispersed in a directly injectable physiological solution. The weight ratio of human albumin to sirolimus is about 8:1 to about 10:1. When dispersed in a suitable aqueous medium (such as 0.9% sodium chloride injection or 5% dextrose injection), nanoparticle albumin-bound sirolimus forms a stable colloidal suspension of sirolimus. The average particle size of the nanoparticles in the colloidal suspension is about 100 nanometers. Since HSA is freely soluble in water, nanoparticle albumin-bound sirolimus can be reconstituted in a wide range of concentrations ranging from dilute (0.1 mg/ml sirolimus or its derivative) to concentrated (20 mg/ml sirolimus or its derivative), including, for example, about 2 mg/ml to about 8 mg/ml, or about 5 mg/ml.

製備奈米粒子組合物之方法為此項技術中已知的。舉例而言,含有mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)及白蛋白(諸如人類血清白蛋白或人類白蛋白)之奈米粒子可在高剪切力條件(例如,音波處理、高壓均質化或其類似者)下製備。此等方法揭示於例如美國專利第5,916,596號、第6,506,405號、第6,749,868號、第6,537,579號、第7,820,788號及第8,911,786號,以及美國專利公開案第2007/0082838號、第2006/0263434號及PCT申請案WO 08/137148中。Methods for preparing nanoparticle compositions are known in the art. For example, nanoparticles containing an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) and an albumin (such as human serum albumin or human albumin) can be prepared under high shear conditions (e.g., sonication, high pressure homogenization, or the like). Such methods are disclosed in, for example, U.S. Patent Nos. 5,916,596, 6,506,405, 6,749,868, 6,537,579, 7,820,788, and 8,911,786, and in U.S. Patent Publication Nos. 2007/0082838, 2006/0263434, and PCT Application WO 08/137148.

簡言之,mTOR抑制劑(諸如利莫司藥物,例如西羅莫司或其衍生物或類似物)溶解於有機溶劑中,且該溶液可添加至白蛋白溶液。使混合物經受高壓均質化。有機溶劑可隨後藉由蒸發移除。獲得之分散液可另外凍乾。適合的有機溶劑包括例如酮、酯、醚、氯化溶劑及此項技術中已知之其他溶劑。舉例而言,有機溶劑可為二氯甲烷或三氯甲烷/乙醇(例如,比率為1:10、1:9、1:8、1:7、1:6、1:5、1:4、1:3、1:2、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1或10:1)。 mTOR抑制劑奈米粒子組合物中之其他組分 Briefly, an mTOR inhibitor (such as a limus drug, e.g., sirolimus or a derivative or analog thereof) is dissolved in an organic solvent, and the solution can be added to an albumin solution. The mixture is subjected to high pressure homogenization. The organic solvent can then be removed by evaporation. The resulting dispersion can be additionally lyophilized. Suitable organic solvents include, for example, ketones, esters, ethers, chlorinated solvents, and other solvents known in the art. For example, the organic solvent may be dichloromethane or chloroform/ethanol (e.g., a ratio of 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, or 10:1). Other components in the mTOR inhibitor nanoparticle composition

在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物存在於包括其他藥劑、賦形劑或穩定劑之組合物中。舉例而言,為了藉由增加奈米粒子之負ξ電位而提高穩定性,可添加某些帶負電組分。此類帶負電組分包括但不限於由甘膽酸、膽酸、鵝膽酸、牛磺膽酸、鵝去氧甘膽酸、牛磺鵝去氧膽酸、石膽酸、熊去氧膽酸、去氫膽酸及其他膽酸組成之膽酸的膽汁鹽;磷脂,包括基於卵磷脂(蛋黃)之磷脂,其包括以下磷脂醯膽鹼:棕櫚醯油醯基磷脂醯膽鹼、棕櫚醯亞油醯基磷脂醯膽鹼、硬脂醯亞油醯基磷脂醯膽鹼、硬脂醯油醯基磷脂醯膽鹼、硬脂醯花生醯基磷脂醯膽鹼及二棕櫚醯基磷脂醯膽鹼。其他磷脂包括L-α-二肉豆蔻醯基磷脂醯膽鹼(DMPC)、二油醯基磷脂醯膽鹼(DOPC)、二硬脂醯基磷脂醯膽鹼(DSPC)、氫化大豆磷脂醯膽鹼(HSPC)及其他相關化合物。帶負電界面活性劑或乳化劑亦適用作添加劑,例如膽固醇硫酸鈉及其類似物。In some embodiments, the mTOR inhibitor nanoparticle compositions that can be used with the methods described herein are present in a composition that includes other agents, excipients, or stabilizers. For example, certain negatively charged components can be added to improve stability by increasing the negative zeta potential of the nanoparticles. Such negatively charged components include, but are not limited to, bile salts of cholic acid composed of glycocholic acid, cholic acid, chelic acid, taurocholic acid, chelic deoxycholic acid, taurodeoxycholic acid, cholic acid, ursodeoxycholic acid, dehydrocholic acid, and other cholic acids; phospholipids, including those based on lecithin (egg yolk); The phospholipids include the following phospholipid acyl choline: palmityl oleyl phosphatidyl acyl choline, palmityl linoleyl phosphatidyl acyl choline, stearyl linoleyl phosphatidyl acyl choline, stearyl oleyl phosphatidyl acyl choline, stearyl arachidyl phosphatidyl acyl choline and disalmitoyl phosphatidyl acyl choline. Other phospholipids include L-α-dimyristylphosphatidylcholine (DMPC), dioleylphosphatidylcholine (DOPC), distearylphosphatidylcholine (DSPC), hydrogenated soybean phosphatidylcholine (HSPC) and other related compounds. Negatively charged surfactants or emulsifiers are also suitable as additives, such as sodium cholesterol sulfate and its analogs.

在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物適合於向人類投與。在一些實施例中,組合物適合於向哺乳動物投與,諸如在獸醫學情形、家養寵物及農畜中。存在多種適合的mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)之調配物(參見例如美國專利第5,916,596號及第6,096,331號)。以下調配物及方法僅為例示性的且決不為限制性的。適合於經口投與之調配物可由以下組成:(a)液體溶液,諸如溶解於稀釋劑,諸如水、鹽水或橙汁中之有效量的化合物;(b)膠囊、藥囊或錠劑,其各自含有預定量的活性成分,呈固體或顆粒形式;(c)於適當液體中之懸浮液;及(d)適合之乳液。錠劑形式可包括以下中之一或多者:乳糖、甘露醇、玉米澱粉、馬鈴薯澱粉、微晶纖維素、阿拉伯膠、明膠、膠態二氧化矽、交聯羧甲基纖維素鈉、滑石、硬脂酸鎂、硬脂酸及其他賦形劑、著色劑、稀釋劑、緩衝劑、濕潤劑、防腐劑、調味劑及藥理學上相容之賦形劑。口含錠形式可包含調味劑,通常為蔗糖及阿拉伯膠或黃蓍中之活性成分,以及片劑,其在惰性基質(諸如明膠及甘油,或蔗糖及阿拉伯膠、乳液、凝膠及其類似物)中包含活性成分,該惰性基質除了含有活性成分以外,亦含有諸如此項技術中已知之賦形劑。In some embodiments, the mTOR inhibitor nanoparticle compositions that can be used with the methods described herein are suitable for administration to humans. In some embodiments, the compositions are suitable for administration to mammals, such as in veterinary situations, domestic pets, and farm animals. There are a variety of suitable formulations of mTOR inhibitor nanoparticle compositions (such as sirolimus/albumin nanoparticle compositions) (see, e.g., U.S. Patent Nos. 5,916,596 and 6,096,331). The following formulations and methods are exemplary only and are by no means limiting. Formulations suitable for oral administration may consist of: (a) liquid solutions, such as an effective amount of the compound dissolved in a diluent, such as water, saline or orange juice; (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient in solid or particulate form; (c) suspensions in appropriate liquids; and (d) suitable emulsions. Tablet forms may include one or more of the following: lactose, mannitol, corn starch, potato starch, microcrystalline cellulose, gum arabic, gelatin, colloidal silicon dioxide, cross-linked sodium carboxymethyl cellulose, talc, magnesium stearate, stearic acid and other formulators, colorants, diluents, buffers, wetting agents, preservatives, flavoring agents and pharmacologically compatible formulators. Lozenge forms may contain a flavoring, usually the active ingredient in sucrose and acacia or tragacanth, and tablets comprise the active ingredient in an inert matrix such as gelatin and glycerin, or sucrose and acacia, emulsions, gels, and the like which contain, in addition to the active ingredient, excipients such as those known in the art.

適合的載劑、賦形劑及稀釋劑之實例包括但不限於:乳糖、右旋糖、蔗糖、山梨糖醇、甘露醇、澱粉、阿拉伯膠、磷酸鈣、海藻酸鹽、黃蓍、明膠、矽酸鈣、微晶纖維素、聚乙烯吡咯啶酮、纖維素、水、鹽水溶液、糖漿、甲基纖維素、甲基羥基苯甲酸鹽及丙基羥基苯甲酸鹽、滑石、硬脂酸鎂及礦物油。調配物可另外包括潤滑劑、濕潤劑、乳化劑及懸浮劑、防腐劑、甜味劑或調味劑。Examples of suitable carriers, excipients and diluents include, but are not limited to, lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum arabic, calcium phosphate, alginate, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, saline solution, syrup, methylcellulose, methylhydroxybenzoate and propylhydroxybenzoate, talc, magnesium stearate and mineral oil. The formulation may additionally include lubricants, wetting agents, emulsifiers and suspending agents, preservatives, sweeteners or flavoring agents.

適合於非經腸投與之調配物包括可含有抗氧化劑、緩衝劑、抑菌劑及使調配物與預期接受者血液相容之溶質的水性及非水性等張無菌注射溶液;及可包括懸浮劑、增溶劑、增稠劑、穩定劑及防腐劑之水性及非水性無菌懸浮液。調配物可存在於諸如安瓿及小瓶之單位劑量或多劑量密封容器中,且可儲存在冷凍乾燥(凍乾)之條件下,僅需要在即將使用前添加例如水之無菌液體賦形劑即可注射。即用型注射溶液及懸浮液可由先前所描述之種類之無菌散劑、顆粒及錠劑製備。可注射調配物較佳。Formulations suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions that may contain antioxidants, buffers, bacteriostats, and solutes that render the formulation compatible with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions that may include suspending agents, solubilizing agents, thickening agents, stabilizers, and preservatives. The formulations may be present in unit-dose or multi-dose sealed containers such as ampoules and vials, and may be stored in freeze-dried (lyophilized) conditions requiring only the addition of a sterile liquid excipient such as water immediately prior to use for injection. Ready-to-use injection solutions and suspensions may be prepared from sterile powders, granules, and tablets of the type previously described. Injectable formulations are preferred.

在一些實施例中,將可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物調配為具有約4.5至約9.0之pH範圍,包括例如約5.0至約8.0、約6.5至約7.5及約6.5至約7.0中之任一者的pH範圍。在一些實施例中,將組合物之pH調配至不低於約6,包括例如不低於約6.5、7或8中之任一者(諸如約8)。亦可藉由添加適合之張力調節劑,諸如甘油而使得組合物與血液等張。 西羅莫司(雷帕黴素)之基於白蛋白之奈米粒子組合物 In some embodiments, the mTOR inhibitor nanoparticle compositions that can be used with the methods described herein are formulated to have a pH range of about 4.5 to about 9.0, including, for example, a pH range of about 5.0 to about 8.0, about 6.5 to about 7.5, and about 6.5 to about 7.0. In some embodiments, the pH of the composition is formulated to be no less than about 6, including, for example, no less than about 6.5, 7, or 8 (such as about 8). The composition can also be made isotonic with blood by adding a suitable tonicity regulator, such as glycerol. Albumin-based nanoparticle compositions of sirolimus (rapamycin)

在一些實施例中,可與本文中所描述之方法一起使用之mTOR抑制劑奈米粒子組合物包括(a)包括西羅莫司及白蛋白之奈米粒子,及(b)包括西羅莫司及白蛋白之非奈米粒子部分。奈米粒子之西羅莫司及白蛋白在奈米粒子中彼此締合。舉例而言,奈米粒子可包括具有白蛋白之包衣,其包圍包含西羅莫司之核心。在組合物之非奈米粒子部分中,西羅莫司及白蛋白可或可不彼此締合(亦即西羅莫司可呈與白蛋白之可逆結合平衡),但並不以形成奈米粒子之方式彼此締合。亦即,奈米粒子組合物可在組合物之奈米粒子部分中包括奈米粒子結合之白蛋白及奈米粒子結合之西羅莫司,且在組合物之非奈米粒子部分中包括非奈米粒子白蛋白及非奈米粒子西羅莫司。如本文所使用,「在奈米粒子中」與「在奈米粒子部分中」同義地使用。奈米粒子之白蛋白可進一步與組合物之非奈米粒子部分中之白蛋白區分;舉例而言,奈米粒子中白蛋白之寡聚分佈可不同於組合物之非奈米粒子部分中白蛋白之寡聚分佈。寡聚物分佈意謂與組合物中之全部白蛋白相比之各種白蛋白物種之百分比。白蛋白物種之類型包括白蛋白單體、二聚體、三聚體、寡聚物及聚合物。如本文所使用,「白蛋白單體」或「單體白蛋白」係指具有一個且僅一個白蛋白單元之白蛋白物種;「白蛋白二聚體」或「二聚白蛋白」係指具有兩個且僅兩個白蛋白單元之白蛋白物種;「白蛋白三聚體」或「三聚白蛋白」係指具有三個且僅三個白蛋白單元之白蛋白物種;「白蛋白聚合物」係指具有比白蛋白單體及白蛋白二聚體更高分子量之白蛋白物種;「白蛋白寡聚物」或「寡聚白蛋白」係指與基於UV之尺寸排阻層析峰相關的低分子量聚合白蛋白物種,該峰在與白蛋白二聚體及較高分子量聚合白蛋白物種相關之峰之間觀測到。In some embodiments, the mTOR inhibitor nanoparticle composition that can be used with the methods described herein includes (a) nanoparticles including sirolimus and albumin, and (b) a non-nanoparticle portion including sirolimus and albumin. The sirolimus and albumin of the nanoparticle are associated with each other in the nanoparticle. For example, the nanoparticle may include a coating with albumin that surrounds a core comprising sirolimus. In the non-nanoparticle portion of the composition, sirolimus and albumin may or may not be associated with each other (i.e., sirolimus may be in a reversible binding equilibrium with albumin), but are not associated with each other in a manner that forms nanoparticles. That is, the nanoparticle composition may include nanoparticle-bound albumin and nanoparticle-bound sirolimus in the nanoparticle portion of the composition, and include non-nanoparticle albumin and non-nanoparticle sirolimus in the non-nanoparticle portion of the composition. As used herein, "in the nanoparticle" is used synonymously with "in the nanoparticle portion." The albumin of the nanoparticle can be further distinguished from the albumin in the non-nanoparticle portion of the composition; for example, the oligomeric distribution of albumin in the nanoparticle can be different from the oligomeric distribution of albumin in the non-nanoparticle portion of the composition. Oligomer distribution means the percentage of various albumin species compared to the total albumin in the composition. Types of albumin species include albumin monomers, dimers, trimers, oligomers, and polymers. As used herein, "albumin monomer" or "monomeric albumin" refers to an albumin species having one and only one albumin unit; "albumin dimer" or "dimeric albumin" refers to an albumin species having two and only two albumin units; "albumin trimer" or "trimeric albumin" refers to an albumin species having three and only three albumin units; "albumin polymer" refers to an albumin species having a higher molecular weight than albumin monomer and albumin dimer; "albumin oligomer" or "oligomeric albumin" refers to a low molecular weight polymeric albumin species associated with a UV-based size exclusion chromatography peak that is observed between the peaks associated with albumin dimer and higher molecular weight polymeric albumin species.

奈米粒子之白蛋白與奈米粒子之西羅莫司締合,使得奈米粒子懸浮液具有高濃度之西羅莫司,這允許組合物用作醫藥組合物以用於治療某些疾病,諸如癌症。所製造之奈米粒子(其可例如使用本文所描述之方法製得)可經調配、過濾或以其他方式處理以獲得醫藥組合物,該醫藥組合物可適用於人類個體之醫療用途。The albumin of the nanoparticles is conjugated to the sirolimus of the nanoparticles, so that the nanoparticle suspension has a high concentration of sirolimus, which allows the composition to be used as a pharmaceutical composition for the treatment of certain diseases, such as cancer. The manufactured nanoparticles (which can be made, for example, using the methods described herein) can be formulated, filtered or otherwise processed to obtain a pharmaceutical composition, which can be suitable for medical use in human subjects.

一般而言,為了製造本文中所描述之西羅莫司醫藥組合物,將西羅莫司溶解於有機溶劑中。適合的有機溶劑包括例如酮、酯、醚、氯化溶劑及此項技術中已知之其他溶劑。舉例而言,有機溶劑可為二氯甲烷/乙醇、三氯甲烷/乙醇或三氯甲烷/三級丁醇(例如以約1:9、1:8、1:7、1:6、1:5、1:4、1:3、1:2、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1或9:1中之任一者之比率或以約3:7、5:7、4:6、5:5、6:5、8:5、9:5、9.5:5、5:3、7:3、6:4或9.5:0.5中之任一者之比率)之混合物。在一些實施例中,有機溶劑包含約10體積%與約50體積%之間的三級丁醇。在一些實施例中,有機溶劑包含約10體積%、15體積%、20體積%、25體積%、30體積%、35體積%、40體積%、45體積%或50體積%中之任一者的三級丁醇。在一些實施例中,有機溶劑包含約10-15體積%、15-20體積%、20-25體積%、25-30體積%、30-35體積%、35-40體積%、40-45體積%或45-50體積%,或此類範圍之任何組合中之任一者的三級丁醇。在一些實施例中,有機溶劑包含約50體積%與約90體積%之間的三氯甲烷。在一些實施例中,有機溶劑包含約50體積%、55體積%、60體積%、65體積%、70體積%、75體積%、80體積%、85體積%或90體積%中之任一者的三氯甲烷。在一些實施例中,有機溶劑包含約50-55體積%、55-60體積%、60-65體積%、65-70體積%、70-75體積%、75-80體積%、80-85體積%或85-90體積%,或此類範圍之任何組合中之任一者的三氯甲烷。在一些實施例中,有機溶劑包含約10體積%與約50體積%之間的三級丁醇及約50體積%與約90體積%之間的三氯甲烷。在一些實施例中,有機溶劑包含體積比為約1:1至約1:9,諸如約1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1及9:1中之任一者的三氯甲烷及三級丁醇。Generally, to prepare the sirolimus pharmaceutical compositions described herein, sirolimus is dissolved in an organic solvent. Suitable organic solvents include, for example, ketones, esters, ethers, chlorinated solvents, and other solvents known in the art. For example, the organic solvent can be a mixture of dichloromethane/ethanol, chloroform/ethanol, or chloroform/tert-butyl alcohol (e.g., at a ratio of about 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, or 9:1, or at a ratio of about 3:7, 5:7, 4:6, 5:5, 6:5, 8:5, 9:5, 9.5:5, 5:3, 7:3, 6:4, or 9.5:0.5). In some embodiments, the organic solvent comprises between about 10% and about 50% by volume of tert-butyl alcohol. In some embodiments, the organic solvent comprises about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% by volume of tertiary butanol. In some embodiments, the organic solvent comprises about 10-15%, 15-20%, 20-25%, 25-30%, 30-35%, 35-40%, 40-45%, or 45-50% by volume of tertiary butanol, or any combination of such ranges. In some embodiments, the organic solvent comprises between about 50% and about 90% by volume of chloroform. In some embodiments, the organic solvent comprises about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, or 90% by volume of chloroform. In some embodiments, the organic solvent comprises about 50-55%, 55-60%, 60-65%, 65-70%, 70-75%, 75-80%, 80-85%, or 85-90% by volume of chloroform, or any combination of such ranges. In some embodiments, the organic solvent comprises between about 10% and about 50% by volume of tertiary butanol and between about 50% and about 90% by volume of chloroform. In some embodiments, the organic solvent comprises chloroform and tertiary butanol in a volume ratio of about 1:1 to about 1:9, such as about any one of 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, and 9:1.

將白蛋白(諸如重組白蛋白,例如本文所揭示之NOVOZYME TM重組白蛋白或INTRIVIA TM重組白蛋白)溶解於水性溶液(諸如水)中且與西羅莫司溶液組合以形成粗乳液。混合物經受高壓均質化(例如使用Avestin、APV Gaulin、MICROFLUIDIZER™ (諸如獲自Microfluidics之MICROFLUIDIZER™處理器M-110EH)、Stansted或Ultra Turrax均質機)。乳液可循環通過高壓均質機約2至約100個循環,諸如約5至約50個循環或約6至約20個循環(例如,約6、8、10、12、14、16、18或20個循環中之任一者)。有機溶劑可隨後藉由使用出於此目的已知之適合的設備進行蒸發而移除,適合的設備包括但不限於:旋轉式蒸發器、降膜式蒸發器、刮膜式蒸發器、噴霧乾燥器及可以分批模式或以連續操作來操作之類似設備。在一些實施例中,蒸發器為刮膜式蒸發器。溶劑可在減壓下(諸如在約25 mm Hg、30 mm Hg、40 mm Hg、50 mm Hg、100 mm Hg、200 mm Hg或300 mm Hg中之任一者下)移除。用於在減壓下移除溶劑之時間的量可基於調配物之體積而調整。舉例而言,對於以300 mL規模產生之調配物,溶劑可在約1 mm Hg至約300 mm Hg (例如,約5 mm Hg-100 mm Hg、10 mm Hg-50 mm Hg、20 mm Hg-40 mm Hg或25 mm Hg中之任一者)下持續約5分鐘至約60分鐘(例如,約7、8、9、10、11、12、13、14、15、16、18、20、25或30分鐘中之任一者)進行移除。獲得之分散液可另外凍乾。 Albumin (e.g., recombinant albumin, e.g., NOVOZYME recombinant albumin or INTRIVIA recombinant albumin disclosed herein) is dissolved in an aqueous solution (e.g., water) and combined with a sirolimus solution to form a crude emulsion. The mixture is subjected to high pressure homogenization (e.g., using Avestin, APV Gaulin, MICROFLUIDIZER™ (e.g., MICROFLUIDIZER™ Processor M-110EH from Microfluidics), Stansted, or Ultra Turrax homogenizers). The emulsion can be cycled through the high pressure homogenizer for about 2 to about 100 cycles, such as about 5 to about 50 cycles or about 6 to about 20 cycles (e.g., any of about 6, 8, 10, 12, 14, 16, 18, or 20 cycles). The organic solvent may then be removed by evaporation using suitable equipment known for this purpose, including, but not limited to, a rotary evaporator, a falling film evaporator, a wiped film evaporator, a spray dryer, and similar equipment that can be operated in batch mode or in continuous operation. In some embodiments, the evaporator is a wiped film evaporator. The solvent may be removed under reduced pressure, such as at any of about 25 mm Hg, 30 mm Hg, 40 mm Hg, 50 mm Hg, 100 mm Hg, 200 mm Hg, or 300 mm Hg. The amount of time used to remove the solvent under reduced pressure can be adjusted based on the volume of the formulation. For example, for a formulation produced at a 300 mL scale, the solvent can be removed at about 1 mm Hg to about 300 mm Hg (e.g., any one of about 5 mm Hg-100 mm Hg, 10 mm Hg-50 mm Hg, 20 mm Hg-40 mm Hg, or 25 mm Hg) for about 5 minutes to about 60 minutes (e.g., any one of about 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 25, or 30 minutes). The resulting dispersion can be additionally lyophilized.

本文中所描述之包含西羅莫司及白蛋白之奈米粒子組合物(諸如醫藥組合物)可呈液體(例如,作為奈米粒子懸浮液)或粉末形式。舉例而言,在一些實施例中,組合物為液體奈米粒子懸浮液(例如在凍乾之前)。在一些實施例中,組合物為復原懸浮液(例如在諸如鹽水溶液之水性溶液中)。在一些實施例中,組合物經乾燥,諸如凍乾。在一些實施例中,組合物為無菌的。在一些實施例中,組合物含於密封容器,諸如密封小瓶(例如玻璃瓶)或密封袋中。The nanoparticle compositions (such as pharmaceutical compositions) comprising sirolimus and albumin described herein can be in liquid (e.g., as a nanoparticle suspension) or powder form. For example, in some embodiments, the composition is a liquid nanoparticle suspension (e.g., before lyophilization). In some embodiments, the composition is a reconstituted suspension (e.g., in an aqueous solution such as a saline solution). In some embodiments, the composition is dried, such as lyophilized. In some embodiments, the composition is sterile. In some embodiments, the composition is contained in a sealed container, such as a sealed vial (e.g., a glass bottle) or a sealed bag.

關於西羅莫司/白蛋白奈米粒子組合物之額外細節提供於PCT/US2020/060070中,該案之內容全文併入本文中。Additional details about sirolimus/albumin nanoparticle compositions are provided in PCT/US2020/060070, the contents of which are incorporated herein in their entirety.

例示性西羅莫司/白蛋白奈米粒子組合物為FYARRO™,其亦稱為可注射懸浮液之西羅莫司蛋白質結合粒子(奈米粒子白蛋白結合型)。關於可注射懸浮液之西羅莫司蛋白質結合粒子(奈米粒子白蛋白結合型) (亦即,FYARRO™)製備、配藥、給藥及投與時程之完整資訊可見於當地藥品說明書(對於美國,參見例如www.accessdata.fda.gov/ drugsatfda_docs/label/2021/213312lbl.pdf)。 KRAS及例示性KRAS抑制劑 An exemplary sirolimus/albumin nanoparticle composition is FYARRO™, also known as sirolimus protein-bound particles (nanoparticle albumin-bound) for injectable suspension. Complete information about the preparation, formulation, dosing, and administration schedule of sirolimus protein-bound particles (nanoparticle albumin-bound) for injectable suspension (i.e., FYARRO™) can be found in the local drug instructions (for the United States, see, e.g., www.accessdata.fda.gov/drugsatfda_docs/label/2021/213312lbl.pdf). KRAS and Exemplary KRAS Inhibitors

KRAS,RAS家族之成員為負責細胞增殖、分化及存活之信號傳導路徑之關鍵調節因子。參見例如Cox等人(2003) Nat Rev Drug Discov. 13(11): 828-851及Downward J. (2003) Nat Rev Cancer. 3(1): 11-22。KRAS為人類癌症中最頻繁突變之致癌基因且KRAS中之突變可引起持續細胞增殖及癌症發展。KRAS突變之分佈在不同人類癌症中有所不同。在對偶基因水平,大多數單核苷酸取代突變發生在五個「熱點」密碼子中之一者處:12、13、61、117及146。甘胺酸12可突變成至少八個胺基酸(A、C、D、F、L、R、S及V)。甘胺酸13可突變成至少七個胺基酸(A、C、F、P、R、S及V)。麩醯胺酸61可突變成至少六個其他胺基酸(E、H、K、L、P及R)及終止密碼子。離胺酸117可突變成至少兩個其他胺基酸(N及R)。丙胺酸146可突變成至少六個胺基酸(E、G、P、S、T及V)中之一者。在一些實施例中,術語「KRAS抑制劑」係指抑制KRAS突變蛋白之活性的任何藥劑,例如多肽、融合多肽、抗體、肽、反義寡核苷酸或小分子藥物。 KRAS G12C抑制劑 KRAS, a member of the RAS family, is a key regulator of signaling pathways responsible for cell proliferation, differentiation, and survival. See, e.g., Cox et al. (2003) Nat Rev Drug Discov. 13(11): 828-851 and Downward J. (2003) Nat Rev Cancer. 3(1): 11-22. KRAS is the most frequently mutated oncogene in human cancers and mutations in KRAS can cause sustained cell proliferation and cancer development. The distribution of KRAS mutations varies in different human cancers. At the allele level, most single nucleotide substitution mutations occur at one of five "hotspot" codons: 12, 13, 61, 117, and 146. Glycine 12 can mutate into at least eight amino acids (A, C, D, F, L, R, S, and V). Glycine 13 can mutate into at least seven amino acids (A, C, F, P, R, S and V). Glutamine 61 can mutate into at least six other amino acids (E, H, K, L, P and R) and a stop codon. Lysine 117 can mutate into at least two other amino acids (N and R). Alanine 146 can mutate into one of at least six amino acids (E, G, P, S, T and V). In some embodiments, the term "KRAS inhibitor" refers to any agent that inhibits the activity of KRAS mutant protein, such as a polypeptide, fusion polypeptide, antibody, peptide, antisense oligonucleotide or small molecule drug. KRAS G12C inhibitor

KRAS G12C突變發生在約13%之NSCLC患者,及1%至3%之大腸直腸及其他實體腫瘤中。G12C為在密碼子12處甘胺酸取代為半胱胺酸之單點突變。參見Cox等人(2003) Nat Rev Drug Discov. 13(11): 828-851;Neumann等人(2009) Pathol Res Pract. 205: 858-862;以及Biernacka等人(2016) Cancer Genet. 209(5): 195-198。此取代有利於KRAS之活化GTP結合狀態,從而擴增導致瘤形成之信號傳導路徑(參見例如Ryan等人(2018) Nat Rev Clin Oncol. 15(11): 709-720)。 The KRAS G12C mutation occurs in approximately 13% of NSCLC patients and 1% to 3% of colorectal and other solid tumors. G12C is a single-point mutation that replaces glycine with cysteine at codon 12. See Cox et al. (2003) Nat Rev Drug Discov. 13(11): 828-851; Neumann et al. (2009) Pathol Res Pract. 205: 858-862; and Biernacka et al. (2016) Cancer Genet. 209(5): 195-198. This substitution favors the activated GTP-bound state of KRAS, thereby amplifying the signaling pathway that leads to tumorigenesis (see, e.g., Ryan et al. (2018) Nat Rev Clin Oncol. 15(11): 709-720).

在一些實施例中,術語「KRAS G12C抑制劑」係指抑制KRAS G12C突變蛋白之活性的任何藥劑,例如多肽、融合多肽、抗體、肽、反義寡核苷酸或小分子藥物。在一些實施例中,KRAS G12C抑制劑直接與KRAS G12C突變蛋白相互作用以抑制蛋白質的活性。在一些實施例中,KRAS G12C抑制劑為小分子藥物。可與本文所提供之方法一起使用之例示性小分子KRAS G12C抑制劑包括但不限於例如索托拉西布(亦稱為AMG 510、LUMAKRAS™及LUMYKRAS™)、阿達格拉西布(亦稱為MRTX849)、JAB-21822 (亦稱為JAB-21000)、GDC-6036、JDQ443、D-1553、GH35、GFH925、BPI-421286、LY3537982、RMC-6291、RMC-8839、HBI-2438或JNJ-74699157。其他例示性小分子KRAS G12C抑制劑描述於例如Hillig等人(2019)《美國國家科學院院刊》116(7): 2551-2560及Sun等人(2012) Angew Chem Int Ed Engl. 51(25): 6140-6143中及以下中:WO 2020/233592、WO 2021/023247、WO 2021/083167、WO 2020/238791、WO 2021/000885、CN 112585129、CN 112552295、CN 112390818、CN 112390796、WO 2019/141250、CN 111592528、WO 2020/259432、CN 112300153、CN 112552294、WO 2020/239123、CN 110698378、CN 111377918、CN 111205286、CN 112047939、WO 2020/259513、WO 2021/023154、CN 112430234、WO 2021/063346、WO 2021/058018、CN 112225734、WO 2021/155716、CN 112159405、CN 112778302、CN 112830928、WO 2020/1027943、CN 112574199、WO 2021/037018、CN 110172089、WO 2020/156285、CN 111499634、WO 2020/177629、WO 2020/216190、WO 2020/221239、WO 2020/233592、WO 2020/238791、WO 2020/239077、WO 2020/239123、CN 112047933、CN 112047937、CN 112047948、WO 2020/259513、WO 2020/259573、WO 2020/259432、WO 2021/000885、CN 112174950、CN 112300153、WO 2021/023154、WO 2021/023247、CN 112390818、WO 2021/027943、WO 2021/027911、WO 2021/031952、CN 112390796、WO 2021/037018、CN 112442029、WO 2021/043322、WO 2021/052499、CN 112538084、CN 112552295、WO 2021/058018、WO 2021/063346、WO 2021/068898、WO 2021/078285、CN 112225734、CN 112707905、CN 112745335、WO 2021/083167、CN 112778284、WO 2021/088458、CN 112851663、WO 2021/093758、WO 2021/098859、CN 112830928、CN 111377918、WO 2021/104431、WO 2021/109737、WO 2021/113595、CN 112920183、WO 2021/121371、WO 2021/121367、CN 113004269、WO 2021/129824、WO 2021/129820、CN 113061132、WO 2021/139678、WO 2021/139748、CN 111205286、WO 2021/143693、CN 113135924、WO 2021/147965、WO 2021/155716、WO 2021/168193、WO 2021/169990、WO 2021/169963、CN 113321654、WO 2021/175199、WO 2021/180181、WO 2021/185233、WO 2021/190467、WO 2021/197499、CN 112574199及CN 112300269,該等案之內容以全文引用之方式併入本文中。 In some embodiments, the term "KRAS G12C inhibitor" refers to any agent that inhibits the activity of KRAS G12C mutant protein, such as a polypeptide, fusion polypeptide, antibody, peptide, antisense oligonucleotide or small molecule drug. In some embodiments, the KRAS G12C inhibitor directly interacts with the KRAS G12C mutant protein to inhibit the activity of the protein. In some embodiments, the KRAS G12C inhibitor is a small molecule drug. Exemplary small molecule KRAS G12C inhibitors that can be used with the methods provided herein include, but are not limited to, for example, sotolacib (also known as AMG 510, LUMAKRAS™, and LUMYKRAS™), adagracib (also known as MRTX849), JAB-21822 (also known as JAB-21000), GDC-6036, JDQ443, D-1553, GH35, GFH925, BPI-421286, LY3537982, RMC-6291, RMC-8839, HBI-2438, or JNJ-74699157. Other exemplary small molecule KRAS G12C inhibitors are described, for example, in Hillig et al. (2019) Proceedings of the National Academy of Sciences of the United States of America 116(7): 2551-2560 and Sun et al. (2012) Angew Chem Int Ed Engl. 51(25): 6140-6143 and in the following: WO 2020/233592, WO 2021/023247, WO 2021/083167, WO 2020/238791, WO 2021/000885, CN 112585129, CN 112552295, CN 112390818, CN 112390796, WO 2019/141250, CN 111592528, WO 2020/259432, CN 112300153, CN 112552294, WO 2020/239123, CN 110698378, CN 111377918, CN 111205286, CN 112047939, WO 2020/259513, WO 2021/023154, CN 112430234, WO 2021/063346, WO 2021/058018, CN 112225734, WO 2021/155716, CN 112159405, CN 112778302, CN 112830928, WO 2020/1027943, CN 112574199、WO 2021/037018、CN 110172089、WO 2020/156285、CN 111499634、WO 2020/177629、WO 2020/216190、WO 2020/221239、WO 2020/233592、WO 2020/238791、WO 2020/239077、WO 2020/239123、CN 112047933、CN 112047937、CN 112047948、WO 2020/259513、WO 2020/259573、WO 2020/259432、WO 2021/000885, CN 112174950, CN 112300153, WO 2021/023154, WO 2021/023247, CN 112390818, WO 2021/027943, WO 2021/027911, WO 2021/031952, CN 112390796, WO 2021/037018, CN 112442029, WO 2021/043322, WO 2021/052499, CN 112538084, CN 112552295, WO 2021/058018, WO 2021/063346, WO 2021/068898, WO 2021/078285, CN 112225734, CN 112707905, CN 112745335, WO 2021/083167, CN 112778284, WO 2021/088458, CN 112851663, WO 2021/093758, WO 2021/098859, CN 112830928, CN 111377918, WO 2021/104431, WO 2021/109737, WO 2021/113595, CN 112920183, WO 2021/121371, WO 2021/121367, CN 113004269, WO 2021/129824, WO 2021/129820, CN 113061132, WO 2021/139678, WO 2021/139748, CN 111205286, WO 2021/143693, CN 113135924, WO 2021/147965, WO 2021/155716, WO 2021/168193, WO 2021/169990, WO 2021/169963, CN 113321654, WO 2021/175199, WO 2021/180181, WO 2021/185233, WO 2021/190467, WO 2021/197499, CN 112574199 and CN 112300269, the contents of which are incorporated herein by reference in their entirety.

在一些實施例中,提供一種治療個體(例如,人類)之癌症的方法,其包含向個體投與(a)有效量之包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」);以及(b)有效量之KRAS G12C抑制劑,其中KRAS G12C抑制劑為索托拉西布(亦稱為AMG 510、LUMAKRAS™及LUMYKRAS™)、阿達格拉西布(亦稱為MRTX849)、JAB-21822 (亦稱為JAB-21000)、GDC-6036、JDQ443、D-1553、GH35、GFH925、BPI-421286、LY3537982、RMC-6291、RMC-8839、HBI-2438及JNJ-74699157。在一些實施例中,癌症包含表現KRAS G12C突變蛋白之一或多種癌細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,癌症為實體腫瘤、肺癌、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌或來源未知的腫瘤。在一些實施例中,癌症或腫瘤(諸如前述癌症或腫瘤中之任一者)為晚期、不可切除性及/或轉移性的。在一些實施例中,癌症為實體腫瘤(例如,晚期、不可切除性及/或轉移性實體腫瘤)、肺癌(例如,晚期、不可切除性及/或轉移性肺癌)或膀胱癌(例如,晚期、不可切除性及/或轉移性膀胱癌)。在一些實施例中,肺癌為非小細胞肺癌(NSCLC),例如晚期、不可切除性及/或轉移性NSCLC。In some embodiments, a method of treating cancer in an individual (e.g., a human) is provided, comprising administering to the individual (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor and albumin ("mTOR inhibitor nanoparticle composition"); and (b) an effective amount of a KRAS G12C inhibitor, wherein the KRAS G12C inhibitor is sotolacib (also known as AMG 510, LUMAKRAS™ and LUMYKRAS™), adagracib (also known as MRTX849), JAB-21822 (also known as JAB-21000), GDC-6036, JDQ443, D-1553, GH35, GFH925, BPI-421286, LY3537982, RMC-6291, RMC-8839, HBI-2438, and JNJ-74699157. In some embodiments, the cancer comprises one or more cancer cells expressing KRAS G12C mutant protein. Additionally or alternatively, in some embodiments, the cancer comprises one or more cells having at least one mTOR activating aberration. In some embodiments, the cancer is a solid tumor, lung cancer, bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, or a tumor of unknown origin. In some embodiments, the cancer or tumor (such as any of the aforementioned cancers or tumors) is advanced, unresectable and/or metastatic. In some embodiments, the cancer is a solid tumor (e.g., an advanced, unresectable and/or metastatic solid tumor), lung cancer (e.g., advanced, unresectable and/or metastatic lung cancer), or bladder cancer (e.g., advanced, unresectable and/or metastatic bladder cancer). In some embodiments, the lung cancer is non-small cell lung cancer (NSCLC), such as advanced, unresectable and/or metastatic NSCLC.

在一些實施例中,KRAS G12C抑制劑為索托拉西布,如上文所提及,其亦稱為AMG 510、LUMAKRAS™及LUMYKRAS™。AMG 510當前處於安進/百濟神州研發中。索托拉西布可以兩種滯轉異構形式中之任一者存在且一種形式相較於另一形式更具活性(參見例如https://cen.acs.org/pharmaceuticals/drug(dash)discovery/Amgen(dash)unveils(dash)KRas(dash)inhibitor(dash)human/97/i14)。索托拉西布選擇性地與KRAS蛋白之G12C突變形式中存在而野生型形式中不存在之半胱胺酸殘基中之硫原子形成不可逆共價鍵。索托拉西布與KRAS G12C之共價結合將蛋白質鎖定在其非活性GDP結合構形中,因此抑制KRAS依賴性信號轉導。索托拉西布具有實驗式C30HF2N6O3及560.606 g/mol之分子量。索托拉西布以化學方式描述為6-氟-7-(2-氟-6-羥苯基)-(1M)-1-[4-甲基-2-(丙-2-基)吡啶-3-基]-4-[(2S)-2-甲基-4-(丙-2-烯醯基)哌嗪-1-基]吡啶并[2,3-d]嘧啶-2(1H)-酮且具有以下化學結構: 索托拉西布之CAS登記號為2252403-56-6。索托拉西布之功效在參與單一組別、開放標籤、多中心試驗(NCT03600883)之患者子集中得到證實且當前在進一步臨床試驗中進行研究。關於索托拉西布製備、配藥、給藥及投與時程之完整資訊可見於當地藥品說明書(對於美國,參見例如www.accessdata.fda.gov/drugsatfda_docs/label/2021/214665s000lbl.pdf)。關於索托拉西布之結構及合成之另外細節提供於WO 2018/217651中,該案之內容以全文引用之方式併入本文中。 In some embodiments, the KRAS G12C inhibitor is sotolacib, which, as mentioned above, is also known as AMG 510, LUMAKRAS™, and LUMYKRAS™. AMG 510 is currently under development at Amgen/Beiji Shenzhou. Sotolacib can exist in either of two hysteresis isomeric forms and one form is more active than the other (see, e.g., https://cen.acs.org/pharmaceuticals/drug(dash)discovery/Amgen(dash)unveils(dash)KRas(dash)inhibitor(dash)human/97/i14). Sotolacib selectively forms an irreversible covalent bond with the sulfur atom in the cysteine residue that is present in the G12C mutant form of the KRAS protein and not present in the wild-type form. Covalent binding of sotolacib to KRAS G12C locks the protein in its inactive GDP-bound conformation, thereby inhibiting KRAS-dependent signaling. Sotolacib has an empirical formula of C30HF2N6O3 and a molecular weight of 560.606 g/mol. Sotolacib is chemically described as 6-fluoro-7-(2-fluoro-6-hydroxyphenyl)-(1M)-1-[4-methyl-2-(propan-2-yl)pyridin-3-yl]-4-[(2S)-2-methyl-4-(prop-2-enyl)piperazin-1-yl]pyrido[2,3-d]pyrimidin-2(1H)-one and has the following chemical structure: The CAS registration number of Sotolacib is 2252403-56-6. The efficacy of Sotolacib has been demonstrated in a subset of patients participating in a single-arm, open-label, multicenter trial (NCT03600883) and is currently being studied in further clinical trials. Complete information about the preparation, formulation, dosing, and administration schedule of Sotolacib can be found in the local drug instructions (for the United States, see, for example, www.accessdata.fda.gov/drugsatfda_docs/label/2021/214665s000lbl.pdf). Additional details about the structure and synthesis of Sotolacib are provided in WO 2018/217651, the contents of which are incorporated herein by reference in their entirety.

在一些實施例中,KRAS G12C抑制劑為阿達格拉西布(亦稱為MRTX849)。阿達格拉西布當前處於Mirati/再鼎醫藥研發中。類似於索托拉西布,阿達格拉西布選擇性地與KRAS蛋白之G12C突變形式中存在而野生型形式中不存在之半胱胺酸殘基中之硫原子形成不可逆共價鍵。類似於索托拉西布,阿達格拉西布與KRAS G12C之共價結合將蛋白質鎖定在其非活性GDP結合構形中,因此抑制KRAS依賴性信號轉導。阿達格拉西布具有實驗式C32H35ClFN7O2及604.13 g/mol之分子量。阿達格拉西布以化學方式描述為2-[(2S)-4-[7-(8-氯萘-1-基)-2-[[(2S)-1-甲基吡咯啶-2-基]甲氧基]-6,8-二氫-5H-吡啶并[3,4-d]嘧啶-4-基]-1-(2-氟丙-2-烯醯基)哌嗪-2-基]乙腈且具有以下化學結構: MRTX849之CAS登記號為2326521-71-3。阿達格拉西布當前在若干臨床試驗中進行評估,包括NCT04613596、NCT04685135、NCT03785249、NCT04330664及其他。關於阿達格拉西布之結構及合成之另外細節提供於Fell等人(2020) J.Med.Chem. 63, 6679-6693及WO 2017/201161中,該等案之內容以全文引用之方式併入本文中。 In some embodiments, the KRAS G12C inhibitor is adagracib (also known as MRTX849). Adaglasib is currently under development at Mirati/Zai Lab. Similar to sotolacib, adagracib selectively forms an irreversible covalent bond with the sulfur atom in the cysteine residue that is present in the G12C mutant form of the KRAS protein and absent in the wild-type form. Similar to sotolacib, the covalent binding of adagracib to KRAS G12C locks the protein in its inactive GDP-bound conformation, thereby inhibiting KRAS-dependent signaling. Adaglasib has an empirical formula of C32H35ClFN7O2 and a molecular weight of 604.13 g/mol. Adaglasib is chemically described as 2-[(2S)-4-[7-(8-chloronaphthalen-1-yl)-2-[[(2S)-1-methylpyrrolidin-2-yl]methoxy]-6,8-dihydro-5H-pyrido[3,4-d]pyrimidin-4-yl]-1-(2-fluoroprop-2-enyl)piperazin-2-yl]acetonitrile and has the following chemical structure: The CAS registration number of MRTX849 is 2326521-71-3. Adalasib is currently being evaluated in several clinical trials, including NCT04613596, NCT04685135, NCT03785249, NCT04330664, and others. Additional details on the structure and synthesis of adagrasib are provided in Fell et al. (2020) J. Med. Chem. 63, 6679-6693 and WO 2017/201161, the contents of which are incorporated herein by reference in their entirety.

在一些實施例中,KRAS G12C抑制劑為JAB-21822。JAB-21822由加科思藥業集團有限公司研發(參見例如en.jacobiopharma.com/blank3.html?introId=23及www.jacobiopharma.com/news/207.html)。JAB-21822當前在若干臨床試驗中進行評估,包括NCT05009329及NCT05002270。關於JAB-21822之結構及合成之另外細節提供於WO 2021/057832中,該案之內容以全文引用之方式併入本文中。 In some embodiments, the KRAS G12C inhibitor is JAB-21822. JAB-21822 was developed by Jacobs Pharmaceuticals Group Ltd. (see, e.g., en.jacobiopharma.com/blank3.html?introId=23 and www.jacobiopharma.com/news/207.html). JAB-21822 is currently being evaluated in several clinical trials, including NCT05009329 and NCT05002270. Additional details on the structure and synthesis of JAB-21822 are provided in WO 2021/057832, the contents of which are incorporated herein by reference in their entirety.

在一些實施例中,KRAS G12C抑制劑為GDC-6036。GDC-6036由基因泰克公司研發(參見例如www.genentechoncology.com/pipeline-molecules/kras-g12c.html)且當前進行臨床試驗NCT04449874評估。關於GDC-6036之結構及合成之另外細節提供於WO 2020/097537中,該案之內容以全文引用之方式併入本文中。 In some embodiments, the KRAS G12C inhibitor is GDC-6036. GDC-6036 is developed by Genentech (see, e.g., www.genentechoncology.com/pipeline-molecules/kras-g12c.html) and is currently being evaluated in clinical trial NCT04449874. Additional details on the structure and synthesis of GDC-6036 are provided in WO 2020/097537, the contents of which are incorporated herein by reference in their entirety.

在一些實施例中,KRAS G12C抑制劑為JDQ443。JDQ443為由諾華研發之KRAS G12C抑制劑。JDQ443之結構為: JDQ443當前在臨床試驗NCT04699188中進行評估。關於JDQ443之合成之另外細節提供於WO 2021/124222中,該案之內容以全文引用之方式併入本文中。 In some embodiments, the KRAS G12C inhibitor is JDQ443. JDQ443 is a KRAS G12C inhibitor developed by Novartis. The structure of JDQ443 is: JDQ443 is currently being evaluated in clinical trial NCT04699188. Additional details on the synthesis of JDQ443 are provided in WO 2021/124222, the contents of which are incorporated herein by reference in their entirety.

在一些實施例中,KRAS G12C抑制劑為D-1553。D-1553由益方生物有限公司研發(參見例如www.inventisbio.com/%e4%b8%b4%e5%ba%8a%e8%af%95%e9%aa%8c/)且當前與默沙東合作在臨床試驗NCT04585035中進行評估。關於D-1553之結構及合成之另外細節提供於WO 2020/233592中,該案之內容以全文引用之方式併入本文中。In some embodiments, the KRAS G12C inhibitor is D-1553. D-1553 was developed by Inventis Biotech Co., Ltd. (see, e.g., www.inventisbio.com/%e4%b8%b4%e5%ba%8a%e8%af%95%e9%aa%8c/) and is currently being evaluated in clinical trial NCT04585035 in collaboration with Merck. Additional details on the structure and synthesis of D-1553 are provided in WO 2020/233592, the contents of which are incorporated herein by reference in their entirety.

在一些實施例中,KRAS G12C抑制劑為GH35。GH35由蘇州勤浩醫藥有限公司研發(參見例如www.genhousebio.com/en/product/index.html)且在臨床試驗NCT05010694中進行評估。關於GH35之結構及合成之另外細節提供於WO 2020/177653中,該案之內容以全文引用之方式併入本文中。In some embodiments, the KRAS G12C inhibitor is GH35. GH35 was developed by Suzhou Genhouse Pharmaceutical Co., Ltd. (see, e.g., www.genhousebio.com/en/product/index.html) and evaluated in clinical trial NCT05010694. Additional details on the structure and synthesis of GH35 are provided in WO 2020/177653, the contents of which are incorporated herein by reference in their entirety.

在一些實施例中,KRAS G12C抑制劑為GFH925。GFH925由勁方醫藥(浙江)研發(參見例如www.genfleet.com/en/science)且在臨床試驗NCT05005234中進行評估。關於GFH925之結構及合成之另外細節提供於WO 2020/177629、WO 2020/221239及WO 2021/031952中,該等案之內容以全文引用之方式併入本文中。In some embodiments, the KRAS G12C inhibitor is GFH925. GFH925 was developed by Genfleet Pharmaceuticals (Zhejiang) (see, e.g., www.genfleet.com/en/science) and is being evaluated in clinical trial NCT05005234. Additional details on the structure and synthesis of GFH925 are provided in WO 2020/177629, WO 2020/221239, and WO 2021/031952, the contents of which are incorporated herein by reference in their entirety.

在一些實施例中,KRAS G12C抑制劑為BPI-421286。BPI-421286由貝達藥業有限公司研發(參見例如www.bettapharma.com/News/show/id/2380),且用於評估BPI-421286之臨床試驗應用(CXHL2100046及CXHL2100047)已由中華人民共和國之國家食品藥品監督管理局接受。關於BPI-421286之結構及合成之另外細節提供於CN 112390796中,該案之內容以全文引用之方式併入本文中。In some embodiments, the KRAS G12C inhibitor is BPI-421286. BPI-421286 was developed by Betta Pharmaceuticals Co., Ltd. (see, e.g., www.bettapharma.com/News/show/id/2380), and clinical trial applications (CXHL2100046 and CXHL2100047) for evaluating BPI-421286 have been accepted by the State Food and Drug Administration of the People's Republic of China. Additional details on the structure and synthesis of BPI-421286 are provided in CN 112390796, the contents of which are incorporated herein by reference in their entirety.

在一些實施例中,KRAS G12C抑制劑為LY3537982。LY3537982由禮來公司及Loxo Oncology公司研發(參見例如www.lillyloxooncologypipeline.com/molecule/kras-g12c-inhibitor/)且在臨床試驗NCT04956640中進行研究。關於LY3537982之結構及合成之另外細節提供於WO 2021/118877中,該案之內容以全文引用之方式併入本文中。In some embodiments, the KRAS G12C inhibitor is LY3537982. LY3537982 is developed by Eli Lilly and Loxo Oncology (see, e.g., www.lillyloxooncologypipeline.com/molecule/kras-g12c-inhibitor/) and is being studied in clinical trial NCT04956640. Additional details on the structure and synthesis of LY3537982 are provided in WO 2021/118877, the contents of which are incorporated herein by reference in their entirety.

在一些實施例中,KRAS G12C抑制劑為RMC-6291。RMC-6291當前處於Revolution Medicines公司研發中(參見例如www.revmed.com/pipeline)且在臨床試驗NCT05462717中進行研究。在一些實施例中,KRAS G12C抑制劑為RMC-8839,其亦處於Revolution medicines公司研發中。In some embodiments, the KRAS G12C inhibitor is RMC-6291. RMC-6291 is currently under development at Revolution Medicines (see, e.g., www.revmed.com/pipeline) and is being studied in clinical trial NCT05462717. In some embodiments, the KRAS G12C inhibitor is RMC-8839, which is also under development at Revolution medicines.

在一些實施例中,KRAS G12C抑制劑為HBI-2438,其當前處於滬亞生物科學國際有限責任公司研發中。HBI-2438在臨床試驗NCT05485974中進行研究。In some embodiments, the KRAS G12C inhibitor is HBI-2438, which is currently under development by Shanghai Asia Biosciences International, Ltd. HBI-2438 is being studied in clinical trial NCT05485974.

在一些實施例中,KRAS G12C抑制劑為JNJ-74699157 (亦稱為ARS-3248),其處於強生公司及Wellspring Bioscience研發中。JNJ-74699157在臨床試驗NCT04006301中進行研究。In some embodiments, the KRAS G12C inhibitor is JNJ-74699157 (also known as ARS-3248), which is under development by Johnson & Johnson and Wellspring Bioscience. JNJ-74699157 is being studied in clinical trial NCT04006301.

如上文所論述,在一些實施例中,KRAS G12C抑制劑及mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)以單一單位劑量投與。在一些實施例中,KRAS G12C抑制劑及mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)以單獨劑型投與。 KRAS G12D抑制劑 As discussed above, in some embodiments, the KRAS G12C inhibitor and the mTOR inhibitor nanoparticle composition (such as sirolimus/albumin nanoparticle composition) are administered in a single unit dose. In some embodiments, the KRAS G12C inhibitor and the mTOR inhibitor nanoparticle composition (such as sirolimus/albumin nanoparticle composition) are administered in separate dosage forms. KRAS G12D inhibitor

KRAS G12D突變發生率在胰臟癌(例如,胰管腺癌)、肺癌及大腸直腸癌中較高,與不良預後具有強相關性。G12D取代亦有利於KRAS之活化GTP結合狀態,從而擴增導致瘤形成之信號傳導路徑(參見例如Lee等人(2021) Chem.Sci. 12, 12827-12837)。 The incidence of KRAS G12D mutation is high in pancreatic cancer (e.g., pancreatic ductal adenocarcinoma), lung cancer, and colorectal cancer, and is strongly correlated with poor prognosis. G12D substitution also favors the activated GTP-bound state of KRAS, thereby expanding the signaling pathway that leads to tumor formation (see, e.g., Lee et al. (2021) Chem. Sci. 12, 12827-12837).

在一些實施例中,術語「KRAS G12D抑制劑」係指抑制KRAS G12D突變蛋白之活性的任何藥劑,例如多肽、融合多肽、抗體、肽、反義寡核苷酸或小分子藥物。在一些實施例中,KRAS G12D抑制劑直接與KRAS G12D突變蛋白相互作用以抑制蛋白質的活性。在一些實施例中,KRAS G12D抑制劑為小分子藥物。可與本文所提供之方法一起使用之例示性KRAS G12D抑制劑包括但不限於MRTX1133 (Mirati Therapeutics)及RMC-6236 (Revolution Medicines)。In some embodiments, the term "KRAS G12D inhibitor" refers to any agent that inhibits the activity of a KRAS G12D mutant protein, such as a polypeptide, a fusion polypeptide, an antibody, a peptide, an antisense oligonucleotide, or a small molecule drug. In some embodiments, a KRAS G12D inhibitor directly interacts with a KRAS G12D mutant protein to inhibit the activity of the protein. In some embodiments, a KRAS G12D inhibitor is a small molecule drug. Exemplary KRAS G12D inhibitors that can be used with the methods provided herein include, but are not limited to, MRTX1133 (Mirati Therapeutics) and RMC-6236 (Revolution Medicines).

在一些實施例中,KRAS G12D抑制劑為MRTX1133 (CAS登記號2621928-55-8),其處於Mirati Therapeutics研發中(參見例如www.mirati.com/science/programs/kras-inhibitors/kras-g12d-inhibitor/)。MRTX1133之結構為: 關於MRTX1133之另外細節提供於Wang等人(2022) J Med Chem 65(4): 3123-3133,KRAS G12D抑制劑MRTX1133闡明KRAS介導之瘤形成,Nat Med (2022) (doi.org/10.1038/s41591-022-02008-6)及Hallin、Bowcut、Calinisan等人,強力且選擇性非共價KRAS G12D抑制劑之抗腫瘤功效,Nat Med (2022) (doi.org/10.1038/s41591-022-02007-7)中,該等案之內容以全文引用之方式併入本文中。 In some embodiments, the KRAS G12D inhibitor is MRTX1133 (CAS Reg. No. 2621928-55-8), which is under development at Mirati Therapeutics (see, e.g., www.mirati.com/science/programs/kras-inhibitors/kras-g12d-inhibitor/). The structure of MRTX1133 is: Additional details about MRTX1133 are provided in Wang et al. (2022) J Med Chem 65(4): 3123-3133, KRAS G12D inhibitor MRTX1133 illustrates KRAS-mediated tumorigenesis, Nat Med (2022) (doi.org/10.1038/s41591-022-02008-6) and Hallin, Bowcut, Calinisan et al., Antitumor efficacy of a potent and selective non-covalent KRAS G12D inhibitor, Nat Med (2022) (doi.org/10.1038/s41591-022-02007-7), the contents of which are incorporated herein by reference in their entirety.

在一些實施例中,KRAS G12D抑制劑為RMC-9805,其處於Revolution Medicines研發中(參見例如www.revmed.com/ pipeline/rason-inhibitors)。In some embodiments, the KRAS G12D inhibitor is RMC-9805, which is under development at Revolution Medicines (see, e.g., www.revmed.com/pipeline/rason-inhibitors).

如上文所論述,在一些實施例中,KRAS G12D抑制劑及mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)以單一單位劑量投與。在一些實施例中,KRAS G12D抑制劑及mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)以單獨劑型投與。 KRAS G12V抑制劑 As discussed above, in some embodiments, the KRAS G12D inhibitor and the mTOR inhibitor nanoparticle composition (such as sirolimus/albumin nanoparticle composition) are administered in a single unit dose. In some embodiments, the KRAS G12D inhibitor and the mTOR inhibitor nanoparticle composition (such as sirolimus/albumin nanoparticle composition) are administered in separate dosage forms. KRAS G12V inhibitor

KRAS G12V突變發生率在胰臟癌(例如,胰管腺癌)、肺癌及大腸直腸癌中較高。在一些實施例中,術語「KRAS G12V抑制劑」係指抑制KRAS G12V突變蛋白之活性的任何藥劑,例如多肽、融合多肽、抗體、肽、反義寡核苷酸或小分子藥物。在一些實施例中,KRAS G12D抑制劑直接與KRAS G12V突變蛋白相互作用以抑制蛋白質的活性。在一些實施例中,KRAS G12V抑制劑為小分子藥物。可與本文所提供之方法一起使用之例示性KRAS G12V抑制劑包括但不限於JAB-23000 (加科思藥業)。JAB-23000處於加科思藥業研發中。關於JAB-23000之另外細節提供於Reck等人(2001) Annals of Oncology .32(9): 1101-1110及entzz.jacobiopharma.com/upload/202108/20210831215444372.pdf中,其內容以全文引用之方式併入本文中。 The incidence of KRAS G12V mutation is higher in pancreatic cancer (e.g., pancreatic duct adenocarcinoma), lung cancer, and colorectal cancer. In some embodiments, the term "KRAS G12V inhibitor" refers to any agent that inhibits the activity of KRAS G12V mutant protein, such as a polypeptide, a fusion polypeptide, an antibody, a peptide, an antisense oligonucleotide, or a small molecule drug. In some embodiments, the KRAS G12D inhibitor directly interacts with the KRAS G12V mutant protein to inhibit the activity of the protein. In some embodiments, the KRAS G12V inhibitor is a small molecule drug. Exemplary KRAS G12V inhibitors that can be used with the methods provided herein include, but are not limited to, JAB-23000 (Jacco Pharmaceuticals). JAB-23000 is under development by Jacco Pharmaceuticals. Additional details about JAB-23000 are provided in Reck et al. (2001) Annals of Oncology . 32(9): 1101-1110 and entzz.jacobiopharma.com/upload/202108/20210831215444372.pdf, the contents of which are incorporated herein by reference in their entirety.

如上文所論述,在一些實施例中,KRAS G12V抑制劑及mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)以單一單位劑量投與。在一些實施例中,KRAS G12V抑制劑及mTOR抑制劑奈米粒子組合物(諸如西羅莫司/白蛋白奈米粒子組合物)以單獨劑型投與。 根據本文中之方法選擇個體進行治療 mTOR活化畸變 As discussed above, in some embodiments, the KRAS G12V inhibitor and the mTOR inhibitor nanoparticle composition (such as sirolimus/albumin nanoparticle composition) are administered in a single unit dose. In some embodiments, the KRAS G12V inhibitor and the mTOR inhibitor nanoparticle composition (such as sirolimus/albumin nanoparticle composition) are administered in separate dosage forms. Selecting an individual for treatment according to the methods herein mTOR activating aberrations

如上文所論述,在一些實施例中,本文中之方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑之前基於個體樣本中具有至少一種mTOR活化畸變之一或多種癌細胞之存在而選擇個體進行治療。在一些實施例中,「mTOR活化畸變」係指基因畸變、可引起mTOR信號傳導路徑之過度活化的一或多個mTOR相關基因之異常表現量及/或異常活性水平。在一些實施例中,「過度活化」係指分子(諸如蛋白質或蛋白質複合物)或信號傳導路徑(諸如mTOR信號傳導路徑)之活性水平提高至高於參考活性水平或範圍之水平,諸如高於參考活性水平或參考活性範圍之中值至少約10%、20%、30%、40%、60%、70%、80%、90%、100%、200%、500%或更多中之任一者。在一些實施例中,參考活性水平為標準化測試中之臨床上可接受的正常活性水平,或不含mTOR活化畸變之健康個體(或自個體分離之組織或細胞)中之活性水平。在一些實施例中,至少一種mTOR活化畸變為與一或多個mTOR相關基因(例如,AKT1、FLT-3、MTOR、PIK3CA、PIK3CG、TSC1、TSC2、RHEB、STK11、NF1、NF2、TP53、FGFR4、BAP1、KRAS、NRAS、NRF2、KEAP1及PTEN)相關之畸變,包括與參考序列(亦即,基因畸變)之偏差、藉由mTOR相關基因編碼之一或多種蛋白質之異常表現量及/或異常活性水平。在一些實施例中,至少一種mTOR活化畸變為與TSC1及/或TSC2相關之畸變。在一些實施例中,至少一種mTOR活化畸變包含STK11及/或TP53畸變。例示性STK11畸變包括STK11 E317、SKT11 null,及Oncologist. 2020年9月; 25(9): 733-737之圖1中的任何突變,其以全文引用之方式併入。例示性TP53畸變包括G262 (例如,G262V)、C176 (例如,C176F)、F113 (例如,F113C)及Front Oncol. 2020; 10: 593383之圖1中所描述之任何突變,其以全文引用之方式併入。此等例示性TP53突變包括功能損失型突變(例如,R175H、G245S、R248Q、R248W、S241F、R249S、R273C、R273H、C275Y、R280K),部分功能及/或溫度敏感性突變(例如,A161T、R181L、R202S、Y220H、S215C、D228V、V272L、R282W),突變體或超轉錄活化突變(例如,T123A、G199H、S240N、S288K、R337H、G360V),特異性改變(K120R、S121F、V122A、T125R、G279E),顯性突變(例如,R175H、G245S、R248Q、R248W、S241F、R249S、R273C、R273H、C275Y、R280K),及D281G,R282W。在一些實施例中,mTOR抑制劑畸變包含PTEN畸變(例如,PTEN null)及/或PIK3CA畸變(例如,PIK3CA突變種)。在一些實施例中,個體進一步包含ATM (例如Q2800fs)、CDKN2A (例如,CDKN2A null)及/或UGT2B17畸變(例如,UGT2B17 null)。 As discussed above, in some embodiments, the methods herein include (e.g., further include) selecting an individual for treatment based on the presence of one or more cancer cells having at least one mTOR activating aberration in a sample of the individual prior to administering an mTOR inhibitor nanoparticle composition and a KRAS G12C inhibitor. In some embodiments, "mTOR activating aberration" refers to a genetic aberration, an abnormal expression amount and/or an abnormal activity level of one or more mTOR-related genes that can cause overactivation of the mTOR signaling pathway. In some embodiments, "overactivation" refers to an increase in the activity level of a molecule (such as a protein or protein complex) or a signaling pathway (such as an mTOR signaling pathway) to a level above a reference activity level or range, such as at least about 10%, 20%, 30%, 40%, 60%, 70%, 80%, 90%, 100%, 200%, 500% or more above the reference activity level or the median of the reference activity range. In some embodiments, the reference activity level is a clinically acceptable normal activity level in a standardized test, or the activity level in a healthy individual (or a tissue or cell isolated from an individual) that does not have an mTOR activation aberration. In some embodiments, at least one mTOR activating aberration is an aberration associated with one or more mTOR-related genes (e.g., AKT1, FLT-3, MTOR, PIK3CA, PIK3CG, TSC1, TSC2, RHEB, STK11, NF1, NF2, TP53, FGFR4, BAP1, KRAS, NRAS, NRF2, KEAP1, and PTEN), including deviations from a reference sequence (i.e., genetic aberrations), abnormal expression and/or abnormal activity levels of one or more proteins encoded by mTOR-related genes. In some embodiments, at least one mTOR activating aberration is an aberration associated with TSC1 and/or TSC2. In some embodiments, at least one mTOR activating aberration comprises STK11 and/or TP53 aberrations. Exemplary STK11 aberrations include STK11 E317, SKT11 null, and any mutation in Figure 1 of Oncologist. 2020 Sep; 25(9): 733-737, which is incorporated by reference in its entirety. Exemplary TP53 aberrations include G262 (e.g., G262V), C176 (e.g., C176F), F113 (e.g., F113C), and any mutation described in Figure 1 of Front Oncol. 2020; 10: 593383, which is incorporated by reference in its entirety. Such exemplary TP53 mutations include loss-of-function mutations (e.g., R175H, G245S, R248Q, R248W, S241F, R249S, R273C, R273H, C275Y, R280K), partial-function and/or temperature-sensitive mutations (e.g., A161T, R181L, R202S, Y220H, S215C, D228V, V272L, R282W), mutants or hyper-transcriptional activation Mutations (e.g., T123A, G199H, S240N, S288K, R337H, G360V), specific changes (K120R, S121F, V122A, T125R, G279E), dominant mutations (e.g., R175H, G245S, R248Q, R248W, S241F, R249S, R273C, R273H, C275Y, R280K), and D281G, R282W. In some embodiments, the mTOR inhibitor aberrations comprise PTEN aberrations (e.g., PTEN null) and/or PIK3CA aberrations (e.g., PIK3CA mutants). In some embodiments, the individual further comprises ATM (e.g., Q2800fs), CDKN2A (e.g., CDKN2A null), and/or UGT2B17 aberrations (e.g., UGT2B17 null).

在一些實施例中,至少一種mTOR活化畸變為基因畸變。一或多種mTOR相關基因之基因畸變可包含與本文中所描述之mTOR相關基因相關之核酸(諸如DNA及RNA)或蛋白質序列(亦即,突變)或表觀遺傳特徵的改變,包括但不限於mTOR相關基因之編碼、非編碼、調節、強化子、緘默子、啟動子、內含子、外顯子及非轉譯區。 In some embodiments, at least one mTOR activating aberration is a genetic aberration. Genetic aberrations of one or more mTOR-related genes may include changes in nucleic acid (such as DNA and RNA) or protein sequences (i.e., mutations) or epigenetic characteristics associated with the mTOR-related genes described herein, including but not limited to coding, non-coding, regulatory, enhancer, silencer, promoter, intron, exon, and non-translational regions of mTOR-related genes.

在一些實施例中,基因畸變可為生殖系突變(包括染色體重排)或體細胞突變(包括染色體重排)。在一些實施例中,基因畸變存在於個體之所有組織中,包括正常組織及癌症組織。在一些實施例中,基因畸變僅存在於個體之癌症組織中。在一些實施例中,基因畸變僅存在於一部分癌症組織中。 In some embodiments, the genetic aberration may be a germline mutation (including chromosome rearrangement) or a somatic cell mutation (including chromosome rearrangement). In some embodiments, the genetic aberration is present in all tissues of the individual, including normal tissues and cancer tissues. In some embodiments, the genetic aberration is present only in cancer tissues of the individual. In some embodiments, the genetic aberration is present only in a portion of cancer tissues.

在一些實施例中,mTOR活化畸變包含本文中所描述之mTOR相關基因之突變,包括但不限於缺失、讀框轉移、插入、插入/缺失、誤義突變、無意義突變、點突變、單核苷酸變化(SNV)、緘默突變、剪接位點突變、剪接變異體及易位。在一些實施例中,突變可為mTOR信號傳導路徑之負調節因子之功能損失型突變或mTOR信號傳導路徑之正調節因子之功能獲得型突變。在一些實施例中,mTOR相關基因之突變為TSC1或TSC2之突變。 In some embodiments, the mTOR activation aberration comprises a mutation of an mTOR-related gene described herein, including but not limited to deletion, frame shift, insertion, insertion/deletion, missense mutation, nonsense mutation, point mutation, single nucleotide variation (SNV), silent mutation, splice site mutation, splice variant, and translocation. In some embodiments, the mutation may be a loss-of-function mutation of a negative regulator of the mTOR signaling pathway or a gain-of-function mutation of a positive regulator of the mTOR signaling pathway. In some embodiments, the mutation of an mTOR-related gene is a mutation of TSC1 or TSC2.

在一些實施例中,基因畸變包含本文中所描述之mTOR相關基因之複本數變化。通常,每個基因體存在各mTOR相關基因之兩種複本。在一些實施例中,mTOR相關基因之複本數藉由基因畸變擴增,從而產生基因體中mTOR相關基因之至少約3、4、5、6、7、8或更多個複本中之任一者。在一些實施例中,mTOR相關基因之基因畸變引起基因體中mTOR相關基因之一個或兩個複本的損失。在一些實施例中,mTOR相關基因之複本數變化為mTOR相關基因之雜合性缺失。在一些實施例中,mTOR相關基因之複本數變化為mTOR相關基因之缺失。在一些實施例中,mTOR相關基因之複本數變化由基因體之結構重排引起,包括染色體或其片段之缺失、複製、反轉及易位。在一些實施例中,mTOR相關基因之複本數變化為TSC1或TSC2之複本數變化。 In some embodiments, the gene aberration comprises a change in the number of copies of the mTOR-related genes described herein. Typically, there are two copies of each mTOR-related gene in each genome. In some embodiments, the number of copies of mTOR-related genes is increased by gene aberration, thereby generating at least about 3, 4, 5, 6, 7, 8 or more copies of mTOR-related genes in the genome. In some embodiments, the gene aberration of mTOR-related genes causes the loss of one or two copies of mTOR-related genes in the genome. In some embodiments, the number of copies of mTOR-related genes changes to a heterozygous deletion of mTOR-related genes. In some embodiments, the number of copies of mTOR-related genes changes to a deletion of mTOR-related genes. In some embodiments, the copy number change of the mTOR-related gene is caused by the structural rearrangement of the genome, including the deletion, duplication, inversion and translocation of the chromosome or its fragment. In some embodiments, the copy number change of the mTOR-related gene is the copy number change of TSC1 or TSC2.

在一些實施例中,基因畸變包含與本文中所描述之mTOR相關基因相關之異常表觀遺傳特徵,包括但不限於DNA甲基化、羥甲基化作用、異常組蛋白結合、染色體重塑及其類似者。在一些實施例中,相較於對照水平(諸如標準化測試中臨床上可接受之正常水平),mTOR相關基因之啟動子在個體中高甲基化例如至少約10%、20%、30%、40%、50%、60%、70%、80%、90%或更多中之任一者。在一些實施例中,與mTOR相關基因相關之異常表觀遺傳特徵與TSC1或TSC2相關。 In some embodiments, the genetic aberration comprises an abnormal epigenetic characteristic associated with an mTOR-related gene described herein, including but not limited to DNA methylation, hydroxymethylation, abnormal histone binding, chromosomal remodeling, and the like. In some embodiments, the promoter of an mTOR-related gene is hypermethylated in an individual, for example, at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more, compared to a control level (e.g., a clinically acceptable normal level in a standardized test). In some embodiments, the abnormal epigenetic characteristic associated with an mTOR-related gene is associated with TSC1 or TSC2.

本文中所描述之一或多個mTOR相關基因(例如,TSC1或TSC2)之一或多種基因畸變可基於樣本,諸如來自個體之樣本及/或參考樣本進行評估。在一些實施例中,該樣本為組織樣本或自組織樣本(例如,腫瘤組織樣本)萃取之核酸。在一些實施例中,該樣本為細胞樣本或自細胞樣本(例如,CTC樣本)萃取之核酸。在一些實施例中,該樣本為腫瘤活檢體。在一些實施例中,該樣本為腫瘤樣本或自腫瘤樣本萃取之核酸。在一些實施例中,該樣本為活檢體樣本或自活檢體樣本萃取之核酸。在一些實施例中,該樣本為甲醛固定石蠟包埋(FFPE)樣本或自FFPE樣本萃取之核酸。在一些實施例中,該樣本為血液樣本。在一些實施例中,游離DNA係自血液樣本中分離。在一些實施例中,生物樣本為血漿樣本或自血漿樣本萃取之核酸。 One or more genetic aberrations of one or more mTOR-related genes (e.g., TSC1 or TSC2) described herein can be assessed based on a sample, such as a sample from an individual and/or a reference sample. In some embodiments, the sample is a tissue sample or nucleic acid extracted from a tissue sample (e.g., a tumor tissue sample). In some embodiments, the sample is a cell sample or nucleic acid extracted from a cell sample (e.g., a CTC sample). In some embodiments, the sample is a tumor biopsy. In some embodiments, the sample is a tumor sample or nucleic acid extracted from a tumor sample. In some embodiments, the sample is a biopsy sample or nucleic acid extracted from a biopsy sample. In some embodiments, the sample is a formaldehyde-fixed paraffin-embedded (FFPE) sample or nucleic acid extracted from a FFPE sample. In some embodiments, the sample is a blood sample. In some embodiments, free DNA is separated from a blood sample. In some embodiments, the biological sample is a plasma sample or nucleic acid extracted from a plasma sample.

mTOR相關基因之基因畸變可藉由此項技術中已知之任何方法測定。參見例如Dickson等人, Int.J.Cancer, 2013, 132(7): 1711-1717;Wagle N. Cancer Discovery, 2014, 4: 546-553;以及癌症基因體圖譜研究網路,Nature 2013, 499: 43-49。例示性方法包括但不限於基因體DNA定序、亞硫酸氫鹽定序或使用桑格定序或下一代定序平台之其他基於DNA定序之方法;聚合酶鏈式反應分析法;原位雜交分析法;以及DNA微陣列。來自與個體分離之樣本之一或多個mTOR相關基因的表觀遺傳特徵(諸如DNA甲基化、組蛋白結合或染色體修飾)可與來自對照樣本之一或多個mTOR相關基因之表觀遺傳特徵進行比較。可對自該樣本萃取之核酸分子進行定序或分析相對於參考序列,諸如AKT1、FLT-3、MTOR、PIK3CA、PIK3CG、TSC1、TSC2、RHEB、STK11、NF1、NF2、TP53、FGFR4、BAP1、KRAS、NRAS、NRF2、KEAP1及PTEN之野生型序列是否存在mTOR活化基因畸變。 Genetic aberrations of mTOR-related genes can be determined by any method known in the art. See, for example, Dickson et al., Int. J. Cancer, 2013, 132(7): 1711-1717; Wagle N. Cancer Discovery, 2014, 4: 546-553; and the Cancer Genome Atlas Research Network, Nature 2013, 499: 43-49. Exemplary methods include, but are not limited to, genome DNA sequencing, bisulfite sequencing, or other DNA sequencing-based methods using Sanger sequencing or next-generation sequencing platforms; polymerase chain reaction analysis; in situ hybridization analysis; and DNA microarrays. Epigenetic features (e.g., DNA methylation, histone binding, or chromosomal modification) of one or more mTOR-related genes from a sample isolated from an individual can be compared to epigenetic features of one or more mTOR-related genes from a control sample. Nucleic acid molecules extracted from the sample can be sequenced or analyzed for the presence of mTOR-activating gene aberrations relative to reference sequences, such as wild-type sequences of AKT1, FLT-3, MTOR, PIK3CA, PIK3CG, TSC1, TSC2, RHEB, STK11, NF1, NF2, TP53, FGFR4, BAP1, KRAS, NRAS, NRF2, KEAP1, and PTEN.

在一些實施例中,使用游離DNA定序方法來評估mTOR相關基因之基因畸變。在一些實施例中,使用下一代定序來評估mTOR相關基因之基因畸變。在一些實施例中,使用下一代定序來評估自血液樣本中分離之mTOR相關基因之基因畸變。在一些實施例中,使用外顯子體定序來評估mTOR相關基因之基因畸變。在一些實施例中,使用螢光原位雜交分析來評估mTOR相關基因之基因畸變。在一些實施例中,在起始本文中所描述之治療方法之前評估mTOR相關基因之基因畸變。在一些實施例中,在起始本文中所描述之治療方法之後評估mTOR相關基因之基因畸變。在一些實施例中,在起始本文中所描述之治療方法之前及之後評估mTOR相關基因之基因畸變。 TSC1及TSC2中之基因mTOR活化畸變 In some embodiments, free DNA sequencing methods are used to assess genetic aberrations in mTOR-related genes. In some embodiments, next-generation sequencing is used to assess genetic aberrations in mTOR-related genes. In some embodiments, next-generation sequencing is used to assess genetic aberrations in mTOR-related genes isolated from blood samples. In some embodiments, exome sequencing is used to assess genetic aberrations in mTOR-related genes. In some embodiments, fluorescent in situ hybridization analysis is used to assess genetic aberrations in mTOR-related genes. In some embodiments, genetic aberrations in mTOR-related genes are assessed before initiating the treatment methods described herein. In some embodiments, genetic aberrations in mTOR-related genes are assessed after initiating the treatment methods described herein. In some embodiments, genetic aberrations in mTOR-related genes are assessed before and after initiating the treatment methods described herein. Aberration of gene mTOR activation in TSC1 and TSC2

在一些實施例中,基因mTOR活化畸變包含TSC1或TSC2中之框內缺失突變。在一些實施例中,框內缺失突變已在萊頓開放變異資料庫(「LOVD」,在例如databases.lovd.nl/shared/genes/ TSC2處可用)中報告。在一些實施例中,TSC1或TSC2中之框內缺失突變缺失某一尺寸之多於一個胺基酸。在一些實施例中,基因mTOR活化畸變包含TSC1中之誤義突變。在一些實施例中,TSC1中之誤義突變包含TSC1之胺基酸34-224或外顯子4-8內之非保守性取代。在一些實施例中,基因mTOR活化畸變包含TSC2中之誤義突變。在一些實施例中,TSC2中之誤義突變包含非保守性取代及/或已在LOVD資料庫中報告。在一些實施例中,基因mTOR活化畸變包含同型組合缺失突變。在一些實施例中,同型組合缺失突變影響TSC1或TSC2之一或多個外顯子。 In some embodiments, the gene mTOR activation aberration comprises an in-frame deletion mutation in TSC1 or TSC2. In some embodiments, the in-frame deletion mutation has been reported in the Leiden Open Variant Database ("LOVD", available at, for example, databases.lovd.nl/shared/genes/TSC2). In some embodiments, the in-frame deletion mutation in TSC1 or TSC2 deletes more than one amino acid of a certain size. In some embodiments, the gene mTOR activation aberration comprises a missense mutation in TSC1. In some embodiments, the missense mutation in TSC1 comprises a non-conservative substitution within amino acids 34-224 or exons 4-8 of TSC1. In some embodiments, the gene mTOR activation aberration comprises a missense mutation in TSC2. In some embodiments, the missense mutation in TSC2 comprises a non-conservative substitution and/or has been reported in the LOVD database. In some embodiments, the gene mTOR activation aberration comprises a homozygous deletion mutation. In some embodiments, the homozygous deletion mutation affects one or more exons of TSC1 or TSC2.

關於評估TSC1或TSC2中之一或多個突變是否為基因mTOR活化畸變(例如,「病原突變」)之方法的細節提供於PCT/US2020/060070中,該案之內容全文併入本文中。 TSC2 Details of methods for evaluating whether one or more mutations in TSC1 or TSC2 are mTOR activating aberrations (e.g., "pathogenic mutations") are provided in PCT/US2020/060070, the contents of which are incorporated herein in their entirety. TSC2

TSC2亦稱為馬鈴薯球蛋白、結節性硬化症2蛋白質、蛋白磷酸酶1調節次單元160、TSC4、PPP1R160及LAM。TSC2蛋白藉由負面地調節mTORC1信號傳導來充當與TSC1之複合物之一部分。在一些實施例中,根據人類基因體之GRCh38.p2集合,野生型TSC2基因之核酸序列藉由GenBank登錄號NC_000016.10在染色體16之正股上鑑別為核苷酸2047936至核苷酸2088712。野生型TSC2基因包含42個外顯子。TSC2基因之突變可發生在42個外顯子之任一者或任何組合中,或發生在TSC2基因之任何內含子或非編碼區中。 TSC2 is also known as tuberin, tuberous sclerosis complex 2 protein, protein phosphatase 1 regulatory subunit 160, TSC4, PPP1R160, and LAM. TSC2 protein acts as part of a complex with TSC1 by negatively regulating mTORC1 signaling. In some embodiments, the nucleic acid sequence of the wild-type TSC2 gene is identified by GenBank accession number NC_000016.10 on the positive strand of chromosome 16 as nucleotide 2047936 to nucleotide 2088712 according to the GRCh38.p2 set of human genomes. The wild-type TSC2 gene comprises 42 exons. Mutations in the TSC2 gene may occur in any one or any combination of the 42 exons, or in any intron or non-coding region of the TSC2 gene.

在一些實施例中,野生型TSC2蛋白之胺基酸序列係藉由GenBank登錄號NP_000539.2來鑑別。在一些實施例中,野生型TSC2蛋白之胺基酸序列係藉由GenBank登錄號NP_001070651.1來鑑別。在一些實施例中,野生型TSC2蛋白之胺基酸序列係藉由GenBank登錄號NP_001107854.1來鑑別。In some embodiments, the amino acid sequence of the wild-type TSC2 protein is identified by GenBank Accession No. NP_000539.2. In some embodiments, the amino acid sequence of the wild-type TSC2 protein is identified by GenBank Accession No. NP_001070651.1. In some embodiments, the amino acid sequence of the wild-type TSC2 protein is identified by GenBank Accession No. NP_001107854.1.

在一些實施例中,編碼野生型TSC2蛋白之cDNA之核酸序列係藉由GenBank登錄號NM_000548.3來鑑別。在一些實施例中,編碼野生型TSC2蛋白之cDNA之核酸序列係藉由GenBank登錄號NM_001077183.1來鑑別。在一些實施例中,編碼野生型TSC2蛋白之cDNA之核酸序列係藉由GenBank登錄號NM_001114382.1來鑑別。In some embodiments, the nucleic acid sequence of the cDNA encoding the wild-type TSC2 protein is identified by GenBank Accession No. NM_000548.3. In some embodiments, the nucleic acid sequence of the cDNA encoding the wild-type TSC2 protein is identified by GenBank Accession No. NM_001077183.1. In some embodiments, the nucleic acid sequence of the cDNA encoding the wild-type TSC2 protein is identified by GenBank Accession No. NM_001114382.1.

在一些實施例中,個體係基於在TSC2處具有mTOR活化畸變而選擇來進行治療。在一些實施例中,TSC2處之mTOR活化畸變包含TSC2中之突變(例如,不活化突變)。在一些實施例中,突變選自由以下組成之群:剪接位點突變、無意義突變、讀框轉移突變、誤義突變及基因之損失或缺失。在一些實施例中,TSC2處之mTOR活化畸變包含單核苷酸變異體(SNV)。在一些實施例中,SNV包含選自由以下組成之群的突變:C1503T、C2743G、C5383T、C3755G、G760T、C3442T、G880A、T707C、A4949G,或在以下位置處之胺基酸中之任何一或多者的缺失:1405-1409、1960-1970、4999、5002、3521、5208、5238-5255。In some embodiments, the subject is selected for treatment based on having an mTOR activating aberration at TSC2. In some embodiments, the mTOR activating aberration at TSC2 comprises a mutation (e.g., a non-activating mutation) in TSC2. In some embodiments, the mutation is selected from the group consisting of a splice site mutation, a nonsense mutation, a frame shift mutation, a missense mutation, and a loss or deletion of a gene. In some embodiments, the mTOR activating aberration at TSC2 comprises a single nucleotide variant (SNV). In some embodiments, the SNV comprises a mutation selected from the group consisting of: C1503T, C2743G, C5383T, C3755G, G760T, C3442T, G880A, T707C, A4949G, or a deletion of any one or more of the amino acids at the following positions: 1405-1409, 1960-1970, 4999, 5002, 3521, 5208, 5238-5255.

在一些實施例中,突變為雙點突變(亦即,雙對偶基因突變)。在一些實施例中,突變包含三點突變或四點突變。在一些實施例中,TSC2處之mTOR活化畸變為功能損失型突變。在一些實施例中,TSC2處之mTOR活化畸變包含同型組合缺失。在一些實施例中,TSC2處之mTOR活化畸變包含TSC2之複本數變化。在一些實施例中,TSC2處之mTOR活化畸變包含TSC2之異常表現量。在一些實施例中,TSC2處之mTOR活化畸變包含由TSC2編碼之蛋白質之異常活性水平。In some embodiments, the mutation is a double point mutation (i.e., a double allele mutation). In some embodiments, the mutation comprises a triple point mutation or a quadruple point mutation. In some embodiments, the mTOR activating aberration at TSC2 is a loss-of-function mutation. In some embodiments, the mTOR activating aberration at TSC2 comprises a homozygous deletion. In some embodiments, the mTOR activating aberration at TSC2 comprises a copy number variation of TSC2. In some embodiments, the mTOR activating aberration at TSC2 comprises an abnormal expression amount of TSC2. In some embodiments, the mTOR activating aberration at TSC2 comprises an abnormal activity level of a protein encoded by TSC2.

在一些實施例中,個體在根據GenBank登錄號NM_000548之外顯子1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43及44中之任何一或多者中具有突變(例如,不活化突變)。在一些實施例中,個體在根據GenBank登錄號NM_000548之外顯子1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43及44中之兩者中具有雙對偶基因突變(例如,雙對偶基因不活化突變)。在一些實施例中,個體在TSC2之外顯子18、22、27、30及42中之任一者中具有不活化突變。在一些實施例中,個體在TSC2之外顯子18、22、27、30及42中之任何兩者中具有雙對偶基因突變。在一些實施例中,個體在TSC2之外顯子18及30中具有雙對偶基因突變。在一些實施例中,個體在TSC2之外顯子22及27中具有雙對偶基因突變。In some embodiments, the subject has a mutation (e.g., an inactivating mutation) in any one or more of exons 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, and 44 according to GenBank Accession No. NM_000548. In some embodiments, the subject has a double allelic mutation (e.g., a double allelic inactivating mutation) in two of exons 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, and 44 according to GenBank Accession No. NM_000548. In some embodiments, the subject has an inactivating mutation in any of exons 18, 22, 27, 30, and 42 of TSC2. In some embodiments, the individual has double allelic mutations in any two of TSC2 exons 18, 22, 27, 30, and 42. In some embodiments, the individual has double allelic mutations in TSC2 exons 18 and 30. In some embodiments, the individual has double allelic mutations in TSC2 exons 22 and 27.

在一些實施例中,突變並不在胺基酸947-989或外顯子26內。在一些實施例中,突變並不在胺基酸1272-1295或外顯子32內。In some embodiments, the mutation is not within amino acids 947-989 or exon 26. In some embodiments, the mutation is not within amino acids 1272-1295 or exon 32.

在一些實施例中,突變包含非保守性取代。In some embodiments, the mutation comprises a non-conservative substitution.

在一些實施例中,突變已由LOVD資料庫報告。In some embodiments, the mutation has been reported from the LOVD database.

TSC1及TSC2基因突變描述於例如Rosset等人, Genetics and Molecular Biology, 40, 1, 69-79 (2017),其全文併入本文中。在一些實施例中,個體具有連續缺失(例如,TSC2-PKD1缺失)。參見例如Boronat等人, Brain Dev. 36: 801-806。在一些實施例中,個體在TSC2中具有c.5238-5255缺失。參見例如Rok等人, Med Sci Monit 11: 230-234。在一些實施例中,個體具有近端區突變(例如在外顯子1-22中之任一者中)及/或遠端區突變(例如在外顯子23-41中之任一者中)。參見例如van Eeghena等人, Epilepsy Res 103: 83-87。 TSC1 TSC1 and TSC2 gene mutations are described, e.g., in Rosset et al., Genetics and Molecular Biology, 40, 1, 69-79 (2017), which is incorporated herein in its entirety. In some embodiments, the subject has a contiguous deletion (e.g., a TSC2-PKD1 deletion). See, e.g., Boronat et al., Brain Dev. 36: 801-806. In some embodiments, the subject has a c.5238-5255 deletion in TSC2. See, e.g., Rok et al., Med Sci Monit 11: 230-234. In some embodiments, the subject has a proximal region mutation (e.g., in any one of exons 1-22) and/or a distal region mutation (e.g., in any one of exons 23-41). See, e.g., van Eeghena et al., Epilepsy Res 103: 83-87. TSC1

TSC1亦稱為錯構瘤蛋白、結節性硬化症1蛋白質、TSC、KIAA0243及LAM。TSC1蛋白藉由負面地調節mTORC1信號傳導來充當與TSC2之複合物之一部分。在一些實施例中,根據人類基因體之GRCh38.p2集合,野生型TSC1基因之核酸序列藉由GenBank登錄號NC_000009.12在染色體9之反義上鑑別為核苷酸132891348至核苷酸132945370。野生型TSC1基因包含25個外顯子。TSC1基因之突變可發生在25個外顯子之任一者或任何組合中,或發生在TSC1基因之任何內含子或非編碼區中。 TSC1 is also known as hamartoma protein, tuberous sclerosis 1 protein, TSC, KIAA0243, and LAM. TSC1 protein acts as part of a complex with TSC2 by negatively regulating mTORC1 signaling. In some embodiments, the nucleic acid sequence of the wild-type TSC1 gene is identified by GenBank accession number NC_000009.12 on the antisense of chromosome 9 as nucleotides 132891348 to nucleotides 132945370 according to the GRCh38.p2 set of human genomes. The wild-type TSC1 gene comprises 25 exons. Mutations in the TSC1 gene may occur in any one or any combination of the 25 exons, or in any intron or non-coding region of the TSC1 gene.

在一些實施例中,野生型TSC1蛋白之胺基酸序列係藉由GenBank登錄號NP_000359.1來鑑別。在一些實施例中,野生型TSC1蛋白之胺基酸序列係藉由GenBank登錄號NP_001155898.1來鑑別。在一些實施例中,野生型TSC1蛋白之胺基酸序列係藉由GenBank登錄號NP_001155899.1來鑑別。In some embodiments, the amino acid sequence of the wild-type TSC1 protein is identified by GenBank Accession No. NP_000359.1. In some embodiments, the amino acid sequence of the wild-type TSC1 protein is identified by GenBank Accession No. NP_001155898.1. In some embodiments, the amino acid sequence of the wild-type TSC1 protein is identified by GenBank Accession No. NP_001155899.1.

在一些實施例中,編碼野生型TSC1蛋白之cDNA之核酸序列係藉由GenBank登錄號NM_000368.4來鑑別。在一些實施例中,編碼野生型TSC1蛋白之cDNA之核酸序列係藉由GenBank登錄號NM_001162426.1來鑑別。在一些實施例中,編碼野生型TSC1蛋白之cDNA之核酸序列係藉由GenBank登錄號NM_001162427.1來鑑別。In some embodiments, the nucleic acid sequence of the cDNA encoding the wild-type TSC1 protein is identified by GenBank Accession No. NM_000368.4. In some embodiments, the nucleic acid sequence of the cDNA encoding the wild-type TSC1 protein is identified by GenBank Accession No. NM_001162426.1. In some embodiments, the nucleic acid sequence of the cDNA encoding the wild-type TSC1 protein is identified by GenBank Accession No. NM_001162427.1.

在一些實施例中,個體係基於在TSC1處具有mTOR活化畸變而選擇來進行治療。在一些實施例中,TSC1處之mTOR活化畸變包含TSC1中之突變(例如,不活化突變)。在一些實施例中,突變選自由以下組成之群:剪接位點突變、無意義突變、讀框轉移突變、誤義突變,及基因之損失或缺失。在一些實施例中,TSC1處之mTOR活化畸變包含單核苷酸變異體(SNV)。在一些實施例中,該突變為雙點突變。在一些實施例中,TSC1處之mTOR活化畸變為功能損失型突變。在一些實施例中,TSC1處之mTOR活化畸變包含同型組合缺失。在一些實施例中,TSC1處之mTOR活化畸變包含TSC1之複本數變化。在一些實施例中,TSC1處之mTOR活化畸變包含TSC1之異常表現量。在一些實施例中,TSC1處之mTOR活化畸變包含由TSC1編碼之蛋白質之異常活性水平。In some embodiments, the subject is selected for treatment based on having an mTOR activating aberration at TSC1. In some embodiments, the mTOR activating aberration at TSC1 comprises a mutation in TSC1 (e.g., an inactivating mutation). In some embodiments, the mutation is selected from the group consisting of: a splice site mutation, a nonsense mutation, a frame shift mutation, a missense mutation, and a loss or deletion of a gene. In some embodiments, the mTOR activating aberration at TSC1 comprises a single nucleotide variant (SNV). In some embodiments, the mutation is a double point mutation. In some embodiments, the mTOR activating aberration at TSC1 is a loss-of-function mutation. In some embodiments, the mTOR activating aberration at TSC1 comprises a homotypic combination deletion. In some embodiments, the mTOR activating aberration at TSC1 comprises a change in the copy number of TSC1. In some embodiments, the mTOR activating aberration at TSC1 comprises an abnormal expression amount of TSC1. In some embodiments, the mTOR activating aberration at TSC1 comprises an abnormal activity level of a protein encoded by TSC1.

在一些實施例中,個體在根據GenBank登錄號NM_000368之外顯子1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24及25中之任何一或多者中具有突變(例如,不活化突變)。在一些實施例中,個體在根據GenBank登錄號NM_000368之外顯子1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24及25中之兩者中具有雙對偶基因突變(例如,雙對偶基因不活化突變)。在一些實施例中,突變並不在外顯子23中。在一些實施例中,突變並不在外顯子22之3'半部中。In some embodiments, the subject has a mutation (e.g., an inactivating mutation) in any one or more of exons 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, and 25 according to GenBank Accession No. NM_000368. In some embodiments, the subject has a double allelic mutation (e.g., a double allelic inactivating mutation) in two of exons 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, and 25 according to GenBank Accession No. NM_000368. In some embodiments, the mutation is not in exon 23. In some embodiments, the mutation is not in the 3' half of exon 22.

在一些實施例中,突變包含非保守性取代。In some embodiments, the mutation comprises a non-conservative substitution.

在一些實施例中,突變已由LOVD資料庫報告。In some embodiments, the mutation has been reported from the LOVD database.

在一些實施例中,個體具有TSC1損失或缺失。 KRAS突變 In some embodiments, the individual has a TSC1 loss or deletion. KRAS mutation

在一些實施例中,本文中所描述之方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS抑制劑(例如,分別為KRAS G12C抑制劑、KRAS G12A抑制劑、KRAS G12D抑制劑、KRAS G12F抑制劑、KRAS G12L抑制劑、KRAS G12R抑制劑、KRAS G12S抑制劑、KRAS G12V抑制劑、KRAS G13A抑制劑、KRAS G13C抑制劑、KRAS G13D抑制劑、KRAS G13P抑制劑、KRAS G13R抑制劑、KRAS G13S抑制劑、KRAS G13V抑制劑、KRAS Q61E抑制劑、KRAS Q61H抑制劑、KRAS Q61K抑制劑、KRAS Q61L抑制劑、KRAS Q61P抑制劑、KRAS Q61R抑制劑、KRAS K117N抑制劑、KRAS K117R抑制劑、KRAS A146E抑制劑、KRAS A146G抑制劑、KRAS A146P抑制劑、KRAS A146S抑制劑、KRAS A146T抑制劑或KRAS A146V抑制劑)之前基於個體樣本中表現KRAS突變蛋白(例如,KRAS G12C突變蛋白、KRAS G12A突變蛋白、KRAS G12D突變蛋白、KRAS G12F突變蛋白、KRAS G12L突變蛋白、KRAS G12R突變蛋白、KRAS G12S突變蛋白、KRAS G12V突變蛋白、KRAS G13A突變蛋白、KRAS G13C突變蛋白、KRAS G13D突變蛋白、KRAS G13P突變蛋白、KRAS G13R突變蛋白、KRAS G13S突變蛋白、KRAS G13V突變蛋白、KRAS Q61E突變蛋白、KRAS Q61H突變蛋白、KRAS Q61K突變蛋白、KRAS Q61L突變蛋白、KRAS Q61P突變蛋白、KRAS Q61R突變蛋白、KRAS K117N突變蛋白、KRAS K117R突變蛋白、KRAS A146E突變蛋白、KRAS A146G突變蛋白、KRAS A146P突變蛋白、KRAS A146S突變蛋白、KRAS A146T突變蛋白或KRAS A146V突變蛋白)之一或多種癌細胞之存在而選擇個體進行治療。在一些實施例中,表現KRAS G12C突變蛋白之癌細胞包含KRAS G12C突變。In some embodiments, the methods described herein comprise (e.g., further comprise) administering an mTOR inhibitor nanoparticle composition and a KRAS inhibitor (e.g., a KRAS G12C inhibitor, a KRAS G12A inhibitor, a KRAS G12D inhibitor, a KRAS G12F inhibitor, a KRAS G12L inhibitor, a KRAS G12R inhibitor, a KRAS G12S inhibitor, a KRAS G12V inhibitor, a KRAS G13A inhibitor, a KRAS G13C inhibitor, a KRAS G13D inhibitor, a KRAS G13P inhibitor, a KRAS G13R inhibitor, a KRAS G13S inhibitor, a KRAS G13V inhibitor, a KRAS Q61E inhibitor, a KRAS A KRAS Q61H inhibitor, a KRAS Q61K inhibitor, a KRAS Q61L inhibitor, a KRAS Q61P inhibitor, a KRAS Q61R inhibitor, a KRAS K117N inhibitor, a KRAS K117R inhibitor, a KRAS A146E inhibitor, a KRAS A146G inhibitor, a KRAS A146P inhibitor, a KRAS A146S inhibitor, a KRAS A146T inhibitor, or a KRAS A146V inhibitor) has previously been used to identify KRAS mutant proteins (e.g., KRAS G12C mutant protein, KRAS G12A mutant protein, KRAS G12D mutant protein, KRAS G12F mutant protein, KRAS G12L mutant protein, KRAS G12R mutant protein, KRAS G12S mutant protein, KRAS G12V mutant protein, KRAS G13A mutant protein, KRAS G13C mutant protein, KRAS G13D mutant protein, KRAS G13P mutant protein, KRAS G13R mutant protein, KRAS G13S mutant protein, KRAS G13V mutant protein, KRAS Q61E mutant protein, KRAS Q61H mutant protein, KRAS Q61K mutant protein, KRAS Q61L mutant protein, KRAS Q61P mutant protein, KRAS Q61R mutant protein, KRAS K117N mutant protein, KRAS K117R mutant protein, KRAS A146E mutant protein, KRAS A146G mutant protein, KRAS A146P mutant protein, KRAS In some embodiments, the subject is selected for treatment by detecting the presence of one or more cancer cells expressing KRAS A146S mutant protein, KRAS A146T mutant protein, or KRAS A146V mutant protein. In some embodiments, the cancer cells expressing KRAS G12C mutant protein comprise the KRAS G12C mutation.

KRAS突變可基於樣本,諸如來自個體之樣本及/或參考樣本來評估。在一些實施例中,該樣本為組織樣本或自組織樣本(例如,腫瘤組織樣本)萃取之核酸。在一些實施例中,該樣本為細胞樣本或自細胞樣本(例如,CTC樣本)萃取之核酸。在一些實施例中,該樣本為腫瘤活檢體。在一些實施例中,該樣本為腫瘤樣本或自腫瘤樣本萃取之核酸。在一些實施例中,該樣本為活檢體樣本或自活檢體樣本萃取之核酸。在一些實施例中,該樣本為甲醛固定石蠟包埋(FFPE)樣本或自FFPE樣本萃取之核酸。在一些實施例中,該樣本為血液樣本。在一些實施例中,游離DNA係自血液樣本中分離。在一些實施例中,生物樣本為血漿樣本或自血漿樣本萃取之核酸。KRAS mutations can be assessed based on samples, such as samples from an individual and/or reference samples. In some embodiments, the sample is a tissue sample or nucleic acid extracted from a tissue sample (e.g., a tumor tissue sample). In some embodiments, the sample is a cell sample or nucleic acid extracted from a cell sample (e.g., a CTC sample). In some embodiments, the sample is a tumor biopsy. In some embodiments, the sample is a tumor sample or nucleic acid extracted from a tumor sample. In some embodiments, the sample is a biopsy sample or nucleic acid extracted from a biopsy sample. In some embodiments, the sample is a formaldehyde-fixed paraffin-embedded (FFPE) sample or nucleic acid extracted from a FFPE sample. In some embodiments, the sample is a blood sample. In some embodiments, free DNA is isolated from a blood sample. In some embodiments, the biological sample is a plasma sample or nucleic acid extracted from a plasma sample.

在一些實施例中,經由核酸定序(雙去氧及焦磷酸定序)、PCR (包括對偶基因特異性PCR及擴增阻礙突變系統(ARMS)定量PCR及數位PCR)、單股構形多形性分析、熔解曲線分析、探針雜交方法(包括使用核酸及肽核酸探針)評估(諸如偵測)KRAS突變。KRAS突變(例如,KRAS G12C突變)亦可使用可商購套組來評估(諸如偵測),例如THERASCREEN®分析(DxS,英國曼徹斯特)、PYROMARK® KRAS分析(Qiagen,美國加利福尼亞州巴倫西亞)、SIGNATURE® KRAS / BRAF分析(奧斯瑞根(Asuragen)公司,美國德克薩斯州奧斯汀)及其他。此類方法描述於例如Matsunaga等人(2016) Oncol Lett .12(1): 150-156;Brychta等人(2016) Clinical Chemistry,第62卷,第11期: 1482-1491;Nicolazzo等人(2021) Diagnostics ( Basel ). 11(12): 2196;以及Anderson(2011) Expert Rev Mol Diagn .11(6): 635-642,以及前述各者中所引用之參考文獻中。用於篩選患者樣本中KRAS G12C突變之例示性平台包括用於腫瘤組織之聚合酶鏈式反應(PCR) (例如,Qiagen therascreen KRAS RGQ PCR套組)及用於ctDNA之下一代定序(NGS) (例如,Resolution Bioscience)。 其他選擇標準 In some embodiments, KRAS mutations are assessed (e.g., detected) by nucleic acid sequencing (biteoxy and pyrophosphate sequencing), PCR (including allele-specific PCR and amplification resistance mutation system (ARMS) quantitative PCR and digital PCR), single strand conformation polymorphism analysis, melting curve analysis, probe hybridization methods (including the use of nucleic acid and peptide nucleic acid probes). KRAS mutations (e.g., KRAS G12C mutations) can also be assessed (e.g., detected) using commercially available kits, such as THERASCREEN® assay (DxS, Manchester, UK), PYROMARK® KRAS assay (Qiagen, Valencia, CA, USA), SIGNATURE® KRAS / BRAF assay (Asuragen, Austin, TX, USA), and others. Such methods are described, for example, in Matsunaga et al. (2016) Oncol Lett . 12(1): 150-156; Brychta et al. (2016) Clinical Chemistry , Vol. 62, No. 11: 1482-1491; Nicolazzo et al. (2021) Diagnostics ( Basel ) . 11(12): 2196; and Anderson (2011) Expert Rev Mol Diagn . 11(6): 635-642, and references cited therein. Exemplary platforms for screening KRAS G12C mutations in patient samples include polymerase chain reaction (PCR) for tumor tissue (e.g., Qiagen therascreen KRAS RGQ PCR kit) and next generation sequencing (NGS) for ctDNA (e.g., Resolution Bioscience). Other selection criteria

在一些實施例中,根據本文中所描述之方法治療之個體經組織學確診為惡性實體腫瘤,在腫瘤組織或血漿ctDNA中具有 KRAS突變(例如,KRAS G12C突變)。在一些實施例中,實體腫瘤為晚期(例如,在III期或IV期或末期)、不可切除性及/或轉移性實體腫瘤。在一些實施例中,腫瘤之直徑為至少約0.5、1、1.25、1.5、1.75或2公分。在一些實施例中,根據本文中所描述之方法治療之個體經組織學確診為NSCLC,在腫瘤組織或血漿ctDNA中具有 KRAS突變(例如,KRAS G12C突變)。在一些實施例中,NSCLC為晚期、不可切除性及/或轉移性NSCLC。在一些實施例中,該個體並非確定性療法之候選者。在一些實施例中,對於惡性實體腫瘤及/或NSCLC,沒有具有治癒意圖之可用治療方法。在一些實施例中,個體已接受使用鉑化合物及/或檢查點抑制劑(具有任何治療意圖)之先前療法。在一些實施例中,個體未接受使用KRAS抑制劑(例如,KRAS G12C抑制劑)之先前療法。在一些實施例中,個體已接受使用KRAS抑制劑(例如,KRAS G12C抑制劑)之先前療法。在一些實施例中,個體根據RECIST 1.1患有可量測疾病(參見Eisenhauer等人(2009) Eur J . Cancer45: 228-247)。在一些實施例中,個體為18歲或更大。在一些實施例中,個體具有至少3個月之預期壽命。在個體接受最近的先前全身療法或放射療法之一些實施例中,最近的先前全身療法(例如,化療、免疫療法或試驗用藥劑)及放射療法在第一次劑量之mTOR抑制劑奈米粒子組合物及/或KRAS抑制劑(例如,KRAS G12C抑制劑)之前中斷至少2週。在個體已經歷來自先前療法之不良反應的一些實施例中,個體在參與時已自先前療法之不良反應恢復至≤1級(不包括禿髮、周邊神經病變及藉由其他合格性標準取代之參數,諸如血液學參數)。在一些實施例中,個體具有0或1之東部腫瘤協作組(ECOG)體能狀態(參見例如www.ecog-acrin.org/resources/ecog-performance-status)。在一些實施例中,個體具有足夠的器官功能(包括以下中之一或多者:例如絕對嗜中性白血球計數≥ 1,500/mm 3(≥ 1.5 × 10 9/L);血小板計數≥ 100,000/mm 3(≥ 100 × 10 9/L);血紅蛋白≥ 9 g/dL,在至少2週沒有輸血的情況下;總膽紅素≤ 1.5 ×正常上限(ULN) (若與肝轉移或吉爾伯氏病相關,則≤ 3 × ULN);天冬胺酸轉胺酶(AST)及丙胺酸轉胺酶(ALT)≤ 3.0 × ULN (若與肝轉移相關,則≤5 × ULN);肌酸酐廓清率≥ 50 mL/min或腎小球濾過率≥ 50 mL/min/1.73 m 2,使用經驗證之預測方程式計算(例如,Cockcroft-Gault,腎病飲食調整(MDRD)或24小時尿量CrCl)。 In some embodiments, the individual treated according to the methods described herein has a malignant solid tumor confirmed by histology, and has a KRAS mutation (e.g., KRAS G12C mutation) in tumor tissue or plasma ctDNA. In some embodiments, the solid tumor is an advanced (e.g., in stage III or stage IV or terminal), unresectable and/or metastatic solid tumor. In some embodiments, the diameter of the tumor is at least about 0.5, 1, 1.25, 1.5, 1.75, or 2 centimeters. In some embodiments, the individual treated according to the methods described herein has a NSCLC confirmed by histology, and has a KRAS mutation (e.g., KRAS G12C mutation) in tumor tissue or plasma ctDNA. In some embodiments, the NSCLC is advanced, unresectable and/or metastatic NSCLC. In some embodiments, the individual is not a candidate for definitive therapy. In some embodiments, there are no available treatments with curative intent for malignant solid tumors and/or NSCLC. In some embodiments, the individual has received prior therapy with platinum compounds and/or checkpoint inhibitors (with any therapeutic intent). In some embodiments, the individual has not received prior therapy with a KRAS inhibitor (e.g., a KRAS G12C inhibitor). In some embodiments, the individual has received prior therapy with a KRAS inhibitor (e.g., a KRAS G12C inhibitor). In some embodiments, the subject has measurable disease according to RECIST 1.1 (see Eisenhauer et al. (2009) Eur J. Cancer 45: 228-247). In some embodiments, the subject is 18 years of age or older. In some embodiments, the subject has a life expectancy of at least 3 months. In some embodiments in which the subject received recent prior systemic therapy or radiation therapy, the recent prior systemic therapy (e.g., chemotherapy, immunotherapy, or investigational agent) and radiation therapy were interrupted for at least 2 weeks prior to the first dose of the mTOR inhibitor nanoparticle composition and/or KRAS inhibitor (e.g., KRAS G12C inhibitor). In some embodiments where the subject has experienced adverse effects from a prior therapy, the subject has recovered from adverse effects of the prior therapy to ≤ Grade 1 (excluding alopecia, peripheral neuropathy, and parameters substituted by other eligibility criteria, such as hematological parameters) at the time of enrollment. In some embodiments, the subject has an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 (see, e.g., www.ecog-acrin.org/resources/ecog-performance-status). In some embodiments, the individual has adequate organ function (including one or more of the following: for example, absolute neutrophil count ≥ 1,500/mm 3 (≥ 1.5 × 10 9 /L); platelet count ≥ 100,000/mm 3 (≥ 100 × 10 9 /L); hemoglobin ≥ 9 g/dL without transfusion for at least 2 weeks; total bilirubin ≤ 1.5 × upper limit of normal (ULN) (≤ 3 × ULN if associated with liver metastasis or Gilbert's disease); aspartate aminotransferase (AST) and alanine aminotransferase (ALT) ≤ 3.0 × ULN (≤ 5 × ULN if associated with liver metastasis); creatinine clearance ≥ 50 mL/min or glomerular filtration rate ≥ 50 mL/min/1.73 m 2 calculated using a validated prediction equation (eg, Cockcroft-Gault, Modification of Diet in Nephropathy (MDRD), or 24-hour urine output CrCl).

在一些實施例中,個體未患活性腦轉移瘤或癌性腦膜炎。在一些實施例中,個體患有腦轉移瘤且(a)腦轉移瘤得到充分治療、(b)個體為神經穩定的,且(c)若個體正接受類固醇治療,則類固醇劑量≤每日10 mg普賴松(或等效物)。在一些實施例中,個體在第一次劑量之mTOR抑制劑奈米粒子組合物及/或KRAS抑制劑(例如,KRAS G12C抑制劑)之4週內沒有顯著咯血或出血之病史。在一些實施例中,個體在第一次劑量之用mTOR抑制劑奈米粒子組合物及KRAS抑制劑治療之4週內沒有進行過大手術。在一些實施例中,個體沒有腸道疾病、發炎性腸病、大型胃手術或其他胃腸道病狀(例如,不受控制的噁心、嘔吐、吸收障礙症候群)之病史。在一些實施例中,個體未患以下心臟異常中之任一者(或沒有此病史):(a)不穩定心絞痛或心肌梗塞;(b)充血性心臟衰竭≥紐約心臟協會級別3;(c)篩檢期期間ECG上延長校正QT (QTc)> 480毫秒或先天性長QT症候群之醫療或家族病史;(d)有症狀的或不受控制的心房震顫或其他臨床上顯著之心律不整。在一些實施例中,個體例如在前6個月內沒有中風或短暫性缺血發作之病史。在一些實施例中,個體沒有持續需要具有已知尖端扭轉型室速風險之藥物或治療指數狹窄之CYP3A基質;CYP3A及/或P-gp之強抑制劑或誘導劑;乳癌抗性蛋白(BCRP)之強抑制劑;以及質子泵抑制劑,其在第一次劑量之用mTOR抑制劑奈米粒子組合物及/或KRAS抑制劑(例如,KRAS G12C抑制劑)治療之前無法切換至替代治療。在一些實施例中,個體未患已知人類免疫缺乏病毒(HIV)感染或急性或慢性B型或C型肝炎感染。在一些實施例中,個體患有已知人類免疫缺乏病毒(HIV)感染且偵測不到病毒負荷或患有急性或慢性B型或C型肝炎感染且偵測不到病毒負荷。在一些實施例中,個體並非免疫功能不全。在一些實施例中,個體沒有需要類固醇治療之間質性肺病或輻射肺炎之病史,或臨床上活性間質性肺病或肺炎之任何證據。在一些實施例中,個體未患不受控制的糖尿病。 例示性投與途徑、劑量及投與頻率 包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物 In some embodiments, the individual does not have active brain metastases or carcinomatous meningitis. In some embodiments, the individual has brain metastases and (a) the brain metastases are adequately treated, (b) the individual is neurostable, and (c) if the individual is receiving steroid therapy, the steroid dose is ≤ 10 mg of prazol (or equivalent) per day. In some embodiments, the individual has no history of significant hemoptysis or bleeding within 4 weeks of the first dose of the mTOR inhibitor nanoparticle composition and/or KRAS inhibitor (e.g., KRAS G12C inhibitor). In some embodiments, the individual has not undergone major surgery within 4 weeks of the first dose of treatment with the mTOR inhibitor nanoparticle composition and KRAS inhibitor. In some embodiments, the subject has no history of intestinal disease, inflammatory bowel disease, major gastric surgery, or other gastrointestinal pathology (e.g., uncontrolled nausea, vomiting, malabsorption syndrome). In some embodiments, the subject does not have (or has no history of) any of the following cardiac abnormalities: (a) unstable angina or myocardial infarction; (b) congestive heart failure ≥ New York Heart Association class 3; (c) medical or family history of prolonged corrected QT (QTc) > 480 milliseconds on ECG during the screening period or congenital long QT syndrome; (d) symptomatic or uncontrolled atrial flutter or other clinically significant arrhythmias. In some embodiments, the subject has no history of stroke or transient ischemic episode, for example, within the previous 6 months. In some embodiments, the subject does not have an ongoing need for medications with a known risk of torsades de pointes or a narrow treatment index CYP3A substrate; strong inhibitors or inducers of CYP3A and/or P-gp; strong inhibitors of breast cancer resistance protein (BCRP); and proton pump inhibitors that cannot be switched to alternative therapy prior to the first dose of treatment with the mTOR inhibitor nanoparticle composition and/or KRAS inhibitor (e.g., KRAS G12C inhibitor). In some embodiments, the subject does not have a known human immunodeficiency virus (HIV) infection or acute or chronic hepatitis B or C infection. In some embodiments, the individual has a known human immunodeficiency virus (HIV) infection with no detectable viral load or has acute or chronic hepatitis B or C infection with no detectable viral load. In some embodiments, the individual is not immunocompromised. In some embodiments, the individual does not have a history of interstitial lung disease or radiation pneumonitis requiring steroid therapy, or any evidence of clinically active interstitial lung disease or pneumonitis. In some embodiments, the individual does not have uncontrolled diabetes. Exemplary routes of administration, dosages, and frequencies of administration Compositions comprising nanoparticles comprising an mTOR inhibitor and albumin

在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)係皮下投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)係靜脈內投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)例如經由靜脈內輸注以介於約1 mg/m 2與約150 mg/m 2之間、約5 mg/m 2與約75 mg/m 2之間的劑量投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)例如經由靜脈內輸注以約5、7.5、10、15、30、56、75或100 mg/m 2中之任一者的劑量投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)以一或多個21天週期(例如,三週週期)向患有癌症之個體投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)在各21天週期(例如,三週週期)期間向個體投與一次。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)在各21天週期(例如,三週週期)的第1週、第2週或第3週期間投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)在各21天週期(例如,三週週期)的第1天、第8天或第15天投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)在各21天週期(例如,三週週期)期間向個體投與兩次。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)在各21天週期(例如,三週週期)的第1週及第2週期間投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)在各21天週期(例如,三週週期)的第2週及第3週期間投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)在各21天週期(例如,三週週期)的第1週及第3週期間投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)在各21天週期(例如,三週週期)的第1天及第8天投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)在各21天週期(例如,三週週期)的第1天及第15天投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)在各21天週期(例如,三週週期)的第8天及第15天投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)在各21天週期(例如,三週週期)期間向個體投與三次。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)在各21天週期(例如,三週週期)的第1週、第2週及第3週期間投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)在各21天週期(例如,三週週期)的第1天、第8天及第15天投與。在一些實施例中,mTOR抑制劑奈米粒子組合物(例如,西羅莫司/白蛋白奈米粒子組合物,諸如FYARRO™)之劑量經修改(例如,若個體經歷一或多種不良反應)。關於FYARRO™之劑量修改及進行劑量修改之情形的細節詳述於www.accessdata.fda.gov/drugsatfda_docs/label/2021/213312lbl.pdf。 KRAS抑制劑 In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered subcutaneously. In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered intravenously. In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered, for example, via intravenous infusion at a dose between about 1 mg/m 2 and about 150 mg/m 2 , about 5 mg/m 2 and about 75 mg/m 2 . In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered, for example, via intravenous infusion, at a dose of about any one of 5, 7.5, 10, 15, 30, 56, 75, or 100 mg/m 2. In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered to an individual having cancer in one or more 21-day cycles (e.g., three cycles). In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered to the subject once during each 21-day cycle (e.g., three-week cycle). In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered during the 1st, 2nd, or 3rd week of each 21-day cycle (e.g., three-week cycle). In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered on day 1, day 8, or day 15 of each 21-day cycle (e.g., three-week cycle). In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered to the subject twice during each 21-day cycle (e.g., three-week cycle). In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered between the 1st and 2nd weeks of each 21-day cycle (e.g., three-week cycle). In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered between the 2nd and 3rd weeks of each 21-day cycle (e.g., three-week cycle). In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered between the 1st and 3rd weeks of each 21-day cycle (e.g., three-week cycle). In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered on day 1 and day 8 of each 21-day cycle (e.g., three-week cycle). In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered on day 1 and day 15 of each 21-day cycle (e.g., three-week cycle). In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered on day 8 and day 15 of each 21-day cycle (e.g., three-week cycle). In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered to the subject three times during each 21-day cycle (e.g., three-week cycle). In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered during week 1, week 2, and week 3 of each 21-day cycle (e.g., three-week cycle). In some embodiments, the mTOR inhibitor nanoparticle composition (e.g., a sirolimus/albumin nanoparticle composition, such as FYARRO™) is administered on day 1, day 8, and day 15 of each 21-day cycle (e.g., a three-week cycle). In some embodiments, the dose of the mTOR inhibitor nanoparticle composition (e.g., a sirolimus/albumin nanoparticle composition, such as FYARRO™) is modified (e.g., if the individual experiences one or more adverse reactions). Details regarding dose modifications of FYARRO™ and the circumstances under which dose modifications are made are described in detail at www.accessdata.fda.gov/drugsatfda_docs/label/2021/213312lbl.pdf. KRAS inhibitors

在一些實施例中,KRAS抑制劑(例如,KRAS G12C抑制劑)係經口投與。在一些實施例中,KRAS抑制劑(例如,KRAS G12C抑制劑)以介於約100 mg與約1200 mg之間、約200 mg與約1150 mg之間、約300 mg與約1000 mg之間、約400 mg與約1000 mg之間、約400 mg與約960 mg之間或約400 mg與約800 mg之間的劑量投與。 In some embodiments, the KRAS inhibitor (e.g., KRAS G12C inhibitor) is administered orally. In some embodiments, the KRAS inhibitor (e.g., KRAS G12C inhibitor) is administered in an amount between about 100 mg and about 1200 mg, between about 200 mg and about 1150 mg, between about 300 mg and about 1000 mg, between about 400 mg and about 1000 mg, between about 400 mg and about 960 mg, or between about 400 mg and about 800 mg.

在一些實施例中,KRAS抑制劑為KRAS G12C抑制劑。在一些實施例中,KRAS G12C抑制劑為索托拉西布。在一些實施例中,索托拉西布每日投與一次。在一些實施例中,索托拉西布以介於約100 mg與約1200 mg之間、約200 mg與約1150 mg之間或約300 mg與約1000 mg之間的劑量投與(例如,經口)。在一些實施例中,索托拉西布以約960 mg之劑量投與(例如,經口)。在一些實施例中,索托拉西布之劑量經修改。關於索托拉西布之劑量修改及進行劑量修改之情形的細節詳述於www.accessdata.fda.gov/drugsatfda_docs/label/2021/214665s000lbl.pdf中。在一些實施例中,KRAS G12C抑制劑為阿達格拉西布。在一些實施例中,阿達格拉西布每日投與兩次(例如,bis en die或「BID」)。在一些實施例中,阿達格拉西布以介於約100 mg與約1200 mg之間、約200 mg與約1150 mg之間、約300 mg與約1000 mg之間、約400 mg與約1000 mg之間、約400 mg與約960 mg之間或約400 mg與約800 mg之間的劑量投與。在一些實施例中,阿達格拉西布以約100 mg、150 mg、200 mg、300 mg、400 mg、500 mg、600 mg、700 mg、800 mg、900 mg、1,000 mg、1,100 mg及1,200 mg中之任一者的劑量投與(例如,經口)。 例示性方法 In some embodiments, the KRAS inhibitor is a KRAS G12C inhibitor. In some embodiments, the KRAS G12C inhibitor is sotolacib. In some embodiments, sotolacib is administered once daily. In some embodiments, sotolacib is administered (e.g., orally) in an amount between about 100 mg and about 1200 mg, between about 200 mg and about 1150 mg, or between about 300 mg and about 1000 mg. In some embodiments, sotolacib is administered (e.g., orally) in an amount of about 960 mg. In some embodiments, the dosage of sotolacib is modified. Details regarding dose modifications for sotolacilib and circumstances in which dose modifications are made are described in detail at www.accessdata.fda.gov/drugsatfda_docs/label/2021/214665s000lbl.pdf. In some embodiments, the KRAS G12C inhibitor is adagracib. In some embodiments, adagracib is administered twice daily (e.g., bis en die or "BID"). In some embodiments, adagracib is administered in an amount between about 100 mg and about 1200 mg, between about 200 mg and about 1150 mg, between about 300 mg and about 1000 mg, between about 400 mg and about 1000 mg, between about 400 mg and about 960 mg, or between about 400 mg and about 800 mg. In some embodiments, adagracib is administered (e.g., orally) in an amount of about any of 100 mg, 150 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 700 mg, 800 mg, 900 mg, 1,000 mg, 1,100 mg, and 1,200 mg. Exemplary Methods

在一些實施例中,提供一種治療個體(例如,人類)之癌症的方法,其包含向個體投與(a)有效量之包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」),其中奈米粒子中之mTOR抑制劑與白蛋白締合(例如,包覆有白蛋白);以及(b)有效量之KRAS G12C抑制劑。在一些實施例中,癌症包含表現KRAS G12C突變蛋白之一或多種細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,癌症為肺癌(例如,NSCLC)、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌或來源未知的腫瘤。在一些實施例中,癌症為NSCLC或膀胱癌。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑係同時投與。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑係依序投與。在一些實施例中,mTOR抑制劑奈米粒子組合物在KRAS G12C抑制劑之前投與。在治療方法之一些實施例中,KRAS G12C抑制劑在mTOR抑制劑奈米粒子組合物之前投與。在一些實施例中,mTOR抑制劑為本文中所描述之mTOR抑制劑。在一些實施例中,mTOR抑制劑為利莫司藥物。在一些實施例中,mTOR抑制劑為西羅莫司(雷帕黴素)或其衍生物或類似物。在一些實施例中,mTOR抑制劑奈米粒子組合物包含奈米粒子白蛋白結合型西羅莫司。在一些實施例中,mTOR抑制劑奈米粒子組合物為奈米粒子白蛋白結合型西羅莫司。在一些實施例中,白蛋白為人類白蛋白,例如人類血清白蛋白。在一些實施例中,KRAS G12C抑制劑為小分子抑制劑。在一些實施例中,KRAS G12C抑制劑為索托拉西布,展示如下: In some embodiments, a method of treating cancer in an individual (e.g., a human) is provided, comprising administering to the individual (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor and albumin ("mTOR inhibitor nanoparticle composition"), wherein the mTOR inhibitor in the nanoparticles is conjugated to albumin (e.g., coated with albumin); and (b) an effective amount of a KRAS G12C inhibitor. In some embodiments, the cancer comprises one or more cells expressing a KRAS G12C mutant protein. Additionally or alternatively, in some embodiments, the cancer comprises one or more cells having at least one mTOR activating aberration. In some embodiments, the cancer is lung cancer (e.g., NSCLC), bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, or a tumor of unknown origin. In some embodiments, the cancer is NSCLC or bladder cancer. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor are administered simultaneously. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor are administered sequentially. In some embodiments, the mTOR inhibitor nanoparticle composition is administered before the KRAS G12C inhibitor. In some embodiments of the treatment method, the KRAS G12C inhibitor is administered before the mTOR inhibitor nanoparticle composition. In some embodiments, the mTOR inhibitor is an mTOR inhibitor described herein. In some embodiments, the mTOR inhibitor is a limus drug. In some embodiments, the mTOR inhibitor is sirolimus (rapamycin) or a derivative or analog thereof. In some embodiments, the mTOR inhibitor nanoparticle composition comprises nanoparticle albumin-bound sirolimus. In some embodiments, the mTOR inhibitor nanoparticle composition is nanoparticle albumin-bound sirolimus. In some embodiments, the albumin is human albumin, such as human serum albumin. In some embodiments, the KRAS G12C inhibitor is a small molecule inhibitor. In some embodiments, the KRAS G12C inhibitor is sotolacib, as shown below:

在一些實施例中,KRAS G12C抑制劑為阿達格拉西布,展示如下: In some embodiments, the KRAS G12C inhibitor is adagracib, as shown below:

在一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑之前基於來自個體之樣本(例如,腫瘤樣本或血液樣本)中具有至少一種mTOR活化畸變之一或多種癌細胞之存在而選擇個體進行治療。在一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑之前基於來自個體之樣本(例如,腫瘤樣本或血液樣本)中表現KRAS G12C突變蛋白之一或多種癌細胞之存在而選擇個體進行治療。In some embodiments, the method comprises (such as further comprising) selecting an individual for treatment based on the presence of one or more cancer cells having at least one mTOR activating aberration in a sample (e.g., a tumor sample or a blood sample) from the individual before administering an mTOR inhibitor nanoparticle composition and a KRAS G12C inhibitor. In some embodiments, the method comprises (such as further comprising) selecting an individual for treatment based on the presence of one or more cancer cells expressing a KRAS G12C mutant protein in a sample (e.g., a tumor sample or a blood sample) from the individual before administering an mTOR inhibitor nanoparticle composition and a KRAS G12C inhibitor.

在一些實施例中,提供一種治療個體(例如,人類)之癌症的方法,其包含向個體投與(a)有效量之包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」),其中奈米粒子具有不超過約150 nm (諸如不超過約120 nm)之平均粒徑;以及(b)有效量之KRAS G12C抑制劑。在一些實施例中,癌症包含表現KRAS G12C突變蛋白之一或多種細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,癌症為肺癌(例如,NSCLC)、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌或來源未知的腫瘤。在一些實施例中,癌症為NSCLC或膀胱癌。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑係同時投與。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑係依序投與。在一些實施例中,mTOR抑制劑奈米粒子組合物在KRAS G12C抑制劑之前投與。在治療方法之一些實施例中,KRAS G12C抑制劑在mTOR抑制劑奈米粒子組合物之前投與。在一些實施例中,mTOR抑制劑為本文中所描述之mTOR抑制劑。在一些實施例中,mTOR抑制劑為利莫司藥物。在一些實施例中,mTOR抑制劑為西羅莫司(雷帕黴素)或其衍生物或類似物。在一些實施例中,mTOR抑制劑奈米粒子組合物包含奈米粒子白蛋白結合型西羅莫司。在一些實施例中,mTOR抑制劑奈米粒子組合物為奈米粒子白蛋白結合型西羅莫司。在一些實施例中,白蛋白為人類白蛋白,例如人類血清白蛋白。在一些實施例中,KRAS G12C抑制劑為小分子抑制劑。在一些實施例中,KRAS G12C抑制劑為索托拉西布,其結構展示於上文中。在一些實施例中,KRAS G12C抑制劑為阿達格拉西布,其結構展示於上文中。在一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑之前基於來自個體之樣本(例如,腫瘤樣本或血液樣本)中具有至少一種mTOR活化畸變之一或多種癌細胞之存在而選擇個體進行治療。在一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑之前基於來自個體之樣本(例如,腫瘤樣本或血液樣本)中表現KRAS G12C突變蛋白之一或多種癌細胞之存在而選擇個體進行治療。In some embodiments, a method of treating cancer in an individual (e.g., a human) is provided, comprising administering to the individual (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor and albumin ("mTOR inhibitor nanoparticle composition"), wherein the nanoparticles have an average particle size of no more than about 150 nm (e.g., no more than about 120 nm); and (b) an effective amount of a KRAS G12C inhibitor. In some embodiments, the cancer comprises one or more cells expressing a KRAS G12C mutant protein. Additionally or alternatively, in some embodiments, the cancer comprises one or more cells having at least one mTOR activating aberration. In some embodiments, the cancer is lung cancer (e.g., NSCLC), bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, or a tumor of unknown origin. In some embodiments, the cancer is NSCLC or bladder cancer. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor are administered simultaneously. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor are administered sequentially. In some embodiments, the mTOR inhibitor nanoparticle composition is administered before the KRAS G12C inhibitor. In some embodiments of the treatment method, the KRAS G12C inhibitor is administered before the mTOR inhibitor nanoparticle composition. In some embodiments, the mTOR inhibitor is an mTOR inhibitor described herein. In some embodiments, the mTOR inhibitor is a limus drug. In some embodiments, the mTOR inhibitor is sirolimus (rapamycin) or a derivative or analog thereof. In some embodiments, the mTOR inhibitor nanoparticle composition comprises nanoparticle albumin-bound sirolimus. In some embodiments, the mTOR inhibitor nanoparticle composition is nanoparticle albumin-bound sirolimus. In some embodiments, the albumin is human albumin, such as human serum albumin. In some embodiments, the KRAS G12C inhibitor is a small molecule inhibitor. In some embodiments, the KRAS G12C inhibitor is sotolacib, the structure of which is shown above. In some embodiments, the KRAS G12C inhibitor is adagracib, the structure of which is shown above. In some embodiments, the method comprises (such as further comprising) selecting an individual for treatment based on the presence of one or more cancer cells having at least one mTOR activating aberration in a sample (e.g., a tumor sample or a blood sample) from the individual before administering an mTOR inhibitor nanoparticle composition and a KRAS G12C inhibitor. In some embodiments, the method comprises (such as further comprising) selecting an individual for treatment based on the presence of one or more cancer cells expressing a KRAS G12C mutant protein in a sample (e.g., a tumor sample or a blood sample) from the individual before administering an mTOR inhibitor nanoparticle composition and a KRAS G12C inhibitor.

在一些實施例中,提供一種治療個體(例如,人類)之癌症的方法,其包含向個體投與(a)有效量之包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」),其中奈米粒子包含與白蛋白締合(例如,包覆有白蛋白)之mTOR抑制劑,且其中奈米粒子具有不超過約150 nm (諸如不超過約120 nm)之平均粒徑;以及(b)有效量之KRAS G12C抑制劑。在一些實施例中,癌症包含表現KRAS G12C突變蛋白之一或多種細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,癌症為肺癌(例如,NSCLC)、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌或來源未知的腫瘤。在一些實施例中,癌症為NSCLC或膀胱癌。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑係同時投與。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑係依序投與。在一些實施例中,mTOR抑制劑奈米粒子組合物在KRAS G12C抑制劑之前投與。在治療方法之一些實施例中,KRAS G12C抑制劑在mTOR抑制劑奈米粒子組合物之前投與。在一些實施例中,mTOR抑制劑為本文中所描述之mTOR抑制劑。在一些實施例中,mTOR抑制劑為利莫司藥物。在一些實施例中,mTOR抑制劑為西羅莫司(雷帕黴素)或其衍生物或類似物。在一些實施例中,mTOR抑制劑奈米粒子組合物包含奈米粒子白蛋白結合型西羅莫司。在一些實施例中,mTOR抑制劑奈米粒子組合物為奈米粒子白蛋白結合型西羅莫司。在一些實施例中,白蛋白為人類白蛋白,例如人類血清白蛋白。在一些實施例中,KRAS G12C抑制劑為小分子抑制劑。在一些實施例中,KRAS G12C抑制劑為索托拉西布,其結構展示於上文中。在一些實施例中,KRAS G12C抑制劑為阿達格拉西布,其結構展示於上文中。在一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑之前基於來自個體之樣本(例如,腫瘤樣本或血液樣本)中具有至少一種mTOR活化畸變之一或多種癌細胞之存在而選擇個體進行治療。在一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑之前基於來自個體之樣本(例如,腫瘤樣本或血液樣本)中表現KRAS G12C突變蛋白之一或多種癌細胞之存在而選擇個體進行治療。In some embodiments, a method of treating cancer in an individual (e.g., a human) is provided, comprising administering to the individual (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor and albumin ("mTOR inhibitor nanoparticle composition"), wherein the nanoparticles comprise an mTOR inhibitor conjugated to albumin (e.g., coated with albumin), and wherein the nanoparticles have an average particle size of no more than about 150 nm (e.g., no more than about 120 nm); and (b) an effective amount of a KRAS G12C inhibitor. In some embodiments, the cancer comprises one or more cells expressing a KRAS G12C mutant protein. Additionally or alternatively, in some embodiments, the cancer comprises one or more cells having at least one mTOR activating aberration. In some embodiments, the cancer is lung cancer (e.g., NSCLC), bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, or a tumor of unknown origin. In some embodiments, the cancer is NSCLC or bladder cancer. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor are administered simultaneously. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor are administered sequentially. In some embodiments, the mTOR inhibitor nanoparticle composition is administered before the KRAS G12C inhibitor. In some embodiments of the treatment method, the KRAS G12C inhibitor is administered before the mTOR inhibitor nanoparticle composition. In some embodiments, the mTOR inhibitor is an mTOR inhibitor described herein. In some embodiments, the mTOR inhibitor is a limus drug. In some embodiments, the mTOR inhibitor is sirolimus (rapamycin) or a derivative or analog thereof. In some embodiments, the mTOR inhibitor nanoparticle composition comprises nanoparticle albumin-bound sirolimus. In some embodiments, the mTOR inhibitor nanoparticle composition is nanoparticle albumin-bound sirolimus. In some embodiments, the albumin is human albumin, such as human serum albumin. In some embodiments, the KRAS G12C inhibitor is a small molecule inhibitor. In some embodiments, the KRAS G12C inhibitor is sotolacib, the structure of which is shown above. In some embodiments, the KRAS G12C inhibitor is adagracib, the structure of which is shown above. In some embodiments, the method comprises (such as further comprising) selecting an individual for treatment based on the presence of one or more cancer cells having at least one mTOR activating aberration in a sample (e.g., a tumor sample or a blood sample) from the individual before administering an mTOR inhibitor nanoparticle composition and a KRAS G12C inhibitor. In some embodiments, the method comprises (such as further comprising) selecting an individual for treatment based on the presence of one or more cancer cells expressing a KRAS G12C mutant protein in a sample (e.g., a tumor sample or a blood sample) from the individual before administering an mTOR inhibitor nanoparticle composition and a KRAS G12C inhibitor.

在一些實施例中,提供一種治療個體(例如,人類)之癌症的方法,其包含向個體投與(a)有效量之包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」),其中mTOR抑制劑奈米粒子組合物中白蛋白與mTOR抑制劑之重量比為約10:1 (諸如約10:1或約9:1或約8:1);以及(b)有效量之KRAS G12C抑制劑。在一些實施例中,癌症包含表現KRAS G12C突變蛋白之一或多種細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,癌症為肺癌(例如,NSCLC)、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌或來源未知的腫瘤。在一些實施例中,癌症為NSCLC或膀胱癌。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑係同時投與。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑係依序投與。在一些實施例中,mTOR抑制劑奈米粒子組合物在KRAS G12C抑制劑之前投與。在治療方法之一些實施例中,KRAS G12C抑制劑在mTOR抑制劑奈米粒子組合物之前投與。在一些實施例中,mTOR抑制劑為本文中所描述之mTOR抑制劑。在一些實施例中,mTOR抑制劑為利莫司藥物。在一些實施例中,mTOR抑制劑為西羅莫司(雷帕黴素)或其衍生物或類似物。在一些實施例中,mTOR抑制劑奈米粒子組合物包含奈米粒子白蛋白結合型西羅莫司。在一些實施例中,mTOR抑制劑奈米粒子組合物為奈米粒子白蛋白結合型西羅莫司。在一些實施例中,白蛋白為人類白蛋白,例如人類血清白蛋白。在一些實施例中,KRAS G12C抑制劑為小分子抑制劑。在一些實施例中,KRAS G12C抑制劑為索托拉西布,其結構展示於上文中。在一些實施例中,KRAS G12C抑制劑為阿達格拉西布,其結構展示於上文中。在一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑之前基於來自個體之樣本(例如,腫瘤樣本或血液樣本)中具有至少一種mTOR活化畸變之一或多種癌細胞之存在而選擇個體進行治療。在一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑之前基於來自個體之樣本(例如,腫瘤樣本或血液樣本)中表現KRAS G12C突變蛋白之一或多種癌細胞之存在而選擇個體進行治療。In some embodiments, a method of treating cancer in an individual (e.g., a human) is provided, comprising administering to the individual (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor and albumin ("mTOR inhibitor nanoparticle composition"), wherein the weight ratio of albumin to mTOR inhibitor in the mTOR inhibitor nanoparticle composition is about 10:1 (e.g., about 10:1 or about 9:1 or about 8:1); and (b) an effective amount of a KRAS G12C inhibitor. In some embodiments, the cancer comprises one or more cells expressing a KRAS G12C mutant protein. Additionally or alternatively, in some embodiments, the cancer comprises one or more cells having at least one mTOR activating aberration. In some embodiments, the cancer is lung cancer (e.g., NSCLC), bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, or a tumor of unknown origin. In some embodiments, the cancer is NSCLC or bladder cancer. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor are administered simultaneously. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor are administered sequentially. In some embodiments, the mTOR inhibitor nanoparticle composition is administered before the KRAS G12C inhibitor. In some embodiments of the treatment method, the KRAS G12C inhibitor is administered before the mTOR inhibitor nanoparticle composition. In some embodiments, the mTOR inhibitor is an mTOR inhibitor described herein. In some embodiments, the mTOR inhibitor is a limus drug. In some embodiments, the mTOR inhibitor is sirolimus (rapamycin) or a derivative or analog thereof. In some embodiments, the mTOR inhibitor nanoparticle composition comprises nanoparticle albumin-bound sirolimus. In some embodiments, the mTOR inhibitor nanoparticle composition is nanoparticle albumin-bound sirolimus. In some embodiments, the albumin is human albumin, such as human serum albumin. In some embodiments, the KRAS G12C inhibitor is a small molecule inhibitor. In some embodiments, the KRAS G12C inhibitor is sotolacib, the structure of which is shown above. In some embodiments, the KRAS G12C inhibitor is adagracib, the structure of which is shown above. In some embodiments, the method comprises (such as further comprising) selecting an individual for treatment based on the presence of one or more cancer cells having at least one mTOR activating aberration in a sample (e.g., a tumor sample or a blood sample) from the individual before administering an mTOR inhibitor nanoparticle composition and a KRAS G12C inhibitor. In some embodiments, the method comprises (such as further comprising) selecting an individual for treatment based on the presence of one or more cancer cells expressing a KRAS G12C mutant protein in a sample (e.g., a tumor sample or a blood sample) from the individual before administering an mTOR inhibitor nanoparticle composition and a KRAS G12C inhibitor.

在一些實施例中,提供一種治療個體(例如,人類)之癌症的方法,其包含向個體投與(a)有效量之包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」),其中奈米粒子包含與白蛋白締合(例如,包覆有白蛋白)之mTOR抑制劑,其中奈米粒子具有不超過約150 nm (諸如不超過約120 nm)之平均粒徑,且其中mTOR抑制劑奈米粒子組合物中白蛋白與mTOR抑制劑之重量比為約10:1 (諸如約10:1或約9:1或約8:1);以及(b)有效量之KRAS G12C抑制劑。在一些實施例中,癌症包含表現KRAS G12C突變蛋白之一或多種細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,癌症為肺癌(例如,NSCLC)、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌或來源未知的腫瘤。在一些實施例中,癌症為NSCLC或膀胱癌。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑係同時投與。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑係依序投與。在一些實施例中,mTOR抑制劑奈米粒子組合物在KRAS G12C抑制劑之前投與。在治療方法之一些實施例中,KRAS G12C抑制劑在mTOR抑制劑奈米粒子組合物之前投與。在一些實施例中,mTOR抑制劑為本文中所描述之mTOR抑制劑。在一些實施例中,mTOR抑制劑為利莫司藥物。在一些實施例中,mTOR抑制劑為西羅莫司(雷帕黴素)或其衍生物或類似物。在一些實施例中,mTOR抑制劑奈米粒子組合物包含奈米粒子白蛋白結合型西羅莫司。在一些實施例中,mTOR抑制劑奈米粒子組合物為奈米粒子白蛋白結合型西羅莫司。在一些實施例中,白蛋白為人類白蛋白,例如人類血清白蛋白。在一些實施例中,KRAS G12C抑制劑為小分子抑制劑。在一些實施例中,KRAS G12C抑制劑為索托拉西布,其結構展示於上文中。在一些實施例中,KRAS G12C抑制劑為阿達格拉西布,其結構展示於上文中。在一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑之前基於來自個體之樣本(例如,腫瘤樣本或血液樣本)中一或多種癌細胞之存在而選擇個體進行治療。在一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑之前基於來自個體之樣本(例如,腫瘤樣本或血液樣本)中表現KRAS G12C突變蛋白之一或多種癌細胞之存在而選擇個體進行治療。In some embodiments, a method of treating cancer in an individual (e.g., a human) is provided, comprising administering to the individual (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor and albumin ("mTOR inhibitor nanoparticle composition"), wherein the nanoparticles comprise an mTOR inhibitor associated with albumin (e.g., coated with albumin), wherein the nanoparticles have an average particle size of no more than about 150 nm (e.g., no more than about 120 nm), and wherein the weight ratio of albumin to mTOR inhibitor in the mTOR inhibitor nanoparticle composition is about 10:1 (e.g., about 10:1 or about 9:1 or about 8:1); and (b) an effective amount of a KRAS G12C inhibitor. In some embodiments, the cancer comprises one or more cells expressing a KRAS G12C mutant protein. Additionally or alternatively, in some embodiments, the cancer comprises one or more cells having at least one mTOR activation aberration. In some embodiments, the cancer is lung cancer (e.g., NSCLC), bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, or a tumor of unknown origin. In some embodiments, the cancer is NSCLC or bladder cancer. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor are administered simultaneously. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor are administered sequentially. In some embodiments, the mTOR inhibitor nanoparticle composition is administered before the KRAS G12C inhibitor. In some embodiments of the treatment method, the KRAS G12C inhibitor is administered before the mTOR inhibitor nanoparticle composition. In some embodiments, the mTOR inhibitor is an mTOR inhibitor described herein. In some embodiments, the mTOR inhibitor is a limus drug. In some embodiments, the mTOR inhibitor is sirolimus (rapamycin) or a derivative or analog thereof. In some embodiments, the mTOR inhibitor nanoparticle composition comprises nanoparticle albumin-bound sirolimus. In some embodiments, the mTOR inhibitor nanoparticle composition is nanoparticle albumin-bound sirolimus. In some embodiments, the albumin is human albumin, such as human serum albumin. In some embodiments, the KRAS G12C inhibitor is a small molecule inhibitor. In some embodiments, the KRAS G12C inhibitor is sotolacib, the structure of which is shown above. In some embodiments, the KRAS G12C inhibitor is adagracib, the structure of which is shown above. In some embodiments, the method comprises (e.g., further comprises) selecting an individual for treatment based on the presence of one or more cancer cells in a sample (e.g., a tumor sample or a blood sample) from the individual prior to administering the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor. In some embodiments, the method comprises (e.g., further comprises) selecting an individual for treatment based on the presence of one or more cancer cells expressing a KRAS G12C mutant protein in a sample (e.g., a tumor sample or a blood sample) from the individual prior to administering the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor.

在一些實施例中,提供在用於治療個體(例如,人類)癌症之藥物的製造中包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物(「mTOR抑制劑奈米粒子組合物」)的用途,其中奈米粒子包含與白蛋白締合(例如,包覆有白蛋白)之mTOR抑制劑,其中奈米粒子具有不超過約150 nm (諸如不超過約120 nm)之平均粒徑,及/或其中mTOR抑制劑奈米粒子組合物中白蛋白與mTOR抑制劑之重量比為約10:1 (諸如約10:1或約9:1或約8:1),其中該藥物用於與KRAS G12C抑制劑一起投與。在一些實施例中,提供在用於治療個體(例如,人類)癌症之藥物之製造中KRAS G12C抑制劑的用途,其中該藥物用於與mTOR抑制劑奈米粒子組合物一起投與,其中奈米粒子包含與白蛋白締合(例如,包覆有白蛋白)之mTOR抑制劑,其中奈米粒子具有不超過約150 nm (諸如不超過約120 nm)之平均粒徑,及/或其中mTOR抑制劑奈米粒子組合物中白蛋白與mTOR抑制劑之重量比為約10:1 (諸如約10:1或約9:1或約8:1)。在一些實施例中,癌症包含表現KRAS G12C突變蛋白之一或多種細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,癌症為肺癌(例如,NSCLC)、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌或來源未知的腫瘤。在一些實施例中,癌症為NSCLC或膀胱癌。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑係同時投與。在一些實施例中,mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑係依序投與。在一些實施例中,mTOR抑制劑奈米粒子組合物在KRAS G12C抑制劑之前投與。在治療方法之一些實施例中,KRAS G12C抑制劑在mTOR抑制劑奈米粒子組合物之前投與。在一些實施例中,mTOR抑制劑為本文中所描述之mTOR抑制劑。在一些實施例中,mTOR抑制劑為利莫司藥物。在一些實施例中,mTOR抑制劑為西羅莫司(雷帕黴素)或其衍生物或類似物。在一些實施例中,mTOR抑制劑奈米粒子組合物包含奈米粒子白蛋白結合型西羅莫司。在一些實施例中,mTOR抑制劑奈米粒子組合物為奈米粒子白蛋白結合型西羅莫司。在一些實施例中,白蛋白為人類白蛋白,例如人類血清白蛋白。在一些實施例中,KRAS G12C抑制劑為小分子抑制劑。在一些實施例中,KRAS G12C抑制劑為索托拉西布,其結構展示於上文中。在一些實施例中,KRAS G12C抑制劑為阿達格拉西布,其結構展示於上文中。在一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑之前基於來自個體之樣本(例如,腫瘤樣本或血液樣本)中具有至少一種mTOR活化畸變之一或多種癌細胞之存在而選擇個體進行治療。在一些實施例中,該方法包含(諸如進一步包含)在投與mTOR抑制劑奈米粒子組合物及KRAS G12C抑制劑之前基於來自個體之樣本(例如,腫瘤樣本或血液樣本)中表現KRAS G12C突變蛋白之一或多種癌細胞之存在而選擇個體進行治療。 製品及套組 In some embodiments, a use is provided of a composition comprising nanoparticles comprising an mTOR inhibitor and albumin ("mTOR inhibitor nanoparticle composition") in the manufacture of a medicament for treating cancer in an individual (e.g., a human), wherein the nanoparticles comprise an mTOR inhibitor associated with albumin (e.g., coated with albumin), wherein the nanoparticles have an average particle size of no more than about 150 nm (e.g., no more than about 120 nm), and/or wherein the weight ratio of albumin to mTOR inhibitor in the mTOR inhibitor nanoparticle composition is about 10:1 (e.g., about 10:1 or about 9:1 or about 8:1), wherein the medicament is for administration together with a KRAS G12C inhibitor. In some embodiments, a use of a KRAS G12C inhibitor in the manufacture of a medicament for treating cancer in an individual (e.g., a human) is provided, wherein the medicament is for administration with an mTOR inhibitor nanoparticle composition, wherein the nanoparticle comprises an mTOR inhibitor associated with albumin (e.g., coated with albumin), wherein the nanoparticle has an average particle size of no more than about 150 nm (e.g., no more than about 120 nm), and/or wherein the weight ratio of albumin to mTOR inhibitor in the mTOR inhibitor nanoparticle composition is about 10:1 (e.g., about 10:1 or about 9:1 or about 8:1). In some embodiments, the cancer comprises one or more cells expressing a KRAS G12C mutant protein. Additionally or alternatively, in some embodiments, the cancer comprises one or more cells having at least one mTOR activating aberration. In some embodiments, the cancer is lung cancer (e.g., NSCLC), bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, or a tumor of unknown origin. In some embodiments, the cancer is NSCLC or bladder cancer. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor are administered simultaneously. In some embodiments, the mTOR inhibitor nanoparticle composition and the KRAS G12C inhibitor are administered sequentially. In some embodiments, the mTOR inhibitor nanoparticle composition is administered before the KRAS G12C inhibitor. In some embodiments of the treatment method, the KRAS G12C inhibitor is administered before the mTOR inhibitor nanoparticle composition. In some embodiments, the mTOR inhibitor is an mTOR inhibitor described herein. In some embodiments, the mTOR inhibitor is a limus drug. In some embodiments, the mTOR inhibitor is sirolimus (rapamycin) or a derivative or analog thereof. In some embodiments, the mTOR inhibitor nanoparticle composition comprises nanoparticle albumin-bound sirolimus. In some embodiments, the mTOR inhibitor nanoparticle composition is nanoparticle albumin-bound sirolimus. In some embodiments, the albumin is human albumin, such as human serum albumin. In some embodiments, the KRAS G12C inhibitor is a small molecule inhibitor. In some embodiments, the KRAS G12C inhibitor is sotolacib, the structure of which is shown above. In some embodiments, the KRAS G12C inhibitor is adagracib, the structure of which is shown above. In some embodiments, the method comprises (such as further comprising) selecting an individual for treatment based on the presence of one or more cancer cells having at least one mTOR activating aberration in a sample from the individual (e.g., a tumor sample or a blood sample) before administering an mTOR inhibitor nanoparticle composition and a KRAS G12C inhibitor. In some embodiments, the method comprises (such as further comprising) selecting an individual for treatment based on the presence of one or more cancer cells expressing KRAS G12C mutant protein in a sample from the individual (e.g., a tumor sample or a blood sample) before administering an mTOR inhibitor nanoparticle composition and a KRAS G12C inhibitor. Products and Kits

提供一種包含適用於治療個體之癌症之材料的製品。在某些實施例中,製品或套組包含容器,該容器含有組合物,其包含有包含mTOR抑制劑及白蛋白之奈米粒子(「mTOR抑制劑奈米粒子組合物」)。在一些實施例中,mTOR抑制劑為本文中所描述之mTOR抑制劑。在一些實施例中,mTOR抑制劑為利莫司藥物。在一些實施例中,mTOR抑制劑為西羅莫司(雷帕黴素)或其衍生物或類似物。在一些實施例中,mTOR抑制劑奈米粒子組合物包含奈米粒子白蛋白結合型西羅莫司。在一些實施例中,mTOR抑制劑奈米粒子組合物為奈米粒子白蛋白結合型西羅莫司。在一些實施例中,奈米粒子包含與白蛋白締合(例如,包覆有白蛋白)之mTOR抑制劑。在一些實施例中,奈米粒子具有不超過約150 nm (諸如不超過約120 nm)之平均粒徑。在一些實施例中,mTOR抑制劑奈米粒子組合物中白蛋白與mTOR抑制劑之重量比為約10:1或更小(諸如約10:1或約9:1或約8:1)。在一些實施例中,白蛋白為人類白蛋白,例如人類血清白蛋白。在一些實施例中,套組包括一或多種陽性對照,例如具有至少一種mTOR活化畸變之細胞(關於mTOR活化畸變之另外細節參見本文中其他處)。在一些實施例中,套組包括陰性對照,例如不具有任何mTOR活化畸變之細胞。在一些實施例中,套組用於治療癌症,癌症包含表現KRAS突變蛋白(例如,KRAS G12C突變蛋白、KRAS G12A突變蛋白、KRAS G12D突變蛋白、KRAS G12F突變蛋白、KRAS G12L突變蛋白、KRAS G12R突變蛋白、KRAS G12S突變蛋白、KRAS G12V突變蛋白、KRAS G13A突變蛋白、KRAS G13C突變蛋白、KRAS G13D突變蛋白、KRAS G13P突變蛋白、KRAS G13R突變蛋白、KRAS G13S突變蛋白、KRAS G13V突變蛋白、KRAS Q61E突變蛋白、KRAS Q61H突變蛋白、KRAS Q61K突變蛋白、KRAS Q61L突變蛋白、KRAS Q61P突變蛋白、KRAS Q61R突變蛋白、KRAS K117N突變蛋白、KRAS K117R突變蛋白、KRAS A146E突變蛋白、KRAS A146G突變蛋白、KRAS A146P突變蛋白、KRAS A146S突變蛋白、KRAS A146T突變蛋白或KRAS A146V突變蛋白)之一或多種細胞。另外或替代地,在一些實施例中,套組用於治療癌症,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,癌症為實體腫瘤、肺癌、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌、子宮癌、子宮內膜癌、子宮頸癌、睾丸癌、膽管癌、骨髓發育不良癌或來源未知的腫瘤。在一些實施例中,癌症為實體腫瘤、肺癌或膀胱癌。在一些實施例中,肺癌係非小細胞肺癌(NSCLC)。An article of manufacture comprising a material suitable for treating cancer in an individual is provided. In certain embodiments, the article of manufacture or kit comprises a container containing a composition comprising nanoparticles comprising an mTOR inhibitor and albumin ("mTOR inhibitor nanoparticle composition"). In certain embodiments, the mTOR inhibitor is an mTOR inhibitor described herein. In certain embodiments, the mTOR inhibitor is a limus drug. In certain embodiments, the mTOR inhibitor is sirolimus (rapamycin) or a derivative or analog thereof. In certain embodiments, the mTOR inhibitor nanoparticle composition comprises nanoparticle albumin-bound sirolimus. In certain embodiments, the mTOR inhibitor nanoparticle composition is nanoparticle albumin-bound sirolimus. In some embodiments, the nanoparticles comprise an mTOR inhibitor conjugated to albumin (e.g., coated with albumin). In some embodiments, the nanoparticles have an average particle size of no more than about 150 nm (e.g., no more than about 120 nm). In some embodiments, the weight ratio of albumin to mTOR inhibitor in the mTOR inhibitor nanoparticle composition is about 10:1 or less (e.g., about 10:1 or about 9:1 or about 8:1). In some embodiments, the albumin is human albumin, such as human serum albumin. In some embodiments, the kit includes one or more positive controls, such as cells having at least one mTOR activation aberration (for additional details on mTOR activation aberrations, see elsewhere herein). In some embodiments, the kit includes negative controls, such as cells that do not have any mTOR activation aberrations. In some embodiments, the kit is used to treat a cancer comprising a cell that expresses a KRAS mutant protein (e.g., a KRAS G12C mutant protein, a KRAS G12A mutant protein, a KRAS G12D mutant protein, a KRAS G12F mutant protein, a KRAS G12L mutant protein, a KRAS G12R mutant protein, a KRAS G12S mutant protein, a KRAS G12V mutant protein, a KRAS G13A mutant protein, a KRAS G13C mutant protein, a KRAS G13D mutant protein, a KRAS G13P mutant protein, a KRAS G13R mutant protein, a KRAS G13S mutant protein, a KRAS G13V mutant protein, a KRAS Q61E mutant protein, a KRAS Q61H mutant protein, a KRAS Q61K mutant protein, a KRAS Q61L mutant protein, a KRAS In some embodiments, the kit is used to treat cancer comprising one or more cells having at least one mTOR activating aberration. In some embodiments, the cancer is a solid tumor, lung cancer, bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, uterine cancer, endometrial cancer, cervical cancer, testicular cancer, bile duct cancer, myelodysplastic cancer, or a tumor of unknown origin. In some embodiments, the cancer is a solid tumor, lung cancer, or bladder cancer. In some embodiments, the lung cancer is non-small cell lung cancer (NSCLC).

在某些實施例中,製品或套組包含容器及容器上或容器隨附之標籤或藥品說明書。適合容器包括例如瓶子、小瓶、注射器、IV溶液袋、試管等。容器可由各種材料形成,諸如玻璃或塑膠。容器容納組合物(例如,本文中所描述之mTOR抑制劑奈米粒子組合物,例如奈米粒子白蛋白結合型西羅莫司),其單獨或與能有效治療癌症(諸如延遲癌症之進展)之另一組合物組合。在一些實施例中,癌症包含表現KRAS突變蛋白(例如,KRAS G12C突變蛋白、KRAS G12A突變蛋白、KRAS G12D突變蛋白、KRAS G12F突變蛋白、KRAS G12L突變蛋白、KRAS G12R突變蛋白、KRAS G12S突變蛋白、KRAS G12V突變蛋白、KRAS G13A突變蛋白、KRAS G13C突變蛋白、KRAS G13D突變蛋白、KRAS G13P突變蛋白、KRAS G13R突變蛋白、KRAS G13S突變蛋白、KRAS G13V突變蛋白、KRAS Q61E突變蛋白、KRAS Q61H突變蛋白、KRAS Q61K突變蛋白、KRAS Q61L突變蛋白、KRAS Q61P突變蛋白、KRAS Q61R突變蛋白、KRAS K117N突變蛋白、KRAS K117R突變蛋白、KRAS A146E突變蛋白、KRAS A146G突變蛋白、KRAS A146P突變蛋白、KRAS A146S突變蛋白、KRAS A146T突變蛋白或KRAS A146V突變蛋白)之一或多種細胞。另外或替代地,在一些實施例中,癌症包含具有至少一種mTOR活化畸變之一或多種細胞。在一些實施例中,癌症為實體腫瘤、肺癌、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌、子宮癌、子宮內膜癌、子宮頸癌、睾丸癌、膽管癌、骨髓發育不良癌或來源未知的腫瘤。在一些實施例中,癌症為實體腫瘤、肺癌或膀胱癌。在一些實施例中,肺癌係非小細胞肺癌(NSCLC)。容器可具有無菌進入孔(例如,容器可為靜脈內溶液袋或具有可藉由皮下注射針刺穿之塞子的小瓶)。組合物中之至少一種藥劑為本文中所描述之mTOR抑制劑奈米粒子組合物,例如奈米粒子白蛋白結合型西羅莫司。在一些實施例中,標籤或藥品說明書表明組合物與用於治療癌症(例如,本文中所描述之例示性癌症)之KRAS抑制劑(例如,KRAS G12C抑制劑、KRAS G12A抑制劑、KRAS G12D抑制劑、KRAS G12F抑制劑、KRAS G12L抑制劑、KRAS G12R抑制劑、KRAS G12S抑制劑、KRAS G12V抑制劑、KRAS G13A抑制劑、KRAS G13C抑制劑、KRAS G13D抑制劑、KRAS G13P抑制劑、KRAS G13R抑制劑、KRAS G13S抑制劑、KRAS G13V抑制劑、KRAS Q61E抑制劑、KRAS Q61H抑制劑、KRAS Q61K抑制劑、KRAS Q61L抑制劑、KRAS Q61P抑制劑、KRAS Q61R抑制劑、KRAS K117N抑制劑、KRAS K117R抑制劑、KRAS A146E抑制劑、KRAS A146G抑制劑、KRAS A146P抑制劑、KRAS A146S抑制劑、KRAS A146T抑制劑或KRAS A146V抑制劑)組合使用。在一些實施例中,KRAS抑制劑為KRAS G12C抑制劑,例如但不限於索托拉西布,其亦稱為AMG 510 (安進/百濟神州);MRTX849,其亦稱為阿達格拉西布(Mirati/再鼎醫藥)、JAB-21822 (加科思藥業)、GDC-6036 (基因泰克)、JDQ443 (諾華)、D-1553 (益方生物及默沙東)、GH35 (勤浩醫藥)、GFH925 (勁方醫藥)、BPI-421286 (貝達藥業)、LY3537982、RMC-6291 (Revolution Medicine)、RMC-8839 (Revolution Medicine)、HBI-2438 (滬亞生物科學國際有限責任公司)及JNJ-74699157 (強生公司)。在一些實施例中,KRAS抑制劑為KRAS G12D抑制劑,例如但不限於MRTX1133 (Mirati Therapeutics)或RMC-6236 (Revolution Medicines)。在一些實施例中,KRAS抑制劑為KRAS G12V抑制劑,例如但不限於JAB-23000。In certain embodiments, the article or kit comprises a container and a label or package insert on or attached to the container. Suitable containers include, for example, bottles, vials, syringes, IV solution bags, test tubes, etc. The container can be formed from a variety of materials, such as glass or plastic. The container holds a composition (e.g., an mTOR inhibitor nanoparticle composition described herein, such as nanoparticle albumin-bound sirolimus), alone or in combination with another composition that is effective in treating cancer (e.g., delaying the progression of cancer). In some embodiments, the cancer comprises a cell line that expresses a KRAS mutant protein (e.g., a KRAS G12C mutant protein, a KRAS G12A mutant protein, a KRAS G12D mutant protein, a KRAS G12F mutant protein, a KRAS G12L mutant protein, a KRAS G12R mutant protein, a KRAS G12S mutant protein, a KRAS G12V mutant protein, a KRAS G13A mutant protein, a KRAS G13C mutant protein, a KRAS G13D mutant protein, a KRAS G13P mutant protein, a KRAS G13R mutant protein, a KRAS G13S mutant protein, a KRAS G13V mutant protein, a KRAS Q61E mutant protein, a KRAS Q61H mutant protein, a KRAS Q61K mutant protein, a KRAS Q61L mutant protein, a KRAS Q61P mutant protein, a KRAS In some embodiments, the cancer comprises one or more cells having at least one mTOR activation aberration. In some embodiments, the cancer comprises one or more cells having at least one mTOR activation aberration. In some embodiments, the cancer is a solid tumor, lung cancer, bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, uterine cancer, endometrial cancer, cervical cancer, testicular cancer, bile duct cancer, myelodysplastic cancer, or a tumor of unknown origin. In some embodiments, the cancer is a solid tumor, lung cancer, or bladder cancer. In some embodiments, the lung cancer is non-small cell lung cancer (NSCLC). The container may have a sterile access port (e.g., the container may be an intravenous solution bag or a vial with a stopper pierceable by a hypodermic needle). At least one agent in the composition is an mTOR inhibitor nanoparticle composition described herein, such as nanoparticle albumin-bound sirolimus. In some embodiments, the label or package insert indicates that the composition is used in combination with a KRAS inhibitor (e.g., a KRAS G12C inhibitor, a KRAS G12A inhibitor, a KRAS G12D inhibitor, a KRAS G12F inhibitor, a KRAS G12L inhibitor, a KRAS G12R inhibitor, a KRAS G12S inhibitor, a KRAS G12V inhibitor, a KRAS G13A inhibitor, a KRAS G13C inhibitor, a KRAS G13D inhibitor, a KRAS G13P inhibitor, a KRAS G13R inhibitor, a KRAS G13S inhibitor, a KRAS G13V inhibitor, a KRAS Q61E inhibitor, a KRAS KRAS A146E inhibitor, KRAS A146G inhibitor, KRAS A146P inhibitor, KRAS A146S inhibitor, KRAS A146T inhibitor or KRAS A146V inhibitor). In some embodiments, the KRAS inhibitor is a KRAS G12C inhibitor, such as but not limited to sotolacib, also known as AMG 510 (Amgen/Beiji Shenzhou); MRTX849, also known as adagracib (Mirati/Zai Lab), JAB-21822 (Jacob Pharmaceuticals), GDC-6036 (Genentech), JDQ443 (Novartis), D-1553 (Invitrogen and Merck), GH35 (Qinhao Pharmaceuticals), GFH925 (Jinfang Pharmaceuticals), BPI-421286 (Beida Pharmaceuticals), LY3537982, RMC-6291 (Revolution Medicine), RMC-8839 (Revolution Medicine), HBI-2438 (Shanghai Asia Bioscience International Co., Ltd.) and JNJ-74699157 (Johnson & Johnson). In some embodiments, the KRAS inhibitor is a KRAS G12D inhibitor, such as but not limited to MRTX1133 (Mirati Therapeutics) or RMC-6236 (Revolution Medicines). In some embodiments, the KRAS inhibitor is a KRAS G12V inhibitor, such as but not limited to JAB-23000.

在一些實施例中,與製品或套組一起提供之藥品說明書含有關於有關與製品或套組一起提供之一或多種組合物之適應症、用途、劑量、投與、禁忌及/或警告之資訊。In some embodiments, the package insert provided with the product or kit contains information regarding the indications, usage, dosage, administration, contraindications and/or warnings regarding one or more compositions provided with the product or kit.

此外,製品或套組可包含(a)其中含有組合物之第一容器,其中組合物包含本文中所描述之mTOR抑制劑奈米粒子組合物,例如奈米粒子白蛋白結合型西羅莫司;及(b)其中含有組合物之第二容器,其中組合物包含KRAS抑制劑(例如,能夠抑制本文中所描述之KRAS突變蛋白之活性的多肽、抗體、融合多肽、反義寡核苷酸或小分子藥物)。在一些實施例中,第二容器含有小分子KRAS抑制劑(例如,本文中所描述之KRAS抑制劑)。另外,製品可進一步包含額外容器,其包含醫藥學上可接受之緩衝液,諸如抑菌性注射用水(BWFI)、磷酸鹽緩衝鹽水、林格氏溶液及右旋糖溶液。其可進一步包括就商業及使用者觀點而言所期望之其他材料,包括其他緩衝液、稀釋劑、過濾器、針及注射器。In addition, the product or kit may include (a) a first container containing a composition, wherein the composition includes an mTOR inhibitor nanoparticle composition described herein, such as nanoparticle albumin-bound sirolimus; and (b) a second container containing a composition, wherein the composition includes a KRAS inhibitor (e.g., a polypeptide, antibody, fusion polypeptide, antisense oligonucleotide, or small molecule drug capable of inhibiting the activity of a KRAS mutant protein described herein). In some embodiments, the second container contains a small molecule KRAS inhibitor (e.g., a KRAS inhibitor described herein). In addition, the product may further include an additional container containing a pharmaceutically acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution, and dextrose solution. It may further include other materials desirable from a commercial and user perspective, including other buffers, diluents, filters, needles, and syringes.

本文所提供之套組在適合之包裝中。適合的包裝包括但不限於小瓶、瓶子、廣口瓶、可撓性包裝(例如密封的Mylar或塑膠袋)及其類似物。套組可視情況提供諸如緩衝液之額外組分及說明性資訊。因此,本申請案亦提供製品,其包括小瓶(諸如密封小瓶)、瓶子、廣口瓶、可撓性包裝及其類似物。The kits provided herein are in suitable packaging. Suitable packaging includes, but is not limited to, vials, bottles, jars, flexible packaging (e.g., sealed Mylar or plastic bags), and the like. The kits may optionally provide additional components such as buffers and descriptive information. Thus, the present application also provides articles of manufacture that include vials (e.g., sealed vials), bottles, jars, flexible packaging, and the like.

熟習此項技術者將認識到,在本發明之範疇及精神內,若干實施例為可能的。現將參照以下非限制性實例來更詳細地描述本發明。以下實例進一步說明本發明,但當然不應解釋為以任何方式限制其範疇。Those skilled in the art will recognize that within the scope and spirit of the present invention, several embodiments are possible. The present invention will now be described in more detail with reference to the following non-limiting examples. The following examples further illustrate the present invention, but of course should not be construed as limiting its scope in any way.

本說明書中所引用之所有公開案及專利申請案以引用的方式併入本文中,就如同各個別公開案或專利申請案特定地且個別地指示以引用的方式併入一般。 實例 All publications and patent applications cited in this specification are incorporated herein by reference, just as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. Examples

提出以下實例以便向一般熟習此項技術者提供對如何製造且使用本發明之完整揭示內容及描述,且不意欲限制本發明人視為其發明之內容之範疇,其亦不意欲表示以下實驗為所執行之所有或唯一實驗。已儘力確保所用數字(例如量、溫度等)之準確性,但應考慮一些實驗誤差及偏差。除非另外指示,否則份數為重量份,分子量為重量平均分子量,溫度以攝氏度為單位,且壓力為大氣壓或近大氣壓。 實例1:奈米粒子白蛋白結合型西羅莫司與KRAS G12C抑制劑之組合在攜帶人類非小細胞肺癌(NSCLC)腫瘤異種移植物之小鼠中的抗腫瘤活性 The following examples are presented to provide one of ordinary skill in the art with a complete disclosure and description of how to make and use the invention and are not intended to limit the scope of what the inventors regard as their invention, nor are they intended to represent that the experiments below are all or the only experiments performed. Every effort has been made to ensure accuracy of numbers used (e.g., amounts, temperatures, etc.), but some experimental errors and deviations should be considered. Unless otherwise indicated, parts are parts by weight, molecular weights are weight average molecular weights, temperatures are in degrees Celsius, and pressures are at or near atmospheric pressure. Example 1: Antitumor activity of a combination of nanoparticle albumin-bound sirolimus and a KRAS G12C inhibitor in mice bearing human non-small cell lung cancer (NSCLC) tumor xenografts

在此實例中,在攜帶NCI-H2030腫瘤異種移植物之小鼠中評估 ( i ) 奈米粒子白蛋白結合型西羅莫司、 ( ii ) 依維莫司(亦即,西羅莫司衍生物)、 ( iii ) 索托拉西布(亦即,小分子KRAS G12C抑制劑)、 ( iv ) 奈米粒子白蛋白結合型西羅莫司+索托拉西布及 ( v ) 依維莫司+索托拉西布中之各者的抗腫瘤功效。NCI-H2030為具有KRAS G12C及STK11 E317 *突變之人類非小細胞肺癌(NSCLC)腺癌細胞株。(NCI-H2030突變分佈:KRAS G12C、STK11 E317 *、TP53 G262V。)常見於NSCLC中之KRAS G12C突變導致促進腫瘤生長的RAS/MAPK信號傳導路徑之持續型活化。STK11為mTOR信號傳導之負調節因子。mTOR路徑常常在具有KRAS突變之患者中活化且有助於對KRAS抑制劑之自適應抗性。 In this example, the anti-tumor efficacy of each of ( i ) nanoparticle albumin-bound sirolimus, ( ii ) everolimus (i.e., a sirolimus derivative), ( iii ) sotolacib (i.e., a small molecule KRAS G12C inhibitor), ( iv ) nanoparticle albumin-bound sirolimus + sotolacib, and ( v ) everolimus + sotolacib was evaluated in mice bearing NCI-H2030 tumor xenografts. NCI-H2030 is a human non-small cell lung cancer (NSCLC) adenocarcinoma cell line with KRAS G12C and STK11 E317 * mutations. (NCI-H2030 mutation distribution: KRAS G12C , STK11 E317 * , TP53 G262V .) The KRAS G12C mutation, which is common in NSCLC, leads to constitutive activation of the RAS/MAPK signaling pathway, which promotes tumor growth. STK11 is a negative regulator of mTOR signaling. The mTOR pathway is often activated in patients with KRAS mutations and contributes to adaptive resistance to KRAS inhibitors.

雌性無胸腺小鼠在兩側植入有人類NCI-H2030 NSCLC細胞。當腫瘤體積達到大致100-150 mm 3時,將動物隨機劃分成五組(n = 3/組),並根據下 A1 中展示之投與途徑、劑量及投與頻率使用下 A 中展示之鹽水(對照)、單一藥劑藥物或藥物組合投與。關於 A1 中之治療方案之額外資訊提供於 A2 中。 表A1-NCI-H2030腫瘤異種移植模型之治療組 群組 小鼠編號 腫瘤 一或多種 藥物 一或多種 劑量 一或多種投與途徑 頻率 1 3 NCI-H2030 鹽水 (對照) 不適用 IV* 10 ml 每週2次 2 3 NCI-H2030 奈米粒子白蛋白結合型西羅莫司 7.5 mg/kg IV 每週2次 3 3 NCI-H2030 依維莫司 3 mg/kg PO** 每週qdx5† 4 3 NCI-H2030 索托拉西布 30 mg/kg PO 每週qdx5 5 3 NCI-H2030 奈米粒子白蛋白結合型西羅莫司 + 索托拉西布 7.5 mg/kg + 30 mg/kg IV + PO 每週2次 + 每週qdx5 6 3 NCI-H2030 依維莫司 + 索托拉西布 3 mg/kg + 30 mg/kg PO + PO 每週qdx5 + 每週qdx5 * IV = 靜脈內 ** PO = 經口(亦即,經口投與) † 每日一次,每週5次 表A2-關於表A1、表D及表F中之治療方案之額外資訊 材料 劑量 / 頻率 a 週劑量 (mg /kg ) 臨床每週給藥 % 途徑 鹽水 10 mL /kg每週兩次 0 NA IV 奈米粒子白蛋白結合型西羅莫司 7 .5 mg /kg每週兩次 15 45 IV 依維莫司 3 mg /kg ,5 / 15 115 PO 索托拉西布 * 30 mg /kg5 / 150 11 PO 阿達格拉西布 * 30 mg /kg5 / 150 9 PO a劑量已用於先前非臨床研究中。每日給藥一次,持續6週;各藥物之給藥方案在模型中一致。 IV = 靜脈內 Nab=奈米粒子白蛋白結合型 PO = 經口 * Martin等人,美國癌症研究協會2022年年會,公告2670 Female athymic mice were implanted bilaterally with human NCI-H2030 NSCLC cells. When tumors reached approximately 100-150 mm3 , animals were randomly divided into five groups (n = 3/group) and administered with saline (control), single agent drugs, or drug combinations as shown in Table A below, according to the route, dose, and frequency of administration shown in Table A1 below. Additional information regarding the treatment regimens in Table A1 is provided in Table A2 . Table A1 - Treatment Groups for the NCI-H2030 Tumor Xenograft Model Group Mouse number Tumor One or more medications One or more doses One or more routes of administration Frequency 1 3 NCI-H2030 Salt water (control) Not applicable IV* 10 ml 2 times a week 2 3 NCI-H2030 Nanoparticle albumin-bound sirolimus 7.5 mg/kg IV Twice a week 3 3 NCI-H2030 Everolimus 3 mg/kg PO** qdx5 per week† 4 3 NCI-H2030 Sotolacib 30 mg/kg PO qdx5 per week 5 3 NCI-H2030 Nanoparticle albumin-bound sirolimus + sotolacib 7.5 mg/kg + 30 mg/kg IV + PO 2 times a week + qdx5 per week 6 3 NCI-H2030 Everolimus + Sotolacizumab 3 mg/kg + 30 mg/kg PO + PO qdx5 per week + qdx5 per week * IV = intravenous ** PO = oral (i.e., administered by mouth) † Once daily, 5 times per week Table A2 - Additional information for treatment regimens in Tables A1, D, and F Material Dose / frequencya Weekly dose (mg /kg ) Clinical weekly medication % Way Salt water 10 mL /kg twice a week 0 NA IV Nanoparticle albumin-bound sirolimus 7.5 mg /kg twice a week 15 45 IV Everolimus 3 mg /kg , 5 days / week 15 115 PO Sotolacizumab * 30 mg /kg , 5 days / week 150 11 PO Adagracib * 30 mg /kg , 5 days / week 150 9 PO a Dosages used in previous nonclinical studies. Dosing was once daily for 6 weeks; dosing schedule was consistent across models. IV = intravenous Nab = nanoparticle albumin-bound PO = oral * Martin et al., American Association for Cancer Research 2022 Annual Meeting, Announcement 2670

1A中所示,奈米粒子白蛋白結合型西羅莫司+索托拉西布組合展示顯著更大的腫瘤生長抑制或「TGI」 (109%),相較於NCI-H2030模型中之單一藥劑奈米粒子白蛋白結合型西羅莫司(68%,P = 0.0102,ANOVA)、依維莫司(22%,P = 0.0011)或索托拉西布(20%,P = 0.0002),及依維莫司與索托拉西布之組合(53%,P = 0.0008)。 B 展示奈米粒子白蛋白結合型西羅莫司及索托拉西布組合治療為展現腫瘤生長抑制(TGI)之統計學上顯著之差異的唯一治療,相較於鹽水及所有其他治療組(雙因子變異數分析)。相較於鹽水或其他治療組,未發現其他治療展現統計學上顯著之TGI。 表B:對TGI之雙因子變異數分析 奈米粒子白蛋白結合型西羅莫司+索托拉西布對比其他治療組 TGI 比較 ( 治療組對比治療組 ) p 奈米粒子白蛋白結合型西羅莫司+索托拉西布對比鹽水 0.0003 奈米粒子白蛋白結合型西羅莫司+索托拉西布對比奈米粒子白蛋白結合型西羅莫司 0.0102 奈米粒子白蛋白結合型西羅莫司+索托拉西布對比依維莫司 0.0011 奈米粒子白蛋白結合型西羅莫司+索托拉西布對比索托拉西布 0.0002 奈米粒子白蛋白結合型西羅莫司+索托拉西布對比依維莫司+索托拉西布 0.0008 As shown in Figure 1A , the NABI-sirolimus + sotolacib combination demonstrated significantly greater tumor growth inhibition or "TGI" (109%) compared to single-agent NABI-sirolimus (68%, P = 0.0102, ANOVA), everolimus (22%, P = 0.0011), or sotolacib (20%, P = 0.0002), and the combination of everolimus and sotolacib (53%, P = 0.0008) in the NCI-H2030 model. Table B shows that the combination of NABP-sirolimus and sotolacib was the only treatment that showed a statistically significant difference in tumor growth inhibition (TGI) compared to saline and all other treatment groups (two-way ANOVA). No other treatment was found to show a statistically significant TGI compared to saline or other treatment groups. Table B: Two-way ANOVA for TGI NABP-sirolimus + sotolacib vs. other treatment groups Comparison of TGI ( treatment group vs. treatment group ) p -value Nanoparticle albumin-bound sirolimus + sotolacib versus saline 0.0003 Nanoparticle albumin-bound sirolimus + sotolacib vs. nanoparticle albumin-bound sirolimus 0.0102 Nanoparticle albumin-bound sirolimus + sotolacib versus everolimus 0.0011 Nanoparticle albumin-bound sirolimus + sotolacib vs sotolacib 0.0002 Nanoparticle albumin-bound sirolimus + sotolacib versus everolimus + sotolacib 0.0008

1B提供瀑布圖,其展示用鹽水、奈米粒子白蛋白結合型西羅莫司、依維莫司、索托拉西布、奈米粒子白蛋白結合型西羅莫司+索托拉西布及依維莫司+索托拉西布治療之NCI-H2030異種移植小鼠中之腫瘤體積消退。相較於所有其他治療組(P = 0.0059,卡方),用奈米粒子白蛋白結合型西羅莫司+索托拉西布治療之小鼠中觀測到之較大TGI與奈米粒子白蛋白結合型西羅莫司+索托拉西布治療組中顯著較高之腫瘤反應率(腫瘤體積變化超過-30%之腫瘤消退)相關。 C 展示來自 A 之治療組1至6中之NCI-H2030異種移植小鼠當中的反應率(亦即,腫瘤消退> 30%)。僅在用奈米粒子白蛋白結合型西羅莫司+索托拉西布治療之小鼠中觀測到腫瘤消退(例如,腫瘤體積變化>-30%)。使用依維莫司+索托拉西布之組合治療相較於單一藥劑依維莫司或單一藥劑索托拉西布未能提高腫瘤反應率。 表C. NCI-H2030異種移植小鼠之反應率 (P = 0.0602) 群組 一或多種藥物 反應率 % ( 腫瘤消退 - 30 % ) 1 鹽水 (對照) 0 2 奈米粒子白蛋白結合型西羅莫司 0 3 依維莫司 0 4 索托拉西布 0 5 奈米粒子白蛋白結合型西羅莫司+索托拉西布 50% 6 依維莫司+索托拉西布 0 Figure 1B provides a waterfall plot showing tumor volume regression in NCI-H2030 xenograft mice treated with saline, NAb-sirolimus, everolimus, sotolacizumab, NAb-sirolimus + sotolacizumab, and everolimus + sotolacizumab. The greater TGI observed in mice treated with NAb-sirolimus + sotolacizumab was associated with a significantly higher tumor response rate (tumor regression of more than -30% change in tumor volume) in the NAb-sirolimus + sotolacizumab treatment group compared to all other treatment groups (P = 0.0059, chi-square). Table C shows the response rates (i.e., tumor regression > 30%) in NCI-H2030 xenograft mice in treatment groups 1 to 6 from Table A. Tumor regression (e.g., tumor volume change > -30%) was observed only in mice treated with nanoparticle albumin-bound sirolimus + sotolacib. Combination treatment with everolimus + sotolacib did not improve tumor response rates compared to single-agent everolimus or single-agent sotolacib. Table C. Response rates in NCI-H2030 xenograft mice (P = 0.0602) Group One or more medications Response rate % ( tumor regression > - 30 % ) 1 Salt water (control) 0 2 Nanoparticle albumin-bound sirolimus 0 3 Everolimus 0 4 Sotolacib 0 5 Nanoparticle albumin-bound sirolimus + sotolacib 50% 6 Everolimus + Sotolacib 0

當比較腫瘤生長曲線時,在奈米粒子白蛋白結合型西羅莫司+索托拉西布對比單一藥劑奈米粒子白蛋白結合型西羅莫司( P= 0.0001)或索托拉西布( P< 0.0001)及依維莫司+索托拉西布之組合( P= 0.0036)下觀測到統計顯著性。 When tumor growth curves were compared, statistical significance was observed for NAb-sirolimus plus sotolacib versus single-agent NAb-sirolimus ( P = 0.0001) or sotolacib ( P < 0.0001) and the combination of everolimus plus sotolacib ( P = 0.0036).

所有治療均為可耐受的,無毒性跡象,且體重變化與鹽水對照類似(參見 1C)。 All treatments were well tolerated with no signs of toxicity, and body weight changes were similar to those of saline controls (see Figure 1C ).

接下來,在攜帶人類NCI-H2122腫瘤異種移植物之小鼠中進行一組類似實驗。NCI-H2122為具有KRAS G12C及STK11 null (功能損失)突變之人類NSCLC鱗狀細胞癌細胞株。(NCI-H2122突變分佈:NCI-H2122:KRAS G12C、STK11 null、TP53 C176F。)簡言之,雌性無胸腺小鼠在兩側植入有NCI-H2122細胞。當腫瘤體積達到大致100-150 mm 3時,將動物隨機劃分成九組(n = 5/組),並根據下 D 中展示之投與途徑、劑量及投與頻率使用下 D 中展示之鹽水(對照)、單一藥劑藥物或藥物組合投與。阿達格拉西布為小分子KRAS G12C抑制劑。關於 D 中之治療方案之額外資訊提供於 A2 中。 表D:NCI-H2122腫瘤異種移植模型之治療組 群組 小鼠編號 腫瘤 一或多種藥物 一或多種劑量 一或多種投與途徑 頻率 1 5 NCI-H2122 鹽水 (對照) 不適用 IV * 每週2次 2 5 NCI-H2122 奈米粒子白蛋白結合型西羅莫司 7.5 mg/kg IV 每週2次 3 5 NCI-H2122 依維莫司 3 mg/kg PO ** 每週qdx5† 4 5 NCI-H2122 索托拉西布 30 mg/kg PO 每週qdx5 5 5 NCI-H2122 阿達格拉西布 30 mg/kg PO 每週qdx5 6 5 NCI-H2122 奈米粒子白蛋白結合型西羅莫司 + 索托拉西布 7.5 mg/kg + 30 mg/kg IV + PO 每週2次 + 每週qdx5 7 5 NCI-H2122 依維莫司 + 索托拉西布 3 mg/kg + 30 mg/kg PO + PO 每週qdx5 + 每週qdx5 8 5 NCI-H2122 奈米粒子白蛋白結合型西羅莫司 + 阿達格拉西布 7.5 mg/kg + 30 mg/kg IV + PO 每週2次 + 每週qdx5 9 5 NCI-H2122 依維莫司 + 阿達格拉西布 3 mg/kg + 30 mg/kg PO + PO 每週qdx5 + 每週qdx5 * IV = 靜脈內 ** PO = 經口(亦即,經口投與) † 每日一次,每週5次 Next, a similar set of experiments was performed in mice carrying human NCI-H2122 tumor xenografts. NCI-H2122 is a human NSCLC squamous cell carcinoma cell line with KRAS G12C and STK11 null (loss-of-function) mutations. (NCI-H2122 mutation profile: NCI-H2122: KRAS G12C , STK11 null , TP53 C176F .) Briefly, female athymic mice were implanted with NCI-H2122 cells on both flanks. When tumor volume reached approximately 100-150 mm3 , animals were randomly divided into nine groups (n = 5/group) and administered with saline (control), single agent drugs, or drug combinations as shown in Table D below, according to the route of administration, dose, and frequency of administration shown in Table D below. Adalicib is a small molecule KRAS G12C inhibitor. Additional information about the treatment regimens in Table D is provided in Table A2 . Table D: Treatment Groups for the NCI-H2122 Tumor Xenograft Model Group Mouse number Tumor One or more medications One or more doses One or more routes of administration Frequency 1 5 NCI-H2122 Salt water (control) Not applicable IV * Twice a week 2 5 NCI-H2122 Nanoparticle albumin-bound sirolimus 7.5 mg/kg IV Twice a week 3 5 NCI-H2122 Everolimus 3 mg/kg PO ** qdx5 per week† 4 5 NCI-H2122 Sotolacib 30 mg/kg PO qdx5 per week 5 5 NCI-H2122 Adagracib 30 mg/kg PO qdx5 per week 6 5 NCI-H2122 Nanoparticle albumin-bound sirolimus + sotolacib 7.5 mg/kg + 30 mg/kg IV + PO 2 times a week + qdx5 per week 7 5 NCI-H2122 Everolimus + Sotolacizumab 3 mg/kg + 30 mg/kg PO + PO qdx5 per week + qdx5 per week 8 5 NCI-H2122 Nanoparticle albumin-bound sirolimus + adagracib 7.5 mg/kg + 30 mg/kg IV + PO 2 times a week + qdx5 per week 9 5 NCI-H2122 Everolimus + Adalicibub 3 mg/kg + 30 mg/kg PO + PO qdx5 per week + qdx5 per week * IV = intravenous ** PO = oral (i.e., administered by mouth) † Once daily, 5 times per week

2A中所示,使用mTOR抑制劑及KRAS G12C抑制劑之組合治療在抑制NCI-H2122腫瘤生長方面顯著較佳(TGI = 103%),相較於用單一藥劑奈米粒子白蛋白結合型西羅莫司(TGI=80%,P = 0.0001,ANOVA)或單一藥劑索托拉西布(79%,P < 0.0001)治療。相較於單一藥劑奈米粒子白蛋白結合型西羅莫司(80%,P = 0.0002)或單一藥劑阿達格拉西布(58%,P < 0.0001),奈米粒子白蛋白結合型西羅莫司+阿達格拉西布組合展示顯著更大TGI (99%)。相較於阿達格拉西布(P = 0.0143),單一藥劑索托拉西布在NCI-H2122模型中之活性顯著更高。出乎意料地,奈米粒子白蛋白結合型西羅莫司+索托拉西布對比奈米粒子白蛋白結合型西羅莫司對比阿達格拉西布之TGI不存在顯著差異。此外,分別相較於依維莫司+索托拉西布及依維莫司+阿達格拉西布,奈米粒子白蛋白結合型西羅莫司+索托拉西布及奈米粒子白蛋白結合型西羅莫司+阿達格拉西布在抑制腫瘤生長方面在統計學上較佳:奈米粒子白蛋白結合型西羅莫司+索托拉西布對比依維莫司+索托拉西布:P = 0.0036 (ANOVA);奈米粒子白蛋白結合型西羅莫司+阿達格拉西布對比依維莫司+阿達格拉西布:P = 0.0013;奈米粒子白蛋白結合型西羅莫司+索托拉西布對比奈米粒子白蛋白結合型西羅莫司+阿達格拉西布:P =不顯著(ns)。 As shown in Figure 2A , combination treatment with an mTOR inhibitor and a KRAS G12C inhibitor was significantly better in inhibiting NCI-H2122 tumor growth (TGI = 103%) compared to treatment with single-agent nanoparticle albumin-bound sirolimus (TGI = 80%, P = 0.0001, ANOVA) or single-agent sotolacib (79%, P < 0.0001). The combination of nanoparticle albumin-bound sirolimus + adagracib showed a significantly greater TGI (99%) compared to single-agent nanoparticle albumin-bound sirolimus (80%, P = 0.0002) or single-agent adagracib (58%, P < 0.0001). Single-agent sotolacib was significantly more active in the NCI-H2122 model compared with adagraciib (P = 0.0143). Unexpectedly, there was no significant difference in TGI between NAb-sirolimus + sotolacib vs NAb-sirolimus vs adagraciib. In addition, NAb-sirolimus + sotolacib and NAb-sirolimus + adagraciib were statistically superior in inhibiting tumor growth compared with everolimus + sotolacib and everolimus + adagraciib, respectively: NAb-sirolimus + sotolacib vs. everolimus + sotolacib: P = 0.0036 (ANOVA); NAb-sirolimus + adagraciib vs. everolimus + adagraciib: P = 0.0013; NAb-sirolimus + sotolacib vs. NAb-sirolimus + adagraciib: P = not significant (ns).

2B提供瀑布圖,其展示用鹽水、奈米粒子白蛋白結合型西羅莫司、依維莫司、索托拉西布、阿達格拉西布、奈米粒子白蛋白結合型西羅莫司+索托拉西布、依維莫司+索托拉西布、奈米粒子白蛋白結合型西羅莫司+阿達格拉西布及依維莫司+阿達格拉西布治療之NCI-H2122異種移植小鼠中之腫瘤體積消退。相較於鹽水及所有單一藥劑治療(分別為P < 0.0001,卡方及P = 0.0347),用奈米粒子白蛋白結合型西羅莫司+索托拉西布或奈米粒子白蛋白結合型西羅莫司+阿達格拉西布治療之小鼠中之改良TGI與顯著較高之腫瘤反應率(例如,腫瘤體積變化超過-30%之腫瘤消退)相關。奈米粒子白蛋白結合型西羅莫司+索托拉西布治療組中之腫瘤消退(例如,腫瘤體積變化超過-30%)為80%,而依維莫司+索托拉西布治療組中之腫瘤消退為20% (P = 0.0230,費希爾精確檢驗)。相較於用任一藥劑之單一藥劑治療,依維莫司+索托拉西布之組合( 2B)未能提高有意義的腫瘤消退速率。相較於依維莫司+阿達格拉西布治療組,腫瘤消退在奈米粒子白蛋白結合型西羅莫司+阿達格拉西布治療組中在數值上較高(分別為40%對比0%,P = 0.0867)。 E 展示來自 D 之治療組1至9中之NCI-H2122異種移植小鼠當中的反應率(亦即,腫瘤消退>30%)。用單一藥劑奈米粒子白蛋白結合型西羅莫司或單一藥劑依維莫司治療之小鼠中之反應率分別為10%及20%,指示各單一藥劑展現較小抗腫瘤活性。然而,出乎意料地發現用奈米粒子白蛋白結合型西羅莫司與索托拉西布或阿達格拉西布(亦即,分別為80%及40%)之組合治療的小鼠之反應率顯著高於用依維莫司與索托拉西布或阿達格拉西布(亦即,分別為20%及0%)之組合治療的小鼠的反應率。 表E. NCI-H2122異種移植小鼠之反應率 (P =不顯著) 群組 一或多種藥物 反應率 % ( 腫瘤消退 - 30 % ) 1 鹽水 (對照) 0 2 奈米粒子白蛋白結合型西羅莫司 20% 3 依維莫司 10% 4 索托拉西布 0% 5 阿達格拉西布 0% 6 奈米粒子白蛋白結合型西羅莫司+索托拉西布 80% 7 依維莫司+索托拉西布 20% 8 奈米粒子白蛋白結合型西羅莫司+阿達格拉西布 40% 9 依維莫司+阿達格拉西布 0% FIG. 2B provides a waterfall graph showing tumor volume regression in NCI-H2122 xenograft mice treated with saline, NAb-sirolimus, everolimus, sotolacizumab, adagracib, NAb-sirolimus + sotolacizumab, everolimus + sotolacizumab, NAb-sirolimus + adagracib, and everolimus + adagracib. Improved TGI in mice treated with NAb-sirolimus plus sotolacib or NAb-sirolimus plus adagraciib was associated with significantly higher tumor response rates (e.g., tumor regression with a change of more than -30% in tumor volume) compared with saline and all single-agent treatments (P < 0.0001, chi-square, and P = 0.0347, respectively). Tumor regression (e.g., tumor volume change greater than -30%) was 80% in the NAb-sirolimus plus sotolacib group and 20% in the everolimus plus sotolacib group (P = 0.0230, Fisher's exact test). The combination of everolimus plus sotolacib ( Fig. 2B ) did not significantly increase the rate of tumor regression compared with single-agent treatment with either agent. Tumor regression was numerically higher in the NAb-sirolimus plus adagracib group compared with the everolimus plus adagracib group (40% vs. 0%, respectively, P = 0.0867). Table E shows the response rates (i.e., tumor regression >30%) in NCI-H2122 xenograft mice in treatment groups 1 to 9 from Table D. The response rates in mice treated with single-agent nanoparticle albumin-bound sirolimus or single-agent everolimus were 10% and 20%, respectively, indicating that each single agent exhibited little anti-tumor activity. However, it was unexpectedly found that the response rates of mice treated with a combination of nanoparticle albumin-bound sirolimus and sotolacizumab or adagracib (i.e., 80% and 40%, respectively) were significantly higher than the response rates of mice treated with a combination of everolimus and sotolacizumab or adagracib (i.e., 20% and 0%, respectively). Table E. Response rate of NCI-H2122 xenograft mice (P = not significant) Group One or more medications Response rate % ( tumor regression > - 30 % ) 1 Salt water (control) 0 2 Nanoparticle albumin-bound sirolimus 20% 3 Everolimus 10% 4 Sotolacib 0% 5 Adagracib 0% 6 Nanoparticle albumin-bound sirolimus + sotolacib 80% 7 Everolimus + Sotolacib 20% 8 Nanoparticle albumin-bound sirolimus + adagracib 40% 9 Everolimus + adaglacirib 0%

相較於鹽水對照,所有治療組均展現提高之存活率(亦即,天數)。給與鹽水之小鼠之中值存活時間為16天。尚未達到其他治療組中之小鼠之中值存活時間(p < 0.0001,對數秩檢驗)。All treatment groups showed improved survival (i.e., number of days) compared to saline controls. The median survival time of mice given saline was 16 days. The median survival time of mice in the other treatment groups was not reached (p < 0.0001, log-rank test).

所有治療均為可耐受的,無毒性跡象,且體重變化與鹽水對照類似(參見 2C)。 實例2:奈米粒子白蛋白結合型西羅莫司與KRAS G12C抑制劑之組合在攜帶人類膀胱癌腫瘤異種移植物之小鼠中之抗腫瘤活性 All treatments were tolerable with no signs of toxicity, and body weight changes were similar to saline controls (see Figure 2C ). Example 2: Antitumor activity of the combination of nanoparticle albumin-bound sirolimus and KRAS G12C inhibitor in mice bearing human bladder cancer tumor xenografts

在此實例中,在攜帶UMUC3腫瘤異種移植物之小鼠中評估 ( i ) 奈米粒子白蛋白結合型西羅莫司、 ( ii ) 索托拉西布、 ( iii ) 阿達格拉西布、 ( iv ) 奈米粒子白蛋白結合型西羅莫司+索托拉西布及 ( v ) 奈米粒子白蛋白結合型西羅莫司+阿達格拉西布中之各者的抗腫瘤功效。UMUC3為具有KRAS G12C及PTEN null突變之人類轉移細胞癌(膀胱癌)細胞株。PTEN為負調節因子或mTOR活性(UMUC3突變分佈:KRAS G12C、PTEN null、TP53 F113C、ATM Q2800fs、CDKN2A null、UGT2B17 null)。 In this example, the anti-tumor efficacy of each of ( i ) nanoparticle albumin-bound sirolimus, ( ii ) sotolacib, ( iii ) adagracib, ( iv ) nanoparticle albumin-bound sirolimus + sotolacib, and ( v ) nanoparticle albumin-bound sirolimus + adagracib was evaluated in mice bearing UMUC3 tumor xenografts. UMUC3 is a human metastatic cell carcinoma (bladder cancer) cell line with KRAS G12C and PTEN null mutations. PTEN is a negative regulator or mTOR activity (UMUC3 mutation distribution: KRAS G12C , PTEN null , TP53 F113C , ATM Q2800fs , CDKN2A null , UGT2B17 null ).

簡言之,雌性無胸腺小鼠在其右側植入有NCI-H2122細胞。當腫瘤體積達到大致100-150 mm 3時,將動物隨機劃分成九組(n = 6/組),並根據下 F 中展示之投與途徑、劑量及投與頻率使用下 F 中展示之鹽水(對照)、單一藥劑藥物或藥物組合投與。關於 F 中之治療方案之額外資訊提供於 A2 中。 表F:UMUC3腫瘤異種移植模型之治療組 群組 小鼠編號 腫瘤 一或多種藥物 一或多種劑量 一或多種投與途徑 頻率 1 6 UMUC3 鹽水 (對照) 不適用 IV * 每週2次 2 6 UMUC3 奈米粒子白蛋白結合型西羅莫司 7.5 mg/kg IV 每週2次 3 6 UMUC3 索托拉西布 3 mg/kg PO ** 每週qdx5† 4 6 UMUC3 阿達格拉西布 30 mg/kg PO 每週qdx5 5 6 UMUC3 奈米粒子白蛋白結合型西羅莫司 + 索托拉西布 7.5 mg/kg + 30 mg/kg IV + PO 每週2次 + 每週qdx5 6 6 UMUC3 奈米粒子白蛋白結合型西羅莫司 + 阿達格拉西布 7.5 mg/kg + 30 mg/kg IV + PO 每週2次 + 每週qdx5 * IV = 靜脈內 ** PO = 經口(亦即,經口投與) † 每日一次,每週5次 Briefly, female athymic mice were implanted with NCI-H2122 cells in their right flank. When tumor volume reached approximately 100-150 mm3 , animals were randomly divided into nine groups (n = 6/group) and administered with saline (control), single agent drugs, or drug combinations as shown in Table F below according to the route of administration, dose, and frequency of administration shown in Table F below. Additional information about the treatment regimens in Table F is provided in Table A2 . Table F: Treatment Groups of UMUC3 Tumor Xenograft Model Group Mouse number Tumor One or more medications One or more doses One or more routes of administration Frequency 1 6 UMUC3 Salt water (control) Not applicable IV * Twice a week 2 6 UMUC3 Nanoparticle albumin-bound sirolimus 7.5 mg/kg IV Twice a week 3 6 UMUC3 Sotolacib 3 mg/kg PO ** qdx5 per week† 4 6 UMUC3 Adagracib 30 mg/kg PO qdx5 per week 5 6 UMUC3 Nanoparticle albumin-bound sirolimus + sotolacib 7.5 mg/kg + 30 mg/kg IV + PO 2 times a week + qdx5 per week 6 6 UMUC3 Nanoparticle albumin-bound sirolimus + adagracib 7.5 mg/kg + 30 mg/kg IV + PO 2 times a week + qdx5 per week * IV = intravenous ** PO = oral (i.e., administered by mouth) † Once daily, 5 times per week

在鹽水對照組、奈米粒子白蛋白結合型西羅莫司組及索托拉西布組中之任一者中,小鼠中無一者(0/6)存活至研究結束(亦即,第42天)。在此等組中之任一者中,小鼠中無一者(0/6)為無腫瘤的。在用阿達格拉西布治療之小鼠當中,1/6存活至第42天,且3/6在研究期間為無腫瘤的(中值無腫瘤時間:24天;範圍:13-29天)。在用奈米粒子白蛋白結合型西羅莫司+索托拉西布治療之小鼠當中,3/6存活至第42天,且6/6小鼠在研究期間為無腫瘤的(中值無腫瘤時間:28天;範圍:25-34天)。在用奈米粒子白蛋白結合型西羅莫司+阿達格拉西布治療之小鼠當中,3/6存活至第42天,且5/6在研究期間為無腫瘤的(中值無腫瘤時間:31天;範圍:19-34天)。參見 3A。用奈米粒子白蛋白結合型西羅莫司+索托拉西布或奈米粒子白蛋白結合型西羅莫司+阿達格拉西布治療之小鼠使得UMUC3腫瘤幾乎完全消除(完全反應,分別為用奈米粒子白蛋白結合型西羅莫司+索托拉西布治療之小鼠中6/6展現完全腫瘤消退,且用奈米粒子白蛋白結合型西羅莫司+阿達格拉西布治療之小鼠中5/6展現完全腫瘤消退)。奈米粒子白蛋白結合型西羅莫司與任一KRAS抑制劑,亦即索托拉西布或阿達格拉西布之組合相較於單一藥劑奈米粒子白蛋白結合型西羅莫司、索托拉西布或阿達格拉西布展示顯著更大的腫瘤生長抑制。參見 3A。奈米粒子白蛋白結合型西羅莫司與索托拉西布或阿達格拉西布之組合之間的腫瘤生長抑制無顯著差異(參見 3A)。 None of the mice (0/6) survived to the end of the study (i.e., day 42) in any of the saline control, nanoparticle albumin-bound sirolimus, and sotolacizumab groups. None of the mice (0/6) were tumor-free in any of these groups. Among mice treated with adagracib, 1/6 survived to day 42, and 3/6 were tumor-free during the study (median tumor-free time: 24 days; range: 13-29 days). Among mice treated with nanoparticle albumin-bound sirolimus + sotolacizumab, 3/6 survived to day 42, and 6/6 mice were tumor-free during the study (median tumor-free time: 28 days; range: 25-34 days). Of the mice treated with NABI-sirolimus + adagracib, 3/6 survived to day 42, and 5/6 were tumor-free during the study (median tumor-free time: 31 days; range: 19-34 days). See Figure 3A . Treatment of mice with NABI-sirolimus + sotogracib or NABI-sirolimus + adagracib resulted in almost complete elimination of UMUC3 tumors (complete response, 6/6 mice treated with NABI-sirolimus + sotogracib and 5/6 mice treated with NABI-sirolimus + adagracib, respectively). The combination of NABI-sirolimus and either KRAS inhibitor, sotolacizumab or adagraciib, showed significantly greater tumor growth inhibition compared to single agent NABI-sirolimus, sotolacizumab or adagraciib. See Figure 3A . There was no significant difference in tumor growth inhibition between the combination of NABI-sirolimus and sotolacizumab or adagraciib (see Figure 3A ).

用奈米粒子白蛋白結合型西羅莫司+索托拉西布治療之小鼠展示顯著更大TGI (105%),相較於用單一藥劑奈米粒子白蛋白結合型西羅莫司(79%,P < 0.0001,ANOVA)或單一藥劑索托拉西布(100%,P < 0.0001)治療之小鼠。用奈米粒子白蛋白結合型西羅莫司+阿達格拉西布治療之小鼠展示顯著更大TGI (105%),相較於用單一藥劑奈米粒子白蛋白結合型西羅莫司(79%,P < 0.0001)或單一藥劑阿達格拉西布(103%,P = 0.0374)治療之小鼠。相較於來自NCI-H2122模型之結果(參見 2A),單一藥劑阿達格拉西布在UMUC3模型中之活性顯著高於索托拉西布(P = 0.0035)。出乎意料地,在用奈米粒子白蛋白結合型西羅莫司+索托拉西布治療之小鼠對比用奈米粒子白蛋白結合型西羅莫司+阿達格拉西布治療之小鼠中觀測到TGI無顯著差異。在用奈米粒子白蛋白結合型西羅莫司+索托拉西布治療之小鼠對比用奈米粒子白蛋白結合型西羅莫司+阿達格拉西布治療之小鼠中觀測到TGI無顯著差異。 Mice treated with NAb-sirolimus + sotolacib exhibited significantly greater TGI (105%) compared to mice treated with single-agent NAb-sirolimus (79%, P < 0.0001, ANOVA) or single-agent sotolacib (100%, P < 0.0001). Mice treated with NAb-sirolimus + adagraciib exhibited significantly greater TGI (105%) compared to mice treated with single-agent NAb-sirolimus (79%, P < 0.0001) or single-agent adagraciib (103%, P = 0.0374). Compared to the results from the NCI-H2122 model (see Figure 2A ), single-agent adagracib was significantly more active than sotogracib in the UMUC3 model (P = 0.0035). Unexpectedly, no significant difference in TGI was observed in mice treated with nanoparticle albumin-bound sirolimus + sotogracib vs. mice treated with nanoparticle albumin-bound sirolimus + adagracib. No significant difference in TGI was observed in mice treated with nanoparticle albumin-bound sirolimus + sotogracib vs. mice treated with nanoparticle albumin-bound sirolimus + adagracib.

在用奈米粒子白蛋白結合型西羅莫司+索托拉西布或奈米粒子白蛋白結合型西羅莫司+阿達格拉西布治療之小鼠中觀測到之較大TGI與顯著較高的腫瘤反應率(例如,腫瘤體積變化超過-30%之腫瘤消退)相關,相較於鹽水及單一藥劑(分別為P < 0.0001,卡方及P = 0.0005)。參見 3B G 展示來自 F 之治療組1至6中UMUC3異種移植小鼠當中之反應率(亦即,腫瘤消退> 30%)。 表F:UMUC3異種移植小鼠之反應率 (奈米粒子白蛋白結合型西羅莫司+索托拉西布之P < 0.0001;奈米粒子白蛋白結合型西羅莫司+阿達格拉西布之P = 0.0005) 群組 一或多種藥物 反應率 % ( 腫瘤消退 - 30 % ) 1 鹽水 (對照) 0 2 奈米粒子白蛋白結合型西羅莫司 0% 3 索托拉西布 0% 4 阿達格拉西布 50% 5 奈米粒子白蛋白結合型西羅莫司 + 索托拉西布 100% 6 奈米粒子白蛋白結合型西羅莫司 + 阿達格拉西布 100% The greater TGI observed in mice treated with NABI-sirolimus + sotolacib or NABI-sirolimus + adagracib was associated with significantly higher tumor response rates (e.g., tumor regression of more than -30% tumor volume change) compared to saline and single agents (P < 0.0001, chi-square and P = 0.0005, respectively). See Figure 3B . Table G shows the response rates (i.e., tumor regression > 30%) in UMUC3 xenograft mice in treatment groups 1 to 6 from Table F. Table F: Response rate of UMUC3 xenograft mice (P < 0.0001 for nanoparticle albumin-bound sirolimus + sotolacib; P = 0.0005 for nanoparticle albumin-bound sirolimus + adagraciib) Group One or more medications Response rate % ( tumor regression > - 30 % ) 1 Salt water (control) 0 2 Nanoparticle albumin-bound sirolimus 0% 3 Sotolacib 0% 4 Adagracib 50% 5 Nanoparticle albumin-bound sirolimus + sotolacib 100% 6 Nanoparticle albumin-bound sirolimus + adagracib 100%

用奈米粒子白蛋白結合型西羅莫司+索托拉西布治療之小鼠展現提高之存活率,相較於單獨用索托拉西布治療之小鼠(p = 0.0183 (對數秩))。另外,用奈米粒子白蛋白結合型西羅莫司+阿達格拉西布治療之小鼠展現提高之存活率,相較於單獨用阿達格拉西布治療之小鼠(p = 0.0708 (對數秩))。Mice treated with NABP-sirolimus plus sotolacib showed improved survival compared to mice treated with sotolacib alone (p = 0.0183 (log rank)). Additionally, mice treated with NABP-sirolimus plus adagracib showed improved survival compared to mice treated with adagracib alone (p = 0.0708 (log rank)).

所有治療均為可耐受的,無毒性跡象,且體重變化與鹽水對照類似(參見 3C)。 實例3:比較單一藥劑索托拉西布對比單一藥劑阿達格拉西布及奈米粒子白蛋白結合型西羅莫司+索托拉西布組合療法對比奈米粒子白蛋白結合型西羅莫司+阿達格拉西布組合療法之抗腫瘤活性 All treatments were well tolerated with no signs of toxicity, and weight changes were similar to saline controls (see Figure 3C ). Example 3: Comparison of antitumor activity of single-agent sotolacib versus single-agent adagracib and nanoparticle albumin-bound sirolimus + sotolacib versus nanoparticle albumin-bound sirolimus + adagracib combination therapy

4展示單一藥劑索托拉西布及單一藥劑阿達格拉西布在攜帶NCI-H2122 NSCLC腫瘤之小鼠中的抗腫瘤活性(左側,獲自 2A之資料)以及單一藥劑索托拉西布及單一藥劑阿達格拉西布在攜帶UMUC3腫瘤之小鼠中的抗腫瘤活性(右側,獲自 3A之資料)。索托拉西布在NCI-H2122模型中比阿達格拉西布更有效(P = 0.0143),而阿達格拉西布在UMUC3模型中更有效(P = 0.0035)。 Figure 4 shows the anti-tumor activity of single-agent sotolacib and single-agent adagraciib in mice bearing NCI-H2122 NSCLC tumors (left side, data from Figure 2A ) and single-agent sotolacib and single-agent adagraciib in mice bearing UMUC3 tumors (right side, data from Figure 3A ). Sotolacib was more effective than adagraciib in the NCI-H2122 model (P = 0.0143), while adagraciib was more effective in the UMUC3 model (P = 0.0035).

在不受理論束縛的情況下,索托拉西布及阿達格拉西布之相對功效可為腫瘤特異性的。然而,在實例1及2中測試之所有腫瘤模型中,相較於單一藥劑奈米粒子白蛋白結合型西羅莫司、單一藥劑索托拉西布及單一藥劑阿達格拉西布,奈米粒子白蛋白結合型西羅莫司+索托拉西布及奈米粒子白蛋白結合型西羅莫司+阿達格拉西布之組合展現顯著提高之抗腫瘤活性。參見 1A 2A 3A。無關於NSCLC及膀胱癌異種移植模型中各單一藥劑之相對抗腫瘤活性,任一模型中奈米粒子白蛋白結合型西羅莫司+索托拉西布及奈米粒子白蛋白結合型西羅莫司+阿達格拉西布之抗腫瘤功效無差異。參見例如 2A 3AWithout theoretical constraints, the relative efficacy of sotolacizumab and adagracib may be tumor-specific. However, in all tumor models tested in Examples 1 and 2, the combination of nanoparticle albumin-bound sirolimus + sotolacizumab and nanoparticle albumin-bound sirolimus + adagracib exhibited significantly improved anti-tumor activity compared to single-agent nanoparticle albumin-bound sirolimus, single-agent sotolacizumab, and single-agent adagracib. See Figure 1A , Figure 2A , and Figure 3A . Regardless of the relative antitumor activity of each single agent in NSCLC and bladder cancer xenograft models, there was no difference in the antitumor efficacy of nanoparticle albumin-bound sirolimus + sotolacib and nanoparticle albumin-bound sirolimus + adagraciib in either model. See, e.g., Figure 2A and Figure 3A .

藉由分析有意義的腫瘤反應或有意義的腫瘤消退之速率(例如,大於30%之腫瘤體積減小),用奈米粒子白蛋白結合型西羅莫司+索托拉西布及奈米粒子白蛋白結合型西羅莫司+阿達格拉西布治療顯著提高所測試之所有3種模型中有意義的腫瘤消退之速率,不僅相較於用單一藥劑奈米粒子白蛋白結合型西羅莫司、單一藥劑依維莫司、單一藥劑索托拉西布或單一藥劑阿達格拉西布治療,並且相較於用依維莫司+索托拉西布或依維莫司+阿達格拉西布治療。用依維莫司+索托拉西布或依維莫司+阿達格拉西布之組合治療抑制(諸如減緩)腫瘤生長,但依維莫司+ KRAS G12C抑制劑組合治療不會在所測試之任何模型中引起腫瘤消退速率之任何提高。Treatment with NABI-sirolimus + sotorasib and NABI-sirolimus + adagraciib significantly increased the rate of significant tumor regression in all 3 models tested, as analyzed by significant tumor response or rate of significant tumor regression (e.g., greater than 30% reduction in tumor size), not only compared to treatment with single-agent NABI-sirolimus, single-agent everolimus, single-agent sotorasib, or single-agent adagraciib, but also compared to treatment with everolimus + sotorasib or everolimus + adagraciib. Combination treatment with everolimus + sotolacib or everolimus + adagracib inhibited (e.g., slowed) tumor growth, but everolimus + KRAS G12C inhibitor combination treatment did not result in any increase in the rate of tumor regression in any of the models tested.

在H2030模型中,單一藥劑奈米粒子白蛋白結合型西羅莫司之抗腫瘤活性在數值上優於單一藥劑依維莫司(參見 1A 1B)。相比之下,單一藥劑奈米粒子白蛋白結合型西羅莫司及單一藥劑依維莫司之抗腫瘤活性在H2122模型中無顯著差異(參見 2A 2B)。出乎意料地,反應率(例如,腫瘤體積> -30%之腫瘤消退)在用奈米粒子白蛋白結合型西羅莫司與索托拉西布或阿達格拉西布之組合治療之小鼠中比在用依維莫司與索托拉西布或阿達格拉西布之組合治療之小鼠中顯著較高。 In the H2030 model, the antitumor activity of single - agent nanoparticle albumin-bound sirolimus was numerically superior to that of single-agent everolimus (see Figures 1A and 1B ). In contrast, there was no significant difference in the antitumor activity of single-agent nanoparticle albumin-bound sirolimus and single-agent everolimus in the H2122 model (see Figures 2A and 2B ). Unexpectedly, the response rate (e.g., tumor regression of >-30% of tumor volume) was significantly higher in mice treated with a combination of nanoparticle albumin-bound sirolimus and sotolacizumab or adagracib than in mice treated with a combination of everolimus and sotolacizumab or adagracib.

總體而言,奈米粒子白蛋白結合型西羅莫司+ KRAS抑制劑引起部分反應(PR)及完全反應(CR),而依維莫司+ KRAS抑制劑引起患有穩定疾病(SD)之一些小鼠及具有疾病進展之小鼠。Overall, nanoparticle albumin-bound sirolimus + KRAS inhibitor induced partial responses (PR) and complete responses (CR), while everolimus + KRAS inhibitor induced some mice with stable disease (SD) and mice with disease progression.

如實例1至3中所示,奈米粒子白蛋白結合型西羅莫司在與索托拉西布或阿達格拉西布組合時相較於單一藥劑展示協同抗腫瘤活性,以及顯著增強之腫瘤生長抑制及有意義的腫瘤消退。此研究證實,相較於使用依維莫司,在使用奈米粒子白蛋白結合型西羅莫司之情況下觀測到一致的腫瘤生長抑制及顯著較高的腫瘤藥物水平。參見例如圖6。所有治療均為可耐受的,無明顯毒性跡象且相較於各研究中之鹽水對照產生類似體重變化模式。結果表明,奈米粒子白蛋白結合型西羅莫司在臨床上應為較佳mTOR抑制劑以用於與KRAS抑制劑(例如,阿達格拉西布或索托拉西布)進行組合治療。 實例4:KRAS G12C抑制劑與mTOR奈米粒子組合物之組合在患有具有KRAS G12C突變之晚期實體腫瘤及具有KRAS G12C突變之非小細胞肺癌(NSCLC)之患者中的1/2期試驗 概述 As shown in Examples 1 to 3, nanoparticle albumin-bound sirolimus exhibited synergistic antitumor activity when combined with sotolacizumab or adagracib compared to either agent alone, as well as significantly enhanced tumor growth inhibition and significant tumor regression. This study demonstrated consistent tumor growth inhibition and significantly higher tumor drug levels were observed with nanoparticle albumin-bound sirolimus compared to everolimus. See, e.g., Figure 6. All treatments were tolerable, with no overt signs of toxicity and produced similar weight change patterns compared to saline controls in each study. The results suggest that nanoparticle albumin-bound sirolimus should be a better mTOR inhibitor in clinical practice for combination therapy with KRAS inhibitors (e.g., adagracib or sotolaccib). Example 4: Phase 1/2 trial of a combination of a KRAS G12C inhibitor and an mTOR nanoparticle composition in patients with advanced solid tumors with KRAS G12C mutations and non-small cell lung cancer (NSCLC) with KRAS G12C mutations Overview

此1/2期研究評估KRAS G12C抑制劑(例如,阿達格拉西布或索托拉西布)與ABI-009 (亦即,例示性西羅莫司/白蛋白奈米粒子組合物,亦稱為奈米粒子白蛋白結合型西羅莫司及FYARRO™)組合在患有具有KRAS G12C突變之晚期實體腫瘤/NSCLC的已在晚期或轉移性環境下接受先前療法之患者群組中的安全性及臨床活性。 目標群體 This Phase 1/2 study evaluates the safety and clinical activity of a KRAS G12C inhibitor (e.g., adagraciib or sotograciib) in combination with ABI-009 (i.e., an exemplary sirolimus/albumin nanoparticle combination, also known as nanoparticle albumin-bound sirolimus and FYARRO™) in a patient population with advanced solid tumors/NSCLC with KRAS G12C mutations who have received prior therapy in the advanced or metastatic setting. Target Population

目標群體為患有具有KRAS G12C突變之晚期、不可切除性或轉移性實體腫瘤或NSCLC之患者。 試驗中之患者數 The target population is patients with advanced, unresectable or metastatic solid tumors or NSCLC with KRAS G12C mutation. Number of patients in the trial

試驗有大致50-90名患者參與: • 1 :患有實體腫瘤之大致15-25名患者 •  2期群組: o 群組 A :大致20-40名先前未曝露於KRAS G12C抑制劑之NSCLC患者 o 群組 B :大致20-40名先前曝露於KRAS G12C抑制劑之NSCLC患者 (a)目標及指標 1期-目標 The trial will enroll approximately 50-90 patients: • Phase 1 : Approximately 15-25 patients with solid tumors • Phase 2 cohorts: o Cohort A : Approximately 20-40 NSCLC patients not previously exposed to KRAS G12C inhibitors o Cohort B : Approximately 20-40 NSCLC patients previously exposed to KRAS G12C inhibitors (a) Objectives and Indicators Phase 1 - Objectives

試驗之1期部分之主要目標包括但不限於 ( i ) 表徵KRAS G12C抑制劑與mTOR奈米粒子組合物ABI-009 (亦稱為FYARRO®及奈米粒子白蛋白結合型西羅莫司)之組合在患有具有KRAS G12C突變之晚期實體腫瘤之患者中的安全性及耐受性,及 ( ii ) 使用一或多種給藥方案確立組合之最大耐受劑量(MTD)及/或鑑別KRAS G12C抑制劑及ABI-009之推薦2期組合劑量(RP2D)及方案。 The primary objectives of the Phase 1 portion of the trial include, but are not limited to, ( i ) characterizing the safety and tolerability of the combination of a KRAS G12C inhibitor and the mTOR nanoparticle combination ABI-009 (also known as FYARRO® and nanoparticle albumin-bound sirolimus) in patients with advanced solid tumors harboring a KRAS G12C mutation, and ( ii ) establishing the maximum tolerated dose (MTD) of the combination using one or more dosing regimens and/or identifying a recommended Phase 2 combination dose (RP2D) and regimen for a KRAS G12C inhibitor and ABI-009.

試驗之1期部分之次要目標包括 ( i ) 評估KRAS G12C抑制劑及ABI-009在以組合方式投與時的藥物動力學(PK)及 ( ii ) 評估KRAS G12C抑制劑與ABI-009之組合在患有具有KRAS G12C突變之惡性實體腫瘤之患者中的臨床活性(例如,臨床功效)。 Secondary objectives of the Phase 1 portion of the trial include ( i ) evaluating the pharmacokinetics (PK) of the KRAS G12C inhibitor and ABI-009 when administered in combination and ( ii ) evaluating the clinical activity (e.g., clinical efficacy) of the combination of the KRAS G12C inhibitor and ABI-009 in patients with malignant solid tumors harboring KRAS G12C mutations.

試驗之1期部分之探索性目標包括但不限於 ( i ) 探索腫瘤組織中信號轉導抑制之潛在藥效學標記; ( ii ) 評估偵測血漿中之KRAS G12C突變以鑑別研究群體的效用;及 ( iii ) 探索腫瘤生物標記、基因改變及功效之間的相關性。 1期-指標 The exploratory objectives of the Phase 1 portion of the trial include, but are not limited to, ( i ) exploring potential pharmacodynamic markers of signal transduction inhibition in tumor tissue; ( ii ) evaluating the utility of detecting KRAS G12C mutations in plasma to identify the study population; and ( iii ) exploring the correlation between tumor biomarkers, genetic alterations, and efficacy. Phase 1 - Indications

試驗之1期部分之主要指標包括但不限於 ( i ) 安全性,其特徵在於不良事件(AE)及實驗室異常之類型、發生率、嚴重強度、時序、嚴重性與研究治療的關係,及自第一次劑量之研究治療至最後一次劑量之研究治療之後28天由於不良事件(AE)修改或中斷研究治療的患者數;及 ( ii ) 以組合方式投與之KRAS G12C抑制劑及ABI-009之最大耐受劑量(MTD)及/或推薦2期劑量(RP2D)。安全性參數用於評估具有劑量限制性毒性(DLT)之患者數以測定MTD/RP2D。 The primary endpoints of the Phase 1 portion of the trial include, but are not limited to, ( i ) safety, characterized by the type, incidence, severity, timing, relationship of severity to study treatment of adverse events (AEs) and laboratory abnormalities, and the number of patients who modified or discontinued study treatment due to adverse events (AEs) from the first dose of study treatment to 28 days after the last dose of study treatment; and ( ii ) the maximum tolerated dose (MTD) and/or recommended Phase 2 dose (RP2D) of the KRAS G12C inhibitor and ABI-009 administered in combination. Safety parameters are used to assess the number of patients with dose-limiting toxicity (DLT) to determine the MTD/RP2D.

試驗之1期部分之次要指標包括但不限於 ( i ) KRAS G12C抑制劑及ABI-009之血漿藥物動力學參數、 ( ii ) 由RECIST 1.1界定之客觀反應率(ORR) (參見Eisenhauer等人(2009) Eur J.Cancer 45: 228-247)、 ( iii ) 反應持續時間(DOR)、 ( iv ) 無進展存活期(PFS)、 ( v ) 6個月與12個月時的PFS ( vi ) 1年存活率,及 ( vii ) 總存活期(OS)。 Secondary endpoints of the Phase 1 portion of the trial include, but are not limited to, ( i ) plasma pharmacokinetic parameters of KRAS G12C inhibitor and ABI-009, ( ii ) objective response rate (ORR) defined by RECIST 1.1 (see Eisenhauer et al. (2009) Eur J. Cancer 45: 228-247), ( iii ) duration of response (DOR), ( iv ) progression-free survival (PFS), ( v ) PFS at 6 months and 12 months , ( vi ) 1-year survival rate, and ( vii ) overall survival (OS).

總存活期(OS)通常量測為自治療開始至由任何原因所致之死亡日期的時間。無進展存活期(PFS)通常量測為自治療開始至疾病進展(PD)或由任何原因所致之死亡日期(以先者為準)的時間。反應持續時間(DOR)通常量測為自治療開始至第一次記錄客觀腫瘤反應(完全反應(「CR」)或部分反應(「PR」))至第一次記錄PD或由任何原因所致之死亡(以先者為準)的時間。客觀反應率(ORR)通常量測為在自第一次治療劑量直至最後一次治療劑量的時間週期期間基於RECIST v1.1標準經歷確認完全反應(CR)或部分反應(PR)之個體(例如,患者、個體)的比例。試驗之1期部分之探索性指標包括但不限於 ( i ) KRAS G12C蛋白修飾水平、 ( ii ) 腫瘤組織及循環腫瘤DNA (ctDNA)中基因改變之動力學及腫瘤組織對比ctDNA中鑑別之KRAS G12C突變之間的一致性、 ( iii ) RAS及可能涉及對KRAS G12C抑制劑與ABI-009組合之敏感性及抗性的其他腫瘤基因中之突變,包括 TSC1TSC2突變。 2期-目標 Overall survival (OS) is usually measured as the time from the start of autonomous treatment to the date of death from any cause. Progression-free survival (PFS) is usually measured as the time from the start of autonomous treatment to the date of progressive disease (PD) or death from any cause, whichever comes first. Duration of response (DOR) is usually measured as the time from the start of autonomous treatment to the first documented objective tumor response (complete response ("CR") or partial response ("PR")) to the first documented PD or death from any cause, whichever comes first. Objective response rate (ORR) is usually measured as the proportion of individuals (e.g., patients, individuals) who experience a confirmed complete response (CR) or partial response (PR) based on RECIST v1.1 criteria during the time period from the first treatment dose until the last treatment dose. Exploratory endpoints for the Phase 1 portion of the trial include, but are not limited to, ( i ) levels of KRAS G12C protein modification, ( ii ) the kinetics of genetic alterations in tumor tissue and circulating tumor DNA (ctDNA) and the concordance between KRAS G12C mutations identified in tumor tissue versus ctDNA, and ( iii ) mutations in RAS and other tumor genes that may be involved in sensitivity and resistance to the combination of KRAS G12C inhibitors and ABI-009, including TSC1 and TSC2 mutations. Phase 2 - Objectives

試驗之2期部分之主要目標包括但不限於評估KRAS G12C抑制劑與ABI-009組合在患有具有KRAS G12C突變之NSCLC之患者中的臨床功效。 The primary objectives of the Phase 2 portion of the trial include, but are not limited to, evaluating the clinical efficacy of a KRAS G12C inhibitor in combination with ABI-009 in patients with NSCLC harboring a KRAS G12C mutation.

試驗之2期部分之次要目標包括但不限於 ( i ) 評估KRAS G12C抑制劑及ABI-009在以組合方式投與時的藥物動力學、 ( ii ) 表徵KRAS G12C抑制劑與ABI-009組合在患有具有KRAS G12C突變之NSCLC之患者中的安全性及耐受性,及 ( iii ) 評估KRAS G12C抑制劑與ABI-009組合在患有具有KRAS G12C突變之惡性實體腫瘤之患者中的臨床活性。 Secondary objectives of the Phase 2 portion of the trial include, but are not limited to, ( i ) evaluating the pharmacokinetics of KRAS G12C inhibitors and ABI-009 when administered in combination, ( ii ) characterizing the safety and tolerability of the combination of KRAS G12C inhibitors and ABI-009 in patients with NSCLC harboring KRAS G12C mutations, and ( iii ) evaluating the clinical activity of the combination of KRAS G12C inhibitors and ABI-009 in patients with solid malignant tumors harboring KRAS G12C mutations.

試驗之2期部分之探索性目標包括但不限於 ( i ) 探索腫瘤組織中信號轉導抑制之潛在藥效學標記; ( ii ) 評估偵測血漿中之KRAS G12C突變以鑑別研究群體的效用;及 ( iii ) 探索腫瘤生物標記、基因改變及功效之間的相關性。 2期-指標 The exploratory objectives of the Phase 2 portion of the trial include, but are not limited to, ( i ) exploring potential pharmacodynamic markers of signal transduction inhibition in tumor tissue; ( ii ) evaluating the utility of detecting KRAS G12C mutations in plasma to identify the study population; and ( iii ) exploring the correlation between tumor biomarkers, genetic alterations, and efficacy. Phase 2 - Indications

試驗之2期部分之主要指標包括但不限於基於由RECIST 1.1界定之ORR的臨床功效(參見Eisenhauer等人(2009) Eur J.Cancer 45: 228-247)。 The primary endpoint of the Phase 2 portion of the trial includes, but is not limited to, clinical efficacy based on ORR as defined by RECIST 1.1 (see Eisenhauer et al. (2009) Eur J. Cancer 45: 228-247).

試驗之2期部分之次要指標包括但不限於 ( i ) KRAS G12C抑制劑及ABI-009之血漿藥物動力學濃度、 ( ii ) 安全性,其特徵在於AE及實驗室異常之類型、發生率、嚴重強度、時序、嚴重性與研究治療的關係,及自第一次劑量之研究治療至最後一次劑量之研究治療之後28天由於不良事件修改或中斷研究治療之患者數、 ( iii ) 反應持續時間(DOR)、 ( iv ) 無進展存活期(PFS)、 ( v ) 6個月與12個月時的PFS、 ( vi ) 1年存活率,及 ( vii ) 總存活期(OS)。總存活期(OS)通常量測為自治療開始至由任何原因所致之死亡日期的時間。無進展存活期(PFS)通常量測為自治療開始至疾病進展(PD)或由任何原因所致之死亡日期(以先者為準)的時間。反應持續時間(DOR)通常量測為自治療開始至第一次記錄客觀腫瘤反應(完全反應(「CR」)或部分反應(「PR」))至第一次記錄PD或由任何原因所致之死亡(以先者為準)的時間。客觀反應率(ORR)通常量測為在自第一次治療劑量直至最後一次治療劑量的時間週期期間基於RECIST v1.1標準經歷確認完全反應(CR)或部分反應(PR)之個體(例如,患者、個體)的比例。 Secondary endpoints for the Phase 2 portion of the trial include, but are not limited to, ( i ) plasma pharmacokinetic concentrations of KRAS G12C inhibitor and ABI-009, ( ii ) safety, characterized by the type, incidence, severity, timing, relationship of severity to study treatment of AEs and laboratory abnormalities, and the number of patients who modified or discontinued study treatment due to adverse events from the first dose of study treatment to 28 days after the last dose of study treatment, ( iii ) duration of response (DOR), ( iv ) progression-free survival (PFS), ( v ) PFS at 6 and 12 months, ( vi ) 1-year survival rate, and ( vii ) overall survival (OS). Overall survival (OS) is usually measured as the time from the start of autonomous treatment to the date of death from any cause. Progression-free survival (PFS) is usually measured as the time from the start of autonomous treatment to the date of progressive disease (PD) or death from any cause, whichever comes first. Duration of response (DOR) is usually measured as the time from the start of autonomous treatment to the first documented objective tumor response (complete response ("CR") or partial response ("PR")) to the first documented PD or death from any cause, whichever comes first. Objective response rate (ORR) is usually measured as the proportion of individuals (e.g., patients, individuals) who experience a confirmed complete response (CR) or partial response (PR) based on RECIST v1.1 criteria during the time period from the first treatment dose until the last treatment dose.

試驗之2期部分之探索性指標包括但不限於 ( i ) KRAS G12C蛋白修飾水平、 ( ii ) 腫瘤組織及ctDNA中基因改變之動力學及腫瘤組織對比ctDNA中鑑別之KRAS G12C突變之間的一致性,及 ( iii ) RAS及可能涉及對KRAS G12C抑制劑與ABI-009組合之敏感性及抗性的其他腫瘤基因中之突變,包括TSC1與TSC2突變。 (b)研究設計 Exploratory endpoints for the Phase 2 portion of the trial include, but are not limited to, ( i ) levels of KRAS G12C protein modification, ( ii ) the kinetics of gene alterations in tumor tissue and ctDNA and the concordance between KRAS G12C mutations identified in tumor tissue versus ctDNA, and ( iii ) mutations in RAS and other tumor genes that may be involved in sensitivity and resistance to the combination of KRAS G12C inhibitors and ABI-009, including TSC1 and TSC2 mutations. (b) Study Design

此實例描述KRAS G12C抑制劑與ABI-009之組合在患有具有KRAS G12C突變之晚期惡性實體腫瘤及具有KRAS G12C突變之NSCLC之患者中的安全性、藥物動力學及臨床活性的1/2期評估。 This example describes a Phase 1/2 evaluation of the safety, pharmacokinetics, and clinical activity of a combination of a KRAS G12C inhibitor and ABI-009 in patients with advanced malignant solid tumors with KRAS G12C mutations and NSCLC with KRAS G12C mutations.

研究治療(亦即,KRAS G12C抑制劑與ABI-009組合)以3週週期(或根據替代時程)投與。KRAS G12C抑制劑持續每日(或根據替代時程)經口投與。KRAS G12C抑制劑以200 mg與800 mg之間的劑量每日經口投與兩次(亦即,bis en die或「BID」)或以100 mg與2000 mg之間的劑量每日經口投與一次(亦即,「qd」)。ABI-009每21天在第1天及第8天經由靜脈內(IV)輸注投與(亦即,每三週投與兩次)。替代地,ABI-009每週投與一次或每三週投與一次。ABI-009以1 mg/m 2與75 mg/m 2之間的劑量投與。取決於經歷之毒性,給藥可遞增或遞減。 Study treatment (i.e., KRAS G12C inhibitor in combination with ABI-009) is administered in 3-week cycles (or according to an alternative schedule). KRAS G12C inhibitor is administered orally continuously daily (or according to an alternative schedule). KRAS G12C inhibitor is administered orally twice daily (i.e., bis en die or "BID") at a dose between 200 mg and 800 mg or once daily (i.e., "qd") at a dose between 100 mg and 2000 mg. ABI-009 is administered by intravenous (IV) infusion on Days 1 and 8 every 21 days (i.e., twice every three weeks). Alternatively, ABI-009 is administered once a week or once every three weeks. ABI-009 is administered at doses between 1 mg/m 2 and 75 mg/m 2. Dosing may be escalated or decreased depending on toxicity experienced.

患者由研究人員酌情接受研究治療,直至疾病進展、不可接受的不良事件、患者拒絕或死亡。 1期-研究設計 Patients received study treatment at the discretion of the investigator until disease progression, unacceptable adverse events, patient refusal, or death. Phase 1 - Study Design

該研究開始於KRAS G12C抑制劑及ABI-009之第一劑量水平之藥物動力學(PK)引入以評估兩種藥劑在以組合方式給藥時的PK。有大致24名患者參與。PK引入之投與時程提供於 G1 中且第1週期及所有後續週期之投與時程提供於下 G2 中,且總體研究方案提供於 5中。 表G1 PK 引入 研究天數 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ABI - 009 給藥 X KRAS G12C 抑制劑給藥 X X X X X X X 表G2 1 週期及後續週期 研究天數 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ABI - 009 給藥 X X KRAS G12C 抑制劑給藥 X X X X X X X X X X X X X X X X X X X X X The study started with a pharmacokinetic (PK) lead-in of the first dose level of KRAS G12C inhibitor and ABI-009 to evaluate the PK of the two agents when given in combination. Approximately 24 patients participated. The dosing schedule for the PK lead-in is provided in Table G1 and the dosing schedule for Cycle 1 and all subsequent cycles is provided in Table G2 below, and the overall study plan is provided in Figure 5. Table G1 PK introduction Study Days 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ABI - 009 Medication Administration X KRAS G12C inhibitor dosing X X X X X X X Table G2 First and subsequent cycles Study Days 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 twenty one ABI - 009 Medication Administration X X KRAS G12C inhibitor dosing X X X X X X X X X X X X X X X X X X X X X

對於所投與之KRAS G12C抑制劑及ABI-009之任何特定方案,組合方案之MTD為在第一治療週期期間與0.30之標靶毒性速率相關的劑量,可接受的毒性機率區間為(0.25,0.35)。 2期-研究設計 For any specific regimen of KRAS G12C inhibitor and ABI-009 administered, the MTD of the combination regimen is the dose associated with a target toxicity rate of 0.30 during the first treatment cycle, with an acceptable toxicity probability interval of (0.25, 0.35). Phase 2 - Study Design

在測定MTD及/或潛在可行RP2D方案之後,有額外患者參與至總共大致55名NSCLC患者的2期群組中(群組A中大致30名患者及群組B中大致25名患者)以進一步評估安全性/耐受性及臨床活性。After determination of the MTD and/or potential feasible RP2D regimen, additional patients were enrolled in the Phase 2 cohorts for a total of approximately 55 NSCLC patients (approximately 30 patients in Cohort A and approximately 25 patients in Cohort B) to further assess safety/tolerability and clinical activity.

若有保證,則添加患者之額外劑量確認/擴展群組。根據RECIST 1.1之客觀反應率(ORR) (參見Eisenhauer等人(2009) Eur J Cancer. 45(2): 228-47)為假設檢驗之臨床活動指標。根據研究人員之判斷,經歷臨床益處之患者可在RECIST 1.1定義之疾病進展之後繼續研究治療。對中斷治療之患者進行接受後續抗癌療法及存活情況的隨訪。 (c)患者選擇及參與標準 納入標準 If warranted, patients were added to the additional dose confirmation/expansion cohort. Objective response rate (ORR) according to RECIST 1.1 (see Eisenhauer et al. (2009) Eur J Cancer. 45(2): 228-47) was the clinical activity marker for hypothesis testing. Patients experiencing clinical benefit could continue study treatment after progressive disease as defined by RECIST 1.1 at the discretion of the investigator. Patients who discontinued treatment were followed up for subsequent anticancer therapy and survival. (c) Patient selection and inclusion criteria Inclusion criteria

此1/2期臨床研究之納入標準為: •  組織學確診: o 1 :腫瘤組織或血漿ctDNA中具有KRAS G12C突變之惡性實體腫瘤之組織學確診。 o 2 :腫瘤組織或血漿ctDNA中具有KRAS G12C突變之NSCLC之組織學確診。 •  不可切除性或轉移性疾病。 •  並非確定性療法之候選者(例如,具有治癒意圖之治療不可用);另外: •  2期患者(群組A及B)必須已接受使用鉑化合物及檢查點抑制劑之先前療法(具有任何治療性意圖)。 •  群組A中之患者必須 從未接受過先前KRAS G12C抑制劑。 •  群組B中之患者 必須已接受先前KRAS G12C抑制劑。 •  根據RECIST 1.1存在可量測疾病。 •  年齡≥ 18歲。 •  至少3個月之預期壽命。 •  最近先前全身療法(例如,化療、免疫療法或試驗用藥劑)及放射療法在第一次劑量之研究治療之前中斷至少2週。 •  在參與時自先前療法之不良反應恢復至≤1級(不包括禿髮、周邊神經病變及藉由其他合格性標準取代之參數,諸如血液學參數)。 •  0或1之東部腫瘤協作組(ECOG)體能狀態(參見例如www.ecog-acrin.org/resources/ecog-performance-status)。 o 足夠器官功能,以篩檢期內之實驗室值測定: o 絕對嗜中性白血球計數≥ 1,500/mm 3(≥ 1.5 × 10 9/L); o 血小板計數≥100,000/mm 3(≥ 100 × 10 9/L); o 血紅蛋白≥ 9 g/dL,在至少2週沒有輸血的情況下; o 總膽紅素≤ 1.5 ×正常上限(ULN) (若與肝轉移或吉爾伯氏病相關,則≤ 3 × ULN); o 天冬胺酸轉胺酶(AST)及丙胺酸轉胺酶(ALT) ≤ 3.0 × ULN (若與肝轉移相關,則≤ 5 × ULN); o 肌酸酐廓清率≥ 50 mL/min或腎小球濾過率≥ 50 mL/min/1.73 m 2,使用經驗證之預測方程式計算(例如,Cockcroft-Gault,腎病飲食調整(MDRD)或24小時尿量CrCl)。 •  具有生育力之女性(WOCBP)或配偶為WOCBP之男性在參與此研究中時同意使用避孕,且在終止研究治療之後持續6個月之時間段。 排除標準 •  活性腦轉移瘤或癌性腦膜炎。患有腦轉移瘤之患者在以下情況下合格: o 腦轉移瘤得到充分治療且 o 患者在參與之前神經穩定至少2週且 o 類固醇劑量≤每日10 mg普賴松(或等效物)。 •  在第一次劑量之研究治療之4週內有顯著咯血或出血之病史。 •  在第一次劑量之研究治療之4週內進行過大手術。 •  有可能會改變研究治療之吸收或導致無法吞咽經口藥物的腸道疾病、發炎性腸病、大型胃手術或其他胃腸道病狀(例如,不受控制的噁心、嘔吐、吸收障礙症候群)之病史。 •  在參與之前最後6個月內患有以下心臟異常中之任一者: o 不穩定心絞痛或心肌梗塞; o 充血性心臟衰竭≥紐約心臟協會級別3; o 篩檢期期間ECG上延長校正QT (QTc) > 480毫秒或先天性長QT症候群之醫療或家族病史; o 有症狀的或不受控制的心房震顫或其他臨床上顯著之心律不整。 •  過去6個月內有中風或短暫性缺血性發作之病史。 •  持續需要具有已知尖端扭轉型室速風險之藥物或治療指數狹窄之CYP3A基質;CYP3A及/或P-gp之強抑制劑或誘導劑;乳癌抗性蛋白(BCRP)之強抑制劑;以及質子泵抑制劑,其在進入研究之前無法切換至替代治療。在開始研究治療之前,自中斷此等伴隨藥物以來必須已經過去至少5個半衰期。 •  已知或懷疑存在另一種惡性腫瘤,在疾病評估期間可能會被誤認為正在研究的惡性腫瘤。 •  已知的人類免疫缺乏病毒(HIV)感染或急性或慢性的B型或C型肝炎感染。准許治療C型肝炎且偵測不到病毒負荷之患者及治療HIV且偵測不到病毒負荷至少1個月之患者。 •  免疫功能不全患者(目前正在接受免疫抑制之實體器官或骨髓移植患者、先天性免疫缺乏患者或研究人員認為免疫抑制藥物使患者處於機會性感染風險下)。 •  第一次劑量之研究治療之14天內接受活疫苗。 •  有需要類固醇治療之間質性肺病或放射性肺炎之病史,或臨床上活性間質性肺病或肺炎之任何證據。 •  研究治療之4週內不受控制的糖尿病。 •  已知對KRAS G12C抑制劑或ABI-009或任何賦形劑過敏。 •  懷孕(WOCBP必須在研究藥物開始之前的篩檢期內記錄血清或尿液妊娠測試為陰性)。 •  在研究期間或在研究治療之後的6個月內母乳餵養或計劃母乳餵養。 •  任何嚴重疾病、不受控制的間發病、精神疾病、活動性或不受控制的感染,或其他醫療病史,包括研究人員認為可能干擾患者參與研究或解釋結果的實驗室結果。 飲食限制 Inclusion criteria for this Phase 1/2 clinical study are: • Histologically confirmed: o Phase 1 : Histologically confirmed malignant solid tumor with KRAS G12C mutation in tumor tissue or plasma ctDNA. o Phase 2 : Histologically confirmed NSCLC with KRAS G12C mutation in tumor tissue or plasma ctDNA. • Unresectable or metastatic disease. • Not a candidate for definitive therapy (e.g., curative-intent therapy is not available); in addition: • Phase 2 patients (Cohorts A and B) must have received prior therapy with platinum compounds and checkpoint inhibitors (with any curative intent). • Patients in Cohort A must have never received a prior KRAS G12C inhibitor. • Patients in Cohort B must have received a prior KRAS G12C inhibitor. • Presence of measurable disease per RECIST 1.1. • Age ≥ 18 years. • Life expectancy of at least 3 months. • Recent prior systemic therapy (e.g., chemotherapy, immunotherapy, or investigational agents) and radiation therapy interrupted for at least 2 weeks prior to the first dose of study treatment. • Recovery from adverse reactions to prior therapy to ≤ Grade 1 (excluding alopecia, peripheral neuropathy, and parameters substituted by other eligibility criteria, such as hematologic parameters) at the time of enrollment. • Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 (see, e.g., www.ecog-acrin.org/resources/ecog-performance-status). o Adequate organ function as determined by laboratory values during the screening period: o Absolute neutrophil count ≥ 1,500/mm 3 (≥ 1.5 × 10 9 /L); o Platelet count ≥ 100,000/mm 3 (≥ 100 × 10 9 /L); o Hemoglobin ≥ 9 g/dL in the absence of transfusions for at least 2 weeks; o Total bilirubin ≤ 1.5 × upper limit of normal (ULN) (≤ 3 × ULN if associated with liver metastases or Gilbert's disease); o Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) ≤ 3.0 × ULN (≤ 5 × ULN if associated with liver metastases); o Creatinine clearance ≥ 50 mL/min or glomerular filtration rate ≥ 50 mL/min/1.73 m 2 calculated using validated prediction equations (e.g., Cockcroft-Gault, Modification of Diet in Nephropathy (MDRD) or 24-hour urine output CrCl). • Women of childbearing potential (WOCBP) or men with WOCBP partners agreed to use contraception while enrolled in this study and for a period of 6 months after discontinuation of study treatment. Exclusion Criteria • Active brain metastases or carcinomatous meningitis. Patients with brain metastases were eligible if: o Brain metastases were adequately treated and o Patients were neurologically stable for at least 2 weeks prior to enrollment and o Steroid dose ≤ 10 mg pramirama (or equivalent) daily. • History of significant hemoptysis or hemorrhage within 4 weeks of the first dose of study treatment. • Major surgery within 4 weeks of the first dose of study treatment. • History of intestinal disease, inflammatory bowel disease, major gastric surgery, or other gastrointestinal pathology that could alter absorption of study treatment or lead to inability to swallow oral medications (e.g., uncontrolled nausea, vomiting, malabsorption syndrome). • Any of the following cardiac abnormalities in the last 6 months prior to participation: o Unstable angina or myocardial infarction; o Congestive heart failure ≥ New York Heart Association stage 3; o Prolonged corrected QT (QTc) > 480 ms on ECG during the screening period or medical or family history of congenital long QT syndrome; o Symptomatic or uncontrolled atrial flutter or other clinically significant arrhythmia. • History of stroke or transient ischemic attack in the past 6 months. • Continuing need for medications with a known risk of torsades de pointes or narrowly treated CYP3A substrates; strong inhibitors or inducers of CYP3A and/or P-gp; strong inhibitors of breast cancer resistance protein (BCRP); and proton pump inhibitors, who were unable to switch to alternative therapy prior to study entry. At least 5 half-lives must have elapsed since discontinuation of these concomitant medications prior to initiation of study treatment. • Known or suspected presence of another malignancy that could be mistaken for the malignancy being studied during disease evaluation. • Known human immunodeficiency virus (HIV) infection or acute or chronic hepatitis B or C infection. Patients who are allowed to be treated for hepatitis C with undetectable viral load and patients who are treated for HIV with undetectable viral load for at least 1 month. • Immunocompromised patients (currently receiving immunosuppression for solid organ or bone marrow transplant patients, patients with congenital immunodeficiency, or patients who are deemed by the investigator to be at risk for opportunistic infections by immunosuppressive medications). • Received a live vaccine within 14 days of the first dose of study treatment. • History of interstitial lung disease or radiation pneumonitis requiring steroid therapy, or any evidence of clinically active interstitial lung disease or pneumonitis. • Uncontrolled diabetes within 4 weeks of study treatment. • Known hypersensitivity to KRAS G12C inhibitors or ABI-009 or any formulation. • Pregnancy (WOCBP must have documented a negative serum or urine pregnancy test during the screening period prior to the start of study drug). • Breastfeeding or planning to breastfeed during the study or for 6 months after study treatment. • Any serious illness, uncontrolled intermittent illness, psychiatric disorder, active or uncontrolled infection, or other medical history, including laboratory results, that the investigator believes may interfere with the patient’s participation in the study or the interpretation of the results. Dietary Restrictions

患者由於此等物質可能與KRAS G12C抑制劑及/或ABI-009之藥物動力學相互作用而避免以下物質: •  葡萄柚汁; •  薑黃素/薑黃;以及 •  貫葉連翹及其他本草製劑。 (d)患者治療 Patients should avoid the following substances due to their potential pharmacokinetic interactions with KRAS G12C inhibitors and/or ABI-009: • Grapefruit juice; • Curcumin/turmeric; and • Herba Lycopodii and other herbal preparations. (d) Patient treatment

組合治療(亦即,KRAS G12C抑制劑及ABI-009)以21天週期投與。僅對於PK引入週期,KRAS G12C抑制劑在第8天開始經口投與,且ABI-009在第1天靜脈內投與,持續30分鐘。對於所有其他週期,KRAS G12C抑制劑在第1天開始經口投與,且ABI-009在第1天及第8天靜脈內投與,持續30分鐘。KRAS G12C抑制劑在ABI-009之前投與。KRAS G12C抑制劑每日給藥兩次,儘可能間隔12小時。ABI-009基於體表面積給藥。基於患者在研究開始時之身高及在研究開始時之體重進行給藥,且除非患者之體重相對於基線變化超過5%,否則不會調整劑量。 1期區段 The combination therapy (i.e., KRAS G12C inhibitor and ABI-009) was administered in 21-day cycles. For the PK run-in cycle only, the KRAS G12C inhibitor was administered orally starting on Day 8, and ABI-009 was administered intravenously on Day 1 for 30 minutes. For all other cycles, the KRAS G12C inhibitor was administered orally starting on Day 1, and ABI-009 was administered intravenously on Days 1 and 8 for 30 minutes. The KRAS G12C inhibitor was administered before ABI-009. The KRAS G12C inhibitor was administered twice daily, 12 hours apart whenever possible. ABI-009 was dosed based on body surface area. Dosing was based on the patient's height at study entry and weight at study entry, and no dose adjustment was made unless the patient's weight changed by more than 5% from baseline. Phase 1 Segment

該研究開始於評估以介於200 mg與800 mg之間的劑量BID (亦即,每日兩次)投與之KRAS G12C抑制劑與介於1 mg/m 2與75 mg/m 2之間的劑量的ABI-009的組合。組合方案以21天週期投與。基於所觀測到之毒性、毒性解析及/或PK分佈來調適KRAS G12C抑制劑及/或ABI-009之方案。可取決於新出現的資料探索KRAS G12C抑制劑及/或ABI-009之其他劑量。視需要減少KRAS G12C抑制劑及ABI-009兩者之劑量以管理不良事件(AE)且尋求RP2D方案。 可用於2期之方案 The study began by evaluating the combination of a KRAS G12C inhibitor administered at a dose between 200 mg and 800 mg BID (i.e., twice daily) and ABI-009 at a dose between 1 mg/m 2 and 75 mg/m 2. The combination regimen is administered in 21-day cycles. The regimen of the KRAS G12C inhibitor and/or ABI-009 is adjusted based on observed toxicity, toxicity analysis and/or PK profile. Other doses of the KRAS G12C inhibitor and/or ABI-009 may be explored depending on emerging data. The doses of both the KRAS G12C inhibitor and ABI-009 may be reduced as needed to manage adverse events (AEs) and seek an RP2D regimen. Regimens that can be used in Phase 2

KRAS G12C抑制劑與ABI-009組合之方案被視為可用於2期,其特徵在於足夠的耐受性,預期在至少2個治療週期期間遞送至少80%的預期劑量強度且必須處於或低於最大耐受劑量(定義為在第一治療週期期間與0.30之標靶毒性速率相關之劑量,可接受的毒性機率區間為(0.25, 0.35))。 2期劑量確認/擴展區段 The combination of a KRAS G12C inhibitor and ABI-009 is considered Phase 2-ready, characterized by adequate tolerability, with at least 80% of the intended dose intensity expected to be delivered during at least 2 treatment cycles and must be at or below the maximum tolerated dose (defined as the dose associated with a target toxicity rate of 0.30 during the first treatment cycle, with an acceptable toxicity probability interval of (0.25, 0.35)). Phase 2 Dose Confirmation/Expansion Segment

該研究之2期區段評估KRAS G12C抑制劑與ABI-009之組合在具有 KRASG12C突變及指定腫瘤組織學、治療病史及基線特徵(參見患者選擇及參與標準)之NSCLC患者群組中的臨床功效。患者接受使用該研究之劑量遞增部分中確定之劑量水平及方案用KRAS G12C抑制劑及ABI-009治療。 (e)功效指標定義及分析 客觀反應率(ORR) The Phase 2 portion of the study evaluated the clinical efficacy of the combination of a KRAS G12C inhibitor and ABI-009 in a population of NSCLC patients with KRAS G12C mutations and specified tumor histology, treatment history, and baseline characteristics (see Patient Selection and Eligibility Criteria). Patients received treatment with a KRAS G12C inhibitor and ABI-009 using the dose levels and schedules determined in the dose escalation portion of the study. (e) Efficacy Indicator Definition and Analysis Objective Response Rate (ORR)

客觀疾病反應係根據RECIST 1.1標準分類(參見Eisenhauer等人(2009) Eur J Cancer. 45(2): 228-47)。客觀反應率確定為記錄具有確認完全反應(CR)或部分反應(PR)之患者百分比。 反應持續時間(DOR) Objective disease response was classified according to RECIST 1.1 criteria (see Eisenhauer et al. (2009) Eur J Cancer. 45(2): 228-47). Objective response rate was determined as the percentage of patients with a documented confirmed complete response (CR) or partial response (PR). Duration of response (DOR)

反應持續時間定義為自第一次記錄客觀腫瘤反應(CR或PR)之日期至第一次記錄客觀疾病進展(PD)或在沒有記錄PD的情況下由任何原因所致之死亡的時間。Kaplan Meier方法用於具有客觀反應之患者子群以便獲得中值DOR之估計值。 無進展存活期(PFS) Duration of response was defined as the time from the date of the first documented objective tumor response (CR or PR) to the first documented objective progressive disease (PD) or death from any cause in the absence of documented PD. The Kaplan Meier method was used for the subgroup of patients with objective responses to obtain an estimate of the median DOR. Progression-free survival (PFS)

無進展存活期確定為自首次研究治療日期至第一PD或在沒有記錄PD的情況下由任何原因所致之死亡的時間。Kaplan-Meier方法用於獲得中值PFS時間之估計值。 總存活期(OS) Progression-free survival was determined as the time from the date of first study treatment to the first PD or death from any cause if no PD was documented. The Kaplan-Meier method was used to obtain an estimate of the median PFS time. Overall Survival (OS)

死亡時間確定為自首次研究治療日期至由任何原因所致之死亡的時間。Kaplan-Meier用於估計中值OS及1年存活率;報告1年存活率之95%信賴區間。 子群分析 Time to death was defined as the time from the first date of study treatment to death from any cause. Kaplan-Meier was used to estimate median OS and 1-year survival; 95% confidence intervals for 1-year survival were reported. Subgroup Analysis

子群分析中評估之2期中之基線特徵包括性別、年齡、吸菸狀況及用於偵測 KRASG12C突變之腫瘤DNA來源(例如,腫瘤組織或ctDNA)。 藥物動力學分析 Baseline characteristics from phase 2 assessed in subgroup analyses included sex, age, smoking status, and the source of tumor DNA used to detect the KRAS G12C mutation (e.g., tumor tissue or ctDNA).

使用標準非隔室方法測定PK可評估群體之藥物動力學參數。PK參數包括但不限於以下: • Cmax (ng/mL):在給藥間隔期間所觀測到的KRAS G12C抑制劑及/或ABI-009之最大血漿濃度 • Cmin (ng/mL):在給藥間隔期間KRAS G12C抑制劑及/或ABI-009之最小觀測濃度 • tmax (hr):在給藥間隔期間所觀測到的達到KRAS G12C抑制劑及/或ABI-009之最大血漿濃度之時間 • t½ (hr):KRAS G12C抑制劑及/或ABI-009之終末消除半衰期 • AUClast (ng*h/mL):KRAS G12C抑制劑及/或ABI-009自時間零至最後一個可量測時間點之血漿濃度-時間曲線下面積,藉由對數線性梯形求和計算 • AUC∞ (ng*h/mL):KRAS G12C抑制劑及/或ABI-009自時間零至無窮大之血漿濃度-時間曲線下面積,藉由對數線性梯形求和計算且藉由添加最後所觀測到的可定量血漿濃度除以消除速率常數λz外推至無窮大(若%AUCext > 20%,則未報告AUC0-∞) • CL/F (L/hr):KRAS G12C抑制劑在經口投與之後的表觀清除率 • Vz/F (L):KRAS G12C抑制劑在經口投與之後的表觀分佈體積 • CL (L/hr):血漿中KRAS G12C抑制劑及/或ABI-009之表觀全身清除率。 PK evaluable population pharmacokinetic parameters were determined using standard non-compartmental methods. PK parameters include, but are not limited to, the following: • Cmax (ng/mL) : Maximum plasma concentration of KRAS G12C inhibitor and/or ABI-009 observed during the dosing interval • Cmin (ng/mL) : Minimum observed concentration of KRAS G12C inhibitor and/or ABI-009 during the dosing interval • tmax (hr) : Time to maximum plasma concentration of KRAS G12C inhibitor and/or ABI-009 observed during the dosing interval • t½ (hr) : Terminal elimination half-life of KRAS G12C inhibitor and/or ABI-009 • AUClast (ng*h/mL) : KRAS The area under the plasma concentration-time curve of KRAS G12C inhibitor and/or ABI-009 from time zero to the last measurable time point, calculated by log-linear trapezoidal summation. • AUC∞ (ng*h/mL) : The area under the plasma concentration-time curve of KRAS G12C inhibitor and/or ABI-009 from time zero to infinity, calculated by log-linear trapezoidal summation and extrapolated to infinity by adding the last observed quantifiable plasma concentration divided by the elimination rate constant λz (AUC0-∞ is not reported if %AUCext > 20%). • CL/F (L/hr) : Apparent clearance of KRAS G12C inhibitor after oral administration. • Vz/F (L) : KRAS Apparent volume of distribution of G12C inhibitors after oral administration • CL (L/hr) : Apparent systemic clearance of KRAS G12C inhibitors and/or ABI-009 in plasma.

已就本發明人所發現或提出之特定實施例而言描述本發明以包含用於實踐本發明之較佳模式。熟習此項技術者應瞭解,根據本發明,可以在不脫離本發明之預期範疇之情況下在舉例說明之特定實施例中作出許多修改及改變。所有此類修改均意欲包括在隨附申請專利範圍之範疇內。 實例5 The present invention has been described with respect to specific embodiments discovered or proposed by the inventors to include the best mode for practicing the invention. Those skilled in the art will appreciate that, in accordance with the present invention, many modifications and changes may be made in the specific embodiments illustrated without departing from the intended scope of the invention. All such modifications are intended to be included within the scope of the accompanying claims. Example 5

在對用奈米粒子白蛋白結合型雷帕黴素治療之大腸癌患者之分析後,已發現KRAS野生型患者之反應優於KRAS畸變患者(總體反應率44%對比20%)。結果表明,KRAS路徑中之突變導致具有mTOR路徑活化之癌症患者對奈米粒子白蛋白結合型西羅莫司具有耐藥性。因此,可能需要對具有此等突變之患者使用KRAS/NRAS抑制劑之組合策略。 實例6 In an analysis of colorectal cancer patients treated with nanoparticle albumin-bound rapamycin, it was found that patients with KRAS wild-type responded better than those with KRAS mutations (overall response rate 44% vs. 20%). The results suggest that mutations in the KRAS pathway lead to resistance to nanoparticle albumin-bound sirolimus in cancer patients with activated mTOR pathways. Therefore, a combination strategy of KRAS/NRAS inhibitors may be required for patients with such mutations. Example 6

方法:method:

對攜帶NCI-H2122腫瘤之小鼠進行處理6週或直至腫瘤尺寸超過2000 mm 3。在研究結束時,採集腫瘤且藉由西方墨點法分析生物標記。 Mice bearing NCI-H2122 tumors were treated for 6 weeks or until tumor size exceeded 2000 mm 3 . At the end of the study, tumors were harvested and analyzed for biomarkers by Western blotting.

結果:result:

在長期治療之後,奈米粒子白蛋白結合型西羅莫司單獨或與索托拉西布或阿達格拉西布之組合相較於對應的依維莫司單獨或組合群組展示對mTORC1標靶磷酸化S6之更強抑制。參見圖7A至圖7B。另外,單獨的奈米粒子白蛋白結合型西羅莫司相較於單獨的依維莫司亦展示對mTORC1標靶磷酸化4EBP1之更強抑制。結果證實,奈米粒子白蛋白結合型西羅莫司單獨或與KRAS抑制劑組合強烈抑制mTORC1活性。After long-term treatment, nanoparticle albumin-bound sirolimus alone or in combination with sotolacib or adagracib showed stronger inhibition of mTORC1 target phosphorylated S6 compared to the corresponding everolimus alone or in combination groups. See Figure 7A to Figure 7B. In addition, nanoparticle albumin-bound sirolimus alone also showed stronger inhibition of mTORC1 target phosphorylated 4EBP1 compared to everolimus alone. The results confirmed that nanoparticle albumin-bound sirolimus alone or in combination with KRAS inhibitors strongly inhibited mTORC1 activity.

1A提供以下實驗結果:進行該等實驗以評估 ( i ) 奈米粒子白蛋白結合型西羅莫司、 ( ii ) 依維莫司、 ( iii ) 索托拉西布、 ( iv ) 奈米粒子白蛋白結合型西羅莫司+索托拉西布及 ( v ) 依維莫司+索托拉西布在攜帶NCI-H2030人類非小細胞肺癌異種移植物之小鼠中之抗腫瘤活性。 FIG. 1A provides the results of experiments performed to evaluate the antitumor activity of ( i ) nanoparticle albumin-bound sirolimus, ( ii ) everolimus, ( iii ) sotolacib, ( iv ) nanoparticle albumin-bound sirolimus + sotolacib, and ( v ) everolimus + sotolacib in mice bearing NCI-H2030 human non-small cell lung cancer xenografts.

1B提供瀑布圖,其展示用鹽水、奈米粒子白蛋白結合型西羅莫司、依維莫司、索托拉西布、奈米粒子白蛋白結合型西羅莫司+索托拉西布及依維莫司+索托拉西布治療之NCI-H2030異種移植小鼠中之腫瘤體積消退。 FIG. 1B provides a waterfall graph showing tumor volume regression in NCI-H2030 xenograft mice treated with saline, NABI-sirolimus, everolimus, sotolaciib, NABI-sirolimus + sotolaciib, and everolimus + sotolaciib.

1C展示用鹽水、奈米粒子白蛋白結合型西羅莫司、依維莫司、索托拉西布、奈米粒子白蛋白結合型西羅莫司+索托拉西布及依維莫司+索托拉西布治療之NCI-H2030異種移植小鼠之體重變化%。 FIG. 1C shows the % change in body weight of NCI-H2030 xenograft mice treated with saline, NABI-sirolimus, everolimus, sotolacib, NABI-sirolimus + sotolacib, and everolimus + sotolacib.

2A提供以下實驗結果:進行該等實驗以評估 ( i ) 奈米粒子白蛋白結合型西羅莫司、 ( ii ) 依維莫司、 ( iii ) 索托拉西布、 ( iv ) 阿達格拉西布、 ( v ) 奈米粒子白蛋白結合型西羅莫司+索托拉西布、 ( vi ) 依維莫司+索托拉西布、 ( viii ) 奈米粒子白蛋白結合型西羅莫司+阿達格拉西布及 ( viii ) 依維莫司+阿達格拉西布在攜帶NCI-H2122人類非小細胞肺癌異種移植物之小鼠中的抗腫瘤活性。 FIG. 2A provides the results of experiments performed to evaluate the anti-tumor activity of ( i ) nanoparticle albumin-bound sirolimus, ( ii ) everolimus, ( iii ) sotolacizumab, ( iv ) adagracib, ( v ) nanoparticle albumin-bound sirolimus + sotolacizumab, ( vi ) everolimus + sotolacizumab, ( viii ) nanoparticle albumin-bound sirolimus + adagracib, and ( viii ) everolimus + adagracib in mice bearing NCI-H2122 human non-small cell lung cancer xenografts.

2B提供瀑布圖,其展示用鹽水、奈米粒子白蛋白結合型西羅莫司、依維莫司、索托拉西布、阿達格拉西布、奈米粒子白蛋白結合型西羅莫司+索托拉西布、依維莫司+索托拉西布、奈米粒子白蛋白結合型西羅莫司+阿達格拉西布及依維莫司+阿達格拉西布治療之NCI-H2122異種移植小鼠中之腫瘤體積消退。 FIG. 2B provides a waterfall graph showing tumor volume regression in NCI-H2122 xenograft mice treated with saline, NAb-sirolimus, everolimus, sotolacizumab, adagracib, NAb-sirolimus + sotolacizumab, everolimus + sotolacizumab, NAb-sirolimus + adagracib, and everolimus + adagracib.

2C展示用鹽水、奈米粒子白蛋白結合型西羅莫司、依維莫司、索托拉西布、阿達格拉西布、奈米粒子白蛋白結合型西羅莫司+索托拉西布、依維莫司+索托拉西布、奈米粒子白蛋白結合型西羅莫司+阿達格拉西布及依維莫司+阿達格拉西布治療之NCI-H2122異種移植小鼠之體重變化%。 Figure 2C shows the % weight change of NCI-H2122 xenograft mice treated with saline, NAb-sirolimus, everolimus, sotolacizumab, adagracib, NAb-sirolimus + sotolacizumab, everolimus + sotolacizumab, NAb-sirolimus + adagracib, and everolimus + adagracib.

3A提供以下實驗結果:進行該等實驗以評估 ( i ) 奈米粒子白蛋白結合型西羅莫司、 ( ii ) 索托拉西布、 ( iii ) 阿達格拉西布、 ( iv ) 奈米粒子白蛋白結合型西羅莫司+索托拉西布及 ( v ) 奈米粒子白蛋白結合型西羅莫司+阿達格拉西布在攜帶UMUC3人類膀胱癌異種移植物之小鼠中的抗腫瘤活性。 FIG3A provides the results of experiments performed to evaluate the anti-tumor activity of ( i ) nanoparticle albumin-bound sirolimus, ( ii ) sotolacizumab, ( iii ) adagracib, ( iv ) nanoparticle albumin-bound sirolimus + sotolacizumab, and ( v ) nanoparticle albumin-bound sirolimus + adagracib in mice bearing UMUC3 human bladder cancer xenografts.

3B提供瀑布圖,其展示用鹽水、奈米粒子白蛋白結合型西羅莫司、索托拉西布、阿達格拉西布、奈米粒子白蛋白結合型西羅莫司+索托拉西布及奈米粒子白蛋白結合型西羅莫司+阿達格拉西布治療之UMUC3異種移植小鼠中之腫瘤體積消退。 FIG3B provides waterfall graphs showing tumor volume regression in UMUC3 xenograft mice treated with saline, NABI-sirolimus, sotolacizumab, adagracib, NABI-sirolimus + sotolacizumab, and NABI-sirolimus + adagracib.

3C展示用鹽水、奈米粒子白蛋白結合型西羅莫司、索托拉西布、阿達格拉西布、奈米粒子白蛋白結合型西羅莫司+索托拉西布及奈米粒子白蛋白結合型西羅莫司+阿達格拉西布治療之UMUC3異種移植小鼠之體重變化%。 FIG. 3C shows the % weight change of UMUC3 xenograft mice treated with saline, NABI-sirolimus, sotolacizumab, adagracib, NABI-sirolimus + sotolacizumab, and NABI-sirolimus + adagracib.

4展示單一藥劑索托拉西布及單一藥劑阿達格拉西布在攜帶NCI-H2122 NSCLC腫瘤之小鼠中的抗腫瘤活性(左側,獲自 2A之資料)以及單一藥劑索托拉西布及單一藥劑阿達格拉西布在攜帶UMUC3腫瘤之小鼠中的抗腫瘤活性(右側,獲自 3A之資料)。 FIG4 shows the anti-tumor activity of single -agent sotolacizumab and single-agent adagraciib in mice bearing NCI-H2122 NSCLC tumors (left side, data obtained from FIG2A ) and the anti-tumor activity of single-agent sotolacizumab and single-agent adagraciib in mice bearing UMUC3 tumors (right side, data obtained from FIG3A ).

5展示實例4中描述之臨床試驗之1期及2期部分的研究設計。 Figure 5 shows the study design for the Phase 1 and Phase 2 portions of the clinical trial described in Example 4.

6A 至圖 6B展示實例1中所描述之NSCLC (腺癌) NCI-H2122模型中奈米粒子白蛋白結合型西羅莫司及依維莫司(A)腫瘤及(B)血液濃度的比較。 6A - 6B show a comparison of (A) tumor and (B) blood concentrations of nanoparticle albumin-bound sirolimus and everolimus in the NSCLC (adenocarcinoma) NCI-H2122 model described in Example 1.

7A 至圖 7B展示在用奈米粒子白蛋白結合型西羅莫司、依維莫司或奈米粒子白蛋白結合型西羅莫司/依維莫司與索托拉西布或阿達格拉西布中之一者之組合治療後腫瘤細胞中phospho-S6及phosphor-4EBP1的西方墨點法結果。 FIG. 7A - B show the results of Western blot analysis of phospho-S6 and phosphor-4EBP1 in tumor cells after treatment with nanoparticle albumin-bound sirolimus, everolimus, or a combination of nanoparticle albumin-bound sirolimus/everolimus and one of sotolacizumab or adagraciba.

Claims (54)

一種治療個體之癌症之方法,其包含向該個體投與: (a)有效量之包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物,及 (b)有效量之KRAS抑制劑。 A method for treating cancer in an individual, comprising administering to the individual: (a) an effective amount of a composition comprising nanoparticles comprising an mTOR inhibitor and albumin, and (b) an effective amount of a KRAS inhibitor. 如請求項1之方法,其中該mTOR抑制劑為利莫司藥物(limus drug)。The method of claim 1, wherein the mTOR inhibitor is limus drug. 如請求項2之方法,其中該利莫司藥物為西羅莫司。The method of claim 2, wherein the limus drug is sirolimus. 如請求項1至3中任一項之方法,其中該組合物中之該等奈米粒子之平均直徑不超過約150 nm。The method of any one of claims 1 to 3, wherein the average diameter of the nanoparticles in the composition is no more than about 150 nm. 如請求項4之方法,其中該組合物中之該等奈米粒子之平均直徑不超過約120 nm。The method of claim 4, wherein the average diameter of the nanoparticles in the composition does not exceed about 120 nm. 如請求項1至5中任一項之方法,其中該奈米粒子組合物中該白蛋白與該mTOR抑制劑之重量比不超過約10:1。The method of any one of claims 1 to 5, wherein the weight ratio of the albumin to the mTOR inhibitor in the nanoparticle composition does not exceed about 10:1. 如請求項1至6中任一項之方法,其中該等奈米粒子包含與該白蛋白締合之該mTOR抑制劑。The method of any one of claims 1 to 6, wherein the nanoparticles comprise the mTOR inhibitor conjugated to the albumin. 如請求項7之方法,其中該等奈米粒子包含包覆有該白蛋白之該mTOR抑制劑。The method of claim 7, wherein the nanoparticles comprise the mTOR inhibitor coated with the albumin. 如請求項1至8中任一項之方法,其中該mTOR抑制劑奈米粒子組合物係靜脈內或皮下投與。The method of any one of claims 1 to 8, wherein the mTOR inhibitor nanoparticle composition is administered intravenously or subcutaneously. 如請求項9之方法,其中該mTOR抑制劑奈米粒子組合物係靜脈內投與。The method of claim 9, wherein the mTOR inhibitor nanoparticle composition is administered intravenously. 如請求項1至10中任一項之方法,其中該KRAS抑制劑為抑制KRAS突變蛋白之活性的抗體、肽、蛋白質、反義寡核苷酸或小分子。The method of any one of claims 1 to 10, wherein the KRAS inhibitor is an antibody, peptide, protein, antisense oligonucleotide or small molecule that inhibits the activity of a KRAS mutant protein. 如請求項11之方法,其中該KRAS抑制劑為小分子。The method of claim 11, wherein the KRAS inhibitor is a small molecule. 如請求項12之方法,其中該KRAS抑制劑為選自由以下組成之群的小分子KRAS G12C抑制劑:索托拉西布、阿達格拉西布、JAB-21822、GDC-6036、JDQ443、D-1553、GH35、GFH925、BPI-421286以及LY3537982、RMC-6291、RMC-8839、HBI-2438及JNJ-74699157。The method of claim 12, wherein the KRAS inhibitor is a small molecule KRAS G12C inhibitor selected from the group consisting of: sotolacib, adagracib, JAB-21822, GDC-6036, JDQ443, D-1553, GH35, GFH925, BPI-421286 and LY3537982, RMC-6291, RMC-8839, HBI-2438 and JNJ-74699157. 如請求項13之方法,其中該小分子KRAS G12C抑制劑為索托拉西布或阿達格拉西布。The method of claim 13, wherein the small molecule KRAS G12C inhibitor is sotolacib or adagraciib. 如請求項14之方法,其中該索托拉西布或該阿達格拉西布係經口投與。The method of claim 14, wherein the sotolacib or adagracib is administered orally. 如請求項1至15中任一項之方法,其中該癌症包含表現KRAS G12C突變蛋白之一或多種癌細胞。The method of any one of claims 1 to 15, wherein the cancer comprises one or more cancer cells expressing a KRAS G12C mutant protein. 如請求項12之方法,其中該KRAS抑制劑為選自由以下組成之群的小分子KRAS G12D抑制劑:MRTX1133及RMC-6236。The method of claim 12, wherein the KRAS inhibitor is a small molecule KRAS G12D inhibitor selected from the group consisting of MRTX1133 and RMC-6236. 如請求項1至11及17中任一項之方法,其中該癌症包含表現KRAS G12D突變蛋白之一或多種癌細胞。The method of any one of claims 1 to 11 and 17, wherein the cancer comprises one or more cancer cells expressing a KRAS G12D mutant protein. 如請求項12之方法,其中該KRAS抑制劑為小分子KRAS G12V抑制劑,且其中該小分子KRAS G12V抑制劑為JAB-23000。The method of claim 12, wherein the KRAS inhibitor is a small molecule KRAS G12V inhibitor, and wherein the small molecule KRAS G12V inhibitor is JAB-23000. 如請求項1至11及19中任一項之方法,其中該癌症包含表現KRAS G12V突變蛋白之一或多種癌細胞。The method of any one of claims 1 to 11 and 19, wherein the cancer comprises one or more cancer cells expressing a KRAS G12V mutant protein. 如請求項1至20中任一項之方法,其包含表現KRAS突變蛋白及/或具有至少一種mTOR活化畸變之一或多種癌細胞。The method of any one of claims 1 to 20, comprising one or more cancer cells expressing a KRAS mutant protein and/or having at least one mTOR activation aberration. 如請求項1至21中任一項之方法,其中包含表現KRAS突變蛋白及/或具有至少一種mTOR活化畸變之一或多種癌細胞之該癌症為實體腫瘤、肺癌、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌、子宮癌、子宮內膜癌、子宮頸癌、睾丸癌、膽管癌、骨髓發育不良癌或來源未知的腫瘤。The method of any one of claims 1 to 21, wherein the cancer comprising one or more cancer cells expressing KRAS mutant protein and/or having at least one mTOR activation aberration is a solid tumor, lung cancer, bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, uterine cancer, endometrial cancer, cervical cancer, testicular cancer, bile duct cancer, myelodysplastic cancer, or a tumor of unknown origin. 如請求項22之方法,其中該癌症為實體腫瘤、肺癌、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌或來源未知的腫瘤。The method of claim 22, wherein the cancer is a solid tumor, lung cancer, bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, or a tumor of unknown origin. 如請求項23之方法,其中該癌症為實體腫瘤、肺癌或膀胱癌。The method of claim 23, wherein the cancer is a solid tumor, lung cancer, or bladder cancer. 如請求項23之方法,其中該實體腫瘤為晚期、不可切除性及/或轉移性實體腫瘤。The method of claim 23, wherein the solid tumor is an advanced, unresectable and/or metastatic solid tumor. 如請求項24之方法,其中該肺癌為非小細胞肺癌(NSCLC)。The method of claim 24, wherein the lung cancer is non-small cell lung cancer (NSCLC). 如請求項26之方法,其中該NSCLC為晚期、不可切除性及/或轉移性NSCLC。The method of claim 26, wherein the NSCLC is advanced, unresectable and/or metastatic NSCLC. 如請求項1至27中任一項之方法,其中該mTOR抑制劑奈米粒子組合物及該KRAS抑制劑係同時投與。The method of any one of claims 1 to 27, wherein the mTOR inhibitor nanoparticle composition and the KRAS inhibitor are administered simultaneously. 如請求項1至27中任一項之方法,其中該mTOR抑制劑奈米粒子組合物及該KRAS抑制劑係並行投與。The method of any one of claims 1 to 27, wherein the mTOR inhibitor nanoparticle composition and the KRAS inhibitor are administered concurrently. 如請求項1至27中任一項之方法,其中該mTOR抑制劑奈米粒子組合物及該KRAS抑制劑係依序投與。The method of any one of claims 1 to 27, wherein the mTOR inhibitor nanoparticle composition and the KRAS inhibitor are administered sequentially. 如請求項30之方法,其中該mTOR抑制劑奈米粒子組合物每週投與、每三週投與一次或每三週投與兩次。The method of claim 30, wherein the mTOR inhibitor nanoparticle composition is administered once a week, once every three weeks, or twice every three weeks. 如請求項31之方法,其中該KRAS抑制劑每日投與或每日投與兩次。The method of claim 31, wherein the KRAS inhibitor is administered daily or twice daily. 如請求項1至32中任一項之方法,其中該個體為人類。The method of any one of claims 1 to 32, wherein the individual is a human. 如請求項1至33中任一項之方法,其中該方法包含在投與該mTOR抑制劑奈米粒子組合物及該KRAS抑制劑之前基於具有至少一種mTOR活化畸變之一或多種癌細胞之存在來選擇該個體進行治療。The method of any one of claims 1 to 33, wherein the method comprises selecting the subject for treatment based on the presence of one or more cancer cells having at least one mTOR activating aberration prior to administering the mTOR inhibitor nanoparticle composition and the KRAS inhibitor. 如請求項34之方法,其中該mTOR活化畸變包含mTOR相關基因中之突變。The method of claim 34, wherein the mTOR activation aberration comprises a mutation in an mTOR-related gene. 如請求項34或35之方法,其中該mTOR活化畸變係在選自由以下組成之群的至少一種mTOR相關基因中:AKT1、FLT-3、MTOR、PIK3CA、PIK3CG、TSC1、TSC2、RHEB、STK11、NF1、NF2、TP53、FGFR4、BAP1、KRAS、NRAS、NRF2、KEAP1及PTEN。The method of claim 34 or 35, wherein the mTOR activation aberration is in at least one mTOR-related gene selected from the group consisting of: AKT1, FLT-3, MTOR, PIK3CA, PIK3CG, TSC1, TSC2, RHEB, STK11, NF1, NF2, TP53, FGFR4, BAP1, KRAS, NRAS, NRF2, KEAP1 and PTEN. 如請求項36之方法,其中該mTOR活化畸變係在TSC1及/或TSC2中。The method of claim 36, wherein the mTOR activation aberration is in TSC1 and/or TSC2. 如請求項1至37中任一項之方法,其中該方法包含基於表現KRAS突變蛋白之一或多種癌細胞之存在來選擇該個體進行治療。The method of any one of claims 1 to 37, wherein the method comprises selecting the individual for treatment based on the presence of one or more cancer cells expressing a KRAS mutant protein. 如請求項38之方法,其中該KRAS突變蛋白為KRAS G12C突變蛋白、KRAS G12D突變蛋白或KRAS G12V突變蛋白。The method of claim 38, wherein the KRAS mutant protein is a KRAS G12C mutant protein, a KRAS G12D mutant protein, or a KRAS G12V mutant protein. 一種用於治療個體之癌症之套組,其包含: (a)包含有包含mTOR抑制劑及白蛋白之奈米粒子之組合物,及 (b)用於向患有癌症之個體投與有效量之mTOR抑制劑奈米粒子組合物及有效量之KRAS抑制劑的說明書,該癌症包含表現KRAS突變蛋白及/或具有至少一種mTOR活化畸變之一或多種癌細胞。 A kit for treating cancer in an individual, comprising: (a) a composition comprising nanoparticles comprising an mTOR inhibitor and albumin, and (b) instructions for administering an effective amount of the mTOR inhibitor nanoparticle composition and an effective amount of a KRAS inhibitor to an individual having cancer, wherein the cancer comprises one or more cancer cells expressing a KRAS mutant protein and/or having at least one mTOR activating aberration. 如請求項40之套組,其中該mTOR抑制劑為利莫司藥物。The kit of claim 40, wherein the mTOR inhibitor is the drug limus. 如請求項40或41之套組,其中該利莫司藥物為西羅莫司。The kit of claim 40 or 41, wherein the limus drug is sirolimus. 如請求項40至42中任一項之套組,其中該組合物中之該等奈米粒子之平均直徑不超過約150 nm。The kit of any one of claims 40 to 42, wherein the average diameter of the nanoparticles in the composition does not exceed about 150 nm. 如請求項43之套組,其中該組合物中之該等奈米粒子之平均直徑不超過約120 nm。The kit of claim 43, wherein the average diameter of the nanoparticles in the composition does not exceed about 120 nm. 如請求項40至44中任一項之套組,其中該奈米粒子組合物中該白蛋白與該mTOR抑制劑之重量比不超過約10:1。The kit of any one of claims 40 to 44, wherein the weight ratio of the albumin to the mTOR inhibitor in the nanoparticle composition does not exceed about 10:1. 如請求項40至45中任一項之套組,其中該等奈米粒子包含與該白蛋白締合之該mTOR抑制劑。The kit of any one of claims 40 to 45, wherein the nanoparticles comprise the mTOR inhibitor conjugated to the albumin. 如請求項46之套組,其中該等奈米粒子包含包覆有該白蛋白之該mTOR抑制劑。The kit of claim 46, wherein the nanoparticles comprise the mTOR inhibitor coated with the albumin. 如請求項40至47中任一項之套組,其中該KRAS抑制劑為抑制該KRAS突變蛋白之活性的抗體、肽、蛋白質、反義寡核苷酸或小分子。The kit of any one of claims 40 to 47, wherein the KRAS inhibitor is an antibody, peptide, protein, antisense oligonucleotide or small molecule that inhibits the activity of the KRAS mutant protein. 如請求項48之套組,其中該KRAS抑制劑為小分子。The kit of claim 48, wherein the KRAS inhibitor is a small molecule. 如請求項49之套組,其中該KRAS抑制劑為選自由以下組成之群的小分子KRAS G12C抑制劑:索托拉西布、阿達格拉西布、JAB-21822、GDC-6036、JDQ443、D-1553、GH35、GFH925、BPI-421286以及LY3537982、RMC-6291、RMC-8839、HBI-2438及JNJ-74699157。The kit of claim 49, wherein the KRAS inhibitor is a small molecule KRAS G12C inhibitor selected from the group consisting of: sotolacib, adagracib, JAB-21822, GDC-6036, JDQ443, D-1553, GH35, GFH925, BPI-421286 and LY3537982, RMC-6291, RMC-8839, HBI-2438 and JNJ-74699157. 如請求項50之套組,其中該KRAS抑制劑為選自由以下組成之群的小分子KRAS G12D抑制劑:MRTX1133及RMC-6236。The kit of claim 50, wherein the KRAS inhibitor is a small molecule KRAS G12D inhibitor selected from the group consisting of MRTX1133 and RMC-6236. 如請求項51之套組,其中該KRAS抑制劑為小分子KRAS G12V抑制劑,且其中該小分子KRAS G12V抑制劑為JAB-23000。The kit of claim 51, wherein the KRAS inhibitor is a small molecule KRAS G12V inhibitor, and wherein the small molecule KRAS G12V inhibitor is JAB-23000. 如請求項40至52中任一項之套組,其中該癌症為實體腫瘤、肺癌、膀胱癌、闌尾癌、大腸直腸癌、小腸癌、胰臟癌、子宮癌、子宮內膜癌、子宮頸癌、睾丸癌、膽管癌、骨髓發育不良癌或來源未知的腫瘤。The kit of any one of claims 40 to 52, wherein the cancer is a solid tumor, lung cancer, bladder cancer, coccyx cancer, colorectal cancer, small intestine cancer, pancreatic cancer, uterine cancer, endometrial cancer, cervical cancer, testicular cancer, bile duct cancer, myelodysplastic cancer, or a tumor of unknown origin. 如請求項40至53中任一項之套組,其中個體為人類。A set as in any one of claims 40 to 53, wherein the individual is a human.
TW112138751A 2022-10-11 2023-10-11 Combination therapies for the treatment of cancer TW202421656A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63/415,252 2022-10-11
US63/461,145 2023-04-21

Publications (1)

Publication Number Publication Date
TW202421656A true TW202421656A (en) 2024-06-01

Family

ID=

Similar Documents

Publication Publication Date Title
AU2021286245B2 (en) Methods of treating epithelioid cell tumors
AU2021290200B2 (en) Biomarkers for nanoparticle compositions
JP6309610B2 (en) How to treat bladder cancer
KR102205710B1 (en) Methods of treating pancreatic cancer
JP2018521057A5 (en)
JP2018527308A5 (en)
US20210137848A1 (en) Biomarkers for nanoparticle compositions
WO2021096997A1 (en) Biomarkers for nanoparticle compositions
TW202421656A (en) Combination therapies for the treatment of cancer
WO2024081674A1 (en) Combination therapies for the treatment of cancer
EA045904B1 (en) METHODS FOR TREATING EPITHELIOID CELL TUMORS
NZ738936B2 (en) Methods of treating epithelioid cell tumors