TW202419385A - Microelectromechanical device - Google Patents

Microelectromechanical device Download PDF

Info

Publication number
TW202419385A
TW202419385A TW112133881A TW112133881A TW202419385A TW 202419385 A TW202419385 A TW 202419385A TW 112133881 A TW112133881 A TW 112133881A TW 112133881 A TW112133881 A TW 112133881A TW 202419385 A TW202419385 A TW 202419385A
Authority
TW
Taiwan
Prior art keywords
mems
modules
substrate
base plate
asic
Prior art date
Application number
TW112133881A
Other languages
Chinese (zh)
Inventor
羅夫 諾特梅爾
托比亞斯 漢
簡 史蒂爾
Original Assignee
德商羅伯特博世公司
德商卡爾蔡司Smt公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商羅伯特博世公司, 德商卡爾蔡司Smt公司 filed Critical 德商羅伯特博世公司
Publication of TW202419385A publication Critical patent/TW202419385A/en

Links

Images

Abstract

Microelectromechanical device (110) comprising a carrier substrate (100) having a substrate surface (100a), and a plurality of MEMS modules (120), wherein each of the plurality of MEMS modules (120) comprises an ASIC layer (140) having an ASIC layer front side (140a) and an ASIC layer rear side (140b), a baseplate (160) having a baseplate front side (160a) and a baseplate rear side (160b), and a plurality of microelectromechanical components (130) having a component rear side (130b), wherein the baseplate (160) is arranged on the ASIC layer front side (140a) and the baseplate rear side (160b) is connected to the ASIC layer front side (140a) and the plurality of microelectromechanical components (130) are arranged on the baseplate front side (160a) and their component rear sides (130b) are connected to the baseplate front side (160a), wherein the ASIC layer (140) has an ASIC for controlling the plurality of microelectromechanical components (130), wherein the ASIC is connected to the microelectromechanical components (130) by way of electrical contacts (144), wherein the plurality of MEMS modules (120) are arranged on the substrate surface (100a) and the ASIC layer rear sides (140b) of the plurality of MEMS modules (120) are connected to the substrate surface (100a).

Description

微機電裝置MEMS devices

本發明涉及微機電裝置領域,特別是微鏡陣列,且涉及一種微機電裝置;一種照明光學單元;一種用於投影曝光設備的照明系統;一種對應的投影曝光設備以及一種製造微機電裝置的方法。The present invention relates to the field of micro-electromechanical devices, in particular to micro-mirror arrays, and relates to a micro-electromechanical device; an illumination optical unit; an illumination system for projection exposure equipment; a corresponding projection exposure equipment and a method for manufacturing a micro-electromechanical device.

包括已知為微鏡陣列或微鏡致動器的以矩陣方式佈置之可位移微鏡的裝置如今被用在多種裝置中,例如智慧型手機、投影機、抬頭顯示器、條碼讀取器、半導體製造中的光罩曝光單元和顯微鏡。舉例而言,從文獻DE 10 2013 208 446 A1、EP 0 877 272 A1和WO 2010/049076 A2中,相對應的微鏡陣列是已知。關於用於位移微鏡陣列中個別的鏡(即微鏡)之適合致動器單元的揭示具體說明於例如DE 10 2013 206 529 A1、DE 10 2013 206 531 A1和DE 10 2015 204 874 A1中。Devices comprising displaceable micromirrors arranged in a matrix, known as micromirror arrays or micromirror actuators, are used today in a variety of devices, such as smartphones, projectors, head-up displays, barcode readers, mask exposure units in semiconductor manufacturing, and microscopes. Corresponding micromirror arrays are known, for example, from DE 10 2013 208 446 A1, EP 0 877 272 A1 and WO 2010/049076 A2. Disclosures concerning suitable actuator units for displacing individual mirrors (i.e. micromirrors) in a micromirror array are described in detail, for example, in DE 10 2013 206 529 A1, DE 10 2013 206 531 A1 and DE 10 2015 204 874 A1.

根據本發明,提出微機電裝置、包括此微機電裝置的照明光學單元和各自具有對應的照明光學單元的照明系統和投影曝光設備,以及用於製造根據本發明的微機電裝置的方法。According to the present invention, a micro-electromechanical device, an illumination optical unit including the micro-electromechanical device, an illumination system and a projection exposure device each having a corresponding illumination optical unit, and a method for manufacturing the micro-electromechanical device according to the present invention are provided.

根據本發明的第一態樣,提出一種微機電裝置,包括具有基板表面的載體基板和多個MEMS模組(MEMS:微機電系統)。在此情況下,多個MEMS模組中的每一者包括:ASIC層,較佳為剛好一個,具有ASIC層前側和與該ASIC層前側相對定位的ASIC層後側,底板,具有底板前側和與該底板前側相對的底板後側,以及具有組件後側的多個微機電組件。微機電組件在其構造及/或功能方面不需要相同,雖然情況可能如此。底板佈置於ASIC層前側上,底板後側連接至ASIC層前側。對此藉由焊接或較佳地燒結或共晶接合的聚合連接是特別適合,據此以形成ASIC層和底板之間的電性接觸點。舉例而言,可使用銀燒結膏作為燒結材料。多個微機電組件是另外佈置在底板前側上,且它們的組件後側連接至底板前側。MEMS模組的每一者之ASIC層具有用於控制多個微機電組件的一或多個ASIC(ASIC:特殊應用積體電路),其中所述一或多個ASIC使用至少一部分的電性接觸點電連接至微機電組件,其中電性接觸點通常在底板中藉由諸如通孔之電連接進一步被導引至微機電組件。舉例來說,為了位在載體基板上的另外電子組件和微機電組件之間製造電連接,ASIC層還可選擇性地包括中介層(interposer)及/或除ASIC之外的其他元件。MEMS模組的ASIC層可以是連續的ASIC層或非連續的ASIC層。ASIC層的連續性之用語意指ASIC層的所有元件藉由該層本身彼此機械地連接。這種藉由兩個元件之間的ASIC層的機械連接可藉由元件本身及/或藉由該層的其他元件來實現,例如ASIC、中介層、適合的連接元件、填充材料及/或接合材料。在非連續的ASIC層之情況下,例如此層具有諸如ASIC及/或中介層之元件,其不會藉由該層本身彼此機械地連接。ASIC層因而具有間隙。電連接可藉由介於ASIC層和底板之間的電性接觸點而被進一步導引。舉例而言,適當的中介層特別是具有電連接的矽基中介層,例如穿矽通孔(TSV),諸如銅基通孔(Cu通孔)。多個MEMS模組佈置在載具基板的基板表面上,且多個MEMS模組的ASIC層後側連接至基板表面。此連接通常亦以聚合方式來實施且較佳地藉由燒結來實行。載體基板上的另外電子組件可以是例如用於控制整個機電裝置的另外ASIC、被動元件及/或的連接元件(例如插頭、電纜),例如用於製造至諸如運算單元的外部控制裝置的電連接且用於供電之目的。載體基板整體上用作組件載體且可包括用於導引電信號從載體基板的一個表面流至載體基板的另一表面的諸如通孔之電連接。在這方面,舉例而言,將另外電子組件佈置在定位相對於具有MEMS模組的基板表面之載體基板的基板表面上可能是有利的。此外,為了使高填充因子成為可能,即在載體基板上的MEMS模組的緊密佈置,MEMS模組的ASIC層可被塑型以使其不橫向突出超過MEMS模組的底板。MEMS模組的ASIC層因此較佳地具有相同或小於底板的尺寸。According to a first aspect of the invention, a micro-electromechanical device is provided, comprising a carrier substrate having a substrate surface and a plurality of MEMS modules (MEMS: micro-electromechanical system). In this case, each of the plurality of MEMS modules comprises: an ASIC layer, preferably exactly one, having an ASIC layer front side and an ASIC layer rear side positioned opposite the ASIC layer front side, a base plate having a base plate front side and a base plate rear side opposite the base plate front side, and a plurality of micro-electromechanical components having component rear sides. The micro-electromechanical components do not need to be identical in their construction and/or function, although this may be the case. The base plate is arranged on the ASIC layer front side, and the base plate rear side is connected to the ASIC layer front side. Polymeric connections by welding or preferably sintering or eutectic bonding are particularly suitable for this, whereby electrical contacts are formed between the ASIC layer and the base plate. For example, a silver sintering paste can be used as a sintering material. A plurality of micro-electromechanical components are additionally arranged on the front side of the base plate, and their component rear sides are connected to the front side of the base plate. The ASIC layer of each of the MEMS modules has one or more ASICs (ASIC: Application Specific Integrated Circuit) for controlling a plurality of micro-electromechanical components, wherein the one or more ASICs are electrically connected to the micro-electromechanical components using at least a portion of the electrical contacts, wherein the electrical contacts are typically further led to the micro-electromechanical components in the base plate by electrical connections such as through holes. For example, in order to make electrical connections between further electronic components and micro-electromechanical components located on the carrier substrate, the ASIC layer may also optionally include an interposer and/or other components in addition to the ASIC. The ASIC layer of the MEMS module can be a continuous ASIC layer or a discontinuous ASIC layer. The term continuity of the ASIC layer means that all components of the ASIC layer are mechanically connected to each other through the layer itself. This mechanical connection through the ASIC layer between two components can be achieved by the components themselves and/or by other components of the layer, such as the ASIC, the interposer, suitable connecting elements, filling materials and/or bonding materials. In the case of a discontinuous ASIC layer, for example, this layer has components such as ASICs and/or interposers, which are not mechanically connected to each other through the layer itself. The ASIC layer thus has a gap. The electrical connection can be further guided by electrical contact points between the ASIC layer and the base plate. For example, a suitable interposer is in particular a silicon-based interposer with electrical connections, such as through-silicon vias (TSVs), such as copper-based through vias (Cu through vias). Multiple MEMS modules are arranged on the substrate surface of the carrier substrate, and the ASIC layers of the multiple MEMS modules are connected to the substrate surface on the back side. This connection is usually also implemented in a polymeric manner and is preferably implemented by sintering. Further electronic components on the carrier substrate can be, for example, further ASICs for controlling the entire electromechanical device, passive elements and/or connection elements (such as plugs, cables), for example for making electrical connections to external control devices such as computing units and for power supply purposes. The carrier substrate as a whole serves as a component carrier and may include electrical connections such as through-holes for guiding electrical signals from one surface of the carrier substrate to another surface of the carrier substrate. In this respect, it may be advantageous, for example, to arrange further electronic components on a substrate surface of the carrier substrate which is positioned relative to the substrate surface with the MEMS module. Furthermore, in order to enable a high fill factor, i.e. a close arrangement of the MEMS modules on the carrier substrate, the ASIC layer of the MEMS module may be shaped so that it does not protrude laterally beyond the base plate of the MEMS module. The ASIC layer of the MEMS module therefore preferably has the same or smaller dimensions than the base plate.

此微機電裝置因此將其多個微機電組件細分為個別的組,每個組包括多個微機電組件,所述組在本發明的上下文中稱作MEMS模組。多個MEMS模組可各具有例如剛好2、3、4、5、6、9、12、16、20、25、30、36、42、49、56、64、72或81個的多個微機電組件,其他≥2的數字亦是可以想到的。多個微機電組件可佈置成例如由行和列組成的矩形網格中,例如由兩行和兩列、兩行和三列、三行和三列、三行和四列、四行和四列、四行和五列、五行和五列、五行和六列、六行和六列、六行和七列、七行和七列、七行和八列、八行和八列、八行和九列或九行和九列組成。替代地,舉例而言,六邊形網格是可以想到的。根據本發明的機電裝置可包括例如剛好2、3、4、5、6、9、12、16、20、25、30、36、42、49、56、64、72或81個MEMS模組,其他≥2的數字亦是可以想到的。MEMS模組亦可佈置在由行和列組成的矩形網格中,例如由兩行和兩列、兩行和三列、三行和三列、三行和四列、四行和四列、四行和五列、五行和五列、五行和六列、六行和六列、六行和七列、七行和七列、七行和八列、八行和八列、八行和九列或九行和九列。在此,例如替代性地,六邊形網格亦是可以想到的。This microelectromechanical device therefore subdivides its multiple microelectromechanical components into individual groups, each group comprising multiple microelectromechanical components, which groups are referred to as MEMS modules in the context of the present invention. Multiple MEMS modules can each have, for example, exactly 2, 3, 4, 5, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72 or 81 multiple microelectromechanical components, and other numbers ≥ 2 are also conceivable. A plurality of MEMS components may be arranged, for example, in a rectangular grid consisting of rows and columns, for example, two rows and two columns, two rows and three columns, three rows and three columns, three rows and four columns, four rows and four columns, four rows and five columns, five rows and five columns, five rows and six columns, six rows and six columns, six rows and seven columns, seven rows and seven columns, seven rows and eight columns, eight rows and eight columns, eight rows and nine columns or nine rows and nine columns. Alternatively, for example, a hexagonal grid is conceivable. The electromechanical device according to the invention may include, for example, exactly 2, 3, 4, 5, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72 or 81 MEMS modules, other numbers ≥ 2 are also conceivable. The MEMS modules can also be arranged in a rectangular grid consisting of rows and columns, for example two rows and two columns, two rows and three columns, three rows and three columns, three rows and four columns, four rows and four columns, four rows and five columns, five rows and five columns, five rows and six columns, six rows and six columns, six rows and seven columns, seven rows and seven columns, seven rows and eight columns, eight rows and eight columns, eight rows and nine columns or nine rows and nine columns. Here, for example, a hexagonal grid is also conceivable as an alternative.

將微機電裝置以此方式細分的一個有利態樣是藉由細分為MEMS模組來達成降低結構之複雜度和故障易感性。已確立的是,具有減少數量的微機電組件的多個MEMS模組比具有相同總數的微機電組件的單一單元在製造過程中更容易處理。尤其是,藉由根據本發明的方法可顯著提高製造過程中的產量,因為在製造期間能以針對性的方式選擇專門包括全功能微機電組件的MEMS模組。此外,例如為了覆蓋比根據本發明的單一微機電裝置可實現的更大區域,可以想到進而將多個這種根據本發明的微機電裝置連接以形成上位(superordinate)單元。An advantageous aspect of subdividing a microelectromechanical device in this way is the reduction in structural complexity and susceptibility to failures achieved by the subdivision into MEMS modules. It has been established that a plurality of MEMS modules with a reduced number of microelectromechanical components are easier to handle in the manufacturing process than a single unit with the same total number of microelectromechanical components. In particular, the yield in the manufacturing process can be significantly increased by the method according to the invention, since MEMS modules which exclusively comprise fully functional microelectromechanical components can be selected in a targeted manner during manufacturing. Furthermore, it is conceivable to further connect a plurality of such microelectromechanical devices according to the invention to form a superordinate unit, for example in order to cover a larger area than is achievable with a single microelectromechanical device according to the invention.

本發明的一個特別重要的實施例是使用微鏡作為微機電組件。微機電裝置因而可尤其是微鏡陣列。在此情況下,多個微機電組件中的每一者包括具有用於反射光的反射表面的鏡元件,以及用於位移各自微機電組件的鏡元件之位移單元,其中一或多個ASIC被組配來控制位移單位。在此情況下,位移意指相對於至少一個自由度的移動。位移可以包括線性移動和旋轉。鏡元件可以是或可特別包含布拉格鏡(Bragg mirror)。位移單元可以是例如靜電致動器、例如具有梳狀電極。適合的致動器是於以下文獻中所描述者,例如DE 10 2013 206 529 A1、DE 10 213 206 531 A1和DE 10 2015 204 874 A1。A particularly important embodiment of the invention is the use of micromirrors as microelectromechanical components. The microelectromechanical device can thus be in particular a micromirror array. In this case, each of the plurality of microelectromechanical components comprises a mirror element having a reflective surface for reflecting light, and a displacement unit for displacing the mirror element of the respective microelectromechanical component, wherein one or more ASICs are configured to control the displacement unit. In this case, displacement means movement relative to at least one degree of freedom. The displacement can include linear movement and rotation. The mirror element can be or can in particular include a Bragg mirror. The displacement unit can be, for example, an electrostatic actuator, for example with comb electrodes. Suitable actuators are described, for example, in DE 10 2013 206 529 A1, DE 10 213 206 531 A1 and DE 10 2015 204 874 A1.

將根據本發明之微機電裝置細分成MEMS模組是有利的,特別是若根據本發明的微機電裝置的載體基板實質上由第一材料所構成並且多個MEMS模組實質上由第二材料所構成,其中第一材料具有第一熱膨脹係數 α 1,且第二材料具有與第一熱膨脹係數不同的第二熱膨脹係數 α 2。通常,第一材料(即載體基板的材料)包括陶瓷(例如氧化鋁基陶瓷)或者為陶瓷(例如氧化鋁基陶瓷)。第二材料(即MEMS模組的材料)通常包括半導體材料(特別是矽,例如單晶矽及/或多晶矽)或者為半導體材料(特別是矽,例如單晶矽及/或多晶矽)。若第一熱膨脹係數 α 1和第二熱膨脹係數 α 2具有相對大的差異,即例如彼此具有 α 1/ α 2≥1.5的比率,則本發明可非常特別有利地被使用。在諸如微鏡陣列的微機電裝置的製造過程的情境中,例如由於焊接或燒結之結果,出現之溫度通常顯著高於裝置的休止狀態或其他操作狀態。在由具有不同熱膨脹係數的不同材料(例如陶瓷和矽)製造此裝置的情況下,可出現因不同熱膨脹係數引起的機械應力,其也稱為熱應力。這種熱應力在組裝(即焊接或燒結)期間中被凍結,並在裝置的生命期間消散。這會導致裝置的結構變形及/或損壞,從而極大地損害其功能。舉例來說,在微鏡陣列的情況下,各個鏡片的位置可能改變成非期望的方式。相較於現有技術的相應微機電裝置,藉由將微機電裝置的微機電組件細分為由第二材料組成的空間上更小的MEMS模組,並將其施加到由第一材料組成的載體基板上,可顯著減少因使用不同材料而造成的熱應力。 It is advantageous to subdivide the microelectromechanical device according to the invention into MEMS modules, in particular if the carrier substrate of the microelectromechanical device according to the invention consists essentially of a first material and the plurality of MEMS modules consists essentially of a second material, wherein the first material has a first thermal expansion coefficient α 1 and the second material has a second thermal expansion coefficient α 2 which is different from the first thermal expansion coefficient. Typically, the first material (i.e. the material of the carrier substrate) comprises a ceramic (e.g. an alumina-based ceramic) or is a ceramic (e.g. an alumina-based ceramic). The second material (i.e. the material of the MEMS modules) typically comprises a semiconductor material (in particular silicon, e.g. single-crystalline silicon and/or polycrystalline silicon) or is a semiconductor material (in particular silicon, e.g. single-crystalline silicon and/or polycrystalline silicon). The invention can be used very particularly advantageously if the first coefficient of thermal expansion α1 and the second coefficient of thermal expansion α2 have a relatively large difference , i.e. for example have a ratio of α1 / α2 ≥1.5 to one another. In the context of the production process of microelectromechanical devices , such as micromirror arrays, temperatures which occur, for example as a result of welding or sintering, are generally significantly higher than in the rest state or other operating states of the device. In the case of the production of such devices from different materials with different coefficients of thermal expansion, such as ceramics and silicon, mechanical stresses which are caused by the different coefficients of thermal expansion, which are also referred to as thermal stresses, can occur. Such thermal stresses are frozen during assembly (i.e. welding or sintering) and dissipated during the life of the device. This can lead to structural deformations and/or damage to the device, which can significantly impair its functionality. For example, in the case of a micromirror array, the position of the individual lenses can be altered in an undesirable manner. By subdividing the microelectromechanical components of a microelectromechanical device into spatially smaller MEMS modules consisting of a second material and applying them to a carrier substrate consisting of a first material, the thermal stresses caused by the use of different materials can be significantly reduced compared to corresponding microelectromechanical devices of the prior art.

為了藉由微機電組件獲得可用區域的特別高的覆蓋性,若多個MEMS模組具有實質上矩形、較佳正方形的基底表面並且佈置在矩形、較佳正方形的網格中,則是有利的。替代地,若MEMS模組具有實質上六邊形的基底表面並且佈置成六邊形網格,則亦是有利的。實質上矩形或六邊形的基底表面在本文中意指與嚴格的矩形或各別六邊形的基底表面之輕微偏差是可以想到的,例如由於圓角及/或凹入或凸出或其他不規則性。在此情況下,若每個MEMS模組與其相鄰的MEMS模組僅相距最小可能距離,則是特別有利的。舉例來說,多個MEMS模組中的每一者可以與至少一個相鄰MEMS模組,且較佳為與所有相鄰MEMS模組相距≤50 μm、較佳為≤10 μm、尤佳為≤5 μm的距離。在此情況下,一個相鄰於佈置在網格中之MEMS模組的MEMS模組,此MEMS模組同樣是佈置在網格中且直接相鄰於MEMS模組,就此意義下,網格中沒有另外MEMS模組位於MEMS模組和相鄰MEMS模組之間。在MEMS模組佈置於矩形網格中的情況下,位於彼此相對的對角線的MEMS模組亦應被理解為彼此相鄰的MEMS模組。MEMS模組的基底表面通常由MEMS模組的載體基板來界定。In order to achieve a particularly high coverage of the available area by means of microelectromechanical components, it is advantageous if a plurality of MEMS modules have a substantially rectangular, preferably square, substrate surface and are arranged in a rectangular, preferably square grid. Alternatively, it is also advantageous if the MEMS modules have a substantially hexagonal substrate surface and are arranged in a hexagonal grid. A substantially rectangular or hexagonal substrate surface means in this context that slight deviations from a strictly rectangular or respectively hexagonal substrate surface are conceivable, for example due to rounded corners and/or concavities or convexities or other irregularities. In this case, it is particularly advantageous if each MEMS module is only at the minimum possible distance from its neighboring MEMS modules. For example, each of the plurality of MEMS modules may be at a distance of ≤50 μm, preferably ≤10 μm, and even more preferably ≤5 μm from at least one adjacent MEMS module, and preferably from all adjacent MEMS modules. In this case, a MEMS module adjacent to a MEMS module arranged in a grid is also arranged in the grid and directly adjacent to the MEMS module, in the sense that no other MEMS module is located between the MEMS module and the adjacent MEMS module in the grid. In the case where the MEMS modules are arranged in a rectangular grid, MEMS modules located on diagonals opposite to each other should also be understood as MEMS modules adjacent to each other. The base surface of the MEMS module is typically defined by the carrier substrate of the MEMS module.

因此,若多個MEMS模組中的每一者中的多個微機電組件中的每一者具有實質上矩形、較佳為正方形的基底表面或實質上六邊形的基底表面,則同樣是特別有利的。實質上矩形或六邊形的基底表面意指與矩形或各個六邊形基底表面的輕微偏差是可想到的,例如由於在基底表面的拐角及/或邊緣處的凹入及/或凸出,諸如基底表面的圓角及/或倒角。It is therefore also particularly advantageous if each of the plurality of microelectromechanical components in each of the plurality of MEMS modules has a substantially rectangular, preferably square, base surface or a substantially hexagonal base surface. A substantially rectangular or hexagonal base surface means that slight deviations from a rectangular or respectively hexagonal base surface are conceivable, for example due to indentations and/or protrusions at the corners and/or edges of the base surface, such as rounding and/or chamfering of the base surface.

為了能夠在製造過程中藉由適當的裝置(處理裝置)將MEMS模組置放(即抓握、移動及/或定位)在基板表面上,MEMS模組必須能夠在不被損壞情況下被抓握,且尤其是諸如反射表面的特別敏感區域不被觸摸。為此目的,MEMS模組可以各自包含未被MEMS模組的多個微機電組件覆蓋的至少一個、例如兩個、較佳至少三個、尤佳四個或更多個處理區域。在此情況下,處理區域是適合被處理裝置使用的MEMS模組之區域,以便能夠抓握、移動及/或定位MEMS模組,而不會在過程中損壞MEMS模組。作為處理區域的替代或補充,MEMS模組可設置有框架,適合的處理裝置(例如藉由減壓)可在該框架處抓握並隨後移動及/或定位MEMS模組。MEMS模組還可另外設置有框架,該框架至少部分地包圍MEMS模組且在與相對應的生成減壓處理裝置進行相互作用之框架區域中產生減壓期間被使用。此框架替代地或附加地還可用於避免或至少減少灰塵進入MEMS模組。舉例來說,此框架可在沒有處理區域的情況下包圍MEMS模組的微機電組件。此框架另外可製成比設計以用於實現MEMS模組能夠被抓握的框架更薄。In order to be able to place (i.e., grasp, move and/or position) the MEMS module on the substrate surface by means of a suitable device (handling device) during the manufacturing process, the MEMS module must be able to be grasped without being damaged, and in particular particularly sensitive areas such as reflective surfaces are not touched. For this purpose, the MEMS modules can each include at least one, for example two, preferably at least three, particularly preferably four or more handling areas that are not covered by the plurality of microelectromechanical components of the MEMS module. In this case, a handling area is an area of the MEMS module that is suitable for use by a handling device in order to be able to grasp, move and/or position the MEMS module without damaging the MEMS module in the process. As an alternative or in addition to the processing area, the MEMS module can be provided with a frame at which a suitable processing device (for example by decompression) can grasp and subsequently move and/or position the MEMS module. The MEMS module can also be provided with a frame, which at least partially surrounds the MEMS module and is used during the decompression generated in the frame area in interaction with the corresponding decompression generating processing device. This frame can alternatively or additionally also be used to avoid or at least reduce the entry of dust into the MEMS module. For example, this frame can surround the microelectromechanical components of the MEMS module without the processing area. This frame can also be made thinner than a frame designed to enable the MEMS module to be grasped.

MEMS模組的至少一個處理區域中的每一者可例如由MEMS模組的多個微機電組件其中一者的倒角的或槽狀的(設有溝槽)橫向邊緣形成。在本發明的上下文中,溝槽應理解為意指沿著邊緣的切口。溝槽可具有任何期望的形狀,即例如可以是圓形或矩形。在本發明的上下文中,MEMS模組的橫向邊緣應理解為意指MEMS模組的垂直延伸邊緣。橫向邊緣對應於MEMS模組的基底表面的拐角。微機電組件的任何期望形狀(例如半圓形或矩形)的橫向切口(側表面的切口)亦可用作為處理區域,其中側表面中的這種切口較佳地置中佈置於側表面內。基於它們在MEMS模組內的已知位置,處理區域亦可用於將MEMS模組引入至相對於基板並且特別是亦相對於相鄰MEMS模組之限定位置。Each of the at least one processing area of the MEMS module can be formed, for example, by a chamfered or grooved (provided with grooves) lateral edge of one of the multiple microelectromechanical components of the MEMS module. In the context of the present invention, a groove is understood to mean a cut along an edge. The groove can have any desired shape, i.e., it can be circular or rectangular, for example. In the context of the present invention, a lateral edge of a MEMS module is understood to mean a vertically extending edge of the MEMS module. The lateral edge corresponds to the corner of the substrate surface of the MEMS module. A lateral cutout (cutout in the side surface) of any desired shape (e.g., semicircular or rectangular) of a microelectromechanical component can also be used as a processing area, wherein such a cutout in the side surface is preferably centrally arranged in the side surface. Based on their known position within the MEMS module, the processing areas can also be used to bring the MEMS module into a defined position relative to the substrate and in particular also relative to adjacent MEMS modules.

根據另一較佳實施例,微機電裝置包括用於減少多個MEMS模組之間的機械應力的多個可撓性元件,其中多個可撓性元件中的每一者是多個MEMS模組中的MEMS模組的一部分且是佈置在所述MEMS模組的側表面處及/或側表面中。這種可撓性元件是有利的,特別是若MEMS模組在製造過程期間定位成相對於彼此沒有距離或僅有很小的距離,以便實現由MEMS模組佔據載體基板的面積之最高可能比例,即高填充因子。若在製造過程的情境中或之後因所述MEMS模組之間的微小距離而在MEMS模組之間出現機械應力,則可撓性元件抵消機械應力。用於減少多個MEMS模組中的至少兩者之間的機械應力的可撓性元件因此對應於其回復力抵消機械應力的彈簧。機械應力尤其可以以使用材料的不同熱膨脹係數引起的熱應力的形式出現:若實質上構成載體基板的第一材料(通常是陶瓷,舉例而言,諸如氧化鋁陶瓷)具有比實質上構成MEMS模組的第二材料(通常是諸如矽的半導體材料)更大的熱膨脹係數,載體基板和MEMS模組兩者在冷卻期間收縮,舉例而言,發生在製造方法中例如像是接合的較高溫度步驟後。然而,由於第二材料的熱膨脹係數較低,MEMS模組比載體基板發生的收縮程度較小。因此,若兩個相鄰的MEMS模組被佈置成相對於彼此沒有距離或僅有很小的距離,則存在兩個相鄰的MEMS模組相互壓抵的風險。MEMS模組之間因而產生熱應力,且可能導致微機電裝置損壞。這種熱應力可藉由可撓性元件來抵消。整體來說,此因此使得同時確保機械穩定性和高填充因子成為可能。According to another preferred embodiment, the microelectromechanical device includes a plurality of flexible elements for reducing mechanical stresses between a plurality of MEMS modules, wherein each of the plurality of flexible elements is part of a MEMS module of the plurality of MEMS modules and is arranged at and/or in a side surface of the MEMS module. Such flexible elements are advantageous, in particular if the MEMS modules are positioned at no distance or only a small distance relative to each other during the manufacturing process, so as to achieve the highest possible proportion of the area of the carrier substrate occupied by the MEMS modules, i.e. a high fill factor. If mechanical stresses occur between the MEMS modules due to the small distances between the MEMS modules during or after the manufacturing process, the flexible elements counteract the mechanical stresses. The flexible element for reducing mechanical stresses between at least two of a plurality of MEMS modules thus corresponds to a spring whose restoring force counteracts the mechanical stresses. Mechanical stresses can occur in particular in the form of thermal stresses caused by different coefficients of thermal expansion of the materials used: if a first material (usually a ceramic, such as an alumina ceramic, for example) which substantially constitutes the carrier substrate has a greater coefficient of thermal expansion than a second material (usually a semiconductor material such as silicon) which substantially constitutes the MEMS module, both the carrier substrate and the MEMS module contract during cooling, for example after a high temperature step in the manufacturing method, such as bonding. However, due to the lower coefficient of thermal expansion of the second material, the MEMS module contracts less than the carrier substrate. Therefore, if two adjacent MEMS modules are arranged with no distance or only a small distance relative to each other, there is a risk that the two adjacent MEMS modules will press against each other. Thermal stresses thus arise between the MEMS modules and can lead to damage to the microelectromechanical device. Such thermal stresses can be counteracted by flexible elements. Overall, this therefore makes it possible to ensure mechanical stability and a high fill factor at the same time.

依以下之事實提供可撓性元件的一個特別有利的實施例,多個可撓性元件中的每一者佈置在MEMS模組的側表面中並且包括腹板,其中腹板是MEMS模組的側表面的一部分且由MEMS模組的凹部形成,以及較佳地具有外部突起以用於製造至相鄰MEMS模組的接觸點。特別是,此可撓性元件可藉由MEMS模組的底板中的凹部來實現。此可撓性元件可在製造過程期間藉由此底板的分層構造以簡單的方式實現。A particularly advantageous embodiment of a flexible element is provided by the fact that each of a plurality of flexible elements is arranged in a side surface of a MEMS module and comprises a web, wherein the web is part of the side surface of the MEMS module and is formed by a recess of the MEMS module and preferably has an external protrusion for making contact points to adjacent MEMS modules. In particular, this flexible element can be realized by means of a recess in a base plate of the MEMS module. This flexible element can be realized in a simple manner by means of a layered construction of this base plate during the manufacturing process.

較佳地,多個MEMS模組中的每一者具有一或多個可撓性元件,其中多個MEMS模組被佈置以使得多個MEMS模組中的每一者的一或多個可撓性元件在各種情況下佈置成鄰近多個MEMS模組中的其他MEMS模組。一個MEMS模組的可撓性元件被佈置為鄰近於另一個MEMS模組,若其他MEMS模組被佈置為鄰近於該MEMS模組的該可撓性元件且該可撓性元件朝向該相鄰的MEMS模組。Preferably, each of the plurality of MEMS modules has one or more flexible elements, wherein the plurality of MEMS modules are arranged so that the one or more flexible elements of each of the plurality of MEMS modules are arranged adjacent to other MEMS modules in the plurality of MEMS modules in various cases. A flexible element of a MEMS module is arranged adjacent to another MEMS module if the other MEMS module is arranged adjacent to the flexible element of the MEMS module and the flexible element faces the adjacent MEMS module.

依以下之事實提供本發明的一個尤佳的組配,多個MEMS模組中的第一MEMS模組包括具有多個可撓性元件中的至少一個第一可撓性元件的第一底板且多個MEMS模組中的第二MEMS模組包括具有多個可撓性元件中的至少一個第二可撓性元件的第二底板,其中第一MEMS模組和第二MEMS模組相對於彼此佈置使得至少一個第一可撓性元件被佈置為鄰近於第二底板且至少第二可撓性元件被佈置為鄰近於第一底板。在此情況下,一個MEMS模組的可撓性元件被佈置為鄰近於其他MEMS模組的底板,若另一個MEMS模組被佈置為鄰近於該MEMS模組的該可撓性元件,該可撓性元件朝向該鄰近的MEMS模組且該可撓性元件位於該另一個MEMS模組之底板的水平上。較佳地,第一可撓性元件和第二可撓性元件在此情況下相對於彼此偏移佈置。在此情況下,可以想到的是,可撓性元件相對於彼此水平地及/或相對於彼此垂直地偏移,即,不直接鏡像對稱地彼此相對地定位。較佳地,可撓性元件包括各個突起,當一個MEMS模組例如由於溫度變化而靠近相鄰的MEMS模組時,所述突起用於製造接觸點或接觸區域。可撓性元件經設定尺寸和設定位置以使得在此靠近的情況下,一個MEMS模組的可撓性元件的突起撞擊相鄰MEMS模組的靜態區域。在此情況下,靜態區域是MEMS模組的區域,較佳地為其底板的區域,其不是MEMS模組的可撓性元件的一部分。在不危及MEMS模組的微機電元件的結構完整性的情況下,這種可撓性元件組配和定位致使特別有效地抵消由於MEMS模組和載體基板的材料的不同膨脹係數而出現的熱應力成為可能。A particularly preferred arrangement of the present invention is provided based on the following fact, wherein a first MEMS module among a plurality of MEMS modules comprises a first base plate having at least one first flexible element among a plurality of flexible elements and a second MEMS module among a plurality of MEMS modules comprises a second base plate having at least one second flexible element among a plurality of flexible elements, wherein the first MEMS module and the second MEMS module are arranged relative to each other such that at least one first flexible element is arranged adjacent to the second base plate and at least the second flexible element is arranged adjacent to the first base plate. In this case, the flexible element of one MEMS module is arranged adjacent to the base plate of the other MEMS module, and if the other MEMS module is arranged adjacent to the flexible element of the MEMS module, the flexible element is oriented towards the adjacent MEMS module and the flexible element is located at the level of the base plate of the other MEMS module. Preferably, the first flexible element and the second flexible element are arranged offset relative to each other in this case. In this case, it is conceivable that the flexible elements are offset horizontally relative to each other and/or vertically relative to each other, i.e., are not positioned relative to each other in direct mirror symmetry. Preferably, the flexible element comprises individual protrusions, which serve to produce contact points or contact areas when one MEMS module approaches an adjacent MEMS module, for example due to temperature changes. The flexible element is dimensioned and positioned so that, in this approaching situation, a protrusion of the flexible element of one MEMS module strikes a static area of an adjacent MEMS module. In this case, the static area is an area of the MEMS module, preferably an area of its base plate, which is not part of the flexible element of the MEMS module. Such an arrangement and positioning of the flexible element makes it possible to particularly effectively compensate for thermal stresses arising due to different expansion coefficients of the materials of the MEMS module and the carrier substrate without endangering the structural integrity of the microelectromechanical components of the MEMS module.

根據本發明的第二態樣,提出一種用於微機電裝置的照明光學單元以將照明輻射導引至物場,該照明光學單元包括至少一個根據本發明的微機電裝置,其中多個微機電組件中的每一者包括具有反射表面的鏡元件和用於位移各個微機電組件的鏡元件之位移單元,其中一或多個ASIC被組配為用以控制位移單元。根據本發明的照明光學單元因此使用根據本發明的微機電裝置作為微鏡陣列。其還可特別包括多個這種根據本發明的微鏡陣列,例如為了藉由此多個微鏡陣列的佈置實現更大的整體微鏡陣列,這使得偏轉具有更大光束直徑的入射光束成為可能。According to a second aspect of the invention, an illumination optical unit for a micro-electromechanical device for directing illumination radiation to an object field is proposed, the illumination optical unit comprising at least one micro-electromechanical device according to the invention, wherein each of a plurality of micro-electromechanical components comprises a mirror element with a reflective surface and a displacement unit for displacing the mirror element of the respective micro-electromechanical component, wherein one or more ASICs are configured to control the displacement unit. The illumination optical unit according to the invention thus uses the micro-electromechanical device according to the invention as a micro-mirror array. It may also in particular comprise a plurality of such micro-mirror arrays according to the invention, for example in order to achieve a larger overall micro-mirror array by means of the arrangement of such a plurality of micro-mirror arrays, which makes it possible to deflect an incident light beam having a larger beam diameter.

根據第三態樣,亦提出一種用於投影曝光設備的照明系統,該照明系統包括根據本發明的照明光學單元和輻射源,特別是EUV輻射源。According to a third aspect, an illumination system for a projection exposure device is also proposed, which includes an illumination optical unit according to the present invention and a radiation source, in particular an EUV radiation source.

根據第四態樣,提出一種微影投影曝光設備,其包括根據本發明的照明光學單元和用於將佈置在物場中的倍縮光罩投影到像場中的投影光學單元。According to a fourth aspect, a lithography projection exposure device is proposed, which includes an illumination optical unit according to the present invention and a projection optical unit for projecting a magnification mask arranged in an object field into an image field.

根據本發明的照明光學單元、根據本發明的照明系統和根據本發明的投影曝光設備可以是EUV光刻設備的一部分。對於這些,到光罩(也稱為倍縮光罩)的可調式光路是有利的,其可藉由在光路中的微鏡陣列作為根據本發明的微機電裝置來實現。鏡元件的反射表面可設置布拉格塗層,該塗層對用於曝光的光中心波長提供特別好的反射。The illumination optical unit according to the invention, the illumination system according to the invention and the projection exposure apparatus according to the invention can be part of an EUV lithography apparatus. For these, an adjustable optical path to the mask (also called a doubling mask) is advantageous, which can be realized by an array of micromirrors in the optical path as a microelectromechanical device according to the invention. The reflective surface of the mirror element can be provided with a Bragg coating, which provides particularly good reflection for the central wavelength of the light used for exposure.

針對關於對應的投影曝光設備和相關聯的照明光學單元以及相關聯的照明系統的一般性設定的進一步細節,應當參考DE 10 2015 204 874 A1和DE 10 2016 213 026 A1,其在此完全併入本申請案中以作為本申請案的一部分。For further details about the general settings of the corresponding projection exposure apparatus and the associated illumination optical unit and the associated illumination system, reference should be made to DE 10 2015 204 874 A1 and DE 10 2016 213 026 A1, which are hereby fully incorporated into the present application as part of it.

根據本發明的第五態樣,提供一種用於製造微機電裝置的方法,較佳地根據本發明的第一態樣之微機電裝置,其包括載體基板和多個MEMS模組。每個MEMS模組包括較佳地剛好一個ASIC層,其具有一或多個ASIC(且還選擇性地具有諸如一或多個中介層的其他元件)以及ASIC層前側和ASIC層後側,底板,其具有底板前側和底板後側,以及多個微機電組件,其中底板佈置在ASIC層前側上,並且底板後側連接至ASIC層前側。MEMS模組的ASIC層可組配為連續的ASIC層或非連續的ASIC層。根據本發明的方法涉及提供具有用於微機電組件以及多個MEMS模組的底板之結構的MEMS基板。所提供的MEMS基板因而包括用於微機電組件和用於多個MEMS模組的底板之結構。這種基板通常以晶圓(MEMS晶圓)的形式存在並且可藉由例如DE10 2015 206 996 A1中描述的方法來製造;此同樣涉及提供具有用於微機電裝置的ASIC層之結構的ASIC基板,同樣通常為晶圓(ASIC晶圓)的形式。藉由特別是內聚連接(舉例而言,焊接、例如使用銀燒結膏之燒結、或共晶接合)的連接(在晶圓的情況下:晶圓接合)來從這兩個基板製造通常為耦合晶圓形式的耦合基板,其中對於多個MEMS模組中的每一者,在介於MEMS基板和ASIC基板之間形成多個指配的電性接觸點。然後,沿著預先定義的分隔線,例如沿著晶格結構,對此耦合基板進行分割以為了獲得多個MEMS模組。此外,提供載體基板,若適合的話,於其上可能已安裝有另外電子組件。多個MEMS模組置放在載體基板的基板表面上。此接著將多個MEMS模組的ASIC層後側聚合地連接(舉例而言,藉由焊接或例如使用銀燒結膏之燒結)至基板表面。此方法較佳地實現來用於製造微機電裝置,該微機電裝置的MEMS模組包括用於將MEMS模組置放在載體基板的基板表面上的處理區域。這使得MEMS模組能夠簡單地置放在基板表面上,而無需限制填充因子。同樣較佳的是,在耦合基板之製造程序前,測試MEMS基板的微機電結構及/或測試ASIC基板的ASIC結構以便確保功能性。較佳地,為了確保功能性,還可能在製造耦合基板之後執行MEMS模組的測試及/或將多個MEMS模組的ASIC層後側聚合連接至基板表面之後對整個完成的微機電裝置執行測試。According to a fifth aspect of the present invention, a method for manufacturing a microelectromechanical device is provided, preferably a microelectromechanical device according to the first aspect of the present invention, which includes a carrier substrate and a plurality of MEMS modules. Each MEMS module includes preferably exactly one ASIC layer, which has one or more ASICs (and optionally also other components such as one or more interposers) and an ASIC layer front side and an ASIC layer back side, a base plate, which has a base plate front side and a base plate back side, and a plurality of microelectromechanical components, wherein the base plate is arranged on the ASIC layer front side and the base plate back side is connected to the ASIC layer front side. The ASIC layer of the MEMS module can be configured as a continuous ASIC layer or a discontinuous ASIC layer. The method according to the invention involves providing a MEMS substrate having a structure for a microelectromechanical component and a base plate for a plurality of MEMS modules. The provided MEMS substrate thus comprises a structure for a microelectromechanical component and a base plate for a plurality of MEMS modules. Such a substrate is usually in the form of a wafer (MEMS wafer) and can be manufactured by the method described, for example, in DE 10 2015 206 996 A1; this also involves providing an ASIC substrate having a structure for an ASIC layer of a microelectromechanical device, likewise usually in the form of a wafer (ASIC wafer). A coupling substrate, usually in the form of a coupling wafer, is manufactured from these two substrates by connection (in the case of wafers: wafer bonding), in particular by cohesive connections (for example soldering, sintering, for example using silver sintering paste, or eutectic bonding), wherein for each of the plurality of MEMS modules, a plurality of assigned electrical contacts are formed between the MEMS substrate and the ASIC substrate. This coupling substrate is then divided along predefined separation lines, for example along a lattice structure, in order to obtain a plurality of MEMS modules. Furthermore, a carrier substrate is provided, on which further electronic components may have been mounted, if appropriate. A plurality of MEMS modules are placed on the substrate surface of the carrier substrate. This is followed by polymerically connecting the ASIC layers of the plurality of MEMS modules to the substrate surface (e.g. by soldering or sintering, e.g. using a silver sintering paste) on their back sides. The method is preferably implemented for manufacturing a microelectromechanical device whose MEMS modules comprise processing areas for placing the MEMS modules on a substrate surface of a carrier substrate. This enables the MEMS modules to be simply placed on the substrate surface without limiting the fill factor. It is also preferred to test the microelectromechanical structures of the MEMS substrate and/or the ASIC structures of the ASIC substrate to ensure functionality before the manufacturing process of the coupling substrate. Preferably, to ensure functionality, it is also possible to perform testing of the MEMS module after manufacturing the coupling substrate and/or to perform testing of the entire completed micro-electromechanical device after back-side polymer bonding of the ASIC layers of multiple MEMS modules to the substrate surface.

本發明的優點Advantages of the present invention

本發明提供一種用於微機電裝置的方法,舉例而言,諸如微鏡陣列,其包括佈置在相同載體基板上的多個微機電組件,若載體基板的熱膨脹係數與微機電組件的熱膨脹係數不同。藉由根據本發明的方法,抵消因該差異而產生有害的熱應力。同時,藉由本發明的各種實施例,藉由微機電元件來確保高填充因子是可能的。The present invention provides a method for a microelectromechanical device, for example, a micromirror array, comprising a plurality of microelectromechanical components arranged on the same carrier substrate, if the thermal expansion coefficient of the carrier substrate is different from the thermal expansion coefficient of the microelectromechanical components. By means of the method according to the present invention, harmful thermal stresses due to the difference are counteracted. At the same time, by means of various embodiments of the present invention, it is possible to ensure a high fill factor by means of the microelectromechanical components.

藉由根據本發明將微機電組件細分為單獨的更小單元(MEMS模組),特別可減少在製造過程期間凍結的熱應力。同時,藉由使用介於微機電組件之間的處理區域和可撓性元件,儘管有此分隔,藉由MEMS模組且從而藉由微機電組件來達成高填充因子是可能的。因此,根據本發明的微機電裝置特別適合高精準度和高填充因子同時重要的應用,例如在諸如用於EUV微影的特定光學單元的情況下。By subdividing the microelectromechanical component into individual smaller units (MEMS modules) according to the invention, it is possible in particular to reduce thermal stresses that freeze during the manufacturing process. At the same time, by using processing areas and flexible elements between the microelectromechanical components, it is possible to achieve high fill factors with the MEMS modules and thus with the microelectromechanical components despite this separation. The microelectromechanical device according to the invention is therefore particularly suitable for applications in which high precision and high fill factors are simultaneously important, such as in the case of certain optical units for EUV lithography.

在本發明實施例的以下描述中,相同或相似的元件以相同的參考標號表示,並且省略在個別情況下對這些元件的重複描述。為了清楚起見,在大量相同或相似元件的情況下,若由圖式及/或圖式的描述內容揭示這些元件的相同或相似處,則僅單純示例性選擇這些元件來提供參考標號。圖式僅示意性地繪示本發明的標的事項。In the following description of the embodiments of the present invention, the same or similar elements are indicated by the same reference numerals, and repeated descriptions of these elements in individual cases are omitted. For the sake of clarity, in the case of a large number of identical or similar elements, if the same or similar aspects of these elements are revealed by the drawings and/or the description of the drawings, these elements are simply selected to provide reference numerals for exemplary purposes. The drawings only schematically illustrate the subject matter of the present invention.

圖1以側視圖示出微鏡陣列的根據本發明的示例性微機電裝置110的一部分的示意圖。在所示範例中,兩個MEMS模組120佈置在載體基板100的基板表面100a上,每個所述MEMS模組包括多個微機電組件130,圖1示出各種情況下的其中四者。在所示情況中,微機電組件130是微鏡。這些微鏡各包括鏡元件134,其進而具有用於反射光的反射表面136。這些鏡元件134可藉由位移單元132移動。ASIC用於控制位移單元,所述ASIC以晶粒的形式佈置在ASIC層140中的位移單元下方,且同樣是各個MEMS模組120的一部分。另外電子組件(例如同樣用於控制位移單元,例如以其他ASIC的形式)可被佈置(未示出)在例如載體基板100的後側100b上。FIG1 shows a schematic diagram of a portion of an exemplary microelectromechanical device 110 according to the present invention of a micromirror array in a side view. In the example shown, two MEMS modules 120 are arranged on a substrate surface 100a of a carrier substrate 100, each of which includes a plurality of microelectromechanical components 130, four of which are shown in various cases in FIG1. In the case shown, the microelectromechanical components 130 are micromirrors. These micromirrors each include a mirror element 134, which in turn has a reflective surface 136 for reflecting light. These mirror elements 134 can be moved by means of a displacement unit 132. An ASIC is used to control the displacement unit, which is arranged in the form of a die below the displacement unit in an ASIC layer 140 and is also part of each MEMS module 120. Further electronic components (eg also for controlling the displacement unit, eg in the form of other ASICs) may be arranged (not shown), for example, on the rear side 100 b of the carrier substrate 100 .

在MEMS模組120內,微機電組件130佈置在底板160的前側160a上。在此情況下,該底板前側160a連接到微機電組件130的後側130b。在所示範例中,兩個底板160是可見的,所示的各別四個微機電組件130位於各底板上。微機電組件130藉由電性接觸點144連接到各個ASIC層140的ASIC。ASIC層140的ASIC進而可藉由電性接觸點146連接到另外電子組件(未示出),舉例而言,另外電子組件可佈置在載體基板100上。此外,例如穿矽通孔(TSV)142可存在於ASIC層140中,且可用於例如在介於載體基板100上的這種另外電子組件和微機電組件130之間製造電連接。此通孔142可以是例如藉由可同樣是ASIC層140的一部分之中介層,或藉由ASIC的晶粒來實現。Within the MEMS module 120, the micro-electromechanical components 130 are arranged on the front side 160a of the base plate 160. In this case, the base plate front side 160a is connected to the back side 130b of the micro-electromechanical components 130. In the example shown, two base plates 160 are visible, with four respective micro-electromechanical components 130 shown being located on each base plate. The micro-electromechanical components 130 are connected to the ASICs of the respective ASIC layers 140 via electrical contacts 144. The ASICs of the ASIC layers 140 can in turn be connected to further electronic components (not shown) via electrical contacts 146, which can be arranged on the carrier substrate 100, for example. Furthermore, for example through-silicon vias (TSVs) 142 may be present in the ASIC layer 140 and may be used, for example, to make electrical connections between such further electronic components on the carrier substrate 100 and the micro-electromechanical component 130. Such vias 142 may be realized, for example, by an interposer, which may likewise be part of the ASIC layer 140, or by a die of the ASIC.

所示的MEMS模組120具有各別的可撓性元件150。在此情況下,左MEMS模組120a的可撓性元件150a佈置為鄰近右MEMS模組120b,即朝向後者定向。右MEMS模組120b的可撓性元件150b以背向第一MEMS模組120a的方式定向。在此情況下,可撓性元件150被實現為底板160的區域的一部分。更準確地,所示的可撓性元件150在各種情況下在MEMS模組120的底板160的側表面的一部分之上延伸;底板160的上部區域165不用於可撓性元件150。The MEMS modules 120 shown have respective flexible elements 150. In this case, the flexible element 150a of the left MEMS module 120a is arranged adjacent to the right MEMS module 120b, i.e. oriented towards the latter. The flexible element 150b of the right MEMS module 120b is oriented in such a way that it faces away from the first MEMS module 120a. In this case, the flexible element 150 is realized as part of the area of the base plate 160. More precisely, the flexible element 150 shown in each case extends over a part of the side surface of the base plate 160 of the MEMS module 120; the upper area 165 of the base plate 160 is not used for the flexible element 150.

此外,在各種情況下,在圖1中可見每個MEMS模組120的兩個處理區域180,其在各種情況下位於四個微機電組件130中的其中兩者之上。在所示的情況下,處理區域180是可例如藉由微機電組件130的槽狀橫向邊緣190來實現的區域。若使用適合的基於減壓的處理裝置,則可以是有利的若MEMS模組120藉由框架170至少部分地向外界定以便於簡化在有界區域內製造減壓。同時,此框架170可用來保護MEMS模組120以免於灰塵顆粒。為說明起見,這些不具有凹槽的邊緣190的走向以虛線方式繪示出。藉由這些處理區域180,MEMS模組120可被置放在載體基板100上,而不會有損壞MEMS模組120且特別是具有敏感反射表面136的微機電組件130的風險。Furthermore, in each case two processing areas 180 can be seen in FIG. 1 for each MEMS module 120, which are located in each case on two of the four micro-electromechanical components 130. In the case shown, the processing areas 180 are areas which can be realized, for example, by grooved transverse edges 190 of the micro-electromechanical components 130. If a suitable decompression-based processing device is used, it can be advantageous if the MEMS module 120 is at least partially delimited to the outside by means of a frame 170 in order to simplify the production of decompression in a bounded area. At the same time, this frame 170 can be used to protect the MEMS module 120 from dust particles. For illustration purposes, the direction of these edges 190 without grooves is shown in dashed lines. By means of these processed areas 180 , the MEMS module 120 can be placed on the carrier substrate 100 without the risk of damaging the MEMS module 120 and in particular the micro-electromechanical component 130 having the sensitive reflective surface 136 .

圖2A以平面圖示出根據本發明的第二示例性微機電裝置210的一部分的示意圖,其包括具有處理區域280a、280b、280c、280d的四個相互鄰近的MEMS模組220a、220b、220c、220d。在此情況下,四個MEMS模組220各自具有16個微機電組件230且具有四個處理區域280。這些處理區域280藉由MEMS模組220的槽狀橫向邊緣290來實現。在此情況下,橫向邊緣290對應於MEMS模組的基底表面的拐角,虛線闡明在處理區域的領域中方形基底表面的走向。圖2A中的微機電裝置210不展示任何可撓性區域,但後者是可以想到的。同樣可以想到的是,處理區域280具有與所示形狀不同的形狀,例如有角的形狀;此之範例,請參考圖2B。由於MEMS模組280在中心處相交,位於該處的四個處理區域280形成圓形切口。具有根據切口來設定形狀為圓柱形的操作器之處理裝置可藉由這樣的操作器以定義的方式相對於彼此佈置所有四個MEMS模組。處理裝置因此可被構造以使得在藉由處理裝置置放所述MEMS模組期間以適當地匹配鄰近MEMS模組的方式自動地佈置MEMS模組。此外,框架270(實線)可在各種情況下保護MEMS模組280以免於灰塵顆粒及/或在藉由對應之減壓生成的處理裝置來抓握MEMS模組時在減壓生成期間支撐它們。2A shows in plan view a schematic diagram of a portion of a second exemplary microelectromechanical device 210 according to the present invention, which comprises four mutually adjacent MEMS modules 220a, 220b, 220c, 220d with processing areas 280a, 280b, 280c, 280d. In this case, the four MEMS modules 220 each have 16 microelectromechanical components 230 and have four processing areas 280. These processing areas 280 are realized by groove-shaped transverse edges 290 of the MEMS modules 220. In this case, the transverse edges 290 correspond to the corners of the substrate surface of the MEMS module, and the dotted lines illustrate the direction of the square substrate surface in the area of the processing area. The microelectromechanical device 210 in FIG. 2A does not show any flexible areas, but the latter are conceivable. It is also conceivable that the processing area 280 has a shape different from the shape shown, such as an angular shape; for an example of this, please refer to FIG. 2B. Since the MEMS modules 280 intersect in the center, the four processing areas 280 located there form a circular cutout. A processing device with an operator that is set to a cylindrical shape according to the cutout can arrange all four MEMS modules relative to each other in a defined manner by means of such an operator. The processing device can therefore be constructed so that the MEMS modules are automatically arranged in a manner that appropriately matches adjacent MEMS modules during the placement of the MEMS modules by the processing device. Furthermore, the frame 270 (solid line) may in various cases protect the MEMS module 280 from dust particles and/or support them during decompression when the MEMS module is gripped by a corresponding decompression handling device.

圖2B是圖2A的修改且顯示基於四個另外的鄰近MEMS模組220e、220f、220g、220h來實現處理區域280的其他可能性。MEMS模組220e的處理區域280e被實現為橫向邊緣290的矩形切口(同樣地,凹槽在本發明意涵內)。對比之下,MEMS模組220f使用倒角式的橫向邊緣290。最後,鄰近的MEMS模組220g和220h在MEMS模組的側向表面使用居中置放的半圓形切口。如所示,在MEMS模組220g和220h的情況下,鄰接側向表面處的半圓形切口280g、280h彼此互補以形成圓形。因此,以類似於佈置在拐角中的處理區域280a、280b、280c、280d、280e、280f的情況之方式,側向處理區域280g、280h使得適合的處理裝置以定義的方式相對於彼此來佈置MEMS模組220成為可能。以諸如矩形切口的其它形狀替代半圓形切口作為處理區域280g、280h也是可以想到的。FIG. 2B is a modification of FIG. 2A and shows other possibilities for realizing the processing area 280 based on four additional adjacent MEMS modules 220e, 220f, 220g, 220h. The processing area 280e of the MEMS module 220e is realized as a rectangular cutout (again, a groove is within the meaning of the invention) of the lateral edge 290. In contrast, the MEMS module 220f uses a chamfered lateral edge 290. Finally, the adjacent MEMS modules 220g and 220h use a centrally placed semicircular cutout on the lateral surface of the MEMS module. As shown, in the case of the MEMS modules 220g and 220h, the semicircular cutouts 280g, 280h at the adjacent lateral surfaces complement each other to form a circle. Thus, in a manner similar to the case of the processing areas 280a, 280b, 280c, 280d, 280e, 280f arranged in the corners, the lateral processing areas 280g, 280h make it possible for suitable processing devices to arrange the MEMS module 220 in a defined manner relative to each other. Other shapes such as rectangular cutouts are also conceivable as processing areas 280g, 280h instead of semicircular cutouts.

最後,圖3在上部子圖A中以平面圖顯示根據本發明的具有可撓性元件350的第三示例性微機電裝置310的一部分的示意圖,繪示兩個相鄰的MEMS模組320。此外,圖3在子圖B中以側視圖顯示來自子圖A的左側MEMS模組320a的部分320s的示意圖。為了更清楚起見,在子圖B中未示出MEMS模組320a的ASIC層和其表面上佈置有MEMS模組320a的載體基板。Finally, FIG3 shows in the upper sub-figure A a schematic diagram of a portion of a third exemplary micro-electromechanical device 310 according to the present invention with a flexible element 350 in a plan view, showing two adjacent MEMS modules 320. Furthermore, FIG3 shows in sub-figure B a schematic diagram of a portion 320s of a MEMS module 320a from the left side of sub-figure A in a side view. For greater clarity, the ASIC layer of the MEMS module 320a and the carrier substrate on whose surface the MEMS module 320a is arranged are not shown in sub-figure B.

在所示的微機電裝置310中,可撓性元件350藉由底板360中的凹部354來實現,並且由具有垂直延伸的外部突起352的腹板組成,該腹板是對應MEMS模組320之底板360的側表面的一部分。每個MEMS模組320由16個微機電組件330組成,在上部子圖A中下方的凹部354位置被標識為虛線以進行說明。如子圖B所示,可撓性元件350並不會延伸超過各個底板360的側表面的整個高度;而是,底板360的特定區域365的側表面不被可撓性元件350佔據,以使得所有微機電組件330能夠穩定地佈置在底板360的頂側360a上。在子圖B中,可撓性元件350的延伸區同樣以虛線356標識。為了確保可撓性元件350足夠的移動性,如圖所示,可撓性元件350可至少部分地與區域365(切口358)間隔開。In the illustrated MEMS device 310, the flexible element 350 is implemented by a recess 354 in a base plate 360 and is composed of a web having a vertically extending external protrusion 352, which is a portion of the side surface of the base plate 360 corresponding to the MEMS module 320. Each MEMS module 320 is composed of 16 MEMS components 330, and the position of the lower recess 354 in the upper sub-figure A is marked with a dotted line for illustration. As shown in sub-figure B, the flexible element 350 does not extend over the entire height of the side surface of each base plate 360; rather, a specific area 365 of the side surface of the base plate 360 is not occupied by the flexible element 350, so that all the micro-electromechanical components 330 can be stably arranged on the top side 360a of the base plate 360. In sub-figure B, the extension area of the flexible element 350 is also marked by a dotted line 356. In order to ensure sufficient mobility of the flexible element 350, as shown in the figure, the flexible element 350 can be at least partially separated from the area 365 (cutout 358).

所示左MEMS模組320a和相鄰的右MEMS模組320b的可撓性元件350佈置在兩個MEMS模組320的各別的底板360中,使得它們佈置成相對於彼此偏移。在此情況下,左MEMS模組320a的右側表面的可撓性元件和右MEMS模組320b的左側表面的可撓性元件被設定尺寸和設定位置以使得若左MEMS模組320a接近右MEMS模組320b,諸如可由於溫度變化而發生,舉例而言,左MEMS模組320a的右側表面的可撓性元件的突起352a撞擊右MEMS模組320b的靜態區域。反之,右MEMS模組320b的左側表面的可撓性元件的突起352b撞擊左MEMS模組320a的靜態區域。在此情況下,靜態區域被認為是指非可撓性元件部分之一部分的底板360。藉由可撓性元件352a、352b的所示佈置,抵消由於MEMS模組320a、320b和載體基板的不同材料引起的熱應力,而不危及微機電組件330。The flexible elements 350 of the left MEMS module 320a and the adjacent right MEMS module 320b are shown arranged in respective base plates 360 of the two MEMS modules 320 so that they are arranged offset relative to each other. In this case, the flexible element on the right surface of the left MEMS module 320a and the flexible element on the left surface of the right MEMS module 320b are sized and positioned so that if the left MEMS module 320a approaches the right MEMS module 320b, such as may occur due to temperature changes, for example, the protrusion 352a of the flexible element on the right surface of the left MEMS module 320a hits the static area of the right MEMS module 320b. Conversely, the protrusion 352b of the flexible element on the left side surface of the right MEMS module 320b hits the static area of the left MEMS module 320a. In this case, the static area is considered to refer to the base plate 360 that is a part of the non-flexible element part. By the shown arrangement of the flexible elements 352a, 352b, the thermal stress caused by the different materials of the MEMS modules 320a, 320b and the carrier substrate is offset without endangering the micro-electromechanical component 330.

最後,圖4示意性地顯示根據本發明的用於製造微機電裝置110、210、310之方法的流程圖,微機電裝置110、210、310包括載體基板100和多個MEMS模組120、220、320,其中每個MEMS模組120、220、320包括:ASIC層140,其包括具有ASIC層前側140a和ASIC層後側140b的一或多個ASIC;底板160、360,其具有底板前側160a、360a和底板後側160b,以及多個微機電組件130、230、330,其中底板160、360佈置在ASIC層前側140a上,且底板後側160b連接至ASIC層前側140a。這涉及提供(步驟)410具有用於微機電組件130、230、330和多個MEMS模組120、220、320的底板160、360之結構的MEMS基板。此同樣涉及提供(步驟)420具有用於多個MEMS模組120、220、320的ASIC層140之結構的ASIC基板。由此,藉由聚合連接來製造(步驟)耦合基板,例如焊接、燒結或共晶接合,其中介於MEMS基板和ASIC基板之間對於多個MEMS模組120、220、320中的每一者形成多個指配的電性接觸點144。隨後,沿著例如晶格結構之預先定義的分隔線分割(步驟)耦合基板,以獲得多個MEMS模組。此外,提供(步驟)載體基板100,若適合的話,在其上可安裝有另外電子組件及/或其他組件。將多個MEMS模組120、220、320置放(步驟)在載體基板100的基板表面100a上。最後,在步驟470中將多個MEMS模組120、220、320的ASIC層後側140b聚合連接至基板表面100a。Finally, FIG. 4 schematically shows a flow chart of a method for manufacturing a micro-electromechanical device 110, 210, 310 according to the present invention, wherein the micro-electromechanical device 110, 210, 310 comprises a carrier substrate 100 and a plurality of MEMS modules 120, 220, 320, wherein each MEMS module 120, 220, 320 comprises: an ASIC layer 140, which comprises a front surface of the ASIC layer; The method comprises providing 410 a MEMS substrate having a structure of the substrate 160, 360 for the micro-electromechanical components 130, 230, 330 and the plurality of MEMS modules 120, 220, 320, and a substrate 160, 360 having a substrate front side 160a, 360a and a substrate back side 160b, and a plurality of micro-electromechanical components 130, 230, 330, wherein the substrate 160, 360 is arranged on the ASIC layer front side 140a, and the substrate back side 160b is connected to the ASIC layer front side 140a. This involves providing (step) 410 a MEMS substrate having a structure of the substrate 160, 360 for the micro-electromechanical components 130, 230, 330 and the plurality of MEMS modules 120, 220, 320. This also involves providing (step) 420 an ASIC substrate having a structure of an ASIC layer 140 for a plurality of MEMS modules 120, 220, 320. Thereby, a coupling substrate is produced (step) by polymer connection, such as soldering, sintering or eutectic bonding, wherein a plurality of assigned electrical contact points 144 are formed for each of the plurality of MEMS modules 120, 220, 320 between the MEMS substrate and the ASIC substrate. Subsequently, the coupling substrate is divided (step) along predefined separation lines, such as a lattice structure, to obtain a plurality of MEMS modules. Furthermore, a carrier substrate 100 is provided (step), on which further electronic components and/or other components can be mounted, if appropriate. The plurality of MEMS modules 120, 220, 320 are placed (step) on the substrate surface 100a of the carrier substrate 100. Finally, in step 470, the ASIC layer rear sides 140b of the plurality of MEMS modules 120, 220, 320 are polymer-connected to the substrate surface 100a.

此方法較佳地實現來用於製造微機電裝置110、210、310,其MEMS模組120、220、320包括用於將MEMS模組120、220、320置放在載體基板100的基板表面100a上的處理區域180、280。此致使MEMS模組120、220、320可簡單地置放在基板表面100a上,而不必嚴格限制相對於MEMS模組120、220、320的填充因子。同樣較佳地,在製造耦合基板的程序之前測試(步驟)415 MEMS基板的微機電結構及/或測試(步驟)425 ASIC基板的ASIC結構以確保功能性。額外地或替代地,為了確保功能性,還可在製造耦合基板之後執行MEMS模組120、220、320的測試(步驟)445及/或將多個MEMS模組120、220、320的ASIC層後側140b聚合連接至基板表面100a之後測試(步驟)475整個完成的微機電裝置110、210、310。The method is preferably implemented for manufacturing a microelectromechanical device 110, 210, 310, whose MEMS module 120, 220, 320 includes a processing area 180, 280 for placing the MEMS module 120, 220, 320 on the substrate surface 100a of the carrier substrate 100. This allows the MEMS module 120, 220, 320 to be simply placed on the substrate surface 100a without strictly limiting the fill factor relative to the MEMS module 120, 220, 320. Also preferably, the microelectromechanical structure of the MEMS substrate is tested (step) 415 and/or the ASIC structure of the ASIC substrate is tested (step) 425 to ensure functionality before the process of manufacturing the coupled substrate. Additionally or alternatively, to ensure functionality, testing (step) 445 of the MEMS modules 120, 220, 320 may be performed after manufacturing the coupling substrate and/or the entire completed micro-electromechanical device 110, 210, 310 may be tested (step) 475 after the ASIC layer back side 140b of multiple MEMS modules 120, 220, 320 are polymer-connected to the substrate surface 100a.

本發明不限於本文所描述的示例性實施例及其中所強調的態樣。相反地,在申請專利範圍所載明的範圍內,本領域所屬技術人員的能力內的大量修改是可能的。The present invention is not limited to the exemplary embodiments described herein and the aspects emphasized therein. On the contrary, within the scope set forth in the patent application, a large number of modifications within the capabilities of those skilled in the art are possible.

100:載體基板 110,210,310:微機電裝置 100a:基板表面 100b:後側 120,220,220a,220b,220c,220d,220e,220f,220g,220h,280,320:MEMS模組 120a,320a:左MEMS模組,第一MEMS模組 120b,320b:右MEMS模組,第二MEMS模組 130,230:微機電組件 130b:組件後側 132:位移單元 134:鏡元件 136:反射表面 140:ASIC層 140a:ASIC層前側 140b:ASIC層後側 142:通孔 144,146:電性接觸點 150,150a,150b,250,350:可撓性元件 160,360:底板,第一底板 160a,360a:底板前側,前側 160b:底板後側 165:上部區域 170:框架 180,280,280a,280b,280c,280d,280e,280f:處理區域 190:槽狀橫向邊緣,邊緣 280g,280h:處理區域,半圓形切口,切口 290:槽狀橫向邊緣,橫向邊緣 320s:部分 350a:至少一個第一可撓性元件 350b:至少一個第二可撓性元件 352,352a,352b:突起 354:凹部 356:虛線 358:切口 360a:頂側 365:特定區域,區域 410,415,420,425,430,440,445,450,460,470,475:步驟 A,B:子圖 100: carrier substrate 110,210,310: micro-electromechanical device 100a: substrate surface 100b: rear side 120,220,220a,220b,220c,220d,220e,220f,220g,220h,280,320: MEMS module 120a,320a: left MEMS module, first MEMS module 120b,320b: right MEMS module, second MEMS module 130,230: micro-electromechanical component 130b: rear side of component 132: displacement unit 134: mirror element 136: reflective surface 140: ASIC layer 140a: front side of ASIC layer 140b: rear side of ASIC layer 142: through hole 144,146: electrical contact point 150,150a,150b,250,350: flexible element 160,360: bottom plate, first bottom plate 160a,360a: bottom plate front side, front side 160b: bottom plate rear side 165: upper area 170: frame 180,280,280a,280b,280c,280d,280e,280f: processing area 190: grooved transverse edge, edge 280g,280h: processing area, semicircular cutout, cutout 290: grooved transverse edge, transverse edge 320s: part 350a: at least one first flexible element 350b: at least one second flexible element 352,352a,352b: protrusion 354: recess 356: dashed line 358: cutout 360a: top side 365: specific area, area 410,415,420,425,430,440,445,450,460,470,475: steps A,B: sub-images

參考圖式和以下描述更詳細地解釋本發明的實施例。於圖中:The embodiments of the present invention are explained in more detail with reference to the drawings and the following description. In the drawings:

[圖1]以側視圖顯示根據本發明的示例性微機電裝置的一部分的示意圖;[FIG. 1] is a schematic diagram showing a portion of an exemplary micro-electromechanical device according to the present invention in a side view;

[圖2A]以平面圖顯示根據本發明的具有處理區域的第二示例性微機電裝置的一部分的示意圖;[FIG. 2A] A schematic diagram showing in plan view a portion of a second exemplary micro-electromechanical device having a processing area according to the present invention;

[圖2B]以平面圖顯示根據本發明的具有其他處理區域的第二示例性微機電裝置的變體的一部分的示意圖;[FIG. 2B] A schematic diagram showing in plan view a portion of a variation of a second exemplary micro-electromechanical device according to the present invention having other processing areas;

[圖3]以側視圖和平面圖顯示根據本發明的具有可撓性元件的第三示例性微機電裝置的一部分的示意圖;以及[FIG. 3] A schematic diagram showing a portion of a third exemplary micro-electromechanical device having a flexible element according to the present invention in side view and plan view; and

[圖4]示意性地顯示根據本發明之用於製造微機電裝置的方法的流程圖。[FIG. 4] A flow chart schematically showing a method for manufacturing a micro-electromechanical device according to the present invention.

100:載體基板 100: Carrier substrate

110:微機電裝置 110:Micro-electromechanical devices

100a:基板表面 100a: Substrate surface

100b:後側 100b: rear side

120:MEMS模組 120:MEMS module

120a:左MEMS模組,第一MEMS模組 120a: Left MEMS module, first MEMS module

120b:右MEMS模組,第二MEMS模組 120b: right MEMS module, second MEMS module

130:微機電組件 130:Micro-electromechanical components

130b:組件後側 130b: Rear side of assembly

132:位移單元 132: Displacement unit

134:鏡元件 134:Mirror element

136:反射表面 136:Reflective surface

140:ASIC層 140: ASIC layer

140a:ASIC層前側 140a: ASIC layer front side

140b:ASIC層後側 140b: Back side of ASIC layer

142:通孔 142:Through hole

144,146:電性接觸點 144,146: Electrical contact points

150,150a,150b:可撓性元件 150,150a,150b: Flexible element

160:底板,第一底板 160: Bottom plate, first bottom plate

160a:底板前側,前側 160a: Front side of the base plate, front side

160b:底板後側 160b: rear side of the base plate

165:上部區域 165: Upper area

170:框架 170:Framework

180:處理區域 180: Processing area

190:槽狀橫向邊緣,邊緣 190: grooved transverse edge, edge

Claims (15)

一種微機電裝置(110、210、310),包括具有基板表面(100a)的載體基板(100)和多個MEMS模組(120、220、320), 其中所述多個MEMS模組(120、220、320)中的每一者包括具有ASIC層前側(140a)和ASIC層後側(140b)的ASIC層(140),具有底板前側(160a、360a)和底板後側(160b)的底板(160、360),以及具有組件後側(130b)的多個微機電組件(130、230、330), 其中該底板(160、360)佈置在該ASIC層前側(140a)上,且該底板後側(160b)連接至該ASIC層前側(140a)以及所述多個微機電組件(130、230、330)佈置在該底板前側(160a、360a)上,並且它們的組件後側(130b)連接至該底板前側(160a、360a), 其中該ASIC層(140)具有用於控制所述多個微機電組件(130、230、330)的一或多個ASIC,其中所述一或多個ASIC藉由電性接觸點(144)連接至該微機電組件(130、230), 其中所述多個MEMS模組(120、220、320)佈置在該基板表面(100a)上,且所述多個MEMS模組(120、220、320)的該ASIC層後側(140b)連接至該基板表面(100a)。 A micro-electromechanical device (110, 210, 310) comprises a carrier substrate (100) having a substrate surface (100a) and a plurality of MEMS modules (120, 220, 320), wherein each of the plurality of MEMS modules (120, 220, 320) comprises an ASIC layer (140) having an ASIC layer front side (140a) and an ASIC layer rear side (140b), a base plate (160, 360) having a base plate front side (160a, 360a) and a base plate rear side (160b), and a plurality of micro-electromechanical components (130, 230, 330) having a component rear side (130b), wherein the base plate (160, 360) is arranged on the front side (140a) of the ASIC layer, and the back side (160b) of the base plate is connected to the front side (140a) of the ASIC layer, and the plurality of micro-electromechanical components (130, 230, 330) are arranged on the front side (160a, 360a) of the base plate, and their component back sides (130b) are connected to the front side (160a, 360a) of the base plate, wherein the ASIC layer (140) has one or more ASICs for controlling the plurality of micro-electromechanical components (130, 230, 330), wherein the one or more ASICs are connected to the micro-electromechanical components (130, 230) via electrical contacts (144), The multiple MEMS modules (120, 220, 320) are arranged on the substrate surface (100a), and the rear side (140b) of the ASIC layer of the multiple MEMS modules (120, 220, 320) is connected to the substrate surface (100a). 如請求項1所述之微機電裝置(110、210、310),其中所述多個微機電組件(130、230、330)中的每一者包括具有反射表面(136)的鏡元件(134),和用於位移各個微機電組件(130、230、330)之該鏡元件(134)的位移單元(132),其中所述一或多個ASIC被組配用於控制該位移單元(132)。A microelectromechanical device (110, 210, 310) as described in claim 1, wherein each of the plurality of microelectromechanical components (130, 230, 330) comprises a mirror element (134) having a reflective surface (136), and a displacement unit (132) for displacing the mirror element (134) of each microelectromechanical component (130, 230, 330), wherein the one or more ASICs are configured to control the displacement unit (132). 如請求項1或2所述之微機電裝置(110、210、310),其中該載體基板(100)實質上由第一材料組成,較佳地包括陶瓷,且所述多個MEMS模組(120、220、320)實質上由第二材料組成,較佳地包括Si,其中該第一材料具有第一熱膨脹係數α 1且該第二材料具有與該第一熱膨脹係數α 1不同的第二熱膨脹係數α 2,其中該第一熱膨脹係數α 1和該第二熱膨脹係數α 2較佳地具有相對於彼此的比率α 12≥1.5。 A microelectromechanical device (110, 210, 310) as described in claim 1 or 2, wherein the carrier substrate (100) is substantially composed of a first material, preferably ceramic, and the plurality of MEMS modules (120, 220, 320) are substantially composed of a second material, preferably Si, wherein the first material has a first thermal expansion coefficient α1 and the second material has a second thermal expansion coefficient α2 different from the first thermal expansion coefficient α1 , wherein the first thermal expansion coefficient α1 and the second thermal expansion coefficient α2 preferably have a ratio α1 / α2 ≥1.5 relative to each other. 如請求項1所述之微機電裝置(110、210、310),其中所述多個MEMS模組(120、220、320)具有實質上矩形、較佳為正方形的基底表面且佈置成矩形、較佳為正方形的網格或具有實質上六邊形的基底表面且佈置成六邊形網格, 其中較佳地,所述多個MEMS模組(120)中的每一者與至少一個相鄰MEMS模組(120),且尤佳為與所有相鄰MEMS模組(120)相距≤50 μm,較佳為≤10 μm,尤佳為≤10 μm的距離。 A microelectromechanical device (110, 210, 310) as described in claim 1, wherein the plurality of MEMS modules (120, 220, 320) have a substantially rectangular, preferably square, base surface and are arranged in a rectangular, preferably square grid or have a substantially hexagonal base surface and are arranged in a hexagonal grid, wherein preferably, each of the plurality of MEMS modules (120) is ≤50 μm, preferably ≤10 μm, and particularly ≤10 μm away from at least one adjacent MEMS module (120), and preferably from all adjacent MEMS modules (120). 如請求項4所述之微機電裝置(110、210、310),其中所述多個MEMS模組(120、220)中的每一者中的所述多個微機電組件(30、230)中的每一者具有實質上矩形、較佳為正方形的基底表面或實質上六邊形的基底表面。A micro-electromechanical device (110, 210, 310) as described in claim 4, wherein each of the multiple micro-electromechanical components (30, 230) in each of the multiple MEMS modules (120, 220) has a substantially rectangular, preferably square, or substantially hexagonal base surface. 如請求項5所述之微機電裝置(110、210、310),其中所述MEMS模組(120、220、320)各包括至少一個、較佳至少三個、尤佳為四或更多個未被該MEMS模組(120、220、320)的所述多個微機電組件(130、230、330)覆蓋的處理區域(180),以用於將該MEMS模組(120、220、320)置放在該基板表面(100a)上。A microelectromechanical device (110, 210, 310) as described in claim 5, wherein the MEMS modules (120, 220, 320) each include at least one, preferably at least three, and particularly preferably four or more processing areas (180) not covered by the multiple microelectromechanical components (130, 230, 330) of the MEMS module (120, 220, 320), so as to place the MEMS module (120, 220, 320) on the substrate surface (100a). 如請求項6所述之微機電裝置(110、210、310),其中每個MEMS模組(120、220、320)的所述至少一個處理區域(180、280)中的每一者由該MEMS模組(120、220、320)的所述多個微機電組件(130、230、330)之其中一者的側表面的倒角式或槽狀橫向邊緣(190、290)或切口(280h、280g)所形成。A microelectromechanical device (110, 210, 310) as described in claim 6, wherein each of the at least one processing area (180, 280) of each MEMS module (120, 220, 320) is formed by a chamfered or grooved lateral edge (190, 290) or a cutout (280h, 280g) of a side surface of one of the multiple microelectromechanical components (130, 230, 330) of the MEMS module (120, 220, 320). 如請求項4所述之微機電裝置(110、210、310),其中該微機電裝置(110、210、310)包括多個可撓性元件(150、350),以用於減少介於所述多個MEMS模組(120、220、320)中的至少兩者之間的機械應力,其中所述多個可撓性元件(150、350)中的每一者是所述多個MEMS模組(120、220、320)中的一個MEMS模組(120、220、320)的一部分且佈置在該MEMS模組(120、220、320)的側表面處及/或側表面中。A microelectromechanical device (110, 210, 310) as described in claim 4, wherein the microelectromechanical device (110, 210, 310) includes a plurality of flexible elements (150, 350) for reducing mechanical stress between at least two of the plurality of MEMS modules (120, 220, 320), wherein each of the plurality of flexible elements (150, 350) is a part of one of the plurality of MEMS modules (120, 220, 320) and is arranged at and/or in a side surface of the MEMS module (120, 220, 320). 如請求項8所述之微機電裝置(110、210、310),其中所述多個可撓性元件(150、350)中的每一者佈置在MEMS模組(120、220、320)的側表面中且包括腹板,其中該腹板是該MEMS模組(120、220、320)的該側表面的一部分並且由該MEMS模組(120、220、320)的凹部(354)形成,較佳地是由該MEMS模組(120、220、320)的底板(160、360),且較佳地具有外部突起(352)。A microelectromechanical device (110, 210, 310) as described in claim 8, wherein each of the plurality of flexible elements (150, 350) is arranged in a side surface of a MEMS module (120, 220, 320) and includes a web, wherein the web is a portion of the side surface of the MEMS module (120, 220, 320) and is formed by a recess (354) of the MEMS module (120, 220, 320), preferably by a base plate (160, 360) of the MEMS module (120, 220, 320), and preferably has an external protrusion (352). 如請求項8或9所述之微機電裝置,其中所述多個MEMS模組(120、220、320)中的每一者具有一或多個的所述多個可撓性元件(150、350),其中所述多個MEMS模組(120、220、320)被佈置以使得所述多個MEMS模組(120、220、320)中的每一者的該一或多個可撓性元件(150、350)在各種情況下被佈置為鄰近所述多個MEMS模組(120、220、320)的其他MEMS模組(120、220、320)。A microelectromechanical device as described in claim 8 or 9, wherein each of the multiple MEMS modules (120, 220, 320) has one or more of the multiple flexible elements (150, 350), and wherein the multiple MEMS modules (120, 220, 320) are arranged so that the one or more flexible elements (150, 350) of each of the multiple MEMS modules (120, 220, 320) are arranged in various cases to be adjacent to other MEMS modules (120, 220, 320) of the multiple MEMS modules (120, 220, 320). 如請求項8所述之微機電裝置(110、210、310),其中所述多個MEMS模組(120、220、320)中的第一MEMS模組(120a、320a)包括具有所述多個可撓性元件(150、250)中的至少一個第一可撓性元件(350a)之第一底板(160、360)及所述多個MEMS模組(120、220、320)中的第二MEMS模組(120b、320b)包括具有所述多個可撓性元件(150、250)中的至少一個第二可撓性元件(350b)之第二底板(160、360),其中該第一MEMS模組(120a、320a)和該第二MEMS模組(120b、320b)相對於彼此佈置使得該至少一個第一可撓性元件(350a)鄰近該第二底板(160、360)佈置且該至少第二可撓性元件(350b)鄰近該第一底板(160、360)佈置且它們較佳地相對於彼此偏移佈置。A microelectromechanical device (110, 210, 310) as described in claim 8, wherein a first MEMS module (120a, 320a) of the plurality of MEMS modules (120, 220, 320) comprises a first base plate (160, 360) having at least one first flexible element (350a) of the plurality of flexible elements (150, 250) and a second MEMS module (120b, 320b) of the plurality of MEMS modules (120, 220, 320) comprises a first base plate (160, 360) having at least one first flexible element (350a) of the plurality of flexible elements (150, 250) The invention relates to a second base plate (160, 360) of at least one second flexible element (350b) in the element (150, 250), wherein the first MEMS module (120a, 320a) and the second MEMS module (120b, 320b) are arranged relative to each other so that the at least one first flexible element (350a) is arranged adjacent to the second base plate (160, 360) and the at least second flexible element (350b) is arranged adjacent to the first base plate (160, 360) and they are preferably arranged offset relative to each other. 一種用於投影曝光設備以將照明輻射導引至物場的照明光學單元,包括根據請求項2且較佳地根據請求項3至11中任一項所述的一或多個微機電裝置(110、210、310)。An illumination optical unit for a projection exposure apparatus for directing illumination radiation to an object field comprises one or more micro-electromechanical devices (110, 210, 310) according to claim 2 and preferably according to any one of claims 3 to 11. 一種用於投影曝光設備之照明系統,包括根據請求項12所述的照明光學單元和輻射源,特別是EUV輻射源。An illumination system for a projection exposure device, comprising an illumination optical unit according to claim 12 and a radiation source, in particular an EUV radiation source. 一種微影投影曝光設備,包括根據請求項12所述的照明光學單元及用於將佈置在物場中的倍縮光罩投影到像場中的投影光學單元。A lithography projection exposure device comprises an illumination optical unit according to claim 12 and a projection optical unit for projecting a magnification mask arranged in an object field into an image field. 一種用於製造較佳地根據請求項1至11中任一項所述之微機電裝置(110、210、310)的方法,包括載體基板(100)和多個MEMS模組(120、220、320),其中所述MEMS模組(120、220、320)中的每一者包括ASIC層(140),其包括具有ASIC層前側(140a)和ASIC層後側(140b)的一或多個ASIC,底板(160、360),其具有底板前側(160a、360a)和底板後側(160b),以及多個微機電組件(130、230、330),其中該底板(160、360)佈置在該ASIC層前側(140a)上且該底板後側(160b)連接至該ASIC層前側(140a),包括下列步驟: a.   提供(410)MEMS基板,其具有用於該微機電組件(130、230、330)和所述多個MEMS模組(120、220、320)的該底板(160、360)之結構; b.   提供(420)ASIC基板,其具有用於所述多個MEMS模組(120、220、320)的該ASIC層(140)之結構; c.   藉由將該MEMS基板連接至該ASIC基板來製造(430)耦合基板,其中對於所述多個MEMS模組(120、220、320)中的每一者形成介於該MEMS基板和該ASIC基板之間的多個指配的電性接觸點(144); d.   為了獲得所述多個MEMS模組(120、220、320),沿著預先定義的分隔線分割(440)該耦合基板; e.   提供(450)該載體基板(100); f.    將所述多個MEMS模組(120、220、320)置放(460)在該載體基板(100)的基板表面(100a)上;以及 g.   將所述多個MEMS模組(120、220、320)的該ASIC層後側(140b)聚合地連接(470)至該基板表面(100a)。 A method for manufacturing a microelectromechanical device (110, 210, 310) preferably according to any one of claims 1 to 11, comprising a carrier substrate (100) and a plurality of MEMS modules (120, 220, 320), wherein each of the MEMS modules (120, 220, 320) comprises an ASIC layer (140) having an ASIC layer front side (140a) and an ASIC layer back side ( 140b), a baseboard (160, 360) having a baseboard front side (160a, 360a) and a baseboard back side (160b), and a plurality of micro-electromechanical components (130, 230, 330), wherein the baseboard (160, 360) is arranged on the ASIC layer front side (140a) and the baseboard back side (160b) is connected to the ASIC layer front side (140a), comprising the following steps: a.   Providing (410) a MEMS substrate having a structure of the base plate (160, 360) for the microelectromechanical component (130, 230, 330) and the plurality of MEMS modules (120, 220, 320); b.   Providing (420) an ASIC substrate having a structure of the ASIC layer (140) for the plurality of MEMS modules (120, 220, 320); c.   Manufacturing (430) a coupling substrate by connecting the MEMS substrate to the ASIC substrate, wherein a plurality of assigned electrical contact points (144) are formed between the MEMS substrate and the ASIC substrate for each of the plurality of MEMS modules (120, 220, 320); d. To obtain the plurality of MEMS modules (120, 220, 320), the coupling substrate is divided (440) along a predefined dividing line; e.   Providing (450) the carrier substrate (100); f.   Placing (460) the plurality of MEMS modules (120, 220, 320) on the substrate surface (100a) of the carrier substrate (100); and g.   The rear sides (140b) of the ASIC layers of the plurality of MEMS modules (120, 220, 320) are connected (470) to the substrate surface (100a) in a polymeric manner.
TW112133881A 2022-09-09 2023-09-06 Microelectromechanical device TW202419385A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022209402.6 2022-09-09

Publications (1)

Publication Number Publication Date
TW202419385A true TW202419385A (en) 2024-05-16

Family

ID=

Similar Documents

Publication Publication Date Title
EP2689282B1 (en) Mirror array
TW536523B (en) Micro-electronic machined mechanical assembly
JP5355699B2 (en) Optical module for guiding a radiation beam
JP5605599B2 (en) Interconnection of micromechanical devices
US8582189B2 (en) Mirror device, mirror array, optical switch, mirror device manufacturing method, and mirror substrate manufacturing method
US20030122206A1 (en) Multi-chip module integrating MEMS mirror array with electronics
US20090122381A1 (en) Microactuator, optical device and exposure apparatus, and device manufacturing method
KR20180100168A (en) Method and apparatus for direct write maskless lithography
TWI467618B (en) Deflector array, charged particle beam drawing apparatus, device manufacturing method, and deflector array manufacturing method
KR102273545B1 (en) Optical component
US20090059344A1 (en) Micromirror device
US7203393B2 (en) MEMS micro mirrors driven by electrodes fabricated on another substrate
US9406644B2 (en) Chip separation process for photochemical component printing
KR20180099834A (en) Method and apparatus for direct write maskless lithography
TWI458058B (en) Chip package and method for forming the same
WO2024061732A1 (en) Apparatus for stress-reduced mounting of mems-based micromirrors
JP5374860B2 (en) Microactuator and manufacturing method thereof, microactuator array, microactuator device, optical device, display device, exposure apparatus, and device manufacturing method
TW202419385A (en) Microelectromechanical device
TW202421571A (en) Microelectromechanical device
TWI657315B (en) Space light modulation component module, light drawing device, exposure device, spatial light modulation component module manufacturing method and component manufacturing method
JP5935396B2 (en) MEMS element and method for manufacturing MEMS element
CN109991728B (en) MEMS chip structure
JP2009071663A (en) Movement mechanism and imaging apparatus
WO2019080633A1 (en) Micromirror structure and micromirror array chip
CN115728931A (en) Driving assembly and related equipment