TW202414858A - 具有介電質邊框的微發光二極體及其製備方法 - Google Patents

具有介電質邊框的微發光二極體及其製備方法 Download PDF

Info

Publication number
TW202414858A
TW202414858A TW111136993A TW111136993A TW202414858A TW 202414858 A TW202414858 A TW 202414858A TW 111136993 A TW111136993 A TW 111136993A TW 111136993 A TW111136993 A TW 111136993A TW 202414858 A TW202414858 A TW 202414858A
Authority
TW
Taiwan
Prior art keywords
type doped
dielectric frame
layer
doped layer
metal electrode
Prior art date
Application number
TW111136993A
Other languages
English (en)
Other versions
TWI832455B (zh
Inventor
王曉靁
施能泰
宋高梅
Original Assignee
王曉靁
Filing date
Publication date
Application filed by 王曉靁 filed Critical 王曉靁
Priority to TW111136993A priority Critical patent/TWI832455B/zh
Priority claimed from TW111136993A external-priority patent/TWI832455B/zh
Application granted granted Critical
Publication of TWI832455B publication Critical patent/TWI832455B/zh
Publication of TW202414858A publication Critical patent/TW202414858A/zh

Links

Images

Abstract

本發明提供一種具有介電質邊框的微發光二極體及其製備方法,該具有介電質邊框的微發光二極體包括:一n型摻雜層磊晶於一磊晶基板上;一介電質邊框形成於磊晶基板及n型摻雜層其中之一者上;一多重量子井層成長於介電質邊框中,且位於n型摻雜層上;一p型摻雜層成長於介電質邊框中,且位於多重量子井層上;一第一金屬電極導接於p型摻雜層;一第二金屬電極導接於n型摻雜層及磊晶基板其中之一者;以及一保護層覆於介電質邊框及透明電流分散層之外表面,並曝露出第一金屬電極及第二金屬電極;藉此有效避免平臺蝕刻所造成的瑕疵。

Description

具有介電質邊框的微發光二極體及其製備方法
本發明係關於一種微發光二極體及其製備方法,特別係指一種具有介電質邊框的微發光二極體及其製備方法。
隨著時代的進步,顯示器變得更輕薄、更省電,顯示器主流技術已從新興的OLED顯示器,轉而積極投入微發光二極體(Micro light emitting diode,Micro-LED)顯示器,Micro LED顯示器由於具有自發光、低功耗、回應時間快、高亮度、超高對比、廣色域、廣視角、超輕薄、使用壽命長與適應各種工作溫度的諸多優異特性與可行性,在國際領導廠商的引領與產業界的積極參與之下,有望成為下一世代的顯示器的主流技術。Micro LED技術將一般毫米(10-3m)等級之傳統LED尺寸微縮至100微米(10-6m)以下,是原本LED體積的1%。但在生產組裝過程,需透過巨量轉移技術,將成長於磊晶基板(或稱為原生基板或同質基板)之微米等級RGB三色Micro LED晶粒搬運至顯示基板(或稱為目的基板)上,矩陣排列RGB畫素經由定址控制其暗亮程度而達成全彩化,才能形成完整的Micro LED顯示器。
然而前述的種種優勢,在考量巨量轉移過程中的複雜性與良率、產出效率的困擾,就形成關鍵挑戰和重大困擾。由於磊晶及分粒完成的晶粒尺寸相當袖珍,要將數以百萬計微米等級的Micro LED晶粒精準地轉移至顯示基板上的正確位置,就成為業界的技術障礙。
為擺脫上述巨量轉移的難題,目前已經有人提出將RGB三種LED元件或至少其中兩種元件在同一磊晶基板上製造,並按照成品需求佈局的技術方案,申請人亦對此提出有相關前案。在Micro-LED的顯示器製造過程中,需採用紅綠藍(RGB)三原色發光二極體來構成單元的畫素(pixels),目前主要的製造技術需混和採用氮化物(Nitrides)系和磷化物(Phosphides)系的發光二極體,才能滿足三原色的需求。不同材料系統發光二極體混用時,不同的發熱及衰減特性直接影響了影像呈現的品質;不同的電氣驅動特性,則直接導致了顯示模組驅動設計上的複雜度。因此,如果在同一材料系統上,實現直接發光RGB(紅綠藍)三原色發光二極體,除了有利於上述問題解決外,也同時因為省去螢光物等色光轉換機制將降低工序複雜度以及轉換所致能效損失,將對Micro LED技術的發展更有利。
氮化銦鎵InxGa1-xN系磊晶材料是目前製作主流藍光發光二極體的材料系統之一,理論上可藉由銦鎵固溶比例調控覆蓋整個可見光發光範圍,氮化銦鎵受益於具有直接能隙(energy gap)特性也預期將有較佳的發光效能,尤其藍光量產技術純熟,因此受到比其他材料系統更多的關注,在製作具有近似控制條件同時效能佳的直接紅綠藍發光二極體(RGB direct LED)深具潛能。然而受限於基板,目前在InxGa1-xN系磊晶材料的紅光發光二極體卻面臨技術瓶頸,由於要達到紅光合適的發光波段時,需增加InxGa1-xN系磊晶的In含量比例,在磊晶製造工序上必須降以低磊晶溫度等方式增加In含量,卻面臨磊晶品質不符應用規格等阻礙。因此,在紅光InGaN基晶片技術成熟之前,紅光AlGaInP基晶片仍是直接發光晶片使用的主要選擇。
然而另方面,Micro-LED隨著晶粒尺寸大幅微縮,卻同時面臨外部量子效率(EQE,external quantum efficiency)急速下降的問題。Micro-LED元件尺寸需要微縮到小於5~10um才能達到較低成本水準,顯示器商品始能和 LCD、OLED display作價格上的競爭;現有一般尺寸藍光LED元件EQE水準達80%,然而,微縮到5~10um的藍光LED組件EQE通常僅20%或更低;這樣的EQE無法支援能超越LCD、OLED display效能的產品;因此,Micro-LED元件的低EQE問題必須要有效解決才能進入高度競爭的消費市場。
EQE低落問題的根源來自於晶片側壁存在顯著的缺陷效應;側壁缺陷包含結構損傷、外來汙染物以及空懸鍵(dangling bonds)等,這些缺陷將導致側壁表面發生Shockley-Read-Hall(SRH)非輻射載子復合效應。相關的研究與分析已經證實,這些晶片側壁缺陷主要由LED晶片的平臺蝕刻(mesa etch)造成,一般LED晶片標準蝕刻製程採用的是ICP RIE乾式蝕刻,其高能電漿體、離子轟擊與化學反應等在蝕刻後的側壁表面留下上述缺陷。一般尺寸LED元件側壁即存在前述缺陷導致的非輻射復合效應,隨著元件尺寸微縮,側壁表面積佔元件整體表面積比例隨之上升,側壁缺陷對元件整體發光效率影響也越發顯著,進入Micro-LED尺寸範圍不論是藍光及綠光InGaN基晶片或紅光AlGaInP基晶片均呈現EQE急速下降現象,尤其AlGaInP基晶片因為表面復合速率以及載子擴散長度(carrier diffusion length)均大於InGaN基晶片,EQE下降問題更顯著。
Micro-LED晶粒面臨低EQE問題,主要來自於晶片平臺蝕刻(mesa etch)造成的側壁缺陷。目前最主要的改善方案,是將平臺蝕刻造成的缺陷,以鈍化層(passivation layer)披覆、或側壁表面的化學處理製程等後續的缺陷移除或修復製程加以彌補。其中,鈍化層披覆目前以原子層沉積(ALD,atomic layer deposition)Al2O3鈍化層效益獲得最佳成效,優於其他製程如PECVD和材料如SiO2的改善效益;鈍化層與改善組件光萃取率(LEE)的反射層(reflector)組合搭配也成為重要的研發主題;平臺蝕刻後的缺陷移除製程目前常以KOH或NH4S等進行化學處理;N2 plasma處理也是平臺蝕刻後的缺陷修復製程之一。
然而,前述各種技術方案都是等側壁缺陷已經形成之後,再以後續的額外製程進行缺陷移除或修復,都是增加工序、讓製程更複雜的方案,只會對於製造良率和產出效率造成進一步限制。如何提前避免平臺蝕刻造成側壁缺陷及損傷,而徹底消除EQE下降的問題,才能真正達到釜底抽薪的技術效果。
以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者瞭解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。
本發明之一目的在於提供一種具有介電質邊框的微發光二極體,藉由先成型介電質邊框,並在介電質邊框之中磊晶,藉此完全避免平臺蝕刻所造成Micro LED側壁的缺陷及損傷,而解決外部量子效率(EQE)急速下降的問題,進而提高Micro LED的發光效率。
本發明另一目的在於提供一種具有介電質邊框的微發光二極體,藉由先成型具有預定布局的介電質邊框,讓同一基板上的不同的框架內可磊晶不同色Micro LED晶粒,使單一基板上可形成多色晶粒,構成全彩畫素。
本發明再一目的在於提供一種具有介電質邊框的微發光二極體,可選擇內壁由上而下向內傾斜的介電質邊框,讓該多重量子井層及p型摻雜層於磊晶時的應力得到紓解。
本發明又一目的在於提供一種具有介電質邊框的微發光二極體,可採用外側由上而下向外傾斜的介電質邊框,以提升光萃取效率(Light Extraction Efficiency)。
本發明又另一目的在於提供一種具有介電質邊框的微發光二極體的製備方法,完全避免平臺蝕刻所造成Micro LED側壁的缺陷及損傷。
本發明提供一種具有介電質邊框的微發光二極體,是供成形於一磊晶基板上,該微發光二極體包括:一n型摻雜層,磊晶於該磊晶基板上;一介電質邊框,形成於該磊晶基板及該n型摻雜層其中之一者上;一多重量子井層,成長於上述介電質邊框中,並且位於該n型摻雜層上;一p型摻雜層,成長於上述介電質邊框中,並且位於該多重量子井層上;一第一金屬電極,供導通電流至該p型摻雜層;一第二金屬電極,導接於該n型摻雜層及該磊晶基板其中之一者;以及一保護層,覆於該介電質邊框及該透明電流分散層之外表面,並曝露出該第一金屬電極及該第二金屬電極。
該具有介電質邊框的微發光二極體之製備方法,其步驟包括:a)形成一介電質邊框和一n型摻雜層於一磊晶基板之上;b)於上述n型摻雜層上成長一多重量子井層,並且上述多重量子井層是位於介電質邊框中;c)於上述多重量子井層上成長一p型摻雜層,並且上述p型摻雜層是位於介電質邊框中;d)形成一第一金屬電極供導通電流至該p型摻雜層,且形成一第二金屬電極於該n型摻雜層及該磊晶基板其中之一者;以及形成一保護層,該保護層是覆於該介電質邊框及該透明電流分散層之外表面,並曝露出該第一金屬電極及該第二金屬電極。
依照本發明所揭露的具有介電質邊框的微發光二極體及其製備方法,其利用非晶質介電層如二氧化矽(SiO2)或氮化矽(Si3N4)先製作出適當的非晶質介電層邊框(frame),再於邊框內依序進行磊晶,故可以取代平臺蝕刻方式製造出的Micro-LED結構,而避免平臺蝕刻缺陷的效應產生,從源頭解 決Micro-LED之EQE急速下降的問題,不僅解決EQE急速下降的問題,有效提高Micro LED的發光效率,而且製程上的改良也使得產品良率和產出效率獲得提升,還可以在單一基板上形成多色晶粒,構成全彩畫素;尤其可以選擇介電質邊框形狀,同步解決製造和使用過程中的應力問題,並提升光萃取的效率。
1、2、3、4:微發光二極體
11、11’、21、31、41:磊晶基板
12、12’、22、32、42:介電質邊框
13、13’、23、33、43:n型摻雜層
14、14’、24、34、44:多重量子井層
15、15’、25、35、45:p型摻雜層
16、16’、26、36、46:透明電流分散層
17、17’、27、37、47:第一金屬電極
18、18’、28、38、48:第二金屬電極
19、19’、29、39、49:保護層
51~57、51’~57’:步驟
120:凹穴
圖1為本發明具有介電質邊框的微發光二極體之製備方法的第一較佳實施例的流程圖。
圖2A至圖2E為圖1實施例具有介電質邊框的微發光二極體製備過程中,各步驟的結構剖視示意圖。
圖3為本發明具有介電質邊框的微發光二極體之製備方法的第二較佳實施例的流程圖。
4A至圖4F為圖3實施例具有介電質邊框的微發光二極體製備過程中,各步驟的結構剖視示意圖。
圖5為本發明第三較佳實施例具有介電質邊框的微發光二極體的結構剖視示意圖。
圖6為本發明第四較佳實施例具有介電質邊框的微發光二極體的結構剖視示意圖。
圖7為本發明第五較佳實施例具有介電質邊框的微發光二極體的結構剖視示意圖。
藉由具體實施例說明本發明之實施方式,熟悉此技藝之人士可由說明書所揭示內容輕易瞭解本發明其他優點及功效。附圖繪示之結構、比例、大小等,均僅用以配合說明書所揭示內容,供熟悉此技藝人士瞭解與閱 讀,並非用以限定本發明實施之限定條件,不具技術上實質意義,任何結構修飾、比例關係改變或大小調整,在不影響本發明所能產生功效及所能達成目的下,均應仍落在本發明之內容的涵蓋範圍內。本說明書中所引用如“一”、“兩”、“上”等用語,亦僅為便於明瞭,而非用以限定本發明可實施之範圍,其相對關係之改變或調整,在無實質變更技術內容下,亦視為本發明可實施之範疇。
如圖1所示,本發明第一實施例具有介電質邊框微發光二極體1的製備方法及製備過程如下,首先在圖2A以藍寶石(sapphire)為例的磊晶基板11上於步驟51形成一n型氮化鎵(GaN)或n型氮化銦鎵(InGaN)之n型摻雜層13,以及在步驟52如圖2B所示,於n型摻雜層13上再形成一層例如SiO2或氮化矽(Si3N4)的介電質層,並如圖2C所示,蝕刻上述介電質層而形成凹穴120,由於介電質層被蝕刻出凹穴後,殘留的部分會構成用以限位後續磊晶架構的周壁,因此蝕刻後的介電質層被定名為介電質邊框12。
隨後在步驟53時,依照介電質邊框12的外框限制,在上述n型摻雜層13上、於凹穴120中磊晶成長例如氮化銦鎵(InGaN)系材料的一多重量子井層14作為主要的發光層;步驟54同樣受限於介電質邊框12的限制,如圖2D所示,於上述多重量子井層14上成長一p型氮化鎵(GaN)或p型氮化銦鎵(InGaN)作為一p型摻雜層15,此時的p型摻雜層15在高度方向是齊平於介電質邊框12。為使電流水平分散,使得電子電洞對復合位置不會過於集中在第一金屬電極17下方而造成遮光問題,步驟55在p型摻雜層15上方形成例如氧化銦錫(ITO)之一透明電流分散層16於該p型摻雜層15上。
接著步驟56在上述疊層旁的介電質邊框12處形成另一凹穴(未標號)使得n型摻雜層13暴露,並填充金屬構成一導接至n型摻雜層13的第二金屬電極18,以及在透明電流分散層16上形成一第一金屬電極17,藉此構成一個 完整的LED迴路。最後在步驟57形成一個覆蓋介電質邊框12及透明電流分散層16上方的外表面的保護層19,並且曝露出第一金屬電極17及第二金屬電極18的頂端供導接。保護層19可以包括一鈍化層或一反射層,鈍化層的材料為氧化鋁(Al2O3)及二氧化矽(SiO2)其中一者,而反射層為一分散式布拉格反射器(DBR),用來提升微發光二極體1的光輸出效率。
明顯地,由於多重量子井層和p型摻雜層都是被介電質邊框所框限而進行磊晶,因此排除平臺蝕刻技術以及附帶的側壁缺陷,從而克服EQE降低的技術難題,有效提升微發光二極體的發光效率。
當然,如熟悉本技術領域人士所能輕易理解,在後續加工過程中,若有隔絕/鈍化/機械強度等需求,需要保留較寬的介電質邊框作為支持;但如圖3和圖4A至4F所示,本發明第二實施例具有與前一實施例相同的磊晶基板11’、n型摻雜層13’、介電質邊框12’、多重量子井層14’、p型摻雜層15’、透明電流分散層16’、第一金屬電極17’、第二金屬電極18’和保護層19’等結構,僅在步驟55’時,增加一進一步蝕刻介電質邊框12’的製程,使得介電質邊框12’的寬度較前一實施例的介電質邊框更窄,保護層19’因而包覆至介電質邊框12’外側,且第二金屬電極18’因而在高度方向延伸較低。
此外,前述實施例中,介電質邊框是成形於n型摻雜層之上,但熟悉本技術領域人士所能輕易理解,如圖5本發明具有介電質邊框的微發光二極體2第三較佳實施例所示,介電質邊框22也同樣可以直接成型於例如藍寶石的磊晶基板21之上,並且讓n型摻雜層23和後續磊晶其上的多重量子井層24、以及p型摻雜層25,同樣磊晶成長於上述介電質邊框22所界定的環繞範圍中;透明電流分散層26則位於該p型摻雜層25上,且同樣高於上述介電質邊框22;第一金屬電極27是導接成型於該透明電流分散層26上;第二金屬電極28則導 接於該n型摻雜層23;以及一保護層29,覆於該介電質邊框22及該透明電流分散層26之外表面,並曝露出該第一金屬電極27及該第二金屬電極28。
請再參考圖6,本發明第四實施例具有介電質邊框的微發光二極體3,包括:一砷化鎵(GaAs)導電基板作為磊晶基板31;一n型摻雜層33,磊晶於該磊晶基板31上;一介電質邊框32,形成於該磊晶基板31上,且該n型摻雜層33位於該介電質邊框32中;一多重量子井層34,成長於上述介電質邊框32中,並且位於該n型摻雜層33上;一p型摻雜層35,成長於上述介電質邊框32中,並且位於該多重量子井層34上;一透明電流分散層36,位於該p型摻雜層35上;一第一金屬電極37,導接於該透明電流分散層36;一第二金屬電極38,導接於該磊晶基板31;以及一保護層39,覆於該介電質邊框32及該透明電流分散層36之外表面,並曝露出該第一金屬電極37及該第二金屬電極38。本例中,介電質邊框32的內壁是由上而下向內傾斜,藉此,讓該多重量子井層34及p型摻雜層35於磊晶時的應力得到紓解。
請再參考圖7,本發明第五實施例具有介電質邊框的微發光二極體4,包括:一磊晶基板41;一n型摻雜層43,磊晶於該磊晶基板41上;一介電質邊框42,形成於該n型摻雜層43上;一多重量子井層44,成長於上述介電質邊框42中,並且位於該n型摻雜層43上;一p型摻雜層45,成長於上述介電質邊框42中,並且位於該多重量子井層44上;一透明電流分散層46,位於該p型摻雜層45上;一第一金屬電極47,導接於該透明電流分散層46;一第二金屬電極48,導接於該n型摻雜層43;以及一保護層49,覆於該介電質邊框42、該n型摻雜層43及該透明電流分散層46之外表面,並曝露出該第一金屬電極47及該第二金屬電極48,本例中,不僅介電質邊框42的內壁是由上而下向內傾斜,可讓多重量子井層44及p型摻雜層45於磊晶時的應力得到紓解,且介電質邊框42的外側也是由上而下向外傾斜,藉此,有利於光萃取效率的提升。
雖然上述實施例中,在p型摻雜層上均形成有透明電流分散層,但熟悉本技術領域者可以輕易理解,當第一金屬電極本身就可以讓電流分布均勻且分散,亦可無須設置上述透明電流分散層,仍屬於本發明的權利範圍。且上述Micro LED晶粒在磊晶基板上製造完成後,亦可藉由雷射剝離(laser lift off,LLO)、磊晶基板研磨或濕蝕刻方式讓晶粒與磊晶基板分離,而後將原形成於磊晶基板上的Micro LED晶粒或Micro LED晶粒陣列進行移轉,因此,本發明所請求的範圍同時包括存在於磊晶基板上或已經從磊晶基板轉移後的Micro LED晶粒;此外亦可在Si3N4介電質邊框底部預先形成SiO2作為邊框蝕刻的停止層,然後再以濕蝕刻去除邊框內的SiO2以降低n磊晶層的乾式蝕刻損傷,凡是基於增進元件發光效能或特性的各項磊晶製程範圍內的相關措施均能相容於本發明的介電質邊框製程,例如超晶格(super lattice)、電子阻擋層(electron blocking layer,EBL)、融覆層(cladding layer)等,或多重量子井結構中導入特殊異質材料層作為應力作用或能帶工程(band engineering)之目的,此類變化仍均包括於本發明下列申請專利範圍中。
綜上所述,本發明具有介電質邊框的微發光二極體及其製備方法其具有該介電質邊框,因此能避免平臺蝕刻造成微發光二極體側壁的缺陷及損傷,而解決外部量子效率急速下降的問題,進而提高微發光二極體的發光效率。此外,該介電質邊框的內壁由上而下向內傾斜,如此可讓該多重量子井層及該p型摻雜層於磊晶時的應力得到紓解,且該介電質邊框的外側由上而下向外傾斜,則有利於光萃取效率的提升。
上述實施例僅為例示性說明本發明的原理及其功效,而非用於限制本發明。即使是,因此任何熟悉此項技藝的人士可在不違背本發明的精神及範疇下,對上述實施例進行修改。因此本發明的權利保護範圍,應如後述申請專利範圍所列。
1:發光二極體
11:晶基板
12:介電質邊框
13:n型摻雜層
14:多重量子井層
15:p型摻雜層
16:透明電流分散層
17:第一金屬電極
18:第二金屬電極
19:保護層

Claims (10)

  1. 一種具有介電質邊框的微發光二極體,是供成形於一磊晶基板上,該微發光二極體包括:
    一n型摻雜層,磊晶於該磊晶基板上;
    一介電質邊框,形成於該磊晶基板及該n型摻雜層其中之一者上;
    一多重量子井層,成長於上述介電質邊框中,並且位於該n型摻雜層上;
    一p型摻雜層,成長於上述介電質邊框中,並且位於該多重量子井層上;
    一第一金屬電極,供導通電流至該p型摻雜層;
    一第二金屬電極,導接於該n型摻雜層及該磊晶基板其中之一者;以及
    一保護層,覆於該介電質邊框及該透明電流分散層之外表面,並曝露出該第一金屬電極及該第二金屬電極。
  2. 如請求項1所述之具有介電質邊框的微發光二極體,其中該介電質邊框是設置於該磊晶基板上,以及該n型摻雜層是位於該介電質邊框中。
  3. 如請求項1或2所述之具有介電質邊框的微發光二極體,更包括位於該p型摻雜層和該第一金屬電極間之一透明電流分散層,用以將上述第一金屬電極的電流分散至該p型摻雜層。
  4. 如請求項1所述之具有介電質邊框的微發光二極體,其中該第二金屬電極導接於該n型摻雜層時,該磊晶基板為一藍寶石(sapphire)基板,且該n型摻雜層的材料為n型氮化鎵(GaN)及n型氮化銦鎵(InGaN)其中之一者,該多重量子井層的材料為氮化銦鎵(InGaN),且該p型摻雜層的材料為p型氮化鎵(GaN)及p型氮化銦鎵(InGaN)其中之一者。
  5. 如請求項1所述之具有介電質邊框的微發光二極體,其中該第二金屬電極導接於該磊晶基板時,該磊晶基板為一砷化鎵(GaAs)導電基板,且 該n型摻雜層的材料為n型磷化鋁鎵銦(AlGaInP),該多重量子井層的材料為磷化鋁鎵銦(AlGaInP),且該p型摻雜層的材料為p型磷化鋁鎵銦(AlGaInP)。
  6. 如請求項1所述之具有介電質邊框的微發光二極體,其中該介電質邊框的內壁由上而下向內傾斜。
  7. 如請求項1所述之具有介電質邊框的微發光二極體,其中該介電質邊框的材料為二氧化矽(SiO2)及氮化矽(Si3N4)其中至少一者,該透明電流分散層的材料為氧化銦錫(ITO),該鈍化層的材料為氧化鋁(Al2O3)及二氧化矽(SiO2)其中之一者,且該反射層為一分散式布拉格反射器(DBR)。
  8. 一種具有介電質邊框的微發光二極體之製備方法,其步驟包括:
    a)形成一介電質邊框和一n型摻雜層於一磊晶基板之上;
    b)於上述n型摻雜層上成長一多重量子井層,並且上述多重量子井層是位於介電質邊框中;
    c)於上述多重量子井層上成長一p型摻雜層,並且上述p型摻雜層是位於介電質邊框中;以及
    d)形成一第一金屬電極供導通電流至該p型摻雜層,且形成一第二金屬電極於該n型摻雜層及該磊晶基板其中之一者;以及形成一保護層,該保護層是覆於該介電質邊框及該透明電流分散層之外表面,並曝露出該第一金屬電極及該第二金屬電極。
  9. 如請求項8所述之具有介電質邊框的微發光二極體之製備方法,其中上述步驟a)更包括a1)形成上述n型摻雜層於上述磊晶基板上,以及a2)形成該介電質邊框於該n型摻雜層上的次步驟。
  10. 如請求項8所述之具有介電質邊框的微發光二極體之製備方法,更包括在上述步驟c)和上述步驟d)之間,形成一透明電流分散層於該p型摻雜層上的步驟e),使得該透明電流分散層是介於該p型摻雜層和該第一金屬電極之間一,用以將上述第一金屬電極的電流分散至該p型摻雜層。
TW111136993A 2022-09-29 2022-09-29 具有介電質邊框的微發光二極體及其製備方法 TWI832455B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111136993A TWI832455B (zh) 2022-09-29 2022-09-29 具有介電質邊框的微發光二極體及其製備方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111136993A TWI832455B (zh) 2022-09-29 2022-09-29 具有介電質邊框的微發光二極體及其製備方法

Publications (2)

Publication Number Publication Date
TWI832455B TWI832455B (zh) 2024-02-11
TW202414858A true TW202414858A (zh) 2024-04-01

Family

ID=90824805

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111136993A TWI832455B (zh) 2022-09-29 2022-09-29 具有介電質邊框的微發光二極體及其製備方法

Country Status (1)

Country Link
TW (1) TWI832455B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI349381B (en) * 2007-08-03 2011-09-21 Chi Mei Lighting Tech Corp Light-emitting diode and manufacturing method thereof
WO2020005827A1 (en) * 2018-06-26 2020-01-02 Lumileds Llc Led utilizing internal color conversion with light extraction enhancements

Similar Documents

Publication Publication Date Title
US10991861B2 (en) Low optical loss flip chip solid state lighting device
US9287479B2 (en) Luminous devices, packages and systems containing the same, and fabricating methods thereof
US8785905B1 (en) Amber light-emitting diode comprising a group III-nitride nanowire active region
WO2010037274A1 (en) Semiconductor color-tunable broadband light sources and full-color microdisplays
KR102462658B1 (ko) 발광소자 및 이를 포함하는 표시장치
US20150372195A1 (en) Semiconductor light emitting device and manufacturing method of the same
WO2011079645A1 (en) Epitaxial wafer for light emitting diode, light emitting diode chip and methods for manufacturing the same
WO2024074103A1 (zh) 一种具有介电质边框的微型发光二极管及其制备方法
TW202029529A (zh) 發光元件及其製造方法
CN215418209U (zh) 照明装置及具有照明装置的客机、微型led显示装置
CN115411160B (zh) 一种全彩Micro-LED芯片及其制备方法
TW202414858A (zh) 具有介電質邊框的微發光二極體及其製備方法
KR100670929B1 (ko) 플립칩 구조의 발광 소자 및 이의 제조 방법
TWI832455B (zh) 具有介電質邊框的微發光二極體及其製備方法
CN218586004U (zh) 一种具有介电质边框的微型发光二极管
US20100183042A1 (en) Optical diode structure and manufacturing method thereof
US11876154B2 (en) Light emitting diode device and method for manufacturing the same
CN219553670U (zh) 一种微型发光元件
CN112397623B (zh) 一种Micro LED模块、显示屏及制备方法
US20230282768A1 (en) LED Structure and Manufacturing Method thereof, and LED Device
US20230420608A1 (en) All-nitride-based epitaxial structure and light-emitting device
TWI425656B (zh) 發光二極體晶片及其製造方法
CN208315590U (zh) 一种led芯片
CN116344724A (zh) 一种微型发光元件及其制备方法
KR102249648B1 (ko) 적색 발광소자 및 조명시스템