TW202416557A - Light emitting devices and methods for manufacturing the same - Google Patents

Light emitting devices and methods for manufacturing the same Download PDF

Info

Publication number
TW202416557A
TW202416557A TW111138595A TW111138595A TW202416557A TW 202416557 A TW202416557 A TW 202416557A TW 111138595 A TW111138595 A TW 111138595A TW 111138595 A TW111138595 A TW 111138595A TW 202416557 A TW202416557 A TW 202416557A
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
layer
iii
electrode
light
Prior art date
Application number
TW111138595A
Other languages
Chinese (zh)
Inventor
張裕昌
周秀玫
葉啟宇
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW111138595A priority Critical patent/TW202416557A/en
Publication of TW202416557A publication Critical patent/TW202416557A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light emitting device includes a first-conductive type semiconductor layer having a first portion and a second portion adjoining the first portion, a semiconductor mesa over the second portion and not covering the first portion, and a first insulating layer covering the first portion and the semiconductor mesa, wherein the semiconductor mesa includes an active region and a second-conductive type semiconductor layer sequentially stacked over the second portion in a stacking direction. The first insulating layer has a first opening on the first portion and a second opening on the second portion. The light emitting device also includes a III-V group compound semiconductor layer that is disposed in the first opening and contacts the first portion. The profile of the first opening surrounds the III-V group compound semiconductor layer, in a top view. The light emitting device also includes a first electrode on the III-V group compound semiconductor layer and electrically connecting the first-conductive type semiconductor layer, and a second electrode in the second opening and electrically connecting the second-conductive type semiconductor layer.

Description

發光元件及其製造方法Light emitting element and method for manufacturing the same

本揭露是關於發光元件及其製造方法,特別是關於具有增進的發光效率的發光元件及其製造方法。The present disclosure relates to a light emitting device and a manufacturing method thereof, and more particularly to a light emitting device with improved light emitting efficiency and a manufacturing method thereof.

目前發光二極體(Light-Emitting Diode;LED)已經是許多具有發光元件的產品的市場主流。發光二極體具有體積小、反應速度快、低耗電量、低發熱量、良好的耐久性和耐撞擊性、以及使用壽命長等多項優點,因此廣泛地應用於需要使用到發光元件的各種領域,例如,應用於顯示面板、照明裝置、車輛、及家電等。Currently, light-emitting diodes (LEDs) have become the mainstream in the market for many products with light-emitting components. LEDs have many advantages, such as small size, fast response speed, low power consumption, low heat generation, good durability and impact resistance, and long service life. Therefore, they are widely used in various fields that require the use of light-emitting components, such as display panels, lighting devices, vehicles, and home appliances.

本揭露的一些實施例提供一種發光元件,包含一第一型半導體層,具有一第一部分及與前述第一部分相連的一第二部分;一半導體平台,位於前述的第二部分上且不覆蓋前述的第一部分,其中前述的半導體平台包含一活性區域及一第二型半導體層於一堆疊方向上依序堆疊於前述的第二部分上;一第一絕緣層,覆蓋前述第一部分及前述半導體平台,前述第一絕緣層具有一第一開口位於前述的第一部分上,以及一第二開口位於前述的第二型半導體層上。實施例的發光元件還包含一III-V族化合物半導體層,其位於前述的第一開口中且接觸前述的第一部分,俯視時,前述的第一開口的輪廓環繞前述的III-V族化合物半導體層;一第一電極,位於前述的III-V族化合物半導體層上且電性連接前述的第一型半導體層;以及一第二電極,位於前述的第二開口中且電性連接前述的第二型半導體層。Some embodiments of the present disclosure provide a light-emitting element, comprising a first-type semiconductor layer having a first portion and a second portion connected to the first portion; a semiconductor platform located on the second portion and not covering the first portion, wherein the semiconductor platform comprises an active region and a second-type semiconductor layer sequentially stacked on the second portion in a stacking direction; a first insulating layer covering the first portion and the semiconductor platform, wherein the first insulating layer has a first opening located on the first portion, and a second opening located on the second-type semiconductor layer. The light-emitting element of the embodiment further includes a III-V compound semiconductor layer, which is located in the aforementioned first opening and contacts the aforementioned first portion, and when viewed from above, the outline of the aforementioned first opening surrounds the aforementioned III-V compound semiconductor layer; a first electrode, which is located on the aforementioned III-V compound semiconductor layer and electrically connected to the aforementioned first type semiconductor layer; and a second electrode, which is located in the aforementioned second opening and electrically connected to the aforementioned second type semiconductor layer.

本揭露的一些實施例提供一種發光元件的製造方法,包含提供一基底,並且在此基底上形成一第一型半導體層和一半導體平台,其中前述的第一型半導體層具有一第一部分及與前述第一部分相連的一第二部分,前述的半導體平台形成於前述的第二部分上且不覆蓋前述的第一部分,且前述的半導體平台包含一活性區域及一第二型半導體層於一堆疊方向上依序堆疊於前述的第二部分上;形成一第一絕緣層於前述的第一部分及前述的半導體平台上,前述的第一絕緣層具有一第一開口位於前述的第一部分上。實施例的發光元件的製造方法還包含形成一III-V族化合物半導體層於前述的第一開口中,且前述的III-V族化合物半導體層接觸前述的第一部分,其中,俯視時,前述的第一開口的輪廓環繞前述的III-V族化合物半導體層;形成一第一電極於前述的III-V族化合物半導體層上,且前述的第一電極電性連接前述的第一型半導體層;以及形成一第二電極於前述的第一絕緣層的一第二開口中,其中前述的第二開口位於前述的第二型半導體層上,且前述的第二電極電性連接前述的第二型半導體層。Some embodiments of the present disclosure provide a method for manufacturing a light-emitting element, including providing a substrate, and forming a first-type semiconductor layer and a semiconductor platform on the substrate, wherein the first-type semiconductor layer has a first portion and a second portion connected to the first portion, the semiconductor platform is formed on the second portion and does not cover the first portion, and the semiconductor platform includes an active region and a second-type semiconductor layer sequentially stacked on the second portion in a stacking direction; forming a first insulating layer on the first portion and the semiconductor platform, and the first insulating layer has a first opening located on the first portion. The manufacturing method of the light-emitting element of the embodiment also includes forming a III-V compound semiconductor layer in the aforementioned first opening, and the aforementioned III-V compound semiconductor layer contacts the aforementioned first part, wherein, when viewed from above, the outline of the aforementioned first opening surrounds the aforementioned III-V compound semiconductor layer; forming a first electrode on the aforementioned III-V compound semiconductor layer, and the aforementioned first electrode is electrically connected to the aforementioned first type semiconductor layer; and forming a second electrode in a second opening of the aforementioned first insulating layer, wherein the aforementioned second opening is located on the aforementioned second type semiconductor layer, and the aforementioned second electrode is electrically connected to the aforementioned second type semiconductor layer.

以下揭露提供了許多的實施例或範例,用於具體描述實施例所提供的發光元件的不同部件。然而,這些僅僅是範例,並非用以限定本揭露之發光元件於以下示例中。本說明書記載於實施例中的各構成部件之尺寸、材質、形狀、相對配置等在沒有限定之記載下,本揭露之範圍並非限定於此。例如,敘述中若提及第一部件形成在第二部件之上,可能包含第一和第二部件直接接觸的實施例,也可能包含額外的部件形成在第一和第二部件之間,使得它們不直接接觸的實施例。The following disclosure provides many embodiments or examples for specifically describing the different components of the light-emitting element provided by the embodiments. However, these are merely examples and are not intended to limit the light-emitting element of the present disclosure to the following examples. Unless otherwise specified, the size, material, shape, relative configuration, etc. of each component described in the embodiments in this specification are not limited to the scope of the present disclosure. For example, if the description mentions that a first component is formed on a second component, it may include an embodiment in which the first and second components are in direct contact, and it may also include an embodiment in which an additional component is formed between the first and second components so that they are not in direct contact.

再者,在一些變化性的實施例中,不同實施例的圖式的相似/相同的部件係以相似/相同的元件符號予以標明,以適切省略詳細說明。並且,圖式係為利於理解和清楚說明而繪製,圖式中各層的厚度、尺寸、形狀或位置關係等,並非一定是部件的實際尺寸或是呈實際比例之關係。需特別注意的是,圖式中未繪示、或是說明書中未描述之部件,可為熟習發明所屬領域技藝之人士所知之形式。Furthermore, in some variant embodiments, similar/identical components in the drawings of different embodiments are marked with similar/identical element symbols to appropriately omit detailed descriptions. In addition, the drawings are drawn to facilitate understanding and clear descriptions, and the thickness, size, shape or position relationship of each layer in the drawings is not necessarily the actual size of the components or the actual ratio. It should be particularly noted that components not shown in the drawings or described in the specification may be in a form known to those skilled in the art of the invention.

再者,在以下敘述中可使用空間相關用語,例如「在……之下」、「在……下方」、「下方的」、「在……上方」、「上方的」和其他類似的用語,以簡化一部件與其他部件之間如圖所示之關係的陳述。除了包含圖式所描繪之方向,發光元件可以在使用或操作中朝其他方向定位(例如旋轉90度或是其他角度/方向),而在此使用的空間相關用語描述可依此相應地解讀。Furthermore, spatially related terms such as "under", "below", "lower", "above", "upper" and other similar terms may be used in the following description to simplify the description of the relationship between one component and other components as shown in the figures. In addition to the directions depicted in the figures, the light-emitting element can be positioned in other directions during use or operation (e.g., rotated 90 degrees or other angles/directions), and the spatially related terms used herein should be interpreted accordingly.

本揭露內容的實施例係提供了發光元件及其製造方法,通過在第一電極與第一型半導體層之間形成一III-V族化合物半導體層,使第一電極可以與III-V族化合物半導體層形成良好的歐姆接觸以增進發光效率。並且通過實施例的製造方法可以改善發光元件的電子特性以及提高可靠度。實施例的發光元件例如是一發光二極體,例如紫外光發光二極體(ultraviolet light emitting diode;UV LED)、或其他型態的發光元件。以下係提出多個實施例以做為發光元件及其製造方法的相關說明,然而可以理解的是,此些實施例中的發光元件的部件僅為例示之用,並非用以限制本發明。再者,以下所提出的製造方法所敘述的各步驟的之前、期間或是之後,可能可以進行其他的步驟,且上述一些敘述步驟可能因為此方法的其他實施例而被取代或刪除。The embodiments of the present disclosure provide a light-emitting element and a method for manufacturing the same. By forming a III-V compound semiconductor layer between a first electrode and a first type semiconductor layer, the first electrode can form a good ohmic contact with the III-V compound semiconductor layer to improve the light-emitting efficiency. In addition, the manufacturing method of the embodiments can improve the electronic properties of the light-emitting element and enhance the reliability. The light-emitting element of the embodiments is, for example, a light-emitting diode, such as an ultraviolet light emitting diode (UV LED), or other types of light-emitting elements. The following are a number of embodiments for illustration of the light-emitting element and a method for manufacturing the same. However, it can be understood that the components of the light-emitting element in these embodiments are for illustration only and are not intended to limit the present invention. Furthermore, other steps may be performed before, during or after each step described in the manufacturing method proposed below, and some of the steps described above may be replaced or deleted due to other embodiments of this method.

第1、2、3A、4、5、6A圖是根據本揭露的一些實施例中,一發光元件10在多個中間製造階段的剖面示意圖。第3B圖和第6B圖為一實施例的發光元件10在中間製造階段的俯視圖,第3A圖和第6A圖是分別沿著第3B圖和第6B圖中的剖線A-A’所繪製。Figures 1, 2, 3A, 4, 5, and 6A are cross-sectional schematic diagrams of a light-emitting element 10 at multiple intermediate manufacturing stages according to some embodiments of the present disclosure. Figures 3B and 6B are top views of the light-emitting element 10 at intermediate manufacturing stages of an embodiment, and Figures 3A and 6A are drawn along the section line A-A' in Figures 3B and 6B, respectively.

參照第1圖,根據一些實施例,提供一基底100,並且在基底100的上方形成一第一型半導體層(first-type semiconductor layer)120和一半導體平台(semiconductor mesa)130。第一型半導體層120具有第一部分121以及第二部分122,其中第二部分122與第一部分121相連。半導體平台130則形成於第一型半導體層120的第二部分122上,並且不覆蓋第一部分121。1 , according to some embodiments, a substrate 100 is provided, and a first-type semiconductor layer 120 and a semiconductor mesa 130 are formed on the substrate 100. The first-type semiconductor layer 120 has a first portion 121 and a second portion 122, wherein the second portion 122 is connected to the first portion 121. The semiconductor mesa 130 is formed on the second portion 122 of the first-type semiconductor layer 120 and does not cover the first portion 121.

根據一些實施例,半導體平台130包含一活性區域131以及一第二型半導體層132於一堆疊方向D1(例如Y方向)上依序堆疊於第一型半導體層120的第二部分122的上方。According to some embodiments, the semiconductor platform 130 includes an active region 131 and a second type semiconductor layer 132 sequentially stacked above the second portion 122 of the first type semiconductor layer 120 in a stacking direction D1 (eg, Y direction).

在一些實施例中,基底100可以為一成長基板用以成長後續的半導體層。基底100包括矽、碳化矽(SiC)、氧化鋁(Al 2O 3)、氮化鋁(AlN)、氮化鎵(GaN)、其他適合的材料、或前述材料之組合。在一些實施例中,基底100可以是一圖案化基板,即,基底100在半導體疊層所在的表面上具有圖案化結構(圖未示)。從半導體疊層發射的光可以被基底100的圖案化結構所折射,從而提高發光元件10的亮度。在一示例中,基底100是組成為氧化鋁的一藍寶石基材。 In some embodiments, the substrate 100 may be a growth substrate for growing subsequent semiconductor layers. The substrate 100 includes silicon, silicon carbide (SiC), aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), gallium nitride (GaN), other suitable materials, or a combination of the foregoing materials. In some embodiments, the substrate 100 may be a patterned substrate, that is, the substrate 100 has a patterned structure on the surface where the semiconductor stack is located (not shown). Light emitted from the semiconductor stack can be refracted by the patterned structure of the substrate 100, thereby increasing the brightness of the light-emitting element 10. In one example, the substrate 100 is a sapphire substrate composed of aluminum oxide.

於本揭露內容的任一實施例中,執行磊晶成長的方式包含但不限於金屬有機化學氣相沉積(metal-organic chemical vapor deposition,MOCVD)、氫化物氣相磊晶生長法(hydride vapor phase epitaxy,HVPE)、分子束磊晶(molecular beam epitaxy,MBE)、物理氣相沉積(physical vapor deposition, PVD)、液相晶體磊晶(liquid-phase epitaxy,LPE)。In any embodiment of the present disclosure, the method of performing epitaxial growth includes but is not limited to metal-organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), physical vapor deposition (PVD), and liquid-phase epitaxy (LPE).

在一些實施例中,第一型半導體層120是一n型半導體層,其構成材料包括Ⅲ-V(三/五)族化合物半導體,例如是氮化鋁鎵銦系列(Al xGa yln (1-x-y)N)或磷化鋁鎵銦系列(Al xGa yIn (1-x-y)P),其中0≦x≦1,0≦y≦1,0≦x+y≦1,並且摻雜n型摻質。n型摻質包括矽或氧,但本揭露不限於此,其他適合的IV族或VI族元素亦適用於本揭露。 In some embodiments, the first semiconductor layer 120 is an n-type semiconductor layer, and its constituent material includes III-V (III/V) compound semiconductors, such as aluminum gallium indium nitride series (Al x Ga y In (1-xy) N) or aluminum gallium indium phosphide series (Al x Ga y In (1-xy) P), wherein 0≦x≦1, 0≦y≦1, 0≦x+y≦1, and is doped with n-type dopants. The n-type dopant includes silicon or oxygen, but the present disclosure is not limited thereto, and other suitable IV group or VI group elements are also applicable to the present disclosure.

在一些實施例中,第一型半導體層120是單一組成的n型摻質摻雜的氮化鋁鎵(n-AlGaN)層。在一些其他實施例中,第一型半導體層120是一多層結構,例如包括至少兩種鋁(Al)組分不同的n-AlGaN層磊晶成長或沉積堆疊而成,堆疊方式可以是非週期性地堆疊,或是週期性地交替堆疊,其中鋁組分例如是在0.5-1之間。在一示例中,第一型半導體層120是高鋁組分的n-AlGaN層。In some embodiments, the first semiconductor layer 120 is a single-component n-type doped aluminum gallium nitride (n-AlGaN) layer. In some other embodiments, the first semiconductor layer 120 is a multi-layer structure, for example, comprising at least two n-AlGaN layers with different aluminum (Al) compositions stacked by epitaxial growth or deposition, and the stacking method can be non-periodic stacking or periodic alternating stacking, wherein the aluminum composition is, for example, between 0.5-1. In one example, the first semiconductor layer 120 is a high aluminum composition n-AlGaN layer.

在一些實施例中,活性區域131可為單異質結構(single heterostructure;SH)、雙異質結構(double heterostructure;DH)、雙側雙異質結構(double-side double heterostructure;DDH)、或是多層量子井結構(multi-quantum well;MQW)。在部份實施例中,活性區域131具有多重量子井(multiple-quantum well;MQW)結構。此種多層結構的量子井可以由多層井層(well layers)與多層能障高於井層的阻障層(barrier layers)交替堆疊而成。井層例如是包含氮化銦鎵(InGaN)、氮化鋁鎵(AlGaN),而阻障層例如是包含氮化鎵(GaN)、氮化鋁銦鎵(AlInGaN)或氮化鋁鎵(AlGaN)。量子井可以提高電子與空穴結合的機會,並產生光線,而提升發光元件10的發光效率。其發光原理與機制在此不再贅述。因此,活性區域131所包含的多重量子井結構亦做為發光元件10的發光層。在部份實施例中,活性區域131之材料可為中性、p型或n型電性的半導體。藉由改變活性區域131的物理及化學組成以調整活性區域131發出光線的波長。當活性區域131之材料為InGaN系列材料時,可發出波長介於400 nm及490 nm之間的藍光或深藍光,或波長介於490 nm和550 nm之間的綠光。當活性區域131之材料為AlGaN系列或AlInGaN系列材料時,可發出波長介於250 nm及400 nm之間的紫外光。而第二型半導體層132以及第一型半導體層120則分別位於活性區域131的相對兩側。In some embodiments, the active region 131 may be a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), or a multi-quantum well (MQW). In some embodiments, the active region 131 has a multiple-quantum well (MQW) structure. The quantum well of such a multi-layer structure may be formed by alternately stacking multiple well layers and multiple barrier layers having an energy barrier higher than the well layers. The well layer includes, for example, indium gallium nitride (InGaN) or aluminum gallium nitride (AlGaN), and the barrier layer includes, for example, gallium nitride (GaN), aluminum indium gallium nitride (AlInGaN) or aluminum gallium nitride (AlGaN). The quantum well can increase the chance of electrons and holes combining and generate light, thereby improving the luminescence efficiency of the light-emitting element 10. Its luminescence principle and mechanism are not repeated here. Therefore, the multiple quantum well structure included in the active region 131 also serves as the light-emitting layer of the light-emitting element 10. In some embodiments, the material of the active region 131 can be a neutral, p-type or n-type electrical semiconductor. The wavelength of the light emitted by the active region 131 is adjusted by changing the physical and chemical composition of the active region 131. When the material of the active region 131 is an InGaN series material, blue light or deep blue light with a wavelength between 400 nm and 490 nm, or green light with a wavelength between 490 nm and 550 nm can be emitted. When the material of the active region 131 is an AlGaN series or AlInGaN series material, ultraviolet light with a wavelength between 250 nm and 400 nm can be emitted. The second type semiconductor layer 132 and the first type semiconductor layer 120 are located on opposite sides of the active region 131, respectively.

在一些實施例中,第二型半導體層132是一p型半導體層,其構成材料包括Ⅲ-V(三/五)族化合物半導體,例如是氮化鋁鎵銦系列(Al xGa yln (1-x-y)N)或磷化鋁鎵銦系列(Al xGa yIn (1-x-y)P),其中0≦x≦1,0≦y≦1,0≦x+y≦1,並且摻雜p型摻質。 In some embodiments, the second type semiconductor layer 132 is a p-type semiconductor layer, and its constituent materials include III-V (III/V) group compound semiconductors, such as aluminum gallium indium nitride series ( AlxGayln (1-xy) N) or aluminum gallium indium phosphide series ( AlxGayIn (1-xy) P), where 0≦x≦1, 0≦y≦1, 0≦x+y≦1, and is doped with p-type dopants.

上述的第一型半導體層120、活性區域131的多重量子井(MQW)結構以及第二型半導體層132可藉由例如有機金屬化學氣相沉積(metal organic chemical vapor deposition;MOCVD)製程、超高真空化學氣相沉積(ultrahigh vacuum chemical vapor deposition;UHV-CVD)製程、分子束磊晶成長(molecular beam epitaxy;MBE)製程、氫化物氣相磊晶成長(hydride vapor phase epitaxy;HVPE)製程、物理氣相沉積(physical vapor deposition, PVD)、液相晶體磊晶(liquid-phase epitaxy,LPE)、或其他合適的製程而形成。The first type semiconductor layer 120, the multiple quantum well (MQW) structure of the active region 131, and the second type semiconductor layer 132 may be formed by, for example, a metal organic chemical vapor deposition (MOCVD) process, an ultrahigh vacuum chemical vapor deposition (UHV-CVD) process, a molecular beam epitaxy (MBE) process, a hydride vapor phase epitaxy (HVPE) process, a physical vapor deposition (PVD), a liquid-phase epitaxy (LPE), or other suitable processes.

在一些實施例中,基底100上還包括一緩衝層110,第一型半導體層120生長於緩衝層110的表面上。緩衝層110可以包括氮化鋁(AlN)、氮化鋁鎵(AlGaN)或其他合適的材料。在一些實施例中,緩衝層110包含單一層,或包含多層(圖未示)。在一些實施例中,多層的緩衝層110的鋁含量會依堆疊順序變化,例如,鋁含量依堆疊順序漸減。在一些實施例中,多層的緩衝層110可以是由至少二種不同材料層週期性堆疊而成的超晶格結構。緩衝層110具有降低基底100和後續形成的半導體材料之間的晶格不匹配的作用。在一些實施例中,緩衝層110可藉由例如有機金屬化學氣相沉積(metal organic chemical vapor deposition;MOCVD)製程、分子束磊晶成長(molecular beam epitaxy;MBE)製程、氫化物氣相磊晶成長(hydride vapor phase epitaxy;HVPE)製程、物理氣相沉積(physical vapor deposition;PVD)、或其他合適的製程而形成在基底100上。In some embodiments, the substrate 100 further includes a buffer layer 110, and the first type semiconductor layer 120 is grown on the surface of the buffer layer 110. The buffer layer 110 may include aluminum nitride (AlN), aluminum gallium nitride (AlGaN) or other suitable materials. In some embodiments, the buffer layer 110 includes a single layer, or includes multiple layers (not shown). In some embodiments, the aluminum content of the multiple layers of the buffer layer 110 varies according to the stacking order, for example, the aluminum content gradually decreases according to the stacking order. In some embodiments, the multiple layers of the buffer layer 110 may be a superlattice structure formed by periodically stacking at least two different material layers. The buffer layer 110 has the function of reducing the lattice mismatch between the substrate 100 and the semiconductor material to be formed subsequently. In some embodiments, the buffer layer 110 can be formed on the substrate 100 by, for example, a metal organic chemical vapor deposition (MOCVD) process, a molecular beam epitaxy (MBE) process, a hydride vapor phase epitaxy (HVPE) process, a physical vapor deposition (PVD) process, or other suitable processes.

如第1圖所示的結構可以通過例如(但不限於)以下方法而製得。首先,在一基底100(例如藍寶石基材)上沉積一緩衝層110(例如AlN材料)。然後,於緩衝層110上沿著堆疊方向D1(例如Y方向)依序形成第一型半導體材料(例如n型摻質摻雜的氮化鋁鎵(n-AlGaN))、多重量子井(MQW)結構、以及第二型半導體材料(例如p型摻質摻雜的氮化鋁鎵(p-AlGaN))。接著,可通過光學微影和蝕刻製程,去除部分的第二型半導體材料、部分的多重量子井結構和部分的第一型半導體材料,以形成半導體平台130以及包含厚度不同的部分的第一型半導體層120。在一些實施例中,可在堆疊材料層上形成一遮罩,可通過濕式蝕刻,或者亁式蝕刻,例如感應耦合電漿(inductively coupled plasma;ICP)蝕刻製程、反應式離子蝕刻(reactive ion etching;RIE)製程、或是其他合適的製程,以去除此遮罩以外所對應的第二型半導體材料的部分和多重量子井結構的部分,並且減薄第一型半導體材料的部分。如第1圖所示,在光學微影和蝕刻製程後,可形成半導體平台130以及第一型半導體層120。第一型半導體層120包括位於半導體平台130下方以外且厚度較小的第一部分121,以及位於半導體平台130下方且厚度較大的第二部分122。之後,去除前述遮罩。The structure shown in FIG. 1 can be manufactured by, for example (but not limited to), the following method. First, a buffer layer 110 (e.g., AlN material) is deposited on a substrate 100 (e.g., a sapphire substrate). Then, a first-type semiconductor material (e.g., n-type doped aluminum gallium nitride (n-AlGaN)), a multiple quantum well (MQW) structure, and a second-type semiconductor material (e.g., p-type doped aluminum gallium nitride (p-AlGaN)) are sequentially formed on the buffer layer 110 along a stacking direction D1 (e.g., a Y direction). Then, a portion of the second-type semiconductor material, a portion of the multiple quantum well structure, and a portion of the first-type semiconductor material can be removed by optical lithography and etching processes to form a semiconductor platform 130 and a first-type semiconductor layer 120 including portions with different thicknesses. In some embodiments, a mask may be formed on the stacked material layer, and wet etching or dry etching, such as an inductively coupled plasma (ICP) etching process, a reactive ion etching (RIE) process, or other suitable processes, may be performed to remove the portion of the second-type semiconductor material and the portion of the multiple quantum well structure corresponding to the portion outside the mask, and to thin the portion of the first-type semiconductor material. As shown in FIG. 1 , after the optical lithography and etching processes, a semiconductor platform 130 and a first-type semiconductor layer 120 may be formed. The first-type semiconductor layer 120 includes a first portion 121 located outside the semiconductor platform 130 and having a smaller thickness, and a second portion 122 located below the semiconductor platform 130 and having a larger thickness. Thereafter, the aforementioned mask is removed.

參照第2圖,根據一些實施例,形成一第一絕緣層141於第一型半導體層120的第一部分121上以及半導體平台130上,且此第一絕緣層141具有第一開口142位於第一型半導體層120的第一部分121上。第一開口142係暴露出第一部分121的上表面121a的一部分。2 , according to some embodiments, a first insulating layer 141 is formed on the first portion 121 of the first type semiconductor layer 120 and on the semiconductor platform 130, and the first insulating layer 141 has a first opening 142 located on the first portion 121 of the first type semiconductor layer 120. The first opening 142 exposes a portion of the upper surface 121a of the first portion 121.

在一些實施例中,第一絕緣層141的材料是選用可以承受後續製程溫度,其材料性質不會產生劣化的材料為主。第一絕緣層141可包括氧化矽、氮化矽、氮氧化矽、氧化鋁、其他合適的材料、或是前述材料的組合。In some embodiments, the material of the first insulating layer 141 is mainly selected to be a material that can withstand the temperature of subsequent processes and whose material properties will not be degraded. The first insulating layer 141 may include silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, other suitable materials, or a combination of the foregoing materials.

在一些實施例中,第一絕緣層141可通過化學氣相沉積(CVD)、物理氣相沉積(physical vapor deposition;PVD)、原子層沉積(atomic layer deposition;ALD)、或其他合適的方法而形成。在一些實施例中,第一絕緣層141包括氧化矽,並且通過一電漿輔助化學氣相沉積(plasma enhanced chemical vapor deposition;PECVD)製程而形成。In some embodiments, the first insulating layer 141 may be formed by chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), or other suitable methods. In some embodiments, the first insulating layer 141 includes silicon oxide and is formed by a plasma enhanced chemical vapor deposition (PECVD) process.

再者,由於此第一絕緣層141做為發光元件10的保護層,因此需具有足夠的厚度以阻擋漏電流(current leakage)。在一些實施例中,第一絕緣層141的厚度H1是在大約500Å至大約5000Å的範圍之間,更具體地說,大約1500Å至大約2500Å的範圍之間,例如大約2000Å。但本揭露並不僅限於前述之數值和數值範圍。在一些實施例中,第一開口142的厚度H1取決於後續形成的III-V族化合物半導體層150(第3A、3B圖)的厚度H2,於後詳述之。Furthermore, since the first insulating layer 141 serves as a protective layer for the light-emitting element 10, it needs to have a sufficient thickness to block current leakage. In some embodiments, the thickness H1 of the first insulating layer 141 is in the range of about 500Å to about 5000Å, more specifically, in the range of about 1500Å to about 2500Å, for example, about 2000Å. However, the present disclosure is not limited to the aforementioned numerical values and numerical ranges. In some embodiments, the thickness H1 of the first opening 142 depends on the thickness H2 of the subsequently formed III-V compound semiconductor layer 150 (FIGS. 3A and 3B), which will be described in detail later.

在一些實施例中,第一開口142在方向D2(例如X方向)上的寬度W O1是相應於後續形成的III-V族化合物半導體層150(第3A、3B圖)的寬度W1。 In some embodiments, the width W O1 of the first opening 142 in the direction D2 (eg, the X direction) corresponds to the width W1 of the subsequently formed III-V compound semiconductor layer 150 ( FIGS. 3A and 3B ).

如第2圖所示的結構可以通過例如(但不限於)以下方法而製得。首先,沉積一絕緣材料層(未示出)以順應性的覆蓋第一型半導體層120和半導體平台130。之後,可通過光學微影和蝕刻製程,對此絕緣材料層進行圖案化製程。例如,在此絕緣材料層上方形成一圖案化光阻(未示出),並且根據圖案化光阻對此絕緣材料層進行蝕刻製程,例如通過一乾式蝕刻製程、一濕式蝕刻製程、或前述蝕刻製程之組合,以形成具有第一開口142的第一絕緣層141,其中,第一開口142暴露出第一型半導體層120的第一部分121的上表面121a。The structure shown in FIG. 2 can be manufactured by, for example (but not limited to), the following method: First, an insulating material layer (not shown) is deposited to conformally cover the first type semiconductor layer 120 and the semiconductor platform 130. Thereafter, the insulating material layer can be patterned by optical lithography and etching processes. For example, a patterned photoresist (not shown) is formed above the insulating material layer, and an etching process is performed on the insulating material layer according to the patterned photoresist, such as by a dry etching process, a wet etching process, or a combination of the aforementioned etching processes, to form a first insulating layer 141 having a first opening 142, wherein the first opening 142 exposes the upper surface 121a of the first portion 121 of the first type semiconductor layer 120.

參照第3A、3B圖,根據一些實施例,形成一III-V族化合物半導體層150於第一開口142中,且此III-V族化合物半導體層150接觸第一型半導體層120的第一部分121。3A and 3B , according to some embodiments, a III-V compound semiconductor layer 150 is formed in the first opening 142 , and the III-V compound semiconductor layer 150 contacts the first portion 121 of the first type semiconductor layer 120 .

再者,第3B圖是根據本揭露的一實施例的發光元件10中,具有第一開口142的第一絕緣層141以及位於第一開口142中的III-V族化合物半導體層150的俯視圖,第3A圖是沿著第3B圖中的剖線A-A’所繪製。在一些實施例中,自基底100的上方俯視時,第一開口142的輪廓是環繞III-V族化合物半導體層150。Furthermore, FIG. 3B is a top view of the first insulating layer 141 having the first opening 142 and the III-V compound semiconductor layer 150 located in the first opening 142 in the light emitting element 10 according to an embodiment of the present disclosure, and FIG. 3A is drawn along the section line A-A' in FIG. 3B. In some embodiments, when viewed from above the substrate 100, the outline of the first opening 142 surrounds the III-V compound semiconductor layer 150.

根據一些實施例,第一絕緣層141是覆蓋第一型半導體層120的第一部分121的上表面121a的一部分,並且沿著第二部分122的側表面延伸以覆蓋半導體平台130的側表面和上表面,包括覆蓋活性區域131的側表面131s以及第二型半導體層132的側表面132s和上表面132a。且第一絕緣層141是接觸III-V族化合物半導體層150的側表面150s,但是並不覆蓋III-V族化合物半導體層150的上表面150a。According to some embodiments, the first insulating layer 141 is a portion covering the upper surface 121a of the first portion 121 of the first type semiconductor layer 120, and extends along the side surface of the second portion 122 to cover the side surface and the upper surface of the semiconductor platform 130, including covering the side surface 131s of the active region 131 and the side surface 132s and the upper surface 132a of the second type semiconductor layer 132. And the first insulating layer 141 is in contact with the side surface 150s of the III-V compound semiconductor layer 150, but does not cover the upper surface 150a of the III-V compound semiconductor layer 150.

在一些實施例中,所形成的III-V族化合物半導體層150,於堆疊方向D1上,其厚度H2是小於第一絕緣層141於堆疊方向D1上的厚度H1(i.e., H2<H1)。因此,如第3A圖所示,形成III-V族化合物半導體層150之後,於堆疊方向D1上,III-V族化合物半導體層150的上表面150a低於與III-V族化合物半導體層150相鄰的第一絕緣層141的上表面141a。在一些實施例中,III-V族化合物半導體層150的厚度H2可大於或等於第一絕緣層141的厚度H1。In some embodiments, the thickness H2 of the formed III-V compound semiconductor layer 150 in the stacking direction D1 is less than the thickness H1 of the first insulating layer 141 in the stacking direction D1 (i.e., H2<H1). Therefore, as shown in FIG. 3A , after the III-V compound semiconductor layer 150 is formed, in the stacking direction D1, the upper surface 150a of the III-V compound semiconductor layer 150 is lower than the upper surface 141a of the first insulating layer 141 adjacent to the III-V compound semiconductor layer 150. In some embodiments, the thickness H2 of the III-V compound semiconductor layer 150 may be greater than or equal to the thickness H1 of the first insulating layer 141.

在一些實施例中,III-V族化合物半導體層150的厚度H2是在大約5nm至大約200nm的範圍之間,更具體地說,大約30nm至大約150nm的範圍之間,例如在大約80nm至大約100nm的範圍之間。但本揭露並不僅限於前述之數值和數值範圍。In some embodiments, the thickness H2 of the III-V compound semiconductor layer 150 is in the range of about 5 nm to about 200 nm, more specifically, in the range of about 30 nm to about 150 nm, such as in the range of about 80 nm to about 100 nm. However, the present disclosure is not limited to the aforementioned values and value ranges.

在一些實施例中,在形成III-V族化合物半導體層150後,第一絕緣層141的第一開口142的一內側壁142s是沿著III-V族化合物半導體層150的側表面150s向上延伸。如第3A圖所示,第一開口142暴露出III-V族化合物半導體層150的上表面150a的所有部分。在一些實施例中,由剖面觀之,第一開口142的內側壁142s是一傾斜側壁,第一開口142為一倒梯形開口。In some embodiments, after forming the III-V compound semiconductor layer 150, an inner sidewall 142s of the first opening 142 of the first insulating layer 141 extends upward along the side surface 150s of the III-V compound semiconductor layer 150. As shown in FIG. 3A, the first opening 142 exposes all portions of the upper surface 150a of the III-V compound semiconductor layer 150. In some embodiments, from a cross-sectional view, the inner sidewall 142s of the first opening 142 is an inclined sidewall, and the first opening 142 is an inverted trapezoidal opening.

在一些實施例中,III-V族化合物半導體層150是一低接觸電阻層。在一示例中,III-V族化合物半導體層150與後續形成的電極170(第6A圖)的接觸電阻是低於第一型半導體層120與電極170之間的接觸電阻。在一些實施例中,藉由材料組成調整、導電型摻質種類、或導電型摻質摻雜濃度的調整使得III-V族化合物半導體層150的導電性高於第一型半導體層120的導電性,進而降低與電極170的接觸電阻。In some embodiments, the III-V compound semiconductor layer 150 is a low contact resistance layer. In one example, the contact resistance between the III-V compound semiconductor layer 150 and the electrode 170 ( FIG. 6A ) formed subsequently is lower than the contact resistance between the first semiconductor layer 120 and the electrode 170. In some embodiments, the conductivity of the III-V compound semiconductor layer 150 is higher than that of the first semiconductor layer 120 by adjusting the material composition, the conductive type doping type, or the conductive type doping concentration, thereby reducing the contact resistance with the electrode 170.

在後續製程中,實施例的金屬電極,例如第6A圖所示之電極170(在此示例中,亦可稱為一n金屬電極),是沉積在此低接觸電阻的III-V族化合物半導體層150上,以形成良好的歐姆接觸。再者,相較於直接將電極170沉積在第一型半導體層120的第一部分121上,實施例所提出的結構配置可以使電極170與下方的第一型半導體層120之間,透過低接觸電阻的半導體材料(亦即III-V族化合物半導體層150)的設置而更容易的達成良好的歐姆接觸,同時可以降低電極170的合金溫度,使得電極170較為平整,並且提高反射率,進而增進應用的發光元件10的發光效率。In subsequent manufacturing processes, a metal electrode of the embodiment, such as the electrode 170 shown in FIG. 6A (also referred to as an n-metal electrode in this example), is deposited on the low contact resistance III-V compound semiconductor layer 150 to form a good ohmic contact. Furthermore, compared to directly depositing the electrode 170 on the first portion 121 of the first type semiconductor layer 120, the structural configuration proposed in the embodiment can make it easier to achieve good ohmic contact between the electrode 170 and the underlying first type semiconductor layer 120 through the provision of a semiconductor material with low contact resistance (i.e., the III-V compound semiconductor layer 150), and at the same time, it can reduce the alloy temperature of the electrode 170, making the electrode 170 smoother and improving the reflectivity, thereby enhancing the luminous efficiency of the applied light-emitting element 10.

根據本揭露的實施例中,III-V族化合物半導體層150的材料是選用可以承受後續製程的溫度,使其材料性質不會產生劣化的半導體材料。在一些實施例中,III-V族化合物半導體層150的材料包含n型氮化鎵(n-GaN)、n型氮化鎵銦(n-InGaN)、n型氮化鋁鎵(n-AlGaN)、n型氮化鋁鎵銦(n-AlGaInN)、其他合適的材料、或前述材料的組合。再者,在一些示例中,III-V族化合物半導體層150的導電性優於第一型半導體層120。III-V族化合物半導體層150的材料的鋁(Al)組分小於第一型半導體層120的材料的鋁組分,在一些示例中,III-V族化合物半導體層150的材料包含氮化鎵或氮化鋁鎵,其中鎵的組成大於鋁組成。在一些示例中,III-V族化合物半導體層150的材料包含n型氮化鎵。在一些示例中,III-V族化合物半導體層150的摻質摻雜濃度大於第一型半導體層120的摻質摻雜濃度。在一些示例中,III-V族化合物半導體層150的摻質摻雜濃度大於1x10 18cm -3,例如大於5x10 18cm -3According to the embodiments disclosed herein, the material of the III-V compound semiconductor layer 150 is a semiconductor material that can withstand the temperature of the subsequent process and does not deteriorate the material properties. In some embodiments, the material of the III-V compound semiconductor layer 150 includes n-type gallium nitride (n-GaN), n-type gallium indium nitride (n-InGaN), n-type aluminum gallium nitride (n-AlGaN), n-type aluminum gallium indium nitride (n-AlGaInN), other suitable materials, or a combination of the foregoing materials. Furthermore, in some examples, the conductivity of the III-V compound semiconductor layer 150 is better than that of the first semiconductor layer 120. The aluminum (Al) composition of the material of the III-V compound semiconductor layer 150 is less than the aluminum composition of the material of the first type semiconductor layer 120. In some examples, the material of the III-V compound semiconductor layer 150 includes gallium nitride or aluminum gallium nitride, wherein the composition of gallium is greater than the composition of aluminum. In some examples, the material of the III-V compound semiconductor layer 150 includes n-type gallium nitride. In some examples, the doping concentration of the III-V compound semiconductor layer 150 is greater than the doping concentration of the first type semiconductor layer 120. In some examples, the doping concentration of the III-V compound semiconductor layer 150 is greater than 1x10 18 cm -3 , for example, greater than 5x10 18 cm -3 .

在一些實施例中,III-V族化合物半導體層150可通過一有機金屬化學氣相沉積(MOCVD)製程、一超高真空化學氣相沉積(UHV-CVD)製程、一分子束磊晶成長(MBE)製程、一氫化物氣相磊晶成長(HVPE)製程、或其他合適的製程而形成。在一示例中,是以有機金屬化學氣相沉積製程沉積n型氮化鎵(n-GaN),以形成III-V族化合物半導體層150。In some embodiments, the III-V compound semiconductor layer 150 may be formed by a metal organic chemical vapor deposition (MOCVD) process, an ultra high vacuum chemical vapor deposition (UHV-CVD) process, a molecular beam epitaxy (MBE) process, a hydride vapor phase epitaxy (HVPE) process, or other suitable processes. In one example, n-type gallium nitride (n-GaN) is deposited by a metal organic chemical vapor deposition process to form the III-V compound semiconductor layer 150.

之後,根據本揭露的實施例,保留第一絕緣層141,並於第一絕緣層141中形成另一開口於半導體平台130的上方,以定義出在後續製程中將設置於半導體平台130上的電極位置,詳述於後。Thereafter, according to the embodiment of the present disclosure, the first insulating layer 141 is retained, and another opening is formed in the first insulating layer 141 above the semiconductor platform 130 to define the position of the electrode to be disposed on the semiconductor platform 130 in the subsequent process, as described in detail below.

參照第4圖,根據一些實施例,於形成III-V族化合物半導體層150後,於第一絕緣層141中形成一第二開口143,且第二開口143暴露出第二型半導體層132的上表面132a的一部分。在一些實施例中,第二開口143在方向D2(例如X方向)上的寬度W O2是相應於後續反射結構160(第5圖示出)在方向D2上的寬度W2。在一些實施例中,在形成第一絕緣層141的第一開口142時,可同時形成半導體平台130上方的第二開口143。於第二開口143中形成一III-V族化合物半導體層。第二開口143中形成的III-V族化合物半導體層可以在形成III-V族化合物半導體層150時同時形成,或不同時形成。另一開口中形成的III-V族化合物半導體層可以和III-V族化合物半導體層150相同或不同材料,或是相同摻質或不同摻質。 Referring to FIG. 4 , according to some embodiments, after forming the III-V compound semiconductor layer 150, a second opening 143 is formed in the first insulating layer 141, and the second opening 143 exposes a portion of the upper surface 132a of the second type semiconductor layer 132. In some embodiments, the width W O2 of the second opening 143 in the direction D2 (e.g., the X direction) corresponds to the width W2 of the subsequent reflective structure 160 (shown in FIG. 5 ) in the direction D2. In some embodiments, when forming the first opening 142 of the first insulating layer 141, the second opening 143 above the semiconductor platform 130 can be formed simultaneously. A III-V compound semiconductor layer is formed in the second opening 143. The III-V compound semiconductor layer formed in the second opening 143 may be formed at the same time as the III-V compound semiconductor layer 150, or may not be formed at the same time. The III-V compound semiconductor layer formed in another opening may be made of the same material or different material as the III-V compound semiconductor layer 150, or may have the same dopant or different dopant.

根據一些實施例,可以通過光學微影和蝕刻製程對第一絕緣層141進行圖案化製程,例如(但不限於)以下所提出的方法,以形成如第4圖所示的第二開口143結構。首先,在第一絕緣層141上形成一圖案化光阻層(patterned PR layer)(未示出),且此圖案化光阻層覆蓋III-V族化合物半導體層150。此圖案化光阻層具有一孔洞對應於第二型半導體層132的上方。根據此孔洞對第一絕緣層141進行蝕刻,例如通過一乾式蝕刻製程、一濕式蝕刻製程、或前述蝕刻製程之組合,以在第一絕緣層141中形成第二開口143,此第二開口143暴露出第二型半導體層132的上表面132a的一部分。According to some embodiments, the first insulating layer 141 may be patterned by optical lithography and etching processes, such as (but not limited to) the method proposed below, to form the second opening 143 structure as shown in FIG. 4. First, a patterned photoresist layer (not shown) is formed on the first insulating layer 141, and the patterned photoresist layer covers the III-V compound semiconductor layer 150. The patterned photoresist layer has a hole corresponding to the upper portion of the second semiconductor layer 132. The first insulating layer 141 is etched according to the hole, for example, by a dry etching process, a wet etching process, or a combination of the aforementioned etching processes, to form a second opening 143 in the first insulating layer 141, and the second opening 143 exposes a portion of the upper surface 132a of the second type semiconductor layer 132.

參照第5圖,根據一些實施例,形成一反射結構160於第一絕緣層141的第二開口143中,其中第二開口143中的反射結構160是電性連接第二型半導體層132。在此一示例中,反射結構160是物理性的接觸第二型半導體層132。在一些實施例中,反射結構160可以是僅形成於第二開口143內,也可以是自第二開口143內延伸出第二開口143外至第一絕緣層141上,以增加反射面積,提升出光效率。Referring to FIG. 5 , according to some embodiments, a reflective structure 160 is formed in the second opening 143 of the first insulating layer 141, wherein the reflective structure 160 in the second opening 143 is electrically connected to the second type semiconductor layer 132. In this example, the reflective structure 160 is physically in contact with the second type semiconductor layer 132. In some embodiments, the reflective structure 160 may be formed only in the second opening 143, or may extend from the second opening 143 to the outside of the second opening 143 to the first insulating layer 141, so as to increase the reflective area and improve the light extraction efficiency.

在一些實施例中,第二型半導體層132是p型半導體層,因此與p型半導體層電性連接的反射結構160亦可稱為一p電極,例如p金屬電極。In some embodiments, the second type semiconductor layer 132 is a p-type semiconductor layer, and thus the reflective structure 160 electrically connected to the p-type semiconductor layer can also be referred to as a p-electrode, such as a p-metal electrode.

在一些實施例中,反射結構160的材料包括導電材料,導電材料包含金屬,例如鎳(Ni)、金(Au)、銀(Ag)、鋁(Al)、鈀(Pd)、鉑(Pt)、釩(V)、鋯(Zr)、鉻(Cr)、銠(Rh)、或鈦(Ti)。在一些實施例中,導電材料包含金屬化合物,例如氮化鈦(TiN)、銦錫氧化物(Indium Tin Oxide, ITO)、銦鋅氧化物(Indium Zinc Oxide, IZO)、鋁錫氧化物(Aluminum Tin Oxide, AlTO)、鋁鋅氧化物(Aluminum Zinc Oxide, AZO)、銦鎵氧化物(Indium Gallium Oxide, IGO)、其他合適的材料、或是前述材料的組合。在一些實施例中,反射結構160可以是一單層結構或是一多層結構。在反射結構160為多層結構的實施例中,包括一透明導電氧化層,例如銦錫氧化物形成於第二型半導體層132上,以及一反射金屬層,例如鋁,形成於透明導電氧化層上。為簡化圖式,係以單層結構繪製示例中的反射結構160,但本揭露並不以此為限制。In some embodiments, the material of the reflective structure 160 includes a conductive material, and the conductive material includes a metal, such as nickel (Ni), gold (Au), silver (Ag), aluminum (Al), palladium (Pd), platinum (Pt), vanadium (V), zirconium (Zr), chromium (Cr), rhodium (Rh), or titanium (Ti). In some embodiments, the conductive material includes a metal compound, such as titanium nitride (TiN), indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (AlTO), aluminum zinc oxide (AZO), indium gallium oxide (IGO), other suitable materials, or a combination of the foregoing materials. In some embodiments, the reflective structure 160 may be a single-layer structure or a multi-layer structure. In the embodiment where the reflective structure 160 is a multi-layer structure, it includes a transparent conductive oxide layer, such as indium tin oxide, formed on the second type semiconductor layer 132, and a reflective metal layer, such as aluminum, formed on the transparent conductive oxide layer. To simplify the diagram, the reflective structure 160 in the example is drawn as a single-layer structure, but the present disclosure is not limited thereto.

如第5圖所示的反射結構160可以通過例如(但不限於)以下方法而製得。首先,可通過例如電子束蒸發(e-beam evaporation)、磁控濺射(magnetron sputtering)、或其他合適的方法,沉積一導電材料於第二型半導體層132的上方,且填入第二開口143。之後,導電材料可通過光學微影和蝕刻製程,而在第二開口143處形成反射結構160。The reflective structure 160 shown in FIG. 5 can be manufactured by, for example (but not limited to), the following methods. First, a conductive material can be deposited on the second type semiconductor layer 132 and filled into the second opening 143 by, for example, electron beam evaporation (e-beam evaporation), magnetron sputtering (magnetron sputtering), or other suitable methods. Thereafter, the conductive material can be formed into the reflective structure 160 at the second opening 143 by optical lithography and etching processes.

在一些實施例中,反射結構160的上表面160a是大致與相鄰的第一絕緣層141的上表面141a共平面。但本揭露並不以此為限制。In some embodiments, the upper surface 160a of the reflective structure 160 is substantially coplanar with the upper surface 141a of the adjacent first insulating layer 141. However, the present disclosure is not limited thereto.

再者,在一些實施例中,如第5圖所示,第一絕緣層141是接觸III-V族化合物半導體層150的側表面150s以及接觸反射結構160的側表面160s,但是第一絕緣層141並不覆蓋III-V族化合物半導體層150的上表面150a以及反射結構160的上表面160a。Furthermore, in some embodiments, as shown in FIG. 5 , the first insulating layer 141 contacts the side surface 150s of the III-V compound semiconductor layer 150 and contacts the side surface 160s of the reflective structure 160 , but the first insulating layer 141 does not cover the upper surface 150a of the III-V compound semiconductor layer 150 and the upper surface 160a of the reflective structure 160 .

參照第6A、6B圖,根據一些實施例,形成一電極170於III-V族化合物半導體層150上。在此一示例中,電極170是物理性的接觸III-V族化合物半導體層150。且電極170通過III-V族化合物半導體層150而電性連接第一型半導體層120。根據一些實施例,電極170與III-V族化合物半導體層150之間具有低接觸電阻,而形成良好的歐姆接觸。6A and 6B, according to some embodiments, an electrode 170 is formed on the III-V compound semiconductor layer 150. In this example, the electrode 170 is physically in contact with the III-V compound semiconductor layer 150. The electrode 170 is electrically connected to the first type semiconductor layer 120 through the III-V compound semiconductor layer 150. According to some embodiments, the electrode 170 and the III-V compound semiconductor layer 150 have low contact resistance, thereby forming a good ohmic contact.

在一些實施例中,第一型半導體層120是n型半導體層,因此與n型半導體層電性連接的電極170亦可稱為一n電極,例如n金屬電極。In some embodiments, the first semiconductor layer 120 is an n-type semiconductor layer, and thus the electrode 170 electrically connected to the n-type semiconductor layer may also be referred to as an n-electrode, such as an n-metal electrode.

再者,第6B圖是根據本揭露的一實施例的發光元件10中,具有開口的絕緣層、開口中的III-V族化合物半導體層、及III-V族化合物半導體層上的電極的俯視圖,第6A圖是沿著第6B圖中的剖線A-A’所繪製。第一型半導體層120的第一部分121的投影範圍如第6B圖中的十字網點區域所示(亦即,圖中虛線所圍繞的範圍)。在一些實施例中,自基底100的上方俯視時,III-V族化合物半導體層150於第一型半導體層120的第一部分121的投影範圍是涵蓋了電極170於第一部分121的投影範圍,如第6B圖所示。Furthermore, FIG. 6B is a top view of an insulating layer with an opening, a III-V compound semiconductor layer in the opening, and an electrode on the III-V compound semiconductor layer in a light-emitting element 10 according to an embodiment of the present disclosure, and FIG. 6A is drawn along the section line A-A' in FIG. 6B. The projection range of the first portion 121 of the first type semiconductor layer 120 is shown as the cross-dot area in FIG. 6B (i.e., the range surrounded by the dotted line in the figure). In some embodiments, when looking down from the top of the substrate 100, the projection range of the III-V compound semiconductor layer 150 on the first portion 121 of the first type semiconductor layer 120 covers the projection range of the electrode 170 on the first portion 121, as shown in FIG. 6B.

根據一些實施例,如第6A圖所示,第一絕緣層141覆蓋III-V族化合物半導體層150的側表面150s以及反射結構160的側表面160s,但是並不接觸和覆蓋電極170的側表面的任何部分。在此示例中,第一絕緣層141在對應於第一開口142處係具有內側壁142s,由剖面視之,此內側壁142s與電極170彼此分離,例如在D2方向(X方向)上,第一絕緣層141的內側壁142s與電極170的側表面170s具有一間距ds1。According to some embodiments, as shown in FIG. 6A , the first insulating layer 141 covers the side surface 150s of the III-V compound semiconductor layer 150 and the side surface 160s of the reflective structure 160, but does not contact or cover any part of the side surface of the electrode 170. In this example, the first insulating layer 141 has an inner side wall 142s at a location corresponding to the first opening 142. When viewed from a cross section, the inner side wall 142s and the electrode 170 are separated from each other. For example, in the D2 direction (X direction), the inner side wall 142s of the first insulating layer 141 and the side surface 170s of the electrode 170 have a distance ds1.

在一些實施例中,電極170的材料包括導電材料,例如鎳(Ni)、金(Au)、銀(Ag)、鋁(Al)、鈀(Pd)、鉑(Pt)、釩(V)、鋯(Zr)、鉻(Cr)、銠(Rh)、鈦(Ti)以及/或氮化鈦(TiN)、其他合適的材料、或是前述材料的組合。再者,電極170可以是一單層結構或是一多層結構。在一些實施例中,電極170具有與反射結構160不相同的材料組成。In some embodiments, the material of the electrode 170 includes a conductive material, such as nickel (Ni), gold (Au), silver (Ag), aluminum (Al), palladium (Pd), platinum (Pt), vanadium (V), zirconium (Zr), chromium (Cr), rhodium (Rh), titanium (Ti) and/or titanium nitride (TiN), other suitable materials, or a combination of the foregoing materials. Furthermore, the electrode 170 can be a single-layer structure or a multi-layer structure. In some embodiments, the electrode 170 has a different material composition from the reflective structure 160.

如第6A、6B圖所示的電極170可以通過例如(但不限於)以下方法而製得。首先,在第一絕緣層141上形成一圖案化光阻層(patterned PR layer)(未示出),且此圖案化光阻層覆蓋第一絕緣層141、III-V族化合物半導體層150以及反射結構160。此圖案化光阻層具有一孔洞對應於第一型半導體層120的第一部分121的上方,並且暴露出III-V族化合物半導體層150的上表面150a的至少一部分。可通過例如電子束蒸發(e-beam evaporation)、磁控濺射、或其他合適的方法,沉積導電材料於圖案化光阻層的上方並且填入此孔洞中,以與III-V族化合物半導體層150接觸。之後,可通過適當製程例如去除一部份的導電材料,而在孔洞中形成電極170。此示例中,圖案化光阻層的孔洞在方向D2(例如X方向)上的寬度例如相應於後續形成的電極170的寬度W3。在形成電極170之後,去除此圖案化光阻層。The electrode 170 shown in FIGS. 6A and 6B can be manufactured by, for example (but not limited to), the following method. First, a patterned photoresist layer (not shown) is formed on the first insulating layer 141, and the patterned photoresist layer covers the first insulating layer 141, the III-V compound semiconductor layer 150, and the reflective structure 160. The patterned photoresist layer has a hole corresponding to the top of the first portion 121 of the first type semiconductor layer 120, and exposes at least a portion of the upper surface 150a of the III-V compound semiconductor layer 150. Conductive material may be deposited on the patterned photoresist layer and filled into the hole by, for example, electron beam evaporation, magnetron sputtering, or other suitable methods to contact the III-V compound semiconductor layer 150. Afterwards, an electrode 170 may be formed in the hole by, for example, removing a portion of the conductive material by a suitable process. In this example, the width of the hole of the patterned photoresist layer in the direction D2 (e.g., the X direction) corresponds to, for example, the width W3 of the electrode 170 to be formed subsequently. After forming the electrode 170, the patterned photoresist layer is removed.

另外,在一些應用中,例如紫外光發光二極體,如第6A圖所示,可以通過覆晶(flip-chip)形式而使反射結構160和電極170與一外部電路板完成電性連接,並經過適當封裝步驟進行封裝,進而得到紫外光發光二極體的封裝結構。In addition, in some applications, such as ultraviolet light emitting diodes, as shown in FIG. 6A , the reflective structure 160 and the electrode 170 can be electrically connected to an external circuit board by flip-chip, and packaged through appropriate packaging steps to obtain a packaged structure of the ultraviolet light emitting diode.

根據本揭露的一些實施例,所製得的發光元件10中,是在電極170(例如n金屬電極)與第一型半導體層120的第一部分121之間形成一個低接觸電阻的半導體材料層,如上述的III-V族化合物半導體層150,以降低電極170與第一型半導體層120之間的接觸電阻,進而降低發光元件10的起始電壓。根據本揭露的一些實施例,藉由III-V族化合物半導體層150的特定材料組成,使其導電性優於第一型半導體層120,例如,鋁 (Al)組分小於第一型半導體層120的材料、摻質摻雜濃度大於第一型半導體層120的材料、及/或摻質摻雜濃度大於1x10 18cm -3的材料,使電極170可以在較低的合金溫度下與III-V族化合物半導體層150形成良好的歐姆接觸。此外,較低的合金溫度也可避免電極金屬析出,使得電極170較為平整,進而提高電極反射率,以增進應用的發光元件10的光摘出效率。 According to some embodiments of the present disclosure, in the manufactured light-emitting element 10, a semiconductor material layer with low contact resistance, such as the above-mentioned III-V compound semiconductor layer 150, is formed between the electrode 170 (for example, an n-metal electrode) and the first portion 121 of the first type semiconductor layer 120 to reduce the contact resistance between the electrode 170 and the first type semiconductor layer 120, thereby reducing the starting voltage of the light-emitting element 10. According to some embodiments of the present disclosure, the III-V compound semiconductor layer 150 has a specific material composition, so that its conductivity is better than the first type semiconductor layer 120, for example, the material with less aluminum (Al) content than the first type semiconductor layer 120, the material with greater doping concentration than the first type semiconductor layer 120, and/or the material with greater doping concentration than 1x10 18 cm -3 , so that the electrode 170 can form a good ohmic contact with the III-V compound semiconductor layer 150 at a lower alloying temperature. In addition, the lower alloying temperature can also avoid the precipitation of electrode metal, making the electrode 170 flatter, thereby improving the electrode reflectivity, so as to enhance the light extraction efficiency of the applied light-emitting element 10.

再者,根據本揭露的一些實施例,在其製造過程中是以同一個絕緣材料層(亦即,第一絕緣層141)進行第一開口142和第二開口143的製作,以在第一開口142和第二開口143中分別形成III-V族化合物半導體層150和反射結構160。然而,在傳統製法中需使用至少兩道沉積製程以分別沉積不同的絕緣層,以及使用相應的蝕刻製程在此些絕緣層中分別形成兩個孔洞於第一型半導體層120的第一部分121和第二部分122的上方。然而,沉積製程所使用的機台(例如蒸鍍機台)內部有許多的氫原子(例如氫離子、氫氣等),這些氫原子會進入半導體材料層中,包括進入第一型半導體層120(例如n-AlGaN層)以及第二型半導體層132(例如p-AlGaN層)中,而容易佔住此些半導體材料層在生長(例如磊晶生長)時產生的缺陷中的空缺(vacancy),導致阻抗變高,而影響發光元件10的電性表現。進行越多道的沉積製程,氫原子對發光元件10的電性所產生的影響越大。Furthermore, according to some embodiments of the present disclosure, the first opening 142 and the second opening 143 are fabricated using the same insulating material layer (i.e., the first insulating layer 141) during the manufacturing process, so as to form the III-V compound semiconductor layer 150 and the reflective structure 160 in the first opening 142 and the second opening 143, respectively. However, in the conventional manufacturing method, at least two deposition processes are required to deposit different insulating layers, respectively, and corresponding etching processes are used to form two holes in these insulating layers above the first portion 121 and the second portion 122 of the first type semiconductor layer 120, respectively. However, there are many hydrogen atoms (such as hydrogen ions, hydrogen gas, etc.) inside the machine used in the deposition process (such as an evaporation machine). These hydrogen atoms will enter the semiconductor material layer, including the first type semiconductor layer 120 (such as an n-AlGaN layer) and the second type semiconductor layer 132 (such as a p-AlGaN layer), and easily occupy the vacancies in the defects generated during the growth (such as epitaxial growth) of these semiconductor material layers, resulting in higher impedance and affecting the electrical performance of the light-emitting element 10. The more deposition processes are performed, the greater the impact of hydrogen atoms on the electrical properties of the light-emitting element 10.

再者,沉積製程中需要經過升溫和降溫以沉積絕緣材料,因而產生熱積存(thermal budget),而越多道的沉積製程,升溫和降溫的次數也進行的越多次。例如,兩道的沉積製程會產生兩次熱積存,而熱積存會對磊晶生長的半導體材料層造成影響,例如累積不當的熱應力在材料中。因此,製得的發光元件10由於受到熱應力的影響,很可能會有電性異常的問題產生。Furthermore, the deposition process requires heating and cooling to deposit the insulating material, thus generating thermal budget. The more deposition processes there are, the more times the heating and cooling are performed. For example, two deposition processes will generate two thermal budgets, and the thermal budget will affect the epitaxially grown semiconductor material layer, such as accumulating improper thermal stress in the material. Therefore, the light-emitting element 10 manufactured is likely to have electrical abnormalities due to the influence of thermal stress.

綜合來說,相較於上述的傳統製法,實施例所提出的製造方法是在同一層的第一絕緣層141中形成第一開口142(第2圖)以及第二開口143(第4圖),如此可以減少至少一道絕緣層的沉積製程,在特定製程中,例如形成III-V族化合物半導體層150的製程中,藉由第一絕緣層141保護活性區域131以及第二型半導體層132,減少氫原子對發光元件10電性的影響,並且也減少了熱積存的累積,可以降低熱積存對半導體材料層的影響,進而改善發光元件10因熱應力而產生電性異常的情況。In summary, compared to the above-mentioned conventional manufacturing method, the manufacturing method proposed in the embodiment forms a first opening 142 (FIG. 2) and a second opening 143 (FIG. 4) in the first insulating layer 141 of the same layer, thereby reducing at least one insulating layer deposition process. In a specific process, such as the process of forming the III-V compound semiconductor layer 150, the first insulating layer 141 protects the active region 131 and the second type semiconductor layer 132, thereby reducing the influence of hydrogen atoms on the electrical properties of the light-emitting element 10, and also reducing the accumulation of heat accumulation, thereby reducing the influence of heat accumulation on the semiconductor material layer, thereby improving the situation where the light-emitting element 10 generates electrical abnormalities due to thermal stress.

另外,根據本揭露的一些實施例所提出的製造方法,是先形成第一型半導體層120、活性區域131(例如具有多重量子井結構)以及第二型半導體層132,並且通過光學微影和蝕刻製程形成半導體平台130之後,再成長低接觸電阻的III-V族化合物半導體層150。由於實施例所提出的製造方法是先利用第一絕緣層141將整個結構覆蓋,包括覆蓋住第一型半導體層120和半導體平台130,之後蝕刻第一絕緣層141以定義出第一開口142後,才形成III-V族化合物半導體層150。因此,實施例所提出的III-V族化合物半導體層150,其設置與製造過程並不會造成活性區域131(即具有多重量子井結構的主動層)的劣化,因此不會影響到原來發光元件10的發光特性,發光元件10仍具有良好的發光效率。In addition, according to the manufacturing method proposed in some embodiments of the present disclosure, the first type semiconductor layer 120, the active region 131 (for example, having a multiple quantum well structure) and the second type semiconductor layer 132 are first formed, and the semiconductor platform 130 is formed by photolithography and etching processes, and then the III-V compound semiconductor layer 150 with low contact resistance is grown. Since the manufacturing method proposed in the embodiment is to first cover the entire structure with the first insulating layer 141, including covering the first type semiconductor layer 120 and the semiconductor platform 130, and then the first insulating layer 141 is etched to define the first opening 142, and then the III-V compound semiconductor layer 150 is formed. Therefore, the configuration and manufacturing process of the III-V compound semiconductor layer 150 proposed in the embodiment will not cause degradation of the active region 131 (i.e., the active layer with a multiple quantum well structure), and thus will not affect the luminescent properties of the original light-emitting element 10, and the light-emitting element 10 still has good luminescent efficiency.

第7、8、9、10圖是根據本揭露的一些實施例中,發光元件10在形成n電極和p電極之後的多個製造階段的剖面示意圖。Figures 7, 8, 9 and 10 are cross-sectional schematic diagrams of the light-emitting element 10 at multiple manufacturing stages after forming the n-electrode and the p-electrode in some embodiments of the present disclosure.

參照第7圖,根據一些實施例,形成一第一阻障層211於電極170(例如n電極)上,以及形成一第二阻障層212於反射結構160(例如p電極)上。根據一些實施例,第一阻障層211及第二阻障層212可在同一製程中形成。根據一些實施例,第一阻障層211及第二阻障層212可在不同製程中形成。7, according to some embodiments, a first barrier layer 211 is formed on the electrode 170 (e.g., the n-electrode), and a second barrier layer 212 is formed on the reflective structure 160 (e.g., the p-electrode). According to some embodiments, the first barrier layer 211 and the second barrier layer 212 can be formed in the same process. According to some embodiments, the first barrier layer 211 and the second barrier layer 212 can be formed in different processes.

在此示例中,所形成的第一阻障層211覆蓋電極170的上表面170a和側表面170s,且第一阻障層211鄰近第一開口142的一部分是接觸III-V族化合物半導體層150,例如直接接觸III-V族化合物半導體層150的上表面150a。In this example, the formed first barrier layer 211 covers the upper surface 170 a and the side surface 170 s of the electrode 170 , and a portion of the first barrier layer 211 adjacent to the first opening 142 contacts the III-V compound semiconductor layer 150 , for example, directly contacts the upper surface 150 a of the III-V compound semiconductor layer 150 .

在一些實施例中,於堆疊方向D1上,III-V族化合物半導體層150的厚度H2是小於第一絕緣層141的厚度H1(第3A圖),因此,第一阻障層211的下方部分,例如鄰近第一開口142的一部分,是位於第一開口142中,如第7圖所示。In some embodiments, in the stacking direction D1, the thickness H2 of the III-V compound semiconductor layer 150 is smaller than the thickness H1 of the first insulating layer 141 ( FIG. 3A ). Therefore, the lower portion of the first barrier layer 211, such as a portion adjacent to the first opening 142 , is located in the first opening 142 , as shown in FIG. 7 .

再者,根據一些實施例,第一阻障層211的側表面211s與第一絕緣層141彼此分離。例如,在D2方向(X方向)上,第一阻障層211的側表面211s與第一絕緣層141於第一開口142處的內側壁142s具有一間距ds2。因此,此示例的第一阻障層211並沒有同時接觸III-V族化合物半導體層150和第一絕緣層141。Furthermore, according to some embodiments, the side surface 211s of the first barrier layer 211 is separated from the first insulating layer 141. For example, in the D2 direction (X direction), the side surface 211s of the first barrier layer 211 and the inner side wall 142s of the first insulating layer 141 at the first opening 142 have a distance ds2. Therefore, the first barrier layer 211 of this example does not contact the III-V compound semiconductor layer 150 and the first insulating layer 141 at the same time.

第一阻障層211可以增進電極170(例如n電極)的反射率,特別是若電極170(例如n電極)的製造材料的反射率不夠高時,第一阻障層211的設置和合適的材料選擇可以提高電極170的反射率。再者,第一阻障層211包覆住電極170(包括覆蓋側表面170s和上表面170a),可以防止電極170材料的擴散(例如防止金屬擴散)。The first barrier layer 211 can improve the reflectivity of the electrode 170 (e.g., the n-electrode). In particular, if the reflectivity of the manufacturing material of the electrode 170 (e.g., the n-electrode) is not high enough, the provision of the first barrier layer 211 and the appropriate material selection can improve the reflectivity of the electrode 170. Furthermore, the first barrier layer 211 covers the electrode 170 (including covering the side surface 170s and the upper surface 170a), which can prevent the diffusion of the material of the electrode 170 (e.g., preventing metal diffusion).

在一些實施例中,位於反射結構160(例如p電極)上的第二阻障層212,其底面積小於反射結構160的上表面160a的面積;亦即,第二阻障層212暴露出反射結構160的上表面160a的一部份。在一些實施例中,位於反射結構160上的第二阻障層212,其底面積大於或等於反射結構160的上表面160a的面積,也就是說,第二阻障層212可以是完全覆蓋反射結構160的上表面160a,甚至包覆住反射結構160。In some embodiments, the second barrier layer 212 located on the reflective structure 160 (e.g., the p-electrode) has a bottom area smaller than the area of the upper surface 160a of the reflective structure 160; that is, the second barrier layer 212 exposes a portion of the upper surface 160a of the reflective structure 160. In some embodiments, the second barrier layer 212 located on the reflective structure 160 has a bottom area greater than or equal to the area of the upper surface 160a of the reflective structure 160, that is, the second barrier layer 212 may completely cover the upper surface 160a of the reflective structure 160, or even cover the reflective structure 160.

第二阻障層212可以增進反射結構160的反射率。特別是若反射結構160(例如p電極)的製造材料的穿透率大於反射率,第二阻障層212的設置和合適的材料選擇可以提高反射結構160的反射率。The second barrier layer 212 can improve the reflectivity of the reflective structure 160. In particular, if the transmittance of the manufacturing material of the reflective structure 160 (such as the p-electrode) is greater than the reflectivity, the provision of the second barrier layer 212 and the appropriate material selection can improve the reflectivity of the reflective structure 160.

在一些實施例中,第一阻障層211和第二阻障層212包括鉻(Cr)、鋁(Al)、其他合適的材料、或前述材料的組合。在一些示例中,第一阻障層211和第二阻障層212包括堆疊的鉻層及鋁層。在一些示例中,第一阻障層211和第二阻障層212包括一含鉻材料(Chromium-based material)合金,例如鉻鋁(Cr-Al)二元合金或是包含鉻鋁的多元合金。第一阻障層211和第二阻障層212的材料可以相同或是不同。再者,第一阻障層211和第二阻障層212可以通過合適的光學微影和蝕刻製程而製作,在此省略敘述。In some embodiments, the first barrier layer 211 and the second barrier layer 212 include chromium (Cr), aluminum (Al), other suitable materials, or a combination of the foregoing materials. In some examples, the first barrier layer 211 and the second barrier layer 212 include stacked chromium layers and aluminum layers. In some examples, the first barrier layer 211 and the second barrier layer 212 include a chromium-based material alloy, such as a chromium-aluminum (Cr-Al) binary alloy or a multi-component alloy containing chromium-aluminum. The materials of the first barrier layer 211 and the second barrier layer 212 can be the same or different. Furthermore, the first barrier layer 211 and the second barrier layer 212 can be manufactured by suitable optical lithography and etching processes, which are omitted here.

參照第8圖,根據一些實施例,形成一第二絕緣層220以覆蓋如第7圖所示的結構,例如第二絕緣層220形成於第一絕緣層141、反射結構160、第一阻障層211、電極170以及第二阻障層212的上方。第二絕緣層220除了可以加強反射結構160和電極170之間的電性絕緣,還可以對結構提供更好的保護,例如提供更好的機械強度、防止水氣進入下方的半導體材料層,以避免例如第一型半導體層120、活性區域131(例如具有多重量子井結構)以及第二型半導體層132等材料層受到水氣侵蝕而損傷。8, according to some embodiments, a second insulating layer 220 is formed to cover the structure shown in FIG. 7, for example, the second insulating layer 220 is formed on the first insulating layer 141, the reflective structure 160, the first barrier layer 211, the electrode 170, and the second barrier layer 212. In addition to strengthening the electrical insulation between the reflective structure 160 and the electrode 170, the second insulating layer 220 can also provide better protection for the structure, such as providing better mechanical strength and preventing moisture from entering the semiconductor material layer below, so as to prevent the material layers such as the first type semiconductor layer 120, the active region 131 (e.g., having a multiple quantum well structure) and the second type semiconductor layer 132 from being damaged by moisture erosion.

再者,第二絕緣層220包括孔洞221和孔洞222,以分別暴露出的第一阻障層211的上表面211a以及第二阻障層212的上表面212a。孔洞221和孔洞222可通過已知的光學微影和蝕刻方式製得,在此不贅述。Furthermore, the second insulating layer 220 includes holes 221 and holes 222 to respectively expose the upper surface 211a of the first barrier layer 211 and the upper surface 212a of the second barrier layer 212. The holes 221 and holes 222 can be made by known optical lithography and etching methods, which will not be described in detail herein.

在一些實施例中,由於第一阻障層211的側表面211s與第一絕緣層141於第一開口142處的內側壁142s處具有間距ds2,因此第二絕緣層220會填入此空隙中。因此,在此示例中,在形成第二絕緣層220後,第二絕緣層220的一部分是位於第一絕緣層141的第一開口142中。並且,如第8圖所示,第二絕緣層220的一部分會與III-V族化合物半導體層150的上表面150a接觸(例如物理性接觸)。因此,換言之,在一些實施例中,沿著D2方向(X方向),在第一絕緣層141與電極170之間(例如內側壁142s至側表面170s之間)還設置有部分的第一阻障層211和部分的第二絕緣層220,如第8圖所示。In some embodiments, since the side surface 211s of the first barrier layer 211 and the inner side wall 142s of the first insulating layer 141 at the first opening 142 have a distance ds2, the second insulating layer 220 will fill in the gap. Therefore, in this example, after the second insulating layer 220 is formed, a portion of the second insulating layer 220 is located in the first opening 142 of the first insulating layer 141. And, as shown in FIG. 8, a portion of the second insulating layer 220 contacts (e.g., physically contacts) the upper surface 150a of the III-V compound semiconductor layer 150. Therefore, in other words, in some embodiments, along the D2 direction (X direction), a portion of the first barrier layer 211 and a portion of the second insulating layer 220 are also disposed between the first insulating layer 141 and the electrode 170 (for example, between the inner wall 142s and the side surface 170s), as shown in FIG. 8 .

再者,在此示例中,第一開口142中的III-V族化合物半導體層150的上表面150a是被多種材料層所覆蓋,包括被電極170、第一阻障層211以及第二絕緣層220等至少三種材料層所覆蓋和接觸(如物理性接觸)。Furthermore, in this example, the upper surface 150a of the III-V compound semiconductor layer 150 in the first opening 142 is covered by multiple material layers, including being covered and contacted (such as physically contacted) by at least three material layers, including the electrode 170, the first barrier layer 211 and the second insulating layer 220.

在一些實施例中,第二絕緣層220的材料包括氧化物、或其他合適的材料。例如,第二絕緣層220包括含矽氧化物、金屬氧化物、其他合適的材料、或前述材料的組合。第二絕緣層220可以是一單層結構或是一多層結構。在一些實施例中,第二絕緣層220可以是由至少二種具有不同折射率的材料交錯堆疊而成的多層結構,例如分散式布拉格反射器(Distributed Bragg Reflector;DBR)。在一示例中,第二絕緣層220包括氧化矽(SiO 2)和氧化鋁(Al 2O 3)。在一些其他的實施例中,第二絕緣層220可以是多層結構,多層結構各層之材料不同。在一些其他的實施例中,第二絕緣層220含有2種、或2種以上不同材質的非導電層,例如包括相同材料(例如都是SiO 2)但是具有不同膜層性質(防漏電流)的非導電層,不同膜層性質是指物理特性(例如折射係數)或是化學特性(例如蝕刻特性)的不同,不同膜層性質可以藉由改變非導電層的形成方式達成。第二絕緣層220的形成方式可以是化學氣相沉積(CVD)、物理氣相沉積(physical vapor deposition;PVD)、原子層沉積(atomic layer deposition;ALD)、電漿輔助化學氣相沉積(plasma enhanced chemical vapor deposition;PECVD)、或其他合適的方法。在一些實施例中,第二絕緣層220和第一絕緣層141的形成方式相同或不同。在一示例中,第二絕緣層220通過先以原子層沉積製程形成氧化鋁再以電漿輔助化學氣相沉積製程形成氧化矽的方式而製得,利用原子等級沉積而成的膜層,相較於其它製程,具有較高緻密度及較佳階梯覆蓋性(step coverage),可強化第二絕緣層220對外界的阻隔效果,降低水氣或其它異物侵入發光元件10的機率,進而提高發光元件10的可靠度。 In some embodiments, the material of the second insulating layer 220 includes oxides, or other suitable materials. For example, the second insulating layer 220 includes silicon-containing oxides, metal oxides, other suitable materials, or a combination of the foregoing materials. The second insulating layer 220 can be a single-layer structure or a multi-layer structure. In some embodiments, the second insulating layer 220 can be a multi-layer structure formed by alternating and stacking at least two materials with different refractive indices, such as a distributed Bragg reflector (DBR). In one example, the second insulating layer 220 includes silicon oxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ). In some other embodiments, the second insulating layer 220 can be a multi-layer structure, and the materials of each layer of the multi-layer structure are different. In some other embodiments, the second insulating layer 220 includes two or more non-conductive layers of different materials, for example, non-conductive layers of the same material (e.g., both are SiO 2 ) but with different film properties (leakage current prevention). The different film properties refer to different physical properties (e.g., refractive index) or chemical properties (e.g., etching properties). Different film properties can be achieved by changing the formation method of the non-conductive layer. The second insulating layer 220 can be formed by chemical vapor deposition (CVD), physical vapor deposition (physical vapor deposition; PVD), atomic layer deposition (atomic layer deposition; ALD), plasma enhanced chemical vapor deposition (plasma enhanced chemical vapor deposition; PECVD), or other suitable methods. In some embodiments, the second insulating layer 220 and the first insulating layer 141 are formed in the same or different manners. In one example, the second insulating layer 220 is formed by first forming aluminum oxide by an atomic layer deposition process and then forming silicon oxide by a plasma assisted chemical vapor deposition process. Compared with other processes, the film layer formed by atomic level deposition has a higher density and better step coverage, which can enhance the barrier effect of the second insulating layer 220 against the outside world, reduce the probability of water vapor or other foreign matter invading the light-emitting element 10, and thus improve the reliability of the light-emitting element 10.

在一些實施例中,第二絕緣層220和第一絕緣層141包含不同的材料組成。因此,III-V族化合物半導體層150的側表面150s和上表面150a是接觸不同材料組成的絕緣層。具體而言,如第8圖所示,III-V族化合物半導體層150的側表面150s接觸第一絕緣層141,但是不接觸第二絕緣層220;III-V族化合物半導體層150的上表面150a接觸第二絕緣層220,但是不接觸第一絕緣層141。In some embodiments, the second insulating layer 220 and the first insulating layer 141 include different material compositions. Therefore, the side surface 150s and the upper surface 150a of the III-V compound semiconductor layer 150 are in contact with insulating layers of different material compositions. Specifically, as shown in FIG. 8 , the side surface 150s of the III-V compound semiconductor layer 150 is in contact with the first insulating layer 141, but not in contact with the second insulating layer 220; the upper surface 150a of the III-V compound semiconductor layer 150 is in contact with the second insulating layer 220, but not in contact with the first insulating layer 141.

之後,參照第9圖,根據一些實施例,在第二絕緣層220的孔洞221和孔洞222中分別形成第一連接部231和第二連接部232。在此示例中,第一連接部231電性連接下方的第一阻障層211和電極170,第二連接部232電性連接下方的第二阻障層212和反射結構160。9, according to some embodiments, a first connection portion 231 and a second connection portion 232 are respectively formed in the hole 221 and the hole 222 of the second insulating layer 220. In this example, the first connection portion 231 electrically connects the first barrier layer 211 and the electrode 170 below, and the second connection portion 232 electrically connects the second barrier layer 212 and the reflective structure 160 below.

在一些實施例中,第一連接部231和第二連接部232的材料包括鎳(Ni)、金(Au)、銀(Ag)、鋁(Al)、鈀(Pd)、鉑(Pt)、釩(V)、鋯(Zr)、鉻(Cr)、鈦(Ti)以及/或氮化鈦(TiN)、其他合適的材料、或是前述材料的組合。第一連接部231和第二連接部232可通過合適的沉積製程、光學微影和蝕刻製程而製得,在此不多敘述。In some embodiments, the materials of the first connection portion 231 and the second connection portion 232 include nickel (Ni), gold (Au), silver (Ag), aluminum (Al), palladium (Pd), platinum (Pt), vanadium (V), zirconium (Zr), chromium (Cr), titanium (Ti) and/or titanium nitride (TiN), other suitable materials, or a combination of the foregoing materials. The first connection portion 231 and the second connection portion 232 can be manufactured by suitable deposition processes, photolithography and etching processes, which are not described in detail here.

在一些實施例中,第一連接部231和第二連接部232的材料可以相同或是不同。再者,第一連接部231和第二連接部232的材料與第一阻障層211和第二阻障層212的材料可以相同或是不同。In some embodiments, the materials of the first connection portion 231 and the second connection portion 232 may be the same or different. Furthermore, the materials of the first connection portion 231 and the second connection portion 232 and the materials of the first barrier layer 211 and the second barrier layer 212 may be the same or different.

參照第10圖,根據一些實施例,在連接部上形成接墊(pads),以做為後續發光元件10與其他部件電性接合之用。在此示例中,在第一連接部231和第二連接部232上分別形成第一接墊241和第二接墊242。在此示例中,第一接墊241電性連接下方的第一連接部231、第一阻障層211和電極170,第二接墊242電性連接下方的第二連接部232、第二阻障層212和反射結構160。Referring to FIG. 10 , according to some embodiments, pads are formed on the connection portion for electrical connection between the light emitting element 10 and other components. In this example, a first pad 241 and a second pad 242 are formed on the first connection portion 231 and the second connection portion 232, respectively. In this example, the first pad 241 electrically connects the first connection portion 231, the first barrier layer 211, and the electrode 170 below, and the second pad 242 electrically connects the second connection portion 232, the second barrier layer 212, and the reflective structure 160 below.

在一些實施例中,第一接墊241和第二接墊242的材料包括金(Au)、錫(Sn)、其他合適的材料、或是前述材料的組合。第一接墊241和第二接墊242可通過合適的沉積製程、光學微影和蝕刻製程而製得,在此不多敘述。In some embodiments, the materials of the first pad 241 and the second pad 242 include gold (Au), tin (Sn), other suitable materials, or a combination of the foregoing materials. The first pad 241 and the second pad 242 can be manufactured by suitable deposition processes, optical lithography and etching processes, which are not described in detail here.

在一些實施例中,第一接墊241和第二接墊242包含相同材料。再者,第一接墊241和第二接墊242的材料與第一連接部231和第二連接部232的材料相同或不同。In some embodiments, the first pad 241 and the second pad 242 include the same material. Furthermore, the material of the first pad 241 and the second pad 242 is the same as or different from the material of the first connecting portion 231 and the second connecting portion 232.

在一些實施例中,第一接墊241和第一連接部231可以在同一個製程步驟中連續地形成,此時,第一接墊241和第一連接部231具有相同材料,且二者之間沒有明顯界面;第二接墊242和第二連接部232可以在同一個製程步驟中連續地形成,此時第二接墊242和第二連接部232具有相同材料,且二者之間沒有明顯界面。In some embodiments, the first pad 241 and the first connecting portion 231 can be continuously formed in the same process step, in which case the first pad 241 and the first connecting portion 231 have the same material and there is no obvious interface between the two; the second pad 242 and the second connecting portion 232 can be continuously formed in the same process step, in which case the second pad 242 and the second connecting portion 232 have the same material and there is no obvious interface between the two.

第11圖繪示根據本揭露的一些實施例中,另一種發光元件20的剖面示意圖。第11圖中與上述第10圖相同(或相似)的部件係使用相同(或相似)之元件標號,且可參照上述實施例中關於此些部件的內容。FIG. 11 is a cross-sectional view of another light emitting element 20 according to some embodiments of the present disclosure. The same (or similar) component numbers are used for the same (or similar) components as those in FIG. 10, and the contents of these components in the above embodiments can be referred to.

參照第11圖,根據一些實施例,發光元件20包括第一型半導體層120、位於第一型半導體層120的第二部分122上且不覆蓋第一部分121的一半導體平台130(包括一活性區域131及一第二型半導體層132)、位於第一型半導體層120的第一部分121上及半導體平台130上的第一絕緣層141、位於第一絕緣層141的第一開口142中的一III-V族化合物半導體層150、位於第二型半導體層132上的反射結構160、位於III-V族化合物半導體層150上的電極170、位於電極170(例如n電極)上的第一阻障層311、位於反射結構160(例如p電極)上的第二阻障層312、位於反射結構160、電極170、第一阻障層311和第二阻障層312上方的第二絕緣層220、分別位於第一阻障層311和第二阻障層312上的第一連接部231與第二連接部232、分別位於第一連接部231與第二連接部232上的第一接墊241和第二接墊242。第11圖中所示的部件的配置、材料和製法的細節,可參照上述第1~10圖相關內容的說明,在此不重述。11 , according to some embodiments, the light emitting element 20 includes a first type semiconductor layer 120, a semiconductor platform 130 (including an active region 131 and a second type semiconductor layer 132) located on the second portion 122 of the first type semiconductor layer 120 and not covering the first portion 121, a first insulating layer 141 located on the first portion 121 of the first type semiconductor layer 120 and on the semiconductor platform 130, a III-V compound semiconductor layer 150 located in a first opening 142 of the first insulating layer 141, a reflective structure 160 located on the second type semiconductor layer 132, The electrode 170 is located on the III-V compound semiconductor layer 150, the first barrier layer 311 is located on the electrode 170 (e.g., the n-electrode), the second barrier layer 312 is located on the reflective structure 160 (e.g., the p-electrode), the second insulating layer 220 is located above the reflective structure 160, the electrode 170, the first barrier layer 311, and the second barrier layer 312, the first connecting portion 231 and the second connecting portion 232 are located on the first barrier layer 311 and the second barrier layer 312, respectively, and the first pad 241 and the second pad 242 are located on the first connecting portion 231 and the second connecting portion 232. The details of the configuration, materials, and manufacturing methods of the components shown in FIG. 11 can refer to the description of the relevant contents of the above-mentioned FIGS. 1 to 10, and will not be repeated here.

第11圖與第10圖所示的結構不同的是,位於電極170上的第一阻障層311暴露出電極170的側表面170s。在此示例中,如第11圖所示,第一阻障層311位於電極170的上表面170a,並且暴露出上表面170a的一部分。因此,電極170的側表面170s係被隨後沉積的第二絕緣層220所覆蓋。如第11圖所示的結構可適用於(但不侷限於)製造小尺寸/狹長尺寸的發光元件。The structure shown in FIG. 11 is different from that shown in FIG. 10 in that the first barrier layer 311 located on the electrode 170 exposes the side surface 170s of the electrode 170. In this example, as shown in FIG. 11, the first barrier layer 311 is located on the upper surface 170a of the electrode 170 and exposes a portion of the upper surface 170a. Therefore, the side surface 170s of the electrode 170 is covered by the second insulating layer 220 deposited subsequently. The structure shown in FIG. 11 can be applied to (but not limited to) manufacturing light-emitting devices of small size/narrow size.

在一些實施例中,於堆疊方向D1上,III-V族化合物半導體層150的厚度H2小於第一絕緣層141的厚度H1(第3A圖),因此,第二絕緣層220的一部分是位於於第一絕緣層141的第一開口142中,且接觸電極170的側表面170s,如第11圖所示。In some embodiments, in the stacking direction D1, the thickness H2 of the III-V compound semiconductor layer 150 is less than the thickness H1 of the first insulating layer 141 ( FIG. 3A ). Therefore, a portion of the second insulating layer 220 is located in the first opening 142 of the first insulating layer 141 and contacts the side surface 170s of the electrode 170 , as shown in FIG. 11 .

如上述第10圖所示的結構,III-V族化合物半導體層150的上表面150a是被電極170、第一阻障層211以及第二絕緣層220所覆蓋和接觸。與第10圖不同的是,於第11圖的示例中,III-V族化合物半導體層150的上表面150a是被電極170以及第二絕緣層220所覆蓋和接觸,第一阻障層311並未接觸III-V族化合物半導體層150的上表面150a。As shown in the structure of FIG. 10 , the upper surface 150a of the III-V compound semiconductor layer 150 is covered and contacted by the electrode 170, the first barrier layer 211, and the second insulating layer 220. Unlike FIG. 10 , in the example of FIG. 11 , the upper surface 150a of the III-V compound semiconductor layer 150 is covered and contacted by the electrode 170 and the second insulating layer 220, and the first barrier layer 311 does not contact the upper surface 150a of the III-V compound semiconductor layer 150.

在一些實施例中,第二絕緣層220和第一絕緣層141包含不同的材料組成。因此,III-V族化合物半導體層150的側表面150s和上表面150a是接觸不同材料組成的絕緣層。具體而言,如第11圖所示,III-V族化合物半導體層150的側表面150s接觸第一絕緣層141,但是不接觸第二絕緣層220;III-V族化合物半導體層150的上表面150a接觸第二絕緣層220,但是不接觸第一絕緣層141。In some embodiments, the second insulating layer 220 and the first insulating layer 141 include different material compositions. Therefore, the side surface 150s and the upper surface 150a of the III-V compound semiconductor layer 150 are in contact with insulating layers of different material compositions. Specifically, as shown in FIG. 11 , the side surface 150s of the III-V compound semiconductor layer 150 is in contact with the first insulating layer 141, but not in contact with the second insulating layer 220; the upper surface 150a of the III-V compound semiconductor layer 150 is in contact with the second insulating layer 220, but not in contact with the first insulating layer 141.

再者,在一些實施例中,第一阻障層311在方向D2(例如X方向)上的寬度W4是大於第一連接部231在方向D2上的寬度W5。在電極170為n電極的實施例中,寬度W4大於寬度W5可以使n電極良好的分散電流。Furthermore, in some embodiments, the width W4 of the first barrier layer 311 in the direction D2 (eg, the X direction) is greater than the width W5 of the first connection portion 231 in the direction D2. In the embodiment where the electrode 170 is an n-electrode, the width W4 is greater than the width W5 so that the n-electrode can disperse the current well.

第12圖繪示根據本揭露的一些實施例中,再一種發光元件30的剖面示意圖。第12圖中與上述第10圖相同(或相似)的部件係使用相同(或相似)之元件標號,且可參照上述實施例中關於此些部件的內容。第12圖與第10圖的發光元件包含的部件相同,因此第12圖中所示的各部件配置、材料和製法的細節,可參照上述第1~10圖相關內容的說明,在此不重述。FIG. 12 is a cross-sectional view of another light-emitting element 30 according to some embodiments of the present disclosure. The same (or similar) components in FIG. 12 as those in FIG. 10 are labeled with the same (or similar) component numbers, and the contents of these components in the above embodiments can be referred to. The light-emitting elements in FIG. 12 and FIG. 10 include the same components, so the details of the configuration, materials and manufacturing methods of each component shown in FIG. 12 can refer to the description of the relevant contents of FIG. 1 to FIG. 10, and will not be repeated here.

第12圖與第10圖所示的結構不同的是,如第12圖所示的III-V族化合物半導體層150的上表面150a是被電極170以及第一阻障層411所覆蓋和接觸。第二絕緣層220則未接觸III-V族化合物半導體層150的上表面150a。The structure shown in FIG. 12 is different from that shown in FIG. 10 in that the upper surface 150 a of the III-V compound semiconductor layer 150 shown in FIG. 12 is covered and contacted by the electrode 170 and the first barrier layer 411 , while the second insulating layer 220 does not contact the upper surface 150 a of the III-V compound semiconductor layer 150 .

當活性區域131發出的光線照射至III-V族化合物半導體層150時,可能會有吸光情形產生,吸光程度視III-V族化合物半導體層150的材料而定。降低III-V族化合物半導體層150的面積可以改善此吸光情形。在一些實施例中,III-V族化合物半導體層150在方向D2(例如X方向)上的寬度W7可能縮小,使得第一阻障層411在方向D2上的寬度W6可能接近或大致上相等於III-V族化合物半導體層150在方向D2上的寬度W7。在一示例中,第一阻障層411的側表面411s與III-V族化合物半導體層150的側表面150s大致上對齊,如第12圖所示。When the light emitted from the active region 131 irradiates the III-V compound semiconductor layer 150, light absorption may occur, and the degree of light absorption depends on the material of the III-V compound semiconductor layer 150. Reducing the area of the III-V compound semiconductor layer 150 can improve this light absorption. In some embodiments, the width W7 of the III-V compound semiconductor layer 150 in the direction D2 (e.g., the X direction) may be reduced, so that the width W6 of the first barrier layer 411 in the direction D2 may be close to or substantially equal to the width W7 of the III-V compound semiconductor layer 150 in the direction D2. In one example, the side surface 411s of the first barrier layer 411 is substantially aligned with the side surface 150s of the III-V compound semiconductor layer 150, as shown in FIG. 12 .

第13圖繪示根據本揭露的一些實施例中,又一種發光元件40的剖面示意圖。第13圖中與上述第10圖相同(或相似)的部件係使用相同(或相似)之元件標號,且可參照上述實施例中關於此些部件的內容。再者,第13圖中所示的部件的配置、材料和製法的細節,可參照上述第1~10圖相關內容的說明,在此不重述。FIG. 13 is a cross-sectional view of another light-emitting element 40 according to some embodiments of the present disclosure. The same (or similar) component numbers are used for the components in FIG. 13 that are the same as (or similar to) those in FIG. 10, and the contents of these components in the above embodiments can be referred to. Furthermore, the details of the configuration, materials and manufacturing methods of the components shown in FIG. 13 can be referred to the description of the relevant contents of FIG. 1 to FIG. 10, and will not be repeated here.

在一些實施例中,如第13圖所示,第一阻障層511形成於電極172(例如n電極)上,以及第二阻障層512形成於反射結構160(例如p電極)上。第一阻障層511暴露出電極172的上表面172a的一部分,並且暴露出電極172的側表面172s。因此,電極172的側表面172s係被隨後沉積的第二絕緣層220所覆蓋。而第二阻障層512則暴露出反射結構160的上表面160a的一部分。In some embodiments, as shown in FIG. 13 , a first barrier layer 511 is formed on an electrode 172 (e.g., an n-electrode), and a second barrier layer 512 is formed on a reflective structure 160 (e.g., a p-electrode). The first barrier layer 511 exposes a portion of an upper surface 172a of the electrode 172 and exposes a side surface 172s of the electrode 172. Therefore, the side surface 172s of the electrode 172 is covered by the second insulating layer 220 deposited subsequently. The second barrier layer 512 exposes a portion of an upper surface 160a of the reflective structure 160.

再者,如前述,III-V族化合物半導體層150的材料可能會有吸光情形產生,因此面積縮減的III-V族化合物半導體層150可以改善吸光情形。在一些實施例中,III-V族化合物半導體層150在方向D2(例如X方向)上的寬度W8是小於電極172在方向D2上的寬度W9。Furthermore, as mentioned above, the material of the III-V compound semiconductor layer 150 may absorb light, so the reduced area of the III-V compound semiconductor layer 150 can improve the absorption. In some embodiments, the width W8 of the III-V compound semiconductor layer 150 in the direction D2 (e.g., the X direction) is smaller than the width W9 of the electrode 172 in the direction D2.

第14A圖和第14B圖是根據第13圖的結構,繪示包含電極172、III-V族化合物半導體層150以及第一型半導體層120的一結構示意圖。其中第14B圖是俯視圖,第14A圖是沿著第14B圖中的剖線A-A’所繪製的剖面示意圖。III-V族化合物半導體層150在第一型半導體層120的第一部分121的投影範圍如第14B圖中的虛線所圍繞的區域所表示。在一些實施例中,自基底100的上方俯視時,電極170於第一型半導體層120的第一部分121的投影範圍是涵蓋了III-V族化合物半導體層150於第一部分121的投影範圍,如第14B圖所示。FIG. 14A and FIG. 14B are schematic diagrams of a structure including an electrode 172, a III-V compound semiconductor layer 150, and a first type semiconductor layer 120 according to the structure of FIG. 13. FIG. 14B is a top view, and FIG. 14A is a schematic cross-sectional view drawn along the section line A-A' in FIG. 14B. The projection range of the III-V compound semiconductor layer 150 on the first portion 121 of the first type semiconductor layer 120 is represented by the area surrounded by the dotted line in FIG. 14B. In some embodiments, when viewed from above the substrate 100, the projection range of the electrode 170 on the first portion 121 of the first type semiconductor layer 120 covers the projection range of the III-V compound semiconductor layer 150 on the first portion 121, as shown in FIG. 14B.

因此,不同於第10圖、第11圖和第12圖所示的結構,如第13圖所示的III-V族化合物半導體層150的上表面150a是被電極172(例如n電極)所完全的覆蓋和接觸。而第一阻障層511以及第二絕緣層220則並未接觸III-V族化合物半導體層150的上表面150a。Therefore, unlike the structures shown in FIGS. 10 , 11 and 12 , the upper surface 150 a of the III-V compound semiconductor layer 150 shown in FIG. 13 is completely covered and contacted by the electrode 172 (e.g., the n-electrode), while the first barrier layer 511 and the second insulating layer 220 do not contact the upper surface 150 a of the III-V compound semiconductor layer 150 .

在此示例中,電極172延伸填入第一絕緣層141的第一開口142內,並與第一絕緣層141接觸。具體而言,如第13圖所示,電極172包括一突出部172P和連接突出部172P的一主體部172M。突出部172P和主體部172M例如是一體成形。主體部172M的底表面的面積大於III-V族化合物半導體層150的上表面150a的面積。其中突出部172P位於第一開口142內,主體部172M的底部172M-b係接觸第一絕緣層141。In this example, the electrode 172 extends to fill the first opening 142 of the first insulating layer 141 and contacts the first insulating layer 141. Specifically, as shown in FIG. 13 , the electrode 172 includes a protrusion 172P and a main body 172M connected to the protrusion 172P. The protrusion 172P and the main body 172M are, for example, formed in one piece. The area of the bottom surface of the main body 172M is larger than the area of the upper surface 150a of the III-V compound semiconductor layer 150. The protrusion 172P is located in the first opening 142, and the bottom 172M-b of the main body 172M contacts the first insulating layer 141.

根據一些實施例,如第13圖所示,III-V族化合物半導體層150的側表面150s被第一絕緣層141覆蓋,且第一絕緣層141接觸電極172的一些部分。例如,第一絕緣層141接觸電極172的突出部172P的側表面172P-s以及接觸主體部172M的底部172M-b。因此,此示例中的電極172亦未與III-V族化合物半導體層150的側表面150s接觸。According to some embodiments, as shown in FIG. 13 , the side surface 150s of the III-V compound semiconductor layer 150 is covered by the first insulating layer 141, and the first insulating layer 141 contacts some parts of the electrode 172. For example, the first insulating layer 141 contacts the side surface 172P-s of the protrusion 172P of the electrode 172 and contacts the bottom 172M-b of the main body 172M. Therefore, the electrode 172 in this example also does not contact the side surface 150s of the III-V compound semiconductor layer 150.

綜合上述,根據本揭露一些實施例,在發光元件的n電極(例如電極170和電極172)與第一型半導體層120的第一部分121之間形成III-V族化合物半導體層150,使n電極可以與III-V族化合物半導體層150形成良好的歐姆接觸。如上述一些實施例,發光元件的n電極(例如電極170)是直接接觸III-V族化合物半導體層150、或是n電極(例如電極172)直接接觸III-V族化合物半導體層150和第一絕緣層141。實施例的n電極與III-V族化合物半導體層的良好歐姆接觸可以降低電極的合金溫度及n電極下方電流路徑上的電阻,使電極更為平整,並且提高反射率,進而增進發光元件的發光效率。再者,根據實施例提出的製程,是以同一個絕緣材料層(例如第一絕緣層141)形成設置III-V族化合物半導體層和p電極(例如反射結構160)的開口,如此可以減少沉積製程的次數,進而減少沉積期間製程氣體及溫度對半導體材料層所造成的損傷與熱積存(thermal budget)現象,因此,實施例的製法可以降低製程對發光元件電性表現的影響,使發光元件具有更為穩定的電性表現和可靠度佳的電子特性。另外,根據實施例提出的製程,III-V族化合物半導體層是在形成n型半導體層(例如第一型半導體層120)和半導體平台(例如包括第二型半導體層132和具有主動層的活性區域131)之後才進行製作,因此,實施例所提出的製程並不會影響結構的磊晶品質。綜合上述,實施例所提出的發光元件及其製造方法,可以增進發光效率、改善電子特性以及提高可靠度。In summary, according to some embodiments of the present disclosure, a III-V compound semiconductor layer 150 is formed between the n-electrode (e.g., electrode 170 and electrode 172) of the light-emitting element and the first portion 121 of the first type semiconductor layer 120, so that the n-electrode can form a good ohmic contact with the III-V compound semiconductor layer 150. As in some of the above embodiments, the n-electrode (e.g., electrode 170) of the light-emitting element is directly in contact with the III-V compound semiconductor layer 150, or the n-electrode (e.g., electrode 172) is directly in contact with the III-V compound semiconductor layer 150 and the first insulating layer 141. The good ohmic contact between the n-electrode and the III-V compound semiconductor layer of the embodiment can reduce the alloy temperature of the electrode and the resistance of the current path under the n-electrode, make the electrode smoother, and improve the reflectivity, thereby improving the luminous efficiency of the light-emitting element. Furthermore, according to the process proposed in the embodiment, the opening for setting the III-V compound semiconductor layer and the p-electrode (such as the reflective structure 160) is formed by the same insulating material layer (such as the first insulating layer 141). This can reduce the number of deposition processes, thereby reducing the damage and heat accumulation (thermal budget) caused to the semiconductor material layer by the process gas and temperature during the deposition period. Therefore, the method of the embodiment can reduce the impact of the process on the electrical performance of the light-emitting element, so that the light-emitting element has more stable electrical performance and electronic properties with good reliability. In addition, according to the process proposed in the embodiment, the III-V compound semiconductor layer is manufactured after forming the n-type semiconductor layer (such as the first type semiconductor layer 120) and the semiconductor platform (such as the second type semiconductor layer 132 and the active region 131 having the active layer), so the process proposed in the embodiment does not affect the epitaxial quality of the structure. In summary, the light-emitting element and the manufacturing method thereof proposed in the embodiment can improve the light-emitting efficiency, improve the electronic characteristics and enhance the reliability.

10,20,30,40:發光元件 100:基底 110:緩衝層 120:第一型半導體層 121:第一部分 122:第二部分 130:半導體平台 131:活性區域 132:第二型半導體層 141:第一絕緣層 142:第一開口 143:第二開口 150:III-V族化合物半導體層 160:反射結構 170,172:電極 172P:突出部 172M:主體部 172M-b:主體部的底部 121a,132a,141a,150a,160a,170a,172a,211a,212a:上表面 131s,132s,150s,160s,170s,211s,172s,172P-s:側表面 142s:內側壁 211,311,411,511:第一阻障層 212,312,412,512:第二阻障層 220:第二絕緣層 221,222:孔洞 231:第一連接部 232:第二連接部 241:第一接墊 242:第二接墊 H1,H2:厚度 W O1,W O2,W1,W2,W3,W4,W5,W6,W7,W8,W9:寬度 ds1,ds2:間距 D1,D2:方向 A-A’:剖線 10, 20, 30, 40: light emitting element 100: substrate 110: buffer layer 120: first type semiconductor layer 121: first portion 122: second portion 130: semiconductor platform 131: active region 132: second type semiconductor layer 141: first insulating layer 142: first opening 143: second opening 150: III-V compound semiconductor layer 160: reflective structure 170, 172: electrode 172P: protrusion 172M: main body 172M-b: bottom of the main body 121a, 132a, 141a, 1 50a, 160a, 170a, 172a, 211a, 212a: upper surface 131s, 132s, 150s, 160s, 170s, 211s, 172s, 172P-s: side surface 142s: inner side wall 211, 311, 411, 511: first barrier layer 212, 312, 412, 512: second barrier layer 220: second insulating layer 221, 222: hole 231: first connecting portion 232: second connecting portion 241: first pad 242: second pad H1, H2: thickness W O1 , W O2 , W1, W2, W3, W4, W5, W6, W7, W8, W9: Width ds1, ds2: Distance D1, D2: Direction A-A': Section line

第1、2、3A、4、5、6A圖是根據本揭露的一些實施例中,一發光元件在多個中間製造階段的剖面示意圖。 第3B圖和第6B圖為一實施例的發光元件在中間製造階段的俯視圖,其中,第3A圖和第6A圖是分別沿著第3B圖和第6B圖中的剖線A-A’所繪製。 第7、8、9、10圖是根據本揭露的一些實施例中,發光元件在形成n電極和p電極之後的多個製造階段的剖面示意圖。 第11圖繪示根據本揭露的一些實施例中,另一種發光元件在多個中間製造階段的剖面示意圖。 第12圖繪示根據本揭露的一些實施例中,再一種發光元件在多個中間製造階段的剖面示意圖。 第13圖繪示根據本揭露的一些實施例中,又一種發光元件在多個中間製造階段的剖面示意圖。 第14A圖和第14B圖是根據第13圖的結構,繪示包含電極、III-V族化合物半導體層以及第一型半導體層的一結構的示意圖。其中,第14B圖是俯視圖,第14A圖是沿著第14B圖中的剖線A-A’所繪製的剖面示意圖。 Figures 1, 2, 3A, 4, 5, and 6A are schematic cross-sectional views of a light-emitting element at multiple intermediate manufacturing stages according to some embodiments of the present disclosure. Figures 3B and 6B are top views of a light-emitting element at an intermediate manufacturing stage of an embodiment, wherein Figures 3A and 6A are drawn along the section lines A-A’ in Figures 3B and 6B, respectively. Figures 7, 8, 9, and 10 are schematic cross-sectional views of a light-emitting element at multiple manufacturing stages after forming an n-electrode and a p-electrode according to some embodiments of the present disclosure. Figure 11 is a schematic cross-sectional view of another light-emitting element at multiple intermediate manufacturing stages according to some embodiments of the present disclosure. Figure 12 is a schematic cross-sectional view of another light-emitting element at multiple intermediate manufacturing stages according to some embodiments of the present disclosure. FIG. 13 shows a schematic cross-sectional view of another light-emitting element at multiple intermediate manufacturing stages according to some embodiments of the present disclosure. FIG. 14A and FIG. 14B are schematic views of a structure including an electrode, a III-V compound semiconductor layer, and a first-type semiconductor layer according to the structure of FIG. 13. Among them, FIG. 14B is a top view, and FIG. 14A is a schematic cross-sectional view drawn along the section line A-A’ in FIG. 14B.

100:基底 100: Base

110:緩衝層 110: Buffer layer

120:第一型半導體層 120: Type I semiconductor layer

121:第一部分 121: Part 1

122:第二部分 122: Part 2

130:半導體平台 130:Semiconductor platform

131:活性區域 131: Active area

132:第二型半導體層 132: Type II semiconductor layer

141:第一絕緣層 141: First insulation layer

150:III-V族化合物半導體層 150: III-V compound semiconductor layer

160:反射結構 160:Reflection structure

170:電極 170:Electrode

121a,141a,150a,160a:上表面 121a,141a,150a,160a: Upper surface

131s,132s,160s,170s:側表面 131s,132s,160s,170s: side surface

142s:內側壁 142s: medial wall

W1,W3:寬度 W1,W3:Width

ds1:間距 ds1: Spacing

D1,D2:方向 D1,D2: Direction

Claims (30)

一種發光元件,包含: 一第一型半導體層,具有一第一部分及一第二部分與該第一部分相連; 一半導體平台,位於該第二部分上且不覆蓋該第一部分,其中該半導體平台包含一活性區域及一第二型半導體層於一堆疊方向上依序堆疊於該第二部分上; 一第一絕緣層,覆蓋該第一部分及該半導體平台,該第一絕緣層具有一第一開口位於該第一部分上及一第二開口位於該第二型半導體層上; 一III-V族化合物半導體層,位於該第一開口中且接觸該第一部分,其中,俯視時,該第一開口的輪廓環繞該III-V族化合物半導體層; 一第一電極,位於該III-V族化合物半導體層上且電性連接該第一型半導體層;以及 一第二電極,位於該第二開口中且電性連接該第二型半導體層。 A light-emitting element comprises: A first-type semiconductor layer having a first portion and a second portion connected to the first portion; A semiconductor platform located on the second portion and not covering the first portion, wherein the semiconductor platform comprises an active region and a second-type semiconductor layer sequentially stacked on the second portion in a stacking direction; A first insulating layer covering the first portion and the semiconductor platform, wherein the first insulating layer has a first opening located on the first portion and a second opening located on the second-type semiconductor layer; A III-V compound semiconductor layer located in the first opening and contacting the first portion, wherein, when viewed from above, the outline of the first opening surrounds the III-V compound semiconductor layer; A first electrode, located on the III-V compound semiconductor layer and electrically connected to the first type semiconductor layer; and A second electrode, located in the second opening and electrically connected to the second type semiconductor layer. 如請求項1之發光元件,其中該第一絕緣層於該堆疊方向上具有一第一厚度,該III-V族化合物半導體層於該堆疊方向上具有一第二厚度,該第一厚度大於該第二厚度。The light-emitting element of claim 1, wherein the first insulating layer has a first thickness in the stacking direction, the III-V compound semiconductor layer has a second thickness in the stacking direction, and the first thickness is greater than the second thickness. 如請求項1之發光元件,其中該第一電極鄰近該III-V族化合物半導體層的一部分是位於該第一開口中。A light-emitting device as claimed in claim 1, wherein a portion of the first electrode adjacent to the III-V compound semiconductor layer is located in the first opening. 如請求項1之發光元件,其中,於該堆疊方向上,該III-V族化合物半導體層的上表面低於與該III-V族化合物半導體層相鄰的該第一絕緣層的上表面。The light-emitting element of claim 1, wherein, in the stacking direction, the upper surface of the III-V compound semiconductor layer is lower than the upper surface of the first insulating layer adjacent to the III-V compound semiconductor layer. 如請求項1之發光元件,其中該第一電極接觸該III-V族化合物半導體層的上表面以及/或該第一絕緣層的上表面。The light-emitting element of claim 1, wherein the first electrode contacts the upper surface of the III-V compound semiconductor layer and/or the upper surface of the first insulating layer. 如請求項5之發光元件,其中,俯視時,該III-V族化合物半導體層於該第一部分的投影範圍涵蓋該第一電極於該第一部分的投影範圍。A light-emitting element as claimed in claim 5, wherein, when viewed from above, the projection range of the III-V compound semiconductor layer on the first part covers the projection range of the first electrode on the first part. 如請求項5之發光元件,其中,俯視時,該第一電極於該第一部分的投影範圍涵蓋該III-V族化合物半導體層於該第一部分的投影範圍。A light-emitting element as claimed in claim 5, wherein, in a top view, a projection range of the first electrode on the first portion covers a projection range of the III-V compound semiconductor layer on the first portion. 如請求項1之發光元件,其中該第一絕緣層包含一內側壁定義出該第一開口,由剖面觀之,該內側壁與該第一電極之間具有一間隔。The light-emitting element of claim 1, wherein the first insulating layer includes an inner wall defining the first opening, and when viewed from a cross-section, there is a gap between the inner wall and the first electrode. 如請求項1之發光元件,該發光元件更包含一第二絕緣層位於該第一絕緣層、該第一電極以及該第二電極的上方。As in claim 1, the light-emitting element further comprises a second insulating layer located above the first insulating layer, the first electrode and the second electrode. 如請求項9之發光元件,其中該第二絕緣層的一部分接觸該III-V族化合物半導體層的上表面。A light-emitting element as claimed in claim 9, wherein a portion of the second insulating layer contacts the upper surface of the III-V compound semiconductor layer. 如請求項9之發光元件,其中該第二絕緣層的一部分位於該第一絕緣層的該第一開口中。A light-emitting element as claimed in claim 9, wherein a portion of the second insulating layer is located in the first opening of the first insulating layer. 如請求項9之發光元件,其中該第二絕緣層的組成不同於該第一絕緣層的組成。A light-emitting element as claimed in claim 9, wherein the composition of the second insulating layer is different from the composition of the first insulating layer. 如請求項1之發光元件,更包含: 一第一阻障層,形成於該第一電極上;以及 一第二阻障層,形成於該第二電極上。 The light-emitting element of claim 1 further comprises: a first barrier layer formed on the first electrode; and a second barrier layer formed on the second electrode. 如請求項13之發光元件,其中該第一阻障層覆蓋該第一電極的上表面和側表面,且該第一阻障層鄰近該第一開口的一部分接觸該III-V族化合物半導體層。The light-emitting element of claim 13, wherein the first barrier layer covers the upper surface and the side surface of the first electrode, and a portion of the first barrier layer adjacent to the first opening contacts the III-V compound semiconductor layer. 如請求項13之發光元件,其中該第一阻障層的一部分位於該第一絕緣層的該第一開口中。The light-emitting element of claim 13, wherein a portion of the first barrier layer is located in the first opening of the first insulating layer. 一種發光元件的製造方法,包含: 在一基底上形成一第一型半導體層和一半導體平台,其中該第一型半導體層具有一第一部分及與該第一部分相連的一第二部分,該半導體平台形成於該第二部分上且不覆蓋該第一部分,且該半導體平台包含一活性區域及一第二型半導體層於一堆疊方向上依序堆疊於該第二部分上; 形成一第一絕緣層於該第一部分及該半導體平台上,該第一絕緣層具有一第一開口位於該第一部分上; 形成一III-V族化合物半導體層於該第一開口中,且該III-V族化合物半導體層接觸該第一部分,其中,俯視時,該第一開口的輪廓環繞該III-V族化合物半導體層; 形成一第一電極於該III-V族化合物半導體層上,且該第一電極電性連接該第一型半導體層;以及 形成一第二電極於該第一絕緣層的一第二開口中,其中該第二開口位於該第二型半導體層上,且該第二電極電性連接該第二型半導體層。 A method for manufacturing a light-emitting element comprises: Forming a first-type semiconductor layer and a semiconductor platform on a substrate, wherein the first-type semiconductor layer has a first portion and a second portion connected to the first portion, the semiconductor platform is formed on the second portion and does not cover the first portion, and the semiconductor platform comprises an active region and a second-type semiconductor layer sequentially stacked on the second portion in a stacking direction; Forming a first insulating layer on the first portion and the semiconductor platform, the first insulating layer having a first opening located on the first portion; Forming a III-V compound semiconductor layer in the first opening, and the III-V compound semiconductor layer contacts the first portion, wherein, when viewed from above, the outline of the first opening surrounds the III-V compound semiconductor layer; A first electrode is formed on the III-V compound semiconductor layer, and the first electrode is electrically connected to the first type semiconductor layer; and a second electrode is formed in a second opening of the first insulating layer, wherein the second opening is located on the second type semiconductor layer, and the second electrode is electrically connected to the second type semiconductor layer. 如請求項16之發光元件的製造方法,其中形成該第一絕緣層包含: 沉積一絕緣材料層以順應性的覆蓋該第一型半導體層和該半導體平台;和 圖案化該絕緣材料層以形成該第一絕緣層的該第一開口,該第一開口露出該第一部分的上表面的一部分。 The method for manufacturing a light-emitting element as claimed in claim 16, wherein forming the first insulating layer comprises: Depositing an insulating material layer to conformally cover the first type semiconductor layer and the semiconductor platform; and Patterning the insulating material layer to form the first opening of the first insulating layer, wherein the first opening exposes a portion of the upper surface of the first portion. 如請求項16之發光元件的製造方法,其中形成該III-V族化合物半導體層後,於該堆疊方向上,該III-V族化合物半導體層的上表面低於與該III-V族化合物半導體層相鄰的該第一絕緣層的上表面。A method for manufacturing a light-emitting element as claimed in claim 16, wherein after the III-V compound semiconductor layer is formed, in the stacking direction, the upper surface of the III-V compound semiconductor layer is lower than the upper surface of the first insulating layer adjacent to the III-V compound semiconductor layer. 如請求項16之發光元件的製造方法,其中形成的該第一絕緣層於該堆疊方向上具有一第一厚度,形成的該III-V族化合物半導體層於該堆疊方向上具有一第二厚度,該第一厚度大於第二厚度。A method for manufacturing a light-emitting element as claimed in claim 16, wherein the first insulating layer formed has a first thickness in the stacking direction, and the III-V compound semiconductor layer formed has a second thickness in the stacking direction, and the first thickness is greater than the second thickness. 如請求項16之發光元件的製造方法,其中該第一電極鄰近該III-V族化合物半導體層的一部分位於該第一開口中。A method for manufacturing a light-emitting element as claimed in claim 16, wherein a portion of the first electrode adjacent to the III-V compound semiconductor layer is located in the first opening. 如請求項16之發光元件的製造方法,其中,俯視時,該III-V族化合物半導體層於該第一型半導體層的該第一部分的投影範圍涵蓋該第一電極於該第一部分的投影範圍。A method for manufacturing a light-emitting element as claimed in claim 16, wherein, when viewed from above, a projection range of the III-V compound semiconductor layer on the first portion of the first type semiconductor layer covers a projection range of the first electrode on the first portion. 如請求項16之發光元件的製造方法,其中,俯視時,該第一電極於該第一型半導體層的該第一部分的投影範圍涵蓋該III-V族化合物半導體層於該第一部分的投影範圍。A method for manufacturing a light-emitting element as claimed in claim 16, wherein, when viewed from above, a projection range of the first electrode on the first portion of the first-type semiconductor layer covers a projection range of the III-V compound semiconductor layer on the first portion. 如請求項16之發光元件的製造方法,其中該第一絕緣層包含一內側壁定義出該第一開口,由剖面觀之,該內側壁與該第一電極之間具有一間隔。A method for manufacturing a light-emitting element as claimed in claim 16, wherein the first insulating layer includes an inner wall defining the first opening, and when viewed from a cross-section, there is a gap between the inner wall and the first electrode. 如請求項16之發光元件的製造方法,其中該第一電極延伸填入該第一絕緣層的該第一開口並與該第一絕緣層接觸。A method for manufacturing a light-emitting element as claimed in claim 16, wherein the first electrode extends to fill the first opening of the first insulating layer and contacts the first insulating layer. 如請求項16之發光元件的製造方法,還包含: 形成一第一阻障層於該第一電極上;以及 形成一第二阻障層於該第二電極上。 The manufacturing method of the light-emitting element of claim 16 further comprises: forming a first barrier layer on the first electrode; and forming a second barrier layer on the second electrode. 如請求項25之發光元件的製造方法,其中所形成的該第一阻障層覆蓋該第一電極的上表面和側表面,且該第一阻障層鄰近該第一開口的一部分接觸該III-V族化合物半導體層。A method for manufacturing a light-emitting element as claimed in claim 25, wherein the first barrier layer formed covers the upper surface and the side surface of the first electrode, and a portion of the first barrier layer adjacent to the first opening contacts the III-V compound semiconductor layer. 如請求項25之發光元件的製造方法,其中該第一阻障層鄰近該第一開口的一部分位於該第一開口中。A method for manufacturing a light-emitting device as claimed in claim 25, wherein a portion of the first barrier layer adjacent to the first opening is located in the first opening. 如請求項28之發光元件的製造方法,該製造方法還包含: 形成一第二絕緣層於該第一絕緣層、該第一電極、該第一阻障層、該第二電極以及該第二阻障層的上方。 The manufacturing method of the light-emitting element of claim 28 further comprises: Forming a second insulating layer above the first insulating layer, the first electrode, the first barrier layer, the second electrode and the second barrier layer. 如請求項28之發光元件的製造方法,其中該第二絕緣層的一部分接觸該III-V族化合物半導體層的該上表面。A method for manufacturing a light-emitting element as claimed in claim 28, wherein a portion of the second insulating layer contacts the upper surface of the III-V compound semiconductor layer. 如請求項28之發光元件的製造方法,其中該第二絕緣層的一部分位於該第一絕緣層的該第一開口中。A method for manufacturing a light-emitting element as claimed in claim 28, wherein a portion of the second insulating layer is located in the first opening of the first insulating layer.
TW111138595A 2022-10-12 2022-10-12 Light emitting devices and methods for manufacturing the same TW202416557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111138595A TW202416557A (en) 2022-10-12 2022-10-12 Light emitting devices and methods for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111138595A TW202416557A (en) 2022-10-12 2022-10-12 Light emitting devices and methods for manufacturing the same

Publications (1)

Publication Number Publication Date
TW202416557A true TW202416557A (en) 2024-04-16

Family

ID=91622626

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111138595A TW202416557A (en) 2022-10-12 2022-10-12 Light emitting devices and methods for manufacturing the same

Country Status (1)

Country Link
TW (1) TW202416557A (en)

Similar Documents

Publication Publication Date Title
KR102606543B1 (en) Light-emitting device
KR100631840B1 (en) Nitride semiconductor light emitting device for flip chip
US7919784B2 (en) Semiconductor light-emitting device and method for making same
EP2270881B1 (en) Light-emitting element and a production method therefor
US9105762B2 (en) Semiconductor light emitting device and manufacturing method thereof
US6919585B2 (en) Light-emitting diode with silicon carbide substrate
CN102569589B (en) Semiconductor light emitting element
KR102519668B1 (en) Semiconductor light-emitting device and method for manufacturing the same
KR101007139B1 (en) Light emitting device and method for fabricating the same
KR101813935B1 (en) Light emitting device
KR20110055110A (en) Semiconductor light emitting device and method manufacturing thereof
KR20110027296A (en) Light emitting device and method for fabricating the same
US20160365496A1 (en) Light-emitting device
KR100616591B1 (en) Nitride semiconductor light emitting diode and fabrication method thereof
KR101219290B1 (en) Method for fabricating light emitting diodes
KR100586973B1 (en) Nitride semiconductor light emitting diode having substrate on which rising portions are formed
KR100631842B1 (en) Nitride semiconductor light emitting device
TW202416557A (en) Light emitting devices and methods for manufacturing the same
CN113707779A (en) Light emitting diode and light emitting device
KR101267437B1 (en) Light emitting diodes and method for fabricating the same
TWI816191B (en) Light emitting device
US20230369540A1 (en) Semiconductor stack
CN117810338A (en) Light emitting element, backlight unit having the same, and display device having the same
CN118173683A (en) Light emitting diode and light emitting device
TW202427826A (en) Light-emitting device