TW202415581A - Control system of adjustable shock absorber of electric bicycle - Google Patents
Control system of adjustable shock absorber of electric bicycle Download PDFInfo
- Publication number
- TW202415581A TW202415581A TW111138675A TW111138675A TW202415581A TW 202415581 A TW202415581 A TW 202415581A TW 111138675 A TW111138675 A TW 111138675A TW 111138675 A TW111138675 A TW 111138675A TW 202415581 A TW202415581 A TW 202415581A
- Authority
- TW
- Taiwan
- Prior art keywords
- shock absorber
- artificial intelligence
- intelligence processor
- control system
- signal
- Prior art date
Links
- 230000035939 shock Effects 0.000 title claims abstract description 94
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 86
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 79
- 238000013016 damping Methods 0.000 claims abstract description 32
- 230000001133 acceleration Effects 0.000 claims description 28
- 230000007613 environmental effect Effects 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 10
- 239000011449 brick Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000002612 cardiopulmonary effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
Images
Landscapes
- Axle Suspensions And Sidecars For Cycles (AREA)
Abstract
Description
本發明係有關一種電動腳踏車,尤指一種利用人工智慧(AI)大數據及互聯網偵測道路狀況,以自動調整避震器以配合前面地形或道路狀況的控制系統。The present invention relates to an electric bicycle, and more particularly to a control system that uses artificial intelligence (AI) big data and the Internet to detect road conditions and automatically adjusts the shock absorber to match the terrain or road conditions ahead.
有關於電動腳踏車(E-Bike),很多人都會覺得,既然要運動 ,又何必需要助力。當然,騎自行車(腳踏車)肯定要比騎電動腳踏車對健康更有益。若是拿電動腳踏車和步行相比,騎車又更有訓練的效果。 Regarding E-bikes, many people think that since they are exercising, why do they need assistance? Of course, riding a bicycle is definitely better for health than riding an E-bike. If you compare E-bikes with walking, riding a bicycle has a better training effect.
根據一項的研究報告指出,電動腳踏車能提供至少中等強度的體能活動,比騎乘一般自行車的強度低,但比單純的走路高。尤其對於過去不常騎自行車的人來說,電動腳踏車是一個比較容易的開始,並且能改善缺乏運動者的身體健康(例如心肺功能)。According to a research report, electric bicycles can provide at least moderate intensity physical activity, which is lower than riding a regular bicycle, but higher than walking. Especially for those who have not ridden bicycles often in the past, electric bicycles are an easier start and can improve the physical health (such as cardiopulmonary function) of those who lack exercise.
目前電動腳踏車在騎乘過程中,該電動腳踏車上的避震器軟硬度都是出廠前就已設定好,無法再進行調整。因此大多數的電動腳踏車的避震器軟硬度都僅適合在平滑路面或紅磚路面上騎乘。一旦,經過碎石路面或顛簸路面時,前述電動腳踏車的避震器的避震效果就會顯現出過硬,不但導致該電動腳踏車不易騎乘,更會造成該電動腳踏車發生打滑或翻車現象。At present, during the riding process of electric bicycles, the hardness of the shock absorber on the electric bicycle is set before leaving the factory and cannot be adjusted. Therefore, the hardness of the shock absorber of most electric bicycles is only suitable for riding on smooth roads or red brick roads. Once passing through gravel roads or bumpy roads, the shock absorption effect of the shock absorber of the electric bicycle will be too hard, which will not only make the electric bicycle difficult to ride, but also cause the electric bicycle to slip or roll over.
因此,一些騎乘者更換可調式避震器來因應各種路面。但是,這種避震器是人工調整。在調整後,該避震器若適合在碎石或顛簸路面騎乘時,一旦騎到平滑路面或紅磚路面時,該避震器的避震小果就會顯現出太軟,導致騎乘者的車架易上下晃動。Therefore, some riders replace adjustable shock absorbers to cope with various road surfaces. However, this type of shock absorber is manually adjusted. After adjustment, if the shock absorber is suitable for riding on gravel or bumpy roads, once riding on smooth roads or red brick roads, the shock absorption effect of the shock absorber will appear too soft, causing the rider's frame to shake up and down easily.
所以,如何可以因應各種不同的路面狀況,自動調整避震器的軟硬度,以達舒適及安全騎乘,乃是本發明之主要解決的課題。Therefore, how to automatically adjust the softness and hardness of the shock absorber according to various road conditions to achieve a comfortable and safe ride is the main issue to be solved by the present invention.
因此,本發明之主要目的,在於提供一種透過影像路況識別模組連結網際網路,以連通道路上的監視器,並下載即時影像資料,再以人工智慧進行影像資料分析,以判斷前面將經過的路況,系統將依路況進行避震器軟硬度調整。Therefore, the main purpose of the present invention is to provide a method of connecting to the Internet through an image road condition recognition module to connect to the surveillance camera on the road and download real-time image data, and then use artificial intelligence to analyze the image data to determine the road condition to be passed ahead. The system will adjust the hardness of the shock absorber according to the road condition.
本發明之另一目的,在於利用一環境感應模組即時感應路面震動,再以人工智慧進行分析,以判斷即時路面狀況,系統將依路面狀況進行避震器軟硬度調整。Another purpose of the present invention is to use an environmental sensing module to sense road vibration in real time, and then use artificial intelligence to analyze it to determine the real-time road condition. The system will adjust the hardness of the shock absorber according to the road condition.
本發明之再一目的,在於利用一加速度感應器,在騎乘者緊急煞車時感測加速度訊號經該人工智演算法分析後Another object of the present invention is to utilize an acceleration sensor to sense the acceleration signal when the rider brakes suddenly and then analyze it with the artificial intelligence algorithm.
,以執行預先判斷,在避震器觸底前會先自動調整避震器至預定的軟硬度,以避免打滑翻車,提高騎乘的安全性。, to perform pre-judgment and automatically adjust the shock absorber to the predetermined hardness before the shock absorber hits the bottom to avoid slipping and rolling, thereby improving riding safety.
本發明之又一目的,在於利用一加速度感應器,感測電動腳踏車騰空時,該人工智慧判斷後以進行避震器調整,使該避震器自動調整至預定軟度,使電動腳踏車在落地時能有效減震。Another object of the present invention is to utilize an acceleration sensor to sense when the electric bicycle is in the air, and then the artificial intelligence makes a judgment to adjust the shock absorber so that the shock absorber is automatically adjusted to a predetermined softness, so that the electric bicycle can effectively reduce shock when it lands.
為達上述之目的,本發明之一種電動腳踏車之可調式避震器的控制系統,以電性連結避震器之活塞桿的阻尼調整器,該控制系統包括:一人工智慧處理器、一環境感應模組、一影像路況識別模組及一驅動模組。該人工智慧處理器內部載有人工智慧演算法,以進行影像資料、車速及道路路面分析。該環境感應模組係與該人工智慧處理器電性連結,用以感應路面震動。該影像路況識別模組係與該人工智慧處理器電性連結,以透過網際網路連結道路上的監視器,以下載即時道路路況的影像資料。該驅動模組係與該人工智慧處理器電性連結。其中,以該影像路況識別模組下載即時路況影像資料,由該人工智慧處理器由該影像資料分析前面即時路況,或者以該環境感應模組即時感應路面震動,由該人工智慧處理器輸出訊號驅動該驅動模組轉動該阻尼調整器,以調整該活塞桿動作行程及速度,以達調整該避震器的軟硬度。To achieve the above-mentioned purpose, the present invention provides a control system for an adjustable shock absorber of an electric bicycle, which is electrically connected to the damping adjuster of the piston rod of the shock absorber. The control system includes: an artificial intelligence processor, an environmental sensing module, an image road condition recognition module and a drive module. The artificial intelligence processor is internally loaded with an artificial intelligence algorithm to analyze image data, vehicle speed and road surface. The environmental sensing module is electrically connected to the artificial intelligence processor to sense road vibration. The image road condition recognition module is electrically connected to the artificial intelligence processor to connect to a monitor on the road via the Internet to download real-time road condition image data. The drive module is electrically connected to the artificial intelligence processor. The image road condition recognition module downloads real-time road condition image data, and the artificial intelligence processor analyzes the real-time road condition ahead from the image data, or the environmental sensing module senses road vibration in real time, and the artificial intelligence processor outputs a signal to drive the drive module to rotate the damping adjuster to adjust the piston rod movement stroke and speed, so as to adjust the softness and hardness of the shock absorber.
在本發明之一實施例中,該環境感應模組包含有一環境感應器、一訊號放大電路及一訊號轉換電路,以該訊號放大電路電性連結該環境感應器及該訊號轉換電路,該訊號轉換電路與該人工智慧處理器電性連結。In one embodiment of the present invention, the environment sensing module includes an environment sensor, a signal amplifying circuit and a signal converting circuit. The signal amplifying circuit is electrically connected to the environment sensor and the signal converting circuit, and the signal converting circuit is electrically connected to the artificial intelligence processor.
在本發明之一實施例中,該環境感應器為應變規,並可利用惠斯頓電橋測得電阻值的變化。In one embodiment of the present invention, the environmental sensor is a strain gauge, and the change in resistance value can be measured using a Wheatstone bridge.
在本發明之一實施例中,該訊號轉換電路為類比訊號轉成數位訊號。In one embodiment of the present invention, the signal conversion circuit converts an analog signal into a digital signal.
在本發明之一實施例中,該驅動模組為伺服馬達。In one embodiment of the present invention, the driving module is a servo motor.
在本發明之一實施例中,更包含有一加速度感應器,該加速度感應器係與該人工智慧處理器電性連結。In one embodiment of the present invention, an acceleration sensor is further included. The acceleration sensor is electrically connected to the artificial intelligence processor.
在本發明之一實施例中,該加速度感應器在緊急煞車時,感測加速度訊號經該人工智慧處理器的演算法分析後,以執行預先判斷,在該避震器觸底前會驅動該驅動模組轉動該阻尼調整器,使該避震器調至預定的軟硬度。In one embodiment of the present invention, during emergency braking, the acceleration sensor senses an acceleration signal which is analyzed by the algorithm of the artificial intelligence processor to perform a pre-judgment. Before the shock absorber hits the bottom, the drive module is driven to rotate the damping adjuster so that the shock absorber is adjusted to a predetermined hardness.
在本發明之一實施例中,該加速度感應器以感測該電動腳踏車騰空時,該人工智慧處理器驅動該驅動模組轉動該阻尼調整器,使該避震器自動調整至預定的軟硬度,使該電動腳踏車在落地時能有效減震。In one embodiment of the present invention, when the acceleration sensor senses that the electric bicycle is in the air, the artificial intelligence processor drives the driving module to rotate the damping adjuster, so that the shock absorber is automatically adjusted to a predetermined hardness, so that the electric bicycle can effectively absorb shock when it lands.
在本發明之一實施例中,該加速度感應器為三軸加速度感應器。In one embodiment of the present invention, the acceleration sensor is a three-axis acceleration sensor.
在本發明之一實施例中,更包含有一電源供應單元,該電源供應單元係與該人工智慧處理器電性連結,以提供該控制系統所需要之電力。In one embodiment of the present invention, a power supply unit is further included. The power supply unit is electrically connected to the artificial intelligence processor to provide the power required by the control system.
在本發明之一實施例中,該電源供應單元為充電電池。In one embodiment of the present invention, the power supply unit is a rechargeable battery.
在本發明之一實施例中,該避震器之結構至少包括:一筒身,該筒身內配有一阻尼油及該活塞桿,該活塞桿延伸於該筒身內部的桿體一端上配置有一活塞,該活塞桿延伸於該筒身外部的桿體一端上具有該阻尼調整器。In one embodiment of the present invention, the structure of the shock absorber at least includes: a barrel, a damping oil and the piston rod are arranged in the barrel, a piston is arranged on one end of the rod body extending inside the barrel, and the damping adjuster is arranged on one end of the rod body extending outside the barrel.
在本發明之一實施例中,該活塞桿具有一可調式閥門孔。In one embodiment of the present invention, the piston rod has an adjustable valve hole.
在本發明之一實施例中,更包含有一速度感應單元,該速度感應單元係與該人工智慧處理器電性連結,該速度感應單元以感應該電動腳踏車的車速,並將感應訊號傳至給該人工智慧處理器進行判斷分析,若判斷該電動腳踏車的車速達到高速設定值時,該人工智慧處理器輸出訊號驅動該驅動模組,將該避震器的軟硬度調整為硬;若判斷該電動腳踏車的車速達到低速設定值時,該人工智慧處理器輸出訊號驅動該驅動模組,將該避震器的軟硬度調整為軟。In one embodiment of the present invention, a speed sensing unit is further included. The speed sensing unit is electrically connected to the artificial intelligence processor. The speed sensing unit senses the speed of the electric bicycle and transmits the sensing signal to the artificial intelligence processor for judgment and analysis. If it is judged that the speed of the electric bicycle reaches a high-speed setting value, the artificial intelligence processor outputs a signal to drive the drive module to adjust the hardness of the shock absorber to hard; if it is judged that the speed of the electric bicycle reaches a low-speed setting value, the artificial intelligence processor outputs a signal to drive the drive module to adjust the hardness of the shock absorber to soft.
茲有關本發明之技術內容及詳細說明,現在配合圖式說明如下:The technical content and detailed description of the present invention are now described as follows with reference to the drawings:
請參閱圖1、2,係本發明之電動腳踏車的外觀及可變式避震器的控制系統電路方塊示意圖。如圖所示:本發明之電動腳踏車(e-bike)之可調式避震器的控制系統,係以安裝於電動腳踏車200上,該控制系統100包括:一人工智慧處理器10、一環境感應模組20、一影像路況識別模組30、一加速度感應器40、一驅動模組50、一電源供應單元60及一速度感應單元70。其中,以感應路面震動狀況,來自動調變避震器軟硬度,以達騎乘的舒適及安全。Please refer to Figures 1 and 2, which are schematic diagrams of the appearance of the electric bicycle and the control system circuit block diagram of the variable shock absorber of the present invention. As shown in the figure: the control system of the adjustable shock absorber of the electric bicycle (e-bike) of the present invention is installed on the electric bicycle 200. The control system 100 includes: an artificial intelligence processor 10, an environment sensing module 20, an image road condition recognition module 30, an acceleration sensor 40, a drive module 50, a power supply unit 60 and a speed sensing unit 70. Among them, the vibration of the road surface is sensed to automatically adjust the softness and hardness of the shock absorber to achieve riding comfort and safety.
該人工智慧處理器10,內部載有人工智慧演算法,以進行影像、車速及道路路面分析。The artificial intelligence processor 10 has an artificial intelligence algorithm installed therein for analyzing images, vehicle speed and road surface.
該環境感應模組20,係與該人工智慧處理器10電性連結。該環境感應模組20包含有一環境感應器21、一訊號放大電路22及一訊號轉換電路23。以該訊號放大電路22電性連結該環境感應器21及該訊號轉換電路23,在環境感應器21感應道路路面的震動狀況,將感應的訊號傳至該訊號放大電路22放大後,放大的訊號經該訊號轉換電路23將類比訊號轉換為數位訊號輸出至該人工智慧處理器10,以人工智慧演算法分析道路路面狀況。在本圖式中,該環境感應器21為應變規。值得一提的事,應變規是由金屬導線製作而成,如同一個電阻一樣。該應變規將隨著待測件的變化,其電阻值會隨著改變,並可利用惠斯頓電橋(Wheatstone bridge)測得電阻值的變化,即可反推得到應變。The environment sensing module 20 is electrically connected to the artificial intelligence processor 10. The environment sensing module 20 includes an environment sensor 21, a signal amplifying circuit 22 and a signal converting circuit 23. The signal amplifying circuit 22 is electrically connected to the environment sensor 21 and the signal converting circuit 23. When the environment sensor 21 senses the vibration of the road surface, the sensed signal is transmitted to the signal amplifying circuit 22 for amplification. The amplified signal is converted into a digital signal by the signal converting circuit 23 and output to the artificial intelligence processor 10 to analyze the road surface condition by an artificial intelligence algorithm. In this figure, the environment sensor 21 is a strain gauge. It is worth mentioning that the strain gauge is made of metal wire, just like a resistor. The resistance value of the strain gauge will change as the object under test changes. The change in resistance value can be measured using a Wheatstone bridge, and the strain can be inferred from the change.
該影像路況識別模組30,係與該人工智慧處理器10,以該影像路況識別模組30透過基地台(圖中未示)連結網際網路至道路上所安裝的監視器(圖中未示),透過該監視器(攝影機)以取得前面道路路面狀況的影像資料,經該人工智慧處理器10進行道路影像資料分析,以得知將經過的道路路面狀況的資料,以根據影像資料進行避震器201軟硬度調整。The image road condition recognition module 30 is connected to the Internet through a base station (not shown in the figure) to a monitor (not shown in the figure) installed on the road. The monitor (camera) is used to obtain image data of the road surface condition in front. The artificial intelligence processor 10 performs road image data analysis to obtain data on the road surface condition of the road to be passed, so as to adjust the hardness of the
該加速度感應器40,係與人工智慧處理器10電性連結。該加速度感應器40可於騎乘者緊急煞車時感測加速度訊號經該人工智慧處理器10的演算法分析後,以執行預先判斷,在避震器201觸底前會驅動該驅動模組50轉動阻尼調整器2015,使該避震器201調至預定的軟硬度,以避免打滑翻車,提高騎乘的安全性。同時加速度感應器40可感測電動腳踏車200騰空時,該人工智慧處理器10同樣驅動該驅動模組50轉動該阻尼調整器2015,使該避震器201會自動調整至預定的軟硬度,使電動腳踏車200在落地時能有效減震。在本圖式中,該加速度感應器40為三軸加速度感應器。The acceleration sensor 40 is electrically connected to the artificial intelligence processor 10. When the rider brakes suddenly, the acceleration sensor 40 can sense the acceleration signal, and after the algorithm analysis of the artificial intelligence processor 10, it can perform a pre-judgment, and drive the driving module 50 to rotate the damping
該驅動模組50,係與該人工智慧處理器10電性連結。該驅動模組50以接收該人工智慧處理器10所輸出的訊號,以驅動安裝於避震器201上的阻尼調整器2015轉動,以調整避震器201之活塞桿(圖中未示)上的閥門孔大小,以控制該活塞桿作動的行程與速度。在本圖式中,該驅動模組50為伺服馬達。The driving module 50 is electrically connected to the artificial intelligence processor 10. The driving module 50 receives the signal output by the artificial intelligence processor 10 to drive the damping
該電源供應單元60,係與該人工智慧處理器10電性連結,以提供該控制系統100所需要之電力。該電源供應單元60為充電電池。The power supply unit 60 is electrically connected to the artificial intelligence processor 10 to provide the power required by the control system 100. The power supply unit 60 is a rechargeable battery.
該速度感應單元70,係與該人工智慧處理器10電性連結。該速度感應單元70以感應電動腳踏車200的車速,並將感應訊號傳至給人工智慧處理器10進行判斷分析,若判斷該電動腳踏車200車速達到高速設定值(例如,50公里-60公里)時,該人工智慧處理器10輸出訊號驅動該驅動模組50,該驅動模組50將阻尼調整器2015轉動,將避震器201的軟硬度調整為硬(活塞桿作動行程小)。若判斷該電動腳踏車200車速達到低速設定值(25公里以下)時,該人工智慧處理器10輸出訊號驅動該驅動模組50,該驅動模組50將阻尼調整器2015轉動,將避震器201的軟硬度調整為軟(活塞桿作動行程大),以確保行車安全。藉由影像路況識別模組30經網際網路連結道路的監視器(圖中未示)取得影像資料,由該人工智慧處理器10進行影像道路辨識,以取得前面將經過的道路路況,再以環境感應模組20感應實際道路路面狀況來自動調整避震器201的避震軟硬度,以提供一個騎乘舒適的感覺。The speed sensing unit 70 is electrically connected to the artificial intelligence processor 10. The speed sensing unit 70 senses the speed of the electric bicycle 200 and transmits the sensing signal to the artificial intelligence processor 10 for judgment and analysis. If it is determined that the speed of the electric bicycle 200 reaches a high speed setting value (for example, 50 kilometers to 60 kilometers), the artificial intelligence processor 10 outputs a signal to drive the driving module 50, and the driving module 50 rotates the damping
請參閱圖3-7,係本發明之避震器剖視及電動腳踏車行駛在平滑路面、紅磚道路面、碎石路面、顛簸路面及避震器動作比較示意圖;同時,一併參閱圖1-2。如圖所示:本發明所運用的避震器201如圖3所示,但不限於此避震器201結構。該避震器201係以安裝於電動腳踏車200的前叉結構202或車架203上,該避震器201結構至少包括:一筒身2011,該筒身2011配有一阻尼油2012及一活塞桿2013,該活塞桿2013延伸於該筒身2011內部桿體一端上配置有一活塞2014,而該活塞桿2013延伸於該筒身2011外部的桿體一端上具有一阻尼調整器2015。其中,該活塞桿上具有一可調式閥門孔2016。Please refer to Figures 3-7, which are cross-sectional views of the shock absorber of the present invention and schematic diagrams of the electric bicycle running on smooth roads, red brick roads, gravel roads, bumpy roads and the shock absorber's action comparison; at the same time, please refer to Figures 1-2. As shown in the figure: The
在騎乘者騎乘電動腳踏車200時,可以透過影像路況識別模組30連結網際網路至道路的監視器(圖中未示),以下載即時拍攝的影像資料,經該人工智慧處理器10進行道路影像資料分析,以得知將經過前面的道路路面為平滑路面、紅磚道路面、碎石路面或顛簸路面之其一時,該人工智慧處理器10將輸出訊號驅動該驅動模組50,該驅動模組50將轉動該調整避震器201的阻尼調整器2015,以調整活塞桿2013上的閥門孔2016大小,以控制該活塞桿2013作動的行程與速度,以達避震器201軟硬度調整,以提供一個騎乘舒適及安全的騎乘模式。When the rider rides the electric bicycle 200, the image road condition recognition module 30 can be connected to the Internet to a road monitor (not shown) to download the real-time image data. The artificial intelligence processor 10 analyzes the road image data to find out whether the road ahead is smooth, red brick, gravel or bumpy. The intelligent processor 10 will output a signal to drive the driving module 50, and the driving module 50 will rotate the damping
在即時騎乘在平滑路面時,該環境感應模組20感應路面震動,並將感應訊號傳至該人工智慧處理器10,該人工智慧處理器10將輸出訊號驅動該驅動模組50,該驅動模組50將轉動該調整避震器201的阻尼調整器2015,以調整活塞桿2013上的閥門孔2016大小,使該活塞桿2013在筒身2011中作動時,該作動的行程約佔筒身2011的10%距離。When riding on a smooth road, the environment sensing module 20 senses the vibration of the road surface and transmits the sensing signal to the artificial intelligence processor 10. The artificial intelligence processor 10 will output a signal to drive the driving module 50. The driving module 50 will rotate the damping
在即時騎乘在紅磚道路面時,該環境感應模組20感應路面震動,並將感應訊號傳至該人工智慧處理器10,該人工智慧處理器10將輸出訊號驅動該驅動模組50,該驅動模組50將轉動該調整避震器201的阻尼調整器2015,以調整活塞桿2013上的閥門孔2016大小,使該活塞桿2013在該筒身2011中作動時,該作動的行程約佔筒身2011的30%距離。When riding on a red brick road surface, the environment sensing module 20 senses the vibration of the road surface and transmits the sensing signal to the artificial intelligence processor 10. The artificial intelligence processor 10 will output a signal to drive the driving module 50. The driving module 50 will rotate the damping
在即時騎乘在碎石路面時,該環境感應模組20感應路面震動,並將感應訊號傳至該人工智慧處理器10,該人工智慧處理器10將輸出訊號驅動該驅動模組50,該驅動模組50將轉動該調整避震器201的阻尼調整器2015,以調整活塞桿2013上的閥門孔2016大小,使該活塞桿2013在該筒身2011中作動時,該作動的行程約佔筒身2011的50%距離。When riding on a gravel road in real time, the environment sensing module 20 senses the vibration of the road surface and transmits the sensing signal to the artificial intelligence processor 10. The artificial intelligence processor 10 will output a signal to drive the driving module 50. The driving module 50 will rotate the damping
在即時騎乘在顛簸路面時,該環境感應模組20感應路面震動,並將感應訊號傳至該人工智慧處理器10,該人工智慧處理器10將輸出訊號驅動該驅動模組50,該驅動模組50將轉動該調整避震器201的阻尼調整器2015,以調整活塞桿2013上的閥門孔2016大小,使該活塞桿2013在該筒身2011中作動時,作動的行程約佔筒身2011的80%距離。When riding on a bumpy road in real time, the environment sensing module 20 senses the vibration of the road surface and transmits the sensing signal to the artificial intelligence processor 10. The artificial intelligence processor 10 will output a signal to drive the driving module 50. The driving module 50 will rotate the damping
另,在該加速度感應器40可於騎乘者緊急煞車時感測加速度訊號經該人工智慧處理器10的演算法分析後,以執行預先判斷,在避震器201觸底前會驅動該驅動模組50轉動阻尼調整器2015,以調整活塞桿2013上的閥門孔2016大小,使該避震器201調至預定的軟硬度,以避免打滑翻車,提高騎乘的安全性。同時加速度感應器40可感測電動腳踏車200騰空時,該人工智慧處理器10同樣驅動該驅動模組50轉動該阻尼調整器2015,使該避震器201會自動調整至預定的軟硬度,使電動腳踏車200在落地時能有效減震。In addition, the acceleration sensor 40 can sense the acceleration signal when the rider brakes suddenly. After being analyzed by the algorithm of the artificial intelligence processor 10, it can perform pre-judgment and drive the drive module 50 to rotate the damping
又在該速度感應單元70以感應電動腳踏車200的行車速度時,該速度感應單元70會將感應訊號傳至給人工智慧處理器10進行判斷分析,若判斷該電動腳踏車200車速達到高速設定值時,該人工智慧處理器10輸出訊號驅動該驅動模組50,該驅動模組50將阻尼調整器2015轉動,將避震器201的軟硬度調整為硬。若判斷該電動腳踏車200車速達到低速設定值時,該人工智慧處理器10輸出訊號驅動該驅動模組50,該驅動模組50將阻尼調整器2015轉動,將避震器201的軟硬度調整為軟,以確保行車安全。When the speed sensing unit 70 senses the speed of the electric bicycle 200, the speed sensing unit 70 transmits the sensing signal to the artificial intelligence processor 10 for judgment and analysis. If it is determined that the speed of the electric bicycle 200 reaches the high-speed setting value, the artificial intelligence processor 10 outputs a signal to drive the driving module 50, and the driving module 50 rotates the damping
惟以上所述僅為本發明之較佳實施例,非意欲侷限本發明的專利保護範圍,故舉凡運用本發明說明書或圖式內容所為的等效變化,均同理皆包含於本發明的權利保護範圍內,合予陳明。However, the above is only a preferred embodiment of the present invention and is not intended to limit the patent protection scope of the present invention. Therefore, all equivalent changes made by using the contents of the description or drawings of the present invention are also included in the scope of protection of the present invention and are hereby stated.
100:控制系統 10:人工智慧處理器 20:環境感應模組 21:環境感應器 22:訊號放大電路 23:訊號轉換電路 30:影像路況識別模組 40:加速度感應器 50:驅動模組 60:電源供應單元 200:電動腳踏車 201:避震器 2011:筒身 2012:阻尼油 2013:活塞桿 2014:活塞 2015:阻尼調整器 2016:閥門孔 100: Control system 10: Artificial intelligence processor 20: Environmental sensing module 21: Environmental sensor 22: Signal amplification circuit 23: Signal conversion circuit 30: Image road condition recognition module 40: Acceleration sensor 50: Drive module 60: Power supply unit 200: Electric bicycle 201: Shock absorber 2011: Cylinder 2012: Damping oil 2013: Piston rod 2014: Piston 2015: Damping adjuster 2016: Valve hole
圖1,係本發明之電動腳踏車的外觀示意圖;FIG1 is a schematic diagram of the appearance of the electric bicycle of the present invention;
圖2,係本發明之電動腳踏車之可變式避震器的控制系統電路方塊示意圖FIG. 2 is a schematic diagram of a control system circuit block diagram of a variable shock absorber of an electric bicycle of the present invention.
圖3,係本發明所運用的避震器剖視示意圖;FIG3 is a schematic cross-sectional view of a shock absorber used in the present invention;
圖4,係本發明之電動腳踏車行駛在平滑路面及避震器動作比較示意圖;FIG4 is a schematic diagram showing the electric bicycle of the present invention running on a smooth road and the operation of the shock absorber;
圖5,係本發明之電動腳踏車行駛在紅磚道路面及避震器動作比較示意圖;FIG5 is a schematic diagram showing the electric bicycle of the present invention running on a red brick road and the operation of the shock absorber;
圖6,係本發明之電動腳踏車行駛在碎石路面及避震器動作比較示意圖;FIG6 is a schematic diagram showing the electric bicycle of the present invention running on a gravel road and the operation of the shock absorber;
圖7,係本發明之電動腳踏車行駛在顛簸路面及避震器動作比較示意圖。FIG. 7 is a schematic diagram showing the electric bicycle of the present invention running on a bumpy road and the operation of the shock absorber.
100:控制系統 100: Control system
10:人工智慧處理器 10: Artificial Intelligence Processor
20:環境感應模組 20: Environmental sensing module
21:環境感應器 21: Environmental sensor
22:訊號放大電路 22: Signal amplifier circuit
23:訊號轉換電路 23:Signal conversion circuit
30:影像路況識別模組 30: Image road condition recognition module
40:加速度感應器 40: Acceleration sensor
50:驅動模組 50:Drive module
60:電源供應單元 60: Power supply unit
201:避震器 201:Shock absorber
2015:阻尼調整器 2015: Damping adjuster
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111138675A TWI838910B (en) | 2022-10-12 | 2022-10-12 | Control system of adjustable shock absorber of electric bicycle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111138675A TWI838910B (en) | 2022-10-12 | 2022-10-12 | Control system of adjustable shock absorber of electric bicycle |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI838910B TWI838910B (en) | 2024-04-11 |
TW202415581A true TW202415581A (en) | 2024-04-16 |
Family
ID=91618522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111138675A TWI838910B (en) | 2022-10-12 | 2022-10-12 | Control system of adjustable shock absorber of electric bicycle |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI838910B (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW560485U (en) * | 2003-03-13 | 2003-11-01 | Chin Hsing An Thai Ind Co Ltd | Improved structure for pneumatic/hydraulic buffering device |
TWI564186B (en) * | 2014-08-20 | 2017-01-01 | Bicycle electronic control device | |
TWI605959B (en) * | 2017-03-24 | 2017-11-21 | 方成未來股份有限公司 | Method and system for adjusting suspension parameter of electromechanical suspension device |
-
2022
- 2022-10-12 TW TW111138675A patent/TWI838910B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI838910B (en) | 2024-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11713093B2 (en) | Smart device application with customizable tunes for active valve control | |
NL1013338C2 (en) | Measurement of force exerted by cyclist, involves computing level of torque exerted by rider on pedals by signal processor based on signal output from sensor attached to frame of bicycle to measure frame deformation | |
US12112579B2 (en) | Connected component platform | |
US20020180166A1 (en) | Vehicles and methods using center of gravity and mass shift control system | |
CN107600296A (en) | A kind of power assist control method of electric assisted bicycle | |
US20230016000A1 (en) | Connected component platform | |
CN106476973A (en) | Bicycle control and the bicycle drive unit with this control device | |
CN112158285B (en) | Real-time speed change suggestion system for mountain bike | |
EP4011678A1 (en) | Method and system for controlling a vehicle's electric motor output | |
US20220063672A1 (en) | Autonomous electronic bicycle safety constraints based on inferred rider characteristics | |
US20220227455A1 (en) | Inter-bicycle communication for communal biking experiences | |
US12077246B2 (en) | Friction coefficient determination to adjust braking for electronic bicycles | |
US11543821B2 (en) | Track stand capable autonomous electronic bicycle | |
US9540067B2 (en) | Automatic shock absorber system for a bicycle | |
US20230331333A1 (en) | Active suspension and body wearable device integration | |
CN104627307A (en) | Automatic control shock absorber system for bicycle | |
TWI838910B (en) | Control system of adjustable shock absorber of electric bicycle | |
CN110733598B (en) | Suspension control apparatus for human powered vehicle | |
JP2019182138A (en) | Controller and gear change system | |
CN117922737A (en) | Control system of adjustable shock absorber of electric bicycle | |
EP4125068A1 (en) | Connected component platform | |
TWM567216U (en) | Shock absorber adjustment device of bicycle | |
US20220063758A1 (en) | Integrated head tube steering motor for autonomous electronic bicycle | |
TWM550236U (en) | Auto-adjustable shock-absorbing device | |
TW202136077A (en) | Method for the determination of a compression speed of a shock absorber, computer program, control device and two-wheeled vehicle |