TW202415777A - 使用加壓瀝取技術之瀝取銅的方法 - Google Patents

使用加壓瀝取技術之瀝取銅的方法 Download PDF

Info

Publication number
TW202415777A
TW202415777A TW112119326A TW112119326A TW202415777A TW 202415777 A TW202415777 A TW 202415777A TW 112119326 A TW112119326 A TW 112119326A TW 112119326 A TW112119326 A TW 112119326A TW 202415777 A TW202415777 A TW 202415777A
Authority
TW
Taiwan
Prior art keywords
raw material
copper
pressure
extraction
reaction
Prior art date
Application number
TW112119326A
Other languages
English (en)
Inventor
崔憲植
朴晟源
Original Assignee
南韓商高麗亞鉛股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商高麗亞鉛股份有限公司 filed Critical 南韓商高麗亞鉛股份有限公司
Publication of TW202415777A publication Critical patent/TW202415777A/zh

Links

Images

Abstract

本揭示內容揭示一種使用加壓瀝取技術之瀝取銅的方法,根據一具體例,該方法包括:製備含有銅之原料的原料製備步驟;及加壓瀝取步驟,其包括將該原料導入在加壓裝置內的瀝取液中及在將氧注入該加壓裝置中的同時加壓瀝取銅之步驟。

Description

使用加壓瀝取技術之瀝取銅的方法
本揭示內容係關於一種使用加壓瀝取技術之瀝取原料中所含之有價值金屬(valuable metal,尤其是銅)的方法。更特別地,本揭示內容係關於一種使用加壓瀝取技術且透過沉澱分離鐵成分而從銅原料(冰銅(copper matte))、銅濃縮物、銅泥(copper cement)和銅粉)回收銅的方法。
大氣壓瀝取技術是受歡迎之一般有價值金屬的瀝取程序。該大氣壓瀝取技術比其他程序需要更少的設備投資且具有較少之操作風險。因此,該大氣壓瀝取技術被廣泛地用於一般的濕式冶金程序中。然而,大氣壓瀝取技術在銅之情況下需要16至24小時之反應時間以提高瀝取效率。依據延長的反應時間,由於氣體燃料和蒸汽之量的增加而提高成本。生產效率由於原料處理容量的降低而降低。 此外,因為大氣壓瀝取技術並非選擇性萃取技術,銅成分以外之大部分的雜質被瀝取出。因此,有一問題是:另外需要一種移除該銅成分以外的雜質的程序作為後續程序,且由於該另外程序而導致處理成本。
[技術問題] 本揭示內容之目的是要藉由使用加壓瀝取技術(其為施加壓力作為瀝取調節的技術)而降低反應溫度,提高銅瀝取率,減少反應時間,且改良操作效率。 此外,本揭示內容之目的是要藉由減少反應時間且改良該瀝取效率而增加原料之可處理量且提高生產率。 此外,本揭示內容之目的是要藉由根據氧壓力、反應溫度、及瀝取期間之最後瀝取液的酸性,以沉澱鐵(Fe)成分而降低用於移除鐵所需之純化程序的成本且改良操作的生產率。 [技術解決方案] 根據一具體例,提供一種使用加壓瀝取技術之瀝取銅的方法,該方法包括:製備含有銅之原料的原料製備步驟;及加壓瀝取步驟,其包括將該原料導入在加壓裝置內的瀝取液中及在將氧注入該加壓裝置中的同時加壓瀝取銅的步驟。 在一具體例中,該原料係從銅濃縮物、冰銅、銅泥、及銅粉中之至少一者製備。 在一具體例中,該加壓瀝取步驟進一步包括該原料之鐵成分的沉澱步驟。 在一具體例中,該原料之鐵成分係沉澱成黃鉀鐵礬(jarosite)和赤鐵礦(hematite)中之至少一者的形式。 在一具體例中,該加壓裝置是壓熱器設備。 在一具體例中,該加壓瀝取步驟係在140℃至150℃之溫度範圍進行。 在一具體例中,在該加壓瀝取步驟之反應後的該瀝取液的酸性是在60 g/L至90 g/L的範圍。 在一具體例中,固體密度(該原料的質量對導入該加壓瀝取步驟中之該瀝取液的體積的比)是在150 g/L至200 g/L的範圍。 在一具體例中,在該加壓瀝取步驟中的加壓瀝取的反應時間是在3小時至5小時之範圍。 根據一具體例,提供一種使用加壓瀝取技術之瀝取銅的方法,該方法包括:製備含有銅和鐵成分之原料的原料製備步驟;及加壓瀝取步驟,其包括將該原料導入在加壓裝置內的瀝取液中及在將氧注入該加壓裝置中的同時加壓瀝取銅之步驟,其中該加壓瀝取步驟係在壓熱器設備中進行,且包括加壓瀝取該原料之銅的步驟及沉澱該原料之鐵成分的步驟。 [有利效果] 根據本揭示內容之不同具體例,藉由使用加壓瀝取技術,可能降低反應溫度,提高銅瀝取率,且減少反應時間。 此外,藉由減少反應時間且改良該瀝取效率,可能提高原料之可處理量且提高生產率。 此外,可能藉由在瀝取期間沉澱鐵成分而降低用於移除鐵成分所需之純化程序的成本且改良操作的生產率。
闡明本揭示內容之具體例以用於描述本揭示內容之技術精神。根據本揭示內容之申請專利範圍的範圍不限於以下所述之具體例,也不限於該等具體例之詳細說明。 與本揭示內容不同地,一般常用之瀝取技術是大氣壓瀝取技術。然而,在該大氣壓瀝取技術中,該反應時間持續16至24小時以提高該銅(Cu)瀝取率。因此,由於燃料和蒸汽之量的增加,可導致額外的成本。再者,因為原料之處理量是低的,生產率是低的。此外,在大氣壓下之瀝取程序中,在該原料中所含有之鐵(Fe)成分也被瀝取出,且另外需要後續之純化程序。 根據本揭示內容之瀝取方法是加壓瀝取方法,其中鐵(Fe)成分被沉澱出。因此,可能省略後續程序。因為反應溫度和反應時間被減少,可能提高該銅(Cu)之瀝取率且改良生產率。 在下文中,本揭示內容將引用圖式來描述。 圖1是闡明根據本揭示內容之一具體例的使用加壓瀝取技術之瀝取銅的方法的流程圖。圖2是根據本揭示內容之一具體例的壓熱器設備100的概略橫剖面視圖。 引用圖1,一種根據本揭示內容之具體例之使用加壓瀝取技術的瀝取銅的方法可包括製備含有有價值金屬(例如銅)的原料的原料製備步驟S100,及加壓瀝取步驟S200,其包括在導入該原料且將氧(例如氧氣)注入在加壓裝置內之瀝取液中的同時加壓瀝取銅之瀝取步驟以及沉澱在該原料中之鐵成分的沉澱步驟。 原料製備步驟S100 首先,製備含有有價值金屬諸如銅之原料。該原料可為銅濃縮物、冰銅、銅泥、及銅粉中之至少一者。該原料也含有鐵成分。 加壓瀝取步驟S200 將該原料導入一個其中預先放置瀝取液之加壓裝置中,且在將氧注入該加壓裝置中的同時,將該有價值金屬加壓瀝取入該瀝取液中。在一具體例中,待導入該加壓裝置中的瀝取液可為含有30至40 g/L之銅(Cu)和160至170 g/L之硫酸的銅的廢電解質。在將氧注入該瀝取液的同時進行加壓瀝取。在該加壓裝置中的反應壓力可為比大氣壓高約0.3 MPa至1.5 MPa。較佳地,在該加壓裝置中的反應壓力可在約0.5 MPa與1.5 MPa之間。 若在該加壓瀝取步驟S200中的壓力低於0.5 MPa,則當溫度下降時,飽和蒸汽壓可能減低,從而降低銅之解離率。此外,當該溫度下降時,在該溶劑中之鐵成分被沉澱成黃鉀鐵礬(Fe 3(SO 4) 2(OH) 6),過濾性可明顯地降低且在該程序之期間可發生問題。若在該加壓瀝取步驟S200中之壓力超過1.5 MPa,銅之解離率可提高,但壓力和溫度可為非必須的高。亦即,該壓力是非必須的高壓。 在該加壓瀝取步驟S200中,在該原料中之鐵成分被沉澱。在該原料中之鐵成分可沉澱成黃鉀鐵礬和赤鐵礦中之至少一者的形式。 在一具體例中,可以使用壓熱器設備以作為該加壓裝置。亦即,該加壓裝置可為壓熱器設備。 引用圖2,該壓熱器設備100可調節內部壓力和內部溫度。在一具體例中,該壓熱器設備100可包括入口部件110、排放部件120、氧注入部件130、攪拌器140、及外殼150。可透過該入口部件110,將原料導入該壓熱器設備100中。在該反應完成後,在反應後之該瀝取液可透過該排放部件120,被排放至該壓熱器設備100之外部。氧可透過該氧注入部件130被注入該壓熱器設備100中。該攪拌器140可混合該瀝取液(L)。該外殼150可決定該壓熱器設備100的形狀。 將氧注入該壓熱器設備100,且可將有價值金屬加壓瀝取入該瀝取液中。例如,含有銅成分之原料可在酸性環境中被瀝取。在該酸性環境中,可使用氧作為氧化劑。用於瀝取在該原料中之有價值金屬的反應式可以下列反應式1表示。 [反應式1] 其中Me是有價值金屬,諸如銅。 當注入氧時,大部分的有價值金屬(諸如銅)可在酸性環境中被瀝取。在一具體例中,該原料進一步含有鐵(Fe)成分。鐵成分可具有低的沉澱率,且原料之鐵成分被沉澱。例如,根據以下反應式2,所瀝取之Fe 2+可再次藉由氧化劑被氧化成Fe 3+。 [反應式2] 根據反應式3和反應式4,在原料中之鐵成分可沉澱成黃鉀鐵礬和赤鐵礦中之至少一者的形式。 [反應式3] [反應式4] 在一具體例中,在將該有價值金屬(諸如銅)加壓瀝取入該瀝取液的步驟中及在沉澱在該原料中之該鐵成分的步驟中,在該壓熱器設備100內部之溫度可為140℃至150℃。若在該壓熱器設備100內部之溫度低於140℃且pH是0,則不形成原料之鐵成分的沉澱物。因此,彼不適合鐵沉澱程序。若該壓熱器設備100之內部的溫度超過150℃,則在該壓熱器設備100中所用之蒸汽和氣體燃料的量可提高,從而提高操作成本。較佳地,壓熱器設備100之內部的溫度可為140℃至150℃。更佳地,壓熱器設備100之內部的溫度可為145℃至150℃。 在一具體例中,經導入該加壓裝置中之原料的固體密度可在150 g/L至200 g/L之範圍。在此所用的,語詞『固體密度』被定義為導入該加壓裝置中之原料的質量對預先導入該加壓裝置中之瀝取液的體積的比。換言之,該固體密度可為每單位溶劑之導入的原料的質量比,且可為每一升溶劑之原料的質量。固體密度愈低,則瀝取效率愈高,但固體密度愈低,則原料之通過量愈低,而可造成生產率降低。再者,固體密度愈低,則經瀝取之銅成分的濃度愈低。此外,若固體密度為150 g/L至200 g/L,則在3小時的反應期間,銅瀝取率差異不大。較佳地,為增加生產率的目的,原料可具有180 g/L至200 g/L之固體密度。 在一具體例中,在將有價值金屬加壓瀝取入瀝取液L中之後,在反應後之瀝取液的酸性可在60 g/L至90 g/L之範圍。若反應後之瀝取液的酸性低於60g/L,則銅瀝取率可減至90%或更少,且若在反應後之瀝取液的酸性超過90g/L,則在原料中之鐵成分可被瀝取而不被沉澱。因此,彼不適合鐵成分的分離程序。因此,考慮到銅瀝取率和透過在原料中鐵成分之沉澱的純化程序,在反應後之瀝取液的酸性可被調節成80 g/L至90 g/L。 在一具體例中,用於加壓瀝取有價值金屬之反應時間可在3小時至5小時之範圍中。隨著反應時間增加,鐵成分的沉澱率和銅瀝取率可能增加。然而,即使反應時間增加,銅瀝取率可能不會高。因此,較佳地,用於加壓瀝取有價值金屬之反應時間可為3至4小時。 亦即,將有價值金屬瀝取入瀝取液的步驟及沉澱在原料中之鐵成分的步驟可在控制內部溫度和內部壓力之壓熱器設備100中進行。因此,根據本揭示內容,在從原料瀝取有價值金屬的同時,由於鐵成分之沉澱,使得以減少雜質純化程序。在此情況下,可能減少用於銅冶煉程序之設備,促進操作的管理,且減少操作成本。 實施例使用含有31至33 wt%之銅(Cu)、1.4至3 wt%之鐵(Fe)、38至40 wt%之鉛(Pb)、及0.6至2 wt%之鋅(Zn)的冰銅作為原料。在將有價值金屬瀝取入瀝取液的步驟中,使用壓熱器設備。在該壓熱器設備之內部的溫度被設定成150℃。作為瀝取液,使用含有30至40 g/L之銅(Cu)和160至170 g/L之硫酸的銅的廢電解質。 實例 1 3藉由調節所導入之原料,在150 g/L之固體密度(經導入該加壓裝置之原料的質量對預先導入該加壓裝置之瀝取液的體積的比)下,該反應進行3小時。 在實例1至3中,調節在反應後之瀝取液中的硫酸濃度以比較鐵成分之沉澱率和銅之回收率。在實例1中,將在反應後之瀝取液中的硫酸濃度調節成60 g/L。在實例2中,將在反應後之瀝取液中的硫酸濃度調節成90 g/L。在實例3中,將在反應後之瀝取液中的硫酸濃度調節成130 g/L。 實例 4 6藉由調節所導入之原料,將導入條件設定成185 g/L或200 g/L之固體密度。此外,將反應時間調節成3小時及5小時。亦即,在實例4中,將固體密度調節成185 g/L,將在反應後之瀝取液中的硫酸濃度調節成90 g/L,且將反應時間調節成3小時。在實例5中,將固體密度調節成200 g/L,將在反應後之瀝取液中的硫酸濃度調節成90 g/L,且將反應時間調節成3小時。在實例6中,將固體密度調節成200 g/L,將在反應後之瀝取液中的硫酸濃度調節成90 g/L,且將反應時間調節成5小時。其他實驗條件與各實例的基本條件相同。 比較例 1 3在大氣壓條件下進行瀝取,且將反應溫度設定在90℃至95℃。使用與實例1中相同之冰銅和瀝取液。在比較例1至3中,將在反應後之瀝取液中的硫酸濃度分別調節成140 g/L、160 g/L、及180 g/L。在150 g/L之固體密度下導入原料,且反應時間維持24小時。 如上所得之結果係顯示於以下表1中。 實例1至3之比較指明:當將在反應後之瀝取液中的硫酸濃度調節成60 g/L時,銅回收率是低的。 當藉由調節在實例4至6中的原料導入量以將固體密度調節成185 g/L或200 g/L時,實例1至3沒有明顯差異,其中鐵成分之沉澱率和銅之回收率係在低的固體密度條件下被試驗。因此,該操作之生產率可藉由將原料之處理量增高至200 g/L(此為大的原料導入量的狀況)被增高。 此外,當將反應時間增加至5.0小時,鐵成分之沉澱率和銅之回收率被改良。然而,目標是要提高操作之生產率。在操作期間之生產率可藉由將固體密度調節成200 g/L,將在反應後之瀝取液中的硫酸濃度調節成90 g/L,且將反應時間調節成3.0小時而增加。 在比較例1至3中,反應時間必須持續24小時或更長,以達到與實例1至6中相同之銅回收率。再者,因為在原料中之鐵開始被瀝取出,而非鐵成分沉澱在瀝取液中,因而彼不適合於雜質分離程序。因此,當與該大氣壓瀝取相比較時,加壓瀝取方法可為合適的,因為由於鐵成分之分離以及反應時間之減少而降低成本。此外,當目標是要提高操作的生產率時,可能藉由使用實例5之條件而提高操作期間之生產率。 雖然本揭示內容之技術精神已經藉由在一些具體例以及附圖中所示之實例來描述,應理解:可以在不偏離技術人員可瞭解之本揭示內容的技術精神和範圍下完成不同的取代型、改良型和替換型。再者,此等取代型、改良型和替換型應視為在所附之申請專利範圍的範圍內。
S100:原料製備步驟 S200:加壓瀝取步驟 100:壓熱器設備 110:入口部件 120:排放部件 130:氧注入部件 140:攪拌器 150:外殼
[圖1]是根據本揭示內容之一具體例之使用加壓瀝取技術的瀝取銅的方法。 [圖2]是根據本揭示內容之一具體例的壓熱器設備的概略橫剖面視圖。
S100:原料製備步驟
S200:加壓瀝取步驟

Claims (10)

  1. 一種使用加壓瀝取技術之瀝取銅的方法,其包含: 製備含有銅之原料的原料製備步驟;及 加壓瀝取步驟,其包括將該原料導入在加壓裝置內的瀝取液中及在將氧注入該加壓裝置中的同時加壓瀝取銅的步驟。
  2. 如請求項1之方法,其中該原料係從銅濃縮物、冰銅(copper matte)、銅泥(copper cement)和銅粉中之至少一者製備。
  3. 如請求項1或2之方法,其中該加壓瀝取步驟進一步包括沉澱該原料之鐵成分的步驟。
  4. 如請求項3之方法,其中該原料之鐵成分係沉澱成黃鉀鐵礬(jarosite)和赤鐵礦(hematite)中之至少一者的形式。
  5. 如請求項1或2之方法,其中該加壓裝置是壓熱器設備。
  6. 如請求項1或2之方法,其中該加壓瀝取步驟係在140℃至150℃之溫度範圍進行。
  7. 如請求項1或2之方法,其中在該加壓瀝取步驟之反應後的該瀝取液的酸性是在60 g/L至90 g/L的範圍。
  8. 如請求項1或2之方法,其中固體密度(該原料的質量對導入該加壓瀝取步驟中之該瀝取液的體積的比)是在150 g/L至200 g/L的範圍。
  9. 如請求項1或2之方法,其中在該加壓瀝取步驟中的加壓瀝取的反應時間是在3小時至5小時之範圍。
  10. 一種使用加壓瀝取技術之瀝取銅的方法,其包含: 製備含有銅和鐵成分之原料的原料製備步驟;及 加壓瀝取步驟,其包括將該原料導入在加壓裝置內的瀝取液中及在將氧注入該加壓裝置中的同時加壓瀝取銅之步驟, 其中該加壓瀝取步驟係在壓熱器設備中進行,且包括加壓瀝取該原料之銅的步驟及沉澱該原料之鐵成分的步驟。
TW112119326A 2022-10-07 2023-05-24 使用加壓瀝取技術之瀝取銅的方法 TW202415777A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2022-0128929 2022-10-07

Publications (1)

Publication Number Publication Date
TW202415777A true TW202415777A (zh) 2024-04-16

Family

ID=

Similar Documents

Publication Publication Date Title
CN1271392A (zh) 从硫化物或红土矿石中氯化物辅助湿法冶金萃取镍和钴
FI125388B (en) Method for the recovery of copper and precious metals
KR101534417B1 (ko) 황산아연을 함유하는 용액 처리 방법
WO2013030450A1 (en) Method for recovering metals from material containing them
WO2015021926A1 (zh) 处理红土镍矿的方法和回收钪的方法
CA3211857A1 (en) Method for leaching copper using pressure leaching technique
JP2014138918A (ja) 固液分離処理方法、並びにニッケル酸化鉱石の湿式製錬方法
JP4801372B2 (ja) 硫酸コバルト溶液からマンガンを除去する方法
TW202415777A (zh) 使用加壓瀝取技術之瀝取銅的方法
KR102509344B1 (ko) 니켈 또는 코발트 수용액 제조 방법
JP6256491B2 (ja) スカンジウムの回収方法
CN118159674A (zh) 使用加压浸出法浸出铜的方法
CN110541074B (zh) 白合金中提取锗和钴的提取方法
TWI835612B (zh) 含鎳或鈷之水溶液的製造方法
AU2024201376B2 (en) Method for producing aqueous solution containing nickel or cobalt
CA3211609C (en) Method for producing aqueous solution containing nickel or cobalt
KR102543371B1 (ko) 니켈, 코발트 및 망간을 포함하는 수용액 제조 방법
RU2817125C1 (ru) Способ получения водного раствора, содержащего никель, кобальт и марганец
CN111118298B (zh) 一种除杂沉铜渣与铜钴矿酸浸渣混合洗涤除杂并提高铜钴回收率的方法
JP4765114B2 (ja) 亜鉛精鉱の浸出法
CN110951969B (zh) 一种从难处理含钴镍尾料中回收有价金属的方法
CN114921647B (zh) 一种高冰镍在硫酸下氧压浸出方法
WO2021059942A1 (ja) スカンジウムの回収方法
JP2022112162A (ja) 固液分離処理方法、ニッケル酸化鉱石の湿式製錬方法
KR101654214B1 (ko) 저품위 니켈광석 제련시 발생하는 잔사로부터 스칸듐의 회수방법