TW202416646A - Resonant flyback power converter and switching control circuit and method thereof - Google Patents

Resonant flyback power converter and switching control circuit and method thereof Download PDF

Info

Publication number
TW202416646A
TW202416646A TW112133134A TW112133134A TW202416646A TW 202416646 A TW202416646 A TW 202416646A TW 112133134 A TW112133134 A TW 112133134A TW 112133134 A TW112133134 A TW 112133134A TW 202416646 A TW202416646 A TW 202416646A
Authority
TW
Taiwan
Prior art keywords
resonant
period
drive signal
power converter
shortest
Prior art date
Application number
TW112133134A
Other languages
Chinese (zh)
Inventor
陳裕昌
楊大勇
林昆餘
吳信義
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Publication of TW202416646A publication Critical patent/TW202416646A/en

Links

Images

Abstract

A resonant flyback power converter includes: a first transistor and a second transistor which are configured to switch a transformer and a resonant capacitor for generating an output voltage; and a switching control circuit generating first and second driving signals for controlling the first and the second transistors. The turn-on of the first driving signal magnetizes the transformer. The second driving signal includes a resonant pulse, having a resonant pulse width, and a ZVS pulse during the DCM operation. The resonant pulse is configured to demagnetize the transformer. The resonant pulse has a first minimum resonant period corresponding to a first level of the output load and a second minimum resonant period corresponding to a second level of the output load. The first level is higher than the second level and the second minimum resonant period is shorter than the first minimum resonant period.

Description

諧振返馳式電源轉換器及其切換控制電路與方法Resonant flyback power converter and switching control circuit and method thereof

本發明係有關一種諧振返馳式電源轉換器,特別是指一種在輕載時,能夠高效率執行轉換功能的諧振返馳式電源轉換器。本發明亦有關一種具有過電流保護功能的諧振返馳式電源轉換器。此外,本發明亦有關一種用以控制諧振返馳式電源轉換器的切換控制電路與方法。The present invention relates to a resonant flyback power converter, and more particularly to a resonant flyback power converter capable of performing a conversion function at high efficiency under light load. The present invention also relates to a resonant flyback power converter with an overcurrent protection function. In addition, the present invention also relates to a switching control circuit and method for controlling the resonant flyback power converter.

圖1係顯示習知返馳式電源轉換器的示意圖,其中圖1係揭露於美國專利文獻,其美國專利的公告號為US 5,959,850且其美國專利的題目為「非對稱占空比之返馳式電源轉換器」。圖1之先前技術旨在揭露一種具有零電壓切換 (zero voltage switching, ZVS)的半橋諧振返馳式電源轉換器900,其中圖1之先前技術能夠達成高效率的電源轉換。所謂的「零電壓切換」的定義指的是:「當某一電晶體的跨壓( 例如:汲-源極電壓)為零或趨近零時,此電晶體轉為導通」。然而,圖1所示的先前技術的缺點在於:在輕載時,圖1所示的先前技術之返馳式電源轉換器900的電源轉換效率是低的。FIG. 1 is a schematic diagram of a conventional flyback power converter, wherein FIG. 1 is disclosed in a U.S. patent document, wherein the U.S. patent publication number is US 5,959,850 and the title of the U.S. patent is “asymmetric duty cycle flyback power converter”. The prior art of FIG. 1 is intended to disclose a half-bridge resonant flyback power converter 900 with zero voltage switching (ZVS), wherein the prior art of FIG. 1 can achieve high-efficiency power conversion. The so-called “zero voltage switching” is defined as: “When the cross-voltage (e.g., drain-source voltage) of a transistor is zero or close to zero, the transistor turns on”. However, the disadvantage of the prior art shown in FIG. 1 is that the power conversion efficiency of the flyback power converter 900 of the prior art shown in FIG. 1 is low when the load is light.

再者,圖1所示的先前技術的缺點在於: 先前技術之返馳式電源轉換器900的輸出電壓是無法更動的。具體而言,若諧振返馳式電源轉換器欲具有可變動的輸出電壓,則諧振返馳式電源轉換器必須藉由偵測變壓器的去激磁時間(demagnetizing time)的功能,以便控制變壓器的切換。Furthermore, the disadvantage of the prior art shown in FIG1 is that the output voltage of the prior art flyback power converter 900 cannot be changed. Specifically, if the resonant flyback power converter is to have a variable output voltage, the resonant flyback power converter must detect the demagnetizing time of the transformer in order to control the switching of the transformer.

圖2A與圖2B係顯示在輸出負載為中載或輕載的狀況下,當習知半橋式電源轉換器操作於不連續導通模式 (discontinuous conduction mode, DCM)時,所對應的訊號操作波形圖。2A and 2B show corresponding signal operation waveforms when the known half-bridge power converter operates in a discontinuous conduction mode (DCM) when the output load is a medium load or a light load.

圖2A係顯示習知半橋式電源轉換器操作於輸出負載為中載的狀況時,所對應的訊號操作波形圖。當習知半橋式電源轉換器操作於不連續導通模式時,關斷時間TOFF係指:始於第二驅動訊號SL的關斷時點至結束於下一個第二驅動訊號SL的導通時點的一段期間。一旦目前的第二驅動訊號SL的關斷時間TOFF結束,第二驅動訊號SL將再度被導通以使上橋開關達成零電壓切換。關斷時間TOFF與切換週期隨著輸出負載的減輕而延長 (在此情況下,切換頻率隨著輸出負載的減輕而降低),藉此節省電源。FIG2A shows the corresponding signal operation waveform diagram when the known half-bridge power converter operates in the output load as a medium load. When the known half-bridge power converter operates in the discontinuous conduction mode, the off time TOFF refers to: a period starting from the off time point of the second drive signal SL to the on time point of the next second drive signal SL. Once the off time TOFF of the current second drive signal SL ends, the second drive signal SL will be turned on again to enable the upper bridge switch to achieve zero voltage switching. The off-time TOFF and the switching period are extended as the output load decreases (in this case, the switching frequency decreases as the output load decreases), thereby saving power.

圖2B係顯示習知半橋式電源轉換器操作於輸出負載為輕載的狀況時,所對應的訊號操作波形圖。第一驅動訊號SH的脈波寬度TX隨著習知半橋式電源轉換器的輸出負載的減輕而縮短。因此,激磁電流IM隨著習知半橋式電源轉換器的輸出負載的減輕而降低。第二驅動訊號SL的脈波寬度TW需維持於一個固定的最短導通時間,其中此固定的最短導通時間相關於變壓器10的漏磁電感值Lr的與諧振電容 20的電容值Cr的諧振頻率Fr,其中Fr = ( ),此固定的最短導通時間用以將諧振電容 20放電。於期間TW1內,當激磁電流IM降低至零後,此固定的最短導通時間將於第二驅動訊號SL的部分導通期間TW’內,產生一個很大的循環電流,因此當習知半橋式電源轉換器操作於輸出負載為輕載的狀況時,不幸地,會有很高的電源損失的缺點。 FIG2B shows the corresponding signal operation waveform when the known half-bridge power converter operates under the condition of light output load. The pulse width TX of the first drive signal SH is shortened as the output load of the known half-bridge power converter is reduced. Therefore, the excitation current IM is reduced as the output load of the known half-bridge power converter is reduced. The pulse width TW of the second drive signal SL needs to be maintained at a fixed minimum on-time, wherein the fixed minimum on-time is related to the resonant frequency Fr of the leakage inductance value Lr of the transformer 10 and the capacitance value Cr of the resonant capacitor 20, wherein Fr = ( ), the fixed minimum on-time is used to discharge the resonant capacitor 20. During the period TW1, after the excitation current IM decreases to zero, the fixed minimum on-time will generate a large circulating current during the partial on-time TW' of the second drive signal SL. Therefore, when the conventional half-bridge power converter is operated in a light-load output load state, unfortunately, there will be a disadvantage of high power loss.

相較於圖1、圖2A與圖2B所示的這些習知電源轉換器,本發明提供一種具有多種創新的節省電源的控制方法的諧振返馳式電源轉換器,藉此使得諧振返馳式電源轉換器操作於輸出負載為輕載或甚至毫無任何輸出負載的狀況時,提昇電源轉換效率。Compared to the conventional power converters shown in FIG. 1 , FIG. 2A and FIG. 2B , the present invention provides a resonant flyback power converter having a plurality of innovative power saving control methods, thereby improving the power conversion efficiency when the resonant flyback power converter operates under a light output load or even under no output load.

此外,本發明亦提供具有正電流過電流保護功能及負電流過電流保護功能的一種切換控制電路。In addition, the present invention also provides a switching control circuit with positive current over-current protection function and negative current over-current protection function.

於一觀點中,本發明提供一種諧振返馳式電源轉換器,包含一第一電晶體及一第二電晶體,用以形成一半橋電路;一變壓器及一諧振電容,其中該變壓器及該諧振電容彼此相互串聯連接且該變壓器及該諧振電容耦接於該半橋電路;以及一切換控制電路,用以產生一第一驅動訊號及一第二驅動訊號,其中該第一驅動訊號及該第二驅動訊號用以分別控制該第一電晶體及該第二電晶體,藉此切換該變壓器及該諧振電容,以產生一輸出電壓;其中該第一驅動訊號的導通狀態激磁 (magnetizes) 該變壓器,且,該第一驅動訊號的一導通時間隨著該諧振返馳式電源轉換器的一輸出負載的減輕而縮短;其中該第二驅動訊號用以將該諧振電容放電,其中當該諧振返馳式電源轉換器操作於一不連續導通模式 (discontinuous conduction mode, DCM)時,該第二驅動訊號包括:具有一諧振脈波寬度的一諧振脈波;以及具有一零電壓切換 (zero voltage switching, ZVS)脈波寬度的一零電壓切換脈波;其中該諧振脈波具有:對應該輸出負載的一第一位準的一第一最短諧振期間與對應該輸出負載的一第二位準的一第二最短諧振期間,其中該第一位準大於該第二位準,且,該第二最短諧振期間短於該第一最短諧振期間。In one aspect, the present invention provides a resonant flyback power converter, comprising a first transistor and a second transistor, for forming a half bridge circuit; a transformer and a resonant capacitor, wherein the transformer and the resonant capacitor are connected in series with each other and the transformer and the resonant capacitor are coupled to the half bridge circuit; and a switching control circuit, for generating a first drive signal and a second drive signal, wherein the first drive signal and the second drive signal are used to control the first transistor and the second transistor respectively, thereby switching the transformer and the resonant capacitor to generate an output voltage; wherein the on-state of the first drive signal magnetizes The transformer, and a conduction time of the first driving signal is shortened as an output load of the resonant flyback power converter is reduced; wherein the second driving signal is used to discharge the resonant capacitor, wherein when the resonant flyback power converter operates in a discontinuous conduction mode (DCM), the second driving signal includes: a resonant pulse with a resonant pulse width; and a zero voltage switching (zero voltage switching, A zero voltage switching pulse with a zero voltage switching (ZVS) pulse width; wherein the resonant pulse has: a first shortest resonant period corresponding to a first level of the output load and a second shortest resonant period corresponding to a second level of the output load, wherein the first level is greater than the second level, and the second shortest resonant period is shorter than the first shortest resonant period.

於另一觀點中,本發明提供一種切換控制電路,用以控制一諧振返馳式電源轉換器,其中該諧振返馳式電源轉換器包括:一第一電晶體及一第二電晶體,用以形成一半橋電路;以及彼此相互串聯連接的一變壓器及一諧振電容,其中該變壓器及該諧振電容耦接於該半橋電路; 其中該第一電晶體及該第二電晶體用以切換該變壓器及該諧振電容,以產生一輸出電壓;該切換控制電路包含:一激磁控制電路,用以產生一第一驅動訊號,以切換該第一電晶體;以及一諧振及零電壓切換控制電路,其耦接於該激磁控制電路,其中該諧振及零電壓切換控制電路用以產生一第二驅動訊號,以切換該第二電晶體;其中該第一驅動訊號的導通狀態激磁 (magnetizes) 該變壓器,且,該第一驅動訊號的一導通時間隨著該諧振返馳式電源轉換器的一輸出負載的減輕而縮短;其中該第二驅動訊號用以將該諧振電容放電,其中當該諧振返馳式電源轉換器操作於一不連續導通模式 (discontinuous conduction mode, DCM)時,該第二驅動訊號包括:具有一諧振脈波寬度的一諧振脈波;以及具有一零電壓切換 (zero voltage switching, ZVS)脈波寬度的一零電壓切換脈波;其中該諧振脈波具有:對應該輸出負載的一第一位準的一第一最短諧振期間與對應該輸出負載的一第二位準的一第二最短諧振期間,其中該第一位準大於該第二位準,且,該第二最短諧振期間短於該第一最短諧振期間。In another aspect, the present invention provides a switching control circuit for controlling a resonant flyback power converter, wherein the resonant flyback power converter comprises: a first transistor and a second transistor for forming a half bridge circuit; and a transformer and a resonant capacitor connected in series with each other, wherein the transformer and the resonant capacitor are coupled to the half bridge circuit; The first transistor and the second transistor are used to switch the transformer and the resonant capacitor to generate an output voltage; the switching control circuit includes: an excitation control circuit to generate a first drive signal to switch the first transistor; and a resonant and zero-voltage switching control circuit coupled to the excitation control circuit, wherein the resonant and zero-voltage switching control circuit is used to generate a second drive signal to switch the second transistor; wherein the conduction state of the first drive signal magnetizes The transformer, and a conduction time of the first driving signal is shortened as an output load of the resonant flyback power converter is reduced; wherein the second driving signal is used to discharge the resonant capacitor, wherein when the resonant flyback power converter operates in a discontinuous conduction mode (DCM), the second driving signal includes: a resonant pulse with a resonant pulse width; and a zero voltage switching (zero voltage switching, The invention relates to a zero voltage switching pulse having a zero voltage switching (ZVS) pulse width; wherein the resonant pulse has: a first shortest resonant period corresponding to a first level of the output load and a second shortest resonant period corresponding to a second level of the output load, wherein the first level is greater than the second level, and the second shortest resonant period is shorter than the first shortest resonant period.

於又一觀點中,本發明提供一種方法,用以控制一諧振返馳式電源轉換器,其中該諧振返馳式電源轉換器包括:一第一電晶體及一第二電晶體,用以形成一半橋電路;以及彼此相互串聯連接的一變壓器及一諧振電容,其中該變壓器及該諧振電容耦接於該半橋電路; 其中該第一電晶體及該第二電晶體用以切換該變壓器及該諧振電容,以產生一輸出電壓;該方法包含下列步驟:產生一第一驅動訊號,以切換該第一電晶體;以及產生一第二驅動訊號,以切換該第二電晶體;其中該第一驅動訊號的導通狀態激磁 (magnetizes) 該變壓器,且,該第一驅動訊號的一導通時間隨著該諧振返馳式電源轉換器的一輸出負載的減輕而縮短;其中該第二驅動訊號用以將該諧振電容放電,其中當該諧振返馳式電源轉換器操作於一不連續導通模式 (discontinuous conduction mode, DCM)時,該第二驅動訊號包括:具有一諧振脈波寬度的一諧振脈波;以及具有一零電壓切換 (zero voltage switching, ZVS)脈波寬度的一零電壓切換脈波;其中該諧振脈波具有:對應該輸出負載的一第一位準的一第一最短諧振期間與對應該輸出負載的一第二位準的一第二最短諧振期間,其中該第一位準大於該第二位準,且,該第二最短諧振期間短於該第一最短諧振期間。In another aspect, the present invention provides a method for controlling a resonant flyback power converter, wherein the resonant flyback power converter comprises: a first transistor and a second transistor, for forming a half bridge circuit; and a transformer and a resonant capacitor connected in series with each other, wherein the transformer and the resonant capacitor are coupled to the half bridge circuit; wherein the first transistor and the second transistor are used to switch the transformer and the resonant capacitor to generate an output voltage; the method comprises the following steps: generating a first drive signal to switch the first transistor; and generating a second drive signal to switch the second transistor; wherein the on-state of the first drive signal magnetizes The transformer, and a conduction time of the first driving signal is shortened as an output load of the resonant flyback power converter is reduced; wherein the second driving signal is used to discharge the resonant capacitor, wherein when the resonant flyback power converter operates in a discontinuous conduction mode (DCM), the second driving signal includes: a resonant pulse with a resonant pulse width; and a zero voltage switching (zero voltage switching, A zero voltage switching pulse with a zero voltage switching (ZVS) pulse width; wherein the resonant pulse has: a first shortest resonant period corresponding to a first level of the output load and a second shortest resonant period corresponding to a second level of the output load, wherein the first level is greater than the second level, and the second shortest resonant period is shorter than the first shortest resonant period.

於一實施例中,該第一最短諧振期間隨著該輸出負載的減輕而縮短。In one embodiment, the first shortest resonance period shortens as the output load decreases.

於一實施例中,該第一最短諧振期間包括:具有一固定期間的一第一最短諧振子期間 (resonant sub-period);以及具有一可調整期間的一第二最短諧振子期間;其中該可調整期間隨著該輸出負載的減輕而縮短。In one embodiment, the first shortest resonant period includes: a first shortest resonant sub-period having a fixed period; and a second shortest resonant sub-period having an adjustable period; wherein the adjustable period shortens as the output load decreases.

於一實施例中,該第二最短諧振期間為一固定值。In one embodiment, the second shortest resonance period is a fixed value.

於一實施例中,該第二驅動訊號的該零電壓切換脈波用以產生一循環電流,藉此使該第一電晶體達成零電壓切換。In one embodiment, the zero-voltage switching pulse of the second driving signal is used to generate a circulating current, thereby achieving zero-voltage switching of the first transistor.

於一實施例中,於該變壓器的一去磁期間 (demagnetizing period)內,該第二驅動訊號的該諧振脈波的該第一最短諧振期間用以產生一諧振期間 (resonant cycle),其中該諧振期間相關於該諧振電容與該變壓器的一諧振。In one embodiment, during a demagnetizing period of the transformer, the first shortest resonant period of the resonant pulse of the second driving signal is used to generate a resonant cycle, wherein the resonant cycle is related to a resonance of the resonant capacitor and the transformer.

於一實施例中,在關斷該第一驅動訊號之後,該第二驅動訊號導通,藉此將該諧振電容放電,其中於該諧振脈波的期間內,該諧振電容的一電壓位準相關於該輸出電壓的一電壓位準。In one embodiment, after the first driving signal is turned off, the second driving signal is turned on to discharge the resonant capacitor, wherein during the resonant pulse, a voltage level of the resonant capacitor is related to a voltage level of the output voltage.

於一實施例中,當該諧振返馳式電源轉換器操作於該不連續導通模式時,該第二驅動訊號更包括:一關斷時間,其中該第二驅動訊號的該關斷時間始於該第二驅動訊號的該諧振脈波被關斷的時點,其中該第二驅動訊號的該關斷時間隨著該諧振返馳式電源轉換器的該輸出負載的減輕而延長;其中於該第二驅動訊號的該關斷時間內,該第一驅動訊號及該第二驅動訊號皆被關斷。In one embodiment, when the resonant flyback power converter operates in the discontinuous conduction mode, the second drive signal further includes: an off time, wherein the off time of the second drive signal starts at the time point when the resonant pulse of the second drive signal is turned off, wherein the off time of the second drive signal is extended as the output load of the resonant flyback power converter is reduced; wherein during the off time of the second drive signal, both the first drive signal and the second drive signal are turned off.

於一實施例中,當該諧振返馳式電源轉換器操作於該不連續導通模式時,於該第二驅動訊號的該關斷時間的一結束時點,具有該零電壓切換脈波寬度的該零電壓切換脈波被致能。In one embodiment, when the resonant flyback power converter operates in the discontinuous conduction mode, at an end point of the off time of the second driving signal, the zero-voltage switching pulse having the zero-voltage switching pulse width is enabled.

於一實施例中,當該諧振返馳式電源轉換器操作於該不連續導通模式時,該第二驅動訊號更包括:一關斷時間,其中該第二驅動訊號的該關斷時間始於該第二驅動訊號的該諧振脈波被關斷的時點,其中該第二驅動訊號的該關斷時間隨著該諧振返馳式電源轉換器的該輸出負載的減輕而延長。In one embodiment, when the resonant flyback power converter operates in the discontinuous conduction mode, the second drive signal further includes: an off time, wherein the off time of the second drive signal starts at the time when the resonant pulse of the second drive signal is turned off, wherein the off time of the second drive signal is extended as the output load of the resonant flyback power converter is reduced.

以下將藉由具體實施例詳加說明,以更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。The following will be described in detail through specific embodiments to make it easier to understand the purpose, technical content, features and effects achieved by the present invention.

本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。The figures in the present invention are schematic, and are mainly intended to show the coupling relationship between various circuits and the relationship between various signal waveforms. The circuits, signal waveforms and frequencies are not drawn according to scale.

圖3係根據本發明之一實施例顯示諧振返馳式電源轉換器之示意圖。諧振返馳式電源轉換器300包括:第一電晶體30及第二電晶體40,用以形成一半橋電路。彼此相互串聯連接的變壓器10及諧振電容20係耦接於半橋電路的一切換節點LX。變壓器10包括:一次側線圈WP、二次側線圈WS與輔助線圈WA。一次側線圈WP與二次側線圈WS之間具有匝數比n=Np/Ns、而輔助線圈WA與二次側線圈WS之間具有匝數比m=Na/Ns、而輔助線圈WA與一次側線圈WP之間具有匝數比k=Na/Np。值得注意的是,Np、Ns、Na分別為一次側線圈WP、二次側線圈WS與輔助線圈WA的匝數。FIG3 is a schematic diagram showing a resonant flyback power converter according to an embodiment of the present invention. The resonant flyback power converter 300 includes: a first transistor 30 and a second transistor 40, which are used to form a half bridge circuit. The transformer 10 and the resonant capacitor 20 connected in series with each other are coupled to a switching node LX of the half bridge circuit. The transformer 10 includes: a primary winding WP, a secondary winding WS and an auxiliary winding WA. The primary winding WP and the secondary winding WS have a turns ratio of n=Np/Ns, the auxiliary winding WA and the secondary winding WS have a turns ratio of m=Na/Ns, and the auxiliary winding WA and the primary winding WP have a turns ratio of k=Na/Np. It is worth noting that Np, Ns, and Na are the number of turns of the primary coil WP, the secondary coil WS, and the auxiliary coil WA, respectively.

一次側控制器200產生第一驅動訊號SH與第二驅動訊號SL,其中驅動訊號SH與驅動訊號SL控制半橋電路以切換變壓器10,藉此於變壓器10的二次側產生輸出電壓VO。第一驅動訊號SH用以驅動第一電晶體30,以將激磁變壓器10激磁。第二驅動訊號SL於變壓器10的去磁時間內與變壓器10的諧振期間內,導通第二電晶體40。在一實施例中,第二驅動訊號SL亦用以導通第二電晶體40,藉此經由變壓器10而產生循環電流,進而使第一電晶體30達成零電壓切換。電阻60耦接於一次側線圈WP,用以根據變壓器10的一次側切換電流IP產生電流感測訊號VCS。The primary side controller 200 generates a first drive signal SH and a second drive signal SL, wherein the drive signal SH and the drive signal SL control the half-bridge circuit to switch the transformer 10, thereby generating an output voltage VO on the secondary side of the transformer 10. The first drive signal SH is used to drive the first transistor 30 to excite the excitation transformer 10. The second drive signal SL turns on the second transistor 40 during the demagnetization time of the transformer 10 and the resonance period of the transformer 10. In one embodiment, the second drive signal SL is also used to turn on the second transistor 40, thereby generating a circulating current through the transformer 10, thereby achieving zero voltage switching of the first transistor 30. The resistor 60 is coupled to the primary winding WP to generate a current sensing signal VCS according to the primary switching current IP of the transformer 10.

在一實施例中,第一驅動訊號SH與第二驅動訊號SL根據與諧振返馳式電源轉換器300的輸出電源(例如:輸出電壓VO)相關的反饋訊號VFB而產生。在一實施例中,二次側控制器100耦接於輸出電壓VO,藉此產生反饋訊號VFB。在一實施例中,反饋訊號VFB經由耦接於二次側控制器100的光耦合器90而耦接於一次側控制器200。二次側控制器100亦用以產生驅動訊號SG,其中驅動訊號SG用以於變壓器10的去磁時間TDS驅動同步整流器70。輔助線圈WA於變壓器10進行切換時,產生輔助線圈訊號VNA。電阻51與電阻52用以衰減輔助線圈訊號VNA以產生耦接於一次側控制器200的輔助訊號VAUX。In one embodiment, the first drive signal SH and the second drive signal SL are generated according to the feedback signal VFB related to the output power (e.g., output voltage VO) of the resonant flyback power converter 300. In one embodiment, the secondary side controller 100 is coupled to the output voltage VO to generate the feedback signal VFB. In one embodiment, the feedback signal VFB is coupled to the primary side controller 200 via an optical coupler 90 coupled to the secondary side controller 100. The secondary side controller 100 is also used to generate a drive signal SG, wherein the drive signal SG is used to drive the synchronous rectifier 70 during the demagnetization time TDS of the transformer 10. The auxiliary coil WA generates an auxiliary coil signal VNA when the transformer 10 is switched. The resistors 51 and 52 are used to attenuate the auxiliary coil signal VNA to generate an auxiliary signal VAUX coupled to the primary-side controller 200 .

圖4係根據本發明之一實施例顯示圖3所示的諧振返馳式電源轉換器所對應的訊號操作波形圖。當第一驅動訊號SH導通 (即:第一驅動訊號SH被致能至例如一高位準狀態)時,變壓器10被激磁,且,激磁電流IM因而產生。當第一驅動訊號SH關斷(即:第一驅動訊號SH被禁能至例如一低位準狀態)。於變壓器10的去磁時間TDS內,產生二次側切換電流IS。第二驅動訊號SL的諧振脈波Pres具有諧振脈波寬度TW,諧振脈波寬度TW係相關於變壓器10的去磁時間TDS。在一實施例中,第二驅動訊號SL的諧振脈波寬度TW配置為等於或長於變壓器10的去磁時間TDS,藉此避免變壓器10操作於連續導通模式 (continuous conduction mode, CCM)。於變壓器10的去磁時間TDS內,反射電壓VX產生於諧振電容20,其中反射電壓VX 可以下列關係式表示: VX = VO*Np/Ns FIG4 is a signal operation waveform diagram corresponding to the resonant flyback power converter shown in FIG3 according to an embodiment of the present invention. When the first drive signal SH is turned on (i.e., the first drive signal SH is enabled to, for example, a high level state), the transformer 10 is excited, and the exciting current IM is generated. When the first drive signal SH is turned off (i.e., the first drive signal SH is disabled to, for example, a low level state). During the demagnetization time TDS of the transformer 10, the secondary side switching current IS is generated. The resonant pulse Pres of the second drive signal SL has a resonant pulse width TW, and the resonant pulse width TW is related to the demagnetization time TDS of the transformer 10. In one embodiment, the resonant pulse width TW of the second driving signal SL is configured to be equal to or longer than the demagnetization time TDS of the transformer 10, thereby preventing the transformer 10 from operating in a continuous conduction mode (CCM). During the demagnetization time TDS of the transformer 10, a reflected voltage VX is generated in the resonant capacitor 20, wherein the reflected voltage VX can be expressed by the following relationship: VX = VO*Np/Ns

當第一驅動訊號SH關斷時,第二驅動訊號SL可被導通。另一方面,當第二驅動訊號SL關斷時,第一驅動訊號SH可被導通。在第一驅動訊號SH與第二驅動訊號SL之間可包括:停滯期間(例如:TRH and TRL)。When the first drive signal SH is turned off, the second drive signal SL can be turned on. On the other hand, when the second drive signal SL is turned off, the first drive signal SH can be turned on. Between the first drive signal SH and the second drive signal SL, there may be a stagnation period (eg, TRH and TRL).

如圖4所示的於不同期間所對應的操作將於下列的段落更清楚地闡明。The operations corresponding to the different periods shown in FIG. 4 will be more clearly explained in the following paragraphs.

時間點t1至時間點t2的這段期間代表的是:激磁變壓器激磁期間。其中時間點t1至時間點t2的這段期間內,第一電晶體30是導通的,而第二電晶體40是關斷的。在此情況下,變壓器10中的電流IP增加,而諧振電容中的電壓亦增加。換言之,變壓器10被激磁,而諧振電容20被充電。另一方面,二次側的同步整流器70是關斷的,且,二次側的同步整流器70的本體二極體75被反向偏壓。因此,沒有任何能量傳輸到二次側。The period from time point t1 to time point t2 represents the excitation period of the excitation transformer. During the period from time point t1 to time point t2, the first transistor 30 is turned on and the second transistor 40 is turned off. In this case, the current IP in the transformer 10 increases, and the voltage in the resonant capacitor also increases. In other words, the transformer 10 is excited and the resonant capacitor 20 is charged. On the other hand, the synchronous rectifier 70 on the secondary side is turned off, and the body diode 75 of the synchronous rectifier 70 on the secondary side is reverse biased. Therefore, no energy is transferred to the secondary side.

時間點t2至時間點t3的這段期間指的是:第一循環電流期間。在時間點t2至時間點t3的這段期間內,第一電晶體30與第二電晶體40皆是關斷的。變壓器10的循環電流將驅使半橋電路的切換節點電壓VHB降低,進而使第二電晶體40的本體二極體45導通。時間點t2至時間點t3的這段期間係相關於準諧振 (quasi-resonant) 週期,其可使第二電晶體40達成零電壓切換。在此情況下,變壓器10的一次側在時間點t3時的電壓係相同於諧振電容20在時間點t3時的電壓。The period from time point t2 to time point t3 is referred to as the first circulating current period. During the period from time point t2 to time point t3, both the first transistor 30 and the second transistor 40 are turned off. The circulating current of the transformer 10 will drive the switching node voltage VHB of the half-bridge circuit to decrease, thereby turning on the body diode 45 of the second transistor 40. The period from time point t2 to time point t3 is related to the quasi-resonant period, which can achieve zero-voltage switching of the second transistor 40. In this case, the voltage of the primary side of the transformer 10 at time point t3 is the same as the voltage of the resonant capacitor 20 at time point t3.

時間點t3至時間點t4的這段期間指的是:一個諧振期間 (正電流)。其中時間點t3至時間點t4的這段期間內,在零電壓切換的情況下,第一電晶體30是關斷的,而第二電晶體40是導通的。在此情況下,輸出電壓VO等於諧振電容20的跨壓Vcr除以匝數比n所獲得的商數。因此,電流開始流經二次側的同步整流器70,如此一來,儲存於變壓器10的能量被轉移至輸出端,以產生輸出電壓VO。由於電感電容諧振腔 (LC tank)係由變壓器10的漏磁電感值Lr與諧振電容20之諧振電容值Cr所構成,因此二次側切換電流IS所具有的正弦波形之頻率,係由漏磁電感值Lr與諧振電容值Cr的諧振頻率而決定。如此一來,變壓器10的一次側切換電流IP係等於激磁電流IM與二次側切換電流之反射電流之差。在此情況下,所述的諧振腔中的電流仍然為正值,其中所述的諧振腔中的這個正值的電流主要是被激磁電感激磁所驅動,而流入諧振電容20。The period from time point t3 to time point t4 refers to a resonance period (positive current). During the period from time point t3 to time point t4, in the case of zero voltage switching, the first transistor 30 is turned off and the second transistor 40 is turned on. In this case, the output voltage VO is equal to the quotient obtained by dividing the cross voltage Vcr of the resonance capacitor 20 by the turns ratio n. Therefore, the current begins to flow through the synchronous rectifier 70 on the secondary side, so that the energy stored in the transformer 10 is transferred to the output end to generate the output voltage VO. Since the LC tank is formed by the leakage inductance Lr of the transformer 10 and the resonant capacitance Cr of the resonant capacitor 20, the frequency of the sinusoidal waveform of the secondary switching current IS is determined by the resonant frequency of the leakage inductance Lr and the resonant capacitance Cr. In this way, the primary switching current IP of the transformer 10 is equal to the difference between the excitation current IM and the reflected current of the secondary switching current. In this case, the current in the resonant tank is still positive, wherein the positive current in the resonant tank is mainly driven by the excitation electromagnetic magnetization and flows into the resonant capacitor 20.

時間點t4至時間點t5的這段期間指的是:一個諧振期間 (負電流)。其中時間點t4至時間點t5的這段期間內,第一電晶體30是關斷的,而第二電晶體40是持續導通的。儲存於變壓器10的能量仍然持續被轉移至二次側,但是,在此情況下,所述共振腔中的電流係被諧振電容20中的電壓所反向驅動。當第二電晶體40是持續導通時,諧振電容20中的能量不僅被轉移至二次側,並且,諧振電容20中的能量被用以將變壓器10的激磁電流IM變成具有負值位準的電流 (例如:時間點t4至時間點t5的這段期間內的負值電流)。The period from time point t4 to time point t5 refers to a resonance period (negative current). During the period from time point t4 to time point t5, the first transistor 30 is turned off, and the second transistor 40 is continuously turned on. The energy stored in the transformer 10 is still continuously transferred to the secondary side, but in this case, the current in the resonant cavity is reversely driven by the voltage in the resonant capacitor 20. When the second transistor 40 is continuously turned on, the energy in the resonant capacitor 20 is not only transferred to the secondary side, but also the energy in the resonant capacitor 20 is used to convert the excitation current IM of the transformer 10 into a current with a negative level (for example, a negative current during the period from time point t4 to time point t5).

時間點t5至時間點t6的這段期間指的是:一個逆向激磁變壓器激磁期間 (backward magnetized transformer cycle) (負電流)。其中逆向激磁變壓器激磁期間係起始於變壓器10的去磁時間TDS的結束時點,且結束於第二電晶體40轉關斷時點。在此情況下,諧振電容20將變壓器10反向 (inversely)激磁且產生負電流。The period from time point t5 to time point t6 refers to a backward magnetized transformer cycle (negative current). The backward magnetized transformer cycle starts at the end of the demagnetization time TDS of the transformer 10 and ends at the turn-off time of the second transistor 40. In this case, the resonant capacitor 20 reversely magnetizes the transformer 10 and generates a negative current.

時間點t6至時間點t7的這段期間指的是:第二循環電流期間。在此段期間,第一電晶體30與第二電晶體40皆是關斷的。於時間點t5至時間點t6的那段期間內,在變壓器10中所感應的負電流將驅使半橋電路的切換節點LX上的切換節點電壓VHB增加,直到切換節點電壓VHB導通第一電晶體30的本體二極體35。如此一來,當第一電晶體30在時間點t7再一次導通時能夠達成零電壓切換。The period from time point t6 to time point t7 is referred to as the second circulating current period. During this period, the first transistor 30 and the second transistor 40 are both turned off. During the period from time point t5 to time point t6, the negative current induced in the transformer 10 will drive the switching node voltage VHB on the switching node LX of the half-bridge circuit to increase until the switching node voltage VHB turns on the body diode 35 of the first transistor 30. In this way, when the first transistor 30 is turned on again at time point t7, zero voltage switching can be achieved.

在時間點t7之後,另一個週期又再度開始,類似於時間點t1至時間點t2的這段期間內的其中第一電晶體30在零電壓切換的情況轉為導通,而第二電晶體40是關斷的。倘若在變壓器10中的所述的諧振腔的電流仍然是負電流,儲存於所述的諧振腔的過量的能量將被送回至輸入電壓VIN。After time t7, another cycle begins again, similar to the period from time t1 to time t2, in which the first transistor 30 is turned on at zero voltage switching, while the second transistor 40 is turned off. If the current in the resonant cavity in the transformer 10 is still negative, the excess energy stored in the resonant cavity will be returned to the input voltage VIN.

圖5A與圖5B係根據本發明之一實施例顯示當諧振返馳式電源轉換器分別操作於輸出負載為中載與輕載的狀況下,諧振返馳式電源轉換器所分別對應的訊號操作波形圖。請參閱圖5A。第二驅動訊號SL的關斷時間TOFF起始於第二驅動訊號SL的關斷時點,而結束於下一個第二驅動訊號SL的導通時點,其中一旦計時器350(如圖8所示) 計時結束,第二驅動訊號SL會轉為導通。在一實施例中,第二驅動訊號SL的關斷時間TOFF隨著諧振返馳式電源轉換器300的輸出負載的減輕而延長 (此時,切換頻率因而隨著諧振返馳式電源轉換器300的輸出負載的減輕而降低),藉此節省電源。在一實施例中,如圖5A所示的中載的狀況下,去磁時間TDS趨近於諧振期間TWr,且,第二驅動訊號SL的諧振脈波寬度TW趨近於去磁時間TDS與諧振期間TWr。值得注意的是,去磁時間TDS指的是:激磁電流IM從其波形的峰值降低至零的那段期間。諧振期間TWr指的是:諧振電容20與變壓器10的漏磁電感值Lr的諧振期間加上一次側切換電流IP從其波形的峰值降低至零的那段期間。諧振脈波寬度TW指的是:當第一驅動訊號SH關斷之後,第二驅動訊號SL的第一個脈波 (即:諧振脈波Pres)的脈波寬度。FIG. 5A and FIG. 5B are respectively corresponding signal operation waveforms of the resonant flyback power converter when the resonant flyback power converter is operated under the conditions of medium load and light load, respectively, according to an embodiment of the present invention. Please refer to FIG. 5A. The off time TOFF of the second drive signal SL starts at the off time point of the second drive signal SL and ends at the next on time point of the second drive signal SL, wherein once the timer 350 (as shown in FIG. 8 ) ends, the second drive signal SL will turn on. In one embodiment, the off time TOFF of the second drive signal SL is extended as the output load of the resonant flyback power converter 300 is reduced (at this time, the switching frequency is reduced as the output load of the resonant flyback power converter 300 is reduced), thereby saving power. In one embodiment, under the medium load condition as shown in FIG. 5A , the demagnetization time TDS approaches the resonant period TWr, and the resonant pulse width TW of the second drive signal SL approaches the demagnetization time TDS and the resonant period TWr. It is worth noting that the demagnetization time TDS refers to the period during which the excitation current IM decreases from the peak value of its waveform to zero. The resonance period TWr refers to the resonance period of the resonance capacitor 20 and the leakage inductance Lr of the transformer 10 plus the period during which the primary switching current IP decreases from the peak value of its waveform to zero. The resonance pulse width TW refers to the pulse width of the first pulse of the second drive signal SL (i.e., the resonance pulse Pres) after the first drive signal SH is turned off.

在一實施例中,如圖5A所示,第二驅動訊號SL的諧振脈波寬度TW具有最短諧振期間Tres_min,其中最短諧振期間Tres_min等於具有固定期間的最短諧振子期間TW1加上具有可調整期間的最短諧振子期間TW2。在本實施例中,如圖5A所示,由於輸出負載處在中載的範圍之內,因此,諧振脈波寬度TW並未受到最短諧振期間Tres_min的限制。In one embodiment, as shown in FIG5A , the resonant pulse width TW of the second driving signal SL has a shortest resonant period Tres_min, wherein the shortest resonant period Tres_min is equal to the shortest resonant subperiod TW1 having a fixed period plus the shortest resonant subperiod TW2 having an adjustable period. In this embodiment, as shown in FIG5A , since the output load is within the medium load range, the resonant pulse width TW is not limited by the shortest resonant period Tres_min.

在一實施例中,具有可調整期間的最短諧振子期間TW2隨著輸出負載的減輕而縮短。因此,最短諧振期間Tres_min亦隨著輸出負載的減輕而縮短。In one embodiment, the shortest resonator period TW2 with an adjustable period is shortened as the output load is reduced. Therefore, the shortest resonant period Tres_min is also shortened as the output load is reduced.

請參閱圖5B。在一實施例中,當諧振返馳式電源轉換器300操作於輸出負載為輕載的狀況下,諧振脈波寬度TW會受到最短諧振期間Tres_min的限制。在本實施例中,由於較輕的輸出負載 (例如:較輕的輸出功率或較輕的輸出電流),因此圖5B所示的具有可調整期間的最短諧振子期間TW2被調整成為短於圖5A所示的具有可調整期間的最短諧振子期間TW2。如此一來,相較於圖5A所示的諧振脈波寬度TW,圖5B所示的諧振脈波寬度TW較短。其中,相較於圖5A而言,圖5B所示的諧振脈波寬度TW短至一程度,使得循環電流(即:一次側切換電流IP的負電流)相較於圖5A而言較少的,或循環電流的存續期間相較於圖5A而言是較短的。Please refer to FIG. 5B. In one embodiment, when the resonant flyback power converter 300 operates under a light output load, the resonant pulse width TW is limited by the shortest resonant period Tres_min. In this embodiment, due to the lighter output load (e.g., lighter output power or lighter output current), the shortest resonant period TW2 with an adjustable period shown in FIG. 5B is adjusted to be shorter than the shortest resonant period TW2 with an adjustable period shown in FIG. 5A. As a result, the resonant pulse width TW shown in FIG. 5B is shorter than the resonant pulse width TW shown in FIG. 5A. Compared with FIG. 5A , the resonant pulse width TW shown in FIG. 5B is shorter to such an extent that the circulating current (ie, the negative current of the primary switching current IP) is less than that in FIG. 5A , or the duration of the circulating current is shorter than that in FIG. 5A .

就一觀點而言,本實施例的第二驅動訊號SL的最短諧振期間Tres_min不會產生循環電流。或者,在激磁電流降低至零之後,本實施例的第二驅動訊號SL的最短諧振期間Tres_min將僅僅產生極度低的循環電流,藉此將能夠大幅地降低當諧振返馳式電源轉換器300操作於輸出負載為輕載的狀況下所造成的電源損耗。From one point of view, the shortest resonant period Tres_min of the second driving signal SL of the present embodiment will not generate a circulating current. Alternatively, after the excitation current is reduced to zero, the shortest resonant period Tres_min of the second driving signal SL of the present embodiment will only generate an extremely low circulating current, thereby being able to significantly reduce the power loss caused when the resonant flyback power converter 300 operates under the condition of a light output load.

請參閱圖5C。圖5C係根據本發明之一實施例顯示當諧振返馳式電源轉換器操作於輸出負載為極度輕載 (extremely light load)或甚至毫無任何輸出負載的狀況下,諧振返馳式電源轉換器所對應的訊號操作波形圖。在一實施例中,當諧振返馳式電源轉換器300操作於輸出負載為極度輕載 (extremely light load)或甚至毫無任何輸出負載的狀況下,脈波寬度TW會受到最短諧振期間Tres_min的限制。在本實施例中,如圖5C所示,隨著輸出負載不斷地減輕,具有可調整期間的最短諧振子期間TW2被調整成零。如此一來,圖5C所示的脈波寬度TW係等於具有固定期間的最短諧振子期間TW1 (即:Tres_min= TW1 + 0 )。Please refer to FIG5C. FIG5C is a waveform diagram of a signal operation corresponding to the resonant flyback power converter when the resonant flyback power converter operates under an extremely light load or even without any output load according to an embodiment of the present invention. In one embodiment, when the resonant flyback power converter 300 operates under an extremely light load or even without any output load, the pulse width TW is limited by the shortest resonant period Tres_min. In this embodiment, as shown in FIG5C , as the output load is continuously reduced, the shortest resonant period TW2 with an adjustable period is adjusted to zero. Thus, the pulse width TW shown in FIG5C is equal to the shortest resonant period TW1 with a fixed period (ie, Tres_min = TW1 + 0).

就一觀點而言,當諧振返馳式電源轉換器300操作於輸出負載為較重的狀況下,當具有可調整期間的最短諧振子期間TW2並非等於零時,第一最短諧振期間Tres_min1可以下列關係式表示:Tres_min1= TW1+TW2 。另一方面,當諧振返馳式電源轉換器300操作於輸出負載為較輕的狀況下,使得具有可調整期間的最短諧振子期間TW2等於零時,第二最短諧振期間Tres_min2可以下列關係式表示:Tres_min2=TW1+0 。基於上述,在此情況下,第一最短諧振期間Tres_min1長於第二最短諧振期間Tres_min2。From one point of view, when the resonant flyback power converter 300 operates under a condition where the output load is heavy, when the shortest resonant period TW2 with an adjustable period is not equal to zero, the first shortest resonant period Tres_min1 can be expressed by the following relationship: Tres_min1= TW1+TW2. On the other hand, when the resonant flyback power converter 300 operates under a condition where the output load is light, so that the shortest resonant period TW2 with an adjustable period is equal to zero, the second shortest resonant period Tres_min2 can be expressed by the following relationship: Tres_min2=TW1+0. Based on the above, in this case, the first shortest resonant period Tres_min1 is longer than the second shortest resonant period Tres_min2.

圖6A與圖6B係根據本發明之二實施例,分別顯示諧振返馳式電源轉換器的一次側控制器 200A與一次側控制器200B的方塊圖。在一實施例中,如圖6A所示,一次側控制器200A包括:激磁控制電路201與諧振及零電壓切換控制電路202A。激磁控制電路201用以根據電流感測訊號VCS、反饋訊號VFB與諧振及零電壓切換控制電路202A所產生的訊號,產生第一驅動訊號SH。諧振及零電壓切換控制電路202A用以根據激磁控制電路201所產生的訊號,產生第二驅動訊號SL。在一實施例中,如圖6B所示,一次側控制器200B包括:激磁控制電路201與諧振及零電壓切換控制電路202B。在一實施例中,諧振及零電壓切換控制電路202B用以更根據輔助訊號VAUX,產生第二驅動訊號SL。FIG6A and FIG6B are block diagrams of a primary side controller 200A and a primary side controller 200B of a resonant flyback power converter, respectively, according to a second embodiment of the present invention. In one embodiment, as shown in FIG6A , the primary side controller 200A includes: an excitation control circuit 201 and a resonant and zero voltage switching control circuit 202A. The excitation control circuit 201 is used to generate a first drive signal SH according to a current sensing signal VCS, a feedback signal VFB and a signal generated by the resonant and zero voltage switching control circuit 202A. The resonant and zero voltage switching control circuit 202A is used to generate a second drive signal SL according to the signal generated by the excitation control circuit 201. In one embodiment, as shown in FIG6B , the primary-side controller 200B includes an excitation control circuit 201 and a resonance and zero-voltage switching control circuit 202B. In one embodiment, the resonance and zero-voltage switching control circuit 202B is used to generate a second driving signal SL according to the auxiliary signal VAUX.

圖7係根據本發明之一實施例顯示諧振返馳式電源轉換器中,用以產生第一驅動訊號SH的激磁控制電路206之示意圖。在一實施例中,電晶體221用以偏移反饋訊號VFB而產生反饋訊號VCOM。在一實施例中,反饋訊號VFB的位準與諧振返馳式電源轉換器300的輸出負載的位準呈比例關係。零電壓切換控制訊號SZ的下降緣在經過延遲元件 (delay cell)210所提供的一段延遲時間之後,致能正反器215,進而致能第一驅動訊號SH,其中關於零電壓切換控制訊號SZ的產生,容後詳述。在一實施例中,延遲元件210所提供的延遲時間相關於零電壓切換的準諧振延遲 (quasi-resonant delay),其中準諧振延遲相關於一次側線圈WP的激磁電感值的諧振期間與切換節點LX上的全部的等效寄生電容值。一旦第一驅動訊號SH導通,脈波產生器230決定第一驅動訊號SH的最短導通時間。電阻224與電阻225用以產生衰減過的反饋訊號VCOM’。當電流感測訊號VCS大於衰減過的反饋訊號VCOM’時,比較器220用以重置正反器215以關斷第一驅動訊號SH。正反器215的輸出 (即:第一切換控制訊號SWH)藉由上橋閘極驅動器240,產生第一驅動訊號SH。自舉電容242與自舉二極體241用以提供電源予上橋閘極驅動器240。FIG. 7 is a schematic diagram showing an excitation control circuit 206 for generating a first drive signal SH in a resonant flyback power converter according to an embodiment of the present invention. In one embodiment, a transistor 221 is used to offset a feedback signal VFB to generate a feedback signal VCOM. In one embodiment, the level of the feedback signal VFB is proportional to the level of the output load of the resonant flyback power converter 300. After a delay time provided by a delay cell 210, the falling edge of the zero voltage switching control signal SZ enables the flip-flop 215, thereby enabling the first drive signal SH, wherein the generation of the zero voltage switching control signal SZ will be described in detail later. In one embodiment, the delay time provided by the delay element 210 is related to the quasi-resonant delay of zero voltage switching, wherein the quasi-resonant delay is related to the resonance period of the magnetizing inductance of the primary coil WP and the total equivalent parasitic capacitance on the switching node LX. Once the first drive signal SH is turned on, the pulse generator 230 determines the shortest on-time of the first drive signal SH. The resistor 224 and the resistor 225 are used to generate the attenuated feedback signal VCOM'. When the current sensing signal VCS is greater than the attenuated feedback signal VCOM', the comparator 220 is used to reset the flip-flop 215 to turn off the first drive signal SH. The output of the flip-flop 215 (i.e., the first switching control signal SWH) generates a first driving signal SH via the upper bridge gate driver 240. The bootstrap capacitor 242 and the bootstrap diode 241 are used to provide power to the upper bridge gate driver 240.

圖8係根據本發明之一實施例顯示諧振返馳式電源轉換器中的諧振及零電壓切換控制電路207之示意圖。第二切換控制訊號SWL與零電壓切換控制訊號SZ藉由或閘313運算後,透過驅動器315緩衝處而產生第二驅動訊號SL。第一驅動訊號SH的下降緣在經過延遲元件 (delay cell)310所提供的一段準諧振延遲時間之後,觸發正反器312,使得正反器312致能第二切換控制訊號SWL。在一實施例中,延遲元件310用以提供準諧振延遲,以使第二電晶體40達成零電壓切換。電流源320、電容325、電晶體322、反相器321與比較器335用以構成計時電路301。當第一驅動訊號SH在邏輯上為低位準時 (becomes logic-low),電容325開始透過電流源320而被充電。當電容325的電壓位準高於一閾值電壓VT時,比較器335產生重置訊號,以重置正反器312,進而關斷第二切換控制訊號SWL,藉此關斷第二電晶體40。在此情況下,第二切換控制訊號SWL的脈波寬度係透過閾值電壓VT的電壓位準而被決定,其中經由加法器330用以疊加閾值VT1與閾值VT2以決定閾值電壓VT的電壓位準(VT=VT1+VT2)。閾值VT1對應決定具有固定期間的最短諧振子期間TW1,而閾值VT2對應決定具有可調整期間的最短諧振子期間TW2。在一實施例中,閾值VT2相關於反饋訊號VCOM,使得閾值VT2的電壓位準隨著輸出負載的減輕而降低。閾值VT1為一固定值,在此情況下,閾值VT1用以提供第二切換控制訊號SWL中之具有固定期間的最短諧振子期間TW1,以於輕載時對諧振電容20放電。FIG8 is a schematic diagram showing a resonant and zero voltage switching control circuit 207 in a resonant flyback power converter according to an embodiment of the present invention. The second switching control signal SWL and the zero voltage switching control signal SZ are operated by an OR gate 313 and then buffered by a driver 315 to generate a second drive signal SL. The falling edge of the first drive signal SH triggers a flip-flop 312 after a quasi-resonant delay time provided by a delay cell 310, so that the flip-flop 312 enables the second switching control signal SWL. In one embodiment, the delay cell 310 is used to provide a quasi-resonant delay so that the second transistor 40 achieves zero voltage switching. The current source 320, the capacitor 325, the transistor 322, the inverter 321 and the comparator 335 are used to form the timing circuit 301. When the first driving signal SH becomes logic-low, the capacitor 325 starts to be charged through the current source 320. When the voltage level of the capacitor 325 is higher than a threshold voltage VT, the comparator 335 generates a reset signal to reset the flip-flop 312, thereby turning off the second switching control signal SWL, thereby turning off the second transistor 40. In this case, the pulse width of the second switching control signal SWL is determined by the voltage level of the threshold voltage VT, wherein the threshold VT1 and the threshold VT2 are superimposed by the adder 330 to determine the voltage level of the threshold voltage VT (VT=VT1+VT2). The threshold VT1 corresponds to the shortest resonator period TW1 with a fixed period, and the threshold VT2 corresponds to the shortest resonator period TW2 with an adjustable period. In one embodiment, the threshold VT2 is related to the feedback signal VCOM, so that the voltage level of the threshold VT2 decreases as the output load decreases. The threshold VT1 is a fixed value. In this case, the threshold VT1 is used to provide a shortest resonator period TW1 with a fixed period in the second switching control signal SWL to discharge the resonant capacitor 20 at light load.

值得注意的是,在一實施例中,在等到輸出負載輕於一預設閾值的狀況前,閾值VT2不相關於輸出負載。換言之,在一實施例中,當輸出負載重於該預設閾值時,最短諧振期間Tres_min為一固定值。It is worth noting that, in one embodiment, before the output load is lighter than a preset threshold, the threshold VT2 is not related to the output load. In other words, in one embodiment, when the output load is heavier than the preset threshold, the shortest resonance period Tres_min is a fixed value.

請繼續參閱圖8。關斷第二切換控制訊號SWL將致能計時器350開始計時。反饋訊號VCOM決定計時器350的關斷時間TOFF。在一實施例中,由於關斷時間TOFF反比於反饋訊號VCOM,因此,關斷時間TOFF隨著輸出負載的減輕而延長。當計時器350結束其操作機制時,計時器350致能脈波產生器380以產生零電壓切換控制訊號SZ。於諧振返馳式電源轉換器300操作於不連續導通模式 (discontinuous conduction mode, DCM)的期間,零電壓切換控制訊號SZ用以產生循環電流,藉此使得第一電晶體30達成零電壓切換。零電壓切換控制訊號SZ的脈波寬度(在此稱為零電壓切換脈波寬度TZ)係藉由輸入電壓VIN的電壓位準、輸出電壓VO與變壓器10的電感值等而被決定。Please continue to refer to FIG8. Turning off the second switching control signal SWL enables the timer 350 to start timing. The feedback signal VCOM determines the off time TOFF of the timer 350. In one embodiment, since the off time TOFF is inversely proportional to the feedback signal VCOM, the off time TOFF is extended as the output load is reduced. When the timer 350 ends its operation mechanism, the timer 350 enables the pulse generator 380 to generate the zero voltage switching control signal SZ. When the resonant flyback power converter 300 operates in a discontinuous conduction mode (DCM), the zero voltage switching control signal SZ is used to generate a circulating current, thereby achieving zero voltage switching of the first transistor 30. The pulse width of the zero voltage switching control signal SZ (referred to as zero voltage switching pulse width TZ herein) is determined by the voltage level of the input voltage VIN, the output voltage VO, and the inductance value of the transformer 10.

總結上述,於諧振返馳式電源轉換器300操作於不連續導通模式的期間,第二驅動訊號SL包括:具有諧振脈波寬度TW的諧振脈波Pres (其中諧振脈波寬度TW係由第二切換控制訊號SWL決定)與具有零電壓切換脈波寬度TZ的零電壓切換脈波Pzv(其中零電壓切換脈波寬度TZ係由零電壓切換控制訊號SZ決定)。諧振脈波寬度TW具有:對應重的輸出負載的第一最短諧振期間Tres_min1=(TW1+TW2)與對應輕的輸出負載的第二最短諧振期間Tres_min2=(TW1),其中第二最短諧振期間(TW1)短於第一最短諧振期間(TW1+TW2)。在一實施例中,第一最短諧振期間(TW1+TW2)隨著輸出負載的減輕而縮短。To summarize the above, when the resonant flyback power converter 300 operates in the discontinuous conduction mode, the second driving signal SL includes: a resonant pulse Pres having a resonant pulse width TW (wherein the resonant pulse width TW is determined by the second switching control signal SWL) and a zero-voltage switching pulse Pzv having a zero-voltage switching pulse width TZ (wherein the zero-voltage switching pulse width TZ is determined by the zero-voltage switching control signal SZ). The resonant pulse width TW has a first shortest resonant period Tres_min1=(TW1+TW2) corresponding to a heavy output load and a second shortest resonant period Tres_min2=(TW1) corresponding to a light output load, wherein the second shortest resonant period (TW1) is shorter than the first shortest resonant period (TW1+TW2). In one embodiment, the first shortest resonant period (TW1+TW2) is shortened as the output load is reduced.

圖9A係根據本發明之一實施例顯示諧振返馳式電源轉換器操作於變壓器激磁期間,此時一次側切換電流IP為正值激磁激磁。圖9A顯示正電流IPP,其為一次側切換電流IP的正值部分。正電流IPP產生於第一電晶體30轉為導通的且第二電晶體40是關斷的時候,此時諧振返馳式電源轉換器300係操作於激磁變壓器激磁期間,其中正電流IPP對應圖4所示的「時間點t1至時間點t2」的這段期間的電流。正電流IPP會激磁變壓器10並將諧振電容20充電。在此情況下,若諧振返馳式電源轉換器300的輸出端被短路,在經過少許切換週期之後,變壓器10的磁通量將會飽和。在此情況下,變壓器10的一次側線圈WP將等效於短路,如此一來,將會使第一電晶體30受到恆久性毀壞。因此,當一次側切換電流IP的正電流IPP超過一正值過電流閾值 (positive-over-current threshold)時,為了保護第一電晶體30,本發明需要針對第一電晶體30執行過電流保護機制,意即,本發明將立刻關斷第一電晶體30。FIG. 9A shows a resonant flyback power converter operating during the transformer excitation period according to an embodiment of the present invention, at which time the primary switching current IP is a positive excitation excitation. FIG. 9A shows a positive current IPP, which is the positive portion of the primary switching current IP. The positive current IPP is generated when the first transistor 30 turns on and the second transistor 40 is off, at which time the resonant flyback power converter 300 operates during the excitation transformer excitation period, wherein the positive current IPP corresponds to the current during the period from “time point t1 to time point t2” shown in FIG. 4 . The positive current IPP excites the transformer 10 and charges the resonant capacitor 20. In this case, if the output terminal of the resonant flyback power converter 300 is short-circuited, the magnetic flux of the transformer 10 will be saturated after a few switching cycles. In this case, the primary winding WP of the transformer 10 will be equivalent to a short circuit, which will cause permanent damage to the first transistor 30. Therefore, when the positive current IPP of the primary switching current IP exceeds a positive over-current threshold, in order to protect the first transistor 30, the present invention needs to implement an over-current protection mechanism for the first transistor 30, that is, the present invention will immediately turn off the first transistor 30.

圖9B係根據本發明之一實施例顯示諧振返馳式電源轉換器操作於諧振期間,此時一次側切換電流IP為負值。圖9B顯示負電流IPN,其為一次側切換電流IP的負值部分。負電流IPN產生於第一電晶體30轉為關斷的且第二電晶體40是導通的時候,此時諧振返馳式電源轉換器300係操作於諧振期間,其中負電流IPN對應圖4所示的「時間點t4至時間點t5」的這段期間的電流。藉由變壓器10,諧振電容20中的能量被轉移至諧振返馳式電源轉換器300的輸出端。在此情況下,若諧振返馳式電源轉換器300的輸出端被短路,藉由變壓器10,諧振電容20將被等效地短路,如此一來,將可造成第二電晶體40受到恆久性毀壞。因此,當一次側切換電流IP的負電流IPN超過一負值過電流閾值 (negative -over-current threshold)時,為了保護第二電晶體40,本發明需要針對第二電晶體40執行過電流保護機制,意即,本發明將立刻關斷第二電晶體40。FIG. 9B shows the resonant flyback power converter operating in the resonant period according to an embodiment of the present invention, when the primary switching current IP is negative. FIG. 9B shows the negative current IPN, which is the negative portion of the primary switching current IP. The negative current IPN is generated when the first transistor 30 is turned off and the second transistor 40 is turned on, when the resonant flyback power converter 300 is operating in the resonant period, wherein the negative current IPN corresponds to the current during the period from “time point t4 to time point t5” shown in FIG. 4 . The energy in the resonant capacitor 20 is transferred to the output end of the resonant flyback power converter 300 through the transformer 10. In this case, if the output terminal of the resonant flyback power converter 300 is short-circuited, the resonant capacitor 20 will be equivalently short-circuited through the transformer 10, which will cause permanent damage to the second transistor 40. Therefore, when the negative current IPN of the primary switching current IP exceeds a negative over-current threshold, in order to protect the second transistor 40, the present invention needs to implement an over-current protection mechanism for the second transistor 40, that is, the present invention will immediately turn off the second transistor 40.

圖10係根據本發明之一實施例顯示諧振返馳式電源轉換器中,用以產生第一驅動訊號SH的激磁控制電路209之示意圖。圖10的激磁控制電路209相似於圖7的激磁控制電路206,差別在於:圖10的激磁控制電路209更包括:比較器231與替換或閘216的及閘235。比較器231用以產生正值過電流保護訊號 (positive-over-current protection signal) SOCPp,其中當電流感測訊號VCS的位準超過一第一電流閾值電壓VTP時,正值過電流保護訊號SOCPp透過及閘235重置正反器215,藉此關斷第一驅動訊號SH。FIG10 is a schematic diagram showing an excitation control circuit 209 for generating a first drive signal SH in a resonant flyback power converter according to an embodiment of the present invention. The excitation control circuit 209 of FIG10 is similar to the excitation control circuit 206 of FIG7 , except that the excitation control circuit 209 of FIG10 further includes a comparator 231 and an AND gate 235 replacing the OR gate 216. The comparator 231 is used to generate a positive over-current protection signal SOCPp, wherein when the level of the current sensing signal VCS exceeds a first current threshold voltage VTP, the positive over-current protection signal SOCPp resets the flip-flop 215 through the AND gate 235, thereby shutting off the first drive signal SH.

圖11係根據本發明之一實施例顯示諧振返馳式電源轉換器中,用以產生第二驅動訊號SL的諧振及零電壓切換控制電路2010之示意圖。第二驅動訊號SL係由第二切換控制訊號SWL (其具有諧振脈波寬度TW)與零電壓切換控制訊號SZ(其具有零電壓切換脈波寬度TZ)所組成的。第二驅動訊號SL係藉由或閘313與及閘315’而產生,其中或閘313與及閘315’用以處理第二切換控制訊號SWL、零電壓切換控制訊號SZ與訊號SOFF。值得注意的是,藉由計時器350’所產生的訊號SOFF用以代表上述圖5A至圖5C所示的關斷時間TOFF。此外,藉由計時器350’所產生的訊號SOFF用以於關斷時間TOFF內,確保第一驅動訊號SH (圖10) 與第二驅動訊號SL (圖11)皆是關斷的。FIG. 11 is a schematic diagram showing a resonant and zero voltage switching control circuit 2010 for generating a second drive signal SL in a resonant flyback power converter according to an embodiment of the present invention. The second drive signal SL is composed of a second switching control signal SWL (having a resonant pulse width TW) and a zero voltage switching control signal SZ (having a zero voltage switching pulse width TZ). The second drive signal SL is generated by an OR gate 313 and an AND gate 315', wherein the OR gate 313 and the AND gate 315' are used to process the second switching control signal SWL, the zero voltage switching control signal SZ and the signal SOFF. It is worth noting that the signal SOFF generated by the timer 350' is used to represent the off time TOFF shown in Figures 5A to 5C. In addition, the signal SOFF generated by the timer 350' is used to ensure that the first drive signal SH (Figure 10) and the second drive signal SL (Figure 11) are both turned off during the off time TOFF.

請繼續參閱圖11。第一驅動訊號SH的下降緣在經過延遲元件 (delay cell)310所提供的一段準諧振延遲時間之後,觸發正反器312以致能第二切換控制訊號SWL。在一實施例中,延遲元件310用以提供準諧振延遲,以使第二電晶體40達成零電壓切換。當第二切換控制訊號SWL被致能時,脈波產生器320’用以根據反饋訊號VCOM的位準,決定第二切換控制訊號SWL的脈波寬度 (即:諧振脈波寬度TW)。第二切換控制訊號SWL的脈波寬度 (即:諧振脈波寬度TW)隨著輸出負載的減輕而縮短。在脈波產生器320’所產生的脈波的結束時點時,重置訊號將產生以重置正反器312,藉此關斷第二切換控制訊號SWL,此時第二切換控制訊號SWL之關斷係對應於上述的關斷時間TOFF的開始時點。與電阻65 (例如:如圖9B所示)相關的電流源331提供一偏壓予電流感測訊號VCS。比較器330’用以接收電流感測訊號VCS,以於電流感測訊號VCS的位準超過一第二電流閾值電壓VTN時,產生負值過電流保護訊號 (negative -over-current protection signal) SOCPn。負值過電流保護訊號SOCPn用以重置正反器312、計時器350’與脈波產生器380’,藉此確保透過及閘315’關斷第二驅動訊號SL,以達成負值過電流保護。Please continue to refer to FIG. 11. After a quasi-resonant delay time provided by the delay element (delay cell) 310, the falling edge of the first driving signal SH triggers the flip-flop 312 to enable the second switching control signal SWL. In one embodiment, the delay element 310 is used to provide a quasi-resonant delay so that the second transistor 40 can achieve zero voltage switching. When the second switching control signal SWL is enabled, the pulse generator 320' is used to determine the pulse width (i.e., the resonant pulse width TW) of the second switching control signal SWL according to the level of the feedback signal VCOM. The pulse width (i.e., the resonant pulse width TW) of the second switching control signal SWL is shortened as the output load is reduced. At the end time of the pulse generated by the pulse generator 320', a reset signal is generated to reset the flip-flop 312, thereby turning off the second switching control signal SWL. At this time, the turning off of the second switching control signal SWL corresponds to the start time of the above-mentioned turn-off time TOFF. The current source 331 associated with the resistor 65 (e.g., as shown in FIG. 9B ) provides a bias to the current sensing signal VCS. The comparator 330' is used to receive the current flow detection signal VCS, and to generate a negative over-current protection signal SOCPn when the level of the current flow detection signal VCS exceeds a second current threshold voltage VTN. The negative over-current protection signal SOCPn is used to reset the flip-flop 312, the timer 350' and the pulse generator 380', thereby ensuring that the second drive signal SL is turned off through the gate 315' to achieve negative over-current protection.

在一實施例中,關斷第二切換控制訊號SWL(即:第二切換控制訊號SWL處在低位準)將導致計時器350’開始計時以產生關斷訊號SOFF (其為一低位準為真的訊號)。在一實施例中,計時器350’的關斷時間TOFF反比於反饋訊號VCOM的位準。於諧振返馳式電源轉換器300操作於不連續導通模式的期間,關斷時間TOFF隨著輸出負載的減輕而延長 (因而使得切換頻率降低)。一旦計時器350’計時結束,計時器350’致能脈波產生器380’,以產生零電壓切換控制訊號SZ。當諧振返馳式電源轉換器 300操作於輸出負載為重載的狀況時,計時器350’的關斷時間TOFF為零。當計時器350’被負值過電流保護訊號SOCPn所重置時,一預設關斷時間因而產生。於諧振返馳式電源轉換器300操作於不連續導通模式的期間,零電壓切換控制訊號SZ用以產生循環電流,藉此使得第一電晶體30達成零電壓切換。In one embodiment, turning off the second switching control signal SWL (i.e., the second switching control signal SWL is at a low level) will cause the timer 350' to start timing to generate a shutdown signal SOFF (which is a low-level true signal). In one embodiment, the off time TOFF of the timer 350' is inversely proportional to the level of the feedback signal VCOM. During the period when the resonant flyback power converter 300 operates in the discontinuous conduction mode, the off time TOFF is extended as the output load is reduced (thereby reducing the switching frequency). Once the timer 350' ends, the timer 350' enables the pulse generator 380' to generate a zero-voltage switching control signal SZ. When the resonant flyback power converter 300 operates in a heavy load state, the off time TOFF of the timer 350' is zero. When the timer 350' is reset by the negative over-current protection signal SOCPn, a preset off time is generated. During the period when the resonant flyback power converter 300 operates in the discontinuous conduction mode, the zero voltage switching control signal SZ is used to generate a circulating current, thereby enabling the first transistor 30 to achieve zero voltage switching.

請回頭參閱圖5B,在一實施例中,第一驅動訊號SH的脈波寬度TX隨著輸出負載的減輕而縮短。第二驅動訊號SL的諧振脈波寬度TW亦隨著第一驅動訊號SH的脈波寬度TX的縮短而縮短。然而,第二驅動訊號SL仍然具有最短導通時間,其中第二驅動訊號SL所具有的最短導通時間係用以將諧振電容20放電。在一實施例中,當諧振返馳式電源轉換器 300操作於輸出負載為中載或輕載的狀況時,一旦電流感測訊號VCS超過第二電流閾值電壓VTN的狀況發生時,第二驅動訊號SL即會被關斷 (即:關斷第二切換控制訊號SWL或零電壓切換控制訊號SZ)。此外,當負電流IPN的位準超過負值過電流閾值時,第一驅動訊號SH與第二驅動訊號SL皆被關斷一段預設關斷時間。Please refer back to FIG. 5B . In one embodiment, the pulse width TX of the first drive signal SH is shortened as the output load is reduced. The resonant pulse width TW of the second drive signal SL is also shortened as the pulse width TX of the first drive signal SH is shortened. However, the second drive signal SL still has the shortest on-time, wherein the shortest on-time of the second drive signal SL is used to discharge the resonant capacitor 20. In one embodiment, when the resonant flyback power converter 300 operates in a medium load or light load output state, once the current sensing signal VCS exceeds the second current threshold voltage VTN, the second drive signal SL is turned off (i.e., the second switching control signal SWL or the zero voltage switching control signal SZ is turned off). In addition, when the level of the negative current IPN exceeds the negative over-current threshold, the first drive signal SH and the second drive signal SL are both turned off for a preset off time.

總結上述,第一驅動訊號SH與第二驅動訊號SL分別用以控制第一電晶體30與第二電晶體40之切換。第一電晶體30與第二電晶體40構成半橋電路,半橋電路透過諧振電容20與電流感測元件60,切換變壓器10,以產生輸出電壓VO。第一驅動訊號SH的導通狀態產生一次側切換電流IP的正電流IPP,藉此激磁變壓器10並且藉此將諧振電容20充電。第二驅動訊號SL的導通狀態產生一次側切換電流IP的負電流IPN,藉此將諧振電容20放電。當正電流IPP的位準超過正值過電流閾值時,關斷第一電晶體30。當負電流IPN的位準超過負值過電流閾值時,關斷第二電晶體40。在一實施例中,電流感測元件60為一電流感測電阻,其中電流感測電阻用以偵測一次側切換電流IP的正電流IPP的位準與一次側切換電流IP的負電流IPN的位準。正電流IPP與負電流IPN的極性彼此相反。電阻65與電流源331耦接於電流感測元件60,藉此產生電流感測訊號VCS。電流感測訊號VCS用以分別與第一電流閾值電壓VTP或第二電流閾值電壓VTN相互比較。To summarize the above, the first drive signal SH and the second drive signal SL are used to control the switching of the first transistor 30 and the second transistor 40 respectively. The first transistor 30 and the second transistor 40 form a half-bridge circuit, and the half-bridge circuit switches the transformer 10 through the resonant capacitor 20 and the inductive sensing element 60 to generate the output voltage VO. The conduction state of the first drive signal SH generates a positive current IPP of the primary switching current IP, thereby exciting the transformer 10 and charging the resonant capacitor 20. The conduction state of the second drive signal SL generates a negative current IPN of the primary switching current IP, thereby discharging the resonant capacitor 20. When the level of the positive current IPP exceeds the positive over-current threshold, the first transistor 30 is turned off. When the level of the negative current IPN exceeds the negative over-current threshold, the second transistor 40 is turned off. In one embodiment, the current sensing element 60 is a current sensing resistor, wherein the current sensing resistor is used to detect the level of the positive current IPP of the primary switching current IP and the level of the negative current IPN of the primary switching current IP. The polarities of the positive current IPP and the negative current IPN are opposite to each other. The resistor 65 and the current source 331 are coupled to the current sensing element 60, thereby generating a current sensing signal VCS. The current sensing signal VCS is used to be compared with the first current threshold voltage VTP or the second current threshold voltage VTN, respectively.

圖12係根據本發明之一實施例顯示,當諧振返馳式電源轉換器 300操作於輸出負載為輕載的狀況時且操作於低輸出電壓時,諧振返馳式電源轉換器所對應的訊號操作波形圖。在一實施例中,當輸出電壓VO低於一低電壓閾值,第二驅動訊號SL被控制,以略過而不產生上述的第二驅動訊號SL的諧振脈波Pres。換言之,在此情況下,諧振返馳式電源轉換器 300將操作於一非諧振返馳式模式或一非同步模式,藉此當諧振返馳式電源轉換器 300操作於輸出負載為輕載的狀況時,能夠更多地節省電源。FIG. 12 is a diagram showing a signal operation waveform corresponding to the resonant flyback power converter 300 when the output load is light and the output voltage is low according to an embodiment of the present invention. In one embodiment, when the output voltage VO is lower than a low voltage threshold, the second drive signal SL is controlled to skip the resonant pulse Pres of the second drive signal SL. In other words, in this case, the resonant flyback power converter 300 will operate in a non-resonant flyback mode or an asynchronous mode, thereby saving more power when the resonant flyback power converter 300 operates under a light load condition.

圖13係根據本發明之一實施例顯示諧振返馳式電源轉換器中的諧振及零電壓切換控制電路2012之示意圖。諧振及零電壓切換控制電路2012相似於諧振及零電壓切換控制電路207,差別在於:圖13之實施例的第二驅動訊號SL更根據電源指示訊號PM而被決定。FIG13 is a schematic diagram showing a resonant and zero-voltage switching control circuit 2012 in a resonant flyback power converter according to an embodiment of the present invention. The resonant and zero-voltage switching control circuit 2012 is similar to the resonant and zero-voltage switching control circuit 207, except that the second driving signal SL of the embodiment of FIG13 is further determined according to the power indication signal PM.

在一實施例中,第二驅動訊號SL係由第二切換控制訊號SWL與零電壓切換控制訊號SZ所組成的,具體而言,第二驅動訊號SL係藉由及閘319、或閘313與驅動器315而產生。電源指示訊號PM的產生係用以遮蔽第二驅動訊號SL中的第二切換控制訊號SWL。在一實施例中,電源指示訊號PM係於輸出電壓VO低於一低電壓閾值時產生。In one embodiment, the second drive signal SL is composed of the second switching control signal SWL and the zero voltage switching control signal SZ. Specifically, the second drive signal SL is generated by the AND gate 319, or the gate 313 and the driver 315. The power indication signal PM is generated to mask the second switching control signal SWL in the second drive signal SL. In one embodiment, the power indication signal PM is generated when the output voltage VO is lower than a low voltage threshold.

在諧振返馳式電源轉換器 300符合通用串列匯流排電源傳輸(Universal Serial Bus Power Delivery, USB PD) 型的規範的實施例中,輸出電壓VO低於低電壓閾值的狀況,可示意諧振返馳式電源轉換器 300係操作於輸出負載為相對地輕的狀況。在此狀況下,輸出電壓VO低於低電壓閾值時,第二切換控制訊號SWL受控制被遮蔽,進而使得第二驅動訊號SL被關斷。如此一來,諧振返馳式電源轉換器 300將操作於所述非同步模式,藉此能夠更多地節省電源。In an embodiment where the resonant flyback power converter 300 complies with the Universal Serial Bus Power Delivery (USB PD) specification, the output voltage VO is lower than the low voltage threshold, which indicates that the resonant flyback power converter 300 is operated under a relatively light output load. In this case, when the output voltage VO is lower than the low voltage threshold, the second switching control signal SWL is controlled to be shielded, thereby turning off the second drive signal SL. In this way, the resonant flyback power converter 300 will operate in the asynchronous mode, thereby saving more power.

圖14係根據本發明之一實施例顯示諧振返馳式電源轉換器中,用以產生電源指示訊號PM的電源指示電路之示意圖。反射輸出電壓a*VO藉由取樣維持輔助訊號VAUX的電壓而被產生。其中係數「a」可以下列關係式表示:FIG. 14 is a schematic diagram showing a power indication circuit for generating a power indication signal PM in a resonant flyback power converter according to an embodiment of the present invention. The reflected output voltage a*VO is generated by sampling and maintaining the voltage of the auxiliary signal VAUX. The coefficient "a" can be expressed by the following relationship:

a = (R52 / (R51 + R52)) * ma = (R52 / (R51 + R52)) * m

脈波產生器410根據第一驅動訊號SH的下降緣,產生第一取樣訊號SH1。第一取樣訊號SH1用以取樣維持輔助訊號VAUX的電壓,而將輔助訊號VAUX的電壓儲存至電容435。脈波產生器420根據第一取樣訊號SH1的結束時點,產生第二取樣訊號SH2。第二取樣訊號SH2用以取樣維持電容435中的電壓,而將電容435中的電壓儲存至電容445,藉此產生反射輸出電壓a*VO。反射輸出電壓a*VO的電壓位準相關於輸出電壓VO的電壓位準。當反射輸出電壓a*VO的電壓位準低於低電壓閾值VTL時,電源指示訊號PM藉由比較器450產生。The pulse generator 410 generates a first sampling signal SH1 according to the falling edge of the first driving signal SH. The first sampling signal SH1 is used to sample and maintain the voltage of the auxiliary signal VAUX, and stores the voltage of the auxiliary signal VAUX in the capacitor 435. The pulse generator 420 generates a second sampling signal SH2 according to the end time point of the first sampling signal SH1. The second sampling signal SH2 is used to sample and maintain the voltage in the capacitor 435, and stores the voltage in the capacitor 435 in the capacitor 445, thereby generating a reflected output voltage a*VO. The voltage level of the reflected output voltage a*VO is related to the voltage level of the output voltage VO. When the voltage level of the reflected output voltage a*VO is lower than the low voltage threshold VTL, the power indication signal PM is generated by the comparator 450.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。The present invention has been described above with reference to the preferred embodiments. However, the above description is only for the purpose of making it easier for those familiar with the art to understand the content of the present invention, and is not intended to limit the scope of the invention. The embodiments described are not limited to single application, but can also be applied in combination. For example, two or more embodiments can be used in combination, and a part of the components in one embodiment can also be used to replace the corresponding components in another embodiment. In addition, under the same spirit of the present invention, those familiar with the art can think of various equivalent changes and various combinations. For example, the present invention refers to "processing or calculating or generating an output result according to a certain signal", which is not limited to the signal itself, but also includes, when necessary, converting the signal into voltage-current, current-voltage, and/or ratio, and then processing or calculating the converted signal to generate an output result. It can be seen that under the same spirit of the present invention, those familiar with the art can think of various equivalent changes and various combinations, and there are many combinations, which are not listed here one by one. Therefore, the scope of the present invention should cover the above and all other equivalent changes.

900:習知諧振返馳式電源轉換器 100’:二次側控制器 200’:一次側控制器 100:二次側控制器 10:變壓器 2010:諧振及零電壓切換控制電路 2012:諧振及零電壓切換控制電路 2014:電源指示電路 200、200A、200B:一次側控制器 201:激磁控制電路 202A、202B:諧振及零電壓切換控制電路 206、209:激磁控制電路 207:諧振及零電壓切換控制電路 210、310:延遲元件 (delay cell) 211:反相器 215、312:正反器 216:或閘 220、231、232:比較器 221:電晶體 223、224、225、51、52、60、65:電阻 230、320’、380、380’、410、420:脈波產生器 235:及閘 240:上橋閘極驅動器 241:自舉二極體 242:自舉電容 20:諧振電容 300:諧振返馳式電源轉換器 301:計時電路 311、321、351、352:反相器 313:或閘 315’:及閘 315:驅動器 319:及閘 320、331:電流源 322:電晶體 325:電容 330:加法器 330’、335、450:比較器 350、350’:計時器 30:第一電晶體 35、45、75:本體二極體 435、445:電容 40:第二電晶體 60:電流感測元件 70:同步整流器 90:光耦合器 Cr:諧振電容 IM:激磁電流 IP:一次側切換電流 IPP:正電流 IPN:負電流 IS:二次側切換電流 LX:切換節點 Lr:漏磁電感值 PM:電源指示訊號 Pres:諧振脈波 Pzv:零電壓切換脈波 SG:驅動訊號 SH:第一驅動訊號 SH1:第一取樣訊號 SL:第二驅動訊號 SH2:第二取樣訊號 SOCPp:正值過電流保護訊號 SOCPn:負值過電流保護訊號 SOFF:關斷訊號 SWH:第一切換控制訊號 SWL:第二切換控制訊號 SZ:零電壓切換控制訊號 t1~t7:時間點 TDS:去磁時間 TOFF:關斷時間 Tres_min:最短諧振期間 Tres_min1:第一最短諧振期間 Tres_min2:第二最短諧振期間 TRH、TRL:停滯期間 TX:脈波寬度 TW:諧振脈波寬度 TW1 、TW2、TW’:期間 (最短諧振子期間) TWr:諧振期間 TZ:零電壓切換脈波寬度 VAUX:輔助訊號 VCC:電源 Vcr:跨壓 VCOM、VCOM’:反饋訊號 VCS:電流感測訊號 VFB:反饋訊號 VHB:切換節點電壓 VIN:輸入電壓 VNA:輔助線圈訊號 VO:輸出電壓 VT:閾值電壓 VT1、VT2:閾值 VTL:低電壓閾值 VTN:第二電流閾值電壓 VTP:第一電流閾值電壓 VX:反射電壓 WA:輔助線圈 WP:一次側線圈 WS:二次側線圈 900: Learned resonant flyback power converter 100’: Secondary side controller 200’: Primary side controller 100: Secondary side controller 10: Transformer 2010: Resonance and zero voltage switching control circuit 2012: Resonance and zero voltage switching control circuit 2014: Power indicator circuit 200, 200A, 200B: Primary side controller 201: Excitation control circuit 202A, 202B: Resonance and zero voltage switching control circuit 206, 209: Excitation control circuit 207: Resonance and zero voltage switching control circuit 210, 310: Delay cell 211: Inverter 215, 312: Flip-flop 216: OR gate 220, 231, 232: Comparator 221: Transistor 223, 224, 225, 51, 52, 60, 65: Resistor 230, 320', 380, 380', 410, 420: Pulse generator 235: AND gate 240: Upper bridge gate driver 241: Self-supporting diode 242: Self-supporting capacitor 20: Resonant capacitor 300: Resonant flyback power converter 301: Timing circuit 311, 321, 351, 352: Inverter 313: OR gate 315': AND gate 315: Driver 319: AND gate 320, 331: Current source 322: Transistor 325: Capacitor 330: Adder 330', 335, 450: Comparator 350, 350': Timer 30: First transistor 35, 45, 75: Body diode 435, 445: Capacitor 40: Second transistor 60: Current sensing element 70: Synchronous rectifier 90: Optocoupler Cr: Resonance capacitor IM: Excitation current IP: Primary switching current IPP: Positive current IPN: Negative current IS: Secondary switching current LX: Switching node Lr: leakage inductance value PM: power indication signal Pres: resonant pulse Pzv: zero voltage switching pulse SG: drive signal SH: first drive signal SH1: first sampling signal SL: second drive signal SH2: second sampling signal SOCPp: positive overcurrent protection signal SOCPn: negative overcurrent protection signal SOFF: shutdown signal SWH: first switching control signal SWL: second switching control signal SZ: zero voltage switching control signal t1~t7: time point TDS: demagnetization time TOFF: shutdown time Tres_min: shortest resonance period Tres_min1: first shortest resonance period Tres_min2: second shortest resonance period TRH, TRL: hysteresis period TX: pulse width TW: resonant pulse width TW1, TW2, TW’: period (shortest resonator period) TWr: resonant period TZ: zero voltage switching pulse width VAUX: auxiliary signal VCC: power supply Vcr: cross voltage VCOM, VCOM’: feedback signal VCS: current sensing signal VFB: feedback signal VHB: switching node voltage VIN: input voltage VNA: auxiliary coil signal VO: output voltage VT: threshold voltage VT1, VT2: threshold VTL: low voltage threshold VTN: Second current threshold voltage VTP: First current threshold voltage VX: Reflected voltage WA: Auxiliary coil WP: Primary coil WS: Secondary coil

圖1係顯示習知返馳式電源轉換器的示意圖。FIG. 1 is a schematic diagram showing a conventional flyback power converter.

圖2A與圖2B係顯示在輸出負載為中載或輕載的狀況下,當習知半橋式電源轉換器操作於不連續導通模式 (discontinuous conduction mode, DCM)時,所對應的訊號操作波形圖。2A and 2B show corresponding signal operation waveforms when the known half-bridge power converter operates in a discontinuous conduction mode (DCM) when the output load is a medium load or a light load.

圖3係根據本發明之一實施例顯示諧振返馳式電源轉換器之示意圖。FIG. 3 is a schematic diagram showing a resonant flyback power converter according to an embodiment of the present invention.

圖4係根據本發明之一實施例顯示圖3所示的諧振返馳式電源轉換器所對應的訊號操作波形圖。FIG. 4 is a diagram showing a signal operation waveform corresponding to the resonant flyback power converter shown in FIG. 3 according to an embodiment of the present invention.

圖5A與圖5B係根據本發明之一實施例顯示當諧振返馳式電源轉換器分別操作於輸出負載為中載與輕載的狀況下,諧振返馳式電源轉換器所分別對應的訊號操作波形圖。FIG. 5A and FIG. 5B are respectively corresponding signal operation waveform diagrams of the resonant flyback power converter when the resonant flyback power converter operates under the conditions of medium load and light load, respectively, according to an embodiment of the present invention.

圖5C係根據本發明之一實施例顯示當諧振返馳式電源轉換器操作於輸出負載為極度輕載 (extremely light load)或甚至毫無任何輸出負載的狀況下,諧振返馳式電源轉換器所對應的訊號操作波形圖。FIG. 5C is a diagram showing a signal operation waveform corresponding to the resonant flyback power converter when the resonant flyback power converter operates under an extremely light load or even without any output load according to an embodiment of the present invention.

圖6A與圖6B係根據本發明之二實施例,分別顯示諧振返馳式電源轉換器的一次側控制器 200A與一次側控制器200B的方塊圖。FIG. 6A and FIG. 6B are block diagrams of a primary-side controller 200A and a primary-side controller 200B of a resonant flyback power converter, respectively, according to a second embodiment of the present invention.

圖7係根據本發明之一實施例顯示諧振返馳式電源轉換器中的激磁控制電路之示意圖。FIG. 7 is a schematic diagram showing an excitation control circuit in a resonant flyback power converter according to an embodiment of the present invention.

圖8係根據本發明之一實施例顯示諧振返馳式電源轉換器中的諧振及零電壓切換控制電路之示意圖。FIG. 8 is a schematic diagram showing a resonant and zero-voltage switching control circuit in a resonant flyback power converter according to an embodiment of the present invention.

圖9A係根據本發明之一實施例顯示諧振返馳式電源轉換器操作於變壓器激磁期間,此時一次側切換電流為正值。FIG. 9A shows the resonant flyback power converter operating during the transformer excitation period according to an embodiment of the present invention, when the primary side switching current is positive.

圖9B係根據本發明之一實施例顯示諧振返馳式電源轉換器操作於諧振期間的狀況。FIG. 9B shows the resonant flyback power converter operating in the resonant period according to an embodiment of the present invention.

圖10係根據本發明之一實施例顯示諧振返馳式電源轉換器中的激磁控制電路之示意圖。FIG. 10 is a schematic diagram showing an excitation control circuit in a resonant flyback power converter according to an embodiment of the present invention.

圖11係根據本發明之一實施例顯示諧振返馳式電源轉換器中的諧振及零電壓切換控制電路之示意圖。FIG. 11 is a schematic diagram showing a resonant and zero-voltage switching control circuit in a resonant flyback power converter according to an embodiment of the present invention.

圖12係根據本發明之一實施例顯示諧振返馳式電源轉換器所對應的訊號操作波形圖。FIG. 12 is a diagram showing a signal operation waveform corresponding to a resonant flyback power converter according to an embodiment of the present invention.

圖13係根據本發明之一實施例顯示諧振返馳式電源轉換器中的諧振及零電壓切換控制電路之示意圖。FIG. 13 is a schematic diagram showing a resonant and zero-voltage switching control circuit in a resonant flyback power converter according to an embodiment of the present invention.

圖14係根據本發明之一實施例顯示諧振返馳式電源轉換器中的電源指示電路之示意圖。FIG. 14 is a schematic diagram showing a power indication circuit in a resonant flyback power converter according to an embodiment of the present invention.

IM:激磁電流 IM: Magnetizing current

IP:一次側切換電流 IP: primary side switching current

Pres:諧振脈波 Pres: Harmonic Pulse

Pzv:零電壓切換脈波 Pzv: Zero voltage switching pulse

TOFF:關斷時間 TOFF: Off time

Tres_min:最短諧振期間 Tres_min: shortest resonance period

TX:脈波寬度 TX: Pulse width

TW:諧振脈波寬度 TW: Harmonic pulse width

TW1:期間(最短諧振子期間) TW1: Period (shortest resonator period)

TZ:零電壓切換脈波寬度 TZ: Zero voltage switching pulse width

Claims (22)

一種諧振返馳式電源轉換器,包含: 一第一電晶體及一第二電晶體,用以形成一半橋電路; 一變壓器及一諧振電容,其中該變壓器及該諧振電容彼此相互串聯連接且該變壓器及該諧振電容耦接於該半橋電路;以及 一切換控制電路,用以產生一第一驅動訊號及一第二驅動訊號,其中該第一驅動訊號及該第二驅動訊號用以分別控制該第一電晶體及該第二電晶體,藉此切換該變壓器及該諧振電容,以產生一輸出電壓; 其中該第一驅動訊號的導通狀態激磁 (magnetizes) 該變壓器,且,該第一驅動訊號的一導通時間隨著該諧振返馳式電源轉換器的一輸出負載的減輕而縮短; 其中該第二驅動訊號用以將該諧振電容放電,其中當該諧振返馳式電源轉換器操作於一不連續導通模式 (discontinuous conduction mode, DCM)時,該第二驅動訊號包括: 具有一諧振脈波寬度的一諧振脈波;以及 具有一零電壓切換 (zero voltage switching, ZVS)脈波寬度的一零電壓切換脈波; 其中該諧振脈波具有:對應該輸出負載的一第一位準的一第一最短諧振期間與對應該輸出負載的一第二位準的一第二最短諧振期間,其中該第一位準大於該第二位準,且,該第二最短諧振期間短於該第一最短諧振期間。 A resonant flyback power converter comprises: a first transistor and a second transistor for forming a half-bridge circuit; a transformer and a resonant capacitor, wherein the transformer and the resonant capacitor are connected in series with each other and the transformer and the resonant capacitor are coupled to the half-bridge circuit; and a switching control circuit for generating a first drive signal and a second drive signal, wherein the first drive signal and the second drive signal are used to control the first transistor and the second transistor respectively, thereby switching the transformer and the resonant capacitor to generate an output voltage; wherein the on-state of the first drive signal magnetizes The transformer, and the on-time of the first drive signal is shortened as the output load of the resonant flyback power converter is reduced; wherein the second drive signal is used to discharge the resonant capacitor, wherein when the resonant flyback power converter operates in a discontinuous conduction mode (DCM), the second drive signal includes: a resonant pulse with a resonant pulse width; and a zero voltage switching pulse with a zero voltage switching (ZVS) pulse width; The resonant pulse wave has: a first shortest resonant period corresponding to a first level of the output load and a second shortest resonant period corresponding to a second level of the output load, wherein the first level is greater than the second level, and the second shortest resonant period is shorter than the first shortest resonant period. 如請求項1所述之諧振返馳式電源轉換器,其中該第一最短諧振期間隨著該輸出負載的減輕而縮短。A resonant flyback power converter as described in claim 1, wherein the first shortest resonant period shortens as the output load decreases. 如請求項2所述之諧振返馳式電源轉換器,其中該第一最短諧振期間包括: 具有一固定期間的一第一最短諧振子期間 (resonant sub-period);以及 具有一可調整期間的一第二最短諧振子期間; 其中該可調整期間隨著該輸出負載的減輕而縮短。 A resonant flyback power converter as described in claim 2, wherein the first shortest resonant period includes: a first shortest resonant sub-period having a fixed period; and a second shortest resonant sub-period having an adjustable period; wherein the adjustable period shortens as the output load decreases. 如請求項1所述之諧振返馳式電源轉換器,其中該第二最短諧振期間為一固定值。A resonant flyback power converter as described in claim 1, wherein the second shortest resonant period is a fixed value. 如請求項1所述之諧振返馳式電源轉換器,其中該第二驅動訊號的該零電壓切換脈波用以產生一循環電流,藉此使該第一電晶體達成零電壓切換。A resonant flyback power converter as described in claim 1, wherein the zero-voltage switching pulse of the second driving signal is used to generate a circulating current, thereby enabling the first transistor to achieve zero-voltage switching. 如請求項1所述之諧振返馳式電源轉換器,其中於該變壓器的一去磁期間 (demagnetizing period)內,該第二驅動訊號的該諧振脈波的該第一最短諧振期間用以產生一諧振期間 (resonant cycle),其中該諧振期間相關於該諧振電容與該變壓器的一諧振。A resonant flyback power converter as described in claim 1, wherein during a demagnetizing period of the transformer, the first shortest resonant period of the resonant pulse of the second drive signal is used to generate a resonant cycle, wherein the resonant cycle is related to a resonance between the resonant capacitor and the transformer. 如請求項1所述之諧振返馳式電源轉換器,其中在關斷該第一驅動訊號之後,該第二驅動訊號藉由該諧振脈波而被導通,藉此將該諧振電容放電,其中於該諧振脈波的期間內,該諧振電容的一電壓位準相關於該輸出電壓的一電壓位準。A resonant flyback power converter as described in claim 1, wherein after the first drive signal is turned off, the second drive signal is turned on by the resonant pulse, thereby discharging the resonant capacitor, wherein during the resonant pulse, a voltage level of the resonant capacitor is related to a voltage level of the output voltage. 如請求項1所述之諧振返馳式電源轉換器,其中當該諧振返馳式電源轉換器操作於該不連續導通模式時,該第二驅動訊號更包括:一關斷時間,其中該第二驅動訊號的該關斷時間始於該第二驅動訊號的該諧振脈波被關斷的時點,其中該第二驅動訊號的該關斷時間隨著該諧振返馳式電源轉換器的該輸出負載的減輕而延長;其中於該第二驅動訊號的該關斷時間內,該第一驅動訊號及該第二驅動訊號皆被關斷。A resonant flyback power converter as described in claim 1, wherein when the resonant flyback power converter operates in the discontinuous conduction mode, the second drive signal further includes: a turn-off time, wherein the turn-off time of the second drive signal starts at the time when the resonant pulse of the second drive signal is turned off, wherein the turn-off time of the second drive signal is extended as the output load of the resonant flyback power converter is reduced; wherein during the turn-off time of the second drive signal, both the first drive signal and the second drive signal are turned off. 如請求項8所述之諧振返馳式電源轉換器,其中當該諧振返馳式電源轉換器操作於該不連續導通模式時,於該第二驅動訊號的該關斷時間的一結束時點,具有該零電壓切換脈波寬度的該零電壓切換脈波被致能。A resonant flyback power converter as described in claim 8, wherein when the resonant flyback power converter operates in the discontinuous conduction mode, at an end point of the turn-off time of the second driving signal, the zero-voltage switching pulse having the zero-voltage switching pulse width is enabled. 一種切換控制電路,用以控制一諧振返馳式電源轉換器,其中該諧振返馳式電源轉換器包括:一第一電晶體及一第二電晶體,用以形成一半橋電路;以及彼此相互串聯連接的一變壓器及一諧振電容,其中該變壓器及該諧振電容耦接於該半橋電路; 其中該第一電晶體及該第二電晶體用以切換該變壓器及該諧振電容,以產生一輸出電壓;該切換控制電路包含: 一激磁控制電路,用以產生一第一驅動訊號,以切換該第一電晶體;以及 一諧振及零電壓切換控制電路,其耦接於該激磁控制電路,其中該諧振及零電壓切換控制電路用以產生一第二驅動訊號,以切換該第二電晶體; 其中該第一驅動訊號的導通狀態激磁 (magnetizes) 該變壓器,且,該第一驅動訊號的一導通時間隨著該諧振返馳式電源轉換器的一輸出負載的減輕而縮短; 其中該第二驅動訊號用以將該諧振電容放電,其中當該諧振返馳式電源轉換器操作於一不連續導通模式 (discontinuous conduction mode, DCM)時,該第二驅動訊號包括: 具有一諧振脈波寬度的一諧振脈波;以及 具有一零電壓切換 (zero voltage switching, ZVS)脈波寬度的一零電壓切換脈波; 其中該諧振脈波具有:對應該輸出負載的一第一位準的一第一最短諧振期間與對應該輸出負載的一第二位準的一第二最短諧振期間,其中該第一位準大於該第二位準,且,該第二最短諧振期間短於該第一最短諧振期間。 A switching control circuit for controlling a resonant flyback power converter, wherein the resonant flyback power converter comprises: a first transistor and a second transistor for forming a half-bridge circuit; and a transformer and a resonant capacitor connected in series with each other, wherein the transformer and the resonant capacitor are coupled to the half-bridge circuit; wherein the first transistor and the second transistor are used to switch the transformer and the resonant capacitor to generate an output voltage; the switching control circuit comprises: an excitation control circuit for generating a first drive signal to switch the first transistor; and A resonant and zero-voltage switching control circuit coupled to the excitation control circuit, wherein the resonant and zero-voltage switching control circuit is used to generate a second drive signal to switch the second transistor; wherein the on-state of the first drive signal magnetizes the transformer, and an on-time of the first drive signal is shortened as an output load of the resonant flyback power converter is reduced; wherein the second drive signal is used to discharge the resonant capacitor, wherein when the resonant flyback power converter operates in a discontinuous conduction mode (DCM), the second drive signal includes: A resonant pulse having a resonant pulse width; and A zero voltage switching pulse having a zero voltage switching (ZVS) pulse width; wherein the resonant pulse has: a first shortest resonant period corresponding to a first level of the output load and a second shortest resonant period corresponding to a second level of the output load, wherein the first level is greater than the second level, and the second shortest resonant period is shorter than the first shortest resonant period. 如請求項10所述之切換控制電路,其中該第一最短諧振期間隨著該輸出負載的減輕而縮短。A switching control circuit as described in claim 10, wherein the first shortest resonance period shortens as the output load decreases. 如請求項11所述之切換控制電路,其中該第一最短諧振期間包括: 具有一固定期間的一第一最短諧振子期間 (resonant sub-period);以及 具有一可調整期間的一第二最短諧振子期間; 其中該可調整期間隨著該輸出負載的減輕而縮短。 A switching control circuit as described in claim 11, wherein the first shortest resonant period includes: a first shortest resonant sub-period having a fixed period; and a second shortest resonant sub-period having an adjustable period; wherein the adjustable period shortens as the output load decreases. 如請求項10所述之切換控制電路,其中該第二最短諧振期間為一固定值。A switching control circuit as described in claim 10, wherein the second shortest resonance period is a fixed value. 如請求項10所述之切換控制電路,其中該第二驅動訊號的該零電壓切換脈波用以產生一循環電流,藉此使該第一電晶體達成零電壓切換。A switching control circuit as described in claim 10, wherein the zero-voltage switching pulse of the second driving signal is used to generate a circulating current, thereby achieving zero-voltage switching of the first transistor. 如請求項10所述之切換控制電路,其中於該變壓器的一去磁期間 (demagnetizing period)內,該第二驅動訊號的該諧振脈波的該第一最短諧振期間用以產生一諧振期間 (resonant cycle),其中該諧振期間相關於該諧振電容與該變壓器的一諧振。A switching control circuit as described in claim 10, wherein during a demagnetizing period of the transformer, the first shortest resonant period of the resonant pulse of the second drive signal is used to generate a resonant cycle, wherein the resonant cycle is related to a resonance between the resonant capacitor and the transformer. 如請求項10所述之切換控制電路,其中在關斷該第一驅動訊號之後,該第二驅動訊號藉由該諧振脈波而被導通,藉此將該諧振電容放電,其中於該諧振脈波的期間內,該諧振電容的一電壓位準相關於該輸出電壓的一電壓位準。A switching control circuit as described in claim 10, wherein after the first drive signal is turned off, the second drive signal is turned on by the resonant pulse, thereby discharging the resonant capacitor, wherein during the resonant pulse, a voltage level of the resonant capacitor is related to a voltage level of the output voltage. 如請求項10所述之切換控制電路,其中當該諧振返馳式電源轉換器操作於該不連續導通模式時,該第二驅動訊號更包括:一關斷時間,其中該第二驅動訊號的該關斷時間始於該第二驅動訊號的該諧振脈波被關斷的時點,其中該第二驅動訊號的該關斷時間隨著該諧振返馳式電源轉換器的該輸出負載的減輕而延長。A switching control circuit as described in claim 10, wherein when the resonant flyback power converter operates in the discontinuous conduction mode, the second drive signal further includes: a turn-off time, wherein the turn-off time of the second drive signal starts at the time when the resonant pulse of the second drive signal is turned off, wherein the turn-off time of the second drive signal is extended as the output load of the resonant flyback power converter is reduced. 如請求項10所述之切換控制電路,其中當該諧振返馳式電源轉換器操作於該不連續導通模式時,於該第二驅動訊號的該關斷時間的一結束時點,具有該零電壓切換脈波寬度的該零電壓切換脈波被致能。A switching control circuit as described in claim 10, wherein when the resonant flyback power converter operates in the discontinuous conduction mode, at an end point of the turn-off time of the second driving signal, the zero-voltage switching pulse having the zero-voltage switching pulse width is enabled. 一種方法,用以控制一諧振返馳式電源轉換器,其中該諧振返馳式電源轉換器包括:一第一電晶體及一第二電晶體,用以形成一半橋電路;以及彼此相互串聯連接的一變壓器及一諧振電容,其中該變壓器及該諧振電容耦接於該半橋電路; 其中該第一電晶體及該第二電晶體用以切換該變壓器及該諧振電容,以產生一輸出電壓;該方法包含下列步驟: 產生一第一驅動訊號,以切換該第一電晶體;以及 產生一第二驅動訊號,以切換該第二電晶體; 其中該第一驅動訊號的導通狀態激磁 (magnetizes) 該變壓器,且,該第一驅動訊號的一導通時間隨著該諧振返馳式電源轉換器的一輸出負載的減輕而縮短; 其中該第二驅動訊號用以將該諧振電容放電,其中當該諧振返馳式電源轉換器操作於一不連續導通模式 (discontinuous conduction mode, DCM)時,該第二驅動訊號包括: 具有一諧振脈波寬度的一諧振脈波;以及 具有一零電壓切換 (zero voltage switching, ZVS)脈波寬度的一零電壓切換脈波; 其中該諧振脈波具有:對應該輸出負載的一第一位準的一第一最短諧振期間與對應該輸出負載的一第二位準的一第二最短諧振期間,其中該第一位準大於該第二位準,且,該第二最短諧振期間短於該第一最短諧振期間。 A method for controlling a resonant flyback power converter, wherein the resonant flyback power converter includes: a first transistor and a second transistor, for forming a half bridge circuit; and a transformer and a resonant capacitor connected in series with each other, wherein the transformer and the resonant capacitor are coupled to the half bridge circuit; wherein the first transistor and the second transistor are used to switch the transformer and the resonant capacitor to generate an output voltage; the method includes the following steps: generating a first drive signal to switch the first transistor; and generating a second drive signal to switch the second transistor; wherein the on-state of the first drive signal magnetizes The transformer, and the on-time of the first drive signal is shortened as the output load of the resonant flyback power converter is reduced; wherein the second drive signal is used to discharge the resonant capacitor, wherein when the resonant flyback power converter operates in a discontinuous conduction mode (DCM), the second drive signal includes: a resonant pulse with a resonant pulse width; and a zero voltage switching pulse with a zero voltage switching (ZVS) pulse width; The resonant pulse wave has: a first shortest resonant period corresponding to a first level of the output load and a second shortest resonant period corresponding to a second level of the output load, wherein the first level is greater than the second level, and the second shortest resonant period is shorter than the first shortest resonant period. 如請求項19所述之方法,其中該第一最短諧振期間隨著該輸出負載的減輕而縮短。A method as described in claim 19, wherein the first shortest resonance period shortens as the output load decreases. 如請求項20所述之方法,其中該第一最短諧振期間包括: 具有一固定期間的一第一最短諧振子期間 (resonant sub-period);以及 具有一可調整期間的一第二最短諧振子期間; 其中該可調整期間隨著該輸出負載的減輕而縮短。 The method of claim 20, wherein the first shortest resonant period comprises: a first shortest resonant sub-period having a fixed period; and a second shortest resonant sub-period having an adjustable period; wherein the adjustable period shortens as the output load is reduced. 如請求項19所述之方法,其中該第二最短諧振期間為一固定值。The method of claim 19, wherein the second shortest resonance period is a fixed value.
TW112133134A 2022-10-07 2023-08-31 Resonant flyback power converter and switching control circuit and method thereof TW202416646A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63/378,765 2022-10-07
US18/300,458 2023-04-14

Publications (1)

Publication Number Publication Date
TW202416646A true TW202416646A (en) 2024-04-16

Family

ID=

Similar Documents

Publication Publication Date Title
US8564977B2 (en) Standby operation of a resonant power converter
US9276483B2 (en) Control circuit for active-clamp flyback power converter with programmable switching period
US7426120B2 (en) Switching control circuit having a valley voltage detector to achieve soft switching for a resonant power converter
US7522429B2 (en) DC-DC converter
CN212627695U (en) Control circuit for flyback converter and flyback converter
TWI664801B (en) Switching power, control apparatus and control method
CA2269748A1 (en) Flyback converters with soft switching
CN113054848B (en) Control device and control method of flyback converter
US6738266B2 (en) Switching power supply unit
CN112510976B (en) Active clamp flyback converter, controller and control method thereof
TWI777412B (en) Resonant half-bridge flyback power converter and primary controller circuit and control method thereof
CN113131745B (en) Control method and control circuit of flyback power supply
CN113410994A (en) Active clamp flyback converter and control method thereof
TWI822091B (en) Half-bridge flyback power converter and control method thereof
TW202416646A (en) Resonant flyback power converter and switching control circuit and method thereof
TW202416647A (en) Resonant flyback power converter and switching control circuit and method thereof
TW202418740A (en) Resonant flyback power converter and switching control circuit and method thereof
JP4845973B2 (en) Switching power supply
CN117879342A (en) Resonant flyback power converter and switching control circuit and method thereof
CN117856609A (en) Resonant flyback power converter and switching control circuit and method thereof
CN114094832A (en) Converter and control method thereof
US20240120845A1 (en) Resonant flyback power converter and switching control circuit and method thereof
CN113708632B (en) Flyback converter control method and control device thereof
TWI824551B (en) Resonant half-bridge flyback power converter with skipping cycles and control method thereof
TW202418727A (en) Resonant flyback power converter and switching control circuit and method thereof