TW202418263A - 顯示裝置、顯示模組及電子裝置 - Google Patents

顯示裝置、顯示模組及電子裝置 Download PDF

Info

Publication number
TW202418263A
TW202418263A TW113101698A TW113101698A TW202418263A TW 202418263 A TW202418263 A TW 202418263A TW 113101698 A TW113101698 A TW 113101698A TW 113101698 A TW113101698 A TW 113101698A TW 202418263 A TW202418263 A TW 202418263A
Authority
TW
Taiwan
Prior art keywords
light
transistor
pixel
layer
wiring
Prior art date
Application number
TW113101698A
Other languages
English (en)
Inventor
山崎舜平
瀬尾哲史
楠紘慈
高橋圭
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW202418263A publication Critical patent/TW202418263A/zh

Links

Images

Abstract

提供一種顯示品質高的顯示裝置。提供一種在不進行影像資料的轉換的情況下也能進行所希望的顯示的顯示裝置。本發明的一個實施方式的顯示裝置包括第一像素。第一像素包括第一發光元件、顏色轉換層及第一記憶體電路。第一發光元件呈現藍色光。顏色轉換層具有將第一發光元件所發射的光轉換為更長波長的光的功能。對第一像素供應第一影像信號及第一校正信號。第一記憶體電路具有保持第一校正信號的功能及對第一影像信號添加第一校正信號的功能。第一像素具有使用第一影像信號及第一校正信號顯示影像的功能。

Description

顯示裝置、顯示模組及電子裝置
本發明的一個實施方式係關於顯示裝置、顯示模組及電子裝置。
另外,本發明的一個實施方式不侷限於上述技術領域。作為本發明的一個實施方式的技術領域的例子,可以舉出半導體裝置、顯示裝置、發光裝置、蓄電裝置、記憶體裝置、電子裝置、照明設備、輸入裝置(例如,觸控感測器等)、輸入輸出裝置(例如,觸控面板等)、這些裝置的驅動方法或這些裝置的製造方法。
近年來,對顯示裝置有大型化的需求。例如,家用電視機的主流為螢幕尺寸超過對角線50英寸的電視機。螢幕尺寸越大,一次能夠顯示的資訊量越多,所以數位看板等有進一步大螢幕化的需求。
另外,對高解析度顯示裝置有需求。例如,對全高清(像素數1920×1080)顯示面板、4K(像素數3840×2160或4096×2160等)顯示面板、8K(像素數7680×4320或8192×4320等)顯示面板等像素數較多的顯示裝置的開發日益興盛。
利用電致發光(Electroluminescence,以下記為EL)現象的發光元件(也記為“EL元件”)具有容易實現薄型輕量化;能夠高速回應輸入信號;以及能夠使用直流低電壓電源等而驅動的特徵等,因此正在探討將其應用於顯示裝置。例如,專利文獻1公開了應用有機EL元件的具有撓性的發光裝置。
另外,正在研究作為EL元件的顏色轉換(波長轉換)材料使用量子點。量子點是其直徑為幾nm的半導體奈米晶,並包括1×10 3個至1×10 6個左右的原子。在量子點中封閉有電子、電洞及激子,因此導致離散的能量狀態,且能量移動依賴於量子點的尺寸。也就是說,即使是包括相同的物質的量子點也根據尺寸具有不同的發光波長,所以藉由改變所使用的量子點的尺寸,可以容易調整發光波長。
作為構成顯示裝置的電晶體的半導體材料主要使用矽,然而,近年來,還開發出將使用金屬氧化物的電晶體用於顯示裝置的像素的技術。專利文獻2及專利文獻3公開了將金屬氧化物用作電晶體的半導體材料的技術。 [專利文獻]
[專利文獻1]日本專利申請公開第2014-197522號公報 [專利文獻2]日本專利申請公開第2007-123861號公報 [專利文獻3]日本專利申請公開第2007-96055號公報
為了在顯示裝置正確地進行顯示,需要使影像資料對應於顯示裝置的解析度。例如,在顯示裝置的解析度為8K,影像資料是用於4K的資料時,除非將資料數量轉換為4倍,否則不能進行全屏顯示。與此相反,在顯示裝置的解析度為4K,影像資料是用於8K的資料時,需要將資料數量轉換為1/4。此外,藉由亮度調整提高影像品質的HDR(高動態範圍)顯示技術的導入得到了推進。資料數量的轉換或藉由HDR處理的影像資料的生成需要專用電路,因此功耗高。較佳為至少在不轉換原始影像資料的情況下也可以將影像資料輸入到顯示裝置的像素。
本發明的一個實施方式的目的之一是實現顯示裝置的大型化。本發明的一個實施方式的目的之一是提供一種顯示品質高的顯示裝置。本發明的一個實施方式的目的之一是提供一種可靠性高的顯示裝置。本發明的一個實施方式的目的之一是提供一種功耗低的顯示裝置。本發明的一個實施方式的目的之一是實現顯示裝置的薄型化或輕量化。
本發明的一個實施方式的目的之一是提供一種在不進行影像資料的轉換的情況下也可以進行正確的顯示的顯示裝置。另外,本發明的一個實施方式的目的之一是提供一種能夠進行HDR顯示的顯示裝置。本發明的一個實施方式的目的之一是提供一種能夠進行上轉換工作的顯示裝置。本發明的一個實施方式的目的之一是提供一種能夠提高顯示影像的亮度的顯示裝置。本發明的一個實施方式的目的之一是提供一種能夠重疊顯示兩個以上的影像的顯示裝置。另外,本發明的一個實施方式的目的之一是提供一種能夠將驅動電路的輸出電壓以上的電壓施加到像素的顯示裝置。
注意,上述目的的描述並不妨礙其他目的的存在。本發明的一個實施方式不一定需要實現所有上述目的。可以從說明書、圖式、申請專利範圍的記載中抽取上述目的以外的目的。
本發明的一個實施方式的顯示裝置包括第一像素。第一像素包括第一發光元件、顏色轉換層及第一記憶體電路。第一發光元件呈現藍色光。顏色轉換層具有將第一發光元件所發射的光轉換為更長波長的光的功能。對第一像素供應第一影像信號及第一校正信號。第一記憶體電路具有保持第一校正信號的功能及對第一影像信號添加第一校正信號的功能。第一像素具有使用第一影像信號及第一校正信號顯示影像的功能。
第一發光元件較佳為包括各自呈現藍色光的第一發光單元及第二發光單元的疊層。或者,第一發光元件較佳為包括各自呈現藍色光的第一發光單元、第二發光單元及第三發光單元的疊層。每個發光單元較佳為發射螢光。
顏色轉換層較佳為具有量子點。
第一像素較佳為還包括電晶體,電晶體在通道形成區域中包含金屬氧化物。
顯示裝置較佳為還包括第二像素。第二像素包括第二發光元件及第二記憶體電路。第二發光元件呈現藍色光。對第二像素供應第二影像信號及第二校正信號。第二記憶體電路具有保持第二校正信號的功能及對第二影像信號添加第二校正信號的功能。第二像素具有使用第二影像信號及第二校正信號顯示影像的功能。第一像素是呈現與第二像素不同顏色的像素。第二像素是呈現藍色光的像素。
第二發光元件較佳為包括各自呈現藍色光的第一發光單元及第二發光單元的疊層。或者,第二發光元件較佳為包括各自呈現藍色光的第一發光單元、第二發光單元及第三發光單元的疊層。
對第一像素較佳為還供應第三校正信號。此時,第一記憶體電路具有保持第三校正信號的功能及對第一影像信號添加第三校正信號的功能。第一像素具有使用第一影像信號、第一校正信號及第三校正信號顯示影像的功能。
本發明的一個實施方式的顯示裝置包括第一像素。第一像素包括第一發光元件、顏色轉換層及第一記憶體電路。第一發光元件呈現藍色光。第一發光元件包括呈現藍色光的第一發光單元、呈現藍色光的第二發光單元及呈現藍色光的第三發光單元的疊層。顏色轉換層具有將第一發光元件所發射的光轉換為更長波長的光的功能。對第一像素供應第一影像信號、第一校正信號及第二校正信號。第一記憶體電路具有保持第一校正信號的功能、對第一影像信號添加第一校正信號的功能及保持第二校正信號的功能及對第一影像信號添加第二校正信號的功能。第一像素使用第一影像信號、第一校正信號及第二校正信號顯示影像的功能。各發光單元較佳為發射螢光。
顯示裝置較佳為還包括第二像素。第二像素包括第二發光元件及第二記憶體電路。第二發光元件呈現藍色光。第一發光元件包括呈現藍色光的第一發光單元、呈現藍色光的第二發光單元及呈現藍色光的第三發光單元的疊層。對第二像素供應第二影像信號、第三校正信號及第四校正信號。第二記憶體電路具有保持第三校正信號的功能、對第二影像信號添加第三校正信號的功能、保持第四校正信號的功能及對第二影像信號添加第四校正信號的功能。第二像素具有使用第二影像信號、第三校正信號及第四校正信號顯示影像的功能。第一像素是呈現與第二像素不同顏色的像素,並且第二像素是呈現藍色光的像素。
本發明的一個實施方式是一種包括具有上述任何結構的顯示裝置的模組,該模組安裝有軟性印刷電路板(Flexible printed circuit,以下記為FPC)或TCP(Tape Carrier Package:捲帶式封裝)等連接器或者利用COG(Chip On Glass:晶粒玻璃接合)方式或COF(Chip On Film:薄膜覆晶封裝)方式等安裝有積體電路(IC)。
本發明的一個實施方式是一種包括上述模組、天線、電池、外殼、照相機、揚聲器、麥克風及操作按鈕中的至少一個的電子裝置。
根據本發明的一個實施方式,可以實現顯示裝置的大型化。根據本發明的一個實施方式,可以提供一種顯示品質高的顯示裝置。根據本發明的一個實施方式,可以提供一種可靠性高的顯示裝置。根據本發明的一個實施方式,可以提供一種功耗低的顯示裝置。根據本發明的一個實施方式,可以實現顯示裝置的薄型化或輕量化。
根據本發明的一個實施方式,可以提供一種在不進行影像資料的轉換的情況下也可以進行正確的顯示的顯示裝置。根據本發明的一個實施方式,可以提供一種能夠進行HDR顯示的顯示裝置。根據本發明的一個實施方式,可以提供一種能夠進行上轉換工作的顯示裝置。根據本發明的一個實施方式,可以提供一種能夠提高顯示影像的亮度的顯示裝置。根據本發明的一個實施方式,可以提供一種能夠重疊顯示兩個以上的影像的顯示裝置。根據本發明的一個實施方式,可以提供一種能夠將驅動電路的輸出電壓以上的電壓施加到像素的顯示裝置。
注意,上述效果的描述並不妨礙其他效果的存在。本發明的一個實施方式不一定需要具有所有上述效果。可以從說明書、圖式、申請專利範圍的描述中抽取上述效果外的效果。
參照圖式對實施方式進行詳細說明。注意,本發明不侷限於以下說明,而所屬技術領域的通常知識者可以很容易地理解一個事實就是其方式及詳細內容在不脫離本發明的精神及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在以下所示的實施方式所記載的內容中。
注意,在下面說明的發明結構中,在不同的圖式中共同使用相同的元件符號來顯示相同的部分或具有相同功能的部分,而省略反復說明。此外,當顯示具有相同功能的部分時有時使用相同的陰影線,而不特別添加元件符號。
另外,為了便於理解,有時圖式中示出的各構成的位置、大小及範圍等並不顯示其實際的位置、大小及範圍等。因此,所公開的發明不一定侷限於圖式所公開的位置、大小、範圍等。
另外,根據情況或狀態,可以互相調換“膜”和“層”。例如,可以將“導電層”變換為“導電膜”。此外,可以將“絕緣膜”變換為“絕緣層”。
實施方式1 在本實施方式中,對本發明的一個實施方式的顯示裝置參照圖1A至圖9B進行說明。
本發明的一個實施方式的顯示裝置包括第一像素及第二像素。第一像素包括第一發光元件、顏色轉換層及第一記憶體電路。第二像素包括第二發光元件及第二記憶體電路。
第二像素是呈現藍色光的像素。第二發光元件呈現藍色光。
第一像素是呈現與第二像素不同顏色的像素。例如,第一像素是呈現紅色光、綠色光或白色光的像素。第一發光元件呈現藍色光。顏色轉換層具有將第一發光元件所發射的光轉換為更長波長的光的功能。
每個像素所包括的發光元件都呈現藍色光,因此與製造呈現白色光的發光元件的情況相比,可以減少形成膜的層數或材料的種類,而能夠使製造裝置及製程簡化。另外,因為每個像素包括同一結構的發光元件,所以與分別形成多種發光元件的情況(分別形成呈現紅色光、綠色光及藍色光的發光元件等的情況)相比,不需要金屬遮罩的高對準精度以及抑制彎曲等。因此,容易將這種像素結構適用於大型的顯示裝置。
此外,在作為發光元件使用有機EL元件時,容易實現顯示裝置的薄型化及輕量化,所以是較佳的。尤其是,藉由使用層疊有多個發光單元的串聯結構的有機EL元件,可以實現發光元件的長壽命化,而能夠提供可靠性高的顯示裝置。例如,發光元件較佳為包括分別呈現藍色光的兩個或三個發光單元。
另外,作為顏色轉換層較佳為使用量子點(QD:Quantum dot)。量子點的發射光譜的峰寬窄,因此可以得到色純度高的發光。因此,能夠提高顯示裝置的顯示品質。
對第一像素供應第一影像信號及第一校正信號。第一記憶體電路具有保持第一校正信號的功能及對第一影像信號添加第一校正信號的功能。第一像素具有使用第一影像信號及第一校正信號顯示影像的功能。
對第二像素供應第二影像信號及第二校正信號。第二記憶體電路具有保持第二校正信號的功能及對第二影像信號添加第二校正信號的功能。第二像素具有使用第二影像信號及第二校正信號顯示影像的功能。
在本發明的一個實施方式的顯示裝置中,除了對應於影像資料的影像信號之外,還可以將對應於用來校正資料的信號(校正信號)供應給像素。由此,即使將沒有轉換的影像資料供應給像素,也可以進行所希望的顯示,因而能夠實現影像資料的轉換所需要的專用電路的縮減或低功耗化。藉由將校正信號供應給像素,例如可以進行HDR顯示、上轉換工作、顯示影像的亮度的提高。另外,藉由將校正信號設定為與影像信號不同的影像信號,可以重疊顯示兩個以上的影像。
注意,供應給一個像素的校正信號可以是一個或多個(例如,兩個)。
另外,在像素所包括的電晶體在通道形成區域中包含金屬氧化物時,關態電流極低且可以長時間保持校正信號,所以是較佳的。
[像素] 圖1A及圖1B示出本發明的一個實施方式的顯示裝置所包括的像素的方塊圖。
如圖1A所示那樣,本發明的一個實施方式的顯示裝置所包括的像素包括切換電晶體(Switching Tr)、驅動電晶體(Driving Tr)、發光元件(Light emitting element)及記憶體(Memory)。
記憶體被供應資料DATA_W。當像素除了被供應影像資料DATA以外還被供應資料DATA_W時,流過發光元件的電流增大,因此顯示裝置可以表現高亮度。
藉由將資料DATA_W供應給像素,在本發明的一個實施方式的顯示裝置中,例如,可以進行影像的上轉換、對顯示區域中的一部分或整體的影像進行校正的HDR顯示或者顯示影像的亮度提高等的影像校正。另外,可以重疊顯示多個影像或者將驅動電路的輸出電壓以上的電壓供應給像素。
注意,像素可以包括多個記憶體。由此,可以對像素供應影像資料DATA以外的多個資料。因此,可以進行上述影像校正處理或重疊顯示多個影像的處理等多個處理並可以以高精度進行該處理。
圖1B示出包括兩個記憶體的像素的一個例子。記憶體Memory_A被供應資料DATA_W1,記憶體Memory_B被供應資料DATA_W2。例如,可以使用一個記憶體進行影像資料DATA的影像校正,並且使用另一個記憶體在影像資料DATA上重疊其他影像。
對於像素電路的結構例子,將在實施方式2中進行詳細說明。
圖2A及圖2B示出本發明的一個實施方式的顯示裝置的像素的剖面圖。
圖2A所示的顯示裝置具有頂面發射(頂部發射)結構,圖2B所示的顯示裝置具有底面發射(底部發射)結構。
在圖2A及圖2B中,作為例子,舉出使用R(紅色)、G(綠色)及B(藍色)的三個顏色的像素呈現一個顏色的顯示裝置進行說明。明確而言,在圖2A及圖2B中示出呈現紅色光的像素1100R、呈現綠色光的像素1100G及呈現藍色光的像素1100B。注意,在本發明的一個實施方式的顯示裝置中,對顏色要素沒有限定,也可以使用RGB以外的顏色(例如,白色、黃色、青色(cyan)及洋紅色(magenta)等)。
在本說明書中,像素指的是例如能夠控制明亮度的一個單元。因此,作為一個例子,一個像素指的是一個色彩單元,並用該一個色彩單元來顯示明亮度。因此,在為由R(紅色)、G(綠色)和B(藍色)這些色彩單元構成的彩色顯示裝置的情況下,將影像的最小單位設置為由R的像素、G的像素、以及B的像素這三個像素構成的像素。此時,將RGB的每一個像素也可以成為子像素,可以將RGB的三個子像素總稱為像素。
像素1100R、1100G及1100B分別包括呈現藍色光的發光元件1105B。
像素1100R還包括顏色轉換層1104R。顏色轉換層1104R可以將藍色光轉換為紅色光。
在像素1100R中,從發光元件1105B發射的藍色光由顏色轉換層1104R轉換為紅色光,因此紅色光1106R被提取到外部。
像素1100G還包括顏色轉換層1104G。顏色轉換層1104G可以將藍色光轉換為綠色光。
在像素1100G中,從發光元件1105B發射的藍色光的波長由顏色轉換層1104G轉換為綠色光,因此綠色光1106G被提取到外部。
像素1100B沒有設置顏色轉換層,因此從發光元件1105B發射的藍色光1106B被提取到外部。
作為顏色轉換層,可以舉出螢光體及量子點等。
作為顏色轉換層較佳為使用量子點。藉由使用量子點,顏色轉換層能夠發射半寬度窄且顏色鮮明的光。另外,可以提高顯示裝置的顏色再現性。
顏色轉換層藉由液滴噴射法(例如,噴墨法)、塗佈法、壓印(imprint)法及各種印刷法(網版印刷法、膠印法)等形成。另外,也可以使用量子點薄膜等的顏色轉換膜。
作為構成量子點的材料,沒有特別的限制,例如可以舉出第14族元素、第15族元素、第16族元素、包含多個第14族元素的化合物、第4族至第14族的元素和第16族元素的化合物、第2族元素和第16族元素的化合物、第13族元素和第15族元素的化合物、第13族元素和第17族元素的化合物、第14族元素和第15族元素的化合物、第11族元素和第17族元素的化合物、氧化鐵類、氧化鈦類、硫系尖晶石(spinel chalcogenide)類、半導體簇等。
明確而言,可以舉出硒化鎘、硫化鎘、碲化鎘、硒化鋅、氧化鋅、硫化鋅、碲化鋅、硫化汞、硒化汞、碲化汞、砷化銦、磷化銦、砷化鎵、磷化鎵、氮化銦、氮化鎵、銻化銦、銻化鎵、磷化鋁、砷化鋁、銻化鋁、硒化鉛、碲化鉛、硫化鉛、硒化銦、碲化銦、硫化銦、硒化鎵、硫化砷、硒化砷、碲化砷、硫化銻、硒化銻、碲化銻、硫化鉍、硒化鉍、碲化鉍、矽、碳化矽、鍺、錫、硒、碲、硼、碳、磷、氮化硼、磷化硼、砷化硼、氮化鋁、硫化鋁、硫化鋇、硒化鋇、碲化鋇、硫化鈣、硒化鈣、碲化鈣、硫化鈹、硒化鈹、碲化鈹、硫化鎂、硒化鎂、硫化鍺、硒化鍺、碲化鍺、硫化錫、硒化錫、碲化錫、氧化鉛、氟化銅、氯化銅、溴化銅、碘化銅、氧化銅、硒化銅、氧化鎳、氧化鈷、硫化鈷、氧化鐵、硫化鐵、氧化錳、硫化鉬、氧化釩、氧化鎢、氧化鉭、氧化鈦、氧化鋯、氮化矽、氮化鍺、氧化鋁、鈦酸鋇、硒鋅鎘的化合物、銦砷磷的化合物、鎘硒硫的化合物、鎘硒碲的化合物、銦鎵砷的化合物、銦鎵硒的化合物、銦硒硫化合物、銅銦硫的化合物以及它們的組合等。此外,也可以使用以任意比率表示組成的所謂的合金型量子點。
作為量子點的結構,有核型、核殼(Core Shell)型、核多殼(Core Multishell)型等。另外,在量子點中,由於表面原子的比例高,因此反應性高而容易發生凝聚。因此,量子點的表面較佳為附著有保護劑或設置有保護基。藉由附著有保護劑或設置有保護基,可以防止凝聚而提高對溶劑的溶解性。此外,還可以藉由降低反應性來提高電穩定性。
量子點其尺寸越小能帶間隙越大,因此適當地調節其尺寸以獲得所希望的波長的光。隨著結晶尺寸變小,量子點的發光向藍色一側(亦即,向高能量一側)遷移,因此,藉由改變量子點的尺寸,可以在涵蓋紫外區域、可見光區域和紅外區域的光譜的波長區域中調節其發光波長。通常使用的量子點的尺寸(直徑)為例如0.5nm以上且20nm以下,較佳為1nm以上且10nm以下。量子點其尺寸分佈越小發射光譜越窄,因此可以獲得色純度高的發光。另外,對量子點的形狀沒有特別的限制,可以為球狀、棒狀、圓盤狀、其他的形狀。為棒狀量子點的量子點具有呈現有指向性的光的功能。
發光元件1105B包括第一電極1101、呈現藍色光的EL層1103B及第二電極1102。
第一電極1101和第二電極1102中的一個被用作陽極,另一個被用作陰極。在本實施方式中,第一電極1101被用作陽極,第二電極1102被用作陰極。
當對第一電極1101及第二電極1102之間施加高於發光元件的臨界電壓的電壓時,電洞從陽極(第一電極1101)一側注入到EL層1103B中,而電子從陰極(第二電極1102)一側注入到EL層1103B中。被注入的電子和電洞在EL層1103B中複合,由此,包含在EL層1103B中的發光物質發光。
注意,雖然在圖2A及圖2B中未圖示,然而發光元件1105B與控制發光的電晶體電連接。
EL層1103B至少包括呈現藍色光的發光物質的發光層。
作為發光物質沒有特別的限制,可以使用發射螢光的物質(螢光材料)、發射磷光的物質(磷光材料)、呈現熱活化延遲螢光的物質(熱活化延遲螢光(Thermally activated delayed fluorescence:TADF)材料)及無機化合物(量子點材料等)。
EL層1103B還包括電洞注入層、電洞傳輸層、電子傳輸層及電子注入層等的功能層。另外,在層疊有多個EL層的情況下,在EL層之間包括電荷產生層。作為EL層1103B可以使用低分子化合物或高分子化合物,還可以包含無機化合物。
EL層1103B可以包括多個發光單元。每個發光單元至少包括包含呈現藍色光的發光物質的發光層。每個發光單元還包括電洞注入層、電洞傳輸層、電子傳輸層、電子注入層等的功能層。在兩個發光單元之間夾有電荷產生層。
本發明的一個實施方式的顯示裝置不侷限於使用三個顏色的像素呈現一個顏色的結構。例如,顯示裝置可以採用使用R(紅色)、G(綠色)、B(藍色)及W(白色)的四個顏色的像素呈現一個顏色的結構。明確而言,圖3A示出呈現紅色光的像素1100R、呈現綠色光的像素1100G、呈現藍色光的像素1100B及呈現白色光的像素1100W。
如圖3A所示的呈現白色光的像素1100W包括呈現藍色光的發光元件1105B及顏色轉換層1104W。顏色轉換層1104W可以將藍色光轉換為白色光。
在像素1100W中,從發光元件1105B發射的藍色光由顏色轉換層1104W轉換為白色光,因此白色光1106W被提取到外部。
如圖3B及圖3C所示那樣,為了只增強藍色光,可以以具有反射性的電極(反射電極)為第一電極1101且以半透射-半反射電極為第二電極1102,並且採用光學微腔諧振器(微腔結構)結構。藉由採用微腔結構,可以使從EL層1103B中的發光層得到的光在兩個電極之間諧振,而可以增強透過第二電極1102發射的發光。
在圖3B及圖3C中,在第一電極1101和第二電極1102之間設置光學調整層1107。
圖3B示出對呈現各顏色的光的像素使用微腔結構的例子。圖3C示出僅對呈現藍色光的像素1100B使用微腔結構的例子。
作為光學調整層1107使用具有透光性的導電膜(透明導電膜),藉由控制該透明導電膜的膜厚度,可以進行光學調整。注意,光學調整層1107也可以被看作發光元件的電極。例如,可以將反射電極和光學調整層的疊層結構用於第一電極1101。
另外,也可以使用EL層1103B所包括的一個或多個功能層來調整第一電極1101與第二電極1102之間的光學距離。
明確而言,較佳為以如下方式進行調整:在從發光層得到的光的波長為λ時,第一電極1101與第二電極1102的電極間距離為mλ/2(注意,m為自然數)左右。
另外,為了將從發光層得到的所希望的光(波長:λ)放大,較佳為調整為如下:從第一電極1101到發光層中的能夠得到所希望的光的區域(發光區域)的光學距離及從第二電極1102到發光層中的能夠得到所希望的光的區域(發光區域)的光學距離都成為(2m’+1)λ/4(注意,m’為自然數)左右。注意,在此說明的“發光區域”是指發光層中的電洞與電子的再結合區域。
藉由進行上述光學調整,可以使能夠從發光層得到的特定的單色光(在本實施方式中,藍色光)的光譜變窄,由此獲得色純度高的發光。
另外,在上述情況下,嚴格來說,第一電極1101與第二電極1102間的光學距離可以說是從第一電極1101中的反射區域到第二電極1102中的反射區域的總厚度。但是,因為難以精準確定第一電極1101及第二電極1102中的反射區域的位置,所以假定即使將第一電極1101及第二電極1102中的任意位置設定為反射區域也都可以充分得到上述效果。另外,嚴格來說,第一電極1101與可以獲得所希望的光的發光層間的光學距離可以說是第一電極1101中的反射區域與可以獲得所希望的光的發光層中的發光區域間的光學距離。但是,因為難以精準確定第一電極1101中的反射區域及可以獲得所希望的光的發光層中的發光區域的位置,所以假定即使將第一電極1101中的任意位置設定為反射區域並將可以獲得所希望的光的發光層的任意位置設定為發光區域也都可以充分得到上述效果。
藉由採用微腔結構,可以增強藍色光的正面方向上的發光強度,由此可以實現低功耗化。
第一電極1101和第二電極1102中的一者或兩者為具有透光性的電極(透明電極、半透射-半反射電極等)。第一電極1101和第二電極1102中的另一方較佳為反射電極。透明電極的可見光的穿透率為40%以上。另外,半透射-半反射電極的可見光的反射率為20%以上且80%以下,較佳為40%以上且70%以下。反射電極的可見光的反射率為40%以上且100%以下,較佳為70%以上且100%以下。
[發光元件] 圖4A示出單結構的發光元件的具體實例。
圖4A所示的發光元件在第一電極1101和第二電極1102之間包括EL層1103B,在EL層1103B中,從第一電極1101一側依次層疊有電洞注入層1111、電洞傳輸層1112、發光層1113、電子傳輸層1114及電子注入層1115。EL層1103B呈現藍色光。
圖4B至圖4D示出串聯結構的發光元件的具體實例。圖4B至圖4D所示的發光元件在第一電極1101和第二電極1102之間包括多個發光單元。在兩個發光單元之間較佳為設置電荷產生層1109。每個發光單元呈現藍色光。注意,多個發光單元既可以具有相同的發光物質,又可以具有不同的發光物質。
例如,圖4B所示的EL層1103B在發光單元1123B(1)和發光單元1123B(2)之間包括電荷產生層1109。
電荷產生層1109具有如下功能:在對第一電極1101及第二電極1102施加電壓時,對發光單元1123B(1)及發光單元1123B(2)中的一個注入電子並對另一個注入電洞。因此,在圖4B中,當對第一電極1101以高於第二電極1102的電位的方式施加電壓時,從電荷產生層1109對發光單元1123B(1)注入電子且對發光單元1123B(2)注入電洞。
另外,從光提取效率的觀點來看,電荷產生層1109較佳為使可見光透過(明確地說,電荷產生層1109的可見光的穿透率為40%以上)。另外,即使電荷產生層1109的電導率比第一電極1101或第二電極1102低也能夠發揮功能。
圖4C所示的EL層1103B在第一發光單元1123B(1)和第二發光單元1123B(2)之間包括電荷產生層1109,並且在第二發光單元1123B(2)和第三EL層1103B(3)之間包括電荷產生層1109。另外,圖4D所示的發光元件具有n個EL層(n是2以上的自然數),並在各EL層之間設置有電荷產生層1109。
對在發光單元1123B(m)和發光單元1123B(m+1)之間設置的電荷產生層1109中的電子及電洞的行動進行說明。當對第一電極1101和第二電極1102之間施加高於發光元件的臨界電壓的電壓時,在電荷產生層1109中發生電洞及電子,電洞移動到設置在第二電極1102一側的發光單元1123B(m+1)並且電子移動到設置在第一電極1101一側的發光單元1123B(m)。注入到發光單元1123B(m+1)的電洞和從第二電極1102一側被注入的電子再結合,於是包含在發光單元1123B(m+1)中的發光物質發光。此外,注入到發光單元1123B(m)的電子和從第一電極1101一側被注入的電洞再結合,於是包含在發光單元1123B(m)中的發光物質發光。因此,產生在電荷產生層1109中的電洞和電子各自在不同的發光單元中發光。
注意,藉由使其彼此接觸地設置發光單元,在該發光單元之間形成有與電荷產生層相同的結構時,可以不夾著電荷產生層而以彼此接觸的方式設置發光單元。例如,當在發光單元的一個面上形成有電荷產生區域的情況下,可以以與該面接觸的方式設置發光單元。
與單結構的發光元件相比,串聯結構的發光元件的電流效率高,能以更少電流發射相同亮度的光。因此,發光元件的壽命長且能夠提高顯示裝置的可靠性。
對各發光單元的發光物質沒有特別的限制。為了提高可靠性,較佳為層疊有多個螢光發光的發光單元。另外,也可以層疊有一個以上的螢光發光的發光單元和一個以上的磷光發光的發光單元。
[顯示裝置] 使用圖5A至圖8對本發明的一個實施方式的顯示裝置的具體實例進行說明。
圖5A示出顯示裝置10A的俯視圖。圖5B示出沿著圖5A所示的點劃線A1-A2的剖面圖。
圖5A所示的顯示裝置10A包括顯示部71及驅動電路78。對顯示裝置10A連接有FPC74。
顯示裝置10A是頂面發射結構的顯示裝置。
如圖5B所示那樣,顯示裝置10A包括基板361、絕緣層367、電晶體301、303、佈線307、絕緣層314、發光元件110B、絕緣層104、保護層117、分隔壁107、顏色轉換層CCMR、顏色轉換層CCMG、黏合層318及基板371等。
發光元件110B呈現藍色光。發光元件110B包括像素電極111、EL層113及共用電極115。像素電極111與電晶體303的源極或汲極電連接。這些構件既可以直接連接,又可以藉由其他導電層彼此連接。EL層113及共用電極115在多個發光元件中連續地設置。
發光元件110B被保護層117覆蓋。
在呈現紅色光的像素中,發光元件110B隔著保護層117重疊於顏色轉換層CCMR。藉由將從發光元件110B發射的藍色光由顏色轉換層CCMR轉換為紅色光,紅色光106R被提取到外部。
在呈現綠色光的像素中,發光元件110B隔著保護層117重疊於顏色轉換層CCMG。藉由將從發光元件110B發射的藍色光由顏色轉換層CCMG轉換為綠色光,綠色光106G被提取到外部。
因為在呈現藍色光的像素沒有設置顏色轉換層,從發光元件110B發射的藍色光106B隔著保護層117被提取到外部。
例如,在形成分隔壁107之後藉由噴墨法可以形成顏色轉換層CCMR及CCMG。由此,可以容易在所希望的區域中形成顏色轉換層。
絕緣層104覆蓋像素電極111的端部。相鄰的兩個像素電極111由絕緣層104電絕緣。
保護層117設置在發光元件110B上並覆蓋共用電極115的端部,並且在共用電極115的端部的外側與絕緣層104及絕緣層313接觸。由此,可以抑制雜質侵入到電晶體及發光元件中。尤其是,作為保護層117及絕緣層313較佳為使用阻擋性高的無機膜(或無機絕緣膜)。而且,較佳為絕緣層104也使用阻擋性高的無機絕緣膜。在顯示裝置的端部及其附近,藉由接觸地層疊多個無機膜(或無機絕緣膜),雜質不容易從外部侵入,因此能夠抑制電晶體及發光元件的劣化。
基板361和基板371由黏合層318貼合。由基板361、基板371及黏合層318密封的空間121較佳為填充有氮或氬等惰性氣體或者樹脂。
基板361及基板371可以採用玻璃、石英、樹脂、金屬、合金、半導體等的材料。從發光元件取出光一側的基板371使用使該光透過的材料。作為基板361及基板371,較佳為使用具有撓性的基板。
作為黏合層,可以使用紫外線硬化型黏合劑等光硬化型黏合劑、反應硬化型黏合劑、熱固性黏合劑、厭氧黏合劑等各種硬化型黏合劑。此外,也可以使用黏合薄片等。
驅動電路78包括電晶體301。顯示部71包括電晶體303。
各電晶體包括閘極、閘極絕緣層311、半導體層、背閘極、源極及汲極。閘極(下側的閘極)與半導體層隔著閘極絕緣層311重疊。背閘極(上側的閘極)與半導體層隔著絕緣層312及絕緣層313重疊。兩個閘極較佳為電連接。
驅動電路78和顯示部71也可以具有互不相同的電晶體結構。驅動電路78和顯示部71也可以都包括多種電晶體。
藉由與發光元件110B的發光區域重疊地配置電晶體及佈線等,可以提高顯示部71的開口率。
較佳為對絕緣層312、絕緣層313和絕緣層314中的至少一個使用水或氫等雜質不容易擴散的材料。由此,可以有效地抑制來自外部的雜質擴散到電晶體中,從而可以提高顯示裝置的可靠性。絕緣層314被用作平坦化層。
絕緣層367具有基底膜的功能。絕緣層367較佳為採用水或氫等雜質不容易擴散的材料。
連接部306包括佈線307。佈線307可以使用與電晶體的源極及汲極相同的材料和相同的製程形成。佈線307與將來自外部的信號或電位傳達給驅動電路78的外部輸入端子電連接。在此,示出作為外部輸入端子設置FPC74的例子。FPC74和佈線307藉由連接器319電連接。
作為連接器319,可以使用各種異方性導電膜(ACF:Anisotropic Conductive Film)及異方性導電膏(ACP:Anisotropic Conductive Paste)等。
保護層117較佳為至少包括一個無機膜(或無機絕緣膜),更佳為包括一個以上的無機膜及一個以上的有機膜。例如,保護層117可以包括共用電極115上的第一無機膜、第一無機膜上的有機膜及有機膜上的第二無機膜。
無機膜(或無機絕緣膜)較佳為具有高防潮性,不易使水擴散和透過。再者,無機膜(或無機絕緣膜)較佳為不易使氫和氧中的一個或兩個擴散和透過。由此,可以將無機膜(或無機絕緣膜)用作障壁膜。而且,可以有效地抑制從外部擴散到發光元件的雜質,從而可以實現可靠性高的顯示裝置。
作為保護層117,可以使用氧化絕緣膜、氮化絕緣膜、氧氮化絕緣膜及氮氧化絕緣膜等。作為氧化絕緣膜,可以舉出氧化矽膜、氧化鋁膜、氧化鎵膜、氧化鍺膜、氧化釔膜、氧化鋯膜、氧化鑭膜、氧化釹膜、氧化鉿膜及氧化鉭膜等。作為氮化絕緣膜,可以舉出氮化矽膜及氮化鋁膜等。作為氧氮化絕緣膜,可以舉出氧氮化矽膜等。作為氮氧化絕緣膜,可以舉出氮氧化矽膜等。
在本說明書等中,氧氮化物是指在其組成中氧含量多於氮含量的材料,而氮氧化物是指在其組成中氮含量多於氧含量的材料。
特別是,氮化矽膜、氮氧化矽膜和氧化鋁膜的防潮性都高,所以適合用作保護層117。
此外,作為保護層117,可以使用包含ITO、Ga-Zn氧化物、Al-Zn氧化物或In-Ga-Zn氧化物等的無機膜。該無機膜較佳為具有高電阻,明確而言,該無機膜較佳為具有比共用電極115高的電阻。該無機膜還可以包含氮。
例如,用於共用電極115的使可見光透過的導電膜和用於保護層117的使可見光透過的無機膜也可以具有相同金屬元素。在該兩個膜具有相同金屬元素的情況下,可以提高共用電極115和保護層117的緊密性,並可以抑制膜剝離及從介面侵入的雜質。
另外,保護層117可以包括使用丙烯酸樹脂、環氧樹脂、聚醯亞胺樹脂、聚醯胺樹脂、聚醯亞胺醯胺樹脂、聚矽氧烷樹脂、苯并環丁烯類樹脂及酚醛樹脂等的有機絕緣膜。
保護層117在20℃下的固有電阻較佳為10 10Ωcm以上。
保護層117可以藉由化學氣相沉積(CVD:Chemical Vapor Deposition)法(電漿增強化學氣相沉積(PECVD:Plasma Enhanced Chemical Vapor Deposition)法等)、濺射法(DC濺射法、RF濺射法、離子束濺射法等)、原子層沉積(ALD:Atomic Layer Deposition)法等形成。
濺射法及ALD法可以實現低溫成膜。包括在發光元件中的EL層113的耐熱性低。因此,在製造發光元件之後形成的保護層117較佳為以比較低,典型為100℃以下的溫度形成,較佳為使用濺射法及ALD法。
作為保護層117,也可以層疊兩層以上的藉由不同沉積方法形成的絕緣膜。
注意,作為絕緣層104可以使用可用於保護層117的無機絕緣膜或有機絕緣膜。
在製造發光元件之前形成的絕緣層104可以以高溫形成。藉由將成膜時的基板溫度設定為高溫(例如,100℃以上且350℃以下),可以形成緻密且阻擋性高的膜。除了濺射法及ALD法以外,還較佳為使用CVD法形成絕緣層104。CVD法的沉積速度快,所以是較佳的。
基板361及基板371可以採用玻璃、石英、有機樹脂、金屬、合金、半導體等的材料。
分隔壁107可以具有遮光性。明確而言,分隔壁107遮斷來自相鄰的發光元件或顏色轉換層的光,而抑制相鄰的像素之間的混色。分隔壁107可以使用例如金屬材料或包含顏料或染料的樹脂材料等形成。注意,在分隔壁107具有遮光性的情況下,藉由將分隔壁107設置在驅動電路等的顯示部以外的區域中,可以抑制起因於導光等的漏光,所以是較佳的。
圖6示出顯示裝置10B的剖面圖,圖7示出顯示裝置10C的剖面圖,並且圖8示出顯示裝置10D的剖面圖。顯示裝置10B、10C、10D的俯視圖分別與圖5A所示的顯示裝置10A相同。圖6至圖8分別相當於圖5A所示的點劃線A1-A2之間的剖面圖。注意,有時省略與顯示裝置10A同樣的部分的說明。
圖6所示的顯示裝置10B是頂面發射結構的顯示裝置。
顯示裝置10B包括基板361、黏合層363、絕緣層365、電晶體301、303、佈線307、絕緣層314、發光元件110B、絕緣層104、保護層117、顏色轉換層CCMR、顏色轉換層CCMG、黏合層317及基板371等。
在圖5B所示的顯示裝置10A中,顏色轉換層CCMR及顏色轉換層CCMG設置在基板371上。明確而言,在圖5B中,發光元件110B和顏色轉換層CCMR或顏色轉換層CCMG隔著保護層117及空間121彼此重疊。另一方面,在圖6所示的顯示裝置10B中,顏色轉換層CCMR及顏色轉換層CCMG以接觸於保護層117上的方式設置。明確而言,在圖6中,發光元件110B、顏色轉換層CCMR或顏色轉換層CCMG隔著保護層117彼此重疊,顏色轉換層CCMR或顏色轉換層CCMG和基板371隔著黏合層317彼此重疊。
與顏色轉換層形成在基板371上的情況相比,在將顏色轉換層直接形成於保護層117上的情況下,容易與發光元件的發光區域的位置對準,所以是較佳的。與將顏色轉換層形成於保護層117上的情況相比,在將顏色轉換層形成於基板371上的情況下,形成方法及形成條件的選擇範圍廣,所以是較佳的。
基板361和基板371由黏合層317貼合。此外,基板361和絕緣層365由黏合層363貼合。
顯示裝置10B藉由將形成在形成用基板上的電晶體及發光元件等轉置到基板361上而形成。基板361及基板371各自較佳為具有撓性。由此,可以提高顯示裝置10B的撓性。
顯示裝置10B的與顯示裝置10A不同之點在於電晶體301及303的結構。
圖6所示的電晶體301及303包括背閘極、閘極絕緣層311、半導體層、閘極絕緣層、閘極、絕緣層315、源極及汲極。半導體層包括通道形成區域及一對低電阻區域。背閘極(下側的閘極)與通道形成區域隔著閘極絕緣層311重疊。閘極(上側的閘極)與通道形成區域隔著閘極絕緣層重疊。源極及汲極藉由形成在絕緣層315中的開口與低電阻區域電連接。
圖7所示的顯示裝置10C是底面發射結構的顯示裝置。
顯示裝置10C包括基板361、絕緣層367、電晶體301、303、佈線307、導電層355、絕緣層314、發光元件110B、絕緣層104、保護層117、顏色轉換層CCMG、黏合層317及基板371等。
在呈現綠色光的像素中,發光元件110B隔著絕緣層314重疊於顏色轉換層CCMG。藉由將從發光元件110B發射的藍色光由顏色轉換層CCMG轉換為綠色光,綠色光106G被提取到外部。
因為在呈現藍色光的像素沒有設置顏色轉換層,從發光元件110B發射的藍色光106B經過絕緣層314被提取到外部。
顏色轉換層CCMG可以以接觸於設在發光元件110B和基板361之間的多個絕緣層中的任一個的頂面的方式設置。在將顏色轉換層CCMG設置在絕緣層上的情況下,與貼合設置在其他基板的顏色轉換層CCMG的情況相比,容易與發光元件的發光區域的位置對準,所以是較佳的。
顯示裝置10C具有底面發射結構,因此電晶體303設置在不重疊於發光元件110B的發光區域的位置。電晶體303設置在不重疊於絕緣層104的位置。
連接部306包括佈線307及導電層355。佈線307可以使用與電晶體的源極及汲極相同的材料和相同的製程形成。導電層355可以使用與像素電極111相同的材料和相同的製程形成。佈線307與將來自外部的信號或電位傳達給驅動電路78的外部輸入端子電連接。在此,示出作為外部輸入端子設置FPC74的例子。FPC74和佈線307藉由導電層355及連接器319電連接。
圖8所示的顯示裝置10D是底面發射結構的顯示裝置。
顯示裝置10D包括基板361、黏合層363、絕緣層365、電晶體301、303、佈線307、導電層355、絕緣層314、發光元件110B、絕緣層104、保護層117、顏色轉換層CCMG、分隔壁107、黏合層317及基板371等。
顯示裝置10D藉由將形成在形成用基板上的電晶體及發光元件等轉置到基板361上而形成。顏色轉換層可以與電晶體及發光元件等同樣地形成在形成用基板上。此外,也可以在基板361上預先形成顏色轉換層,並將藉由剝離形成用基板而露出的面和顏色轉換層貼合。圖8所示的顯示裝置10D藉由使用黏合層363將因剝離而露出的絕緣層365和包括顏色轉換層CCMG及分隔壁107的基板361貼合在一起來形成。
在將顏色轉換層形成於基板361上的情況下,顏色轉換層不影響到電晶體或發光元件的佈局、結構、特性等,因此與將顏色轉換層形成於形成用基板上的情況相比,形成方法及形成條件的選擇範圍廣,所以是較佳的。
在呈現綠色光的像素中,發光元件110B隔著絕緣層314及黏合層363等重疊於顏色轉換層CCMG。藉由將從發光元件110B發射的藍色光由顏色轉換層CCMG轉換為綠色光,綠色光106G被提取到外部。
因為在呈現藍色光的像素沒有設置顏色轉換層,從發光元件110B發射的藍色光106B經過絕緣層314及黏合層363等被提取到外部。
[電晶體] 接著,對可用於顯示裝置的電晶體進行說明。
對顯示裝置所包括的電晶體結構沒有特別的限制。例如,可以採用平面型電晶體、交錯型電晶體或反交錯型電晶體。此外,電晶體都可以具有頂閘極結構或底閘極結構。或者,也可以在通道的上下設置有閘極電極。
作為顯示裝置所包括的電晶體,可以使用例如將金屬氧化物用於通道形成區域的電晶體。因此,可以實現關態電流極低的電晶體。
或者,作為顯示裝置所包括的電晶體,可以使用在通道形成區域中含有矽的電晶體。作為該電晶體可以舉出例如含有非晶矽的電晶體、含有結晶矽(典型為低溫多晶矽)的電晶體、以及含有單晶矽的電晶體等。
圖9A及圖9B示出電晶體的結構例子。各電晶體設置在絕緣層141和絕緣層208之間。絕緣層141較佳為被用作基底膜。絕緣層208較佳為被用作平坦化膜。
圖9A所示的電晶體220是在半導體層204中包含金屬氧化物的底閘極結構的電晶體。金屬氧化物可以被用作氧化物半導體。
作為電晶體的半導體,較佳為使用氧化物半導體。藉由使用其能帶間隙比矽寬且其載子密度比矽小的半導體材料,可以降低電晶體的關態電流,所以是較佳的。
電晶體220包括導電層201、絕緣層202、導電層203a、導電層203b及半導體層204。導電層201被用作閘極。絕緣層202被用作閘極絕緣層。半導體層204隔著絕緣層202與導電層201重疊。導電層203a和導電層203b都與半導體層204電連接。電晶體220較佳為被絕緣層211及絕緣層212覆蓋。作為絕緣層211及絕緣層212可以使用各種無機絕緣膜。特別是,作為絕緣層211,較佳為使用氧化物絕緣膜,而作為絕緣層212,較佳為使用氮化物絕緣膜。
圖9B所示的電晶體230是在半導體層中包含多晶矽的底閘極結構的電晶體。
電晶體230包括導電層201、絕緣層202、導電層203a、導電層203b、半導體層及絕緣層213。導電層201被用作閘極。絕緣層202被用作閘極絕緣層。半導體層包括通道形成區域214a及一對低電阻區域214b。半導體層也可以包括LDD(Lightly Doped Drain)區域。圖9B示出在通道形成區域214a和低電阻區域214b之間包括LDD區域214c的例子。通道形成區域214a隔著絕緣層202與導電層201重疊。導電層203a藉由設置於絕緣層202及絕緣層213的開口與一對低電阻區域214b中的一個電連接。同樣地,導電層203b與一對低電阻區域214b中的另一個電連接。作為絕緣層213,可以使用各種無機絕緣膜。特別是,作為絕緣層213,較佳為使用氮化物絕緣膜。
[金屬氧化物] 較佳為將被用作氧化物半導體的金屬氧化物用於半導體層。以下,將說明可用於半導體層的金屬氧化物。
金屬氧化物較佳為至少包含銦或鋅。尤其較佳為包含銦及鋅。另外,除此之外,較佳為還包含鋁、鎵、釔或錫等。或者,也可以包含硼、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢或鎂等中的一種或多種。
在此,考慮金屬氧化物是包含銦、元素M及鋅的In-M-Zn氧化物的情況。注意,元素M為鋁、鎵、釔或錫等。作為可用作元素M的其他元素,有硼、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢、鎂等。注意,作為元素M有時也可以組合多個上述元素。
在本說明書等中,有時將包含氮的金屬氧化物也稱為金屬氧化物(metal oxide)。此外,也可以將包含氮的金屬氧化物稱為金屬氧氮化物(metal oxynitride)。例如,可以將鋅氧氮化物(ZnON)等含有氮的金屬氧化物用於半導體層。
在本說明書等中,有時記載為CAAC(c-axis aligned crystal)或CAC(Cloud-Aligned Composite)。注意,CAAC是指結晶結構的一個例子,CAC是指功能或材料構成的一個例子。
例如,作為半導體層,可以使用CAC(Cloud-Aligned Composite)-OS。
CAC-OS或CAC-metal oxide在材料的一部分中具有導電性的功能,在材料的另一部分中具有絕緣性的功能,作為材料的整體具有半導體的功能。此外,在將CAC-OS或CAC-metal oxide用於電晶體的發光層的情況下,導電性的功能是使被用作載子的電子(或電洞)流過的功能,絕緣性的功能是不使被用作載子的電子流過的功能。藉由導電性的功能和絕緣性的功能的互補作用,可以使CAC-OS或CAC-metal oxide具有開關功能(控制開啟/關閉的功能)。藉由在CAC-OS或CAC-metal oxide中使各功能分離,可以最大限度地提高各功能。
此外,CAC-OS或CAC-metal oxide包括導電性區域及絕緣性區域。導電性區域具有上述導電性的功能,絕緣性區域具有上述絕緣性的功能。此外,在材料中,導電性區域和絕緣性區域有時以奈米粒子級分離。另外,導電性區域和絕緣性區域有時在材料中不均勻地分佈。此外,有時觀察到其邊緣模糊而以雲狀連接的導電性區域。
此外,在CAC-OS或CAC-metal oxide中,導電性區域和絕緣性區域有時以0.5nm以上且10nm以下,較佳為0.5nm以上且3nm以下的尺寸分散在材料中。
此外,CAC-OS或CAC-metal oxide由具有不同能帶間隙的成分構成。例如,CAC-OS或CAC-metal oxide由具有起因於絕緣性區域的寬隙的成分及具有起因於導電性區域的窄隙的成分構成。在該構成中,當使載子流過時,載子主要在具有窄隙的成分中流過。此外,具有窄隙的成分藉由與具有寬隙的成分的互補作用,與具有窄隙的成分聯動而使載子流過具有寬隙的成分。因此,在將上述CAC-OS或CAC-metal oxide用於電晶體的通道形成區域時,在電晶體的導通狀態中可以得到高電流驅動力,亦即大通態電流及高場效移動率。
就是說,也可以將CAC-OS或CAC-metal oxide稱為基質複合材料(matrix composite)或金屬基質複合材料(metal matrix composite)。
氧化物半導體(金屬氧化物)被分為單晶氧化物半導體和非單晶氧化物半導體。作為非單晶氧化物半導體例如有CAAC-OS(c-axis aligned crystalline oxide semiconductor)、多晶氧化物半導體、nc-OS(nanocrystalline oxide semiconductor)、a-like OS(amorphous-like oxide semiconductor)及非晶氧化物半導體等。
CAAC-OS具有c軸配向性,其多個奈米晶在a-b面方向上連結而結晶結構具有畸變。注意,畸變是指在多個奈米晶連結的區域中晶格排列一致的區域與其他晶格排列一致的區域之間的晶格排列的方向變化的部分。
雖然奈米晶基本上是六角形,但是並不侷限於正六角形,有不是正六角形的情況。此外,在畸變中有時具有五角形或七角形等晶格排列。另外,在CAAC-OS中,即使在畸變附近也觀察不到明確的晶界(grain boundary)。亦即,可知由於晶格排列畸變,可抑制晶界的形成。這是由於CAAC-OS因為a-b面方向上的氧原子排列的低密度或因金屬元素被取代而使原子間的鍵合距離產生變化等而能夠包容畸變。
CAAC-OS有具有層狀結晶結構(也稱為層狀結構)的傾向,在該層狀結晶結構中層疊有包含銦及氧的層(下面稱為In層)和包含元素M、鋅及氧的層(下面稱為(M,Zn)層)。另外,銦和元素M彼此可以取代,在用銦取代(M,Zn)層中的元素M的情況下,也可以將該層表示為(In,M,Zn)層。另外,在用元素M取代In層中的銦的情況下,也可以將該層表示為(In,M)層。
CAAC-OS是結晶性高的金屬氧化物。另一方面,在CAAC-OS中不容易觀察明確的晶界,因此不容易發生起因於晶界的電子移動率的下降。此外,金屬氧化物的結晶性有時因雜質的進入或缺陷的生成等而降低,因此可以說CAAC-OS是雜質或缺陷(氧空位(也稱為V O(oxygen vacancy))等)少的金屬氧化物。因此,包含CAAC-OS的金屬氧化物的物理性質穩定。因此,包含CAAC-OS的金屬氧化物具有高耐熱性及高可靠性。
在nc-OS中,微小的區域(例如1nm以上且10nm以下的區域,特別是1nm以上且3nm以下的區域)中的原子排列具有週期性。另外,nc-OS在不同的奈米晶之間觀察不到結晶定向的規律性。因此,在膜整體中觀察不到配向性。所以,有時nc-OS在某些分析方法中與a-like OS或非晶氧化物半導體沒有差別。
另外,在包含銦、鎵和鋅的金屬氧化物的一種的銦-鎵-鋅氧化物(以下,IGZO)有時在由上述奈米晶構成時具有穩定的結構。尤其是,IGZO有在大氣中不容易進行晶體生長的傾向,所以有時與在IGZO由大結晶(在此,幾mm的結晶或者幾cm的結晶)形成時相比在IGZO由小結晶(例如,上述奈米結晶)形成時在結構上穩定。
a-like OS是具有介於nc-OS與非晶氧化物半導體之間的結構的金屬氧化物。a-like OS包含空洞或低密度區域。也就是說,a-like OS的結晶性比nc-OS及CAAC-OS的結晶性低。
氧化物半導體(金屬氧化物)具有各種結構及各種特性。本發明的一個實施方式的氧化物半導體也可以包括非晶氧化物半導體、多晶氧化物半導體、a-like OS、nc-OS、CAAC-OS中的兩種以上。
用作半導體層的金屬氧化物膜可以使用惰性氣體和氧氣體中的任一個或兩個形成。注意,對形成金屬氧化物膜時的氧流量比(氧分壓)沒有特別的限制。但是,在要獲得場效移動率高的電晶體的情況下,形成金屬氧化物膜時的氧流量比(氧分壓)較佳為0%以上且30%以下,更佳為5%以上且30%以下,進一步較佳為7%以上且15%以下。
金屬氧化物的能隙較佳為2eV以上,更佳為2.5eV以上,進一步較佳為3eV以上。如此,藉由使用能隙寬的金屬氧化物,可以減少電晶體的關態電流。
金屬氧化物膜可以藉由濺射法形成。除此之外,還可以利用PLD法、PECVD法、熱CVD法、ALD法、真空蒸鍍法等。
作為可用於構成顯示裝置的各種導電層的材料,可以舉出鋁、鈦、鉻、鎳、銅、釔、鋯、鉬、銀、鉭或鎢等金屬或者以上述金屬為主要成分的合金等。另外,可以以單層或疊層結構使用包含這些材料的膜。例如,可以舉出包含矽的鋁膜的單層結構、在鈦膜上層疊鋁膜的兩層結構、在鎢膜上層疊鋁膜的兩層結構、在銅-鎂-鋁合金膜上層疊銅膜的兩層結構、在鈦膜上層疊銅膜的兩層結構、在鎢膜上層疊銅膜的兩層結構、依次層疊鈦膜或氮化鈦膜、鋁膜或銅膜以及鈦膜或氮化鈦膜的三層結構、以及依次層疊鉬膜或氮化鉬膜、鋁膜或銅膜以及鉬膜或氮化鉬膜的三層結構等。另外,可以使用氧化銦、氧化錫或氧化鋅等氧化物。另外,藉由使用包含錳的銅,可以提高蝕刻時的形狀的控制性,所以是較佳的。
作為可用於構成顯示裝置的各絕緣層的絕緣材料,例如可以舉出如丙烯酸樹脂、聚醯亞胺、環氧及矽酮等樹脂、如氧化矽、氧氮化矽、氮氧化矽、氮化矽或氧化鋁等無機絕緣材料。
如上所述那樣,在本實施方式的顯示裝置中,藉由組合藍色的發光元件和顏色轉換層,可以進行全彩色顯示。此外,可以減少構成發光元件的層數,而能夠使製造裝置及製程簡化。另外,在本實施方式的顯示裝置中,除了對應於影像資料的影像信號之外,還可以將對應於用來校正資料的信號(校正信號)供應給像素。因此,在不進行影像資料的轉換的情況下也可以進行所希望的顯示。
本實施方式可以與其他實施方式適當地組合。此外,在本說明書中,在一個實施方式中示出多個結構例子的情況下,可以適當地組合這些結構例子。
實施方式2 在本實施方式中,參照圖10A至圖16B對本發明的一個實施方式的顯示裝置所包括的像素電路進行說明。
[顯示裝置] 圖10A示出顯示裝置15的方塊圖。顯示裝置15包括具有多個像素PIX的顯示部11、閘極驅動器13及源極驅動器14。
像素PIX包括至少一個記憶體電路MEM。由記憶體電路MEM可以保持至少一個存儲節點的電位。記憶體電路MEM也可以保持連接為串聯或並聯的多個存儲節點的電位。雖然圖10A中省略圖示,然而像素PIX包括顯示元件(本實施方式中的發光元件)及用來驅動顯示元件的電晶體等。對像素PIX從閘極驅動器13經過多個佈線GL供應信號,而控制像素PIX的驅動。對像素PIX從源極驅動器14經過多個佈線DL供應信號,而控制像素PIX的驅動。
多個佈線GL被用作掃描線。佈線GL傳送的信號被用作掃描信號(也稱為控制信號)。掃描信號是用來控制被用作像素PIX中的開關的電晶體的導通狀態或非導通狀態(開啟或關閉)的信號。佈線GL傳送的信號從閘極驅動器13輸出。
多個佈線DL被用作資料線。佈線DL傳送的信號被用作資料信號。將資料信號也稱為資料、影像資料或影像信號。資料信號是用來進行影像的顯示的信號。作為資料信號,除了在記憶體電路MEM中保持的信號之外,還有在記憶體電路MEM中信號被保持的狀態下之後供應的信號。佈線DL被用作供應像素PIX的驅動所需要的電壓,例如被用作參考電壓的佈線。佈線DL傳送的信號從源極驅動器14輸出。
記憶體電路MEM包括電容器及電晶體。記憶體電路MEM具有將經過佈線DL被供應的信號作為電荷(電位)保持在電容器中的功能。記憶體電路MEM具有藉由經過佈線DL供應其他信號而保持已保持的電位與之後寫入的信號的電位相加而得的電壓的功能。明確而言,藉由使用電容器中的電容耦合可以進行信號的添加。注意,記憶體電路MEM的將經過佈線DL被供應的信號作為電荷保持在電容器中的工作有時被稱為“保持信號”。
在本實施方式的顯示裝置中,因為像素PIX包括記憶體電路MEM,所以在像素PIX中可以對影像資料進行校正。
[像素電路的結構例子1] 圖10B所示的像素100包括電晶體M1、電晶體M2、電晶體M3、電晶體M4、電晶體M5、電容器C1、電容器C2及發光元件110。
電晶體M1的源極和汲極中的一個與電容器C2的一個電極電連接。電容器C2的另一個電極與電晶體M4的源極和汲極中的一個電連接。電晶體M4的源極和汲極中的一個與電晶體M2的閘極電連接。電晶體M2的閘極與電容器C1的一個電極電連接。電容器C1的另一個電極與電晶體M2的源極和汲極中的一個電連接。電晶體M2的源極和汲極中的一個與電晶體M5的源極和汲極中的一個電連接。電晶體M5的源極和汲極中的一個與電晶體M3的源極和汲極中的一個電連接。電晶體M5的源極和汲極中的另一個與發光元件110的一個電極電連接。圖10B所示的每個電晶體包括與閘極電連接的背閘極,然而在本實施方式的顯示裝置中,對電晶體的背閘極的有無及背閘極的連接沒有特別的限制。
在此,將連接有電容器C2的另一個電極、電晶體M4的源極和汲極中的一個、電晶體M2的閘極及電容器C1的一個電極的節點稱為節點ND1。另外,將連接有電晶體M5的源極和汲極中的另一個及發光元件110的一個電極的節點稱為節點ND2。
電晶體M1的閘極與佈線GL1電連接。電晶體M3的閘極與佈線GL1電連接。電晶體M4的閘極與佈線GL2電連接。電晶體M5的閘極與佈線GL3電連接。電晶體M1的源極和汲極中的另一個與佈線DL1電連接。電晶體M3的源極和汲極中的另一個與佈線V0電連接。電晶體M4的源極和汲極中的另一個與佈線DLW1電連接。
電晶體M2的源極和汲極中的另一個與電源線187(高電位)電連接。發光元件110的另一個電極與共同佈線189電連接。注意,對共同佈線189可以供應任意的電位。
佈線GL1、GL2及GL3可以被用作用來控制電晶體的工作的信號線。佈線DL1可以被用作對像素供應影像信號的信號線。此外,佈線DLW1可以被用作對記憶體電路MEM寫入資料的信號線。佈線DLW1可以被用作對像素供應校正信號的信號線。佈線V0被用作取得電晶體M4的電特性的監控線。此外,藉由將特定電位從佈線V0經過電晶體M3供應到電容器C1的一個電極,可以使影像信號的寫入穩定化。
電晶體M2、電晶體M4及電容器C2構成記憶體電路MEM。節點ND1是存儲節點,藉由使電晶體M4導通,可以將供應到佈線DLW1的信號寫入到節點ND1。藉由作為電晶體M4使用其關態電流極低的電晶體,可以長時間保持節點ND1的電位。
作為電晶體M4,例如可以使用將金屬氧化物用於通道形成區域的電晶體(以下,稱為OS電晶體)。由此,可以使電晶體M4的關態電流極低,可以長時間保持節點ND1的電位。此時,作為構成像素的其他電晶體較佳為使用OS電晶體。關於金屬氧化物的具體實例,可以參照實施方式1的內容。CAAC-OS中構成晶體的原子穩定,適用於重視可靠性的電晶體等。CAC-OS呈現高移動率特性,適用於進行高速驅動的電晶體等。
OS電晶體的能隙大而呈現關態電流極小的特性。與在通道形成區域中包括Si的電晶體(以下,稱為Si電晶體)不同,OS電晶體不會發生碰撞電離、突崩潰、短通道效應等,因此能夠形成可靠性高的電路。
此外,作為電晶體M4也可以使用Si電晶體。此時,作為構成像素的其他電晶體較佳為使用Si電晶體。
作為Si電晶體,可以舉出含有非晶矽的電晶體、含有結晶矽(典型為低溫多晶矽)的電晶體、以及含有單晶矽的電晶體等。
一個像素也可以將OS電晶體和Si電晶體都包括在內。
在像素中,寫入到節點ND1的信號與從佈線DL1供給的影像信號電容耦合並被輸出到節點ND2。電晶體M1可以具有選擇像素的功能。電晶體M5可以被用作控制發光元件110的發光的開關。
例如,當從佈線DLW1寫入節點ND1的信號大於電晶體M2的臨界電壓(V th)時,在影像信號被寫入之前電晶體M2就會導通而使發光元件110發光。因此,較佳為設置電晶體M5並且在節點ND1的電位固定之後再使電晶體M5導通來使發光元件110發光。
也就是說,只要將所希望的校正信號儲存到節點ND1就可以對供應的影像信號添加該校正信號。注意,由於傳輸路徑上的因素有時校正信號會衰減,因此較佳為考慮該衰減來生成校正信號。
使用圖11A及圖11B所示的時序圖對圖10B所示的像素100的工作進行詳細說明。另外,作為供應給佈線DLW1的校正信號(Vp)可以使用正信號也可以使用負信號,這裡對供應正信號的情況進行說明。另外,在以下說明及時序圖中,以“H”表示高電位,以“L”表示低電位。此外,在本實施方式中說明理想的工作,在電位的分佈、耦合或損耗中不考慮因電路的結構、工作時序等的電位的詳細變化。
首先,參照圖11A說明對節點ND1寫入校正信號(Vp)的工作。該工作可以按每個圖框進行,至少在供應影像信號之前進行一次的寫入即可。此外,適當地進行更新工作而將該校正信號重寫到節點ND1。
在時間T1,使佈線GL1的電位為“H”,使佈線GL2的電位為“L”,使佈線GL3的電位為“L”,使佈線DL1的電位為“L”,由此電晶體M1導通,電容器C2的另一個電極的電位成為“L”。
該工作是在電容耦合之前進行的重設工作。在時間T1之前,發光元件110在前一圖框中發光。但是,由於該重設工作節點ND1的電位改變而使流過發光元件110的電流改變,因此較佳為使電晶體M5非導通而使發光元件110停止發光。
在時間T2,使佈線GL1的電位為“H”,使佈線GL2的電位為“H”,使佈線GL3的電位為“L”,使佈線DL1的電位為“L”,由此電晶體M4導通,佈線DLW1的電位(校正信號(Vp))被寫入節點ND1。
在時間T3,使佈線GL1的電位為“H”,使佈線GL2的電位為“L”,使佈線GL3的電位為“L”,使佈線DL1的電位為“L”,由此電晶體M4非導通,校正信號(Vp)被保持於節點ND1。
在時間T4,使佈線GL1的電位為“L”,使佈線GL2的電位為“L”,使佈線GL3的電位為“L”,使佈線DL1的電位為“L”,由此電晶體M1非導通,由此結束校正信號(Vp)的寫入工作。
接著,參照圖11B說明影像信號(Vs)的校正工作及使發光元件110發光的工作。
在時間T11,使佈線GL1的電位為“H”,使佈線GL2的電位為“L”,使佈線GL3的電位為“L”,使佈線DLW1的電位為“L”,由此電晶體M1導通,藉由電容器C2的電容耦合,佈線DL1的電位被添加到節點ND1的電位。也就是說,節點ND1成為對影像信號(Vs)添加校正信號(Vp)的電位(Vs+Vp)。
在時間T12,使佈線GL1的電位為“L”,使佈線GL2的電位為“L”,使佈線GL3的電位為“L”,使佈線DLW1的電位為“L”,由此電晶體M1非導通,節點ND1的電位固定為Vs+Vp。
在時間T13,使佈線GL1的電位為“L”,使佈線GL2的電位為“L”,使佈線GL3的電位為“H”,使佈線DLW1的電位為“L”,由此電晶體M5導通,節點ND2的電位成為Vs+Vp,發光元件110發光。嚴格地說,節點ND2的電位相當於從Vs+Vp減去電晶體M2的臨界電壓(V th),這裡,V th為可以忽略不計的極小值。
以上是影像信號(Vs)的校正工作及使發光元件110發光的工作。注意,雖然可以連續地進行之前說明的校正信號(Vp)的寫入工作與影像信號(Vs)的輸入工作,但是較佳為先對所有像素寫入校正信號(Vp)之後再進行影像信號(Vs)的輸入工作。在本發明的一個實施方式中,由於可以同時對多個像素供給相同的影像信號,所以藉由先對所有的像素寫入校正信號(Vp)可以提高工作速度。
[像素電路的結構例子2] 接著,對串聯設置有多個存儲節點的像素電路進行說明。在該像素電路中,根據輸入的多個資料的總和可以使發光元件工作。
圖12A所示的像素101包括兩個電容器,藉由電容耦合可以根據最大三個資料的總和進行顯示。
圖12A示出兩個電容器串聯連接的結構,如圖12B所示那樣,也可以採用更多的電容器C 1至C n串聯連接的結構。此時,在追加一個電容器的同時也追加一個電晶體。該電晶體的源極和汲極中的一個電連接於連接一個電容器與另一個電容器的佈線。就是說,增加節點ND12的那樣的節點。
串聯連接的電容器的個數n較佳為2以上且8以下,更佳為2以上且6以下,進一步較佳為2以上且4以下。電容器的個數越多本發明的一個實施方式的效果越高。注意,由於隨著電容器的增加需要增加電晶體及信號線,所以有時引起像素的開口率及解析度的降低、不能確保信號輸入時間等問題。因此,較佳為將串聯連接的電容器的個數n根據用途在上述範圍內選擇。
圖12A所示的像素101包括電晶體M11、電晶體M12、電晶體M13、電容器C11、電容器C12及電路方塊150。電路方塊150可以包括電晶體、電容器及發光元件等。後面對電路方塊150進行詳細說明。
電晶體M11的源極和汲極中的一個與電容器C11的一個電極電連接。電容器C11的一個電極與電路方塊150電連接。電容器C11的另一個電極與電晶體M12的源極和汲極中的一個電連接。電晶體M12的源極和汲極中的一個與電容器C12的一個電極電連接。電容器C12的另一個電極與電晶體M13的源極和汲極中的一個電連接。
在此,將與電晶體M11的源極和汲極中的一個、電容器C11的一個電極及電路方塊150連接的佈線稱為節點ND13。此外,與節點ND13連接的電路方塊150的組件可以使節點ND13處於浮動狀態。此外,將與電容器C11的另一個電極、電晶體M12的源極和汲極中的一個及電容器C12的一個電極連接的佈線稱為節點ND12。另外,將與電晶體M13的源極和汲極中的一個及電容器C12的另一個電極連接的佈線稱為節點ND11。
電晶體M11的閘極與佈線GL11電連接。電晶體M12的閘極與佈線GL12電連接。電晶體M13的閘極與佈線GL13電連接。電晶體M11的源極和汲極中的另一個與佈線DL11電連接。電晶體M12的源極和汲極中的另一個與佈線DL12電連接。電晶體M13的源極和汲極中的另一個與佈線DL13電連接。
佈線GL11、GL12及GL13可以被用作用來控制電晶體的工作的信號線。佈線DL11可以被用作供應第一資料的信號線。佈線DL12可以被用作供應第二資料的信號線。佈線DL13可以被用作供應第三資料的信號線。
節點ND11、節點ND12及節點ND13為存儲節點。藉由使電晶體M11導通,可以將供應給佈線DL11的第一資料寫入到節點ND13。藉由使電晶體M11非導通,可以在節點ND13中保持第一資料。此外,藉由使電晶體M12導通,可以將供應給佈線DL12的第二資料寫入到節點ND12。藉由使電晶體M12非導通,可以在節點ND12中保持第二資料。此外,藉由使電晶體M13導通,可以將供應給佈線DL13的第三資料寫入到節點ND11。藉由使電晶體M13非導通,可以在節點ND11中保持第三資料。
藉由作為電晶體M11、M12及M13使用關態電流極低的電晶體,可以長時間保持節點ND13及節點ND12的電位。作為該電晶體,例如可以使用OS電晶體。
OS電晶體可以用於像素所包括的其他的電晶體。另外,像素所包括的電晶體也可以使用Si電晶體。或者,也可以使用OS電晶體和Si電晶體的兩者。
參照圖13A、圖13B及圖13C所示的時序圖說明對第一資料加上第二資料及第三資料的像素101的工作的一個例子。注意,在以下的說明中,將第一資料表示為“V data1”、將第二資料表示為 “V data2”、以及將第三資料表示為“V data3”。另外,將參考電位之一(例如,0V、GND電位或特定電位)表示為“V ref”。注意,第一資料、第二資料及第三資料也可以分別為負值,並且也對應於資料的減法。
首先,參照圖13A說明將第一資料“V data1”寫入到節點ND13的工作。
在時間T1,使佈線GL11的電位為“H”,使佈線GL12的電位為“H”,使佈線DL11的電位為“V data1”,使佈線DL12的電位為“V ref”,由此電晶體M12導通,節點ND12的電位成為“V ref”。該工作是在電容耦合之前進行的重設工作。
另外,電晶體M11導通,對節點ND13寫入佈線DL11的電位(第一資料“V data1”)。
在時間T2,使佈線GL11的電位為“L”,使佈線GL12的電位為“L”,由此電晶體M11及電晶體M12非導通,在節點ND13中保持第一資料“V data1”。此外,在電容器C11中保持“V data1-V ref”。
到這裡是第一資料“V data1”的寫入工作。此外,在不將第一資料反映到顯示時,作為第一資料“V data1”供應與“V ref”相同的電位即可。
接下來,參照圖13B說明將第二資料“V data2”寫入到節點ND12的工作。
在時間T11,使佈線GL12的電位為“H”,使佈線GL13的電位為“H”,使佈線DL12的電位為“V data2”,使佈線DL13的電位為“V ref”,由此電晶體M13導通,節點ND11的電位成為“V ref”。該工作是在電容耦合之前進行的重設工作。
此外,電晶體M12導通,對節點ND12寫入佈線DL12的電位(第二資料“V data2”)。
此時,由電容器C11的電容耦合對節點ND13的電位添加節點ND12的電位。因此,節點ND13的電位為“V data1-V ref+V data2”,在“V ref”=0時節點ND13的電位為“V data1+V data2”。
在時間T12,使佈線GL12的電位為“L”,使佈線GL13的電位為“L”,由此電晶體M12非導通,在節點ND12中保持第二資料“V data2”。此外,在節點ND13中保持第一資料和第二資料的總和的“V data1+V data2”。另外,在電容器C12中保持“V data2-V ref”。
到這裡是第二資料“V data2”的寫入工作。此外,在不將第二資料反映到顯示時,作為第二資料“V data2”供應與“V ref”相同的電位即可。
接下來,參照圖13C說明寫入第三資料“V data3”的工作。
在時間T21,使佈線GL13的電位為“H”,使佈線DL13的電位為“V data3”,由此電晶體M13導通,節點ND11的電位成為“V data3”。
此時,由電容器C12的電容耦合對節點ND12的電位添加節點ND11的電位。因此,節點ND12的電位為“V data2-V ref+V data3”,在“V ref”=0時節點ND12的電位為“V data2+V data3”。
此外,由電容器C11的電容耦合對節點ND13的電位添加節點ND12的電位。因此,節點ND12的電位為“V data1+V data2+V data3”。
在時間T22,使佈線GL13的電位為“L”,由此電晶體M13非導通,節點ND13的電位保持為“V data1+V data2+V data3”。
如上所述,第一資料“V data1”、第二資料“V data2”及第三資料“V data3”的寫入工作結束。此外,在不將第三資料反映到顯示時,作為第三資料“V data3”供應與“V ref”相同的電位即可。或者,也可以省略第三資料的寫入工作。
然後,在電路方塊150所包括的發光元件中進行對應於節點ND13的電位的顯示工作。注意,根據電路方塊的結構,有時從時間T1或時間T11進行顯示工作。
另外,如圖14A、圖14B及圖14C所示那樣,也可以調換圖13A所示的工作和圖13B所示的工作的順序。
參照圖14A說明將第一資料“V data2”寫入到節點ND12的工作。
在時間T1,使佈線GL12的電位為“H”,使佈線GL13的電位為“H”,使佈線DL12的電位為“V data2”,使佈線DL13的電位為“V ref”,由此電晶體M13導通,節點ND11的電位成為“V ref”。另外,電晶體M12導通,對節點ND12寫入佈線DL12的電位(第二資料“V data2”)。
在時間T2,使佈線GL12的電位為“L”,使佈線GL13的電位為“L”,電晶體M12及電晶體M13非導通,在節點ND12中保持第二資料“V data2”。另外,在電容器C12中保持“V data2-V ref”。
首先,參照圖14B說明將第一資料“V data1”寫入到節點ND13的工作。
在時間T11,使佈線GL11的電位為“H”,使佈線GL12的電位為“H”,使佈線DL11的電位為“V data1”,使佈線DL12的電位為“V ref”,由此電晶體M12導通,節點ND12的電位成為“V ref”。另外電晶體M11導通,對節點ND13寫入佈線DL11的電位(第一資料“V data1”)。
在時間T12,使佈線GL11的電位為“L”,使佈線GL12的電位為“L”,由此電晶體M12非導通,在節點ND12中保持“V ref”。另外,在節點ND13中保持第一資料“V data1”。另外,由於在電容器C12中保持“V data2-V ref”,所以在“V ref”=0時,節點ND11的電位為“-V data2”。
接著,參照圖14C說明寫入第三資料“V data3”的工作。
在時間T21,使佈線GL13的電位為“H”,使佈線DL13的電位為“V data3”,由此電晶體M13導通,節點ND11的電位成為“V data3”。
此時,由電容器C12的電容耦合對節點ND12的電位添加節點ND11的電位。因此,節點ND12的電位為“V data3-(-V data2)+V ref”,在“V ref”=0時節點ND12的電位為“V data2+V data3”。
此外,由電容器C11的電容耦合對節點ND13的電位添加節點ND12的電位。因此,節點ND13的電位為“V data1+V data2+V data3”。
在時間T22,使佈線GL13的電位為“L”,由此電晶體M13非導通,節點ND13的電位保持為“V data1+V data2+V data3”。
如上所述,第一資料“V data1”、第二資料“V data2”及第三資料“V data3”的寫入工作結束。
注意,圖13A、圖13B及圖13C的工作可以在一個水平期間內連續進行。或者,也可以將圖13A的工作在第k圖框進行(k為自然數),將圖13B及圖13C的工作在第k+1圖框進行。或者,可以圖13A及圖13B的工作在第k圖框進行,圖13C的工作在第k+1圖框進行。或者也可以將圖13A、圖13B及圖13C的工作分別在連續的不同圖框進行。或者,也可以將圖13A的工作在第k圖框進行,將圖13B及圖13C的工作在第k+1圖框以後反復進行。或者,也可以將圖13A及圖13B的工作在第k圖框進行,將圖13C的工作在第k+1圖框以後反復進行。此外,圖14A、圖14B及圖14C的工作也可以同樣地進行。
圖15A至圖15C示出電路方塊150的具體實例。
圖15A所示的電路方塊150包括電晶體171、電容器173及發光元件110。電晶體171的源極和汲極中的一個與發光元件110的一個電極電連接。發光元件110的一個電極與電容器173的一個電極電連接。電容器173的另一個電極與電晶體171的閘極電連接。電晶體171的閘極與節點ND13電連接。
電晶體171的源極和汲極中的另一個與電源線187(高電位)電連接。發光元件110的另一個電極與共同佈線189電連接。注意,對共同佈線189可以供應任意的電位(例如低電位)。
在圖15A所示的結構中,在節點ND13的電位成為電晶體171的臨界電壓以上時電流流過發光元件110。因此,有時發光元件110的發光在圖13A及圖14A所示的時序圖的時間T1的階段開始,因而該結構的用途可能受限。
圖15B是對圖15A的結構添加電晶體172的結構。電晶體172的源極和汲極中的一個與電晶體171的源極和汲極中的一個電連接。電晶體172的源極和汲極中的另一個與發光元件110電連接。電晶體172的閘極與佈線186電連接。佈線186可以具有控制電晶體172的導通的信號線的功能。
在該結構中,節點ND13的電位為電晶體171的臨界電壓以上且電晶體172導通時電流流過發光元件110。因此,發光元件110的發光可以在圖13C及圖14C所示的時序圖中的時間T22以後開始,從而該結構適用於有校正的工作。
圖15C是對圖15B的結構添加電晶體175的結構。電晶體175的源極和汲極中的一個與電晶體171的源極和汲極中的一個電連接。電晶體175的源極和汲極中的另一個與佈線190電連接。電晶體175的閘極與佈線191電連接。佈線191可以具有控制電晶體175的導通的信號線的功能。注意,電晶體175的閘極也可以與佈線GL13電連接。
佈線190可以與參考電位等特定電位的供應源電連接。藉由從佈線190對電晶體171的源極和汲極中的一個供應特定電位,還可以使影像資料的寫入穩定化。
此外,佈線190可以與電路120連接,並可以具有監控線的功能。電路120可以具有供應上述特定電位的功能、取得電晶體171的電特性的功能及生成校正資料的功能中的一個以上。
在將佈線190用作監控線時,例如在電路120生成校正電晶體171的臨界電壓的電位作為寫入到節點ND13的資料。
接著,參照圖16A及圖16B說明影像資料的校正工作。
圖16A示出對配置為2×2的矩陣狀的四個像素(P1至P4)輸入的資料電位的一個例子。所生成的影像資料是第一資料(+A1、+A2、-A1、A0)、第二資料(+B1、B0、B0、-B1)和第三資料(+C3、C2、C2、+C1)的總和。在各像素中,可以根據第一資料至第三資料的總和進行顯示,並可以進行原始影像資料的校正。
例如,第一資料及第二資料可以為用於校正的資料。另外,第三資料可以為原始影像資料。
藉由像這樣組合校正資料和影像資料,可以進行上轉換、HDR顯示、顯示裝置固有的顯示不均勻的校正和像素所包括的電晶體的臨界電壓的校正等中的任一個。或者可以組合進行上述工作。
在上轉換工作中,例如對四個像素全部供應相同的影像資料,根據校正資料在各像素分別可以顯示不同的影像。例如,可以對包括8K4K的像素數的顯示裝置的特定的四個像素輸入用於4K2K資料的特定的一個像素的影像資料,藉由對每個像素輸入的校正資料提高解析度來進行顯示。
藉由作為第一資料至第三資料使用相同的影像資料,可以大幅度地提高顯示影像的亮度。在該工作中,由於可以將列驅動電路的最大輸出值以上的電壓供應給像素,所以不僅可以提高影像品質,而且還可以降低產品成本諸如降低功耗或可利用廉價的驅動IC晶片。
此外,從廣義上講,是影像資料的校正,但可以重疊顯示不同的影像。圖16B示出顯示部整體的影像,示出由第一資料構成的第一影像、由第二資料構成的第二影像、由第三資料構成的第三影像、以及合成第一影像、第二影像及第三影像的影像。
這種不同影像資料的組合例如可以適用於字元插入或AR(Augmented Reality:增強現實)顯示等。
如上所述,藉由利用影像信號(影像資料)和校正信號(校正用資料)使發光元件發光,可以增大流過發光元件的電流,因此可以表現高亮度。因此,可以進行影像的上轉換、對顯示區域中的一部分或整體的影像進行校正的HDR顯示或者顯示影像的亮度的提高等的影像校正。另外可以重疊顯示多個影像。另外,可以施加源極驅動器的輸出電壓以上的電壓作為驅動電晶體的閘極電壓,因此可以降低源極驅動器的功耗。
本實施方式可以與其他實施方式適當地組合。
實施方式3 在本實施方式中,對可用於發光元件的材料進行說明。
[發光元件的材料] 下面例示出可用於圖4A至圖4D所示的發光元件的每個層的材料。注意,各層不侷限於單層,也可以採用兩層以上的疊層。
〈第一電極及第二電極〉 作為形成第一電極1101及第二電極1102的材料,如果可以滿足上述兩個電極的功能則可以適當地組合下述材料。例如,可以適當地使用金屬、合金、導電化合物以及它們的混合物等。明確而言,可以舉出In-Sn氧化物(也稱為ITO)、In-Si-Sn氧化物(也稱為ITSO)、In-Zn氧化物、In-W-Zn氧化物。除了上述以外,還可以舉出鋁(Al)、鈦(Ti)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鎵(Ga)、鋅(Zn)、銦(In)、錫(Sn)、鉬(Mo)、鉭(Ta)、鎢(W)、鈀(Pd)、金(Au)、鉑(Pt)、銀(Ag)、釔(Y)、釹(Nd)等金屬以及適當地組合它們的合金。除了上述以外,可以使用屬於元素週期表中第1族或第2族的元素(例如,鋰(Li)、銫(Cs)、鈣(Ca)、鍶(Sr))、銪(Eu)、鐿(Yb)等稀土金屬、適當地組合它們的合金以及石墨烯等。
〈發光層〉 發光層1113是包含發光物質的層。如實施方式1所述,對發光物質沒有特別的限制。例如,作為發光物質可以使用螢光材料、磷光材料、TADF材料、量子點材料及金屬鹵素鈣鈦礦類。
芘衍生物的發光量子產率高,因而較佳為適用於呈現藍色光的螢光材料。作為芘衍生物的具體實例,可以舉出N,N’-雙(3-甲基苯基)-N,N’-雙[3-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6mMemFLPAPrn)、N,N’-二苯基-N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6FLPAPrn)、N,N’-雙(二苯并呋喃-2-基)-N,N’-二苯基芘-1,6-二胺(簡稱:1,6FrAPrn)、N,N’-雙(二苯并噻吩-2-基)-N,N’-二苯基芘-1,6-二胺(簡稱:1,6ThAPrn)、N,N’-(芘-1,6-二基)雙[(N-苯基苯并[b]萘并[1,2-d]呋喃)-6-胺](簡稱:1,6BnfAPrn)、N,N’-(芘-1,6-二基)雙[(N-苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-02)、N,N’-(芘-1,6-二基)雙[(6,N-二苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-03)等。
另外,作為發光層1113還可以使用高分子化合物。例如,作為發射藍光的材料,可以舉出聚(9,9-二辛基茀-2,7-二基)(簡稱:POF)、聚[(9,9-二辛基茀-2,7-二基)-co-(2,5-二甲氧基苯-1,4-二基)](簡稱:PF-DMOP)、聚{(9,9-二辛基茀-2,7-二基)-co-[N,N'-二-(對丁基苯基)-1,4-二胺基苯]}(簡稱:TAB-PFH)等。
作為呈現藍色或綠色且其發射光譜的峰值波長為450nm以上且570nm以下的磷光材料,可以舉出如下物質。
例如可以舉出三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}銥(III)(簡稱:[Ir(mpptz-dmp) 3])、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)銥(III)(簡稱:[Ir(Mptz) 3])、三[4-(3-聯苯)-5-異丙基-3-苯基-4H-1,2,4-三唑]銥(III)(簡稱:[Ir(iPrptz-3b) 3])、三[3-(5-聯苯)-5-異丙基-4-苯基-4H-1,2,4-三唑]銥(III)(簡稱:[Ir(iPr5btz) 3])等具有4H-三唑骨架的有機金屬錯合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]銥(III)(簡稱:[Ir(Mptz1-mp) 3])、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)銥(III)(簡稱:[Ir(Prptz1-Me) 3])等具有1H-三唑骨架的有機金屬錯合物;fac-三[1-(2,6-二異丙基苯基)-2-苯基-1H-咪唑]銥(III)(簡稱:[Ir(iPrpmi) 3])、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]銥(III)(簡稱:[Ir(dmpimpt-Me) 3])等具有咪唑骨架的有機金屬錯合物;以及雙[2-(4',6'-二氟苯基)吡啶根-N,C 2']銥(III)四(1-吡唑基)硼酸鹽(簡稱:FIr6)、雙[2-(4',6'-二氟苯基)吡啶根-N,C 2']銥(III)吡啶甲酸鹽(簡稱:FIrpic)、雙{2-[3',5'-雙(三氟甲基)苯基]吡啶根-N,C 2'}銥(III)吡啶甲酸鹽(簡稱:[Ir(CF 3ppy) 2(pic)])、雙[2-(4',6'-二氟苯基)吡啶根-N,C 2']銥(III)乙醯丙酮(簡稱:FIr(acac))等以具有拉電子基團的苯基吡啶衍生物為配體的有機金屬錯合物等。
另外,作為藍色的發光物質,較佳為使用光致發光的峰值波長為430nm以上且470nm以下的物質,更佳為使用峰值波長為430nm以上且460nm以下的物質。另外,光致發光的測定可以使用溶液或薄膜。
藉由同時使用上述化合物及微腔效果,可以更容易達到上述色度。此時,獲得微腔效果所需要的半透射-半反射電極(金屬薄膜部分)的厚度較佳為20nm以上且40nm以下,更佳為大於25nm且40nm以下。當該厚度超過40nm時,效率可能會降低。
發光層1113除了發光物質(客體材料)以外還可以包含一種或多種有機化合物(主體材料、輔助材料)。作為該有機化合物可以使用具有大於發光物質的能隙的物質。另外,作為一種或多種有機化合物,可以使用容易接收電洞的化合物(電洞傳輸性材料)及容易接收電子的化合物(電子傳輸性材料)的一者或兩者。
當發光物質是螢光材料時,較佳為使用單重激發態的能階大且三重激發態的能階小的有機化合物作為主體材料。例如,較佳為使用蒽衍生物或稠四苯衍生物。明確而言,可以舉出9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:PCzPA)、3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPN)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)、7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(簡稱:cgDBCzPA)、6-[3-(9,10-二苯基-2-蒽基)苯基]-苯并[b]萘并[1,2-d]呋喃(簡稱:2mBnfPPA)、9-苯基-10-{4-(9-苯基-9H-茀-9-基)聯苯-4’-基}蒽(簡稱:FLPPA)、5,12-二苯基稠四苯、5,12-雙(聯苯-2-基)稠四苯等。
在發光物質是磷光材料的情況下,選擇其三重態激發能量(基態和三重激發態之間的能量差)比發光物質大的有機化合物作為主體材料,即可。在此情況下,可以使用鋅類金屬錯合物或鋁類金屬錯合物、㗁二唑衍生物、三唑衍生物、苯并咪唑衍生物、喹㗁啉衍生物、二苯并喹㗁啉衍生物、二苯并噻吩衍生物、二苯并呋喃衍生物、嘧啶衍生物、三嗪衍生物、吡啶衍生物、聯吡啶衍生物、啡啉衍生物等、芳香胺或者咔唑衍生物等。
明確地說,三(8-羥基喹啉)鋁(III)(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(III)(簡稱:Almq 3)、雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq 2)、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)、雙[2-(2-苯并㗁唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯并噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等金屬錯合物;2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-㗁二唑(簡稱:PBD)、1,3-雙[5-(對三級丁基苯基)-1,3,4-㗁二唑-2-基]苯(簡稱:OXD-7)、3-(4-聯苯基)-4-苯基-5-(4-三級丁基苯基)-1,2,4-三唑(簡稱:TAZ)、2,2',2''-(1,3,5-苯三基)-三(1-苯基-1H-苯并咪唑)(簡稱:TPBI)、紅啡啉(簡稱:BPhen)、浴銅靈(簡稱:BCP)、2,9-雙(萘-2-基)-4,7-二苯基-1,10-啡啉(簡稱:NBphen)、9-[4-(5-苯基-1,3,4-㗁二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)等雜環化合物、NPB、TPD、BSPB等芳香胺化合物。
另外,可以舉出蒽衍生物、菲衍生物、芘衍生物、䓛(chrysene)衍生物、二苯并[g,p]䓛衍生物等稠合多環芳香化合物(condensed polycyclic aromatic compound)。明確地說,可以舉出9,10-二苯基蒽(簡稱:DPAnth)、N,N-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:CzA1PA)、4-(10-苯基-9-蒽基)三苯胺(簡稱:DPhPA)、YGAPA、PCAPA、N,9-二苯基-N-{4-[4-(10-苯基-9-蒽基)苯基]苯基}-9H-咔唑-3-胺(簡稱:PCAPBA)、9,10-二苯基-2-[N-苯基-N-(9-苯基-9H-咔唑-3-基)胺基]蒽(簡稱:2PCAPA)、6,12-二甲氧基-5,11-二苯䓛、N,N,N’,N’,N’’,N’’,N’’’,N’’’-八苯基二苯并[g,p]䓛-2,7,10,15-四胺(簡稱:DBC1)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)、3,6-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:DPCzPA)、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、9,10-二(2-萘基)蒽(簡稱:DNA)、2-三級丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、9,9'-聯蒽(簡稱:BANT)、9,9'-(二苯乙烯-3,3'-二基)二菲(簡稱:DPNS)、9,9'-(二苯乙烯-4,4'-二基)二菲(簡稱:DPNS2)以及1,3,5-三(1-芘基)苯(簡稱:TPB3)等。
另外,在將多個有機化合物用於發光層1113的情況下,較佳為混合形成激態錯合物的化合物和發光物質。此時,可以適當地組合各種有機化合物而使用,但是為了高效地形成激態錯合物,特別較佳為組合電洞傳輸性材料和電子傳輸性材料。
TADF材料是指能夠利用微小的熱能量將三重激發態上轉換為單重激發態(逆系間竄越)並高效率地呈現來自單重激發態的發光(螢光)的材料。可以高效率地獲得熱活化延遲螢光的條件為三重激發能階和單重激發能階之間的能量差為0eV以上且0.2eV以下,較佳為0eV以上且0.1eV以下。TADF材料所發射的延遲螢光是指具有與一般的螢光同樣的光譜但壽命非常長的發光。其壽命為10 -6秒以上,較佳為10 -3秒以上。
作為TADF材料,例如可以舉出富勒烯或其衍生物、普羅黃素等吖啶衍生物、曙紅(eosin)等。另外,可以舉出包含鎂(Mg)、鋅(Zn)、鎘(Cd)、錫(Sn)、鉑(Pt)、銦(In)或鈀(Pd)等的含金屬卟啉。作為含金屬卟啉,例如,可以舉出原卟啉-氟化錫錯合物(簡稱:SnF 2(Proto IX))、中卟啉-氟化錫錯合物(簡稱:SnF 2(Meso IX))、血卟啉-氟化錫錯合物(簡稱:SnF 2(Hemato IX))、糞卟啉四甲酯-氟化錫錯合物(簡稱:SnF 2(Copro III-4Me))、八乙基卟啉-氟化錫錯合物(簡稱:SnF 2(OEP))、初卟啉-氟化錫錯合物(簡稱:SnF 2(Etio I))以及八乙基卟啉-氯化鉑錯合物(簡稱:PtCl 2OEP)等。
除了上述以外,可以使用2-(聯苯-4-基)-4,6-雙(12-苯基吲哚并[2,3-a]咔唑-11-基)-1,3,5-三嗪(簡稱:PIC-TRZ)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:PCCzPTzn)、2-[4-(10H-啡㗁𠯤-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(簡稱:PXZ-TRZ)、3-[4-(5-苯基-5,10-二氫啡𠯤-10-基)苯基]-4,5-二苯基-1,2,4-三唑(簡稱:PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧雜蒽-9-酮(簡稱:ACRXTN)、雙[4-(9,9-二甲基-9,10-二氫吖啶)苯基]碸(簡稱:DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(簡稱:ACRSA)等具有富π電子型雜芳環及缺π電子型雜芳環的雜環化合物。另外,在富π電子型雜芳環和缺π電子型雜芳環直接鍵合的物質中,富π電子型雜芳環的施體性和缺π電子型雜芳環的受體性都強,單重激發態與三重激發態之間的能量差變小,所以是尤其較佳的。
另外,在使用TADF材料的情況下,可以與其他有機化合物組合。
〈電洞注入層及電洞傳輸層〉 電洞注入層1111是將電洞從陽極的第一電極1101或電荷產生層1109注入到EL層1103B或發光單元1123B的層,是包含電洞注入性高的層。
作為電洞注入性高的材料,可以舉出鉬氧化物、釩氧化物、釕氧化物、鎢氧化物、錳氧化物等過渡金屬氧化物。除了上述以外,可以使用酞青類化合物如酞青(簡稱:H 2Pc)、銅酞青(CuPc)等;芳香胺化合物如4,4’-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]聯苯(簡稱:DPAB)、N,N'-雙{4-[雙(3-甲基苯基)胺基]苯基}-N,N'-二苯基-(1,1'-聯苯)-4,4'-二胺(簡稱:DNTPD)等;或者高分子如聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸)(簡稱:PEDOT/PSS)等。
作為電洞注入性高的材料,也可以使用包含電洞傳輸性材料及受體材料(電子受體材料)的複合材料。在此情況下,由受體材料從電洞傳輸性材料抽出電子而在電洞注入層1111中產生電洞,電洞藉由電洞傳輸層1112注入到發光層1113中。另外,電洞注入層1111可以採用由包含電洞傳輸性材料及受體材料(電子受體材料)的複合材料構成的單層,也可以採用分別使用電洞傳輸性材料及受體材料(電子受體材料)形成的層的疊層。
電洞傳輸層1112是將從第一電極1101經過電洞注入層1111注入的電洞傳輸到發光層1113的層。另外,電洞傳輸層1112是包含電洞傳輸性材料的層。作為用於電洞傳輸層1112的電洞傳輸性材料,特別較佳為使用具有與電洞注入層1111的HOMO能階相同或相近的HOMO能階的材料。
作為用於電洞注入層1111的受體材料,可以使用屬於元素週期表中的第4族至第8族的金屬的氧化物。明確而言,可以舉出氧化鉬、氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鎢、氧化錳、氧化錸。特別較佳為使用氧化鉬,因為其在大氣中也穩定,吸濕性低,並且容易處理。除了上述以外,可以舉出醌二甲烷衍生物、四氯苯醌衍生物、六氮雜聯伸三苯衍生物等有機受體。明確而言,可以使用7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F 4-TCNQ)、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮雜聯伸三苯(簡稱:HAT-CN)等。
作為用於電洞注入層1111及電洞傳輸層1112的電洞傳輸性材料,較佳為具有10 -6cm 2/Vs以上的電洞移動率的物質。另外,只要是電洞傳輸性高於電子傳輸性的物質,可以使用上述以外的物質。
作為電洞傳輸性材料,較佳為使用富π電子型雜芳族化合物(例如,咔唑衍生物或吲哚衍生物)或芳香胺化合物,具體的例子為如下:4,4’-雙[N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4'-雙[N-(螺-9,9'-聯茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)、4-苯基-4'-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)、4-苯基-3'-(9-苯基茀-9-基)三苯基胺(簡稱:mBPAFLP)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、3-[4-(9-菲基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPPn)、N-(4-聯苯)-N-(9,9-二甲基-9H-茀-2-基)-9-苯基-9H-咔唑-3-胺(簡稱:PCBiF)、N-(1,1’-聯苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-茀-2-胺(簡稱:PCBBiF)、4,4'-二苯基-4''-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBBi1BP)、4-(1-萘基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBANB)、4,4’-二(1-萘基)-4’’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9'-聯茀-2-胺(簡稱:PCBASF)、4,4’,4’’-三(咔唑-9-基)三苯胺(簡稱:TCTA)、4,4',4''-三(N,N-二苯基胺基)三苯胺(簡稱:TDATA)、4,4',4''-三[N-(3-甲基苯基)-N-苯基胺基]三苯胺(簡稱:MTDATA)等具有芳香胺骨架的化合物;1,3-雙(N-咔唑基)苯(簡稱:mCP)、4,4'-二(N-咔唑基)聯苯(簡稱:CBP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、3,3'-雙(9-苯基-9H-咔唑)(簡稱:PCCP)、3-[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)氨]-9-苯基咔唑(簡稱:PCzPCN1)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)等具有咔唑骨架的化合物;4,4’,4’’-(苯-1,3,5-三基)三(二苯并噻吩)(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯并噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯并噻吩(簡稱:DBTFLP-IV)等具有噻吩骨架的化合物;4,4’,4’’-(苯-1,3,5-三基)三(二苯并呋喃)(簡稱:DBF3P-II)、4-{3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯并呋喃(簡稱:mmDBFFLBi-II)等具有呋喃骨架的化合物。
再者,還可以使用聚(N-乙烯咔唑)(簡稱:PVK)、聚(4-乙烯三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯胺)苯基]苯基-N’-苯胺}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺](簡稱:Poly-TPD)等高分子化合物。
注意,電洞傳輸性材料不侷限於上述材料,可以將已知的各種材料中的一種或多種的組合作為電洞傳輸性材料用於電洞注入層1111及電洞傳輸層1112。
〈電子傳輸層〉 電子傳輸層1114是將從第二電極1102經過電子注入層1115注入的電子傳輸到發光層1113的層。另外,電子傳輸層1114是包含電子傳輸性材料的層。作為用於電子傳輸層1114的電子傳輸性材料,較佳為具有1×10 -6cm 2/Vs以上的電子移動率的物質。另外,只要是電子傳輸性高於電洞傳輸性的物質,可以使用上述以外的物質。
作為用於電子傳輸性材料可以舉出具有喹啉配體、苯并喹啉配體、㗁唑配體、噻唑配體的金屬錯合物、㗁二唑衍生物、三唑衍生物、啡啉衍生物、吡啶衍生物、聯吡啶衍生物等。除了上述以外,也可以使用含氮雜芳族化合物等缺π電子型雜芳族化合物。
明確而言,可以使用Alq 3、三(4-甲基-8-羥基喹啉)鋁(III)(簡稱:Almq 3)、雙(10-羥基苯并[h]-喹啉)鈹(II)(簡稱:BeBq 2)、BAlq、Zn(BOX) 2、雙[2-(2-羥基苯基)苯并噻唑]鋅(II)(簡稱:Zn(BTZ) 2)等金屬錯合物、2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-㗁二唑(簡稱:PBD)、1,3-雙[5-(對三級丁基苯基)-1,3,4-㗁二唑-2-基]苯(簡稱:OXD-7)、3-(4’-三級丁基苯基)-4-苯基-5-(4’’-聯苯基)-1,2,4-三唑(簡稱:TAZ)、3-(4-三級丁基苯基)-4-(4-乙基苯基)-5-(4-聯苯基)-1,2,4-三唑(簡稱:p-EtTAZ)、紅啡啉(簡稱:Bphen)、浴銅靈(簡稱:BCP)、4,4’-雙(5-甲基苯并㗁唑-2-基)二苯乙烯(簡稱:BzO S)等雜芳族化合物、2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)聯苯-3-基]二苯并[f,h]喹㗁啉(簡稱:2mDBTBPDBq-II)、2-[4-(3,6-二苯基-9H-咔唑-9-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2CzPDBq-III)、7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:7mDBTPDBq-II)和6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:6mDBTPDBq-II)等喹㗁啉衍生物或二苯并喹㗁啉衍生物。
另外,還可以使用聚(2,5-吡啶二基)(簡稱:PPy)、聚[(9,9-二己基茀-2,7-二基)-共-(吡啶-3,5-二基)](簡稱:PF-Py)、聚[(9,9-二辛基茀-2,7-二基)-共-(2,2’-聯吡啶-6,6’-二基)](簡稱:PF-BPy)等高分子化合物。
〈電子注入層〉 電子注入層1115是包含電子注入性高的物質的層。作為電子注入層1115,可以使用氟化鋰(LiF)、氟化銫(CsF)、氟化鈣(CaF 2)及鋰氧化物(LiO x)等鹼金屬、鹼土金屬或這些金屬的化合物。此外,可以使用氟化鉺(ErF 3)等稀土金屬化合物。此外,也可以將電子鹽用於電子注入層1115。作為電子鹽,例如可以舉出對鈣和鋁的混合氧化物以高濃度添加電子的物質等。另外,也可以使用如上所述的構成電子傳輸層1114的物質。
此外,也可以將混合有機化合物與電子予體(施體)而成的複合材料用於電子注入層1115。這種複合材料因為藉由電子予體在有機化合物中產生電子而具有優異的電子注入性和電子傳輸性。在此情況下,有機化合物較佳為在傳輸所產生的電子方面性能優異的材料,明確而言,例如,可以使用用於如上所述的電子傳輸層1114的電子傳輸性材料(金屬錯合物、雜芳族化合物等)。作為電子予體,只要是對有機化合物呈現電子供給性的物質即可。明確而言,較佳為使用鹼金屬、鹼土金屬和稀土金屬,可以舉出鋰、銫、鎂、鈣、鉺、鐿等。另外,較佳為使用鹼金屬氧化物或鹼土金屬氧化物,可以舉出鋰氧化物、鈣氧化物、鋇氧化物等。此外,還可以使用氧化鎂等路易士鹼。另外,也可以使用四硫富瓦烯(簡稱:TTF)等有機化合物。
〈電荷產生層〉 電荷產生層1109可以採用對電洞傳輸性材料添加電子受體(受體)的結構,或者可以採用對電子傳輸性材料添加電子予體(施體)的結構。或者,也可以層疊有這兩種結構。另外,藉由使用上述材料形成電荷產生層1109,可以抑制在層疊EL層時的驅動電壓的增大。
在電荷產生層1109具有對電洞傳輸性材料添加電子受體的結構的情況下,作為電洞傳輸性材料可以使用本實施方式所示的材料。另外,作為電子受體,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F 4-TCNQ)、氯醌等。另外,可以舉出屬於元素週期表中第4族至第8族的金屬的氧化物。明確而言,可以舉出氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鉬、氧化鎢、氧化錳、氧化錸等。
在電荷產生層1109具有對電子傳輸性材料添加電子施體的結構的情況下,作為電子傳輸性材料可以使用本實施方式所示的材料。另外,作為電子予體,可以使用鹼金屬、鹼土金屬、稀土金屬或屬於元素週期表中第2族、第13族的金屬及它們的氧化物或碳酸鹽。明確而言,較佳為使用鋰(Li)、銫(Cs)、鎂(Mg)、鈣(Ca)、鐿(Yb)、銦(In)、氧化鋰、碳酸銫等。此外,也可以將如四硫稠四苯(tetrathianaphthacene)等有機化合物用作電子予體。
另外,當製造本實施方式所示的發光元件時,可以利用蒸鍍法等真空製程或旋塗法、噴墨法等溶液製程。作為蒸鍍法,可以利用濺射法、離子鍍法、離子束蒸鍍法、分子束蒸鍍法、真空蒸鍍法等物理蒸鍍法(PVD法)或化學氣相沉積法(CVD法)等。尤其是,可以利用蒸鍍法(真空蒸鍍法)、塗佈法(浸塗法、染料塗佈法、棒式塗佈法、旋塗法、噴塗法等)、印刷法(噴墨法、網版印刷(孔版印刷)法、平板印刷(平版印刷)法、柔版印刷(凸版印刷)法、照相凹版印刷法、微接觸印刷法等)等方法形成包括在發光元件的EL層中的功能層(電洞注入層、電洞傳輸層、發光層、電子傳輸層、電子注入層)及電荷產生層。
另外,本實施方式所示的構成發光元件的EL層的各功能層(電洞注入層、電洞傳輸層、發光層、電子傳輸層、電子注入層)及電荷產生層)的材料不侷限於此,只要為可以滿足各層的功能的材料就可以組合地使用。作為一個例子,可以使用高分子化合物(低聚物、樹枝狀聚合物、聚合物等)、中分子化合物(介於低分子與高分子之間的化合物:分子量為400至4000)、無機化合物(量子點材料等)等。作為量子點材料,可以使用膠狀量子點材料、合金型量子點材料、核殼(Core Shell)型量子點材料、核型量子點材料等。
本實施方式可以與其他實施方式適當地組合。
實施方式4 在本實施方式中,使用圖17A至圖18F對本發明的一個實施方式的電子裝置進行說明。
本實施方式的電子裝置在顯示部中包括本發明的一個實施方式的顯示裝置。本發明的一個實施方式的顯示裝置容易實現大型化。另外,本發明的一個實施方式的顯示裝置的可靠性高且功耗低。因此,可以將本發明的一個實施方式的顯示裝置用於各種各樣的電子裝置的顯示部。
在本實施方式的電子裝置的顯示部上例如可以顯示具有全高清、4K2K、8K4K、16K8K或更高的解析度的影像。此外,顯示部的螢幕尺寸可以為對角線20英寸以上、30英寸以上、50英寸以上、60英寸以上或70英寸以上。
作為電子裝置,例如除了電視機、桌上型或膝上型個人電腦、用於電腦等的顯示器、數位看板、彈珠機等大型遊戲機等具有較大的螢幕的電子裝置以外,還可以舉出數位相機、數位攝影機、數位相框、行動電話機、可攜式遊戲機、可攜式資訊終端、音頻再生裝置等。
可以將本實施方式的電子裝置沿著房屋或高樓的內壁或外壁、汽車的內部裝飾或外部裝飾的曲面組裝。
本實施方式的電子裝置也可以包括天線。藉由由天線接收信號,可以在顯示部上顯示影像或資料等。另外,在電子裝置包括天線及二次電池時,可以用天線進行非接觸電力傳送。
本實施方式的電子裝置也可以包括感測器(該感測器具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)。
本實施方式的電子裝置可以具有各種功能。例如,可以具有如下功能:將各種資訊(靜態影像、動態影像、文字影像等)顯示在顯示部上的功能;觸控面板的功能;顯示日曆、日期或時間等的功能;執行各種軟體(程式)的功能;進行無線通訊的功能;讀出儲存在存儲介質中的程式或資料的功能;等。
圖17A示出電視機的一個例子。在電視機7100中,外殼7101中組裝有顯示部7000。在此示出利用支架7103支撐外殼7101的結構。
可以對顯示部7000適用本發明的一個實施方式的顯示裝置。
可以藉由利用外殼7101所具備的操作開關或另外提供的遙控器7111進行圖17A所示的電視機7100的操作。另外,也可以在顯示部7000中具備觸控感測器,也可以藉由用指頭等觸摸顯示部7000進行電視機7100的操作。另外,也可以在遙控器7111中具備顯示從該遙控器7111輸出的資料的顯示部。藉由利用遙控器7111所具備的操作鍵或觸控面板,可以進行頻道及音量的操作,並可以對顯示在顯示部7000上的影像進行操作。
另外,電視機7100具備接收機及數據機等。可以藉由利用接收機接收一般的電視廣播。再者,藉由數據機將電視機7100連接到有線或無線方式的通訊網路,從而進行單向(從發送者到接收者)或雙向(發送者和接收者之間或接收者之間等)的資訊通訊。
圖17B示出筆記型個人電腦的一個例子。筆記型個人電腦7200包括外殼7211、鍵盤7212、指向裝置7213、外部連接埠7214等。在外殼7211中組裝有顯示部7000。
可以對顯示部7000適用本發明的一個實施方式的顯示裝置。
圖17C和圖17D示出數位看板的例子。
圖17C所示的數位看板7300包括外殼7301、顯示部7000及揚聲器7303等。此外,還可以包括LED燈、操作鍵(包括電源開關或操作開關)、連接端子、各種感測器、麥克風等。
圖17D示出設置於圓柱狀柱子7401上的數位看板7400。數位看板7400包括沿著柱子7401的曲面設置的顯示部7000。
在圖17C和圖17D中,可以對顯示部7000適用本發明的一個實施方式的顯示裝置。
顯示部7000越大,一次能夠提供的資訊量越多。顯示部7000越大,越容易吸引人的注意,例如可以提高廣告宣傳效果。
藉由將觸控面板用於顯示部7000,不僅可以在顯示部7000上顯示靜態影像或動態影像,使用者還能夠直覺性地進行操作,所以是較佳的。另外,在用於提供路線資訊或交通資訊等資訊的用途時,可以藉由直覺性的操作提高易用性。
如圖17C和圖17D所示,數位看板7300或數位看板7400較佳為藉由無線通訊可以與使用者所攜帶的智慧手機等資訊終端設備7311或資訊終端設備7411聯動。例如,顯示在顯示部7000上的廣告資訊可以顯示在資訊終端設備7311或資訊終端設備7411的螢幕上。此外,藉由操作資訊終端設備7311或資訊終端設備7411,可以切換顯示部7000的顯示。
此外,可以在數位看板7300或數位看板7400上以資訊終端設備7311或資訊終端設備7411的螢幕為操作單元(控制器)執行遊戲。由此,不特定多個使用者可以同時參加遊戲,享受遊戲的樂趣。
圖18A至圖18F所示的電子裝置包括外殼9000、顯示部9001、揚聲器9003、操作鍵9005(包括電源開關或操作開關)、連接端子9006、感測器9007(該感測器具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)、麥克風9008等。
圖18A至圖18F所示的電子裝置具有各種功能。例如,可以具有如下功能:將各種資訊(靜態影像、動態影像及文字影像等)顯示在顯示部上的功能;觸控面板的功能;顯示日曆、日期或時間等的功能;藉由利用各種軟體(程式)控制處理的功能;進行無線通訊的功能;讀出儲存在存儲介質中的程式或資料並進行處理的功能;等。注意,電子裝置可具有的功能不侷限於上述功能,而可以具有各種功能。電子裝置可以包括多個顯示部。另外,也可以在電子裝置中設置照相機等而使其具有如下功能:拍攝靜態影像或動態影像,且將所拍攝的影像儲存在存儲介質(外部存儲介質或內置於照相機的存儲介質)中的功能;將所拍攝的影像顯示在顯示部上的功能;等。
下面,詳細地說明圖18A至圖18F所示的電子裝置。
圖18A是示出可攜式資訊終端9101的立體圖。可以將可攜式資訊終端9101例如用作智慧手機。注意,在可攜式資訊終端9101中,也可以設置揚聲器9003、連接端子9006、感測器9007等。另外,作為可攜式資訊終端9101,可以將文字或影像資訊顯示在其多個面上。在圖18A中示出三個圖示9050的例子。另外,可以將以虛線的矩形示出的資訊9051顯示在顯示部9001的其他面上。作為資訊9051的一個例子,可以舉出提示收到電子郵件、SNS(Social Networking Services:社交網路服務)或電話等的資訊;電子郵件或SNS等的標題;電子郵件或SNS等的發送者姓名;日期;時間;電池餘量;以及天線接收信號強度的顯示等。或者,可以在顯示有資訊9051的位置上顯示圖示9050等。
圖18B是示出可攜式資訊終端9102的立體圖。可攜式資訊終端9102具有將資訊顯示在顯示部9001的三個以上的面上的功能。在此,示出資訊9052、資訊9053、資訊9054分別顯示於不同的面上的例子。例如,在將可攜式資訊終端9102放在上衣口袋裡的狀態下,使用者能夠確認顯示在從可攜式資訊終端9102的上方看到的位置上的資訊9053。使用者可以確認到該顯示而無需從口袋裡拿出可攜式資訊終端9102,由此能夠判斷是否接電話。
圖18C是示出手錶型可攜式資訊終端9200的立體圖。可以將可攜式資訊終端9200例如用作智慧手錶。另外,顯示部9001的顯示面彎曲,可沿著其彎曲的顯示面進行顯示。此外,可攜式資訊終端9200例如藉由與可進行無線通訊的耳麥相互通訊可以進行免提通話。此外,藉由利用連接端子9006,可攜式資訊終端9200可以與其他資訊終端進行資料傳輸或進行充電。充電也可以藉由無線供電進行。
圖18D、圖18E及圖18F是示出可以折疊的可攜式資訊終端9201的立體圖。另外,圖18D是將可攜式資訊終端9201展開的狀態的立體圖、圖18F是折疊的狀態的立體圖、圖18E是從圖18D的狀態和圖18F的狀態中的一個轉換成另一個時中途的狀態的立體圖。可攜式資訊終端9201在折疊狀態下可攜性好,而在展開狀態下因為具有無縫拼接較大的顯示區域所以顯示的瀏覽性強。可攜式資訊終端9201所包括的顯示部9001被由鉸鏈9055連結的三個外殼9000支撐。顯示部9001例如可以在曲率半徑0.1mm以上且150mm以下的範圍彎曲。
本實施方式可以與其他實施方式適當地組合。
CCMG:顏色轉換層 CCMR:顏色轉換層 C1:電容器 C2:電容器 C11:電容器 C12:電容器 DATA:影像資料 DATA_W:資料 DATA_W1:資料 DATA_W2:資料 DL:佈線 DL1:佈線 DL11:佈線 DL12:佈線 DL13:佈線 DLW1:佈線 GL:佈線 GL1:佈線 GL2:佈線 GL3:佈線 GL11:佈線 GL12:佈線 GL13:佈線 MEM:記憶體電路 M1:電晶體 M2:電晶體 M3:電晶體 M4:電晶體 M5:電晶體 M11:電晶體 M12:電晶體 M13:電晶體 ND1:節點 ND2:節點 ND11:節點 ND12:節點 ND13:節點 PIX:像素 V0:佈線 10A:顯示裝置 10B:顯示裝置 10C:顯示裝置 10D:顯示裝置 11:顯示部 13:閘極驅動器 14:源極驅動器 15:顯示裝置 71:顯示部 74:FPC 78:驅動電路 100:像素 101:像素 104:絕緣層 107:分隔壁 110:發光元件 110B:發光元件 111:像素電極 113:EL層 115:共用電極 117:保護層 120:電路 121:空間 141:絕緣層 150:電路方塊 171:電晶體 172:電晶體 173:電容器 175:電晶體 186:佈線 187:電源線 189:共同佈線 190:佈線 191:佈線 201:導電層 202:絕緣層 203a:導電層 203b:導電層 204:半導體層 208:絕緣層 211:絕緣層 212:絕緣層 213:絕緣層 214a:通道形成區域 214b:低電阻區域 214c:LDD區域 220:電晶體 230:電晶體 301:電晶體 303:電晶體 306:連接部 307:佈線 311:閘極絕緣層 312:絕緣層 313:絕緣層 314:絕緣層 315:絕緣層 317:黏合層 318:黏合層 319:連接器 355:導電層 361:基板 363:黏合層 365:絕緣層 367:絕緣層 371:基板 1100B:像素 1100G:像素 1100R:像素 1100W:像素 1101:電極 1102:電極 1103B:EL層 1104G:顏色轉換層 1104R:顏色轉換層 1104W:顏色轉換層 1105B:發光元件 1106B:光 1106G:光 1106R:光 1106W:光 1107:光學調整層 1109:電荷產生層 1111:電洞注入層 1112:電洞傳輸層 1113:發光層 1114:電子傳輸層 1115:電子注入層 1123B:發光單元 4000:分子量 7000:顯示部 7100:電視機 7101:外殼 7103:支架 7111:遙控器 7200:筆記型個人電腦 7211:外殼 7212:鍵盤 7213:指向裝置 7214:外部連接埠 7300:數位看板 7301:外殼 7303:揚聲器 7311:資訊終端設備 7400:數位看板 7401:柱子 7411:資訊終端設備 9000:外殼 9001:顯示部 9003:揚聲器 9005:操作鍵 9006:連接端子 9007:感測器 9008:麥克風 9050:圖示 9051:資訊 9052:資訊 9053:資訊 9054:資訊 9055:鉸鏈部 9101:可攜式資訊終端 9102:可攜式資訊終端 9200:可攜式資訊終端 9201:可攜式資訊終端
在圖式中: 圖1A和圖1B是示出像素的一個例子的方塊圖; 圖2A和圖2B是示出像素的一個例子的剖面圖; 圖3A至圖3C是示出像素的一個例子的剖面圖; 圖4A至圖4D是示出發光元件的一個例子的剖面圖; 圖5A是示出顯示裝置的一個例子的俯視圖;圖5B是示出顯示裝置的一個例子的剖面圖; 圖6是示出顯示裝置的一個例子的剖面圖; 圖7是示出顯示裝置的一個例子的剖面圖; 圖8是示出顯示裝置的一個例子的剖面圖; 圖9A和圖9B是示出電晶體的一個例子的剖面圖; 圖10A是示出像素的一個例子的方塊圖;圖10B是示出像素的一個例子的電路圖; 圖11A和圖11B是示出像素的工作例子的時序圖; 圖12A和圖12B是示出像素的一個例子的電路圖; 圖13A至圖13C是示出像素的工作例子的時序圖; 圖14A至圖14C是示出像素的工作例子的時序圖; 圖15A至圖15C是示出電路方塊的一個例子的電路圖; 圖16A和圖16B是示出影像資料的校正及影像的合成的圖; 圖17A至圖17D是示出電子裝置的一個例子的圖; 圖18A至圖18F是示出電子裝置的一個例子的圖。
DATA:影像資料
DATA_W:資料

Claims (5)

  1. 一種顯示裝置,包括: 第一像素及第二像素; 被供應第一信號的第一佈線;以及 被供應第二信號的第二佈線, 其中,每一個該第一像素及該第二像素包含發光元件、第一電晶體、第二電晶體、第三電晶體及電容器, 該第一佈線與該電容器的一個電極藉由該第一電晶體的通道形成區域電連接, 該第二佈線與該電容器的另一個電極藉由該第二電晶體的通道形成區域電連接, 該電容器的該一個電極與該第三電晶體的閘極電連接, 該第三電晶體的源極和汲極的其中之一與該發光元件電連接, 該發光元件包含第一發光單元及第二發光單元, 每一個該第一發光單元及該第二發光單元呈現藍色光, 該第一像素的該發光元件與顏色轉換層重疊, 並且,該顏色轉換層將該第一像素的該發光元件所發射的光轉換為更長波長的光。
  2. 一種顯示裝置,包括: 第一像素及第二像素; 被供應第一信號的第一佈線;以及 被供應第二信號的第二佈線, 其中,每一個該第一像素及該第二像素包含發光元件、第一電晶體、第二電晶體、第三電晶體及電容器, 該第一佈線與該電容器的一個電極藉由該第一電晶體的通道形成區域電連接, 該第二佈線與該電容器的另一個電極藉由該第二電晶體的通道形成區域電連接, 該電容器的該一個電極與該第三電晶體的閘極電連接, 該第三電晶體的源極和汲極的其中之一與該發光元件電連接, 該發光元件包含第一發光單元及第二發光單元, 該第一發光單元及該第二發光單元的其中之一呈現藍色光, 該第一發光單元的發光物質及該第二發光單元的發光物質不同, 該第一像素的該發光元件與顏色轉換層重疊, 並且,該顏色轉換層將該第一像素的該發光元件所發射的光轉換為更長波長的光。
  3. 一種顯示裝置,包括: 第一像素及第二像素; 被供應第一信號的第一佈線;以及 被供應第二信號的第二佈線, 其中,每一個該第一像素及該第二像素包含發光元件、第一電晶體、第二電晶體、第三電晶體及電容器, 該第一佈線與該電容器的一個電極藉由該第一電晶體的通道形成區域電連接, 該第二佈線與該電容器的另一個電極藉由該第二電晶體的通道形成區域電連接, 該電容器的該一個電極與該第三電晶體的閘極電連接, 該第三電晶體的源極和汲極的其中之一與該發光元件電連接, 該發光元件包含第一發光單元、第二發光單元及第三發光單元, 該第一發光單元、該第二發光單元及該第三發光單元至少其中之一呈現藍色光, 該第一發光單元、該第二發光單元及該第三發光單元其中二個呈現螢光, 該第一發光單元、該第二發光單元及該第三發光單元其中的另一個呈現磷光, 該第一像素的該發光元件與顏色轉換層重疊, 並且,該顏色轉換層將該第一像素的該發光元件所發射的光轉換為更長波長的光。
  4. 根據請求項1至3中任一項之顯示裝置, 其中該顏色轉換層包括量子點。
  5. 根據請求項1至3中任一項之顯示裝置, 其中每一個該第一電晶體及該第二電晶體在通道形成區域中包含金屬氧化物。
TW113101698A 2018-06-06 2019-05-31 顯示裝置、顯示模組及電子裝置 TW202418263A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-108659 2018-06-06
JP2018-108658 2018-06-06

Publications (1)

Publication Number Publication Date
TW202418263A true TW202418263A (zh) 2024-05-01

Family

ID=

Similar Documents

Publication Publication Date Title
JP7247176B2 (ja) 表示装置、及び電子機器
US10573693B2 (en) Light-emitting device and electronic device
US10418594B2 (en) Light-emitting element, light-emitting device, electronic device, and lighting device
US10109683B2 (en) Light-emitting device comprising light-emitting element that is optically optimized independently
JP2022189942A (ja) 発光装置
US10164203B2 (en) Light-emitting element, light-emitting device, electronic device, and lighting device
KR20170027305A (ko) 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP2016085970A (ja) 発光素子、発光装置、表示装置、電子機器、及び照明装置
CN113785346A (zh) 显示装置
US20170141330A1 (en) Organometallic Complex, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
JP2024061782A (ja) 表示装置
US20180182992A1 (en) Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
WO2020229920A1 (ja) 半導体装置、および半導体装置の動作方法
CN114097083A (zh) 显示装置
TW202418263A (zh) 顯示裝置、顯示模組及電子裝置
TWI841368B (zh) 顯示器裝置、顯示器模組及電子裝置
US20240008301A1 (en) Light-Emitting Device
US20220173347A1 (en) Light-emitting device, light-emitting apparatus, light-emitting module, electronic device, and lighting device
CN117956818A (zh) 发光器件、显示装置及电子设备