TW202413232A - Warehousing system and robot scheduling method - Google Patents
Warehousing system and robot scheduling method Download PDFInfo
- Publication number
- TW202413232A TW202413232A TW112121953A TW112121953A TW202413232A TW 202413232 A TW202413232 A TW 202413232A TW 112121953 A TW112121953 A TW 112121953A TW 112121953 A TW112121953 A TW 112121953A TW 202413232 A TW202413232 A TW 202413232A
- Authority
- TW
- Taiwan
- Prior art keywords
- robot
- robots
- loading
- travel area
- mechanisms
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000007246 mechanism Effects 0.000 claims abstract description 234
- 230000000875 corresponding effect Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 8
- 230000001276 controlling effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/137—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/137—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
- B65G1/1373—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Warehouses Or Storage Devices (AREA)
- Manipulator (AREA)
Abstract
Description
本公開涉及倉儲物流技術領域,特別涉及一種倉儲系統和機器人調度方法。The present disclosure relates to the field of warehousing and logistics technology, and in particular to a warehousing system and a robot scheduling method.
隨著科技的飛速發展,物流領域自動化水準得到了飛躍性的進步,原來人工完成的分揀、搬運貨物的工作都應對應的機器人替代。 倉儲區域內行駛著執行相同或不同任務的機器人,有時這些機器人會組成佇列排隊順序行進,為了充分利用倉儲區域內水準空間,通常希望機器人之間緊密排列。 通常情況下,在機器人行進的行進區內劃分成大小相同的若干個單元格,一個機器人恰好佔用一個單元格,設定單元格大小是要考慮機器人的外形尺寸以及其在轉向時所佔用的空間,以便給相鄰兩個機器人之間預留足夠的空間,以避免其在行進中發生位置干涉。 隨著物流智慧化水準的不斷提高,以前由人工完成的越來越多的工作被機器人替代,隨之而來的則是行進區內機器人數量的增多,如何合理排布這些機器人,在滿足其基本功能需求基礎上還能增加行進區內可通行的機器人的數量是本領域技術人員亟待解決的技術問題。 With the rapid development of science and technology, the level of automation in the logistics field has made great progress. The sorting and handling of goods that were originally completed manually should be replaced by corresponding robots. Robots that perform the same or different tasks are driving in the storage area. Sometimes these robots will form a queue and move in sequence. In order to make full use of the horizontal space in the storage area, it is usually hoped that the robots will be closely arranged. Usually, the robot's travel area is divided into several cells of the same size, and a robot occupies exactly one cell. The size of the cell is set to consider the robot's external dimensions and the space it occupies when turning, so as to reserve enough space between two adjacent robots to avoid position interference during travel. With the continuous improvement of the level of logistics intelligence, more and more jobs that were previously completed by humans are replaced by robots, and the number of robots in the moving area increases accordingly. How to reasonably arrange these robots and increase the number of robots that can pass through the moving area while meeting their basic functional requirements is a technical problem that technicians in this field need to solve urgently.
本公開為了解決現有技術存在的技術問題,提供了一種倉儲系統和機器人調度方法。 第一方面,本公開的倉儲系統包括: 行進區,被分割為若干個單元格; 至少兩個機器人,被配置為沿行進區行駛,且每個機器人佔用一個所述單元格; 控制器,被配置為在滿足預設條件時,控制位於相鄰兩個所述單元格的兩個機器人的載物機構垂直錯層設置,其中,所述載物機構被構造為用於放置貨物。 在一個實施例中,當機器人在行進區轉向時,機器人本身整體結構不需要相對於行進區旋轉的情況下,所述控制器控制垂直錯層的兩個載物機構在行進區的投影部分重疊。 在一個實施例中,所述機器人包括: 行走機構,被配置為在所述行進區行進; 載物機構,被構造為用於承載貨物; 升降機構,被構造為連接所述載物機構和所述行走機構,且驅動所述載物機構相對於所述行走機構上升或下降; 所述控制器被配置為控制升降機構使對應的機器人的載物機構達到預設高度位置,再基於所述機器人的載物機構的高度調度,至少使位於相鄰兩列所述單元格的兩組機器人佇列的載物機構垂直錯層設置,且使同一組機器人佇列中相鄰兩個單元的兩個機器人的載物機構垂直錯層位置或者位於同一高度位置,每組機器人佇列包括至少兩個機器人。 在一個實施例中,所述機器人包括: 行走機構,被配置為在行進區行進並旋轉帶動機器人轉向; 載物機構,被構造為用於承載貨物; 升降機構,被構造為連接所述載物機構和所述行走機構,且驅動所述載物機構相對於所述行走機構上升或下降; 位於相鄰兩個所述單元格的兩個機器人的載物機構的第一旋轉軌跡圓在行進區上的投影部分重合,且一個機器人的載物機構的第一旋轉軌跡圓與另一個機器人的升降機構的第二旋轉軌跡圓在行進區上的投影不重合。 在一個實施例中,位於相鄰兩個所述單元格中一個機器人的載物機構的第一旋轉軌跡圓與另一個機器人的升降機構的第二旋轉軌跡圓相切。 在一個實施例中,當機器人需要轉向時,控制器被配置為控制位於相鄰兩個單元格的一個機器人的載物機構相對於另一個機器人的載物機構上升或下降預設距離,以便時兩個載物機構垂直錯層設置。 在一個實施例中,所述倉儲包括至少兩組機器人佇列,控制器被配置控制位於相鄰兩列單元格的兩組機器人佇列中機器人的載物機構垂直錯層設置,且同組機器人佇列中機器人的載物機構位於同一高度; 所述機器人佇列是指按先後順序排隊且沿同一個直線路徑同向行進的一隊機器人。 在一個實施例中,當需要轉向時,控制器被配置為控制同一組機器人佇列的位於相鄰兩個單元格的兩個機器人的載物機構垂直錯層設置,轉向後沿著同一個直線路徑同向行進的一隊機器人組成的新的機器人佇列,再控制位於相鄰兩列單元格的兩組機器人佇列的載物機構錯層設置,並使新的同一組機器人佇列中的機器人的載物機構位於同一高度。 第二方面,本公開的機器人調度方法,適用於如上任一項所述的倉儲系統,所述機器人調度方法包括如下步驟: 在滿足預設條件時,控制位於相鄰兩個所述單元格的兩個機器人的載物機構垂直錯層設置。 在一個實施例中,步驟"在滿足預設條件時,控制位於相鄰兩個所述單元格的兩個機器人的載物機構垂直錯層設置"包括: 當機器人在行進區轉向時,機器人本身整體結構不需要相對於行進區旋轉的情況下,控制垂直錯層的兩個載物機構在行進區的投影部分重疊。 在一個實施例中,步驟"在滿足預設條件時,控制位於相鄰兩個所述單元格的兩個機器人的載物機構垂直錯層設置"包括: 當機器人在行進區轉向時,機器人本身整體結構需要相對於行進區旋轉的情況下; 當機器人需要轉向時,控制位於相鄰兩個所述單元格的一個機器人的載物機構相對於另一個機器人的載物機構上升或下降預設距離,以便使兩個載物機構垂直錯層設置。 在一個實施例中,步驟"在滿足預設條件時,控制位於相鄰兩個所述單元格的兩個機器人的載物機構垂直錯層設置"包括: 當倉儲系統包括至少兩組機器人佇列,且機器人在行進區轉向時,機器人本身整體結構需要相對於行進區旋轉的情況下; 控制位於相鄰兩列單元格的兩組機器人佇列中機器人的載物機構垂直錯層設置,且同組機器人佇列中機器人的載物機構位於同一高度; 當需要轉向時,控制同一組機器人佇列的位於相鄰兩個單元格的兩個機器人的載物機構垂直錯層設置,轉向後沿著同一個直線路徑同向行進的一隊機器人組成的新的機器人佇列,再控制新的位於相鄰兩列單元格的兩組機器人佇列的載物機構錯層設置,並使新的同一組機器人佇列中的機器人的載物機構位於同一高度; 其中,所述機器人佇列是指先後順序排隊且沿同一個直線路徑同向行進的一隊機器人。 本公開的倉儲系統的有益效果之一是,本公開的倉儲系統在滿足預設條件時控制位於相鄰兩個單元格的兩個機器人的載物機構垂直錯層設置,以補償相鄰兩個機器人的載物機構在同一高度位置執行相應的動作時會引起的位置干涉,從而可以合理的減小每個機器人所佔用的單元格的面積,進而在同等面積的行進區可以排布數量更多機器人,提高行進區的空間利用率。 需要說明的是,本公開的機器人調度方法由上述倉儲系統的控制器執行,具有與倉儲系統相同的技術特徵,因此也具有相同的技術效果,本文在此不再贅述。 In order to solve the technical problems existing in the prior art, the present disclosure provides a storage system and a robot scheduling method. In the first aspect, the storage system of the present disclosure includes: A travel area, which is divided into a plurality of cells; At least two robots, which are configured to travel along the travel area, and each robot occupies one of the cells; A controller, which is configured to control the vertical staggered arrangement of the loading mechanisms of two robots located in two adjacent cells when a preset condition is met, wherein the loading mechanisms are configured to place goods. In one embodiment, when the robot turns in the travel area, the overall structure of the robot itself does not need to rotate relative to the travel area, and the controller controls the two vertically staggered loading mechanisms to overlap the projection part of the travel area. In one embodiment, the robot includes: A walking mechanism configured to travel in the travel area; A loading mechanism configured to carry cargo; A lifting mechanism configured to connect the loading mechanism and the walking mechanism and drive the loading mechanism to rise or fall relative to the walking mechanism; The controller is configured to control the lifting mechanism to make the loading mechanism of the corresponding robot reach a preset height position, and then based on the height adjustment of the loading mechanism of the robot, at least the loading mechanisms of the two robot queues located in two adjacent columns of the unit grid are vertically staggered, and the loading mechanisms of the two robots in two adjacent units in the same robot queue are vertically staggered or at the same height position, and each robot queue includes at least two robots. In one embodiment, the robot includes: A walking mechanism, configured to travel in a travel area and rotate to drive the robot to turn; A loading mechanism, configured to carry cargo; A lifting mechanism, configured to connect the loading mechanism and the walking mechanism and drive the loading mechanism to rise or fall relative to the walking mechanism; The projections of the first rotation trajectory circles of the loading mechanisms of the two robots located in two adjacent cells on the travel area partially overlap, and the projections of the first rotation trajectory circle of the loading mechanism of one robot and the second rotation trajectory circle of the lifting mechanism of another robot on the travel area do not overlap. In one embodiment, the first rotation trajectory circle of the loading mechanism of one robot located in two adjacent cells is tangent to the second rotation trajectory circle of the lifting mechanism of another robot. In one embodiment, when the robot needs to turn, the controller is configured to control the loading mechanism of a robot located in two adjacent cells to rise or fall a preset distance relative to the loading mechanism of another robot, so that the two loading mechanisms are arranged vertically in layers. In one embodiment, the storage includes at least two groups of robot queues, and the controller is configured to control the loading mechanisms of the robots in the two groups of robot queues located in two adjacent columns of cells to be arranged vertically in layers, and the loading mechanisms of the robots in the same group of robot queues are located at the same height; The robot queue refers to a team of robots that are lined up in order and move in the same direction along the same straight path. In one embodiment, when turning is required, the controller is configured to control the vertical staggered arrangement of the loading mechanisms of two robots in the same robot queue located in two adjacent cells, and then control the staggered arrangement of the loading mechanisms of two robot queues located in two adjacent columns of cells, and make the loading mechanisms of the robots in the new robot queue at the same height. In the second aspect, the robot scheduling method disclosed in the present invention is applicable to the storage system as described in any of the above items, and the robot scheduling method includes the following steps: When the preset conditions are met, the loading mechanisms of the two robots located in the two adjacent cells are controlled to be vertically staggered. In one embodiment, the step of "controlling the vertical staggered arrangement of the load-carrying mechanisms of two robots located in two adjacent cells when the preset conditions are met" includes: When the robot turns in the travel area, the overall structure of the robot itself does not need to rotate relative to the travel area, controlling the projections of the two load-carrying mechanisms in the vertical staggered arrangement to overlap in the travel area. In one embodiment, the step of "controlling the vertical staggered arrangement of the load-carrying mechanisms of two robots located in two adjacent cells when the preset conditions are met" includes: When the robot turns in the travel area, the overall structure of the robot itself needs to rotate relative to the travel area; When the robot needs to turn, control the load-carrying mechanism of one robot located in the two adjacent cells to rise or fall a preset distance relative to the load-carrying mechanism of the other robot, so that the two load-carrying mechanisms are vertically staggered. In one embodiment, the step of "controlling the vertical staggered arrangement of the loading mechanisms of two robots located in two adjacent cells when the preset conditions are met" includes: When the storage system includes at least two robot queues, and when the robot turns in the travel area, the overall structure of the robot itself needs to rotate relative to the travel area; Controlling the vertical staggered arrangement of the loading mechanisms of the robots in the two robot queues located in two adjacent columns of cells, and the loading mechanisms of the robots in the same robot queue are located at the same height; When turning is required, the loading mechanisms of two robots in the same robot queue located in two adjacent cells are controlled to be arranged vertically in staggered layers, and a new robot queue consisting of a team of robots moving in the same direction along the same straight path after turning is formed, and then the loading mechanisms of two new robot queues located in two adjacent columns of cells are controlled to be arranged in staggered layers, and the loading mechanisms of the robots in the new same robot queue are located at the same height; Wherein, the robot queue refers to a team of robots that are lined up in sequence and move in the same direction along the same straight path. One of the beneficial effects of the disclosed storage system is that the disclosed storage system controls the vertical staggered arrangement of the loading mechanisms of two robots located in two adjacent cells when the preset conditions are met, so as to compensate for the position interference caused when the loading mechanisms of the two adjacent robots perform corresponding actions at the same height position, thereby reasonably reducing the area of the cell occupied by each robot, and thus more robots can be arranged in the travel area of the same area, thereby improving the space utilization rate of the travel area. It should be noted that the disclosed robot scheduling method is executed by the controller of the above-mentioned storage system, and has the same technical features as the storage system, and therefore has the same technical effects, which will not be elaborated in this article.
相關申請案之參考:
本公開要求於2022年7月8日提交中國專利局、申請號為202210801089.6、發明名稱為"倉儲系統和機器人調度方法"的中國專利申請的優先權,其全部內容通過引用結合在本公開中。
現在將參照附圖來詳細描述本公開的各種示例性實施例。應注意到:除非另外具體說明,否則在這些實施例中闡述的部件和步驟的相對佈置、數字運算式和數值不限制本公開的範圍。
以下對至少一個示例性實施例的描述實際上僅僅是說明性的,決不作為對本公開及其應用或使用的任何限制。
對於相關領域普通技術人員已知的技術、方法和設備可能不作詳細討論,但在適當情況下,所述技術、方法和設備應當被視為說明書的一部分。
在這裏示出和討論的所有例子中,任何具體值應被解釋為僅僅是示例性的,而不是作為限制。因此,示例性實施例的其他例子可以具有不同的值。
應注意到:相似的標號和字母在下面的附圖中表示類似項,因此,一旦某一項在一個附圖中被定義,則在隨後的附圖中不需要對其進行進一步討論。
如背景技術所述倉儲物流領域內,通常情況下在機器人行進的行進區內劃分成大小相同的若干個單元格,一個機器人恰好佔用一個單元格,設定單元格大小是要考慮機器人的外形尺寸以及其在轉向時所佔用的空間,以便給相鄰兩個機器人之間預留足夠的空間,以避免其在行進中發生位置干涉。隨著物流智慧化水準的不斷提高,以前由人工完成的越來越多的工作被機器人替代,隨著而來的則是行進區內機器人數量的增多,如何合理排布這些機器人,在滿足其基本功能需求基礎上還能增加行進區內可通行的機器人的數量是本領域技術人員亟待解決的技術問題。
需要說明的是,一般地,單元格的形狀為長方形或正方形,當然,基於行進區的具體佈局及機器人的具體機構及工作原理,該單元格也可以為橢圓形或圓形等其他形狀,本領域技術人員基於實際場景選用最佳形狀的單元格,本文在此不再加以限定。
為此,本公開提供了一種倉儲系統,其包括行進區、至少兩個機器人和控制器。其中,行進區被分割為若干個單元格,至少兩個機器人被配置為沿行進區行駛,且每個機器人佔用一個單元格;控制器被配置為在滿足預設條件時,控制位於相鄰兩個單元格的兩個機器人的載物機構垂直錯層設置,其中,載物機構被構造為用於放置貨物。
顯然,本公開的倉儲系統在滿足預設條件時控制位於相鄰兩個單元格的兩個機器人的載物機構垂直錯層設置,以補償相鄰兩個機器人的載物機構在同一高度位置執行相應的動作時會引起的位置干涉,從而可以合理的減小每個機器人所佔用的單元格的面積,進而在同等面積的行進區可以排布數量更多機器人,提高行進區的空間利用率。
為了便於更好地理解,下面參照圖1至圖13,結合幾個實施例來詳細說明本公開的倉儲系統的具體結構及其工作原理。
實施例一當機器人在行進區轉向時,機器人自身不需要相對於行進區旋轉的情況下。
需要說明的是,行進區是指在倉庫的工作面上劃分出來供機器人行走的區域,通常情況下,行進區被分割為縱橫交錯的若干個單元格,機器人外形尺寸恰能被容納在一個單元格內,也就是說,機器人佔用一個單元格機器人在行進區內沿著這些單元格排布形成陣列行進。
參見圖1,機器人包括行走機構1、載物機構2和支撐機構3;其中,行走機構1被配置為在行進區的行進區行進,其可以為四向車,即移動平臺包括車體和兩組車輪機構,一組車輪機構帶動車體沿第一方向行進,另一組車輪機構帶動車體沿第二方向行進。行走機構還包括切換機構,切換機構被配置為選擇其中一組車輪機構帶動車體行進,以起到切換車體行進方向的目的,在切換過程中,車體、載物機構和支撐機構三者相對於行進區不發生相對運動。載物機構2被構造為承載貨物4,其可以為託盤等。
針對這種機器人來說,位於相鄰兩個單元格的兩個機器人的載物機構2平臺錯層設置前後的位置關係參見圖2和圖3,顯然,錯層設置後位於相鄰兩個單元格的兩個機器人的載物機構在行進區上的投影部分重疊,相鄰兩個機器人所佔用的行進區面積變小,變小的面積用錯層的高度尺寸補償,如此可以相應地減小行進區內單元格的面積,從而在同等面積的行進區內可以排布更多數量的機器人,行進區的利用率得到了極大地提高。
可以理解,行進區所在的行進區可以為倉庫的地面、獨立於地面搭建在地面上方的平臺或軌道。
基於不同類型的行進區,該機器人可以為吊軌機器人,參見圖4,吊軌機器人行進在搭建地面上方或者懸掛在倉庫頂面上的軌道,吊軌機器人的行走機構位於沿軌道行進,其載物機構由吊繩的組件懸吊在行走機構下方,其載物機構的貨物則在垂直錯層並且在行進區上的投影部分重疊。
需要說明的是,基於機器人佇列的數量以及排布方式,針對這種無需旋轉載物機構來實現轉向功能的機器人來說,位於相鄰兩列單元格的兩組機器人佇列垂直錯層設置,控制器控制一組機器人佇列中機器人的載物機構均高於或低於相鄰一組機器人佇列中機器人的載物機構,而同一組機器人佇列中位於相鄰兩個單元格的兩個機器人的載物機構可以垂直錯層設置也可以保持在同一高度位置。
而,實現位於相鄰兩個單元格的兩個機器人的載物機構的垂直錯層的方式可以有如下兩種:
第一、行進區內選擇兩種不同類型的機器人,這兩種機器人的載物機構位於不同高度位置,排隊形成機器人佇列時,控制器將這兩種機器人佇列排列組合形成至少位於相鄰兩列單元格的兩組機器人佇列中的機器人垂直錯層位置即可。
第二、行進區內行進的機器人的結構參見圖5,除了行走機構1和載物機構2外,機器人還包括升降機構5,該升降機構5連接行走機構1和載物機構2,且被配置為帶動載物機構2相對於行走機構1升降預設距離。
升降機構5可以為氣缸或液壓缸的活塞杆,其缸體固設在行走機構上,載物機構固設在活塞杆的自由端,隨著液壓油或氣體進出各自的缸體,活塞杆帶動載物機構升降,以托舉容器。
升降機構還可以為由若干個杆件鉸接組合承載的可伸縮連杆機構。
當然,升降機構還可以包括支架、電機和動力傳動機構,該動力傳動機構的作用是將電機的轉動轉化為直線運動的傳動機構,比如齒輪齒條傳動機構、帶傳動機構、鏈傳動機構等。
詳細地,升降機構採用齒輪齒條傳動機構時,其齒條沿豎直方向延伸且固定連接在支架上,與該齒條嚙合的齒輪以可轉動地方式設置在載物機構上。
啟動電機後,其驅動齒輪帶動載物機構沿著齒條的延伸方向升降。
升降機構採用帶傳動機構時,其兩個傳動輪垂直間隔且以可轉動地方式設置在支架上,其傳動帶張緊在兩個傳動輪上,載物機構固設在傳動帶上。
啟動電機後,其驅動其中一個傳動輪轉動,繼而使傳動帶帶動載物機構升降。
升降機構採用鏈傳動機構時,其兩個鏈輪垂直間隔且以可轉動地方式設置在支架上,其鏈條張緊在兩個鏈輪上,載物機構固設在鏈條上。
啟動電機後,其驅動其中一個鏈輪轉動,繼而使鏈條帶動載物機構升降。
參見圖6,控制器基於機器人佇列的數量以及排布方式,先控制升降機構使對應的機器人的載物機構達到預設高度位置,再基於這些機器人的載物機構的高度調度,至少使位於相鄰兩列單元格的兩組機器人佇列的載物機構垂直錯層設置。當然,控制器也可以使同一組機器人佇列中位於相鄰兩個單元格的兩個機器人的載物機構垂直錯層位置,具體排布方式本領域技術人員基於行進區面積、機器人數量等因素預先設置即可。
在一個實施例中,針對自身不需要轉向的四向車等機器人來說,參見圖11和圖12,當倉儲系統包括至少兩組機器人佇列時,控制器控制位於相鄰兩列單元格的兩組機器人佇列中機器人的載物機構垂直錯層設置,且同組機器人佇列中機器人的載物機構位於同一高度。需要說明的是,本文在此所述的"機器人佇列"是指先後順序排隊且沿同一個直線路徑同向行進的一隊機器人,或者僅是暫停在相鄰兩個單元格上的兩個機器人,這兩個機器人的行駛方向可以相同也可以不同。
參見圖13,控制器控制同一組機器人佇列的位於相鄰兩個單元格的兩個機器人的載物機構垂直錯層設置,轉向後沿著同一個直線路徑同向行進的一隊機器人組成的新的機器人佇列,控制器再控制新的機器人佇列中的機器人載物機構位於同一高度。
如此,當減小單元格面積後,可以巧妙地解決多個機器人調度錯層設置的調度問題。
實施例二當機器人在行進區轉向時,機器人本身整體結構需要相對於行進區旋轉的情況下。
同樣,繼續參見圖5,機器人包括行走機構1、載物機構2和升降機構5,升降機構5連接行走機構1和載物機構2,且被配置為帶動載物機構2相對於行走機構1上升或下降,行走機構1被配置為沿行進區的行進區行進,基於控制器下發的指令沿目標路徑從當前位置行進至目標位置並執行從料箱取放貨物,或者從貨架上取放料箱等任務。
行走機構類似於汽車,其轉向時整體結構都相對於行進區旋轉一個角度,比如旋轉一個直角以實現垂直轉向。
參見圖7和圖8,圖7中虛線表示機器人轉向時載物機構2的第一旋轉軌跡圓7,通常情況下,載物機構2的第一旋轉軌跡圓7大於升降機構和行走機構的第二旋轉軌跡圓。
為了保證位於相鄰兩個單元格的兩個機器人的正常轉向,每個機器人佔用的單元格最小行進區積為旋轉軌跡圓的外接四邊形,如果機器人佇列內有若干個機器人時,機器人佇列用水平空間比較大,在單位面積上排布的機器人數量受到了限制。
為此,參見圖9和圖10,本公開的倉儲系統中位於相鄰兩個單元格的兩個機器人的載物機構2的第一旋轉軌跡圓7在行進區上的投影部分重合,只要一個機器人的載物機構2的第一旋轉軌跡圓7與另一個機器人的升降機構5和行走機構的第二旋轉軌跡圓在行進區上的投影不重合、不干涉即可。
顯然,與圖7和圖8示出的傳統單元格相比,本公開的倉儲系統的行進區的單元格6面積有了明顯的減小,從而可以在同等面積的行進區內能劃分出更多的單元格6,也就能排布更多數量的機器人,進而能提高行進區的空間利用率。
當機器人需要轉向時,控制器控制位於相鄰兩個單元格的兩個機器人中一個機器人的載物機構相對於另一個機器人的載物機構上升或下降預設距離,以便時兩個載物機構垂直錯層設置。如此,位於相鄰兩個單元格的兩個機器人的轉向時各自的載物機構在不同高度位置,避免了位置干涉。
比如,以一款二維碼導航的機器人為例,假設機器人的載物機構的第一旋轉軌跡圓的直徑約為800mm;機器人的升降機構的第二旋轉軌跡圓的直徑約為600mm。
如果按照傳統的部署方案,每個機器人需佔用面積為800mm*800mm的單元格。
由於本公開的倉儲系統中位於相鄰兩個單元格的兩個機器人的載物機構的第一旋轉軌跡圓在行進區上的投影部分重合,且一個機器人的載物機構的第一旋轉軌跡圓與另一個機器人的升降機構和行走機構的第二旋轉軌跡圓在行進區上的投影不重合,每個機器人需佔用面積為700mm*700mm的單元格即可。
繼續參見圖10,位於相鄰兩個單元格的兩個機器人中一個機器人的載物機構2的第一旋轉軌跡圓7與另一個機器人的升降機構5或升降機構中較大一個的第二旋轉軌跡圓相切。
如此,可以更加充分的利用位於相鄰兩個單元格的兩個機器人轉向時兩者之間的間隙量,使機器人在實現轉向功能的基礎上能排布的更加緊密,從而更進一步地減小每個機器人需要佔用的單元格面積。
針對自身需要轉向的機器人來說,參見圖11和圖12,當倉儲系統包括至少兩組機器人佇列時,控制器控制位於相鄰兩列單元格的兩組機器人佇列中機器人的載物機構垂直錯層設置,且同組機器人佇列中機器人的載物機構位於同一高度。需要說明的是,本文在此所述的"機器人佇列"是指先後順序排隊且沿同一個直線路徑同向行進的一隊機器人,或者僅是暫停在相鄰兩個單元格上的兩個機器人,這兩個機器人的行駛方向可以相同也可以不同。
當需要轉向時,參見圖13,控制器控制同一組機器人佇列的位於相鄰兩個單元格的兩個機器人的載物機構垂直錯層設置,轉向後沿著同一個直線路徑同向行進的一隊機器人組成的新的機器人佇列,控制器再控制新的機器人佇列中的機器人載物機構位於同一高度。
如此,當減小單元格面積後,可以巧妙地解決多個機器人調度錯層設置的調度問題。
除了上述倉儲系統外,本公開還提供了一種適用於上述倉儲系統的機器人調度方法,該方法由倉儲系統的控制器執行。
需要說明的是,前文中對於倉儲系統的具體結構及工作原理進行了詳細的描述,為了保持文本簡潔,下面僅詳細說明本公開的機器人運行方法的具體步驟,對倉儲系統的具體結構不再贅述。
本公開的機器人調度方法包括如下步驟:在滿足預設條件時,控制位於相鄰兩個單元格的兩個機器人的載物機構垂直錯層設置。
其中,滿足預設條件主要是從機器人轉向是否需要整體結構相對於行進區所在的行進區旋轉來區分。
實施例一當機器人在行進區轉向時,機器人本身整體結構不需要相對於行進區旋轉的情況下,控制器控制垂直錯層的兩個載物機構在行進區的投影部分重疊。這種情況下的機器人的結構前文中已有記載,在此不再贅述。
需要說明的是,基於機器人佇列的數量以及排布方式,針對這種無需旋轉載物機構來實現轉向功能的機器人來說,位於相鄰兩列單元格的兩組機器人佇列垂直錯層設置,控制器控制一組機器人佇列中機器人的載物機構均高於或低於相鄰一組機器人佇列中機器人的載物機構,而同一組機器人佇列中相鄰兩個單元格的兩個機器人的載物機構可以垂直錯層設置也可以保持在同一高度位置。
而,實現位於相鄰兩個單元格的兩個機器人的載物機構的垂直錯層的方式可以有如下兩種:
第一、行進區內選擇兩種不同類型的機器人,這兩種機器人的載物機構位於不同高度位置,排隊形成機器人佇列時,控制器將這兩種機器人佇列排列組合形成至少位於相鄰兩列單元格的兩組機器人佇列中的機器人垂直錯層位置即可。
第二、控制器基於機器人佇列的數量以及排布方式,先控制升降機構使對應的機器人的載物機構達到預設高度位置,再基於這些機器人的載物機構的高度調度,至少使位於相鄰兩列單元格的兩組機器人佇列的載物機構垂直錯層設置。當然,控制器也可以使同一組機器人佇列中位於相鄰兩個單元格的兩個機器人的載物機構垂直錯層位置。具體排布方式本領域技術人員基於行進區面積、機器人數量等因素預先設置即可。
實施例二當機器人在行進區轉向時,機器人本身整體結構需要相對於行進區旋轉的情況下;
當機器人需要轉向時,控制位於相鄰兩個單元格的兩個機器人中一個機器人的載物機構相對於另一個機器人的載物機構上升或下降預設距離,以便使兩個載物機構垂直錯層設置。
實施例三當倉儲系統包括至少兩組機器人佇列,且機器人在行進區轉向時,機器人本身整體結構需要相對於行進區旋轉的情況下;
控制位於相鄰兩列單元格的兩組機器人佇列中機器人的載物機構垂直錯層設置,且同組機器人佇列中機器人的載物機構位於同一高度;
當需要轉向時,控制同一組機器人佇列的位於相鄰兩個單元格的兩個機器人的載物機構垂直錯層設置,轉向後沿著同一個直線路徑同向行進的一隊機器人組成的新的機器人佇列,再控制新的位於相鄰兩列單元格的兩組機器人佇列的載物機構錯層設置,並使新的同一組機器人佇列中的機器人的載物機構位於同一高度;
其中,所述機器人佇列是指先後順序排隊且沿同一個直線路徑同向行進的一隊機器人,或者僅是暫停在相鄰兩個單元格上的兩個機器人,這兩個機器人的行駛方向可以相同也可以不同。
以上已經描述了本公開的各實施例,上述說明是示例性的,並非窮盡性的,並且也不限於所披露的各實施例。在不偏離所說明的各實施例的範圍和精神的情況下,對於本技術領域的普通技術人員來說許多修改和變更都是顯而易見的。本文中所用術語的選擇,旨在最好地解釋各實施例的原理、實際應用或對市場中的技術改進,或者使本技術領域的其他普通技術人員能理解本文披露的各實施例。本公開的範圍由所附權利要求來限定。
Reference to related applications: This disclosure claims priority to a Chinese patent application filed with the China Patent Office on July 8, 2022, with application number 202210801089.6, and entitled "Warehouse System and Robot Scheduling Method," the entire contents of which are incorporated by reference into this disclosure. Various exemplary embodiments of the disclosure will now be described in detail with reference to the accompanying drawings. It should be noted that unless otherwise specifically stated, the relative arrangement of components and steps, numerical expressions and numerical values described in these embodiments do not limit the scope of the disclosure. The following description of at least one exemplary embodiment is merely illustrative in nature and is in no way intended to be construed as any limitation on the disclosure and its application or use. Techniques, methods, and apparatus known to persons of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques, methods, and apparatus should be considered part of the specification. In all examples shown and discussed herein, any specific values should be interpreted as being exemplary only and not limiting. Therefore, other examples of the exemplary embodiments may have different values. It should be noted that similar reference numerals and letters represent similar items in the following figures, and therefore, once an item is defined in one figure, it does not need to be further discussed in the subsequent figures. As described in the background technology, in the field of warehousing and logistics, the robot's travel area is usually divided into several cells of the same size, and one robot occupies exactly one cell. The size of the cell is set to take into account the robot's external dimensions and the space it occupies when turning, so as to reserve enough space between two adjacent robots to avoid position interference during travel. With the continuous improvement of the level of logistics intelligence, more and more work that was previously done manually is replaced by robots, and with it comes an increase in the number of robots in the travel area. How to reasonably arrange these robots, while meeting their basic functional requirements and increasing the number of robots that can pass through the travel area, is a technical problem that technical personnel in this field urgently need to solve. It should be noted that, generally, the shape of a cell is a rectangle or a square. Of course, based on the specific layout of the travel area and the specific mechanism and working principle of the robot, the cell can also be an ellipse or a circle or other shapes. The technicians in this field select the cell with the best shape based on the actual scene, and this article will not limit it here. To this end, the present disclosure provides a storage system, which includes a travel area, at least two robots and a controller. Among them, the travel area is divided into a number of cells, at least two robots are configured to travel along the travel area, and each robot occupies a cell; the controller is configured to control the loading mechanisms of the two robots located in two adjacent cells to be vertically staggered when the preset conditions are met, wherein the loading mechanisms are constructed for placing goods. Obviously, the storage system disclosed in the present invention controls the vertical staggered arrangement of the loading mechanisms of two robots located in two adjacent cells when the preset conditions are met, so as to compensate for the position interference caused when the loading mechanisms of the two adjacent robots perform corresponding actions at the same height position, thereby reasonably reducing the area of the cell occupied by each robot, and thus more robots can be arranged in the traveling area of the same area, thereby improving the space utilization rate of the traveling area. In order to facilitate better understanding, the specific structure and working principle of the storage system disclosed in the present invention are described in detail in combination with several embodiments with reference to Figures 1 to 13. Embodiment 1 When the robot turns in the traveling area, the robot itself does not need to rotate relative to the traveling area. It should be noted that the travel area refers to the area on the working surface of the warehouse for the robot to walk. Usually, the travel area is divided into a number of cells that are staggered vertically and horizontally. The robot's external dimensions can be accommodated in one cell, that is, the robot occupies one cell and the robot is arranged along these cells in the travel area to form an array and move. Referring to Figure 1, the robot includes a walking mechanism 1, a loading mechanism 2 and a supporting mechanism 3; wherein the walking mechanism 1 is configured to move in the travel area of the travel area, and it can be a four-way vehicle, that is, the mobile platform includes a vehicle body and two sets of wheel mechanisms, one set of wheel mechanisms drives the vehicle body to move in a first direction, and the other set of wheel mechanisms drives the vehicle body to move in a second direction. The walking mechanism also includes a switching mechanism, which is configured to select one of the wheel mechanisms to drive the vehicle body to move forward, so as to switch the direction of travel of the vehicle body. During the switching process, the vehicle body, the loading mechanism and the supporting mechanism do not move relative to the travel area. The loading mechanism 2 is configured to carry goods 4, which can be a pallet or the like. For this type of robot, the positional relationship of the loading mechanism 2 of the two robots located in two adjacent cells before and after the staggered setting of the platform is shown in Figures 2 and 3. Obviously, after the staggered setting, the projections of the loading mechanisms of the two robots located in the two adjacent cells on the travel area overlap, and the area of the travel area occupied by the two adjacent robots becomes smaller. The reduced area is compensated by the height size of the staggered layer, so that the area of the cells in the travel area can be reduced accordingly, so that more robots can be arranged in the travel area of the same area, and the utilization rate of the travel area is greatly improved. It can be understood that the travel area where the travel area is located can be the ground of the warehouse, a platform or a track built above the ground independently of the ground. Based on different types of travel areas, the robot can be a rail robot, see Figure 4. The rail robot travels on a track above the construction ground or suspended on the top of the warehouse. The walking mechanism of the rail robot is located along the track, and its loading mechanism is suspended under the walking mechanism by a rope assembly. The cargo of its loading mechanism is vertically staggered and overlaps with the projection part on the travel area. It should be noted that, based on the number and arrangement of the robot queues, for robots that do not need to rotate the loading mechanism to achieve the turning function, the two robot queues located in two adjacent rows of cells are arranged in a vertical staggered manner, and the controller controls the loading mechanisms of the robots in one robot queue to be higher or lower than the loading mechanisms of the robots in the adjacent robot queue. The loading mechanisms of the two robots located in two adjacent cells in the same robot queue can be arranged in a vertical staggered manner or maintained at the same height. However, there are two ways to realize the vertical staggering of the carrying mechanisms of two robots located in two adjacent cells: First, two different types of robots are selected in the travel area, and the carrying mechanisms of the two robots are located at different heights. When lining up to form a robot queue, the controller arranges and combines the two robot queues to form at least two groups of robot queues located in two adjacent columns of cells. Second, the structure of the robot traveling in the travel area is shown in FIG5. In addition to the walking mechanism 1 and the carrying mechanism 2, the robot also includes a lifting mechanism 5, which connects the walking mechanism 1 and the carrying mechanism 2 and is configured to drive the carrying mechanism 2 to rise and fall a preset distance relative to the walking mechanism 1. The lifting mechanism 5 can be a piston rod of a pneumatic cylinder or a hydraulic cylinder, whose cylinder body is fixed on the walking mechanism, and the loading mechanism is fixed on the free end of the piston rod. As the hydraulic oil or gas enters and exits the respective cylinder bodies, the piston rod drives the loading mechanism to rise and fall to lift the container. The lifting mechanism can also be a retractable connecting rod mechanism supported by a plurality of rods hinged in combination. Of course, the lifting mechanism can also include a bracket, a motor and a power transmission mechanism, the function of which is to convert the rotation of the motor into a transmission mechanism of linear motion, such as a gear and rack transmission mechanism, a belt transmission mechanism, a chain transmission mechanism, etc. In detail, when the lifting mechanism adopts a gear and rack transmission mechanism, its gears extend in the vertical direction and are fixedly connected to the bracket, and the gears meshing with the gears are rotatably arranged on the loading mechanism. After starting the motor, its driving gear drives the loading mechanism to rise and fall along the extending direction of the gears. When the lifting mechanism adopts a belt transmission mechanism, its two driving wheels are vertically spaced and rotatably arranged on the bracket, its driving belt is tightened on the two driving wheels, and the loading mechanism is fixed on the driving belt. After starting the motor, it drives one of the driving wheels to rotate, and then the driving belt drives the loading mechanism to rise and fall. When the lifting mechanism adopts a chain transmission mechanism, its two sprockets are vertically spaced and rotatably arranged on the bracket, its chain is stretched on the two sprockets, and the loading mechanism is fixed on the chain. After the motor is started, it drives one of the sprockets to rotate, and then the chain drives the loading mechanism to rise and fall. Referring to Figure 6, based on the number and arrangement of the robot queues, the controller first controls the lifting mechanism to make the loading mechanism of the corresponding robot reach the preset height position, and then based on the height adjustment of the loading mechanisms of these robots, at least the loading mechanisms of the two groups of robot queues located in two adjacent rows of cells are arranged vertically in staggered layers. Of course, the controller can also make the loading mechanisms of two robots located in two adjacent cells in the same robot queue be vertically staggered, and the specific arrangement can be pre-set by technicians in this field based on factors such as the area of the travel area and the number of robots. In one embodiment, for robots such as four-way vehicles that do not need to turn themselves, see Figures 11 and 12. When the storage system includes at least two robot queues, the controller controls the loading mechanisms of the robots in the two robot queues located in two adjacent columns to be vertically staggered, and the loading mechanisms of the robots in the same robot queue are located at the same height. It should be noted that the "robot queue" described herein refers to a team of robots that are lined up in sequence and move in the same direction along the same straight path, or two robots that are simply paused on two adjacent cells. The travel directions of these two robots can be the same or different. Referring to FIG13 , the controller controls the loading mechanisms of two robots in the same robot queue that are located in two adjacent cells to be arranged vertically in a staggered manner, and then turns to form a new robot queue composed of a team of robots that move in the same direction along the same straight path. The controller then controls the loading mechanisms of the robots in the new robot queue to be located at the same height. In this way, when the cell area is reduced, the scheduling problem of staggered scheduling of multiple robots can be cleverly solved. Embodiment 2 When the robot turns in the travel area, the overall structure of the robot itself needs to rotate relative to the travel area. Similarly, referring to Figure 5, the robot includes a walking mechanism 1, a loading mechanism 2 and a lifting mechanism 5. The lifting mechanism 5 connects the walking mechanism 1 and the loading mechanism 2, and is configured to drive the loading mechanism 2 to rise or fall relative to the walking mechanism 1. The walking mechanism 1 is configured to move along the travel area of the travel area, and based on the instructions issued by the controller, it moves from the current position to the target position along the target path and performs tasks such as picking up and placing goods from the material box, or picking up and placing the material box from the shelf. The walking mechanism is similar to a car. When turning, the overall structure rotates an angle relative to the travel area, such as rotating a right angle to achieve a vertical turn. See Figures 7 and 8. The dotted line in Figure 7 indicates the first rotation trajectory circle 7 of the load-carrying mechanism 2 when the robot turns. Under normal circumstances, the first rotation trajectory circle 7 of the load-carrying mechanism 2 is larger than the second rotation trajectory circle of the lifting mechanism and the walking mechanism. In order to ensure the normal turning of two robots located in two adjacent cells, the minimum travel area of each robot in the cell is the circumscribed quadrilateral of the rotation trajectory circle. If there are several robots in the robot queue, the horizontal space used by the robot queue is relatively large, and the number of robots arranged per unit area is limited. For this purpose, referring to Fig. 9 and Fig. 10, the projections of the first rotation track circles 7 of the load-carrying mechanisms 2 of the two robots located in two adjacent cells in the storage system disclosed in the present invention on the travel area partially overlap, as long as the projections of the first rotation track circle 7 of the load-carrying mechanism 2 of one robot and the second rotation track circles of the lifting mechanism 5 and the walking mechanism of the other robot on the travel area do not overlap or interfere. Obviously, compared with the traditional cells shown in Fig. 7 and Fig. 8, the area of the
1:行走機構 2:載物機構 3:支撐機構 4:貨物 5:升降機構 6:單元格 7:第一旋轉軌跡圓 8:第二旋轉軌跡圓 9:行進區 1: Walking mechanism 2: Cargo mechanism 3: Support mechanism 4: Cargo 5: Lifting mechanism 6: Unit cell 7: First rotating track circle 8: Second rotating track circle 9: Traveling area
被結合在說明書中並構成說明書的一部分的附圖示出了本公開的實施例,並且連同其說明一起用於解釋本公開的原理。 圖1是一個實施例中本公開的機器人的結構示意圖; 圖2是錯層設置前圖1中相鄰兩個機器人的排布示意圖; 圖3是錯層設置後圖1中相鄰兩個機器人的排布示意圖; 圖4是錯層設置後吊軌機器人工作時的倉儲系統的結構示意圖; 圖5是一個實施例中本公開的機器人的結構示意圖; 圖6是錯層設置後圖5中相鄰兩個機器人的排布示意圖; 圖7和圖8分別是圖5中相鄰兩個機器人按照傳統方式排布後的主視和俯視結構示意圖; 圖9和圖10分別是圖5中相鄰兩個機器人按照本公開的方式排布後的主視和俯視結構示意圖; 圖11是多個機器人調度時的行進區單元格示意圖; 圖12是轉向前多組機器人佇列在圖11所示行進區的錯層設置示意圖; 圖13是轉向後多組機器人佇列在圖11所示行進區的錯層設置示意圖。 The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the present disclosure and, together with their description, are used to explain the principles of the present disclosure. Figure 1 is a schematic diagram of the structure of the robot disclosed in an embodiment; Figure 2 is a schematic diagram of the arrangement of two adjacent robots in Figure 1 before staggered setting; Figure 3 is a schematic diagram of the arrangement of two adjacent robots in Figure 1 after staggered setting; Figure 4 is a schematic diagram of the structure of the storage system when the crane robot is working after staggered setting; Figure 5 is a schematic diagram of the structure of the robot disclosed in an embodiment; Figure 6 is a schematic diagram of the arrangement of two adjacent robots in Figure 5 after staggered setting; Figures 7 and 8 are schematic diagrams of the structure of the two adjacent robots in Figure 5 arranged in a traditional manner, in front view and top view, respectively; Figures 9 and 10 are schematic diagrams of the front view and top view of the two adjacent robots in Figure 5 after being arranged in the manner disclosed in the present invention; Figure 11 is a schematic diagram of the unit grid of the travel area when multiple robots are scheduled; Figure 12 is a schematic diagram of the staggered arrangement of multiple groups of robots queued in the travel area shown in Figure 11 before turning; Figure 13 is a schematic diagram of the staggered arrangement of multiple groups of robots queued in the travel area shown in Figure 11 after turning.
2:載物機構 2: Carrying mechanism
5:升降機構 5: Lifting mechanism
6:單元格 6: Cell
7:第一旋轉軌跡圓 7: First rotation orbit circle
8:第二旋轉軌跡圓 8: Second rotation orbit circle
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2022108010896 | 2022-07-08 | ||
CN202210801089.6A CN117401326A (en) | 2022-07-08 | 2022-07-08 | Warehouse system and robot scheduling method |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202413232A true TW202413232A (en) | 2024-04-01 |
Family
ID=89454338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112121953A TW202413232A (en) | 2022-07-08 | 2023-06-13 | Warehousing system and robot scheduling method |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN117401326A (en) |
TW (1) | TW202413232A (en) |
WO (1) | WO2024007716A1 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6160505A (en) * | 1984-09-03 | 1986-03-28 | Hitachi Ltd | Stacker crane |
JPH0517010A (en) * | 1991-02-25 | 1993-01-26 | Murata Mach Ltd | Stacker crane |
JP3198755B2 (en) * | 1993-09-27 | 2001-08-13 | 村田機械株式会社 | Stacker crane |
JP2004277167A (en) * | 2003-03-19 | 2004-10-07 | Hitachi Kiden Kogyo Ltd | Back up method of plurality of stacker cranes operated in automatic warehouse |
JP4084240B2 (en) * | 2003-05-26 | 2008-04-30 | 株式会社日立プラントテクノロジー | Operation method of stacker crane in automatic warehouse |
JP2005104675A (en) * | 2003-09-30 | 2005-04-21 | Daifuku Logistic Technology:Kk | Automatic warehouse |
JP6597061B2 (en) * | 2014-09-02 | 2019-10-30 | 株式会社ダイフク | Goods transport equipment |
CN109231082A (en) * | 2018-11-15 | 2019-01-18 | 北京特种机械研究所 | A kind of omnidirectional's stacking order-picking trucks |
-
2022
- 2022-07-08 CN CN202210801089.6A patent/CN117401326A/en active Pending
-
2023
- 2023-05-05 WO PCT/CN2023/092304 patent/WO2024007716A1/en unknown
- 2023-06-13 TW TW112121953A patent/TW202413232A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024007716A1 (en) | 2024-01-11 |
CN117401326A (en) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106522618A (en) | Trackless vehicle handling equipment and handling method of the same | |
WO2019086237A1 (en) | An automated storage and retrieval system, a method of operating the system and a multi trolley vehicle | |
NO344464B1 (en) | Vehicle for an automated storage and retrieval system and method of operating an automated storage and retrieval system | |
EP3807192A1 (en) | Storage system with modular container handling vehicles | |
TW201708084A (en) | Storage system | |
CN109607014A (en) | A kind of wheel regulating device and its four-way carrier | |
WO2019238703A1 (en) | Storage system with modular container handling vehicles | |
CN106414278A (en) | Apparatus for retrieving units from storage system | |
CN104100117B (en) | Multilayer vertical lifting comb-tooth type three-dimensional parking equipment and vehicle storing and taking method | |
JP2016506346A5 (en) | ||
CN106335042A (en) | Storage picking robot carrying lifting type manipulators and use method thereof | |
WO2019229170A2 (en) | An automated storage and retrieval system comprising a storage container lift assembly | |
CN107826580A (en) | A kind of shuttle vehicle type storage and climb type shuttle | |
EP4058384B1 (en) | Rescue system and methods for retrieving a malfunctioning vehicle from a rail system | |
CN106809587A (en) | A kind of intensive intelligent tri-dimensional storage system for storing steel | |
NO345822B1 (en) | Method for handling malfunctioning vehicles on a track system and a storage and retrieval system using such a method | |
CN110589327A (en) | Sorting robot and sorting method | |
CN206360438U (en) | Trackless vehicle conveying equipment | |
CN102887343A (en) | Perpendicular lifting three-dimensional multilayer integrated conveying device and conveying method thereof | |
CN109896468B (en) | All direction movement container transport commodity circulation car | |
TW202413232A (en) | Warehousing system and robot scheduling method | |
CN207107574U (en) | It is a kind of can be across the tiered warehouse facility of shelf picking | |
CN202964627U (en) | Mould intelligent bank | |
CN108674874A (en) | A kind of storage robot | |
CN108177910A (en) | A kind of complete vehicle logistics primary and secondary robot |