TW202411703A - Multilayer light guide film, manufacturing method thereof and display device - Google Patents

Multilayer light guide film, manufacturing method thereof and display device Download PDF

Info

Publication number
TW202411703A
TW202411703A TW112116943A TW112116943A TW202411703A TW 202411703 A TW202411703 A TW 202411703A TW 112116943 A TW112116943 A TW 112116943A TW 112116943 A TW112116943 A TW 112116943A TW 202411703 A TW202411703 A TW 202411703A
Authority
TW
Taiwan
Prior art keywords
light
layer
guiding
microstructure
light guide
Prior art date
Application number
TW112116943A
Other languages
Chinese (zh)
Inventor
朱俊宜
張宏銘
林政宇
焦佑麒
黃永立
劉家麟
Original Assignee
大陸商南京瀚宇彩欣科技有限責任公司
瀚宇彩晶股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商南京瀚宇彩欣科技有限責任公司, 瀚宇彩晶股份有限公司 filed Critical 大陸商南京瀚宇彩欣科技有限責任公司
Publication of TW202411703A publication Critical patent/TW202411703A/en

Links

Images

Landscapes

  • Illuminated Signs And Luminous Advertising (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

The present invention discloses a multilayer light guide film, a manufacturing method thereof and a display device. The multilayer light guide film includes a first light guide layer and a second light guide layer. A surface of the first light guide layer has a plurality of first microstructures, and the second light guide layer is disposed on the surface of the first light guide layer and directly contacts the surface of the first light guide layer, in which a surface of the second light guide layer has a plurality of second microstructures.

Description

多層導光膜、其製作方法及顯示裝置Multi-layer light-guiding film, manufacturing method thereof and display device

本發明有關於一種多層導光膜、其製作方法及顯示裝置。The present invention relates to a multi-layer light-guiding film, a manufacturing method thereof and a display device.

隨著顯示裝置朝向輕薄化發展,導光板(light guide plate)已逐漸被導光膜(light guide film)所取代。為了達到預期的光學效果,導光膜上會形成有微結構。然而,在習知形成具有微結構的導光膜的方式中,需先透過微影製程以及電鑄製程形成模仁,其中模仁(mold insert)具有與微結構互補圖形的圖案結構,然後將模仁壓印(imprint)在導光材料上,從而形成導光膜。因此,製作多層導光膜需重複進行上述步驟,導致製程步驟繁複,增加製作成本。並且,在將不同導光膜貼合的過程中,並不易對不同導光膜的微結構進行對位,且用以黏貼導光膜的黏著層容易流入微結構中,從而影響微結構的光學效果。有鑑於此,改善上述問題,以降低成本並提升多層導光膜的品質,實為本領域技術人員致力的課題。As display devices are becoming thinner and lighter, light guide plates have been gradually replaced by light guide films. In order to achieve the expected optical effect, microstructures are formed on the light guide films. However, in the known method of forming a light guide film with a microstructure, a mold insert must first be formed through a lithography process and an electroplating process, wherein the mold insert has a pattern structure that complements the microstructure, and then the mold insert is imprinted on the light guide material to form a light guide film. Therefore, the above steps must be repeated to produce a multi-layer light guide film, resulting in complicated process steps and increased production costs. Furthermore, it is not easy to align the microstructures of different light-guiding films during the process of laminating the light-guiding films, and the adhesive layer used to affix the light-guiding films easily flows into the microstructures, thereby affecting the optical effect of the microstructures. In view of this, improving the above problems to reduce costs and improve the quality of multi-layer light-guiding films is indeed a topic that technical personnel in this field are committed to.

為至少部分解決上述習知的問題,本發明提供一種多層導光膜、其製作方法及顯示裝置,以簡化製作多層導光膜的製程步驟,及/或提升多層導光膜的品質。To at least partially solve the above-mentioned known problems, the present invention provides a multi-layer light-guiding film, a manufacturing method thereof and a display device to simplify the manufacturing process steps of the multi-layer light-guiding film and/or improve the quality of the multi-layer light-guiding film.

解決本發明技術問題所採用的一種技術方案是:提供一種多層導光膜,其包括一第一導光層以及一第二導光層。第一導光層的表面具有複數個第一微結構,且第二導光層設置於第一導光層的所述表面上,並與第一導光層的所述表面直接接觸,其中第二導光層的表面具有複數個第二微結構。A technical solution adopted to solve the technical problem of the present invention is: providing a multi-layer light guide film, which includes a first light guide layer and a second light guide layer. The surface of the first light guide layer has a plurality of first microstructures, and the second light guide layer is arranged on the surface of the first light guide layer and directly contacts the surface of the first light guide layer, wherein the surface of the second light guide layer has a plurality of second microstructures.

解決本發明技術問題所採用的另一種技術方案是:提供一種顯示裝置,其包括一顯示面板以及設置於所述顯示面板的一側的一光源模組。光源模組包括上述的多層導光膜。Another technical solution adopted to solve the technical problem of the present invention is to provide a display device, which includes a display panel and a light source module arranged on one side of the display panel. The light source module includes the above-mentioned multi-layer light guide film.

解決本發明技術問題所採用的另一種技術方案是:提供一種多層導光膜的製作方法。所述製作方法包括提供一第一導光材料層,對第一導光材料層的表面進行一第一圖案化製程以形成一第一導光層,於第一導光層的表面上直接設置一第二導光材料層,以及對第二導光材料層的表面進行一第二圖案化製程以形成一第二導光層。第一導光層的所述表面具有複數個第一微結構,且第二導光層的表面具有複數個第二微結構。Another technical solution adopted to solve the technical problem of the present invention is to provide a method for manufacturing a multi-layer light-guiding film. The manufacturing method includes providing a first light-guiding material layer, performing a first patterning process on the surface of the first light-guiding material layer to form a first light-guiding layer, directly arranging a second light-guiding material layer on the surface of the first light-guiding layer, and performing a second patterning process on the surface of the second light-guiding material layer to form a second light-guiding layer. The surface of the first light-guiding layer has a plurality of first microstructures, and the surface of the second light-guiding layer has a plurality of second microstructures.

在本發明中,由於第二導光層可直接形成在第一導光層上,因此不同導光層之間可不需額外的黏著層,從而可避免第一微結構的光學效果受到黏著層的影響,以提升多層導光膜的品質。另外,由於導光層可直接透過圖案化製程形成,因此製作多層導光膜的過程中可不需進行繁瑣的製作模仁的步驟,從而可明顯簡化製程步驟,以縮減製作成本。並且,由於不同導光層的微結構的位置可透過圖案化製程定位,因此可有助於提升不同導光層的微結構之間的對位精准度,從而提升導光效率。In the present invention, since the second light-guiding layer can be directly formed on the first light-guiding layer, no additional adhesive layer is required between different light-guiding layers, thereby preventing the optical effect of the first microstructure from being affected by the adhesive layer, thereby improving the quality of the multi-layer light-guiding film. In addition, since the light-guiding layer can be directly formed through a patterning process, the process of manufacturing a multi-layer light-guiding film does not require the cumbersome step of making a mold, thereby significantly simplifying the process steps to reduce the manufacturing cost. Furthermore, since the positions of the microstructures of different light-guiding layers can be positioned through a patterning process, it can help to improve the alignment accuracy between the microstructures of different light-guiding layers, thereby improving the light-guiding efficiency.

為使本領域技術人員能更進一步瞭解本發明,以下特列舉本發明的實施例,並配合圖式詳細說明本發明的構成內容及所欲達成的功效。須注意的是,圖式均為簡化的示意圖,因此,僅顯示與本發明有關的元件與組合關係,以對本發明的基本架構或實施方法提供更清楚的描述,而實際的元件與佈局可能更為複雜。另外,為了方便說明,本發明的各圖式中所示的元件並非以實際實施的數目、形狀、尺寸做等比例繪製,其詳細的比例可依照設計的需求進行調整。In order to enable the technical personnel in this field to further understand the present invention, the following is a list of embodiments of the present invention, and the components and intended effects of the present invention are described in detail with the help of drawings. It should be noted that the drawings are simplified schematic diagrams, and therefore, only the components and combination relationships related to the present invention are shown to provide a clearer description of the basic structure or implementation method of the present invention, while the actual components and layout may be more complicated. In addition, for the convenience of explanation, the components shown in the various drawings of the present invention are not drawn in proportion to the number, shape, and size of the actual implementation, and the detailed proportions can be adjusted according to the design requirements.

請參考圖1到圖7,圖1所示為本發明一實施例的多層導光膜的製作方法流程圖,圖2到圖7所示為本發明一實施例在製作多層導光膜的不同步驟中的結構示意圖,其中圖7所示為本發明一實施例的多層導光膜的剖視示意圖。如圖1所示,本實施例所提供的多層導光膜的製作方法包括步驟S12到步驟S18。步驟S12到步驟S18可例如依序進行,本發明的製作方法不以步驟S12到步驟S18為限,也可在任一所示步驟之前、之後或之間進行其它步驟。圖1的步驟S12到步驟S18將進一步搭配圖2到圖7詳述於下文中。Please refer to Figures 1 to 7, Figure 1 is a flow chart of the method for manufacturing a multi-layer light-guiding film of an embodiment of the present invention, Figures 2 to 7 are schematic diagrams of the structure of an embodiment of the present invention in different steps of manufacturing a multi-layer light-guiding film, and Figure 7 is a schematic cross-sectional diagram of a multi-layer light-guiding film of an embodiment of the present invention. As shown in Figure 1, the method for manufacturing a multi-layer light-guiding film provided in this embodiment includes steps S12 to S18. Steps S12 to S18 can be performed in sequence, for example. The manufacturing method of the present invention is not limited to steps S12 to S18, and other steps can also be performed before, after or between any of the steps shown. Steps S12 to S18 of Figure 1 will be further described in detail below in conjunction with Figures 2 to 7.

如圖1與圖2所示,在步驟S12中,可先提供第一導光材料層12a。第一導光材料層12a可例如形成於載板(圖未示)上。在本實施例中,第一導光材料層12a可包括光阻(photoresist)材料,但不限於此。舉例來說,光阻材料可例如包括感光性(photosensitive)塑膠材料(例如但不限於感光性樹脂材料),但本發明不限制第一導光材料層12a的光阻材料的組成。第一導光材料層12a的形成方式可例如依據光阻材料的種類而決定。舉例來說,當第一導光材料層12a的材料包括液態光阻材料時,第一導光材料層12a可例如透過塗布(coating)方式形成於載板上。或者,當第一導光材料層12a的材料包括乾膜(dry film)光阻材料時,第一導光材料層12a可例如透過層壓(laminating)方式形成於載板上,但不以此為限。As shown in FIG. 1 and FIG. 2, in step S12, a first light-conducting material layer 12a may be provided first. The first light-conducting material layer 12a may be formed, for example, on a carrier (not shown). In the present embodiment, the first light-conducting material layer 12a may include a photoresist material, but is not limited thereto. For example, the photoresist material may, for example, include a photosensitive plastic material (for example, but not limited to a photosensitive resin material), but the present invention does not limit the composition of the photoresist material of the first light-conducting material layer 12a. The formation method of the first light-conducting material layer 12a may, for example, be determined according to the type of the photoresist material. For example, when the material of the first light-conducting material layer 12a includes a liquid photoresist material, the first light-conducting material layer 12a may be formed on the carrier, for example, by coating. Alternatively, when the material of the first light conductive material layer 12a includes a dry film photoresist material, the first light conductive material layer 12a can be formed on the carrier by, for example, laminating, but is not limited thereto.

如圖1、圖3與圖4所示,在提供第一導光材料層12a之後,可進行步驟S14,對第一導光材料層12a的表面12S進行第一圖案化製程,以形成第一導光層12,其中第一導光層12的表面12S可具有複數個第一微結構12T。由於第一導光材料層12a包括光阻材料,因此第一圖案化製程可例如包括曝光製程與顯影製程。As shown in FIG. 1 , FIG. 3 and FIG. 4 , after providing the first light guiding material layer 12a, step S14 may be performed to perform a first patterning process on the surface 12S of the first light guiding material layer 12a to form the first light guiding layer 12, wherein the surface 12S of the first light guiding layer 12 may have a plurality of first microstructures 12T. Since the first light guiding material layer 12a includes a photoresist material, the first patterning process may include, for example, an exposure process and a development process.

具體地,如圖3所示,曝光製程可例如包括利用光線L1照射第一導光材料層12a,使得被照射的部分可產生化學反應。在一些實施例中,曝光製程可包括灰階成像(grayscale imaging)曝光製程(exposure process),例如可利用雷射直寫曝光機(laser direct writing exposure machine)進行灰階成像曝光製程或利用灰階光罩進行灰階成像曝光製程,但灰階成像曝光製程的方式不以此為限。Specifically, as shown in FIG3 , the exposure process may include, for example, irradiating the first light-guiding material layer 12a with light L1, so that the irradiated portion can produce a chemical reaction. In some embodiments, the exposure process may include a grayscale imaging exposure process, such as a laser direct writing exposure machine or a grayscale mask, but the grayscale imaging exposure process is not limited thereto.

如圖4所示,在曝光製程之後,可進行顯影製程,以移除第一導光材料層12a被光線L1照射的部分,從而可形成具有第一微結構12T的第一導光層12。顯影製程可例如包括利用顯影劑溶解第一導光材料層12a被光線L1照射的部分,從而達到移除的目的,但不限於此。需說明的是,在圖3與圖4的實施例中是以第一導光材料層12a包括正型光阻材料為例示,但不以此為限。在其他實施例中,第一導光材料層12a可包括負型光阻材料,且於此不再贅述其曝光製程與顯影製程。在一些實施例中,在顯影製程之後,可例如進一步對第一導光層12進行烘烤製程(baking process),但不限於此。As shown in FIG4 , after the exposure process, a developing process may be performed to remove the portion of the first light guiding material layer 12a irradiated by the light ray L1, thereby forming a first light guiding layer 12 having a first microstructure 12T. The developing process may, for example, include using a developer to dissolve the portion of the first light guiding material layer 12a irradiated by the light ray L1, thereby achieving the purpose of removal, but is not limited thereto. It should be noted that in the embodiments of FIGS. 3 and 4 , the first light guiding material layer 12a includes a positive photoresist material as an example, but is not limited thereto. In other embodiments, the first light guiding material layer 12a may include a negative photoresist material, and the exposure process and the developing process thereof will not be described in detail herein. In some embodiments, after the developing process, the first light guiding layer 12 may, for example, be further subjected to a baking process, but is not limited thereto.

需說明的是,本實施例的第一導光材料層12a的曝光深度可例如與光線L1的強度相關,使得第一導光材料層12a的表面12S可透過曝光製程與顯影製程形成具有光學效果的第一微結構12T。在圖4的實施例中,至少一個第一微結構12T可例如包括孔洞,其中孔洞可不貫穿第一導光層12,但不限於此。舉例來說,孔洞可具有側壁S1與側壁S2,且側壁S1與側壁S2可例如於孔洞底部相連接,使得第一微結構12T的剖視形狀為V型,以達到所需的光學效果。側壁S1可不垂直於且不平行於第一導光層12的表面12S,即側壁S1與垂直於表面12S的法線方向ND之間具有大於0度且小於90度的夾角,使得側壁S1在垂直於表面12S的法線方向ND上的深度可隨著在水平方向HD上的位置不同而呈現連續性改變(如圖4中側壁S1在垂直於表面12S的法線方向ND上的深度可沿著水平方向HD遞減)。在圖4中,側壁S1在水平方向HD上的剖視形狀可例如包括斜線(如圖4中由左下往右上延伸的斜線),使第一微結構12T能夠呈現出所需的光學效果,也就是第一微結構12T可用於調整第一導光層12中的光線的方向,但不限於此。水平方向HD可例如平行於表面12S。在本實施例中,側壁S1在水平方向HD上的剖視形狀可例如包括直線,但不限於此。在一些實施例中,側壁S1在水平方向HD上的剖視形狀可例如包括曲線或其他合適形狀。在本實施例中,側壁S2可垂直第一導光層12的表面12S,使得側壁S1與側壁S2可形成V形結構(即第一微結構12T的剖視形狀為V型),但不以此為限。在一些實施例中,側壁S2可不垂直於且不平行於第一導光層12的表面12S,即側壁S2與垂直於表面12S的法線方向ND之間具有大於0度且小於90度的夾角,使得側壁S2在垂直於表面12S的法線方向ND上的深度可隨著在水平方向HD上的位置不同而呈現連續性改變(如側壁S2在垂直於表面12S的法線方向ND上的深度可沿著水平方向HD遞增以形成由左上往右下延伸的斜線),使得側壁S1與側壁S2可形成V形結構。但本發明的第一微結構12T的剖視形狀不以V型為限。在一些實施例中,第一微結構12T的剖視形狀可為具有多於兩側壁的多邊形、曲線形狀或其他合適的形狀,但不以此為限。如圖3與圖4所示,為了形成圖4中的具有V形結構的第一微結構12T,本發明可使用如圖3的灰階成像曝光製程,且在第一導光材料層12a的預定形成第一微結構12T的區域中,光線L1的照射量於水平方向HD變化(如圖3中在預定形成一個第一微結構12T的至少一部分的區域中,光線L1的照射量沿著水平方向HD遞減,以形成如圖4中在垂直於表面12S的法線方向ND上的深度可沿著水平方向HD遞減的第一微結構12T)。在一些實施例中,孔洞在法線方向ND上的俯視圖案可依據實際需求而設計,例如可包括矩形、圓形、條形或其他合適的形狀。本發明的第一微結構12T的俯視圖案與剖視形狀可依據實際需求作調整,本發明不限制第一微結構12T的俯視圖案與剖視形狀。在一些實施例中,當孔洞透過曝光製程與顯影製程形成時,孔洞在水平方向HD上的最大孔徑AP可例如小於或等於5微米,但本發明的孔洞在水平方向HD上的最大孔徑AP不以此為限。It should be noted that the exposure depth of the first light-guiding material layer 12a of the present embodiment may be, for example, related to the intensity of the light L1, so that the surface 12S of the first light-guiding material layer 12a may form a first microstructure 12T having an optical effect through an exposure process and a development process. In the embodiment of FIG. 4 , at least one first microstructure 12T may, for example, include a hole, wherein the hole may not penetrate the first light-guiding layer 12, but is not limited thereto. For example, the hole may have a side wall S1 and a side wall S2, and the side wall S1 and the side wall S2 may, for example, be connected at the bottom of the hole, so that the cross-sectional shape of the first microstructure 12T is V-shaped to achieve the desired optical effect. The side wall S1 may be neither perpendicular nor parallel to the surface 12S of the first light guide layer 12, that is, the side wall S1 and the normal direction ND perpendicular to the surface 12S have an angle greater than 0 degrees and less than 90 degrees, so that the depth of the side wall S1 in the normal direction ND perpendicular to the surface 12S can show continuous changes with different positions in the horizontal direction HD (such as the depth of the side wall S1 in the normal direction ND perpendicular to the surface 12S in FIG. 4 can decrease along the horizontal direction HD). In FIG. 4, the cross-sectional shape of the side wall S1 in the horizontal direction HD can, for example, include oblique lines (such as the oblique lines extending from the lower left to the upper right in FIG. 4), so that the first microstructure 12T can present the desired optical effect, that is, the first microstructure 12T can be used to adjust the direction of the light in the first light guide layer 12, but is not limited to this. The horizontal direction HD may be, for example, parallel to the surface 12S. In the present embodiment, the cross-sectional shape of the sidewall S1 in the horizontal direction HD may include, for example, a straight line, but is not limited thereto. In some embodiments, the cross-sectional shape of the sidewall S1 in the horizontal direction HD may include, for example, a curve or other suitable shapes. In the present embodiment, the sidewall S2 may be perpendicular to the surface 12S of the first light guide layer 12, so that the sidewall S1 and the sidewall S2 may form a V-shaped structure (i.e., the cross-sectional shape of the first microstructure 12T is V-shaped), but is not limited thereto. In some embodiments, the sidewall S2 may be neither perpendicular nor parallel to the surface 12S of the first light guide layer 12, that is, the sidewall S2 and the normal direction ND perpendicular to the surface 12S have an angle greater than 0 degrees and less than 90 degrees, so that the depth of the sidewall S2 in the normal direction ND perpendicular to the surface 12S can present a continuous change with different positions in the horizontal direction HD (e.g., the depth of the sidewall S2 in the normal direction ND perpendicular to the surface 12S can increase along the horizontal direction HD to form an oblique line extending from the upper left to the lower right), so that the sidewall S1 and the sidewall S2 can form a V-shaped structure. However, the cross-sectional shape of the first microstructure 12T of the present invention is not limited to the V-shape. In some embodiments, the cross-sectional shape of the first microstructure 12T may be a polygon with more than two sidewalls, a curved shape or other suitable shapes, but is not limited thereto. As shown in FIG3 and FIG4, in order to form the first microstructure 12T with a V-shaped structure in FIG4, the present invention may use a grayscale imaging exposure process as shown in FIG3, and in the area of the first light-guiding material layer 12a where the first microstructure 12T is predetermined to be formed, the irradiation amount of the light L1 varies in the horizontal direction HD (as in FIG3, in the area where at least a portion of a first microstructure 12T is predetermined to be formed, the irradiation amount of the light L1 decreases along the horizontal direction HD to form the first microstructure 12T whose depth in the normal direction ND perpendicular to the surface 12S may decrease along the horizontal direction HD as shown in FIG4). In some embodiments, the top view pattern of the hole in the normal direction ND can be designed according to actual needs, for example, it can include a rectangle, a circle, a strip or other suitable shapes. The top view pattern and the cross-sectional shape of the first microstructure 12T of the present invention can be adjusted according to actual needs, and the present invention does not limit the top view pattern and the cross-sectional shape of the first microstructure 12T. In some embodiments, when the hole is formed by an exposure process and a development process, the maximum aperture AP of the hole in the horizontal direction HD can be, for example, less than or equal to 5 microns, but the maximum aperture AP of the hole in the horizontal direction HD of the present invention is not limited thereto.

值得一提的是,由於本實施例的第一導光層12可直接透過曝光製程與顯影製程形成,因此不需進行繁瑣的製作模仁的步驟,從而可簡化製作第一導光層12的製程步驟,以縮減製作第一導光層12的時間與成本。It is worth mentioning that, since the first light guide layer 12 of the present embodiment can be directly formed through an exposure process and a development process, there is no need to perform a complicated mold making step, thereby simplifying the process steps for making the first light guide layer 12 to reduce the time and cost of making the first light guide layer 12.

如圖1與圖5所示,在形成第一導光層12之後,可進行步驟S16,於第一導光層12的表面12S上直接設置第二導光材料層14a。第二導光材料層14a可例如包括光阻材料。在本實施例中,第二導光材料層14a的光阻材料可包括乾膜光阻材料。舉例來說,第二導光材料層14a可透過層壓方式設置於第一導光層12上,但本發明的第二導光材料層14a設置於第一導光層12上的方式不以此為限。需說明的是,由於第二導光材料層14a使用乾膜光阻材料,因此可避免在設置第二導光材料層14a於第一導光層12的表面12S上時第二導光材料層14a流入第一微結構12T中,從而可提升第一微結構12T的光學品質。在一些實施例中,第二導光材料層14a與第一導光材料層12a可包括相同或不同的光阻材料。舉例來說,第二導光材料層14a可包括感光性塑膠材料(例如但不限於感光性樹脂材料),但本發明不限制第二導光材料層14a的光阻材料的組成。As shown in FIG. 1 and FIG. 5 , after forming the first light guide layer 12, step S16 may be performed to directly set the second light guide material layer 14a on the surface 12S of the first light guide layer 12. The second light guide material layer 14a may, for example, include a photoresist material. In the present embodiment, the photoresist material of the second light guide material layer 14a may include a dry film photoresist material. For example, the second light guide material layer 14a may be set on the first light guide layer 12 by lamination, but the method of setting the second light guide material layer 14a on the first light guide layer 12 of the present invention is not limited thereto. It should be noted that, since the second light conducting material layer 14a uses a dry film photoresist material, it is possible to prevent the second light conducting material layer 14a from flowing into the first microstructure 12T when the second light conducting material layer 14a is disposed on the surface 12S of the first light conducting layer 12, thereby improving the optical quality of the first microstructure 12T. In some embodiments, the second light conducting material layer 14a and the first light conducting material layer 12a may include the same or different photoresist materials. For example, the second light conducting material layer 14a may include a photosensitive plastic material (such as but not limited to a photosensitive resin material), but the present invention does not limit the composition of the photoresist material of the second light conducting material layer 14a.

如圖1、圖6與圖7所示,然後可進行步驟S18,對第二導光材料層14a的表面14S進行第二圖案化製程,以形成第二導光層14,其中第二導光層14的表面14S可具有複數個第二微結構14T。由於第二導光材料層14a包括光阻材料,因此第二圖案化製程可例如包括曝光製程與顯影製程,例如可相同或類似第一圖案化製程,但不限於此。As shown in FIG. 1 , FIG. 6 and FIG. 7 , step S18 may then be performed to perform a second patterning process on the surface 14S of the second light guiding material layer 14a to form the second light guiding layer 14, wherein the surface 14S of the second light guiding layer 14 may have a plurality of second microstructures 14T. Since the second light guiding material layer 14a includes a photoresist material, the second patterning process may include, for example, an exposure process and a development process, which may be the same as or similar to the first patterning process, but is not limited thereto.

具體地,如圖6所示,第二圖案化製程的曝光製程可例如包括利用光線L2照射第二導光材料層14a,使得被照射的部分可產生化學反應。曝光製程可例如相同或類似上述第一圖案化製程的曝光製程,因此在此不多贅述。舉例來說,第二圖案化製程的曝光製程可包括灰階成像曝光製程,但不限於此。Specifically, as shown in FIG6 , the exposure process of the second patterning process may, for example, include irradiating the second light-guiding material layer 14a with light L2 so that the irradiated portion can produce a chemical reaction. The exposure process may, for example, be the same as or similar to the exposure process of the first patterning process described above, and therefore will not be described in detail herein. For example, the exposure process of the second patterning process may include a grayscale imaging exposure process, but is not limited thereto.

如圖7所示,在曝光製程之後,可進行顯影製程,以移除第二導光材料14a被光線L2照射的部分,從而可形成具有第二微結構14T的第二導光層14。如此可形成本實施例的多層導光膜1。第二圖案化製程的顯影製程可例如相同或類似上述第一圖案化製程的顯影製程,因此在此不多贅述。需說明的是,在圖6與圖7的實施例中是以第二導光材料層14a包括正型光阻材料為例示,但不以此為限。在其他實施例中,第二導光材料層14a可包括負型光阻材料,且於此不再贅述其曝光製程與顯影製程。在一些實施例中,在顯影製程之後,可例如進一步對第二導光層14進行烘烤製程,但不限於此。As shown in FIG7 , after the exposure process, a development process may be performed to remove the portion of the second light-guiding material 14a irradiated by the light L2, thereby forming a second light-guiding layer 14 having a second microstructure 14T. In this way, the multi-layer light-guiding film 1 of the present embodiment may be formed. The development process of the second patterning process may be, for example, the same or similar to the development process of the first patterning process described above, and therefore will not be described in detail here. It should be noted that in the embodiments of FIGS. 6 and 7 , the second light-guiding material layer 14a includes a positive photoresist material as an example, but is not limited to this. In other embodiments, the second light-guiding material layer 14a may include a negative photoresist material, and its exposure process and development process will not be described in detail here. In some embodiments, after the development process, the second light-guiding layer 14 may be further subjected to a baking process, for example, but is not limited to this.

需說明的是,第二導光材料層14a的曝光深度也可例如與光線L2的強度相關,使得第二導光材料層14a的表面14S可透過曝光製程與顯影製程形成具有光學效果的第二微結構14T。在圖7的實施例中,第二微結構14T可例如相同或類似於上述的第一微結構12T,而可例如包括孔洞。舉例來說,第二微結構14T的孔洞可具有側壁S3與側壁S4,且側壁S3與側壁S4可例如於孔洞底部相連接,使得第二微結構14T的剖視形狀為V型。側壁S3可不垂直於且不平行於第二導光層14的表面14S,即側壁S3與表面14S的法線方向ND之間具有大於0度且小於90度的夾角,使得側壁S3在垂直於表面14S的法線方向ND上的深度可隨著在水平方向HD上的位置不同而呈現連續性改變(如圖7中側壁S3在垂直於表面14S的法線方向ND上的深度可沿著水平方向HD遞減)。在圖7中,側壁S3在水平方向HD上的剖視形狀可例如包括斜線(如圖7中由左下往右上延伸的斜線),使第二微結構14T能夠呈現出所需的光學效果,也就是第二微結構14T可用於調整第二導光層14中的光線的方向,但不限於此。水平方向HD可例如平行於表面14S。在本實施例中,側壁S3在水平方向HD上的剖視形狀可例如包括直線,但不限於此。在一些實施例中,側壁S3在水平方向HD上的剖視形狀可例如包括曲線或其他合適形狀。在本實施例中,側壁S4可垂直第二導光層14的表面14S,使得側壁S3與側壁S4可形成V形結構,但不以此為限。在一些實施例中,側壁S4可不垂直於且不平行於第二導光層14的表面14S,即側壁S4與垂直於表面14S的法線方向ND之間具有大於0度且小於90度的夾角,使得側壁S4在垂直於表面14S的法線方向ND上的深度可隨著在水平方向HD上的位置不同而呈現連續性改變(如側壁S4在垂直於表面14S的法線方向ND上的深度可沿著水平方向HD遞增以形成由左上往右下延伸的斜線),使得側壁S3與側壁S4可形成V形結構。但本發明的第二微結構14T的剖視形狀不以V型為限。在一些實施例中,第二微結構14T的剖視形狀可為具有多於兩側壁的多邊形、曲線形狀或其他合適的形狀,但不以此為限。在本發明中,第二微結構14T的孔洞的俯視圖案與剖視形狀可例如相同或類似第一微結構12T的孔洞的俯視圖案與剖視形狀,且不貫穿第二導光層14,但不限於此。本發明不限制第二微結構14T的俯視圖案與剖視形狀。如圖6與圖7所示,為了形成圖7中的具有V形結構的第二微結構14T,本發明可使用如圖6的灰階成像曝光製程,且在第二導光材料層14a的預定形成第二微結構14T的區域中,光線L2的照射量於水平方向HD變化(如圖6中在預定形成一個第二微結構14T的至少一部分的區域中,光線L2的照射量沿著水平方向HD遞減,以形成如圖7中在垂直於表面14S的法線方向ND上的深度可沿著水平方向HD遞減的第二微結構14T)。在一些實施例中,第二微結構14T的俯視圖案與剖視形狀也可依據需求做調整,而不同於第一微結構12T的俯視圖案與剖視形狀,但不限於此。在圖7中,第二微結構14T在法線方向ND上可不重疊於第一微結構12T,例如從俯視方向(即法線方向ND)來看,其中一第二微結構14T可位於兩相鄰第一微結構12T之間,但不限於此。在一些實施例中,第二導光層14的複數個第二微結構14T的至少一部分在法線方向ND上可重疊於第一導光層12的複數個第一微結構12T的至少一部分。本發明不限制第一導光層12的複數個第一微結構12T與第二導光層14的複數個第二微結構14T的相對設置位置。It should be noted that the exposure depth of the second light-conducting material layer 14a may also be related to the intensity of the light L2, so that the surface 14S of the second light-conducting material layer 14a may form a second microstructure 14T with an optical effect through an exposure process and a development process. In the embodiment of FIG. 7 , the second microstructure 14T may be, for example, the same as or similar to the first microstructure 12T described above, and may, for example, include a hole. For example, the hole of the second microstructure 14T may have a side wall S3 and a side wall S4, and the side wall S3 and the side wall S4 may, for example, be connected at the bottom of the hole, so that the cross-sectional shape of the second microstructure 14T is V-shaped. The side wall S3 may be neither perpendicular nor parallel to the surface 14S of the second light guide layer 14, that is, the side wall S3 and the normal direction ND of the surface 14S have an angle greater than 0 degrees and less than 90 degrees, so that the depth of the side wall S3 in the normal direction ND perpendicular to the surface 14S can show continuous changes with different positions in the horizontal direction HD (such as the depth of the side wall S3 in the normal direction ND perpendicular to the surface 14S in FIG. 7 can decrease along the horizontal direction HD). In FIG. 7, the cross-sectional shape of the side wall S3 in the horizontal direction HD can, for example, include an oblique line (such as the oblique line extending from the lower left to the upper right in FIG. 7), so that the second microstructure 14T can present the desired optical effect, that is, the second microstructure 14T can be used to adjust the direction of the light in the second light guide layer 14, but is not limited thereto. The horizontal direction HD can, for example, be parallel to the surface 14S. In this embodiment, the cross-sectional shape of the sidewall S3 in the horizontal direction HD may include, for example, a straight line, but is not limited thereto. In some embodiments, the cross-sectional shape of the sidewall S3 in the horizontal direction HD may include, for example, a curve or other suitable shapes. In this embodiment, the sidewall S4 may be perpendicular to the surface 14S of the second light guide layer 14, so that the sidewall S3 and the sidewall S4 may form a V-shaped structure, but is not limited thereto. In some embodiments, the sidewall S4 may be neither perpendicular nor parallel to the surface 14S of the second light guide layer 14, that is, the sidewall S4 and the normal direction ND perpendicular to the surface 14S have an angle greater than 0 degrees and less than 90 degrees, so that the depth of the sidewall S4 in the normal direction ND perpendicular to the surface 14S can present a continuous change with different positions in the horizontal direction HD (e.g., the depth of the sidewall S4 in the normal direction ND perpendicular to the surface 14S can increase along the horizontal direction HD to form an oblique line extending from the upper left to the lower right), so that the sidewall S3 and the sidewall S4 can form a V-shaped structure. However, the cross-sectional shape of the second microstructure 14T of the present invention is not limited to the V-shape. In some embodiments, the cross-sectional shape of the second microstructure 14T may be a polygon with more than two sidewalls, a curved shape, or other suitable shapes, but not limited thereto. In the present invention, the top view pattern and cross-sectional shape of the hole of the second microstructure 14T may be, for example, the same or similar to the top view pattern and cross-sectional shape of the hole of the first microstructure 12T, and does not penetrate the second light guide layer 14, but not limited thereto. The present invention does not limit the top view pattern and cross-sectional shape of the second microstructure 14T. As shown in FIG. 6 and FIG. 7 , in order to form the second microstructure 14T having a V-shaped structure in FIG. 7 , the present invention may use a grayscale imaging exposure process as shown in FIG. 6 , and in the area of the second light-guiding material layer 14a where the second microstructure 14T is to be formed, the irradiation amount of the light L2 varies in the horizontal direction HD (as shown in FIG. 6 , in the area where at least a portion of a second microstructure 14T is to be formed, the irradiation amount of the light L2 decreases along the horizontal direction HD to form the second microstructure 14T whose depth in the normal direction ND perpendicular to the surface 14S may decrease along the horizontal direction HD as shown in FIG. 7 ). In some embodiments, the top view pattern and cross-sectional shape of the second microstructure 14T may also be adjusted as required, and may be different from the top view pattern and cross-sectional shape of the first microstructure 12T, but is not limited thereto. In FIG. 7 , the second microstructure 14T may not overlap the first microstructure 12T in the normal direction ND. For example, when viewed from a top view (i.e., the normal direction ND), one of the second microstructures 14T may be located between two adjacent first microstructures 12T, but the present invention is not limited thereto. In some embodiments, at least a portion of the plurality of second microstructures 14T of the second light guide layer 14 may overlap at least a portion of the plurality of first microstructures 12T of the first light guide layer 12 in the normal direction ND. The present invention does not limit the relative arrangement positions of the plurality of first microstructures 12T of the first light guide layer 12 and the plurality of second microstructures 14T of the second light guide layer 14.

需說明的是,由於第二導光層14可直接形成在第一導光層12上,因此第二導光層14與第一導光層12之間可不需額外的黏著層,從而可避免多層導光膜1的光學效果受到黏著層的影響,以提升多層導光膜1的品質。除此之外,還可減少製作多層導光膜1的製程步驟,及/或縮減多層導光膜1在法線方向ND上的厚度。在本實施例中,第二導光層14可具有黏著性,以使第二導光層14可固定於第一導光層12上,但不以此為限。舉例來說,第二導光材料層14a的光阻材料可還包括黏著性促進劑(adhesion promoter),以增進第二導光層14與第一導光層12之間的附著力,但不以此為限。此外,由於第一微結構12T與第二微結構14T可透過曝光製程與顯影製程形成,因此在進行製作第二微結構14T的曝光製程時,曝光機台可先對第一導光層12的圖案進行對位步驟後再對第二導光材料層14a進行曝光,有助於提升第一微結構12T與第二微結構14T之間的對位精準度,從而提升導光效率。舉例來說,在進行製作第二微結構14T的曝光製程時,曝光機台可先對第一導光層12的至少一個第一微結構12T進行對位步驟後再對第二導光材料層14a進行曝光;或是在步驟S14中對第一導光材料層12a的表面12S進行第一圖案化製程時除了在第一導光層12的表面12S形成複數個第一微結構12T外,也同時在第一導光層12的表面12S形成至少一個對位標記(alignment mark),在進行製作第二微結構14T的曝光製程時,曝光機台可先對第一導光層12的對位標記進行對位步驟後再對第二導光材料層14a進行曝光。並且,在本實施例中,由於第一導光層12與第二導光層14可直接透過曝光製程與顯影製程形成,因此在製作多層導光膜1的過程中,可不需重複製作複數個模仁以及進行多次壓印製程,從而可簡化製作多層導光膜1的製程步驟,以縮減製作的時間與成本。It should be noted that, since the second light guide layer 14 can be directly formed on the first light guide layer 12, an additional adhesive layer is not required between the second light guide layer 14 and the first light guide layer 12, thereby preventing the optical effect of the multi-layer light guide film 1 from being affected by the adhesive layer, thereby improving the quality of the multi-layer light guide film 1. In addition, the process steps for manufacturing the multi-layer light guide film 1 can be reduced, and/or the thickness of the multi-layer light guide film 1 in the normal direction ND can be reduced. In this embodiment, the second light guide layer 14 can have adhesiveness so that the second light guide layer 14 can be fixed on the first light guide layer 12, but it is not limited thereto. For example, the photoresist material of the second light guide material layer 14a may further include an adhesion promoter to enhance the adhesion between the second light guide layer 14 and the first light guide layer 12, but the invention is not limited thereto. In addition, since the first microstructure 12T and the second microstructure 14T can be formed through an exposure process and a development process, when performing the exposure process for manufacturing the second microstructure 14T, the exposure machine may first perform an alignment step on the pattern of the first light guide layer 12 and then perform exposure on the second light guide material layer 14a, which helps to improve the alignment accuracy between the first microstructure 12T and the second microstructure 14T, thereby improving the light guide efficiency. For example, when performing an exposure process for manufacturing the second microstructure 14T, the exposure machine may first perform an alignment step on at least one first microstructure 12T of the first light guiding layer 12 and then expose the second light guiding material layer 14a; or when performing a first patterning process on the surface 12S of the first light guiding material layer 12a in step S14, in addition to forming a plurality of first microstructures 12T on the surface 12S of the first light guiding layer 12, at least one alignment mark is also formed on the surface 12S of the first light guiding layer 12. When performing an exposure process for manufacturing the second microstructure 14T, the exposure machine may first perform an alignment step on the alignment mark of the first light guiding layer 12 and then expose the second light guiding material layer 14a. Furthermore, in the present embodiment, since the first light-guiding layer 12 and the second light-guiding layer 14 can be directly formed through an exposure process and a development process, in the process of manufacturing the multi-layer light-guiding film 1, there is no need to repeatedly manufacture multiple molds and perform multiple embossing processes, thereby simplifying the process steps of manufacturing the multi-layer light-guiding film 1 to reduce the manufacturing time and cost.

如圖7所示,本實施例所提供的多層導光膜1可包括第一導光層12以及第二導光層14。第一導光層12的表面12S可具有複數個第一微結構12T,且第二導光層14設置於第一導光層12的表面12S上,並與第一導光層12的表面12S直接接觸,其中第二導光層14的表面14S可具有複數個第二微結構14T。舉例來說,第二導光層14背對於第一導光層12的表面14S可具有第二微結構14T,但不限於此。具體來說,第一微結構12T設置於第一導光層12的面對第二導光層14的表面12S上,且第二微結構14T設置於第二導光層14的背對第一導光層12的表面14S上。位於第一微結構12T中的介質的折射率可不同於第一導光層12的折射率,且位於第二微結構14T中的介質的折射率可不同於第二導光層14的折射率,使得第一微結構12T可調整第一導光層12中的光線的角度,且第二微結構14T可調整第二導光層14中的光線的角度。舉例來說,位於第一微結構12T中的介質及/或位於第二微結構14T中的介質可為空氣,但不限於此。在本實施例中,第一導光層12與第二導光層14可例如包括光阻材料,且第二導光層14的光阻材料可例如包括乾膜光阻材料。在一些實施例中,第一導光層12與第二導光層14可包括相同或不同的光阻材料。需說明的是,透過上述材料選擇,可使第一微結構12T與第二微結構14T能夠直接由圖案化製程形成,還能具有反射或折射光線的光學效果。As shown in FIG7 , the multi-layer light guide film 1 provided in this embodiment may include a first light guide layer 12 and a second light guide layer 14. The surface 12S of the first light guide layer 12 may have a plurality of first microstructures 12T, and the second light guide layer 14 is disposed on the surface 12S of the first light guide layer 12 and directly contacts the surface 12S of the first light guide layer 12, wherein the surface 14S of the second light guide layer 14 may have a plurality of second microstructures 14T. For example, the surface 14S of the second light guide layer 14 opposite to the first light guide layer 12 may have the second microstructure 14T, but is not limited thereto. Specifically, the first microstructure 12T is disposed on the surface 12S of the first light guiding layer 12 facing the second light guiding layer 14, and the second microstructure 14T is disposed on the surface 14S of the second light guiding layer 14 facing away from the first light guiding layer 12. The refractive index of the medium in the first microstructure 12T may be different from the refractive index of the first light guiding layer 12, and the refractive index of the medium in the second microstructure 14T may be different from the refractive index of the second light guiding layer 14, so that the first microstructure 12T can adjust the angle of the light in the first light guiding layer 12, and the second microstructure 14T can adjust the angle of the light in the second light guiding layer 14. For example, the medium in the first microstructure 12T and/or the medium in the second microstructure 14T may be air, but is not limited thereto. In the present embodiment, the first light guide layer 12 and the second light guide layer 14 may include, for example, a photoresist material, and the photoresist material of the second light guide layer 14 may include, for example, a dry film photoresist material. In some embodiments, the first light guide layer 12 and the second light guide layer 14 may include the same or different photoresist materials. It should be noted that, through the above material selection, the first microstructure 12T and the second microstructure 14T can be directly formed by a patterning process, and can also have an optical effect of reflecting or refracting light.

本發明的多層導光膜的導光層的數量不以上述圖7所示為限。舉例來說,本實施例所提供的多層導光膜可包括至少三層的導光層。請參考圖8,其所示為本發明另一實施例的多層導光膜的剖視示意圖。如圖8所示,本實施例所提供的多層導光膜2可包括三層的導光層。換言之,相較於圖7所示的多層導光膜1,圖8的多層導光膜2還可包括第三導光層16,且第三導光層16可直接設置於第二導光層14的表面14S上。第三導光層16背對於第二導光層14的表面16S可具有複數個第三微結構16T。在圖8的實施例中,第三導光層16的材料與形成方式及第三微結構16T的俯視圖案與剖視形狀可例如參照上文的第二導光層14的材料與形成方式與第二微結構14T的俯視圖案與剖視形狀,但不以此為限。在本實施例中,第三微結構16T可例如相同或類似於上述的第一微結構12T與第二微結構14T,而可例如包括孔洞。第三微結構16T可具有側壁S5與側壁S6,且側壁S5與側壁S6可例如於孔洞底部相連接,使得第三微結構16T的剖視形狀為V型。為了形成圖8中的具有V形結構的第三微結構16T,本發明可使用如上文所述的灰階成像曝光製程。此外,為了避免在設置用於形成第三導光層16的材料層(或稱為第三導光材料層)於第二導光層14的表面14S上時第三導光材料層填入第二微結構14T中,本發明的第三導光材料層的光阻材料可包括乾膜光阻材料。在一些實施例中,第三微結構16T的俯視圖案與剖視形狀也可依據需求做調整,而不同於第一微結構12T及/或第二微結構14T,但不限於此。本發明不限制第三微結構16T的俯視圖案與剖視形狀。如圖8所示,第三微結構16T在法線方向ND上可不重疊於第一微結構12T以及第二微結構14T,但不限於此。舉例來說,從俯視方向(即法線方向ND)來看,其中一個第三微結構16T可位於相鄰的一個第一微結構12T與一個第二微結構14T之間。在一些實施例中,第三導光層16的複數個第三微結構16T的至少一部分在法線方向ND上可重疊於第一導光層12的複數個第一微結構12T的至少一部分及/或第二導光層14的複數個第二微結構14T的至少一部分。本發明不限制第一導光層12的複數個第一微結構12T、第二導光層14的複數個第二微結構14T與第三導光層16的複數個第三微結構16T的相對設置位置。The number of light-guiding layers of the multi-layer light-guiding film of the present invention is not limited to that shown in FIG. 7 above. For example, the multi-layer light-guiding film provided in the present embodiment may include at least three light-guiding layers. Please refer to FIG. 8, which is a cross-sectional schematic diagram of a multi-layer light-guiding film of another embodiment of the present invention. As shown in FIG. 8, the multi-layer light-guiding film 2 provided in the present embodiment may include three light-guiding layers. In other words, compared to the multi-layer light-guiding film 1 shown in FIG. 7, the multi-layer light-guiding film 2 of FIG. 8 may further include a third light-guiding layer 16, and the third light-guiding layer 16 may be directly disposed on the surface 14S of the second light-guiding layer 14. The surface 16S of the third light-guiding layer 16 opposite to the second light-guiding layer 14 may have a plurality of third microstructures 16T. In the embodiment of FIG. 8 , the material and formation method of the third light guide layer 16 and the top view pattern and cross-sectional shape of the third microstructure 16T may refer to the material and formation method of the second light guide layer 14 and the top view pattern and cross-sectional shape of the second microstructure 14T described above, but are not limited thereto. In the present embodiment, the third microstructure 16T may be, for example, the same as or similar to the first microstructure 12T and the second microstructure 14T described above, and may, for example, include a hole. The third microstructure 16T may have a side wall S5 and a side wall S6, and the side wall S5 and the side wall S6 may, for example, be connected at the bottom of the hole, so that the cross-sectional shape of the third microstructure 16T is V-shaped. In order to form the third microstructure 16T having a V-shaped structure in FIG. 8 , the present invention may use the grayscale imaging exposure process described above. In addition, in order to prevent the third light guiding material layer from filling into the second microstructure 14T when the material layer for forming the third light guiding layer 16 (or referred to as the third light guiding material layer) is disposed on the surface 14S of the second light guiding layer 14, the photoresist material of the third light guiding material layer of the present invention may include a dry film photoresist material. In some embodiments, the top view pattern and cross-sectional shape of the third microstructure 16T may also be adjusted as required and may be different from the first microstructure 12T and/or the second microstructure 14T, but is not limited thereto. The present invention does not limit the top view pattern and cross-sectional shape of the third microstructure 16T. As shown in FIG. 8 , the third microstructure 16T may not overlap the first microstructure 12T and the second microstructure 14T in the normal direction ND, but is not limited thereto. For example, from a top view direction (i.e., normal direction ND), one of the third microstructures 16T may be located between an adjacent first microstructure 12T and a second microstructure 14T. In some embodiments, at least a portion of the plurality of third microstructures 16T of the third light guide layer 16 may overlap at least a portion of the plurality of first microstructures 12T of the first light guide layer 12 and/or at least a portion of the plurality of second microstructures 14T of the second light guide layer 14 in the normal direction ND. The present invention does not limit the relative arrangement positions of the plurality of first microstructures 12T of the first light guide layer 12, the plurality of second microstructures 14T of the second light guide layer 14, and the plurality of third microstructures 16T of the third light guide layer 16.

如圖8所示,第一微結構12T設置於第一導光層12的面對第二導光層14的表面12S上,第二微結構14T設置於第二導光層14的面對第三導光層16的表面14S上,且第三微結構16T設置於第三導光層16的背對第二導光層14的表面16S上。位於第三微結構16T中的介質的折射率可不同於第三導光層16的折射率,使得第三微結構16T可調整第三導光層16中的光線的角度。舉例來說,位於第三微結構16T中的介質可為空氣,但不限於此。As shown in Fig. 8, the first microstructure 12T is disposed on the surface 12S of the first light guiding layer 12 facing the second light guiding layer 14, the second microstructure 14T is disposed on the surface 14S of the second light guiding layer 14 facing the third light guiding layer 16, and the third microstructure 16T is disposed on the surface 16S of the third light guiding layer 16 facing away from the second light guiding layer 14. The refractive index of the medium in the third microstructure 16T may be different from the refractive index of the third light guiding layer 16, so that the third microstructure 16T can adjust the angle of the light in the third light guiding layer 16. For example, the medium in the third microstructure 16T may be air, but is not limited thereto.

由於第三導光層16可直接形成在第二導光層14上,因此第三導光層16與第二導光層14之間可不需額外的黏著層。在本實施例中,第三導光層16可具有黏著性,以使第三導光層16可固定於第二導光層14上,但不以此為限。舉例來說,用於形成第三導光層16的光阻材料可還包括黏著性促進劑,以增進第三導光層16與第二導光層14之間的附著力,但不以此為限。此外,在進行製作第三微結構16T的曝光製程時,曝光機台可先對第二導光層14的圖案進行對位步驟後再對用於形成第三導光層16的光阻材料進行曝光,有助於提升第三微結構16T與第二微結構14T之間的對位精準度,從而提升導光效率。舉例來說,在進行製作第三微結構16T的曝光製程時,曝光機台可先對第二導光層14的至少一個第二微結構14T進行對位步驟後再對用於形成第三導光層16的光阻材料進行曝光;或是在步驟S18中對第二導光材料層14a的表面14S進行第二圖案化製程時除了在第二導光材料層14a的表面14S形成複數個第二微結構14T外,也同時在第二導光材料層14a的表面14S形成至少一個對位標記,在進行製作第三微結構16T的曝光製程時,曝光機台可先對第二導光層14的對位標記進行對位步驟後再對用於形成第三導光層16的光阻材料進行曝光。Since the third light guide layer 16 can be directly formed on the second light guide layer 14, no additional adhesive layer is required between the third light guide layer 16 and the second light guide layer 14. In this embodiment, the third light guide layer 16 may have adhesiveness so that the third light guide layer 16 can be fixed on the second light guide layer 14, but the present invention is not limited thereto. For example, the photoresist material used to form the third light guide layer 16 may further include an adhesiveness promoter to enhance the adhesion between the third light guide layer 16 and the second light guide layer 14, but the present invention is not limited thereto. In addition, when performing the exposure process for manufacturing the third microstructure 16T, the exposure machine can first perform an alignment step on the pattern of the second light guiding layer 14 and then expose the photoresist material used to form the third light guiding layer 16, which helps to improve the alignment accuracy between the third microstructure 16T and the second microstructure 14T, thereby improving the light guiding efficiency. For example, when performing an exposure process for manufacturing the third microstructure 16T, the exposure machine may first perform an alignment step on at least one second microstructure 14T of the second light guiding layer 14 and then expose the photoresist material used to form the third light guiding layer 16; or when performing a second patterning process on the surface 14S of the second light guiding material layer 14a in step S18, in addition to forming a plurality of second microstructures 14T on the surface 14S of the second light guiding material layer 14a, at least one alignment mark is also formed on the surface 14S of the second light guiding material layer 14a. When performing an exposure process for manufacturing the third microstructure 16T, the exposure machine may first perform an alignment step on the alignment mark of the second light guiding layer 14 and then expose the photoresist material used to form the third light guiding layer 16.

類似地,在一些實施例中,可在圖8的第三導光層16的表面16S上依序堆疊至少一導光層以形成具有至少四層導光層的多層導光膜,且上述至少一導光層的材料與形成方式及上述至少一導光層的微結構的俯視圖案與剖視形狀可例如參照上文的第三導光層16的材料與形成方式與第三微結構16T的俯視圖案與剖視形狀,因此在此不多贅述。Similarly, in some embodiments, at least one light guiding layer may be stacked sequentially on the surface 16S of the third light guiding layer 16 of Figure 8 to form a multi-layer light guiding film having at least four light guiding layers, and the material and formation method of the at least one light guiding layer and the top view pattern and cross-sectional shape of the microstructure of the at least one light guiding layer may, for example, refer to the material and formation method of the third light guiding layer 16 and the top view pattern and cross-sectional shape of the third microstructure 16T mentioned above, and therefore will not be elaborated here.

綜上所述,本發明的多層導光膜包括彼此堆疊的至少兩個導光層,即本發明的多層導光膜包括彼此堆疊的N個導光層,N為大於或等於2的正整數。N個導光層包括在法線方向ND上依序堆疊的第一至第N導光層,且第一至第N導光層分別包括第一至第N微結構。第i微結構設置於第i導光層的面對第(i+1)導光層的表面上,且第N微結構設置於第N導光層的背對第(N-1)導光層的表面上,其中i為大於或等於1且小於或等於(N-1)的正整數。多層導光膜的製作方法可包括對第一導光材料層的表面進行第一圖案化製程以形成具有複數個第一微結構的第一導光層,接下來於第(j-1)導光層的表面上直接設置第j導光材料層,且對第j導光材料層的背對第(j-1)導光層的表面進行第j圖案化製程以形成具有複數個第j微結構的第j導光層,其中j為大於或等於2且小於或等於N的正整數。第一至第N圖案化製程可例如包括曝光製程與顯影製程,但不限於此。第一至第N圖案化製程的曝光製程可包括灰階成像曝光製程,但不限於此。第一導光層的材料(即第一導光材料層)可包括液態光阻材料或乾膜光阻材料,而第二至第N導光層的材料(即第二至第N導光材料層)可包括乾膜光阻材料,以避免在設置第j導光材料層於第(j-1)導光層的表面上時第j導光材料層填入第(j-1)導光層的第(j-1)微結構中。第j導光層與第(j-1)導光層之間可不需額外的黏著層,從而可避免多層導光膜的光學效果受到黏著層的影響,以提升多層導光膜的品質。第二至第N導光材料層可具有黏著性,以使第j導光層可固定於第(j-1)導光層上,但不以此為限。舉例來說,第二至第N導光材料層的光阻材料可還包括黏著性促進劑,以增進第j導光層與第(j-1)導光層之間的附著力,但不以此為限。位於第一至第N微結構中的介質的折射率可分別不同於第一至第N導光層的折射率,使得第一至第N微結構可分別調整第一至第N導光層中的光線的角度。舉例來說,位於第一至第N微結構中的介質可為空氣,但不限於此。此外,在進行製作第j導光層的第j微結構的曝光製程時,曝光機台可先對第(j-1)導光層的圖案進行對位步驟後再對第j導光材料層進行曝光,有助於提升第j導光層的第j微結構與第(j-1)導光層的第(j-1)微結構之間的對位精準度,從而提升導光效率。In summary, the multi-layer light-guiding film of the present invention includes at least two light-guiding layers stacked on each other, that is, the multi-layer light-guiding film of the present invention includes N light-guiding layers stacked on each other, and N is a positive integer greater than or equal to 2. The N light-guiding layers include the first to Nth light-guiding layers stacked in sequence in the normal direction ND, and the first to Nth light-guiding layers include the first to Nth microstructures, respectively. The i-th microstructure is disposed on the surface of the i-th light-guiding layer facing the (i+1)th light-guiding layer, and the N-th microstructure is disposed on the surface of the N-th light-guiding layer facing away from the (N-1)th light-guiding layer, wherein i is a positive integer greater than or equal to 1 and less than or equal to (N-1). The method for manufacturing a multi-layer light-guiding film may include performing a first patterning process on the surface of a first light-guiding material layer to form a first light-guiding layer having a plurality of first microstructures, then directly disposing a j-th light-guiding material layer on the surface of the (j-1)-th light-guiding layer, and performing a j-th patterning process on the surface of the j-th light-guiding material layer opposite to the (j-1)-th light-guiding layer to form a j-th light-guiding layer having a plurality of j-th microstructures, wherein j is a positive integer greater than or equal to 2 and less than or equal to N. The first to N-th patterning processes may, for example, include an exposure process and a developing process, but are not limited thereto. The exposure process of the first to N-th patterning processes may include a grayscale imaging exposure process, but are not limited thereto. The material of the first light guiding layer (i.e., the first light guiding material layer) may include a liquid photoresist material or a dry film photoresist material, and the materials of the second to Nth light guiding layers (i.e., the second to Nth light guiding material layers) may include a dry film photoresist material to prevent the jth light guiding material layer from filling into the (j-1)th microstructure of the (j-1)th light guiding layer when the jth light guiding material layer is disposed on the surface of the (j-1)th light guiding layer. No additional adhesive layer is required between the jth light guiding layer and the (j-1)th light guiding layer, thereby preventing the optical effect of the multi-layer light guiding film from being affected by the adhesive layer, thereby improving the quality of the multi-layer light guiding film. The second to Nth light guiding material layers may have adhesiveness so that the jth light guiding layer can be fixed on the (j-1)th light guiding layer, but is not limited thereto. For example, the photoresist material of the second to Nth light guiding material layers may further include an adhesion promoter to enhance the adhesion between the jth light guiding layer and the (j-1)th light guiding layer, but the present invention is not limited thereto. The refractive index of the medium in the first to Nth microstructures may be different from the refractive index of the first to Nth light guiding layers, respectively, so that the first to Nth microstructures may adjust the angle of the light in the first to Nth light guiding layers, respectively. For example, the medium in the first to Nth microstructures may be air, but the present invention is not limited thereto. In addition, when performing the exposure process for manufacturing the jth microstructure of the jth light guiding layer, the exposure machine may first perform an alignment step on the pattern of the (j-1)th light guiding layer and then expose the jth light guiding material layer, which helps to improve the alignment accuracy between the jth microstructure of the jth light guiding layer and the (j-1)th microstructure of the (j-1)th light guiding layer, thereby improving the light guiding efficiency.

請參考圖9,其所示為本發明一實施例的顯示裝置的剖視示意圖。如圖9所示,顯示裝置3可包括顯示面板32以及光源模組34,且光源模組34設置於顯示面板32的一側,其中光源模組34可包括多層導光膜36。在本實施例中,顯示面板32可具有顯示面32S1與背對於顯示面32S1的背面32S2,且光源模組34可設置於顯示面板32的背面32S2上,使得光源模組34所產生的光線可作為顯示面板32的背光源,但本發明不以此為限。顯示面32S1可例如為顯示面板32面對使用者UR的表面。圖9所示的多層導光膜36僅為示意,且可包括上述任一實施例的多層導光膜,因此在此不多贅述。在圖9中,光源模組34還可包括光源38,設置於多層導光膜36的側面36S,使得光源38的光線能夠從多層導光膜36的側面36S進入多層導光膜36,以調節光源38的光線方向並將光線傳送至顯示面板32。在一些實施例中,顯示面板32可例如包括穿透式(transmissive)顯示面板,例如穿透式液晶顯示面板或其他合適的顯示面板。Please refer to FIG9 , which is a schematic cross-sectional view of a display device according to an embodiment of the present invention. As shown in FIG9 , the display device 3 may include a display panel 32 and a light source module 34, and the light source module 34 is disposed on one side of the display panel 32, wherein the light source module 34 may include a multi-layer light-guiding film 36. In the present embodiment, the display panel 32 may have a display surface 32S1 and a back surface 32S2 opposite to the display surface 32S1, and the light source module 34 may be disposed on the back surface 32S2 of the display panel 32, so that the light generated by the light source module 34 may be used as a backlight source for the display panel 32, but the present invention is not limited thereto. The display surface 32S1 may, for example, be the surface of the display panel 32 facing the user UR. The multi-layer light-guiding film 36 shown in FIG9 is for illustration only, and may include the multi-layer light-guiding film of any of the above-mentioned embodiments, and therefore will not be described in detail here. In FIG9 , the light source module 34 may further include a light source 38, which is disposed on a side surface 36S of the multi-layer light guide film 36, so that light from the light source 38 can enter the multi-layer light guide film 36 from the side surface 36S of the multi-layer light guide film 36 to adjust the light direction of the light source 38 and transmit the light to the display panel 32. In some embodiments, the display panel 32 may include, for example, a transmissive display panel, such as a transmissive liquid crystal display panel or other suitable display panels.

請參考圖10,其所示為本發明另一實施例的顯示裝置的剖視示意圖。如圖10所示,本實施例所提供的顯示裝置4與圖9所示的顯示裝置3的差異在於光源模組相對於顯示面板的位置不同。如圖10所示,顯示裝置4可包括顯示面板32a以及光源模組34a,且光源模組34a設置於顯示面板32a的一側,其中光源模組34a可包括多層導光膜36a。在本實施例中,顯示面板32a可具有顯示面32aS1與背對於顯示面32aS1的背面32aS2,且光源模組34a可設置於顯示面板32a的顯示面32aS1上,使得光源模組34a所產生的光線可作為顯示面板32a的前光源(front light),但不限於此。顯示面32aS1可例如為顯示面板32a面對使用者UR的表面。圖10所示的多層導光膜36a僅為示意,且可包括上述任一實施例的多層導光膜,因此在此不多贅述。在圖10中,光源模組34a還可包括光源38a,設置於多層導光膜36a的側面36aS,使得光源38a的光線能夠從多層導光膜36a的側面36aS進入多層導光膜36a,以調節光源38a的光線方向並將光線傳送至顯示面板32a。在一些實施例中,顯示面板32a可例如包括反射式(reflective)顯示面板,例如反射式液晶顯示面板、電子紙或其他合適的顯示面板。Please refer to FIG. 10 , which is a cross-sectional schematic diagram of a display device of another embodiment of the present invention. As shown in FIG. 10 , the difference between the display device 4 provided in this embodiment and the display device 3 shown in FIG. 9 is that the position of the light source module relative to the display panel is different. As shown in FIG. 10 , the display device 4 may include a display panel 32a and a light source module 34a, and the light source module 34a is disposed on one side of the display panel 32a, wherein the light source module 34a may include a multi-layer light-guiding film 36a. In this embodiment, the display panel 32a may have a display surface 32aS1 and a back surface 32aS2 opposite to the display surface 32aS1, and the light source module 34a may be disposed on the display surface 32aS1 of the display panel 32a, so that the light generated by the light source module 34a can be used as a front light source (front light) of the display panel 32a, but is not limited thereto. The display surface 32aS1 may be, for example, the surface of the display panel 32a facing the user UR. The multi-layer light-guiding film 36a shown in FIG. 10 is for illustration only and may include the multi-layer light-guiding film of any of the above-mentioned embodiments, and therefore will not be described in detail here. In FIG. 10 , the light source module 34a may also include a light source 38a, which is disposed on the side 36aS of the multi-layer light-guiding film 36a, so that the light of the light source 38a can enter the multi-layer light-guiding film 36a from the side 36aS of the multi-layer light-guiding film 36a to adjust the light direction of the light source 38a and transmit the light to the display panel 32a. In some embodiments, the display panel 32a may, for example, include a reflective display panel, such as a reflective liquid crystal display panel, electronic paper or other suitable display panels.

綜上所述,在本發明的多層導光膜的製作方法中,由於第二導光層可直接形成在第一導光層上,因此不同導光層之間可不需額外的黏著層,從而可避免第一微結構的光學效果受到黏著層的影響,以提升多層導光膜的品質。除此之外,還可簡化製作多層導光膜的製程步驟,及/或縮減多層導光膜在法線方向上的厚度。另外,由於導光層可直接透過曝光製程與顯影製程形成,因此製作多層導光膜的過程中可不需進行繁瑣的製作模仁的步驟,從而可明顯簡化製程步驟,以縮減製作成本。並且,由於不同導光層的微結構的位置可透過曝光製程中的機台定位,因此可有助於提升不同導光層的微結構之間的對位精準度,從而提升導光效率。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 In summary, in the method for manufacturing a multi-layer light-guiding film of the present invention, since the second light-guiding layer can be directly formed on the first light-guiding layer, no additional adhesive layer is required between different light-guiding layers, thereby preventing the optical effect of the first microstructure from being affected by the adhesive layer, thereby improving the quality of the multi-layer light-guiding film. In addition, the process steps for manufacturing the multi-layer light-guiding film can be simplified, and/or the thickness of the multi-layer light-guiding film in the normal direction can be reduced. In addition, since the light-guiding layer can be directly formed through an exposure process and a development process, the process of manufacturing the multi-layer light-guiding film does not require the cumbersome step of making a mold core, thereby significantly simplifying the process steps to reduce the manufacturing cost. Furthermore, since the positions of the microstructures of different light-guiding layers can be positioned by the machine in the exposure process, it can help improve the alignment accuracy between the microstructures of different light-guiding layers, thereby improving the light-guiding efficiency. The above is only a preferred embodiment of the present invention. All equivalent changes and modifications made according to the scope of the patent application of the present invention should fall within the scope of the present invention.

1,2:多層導光膜 12:第一導光層 12a:第一導光材料層 12S,14S,16S:表面 12T:第一微結構 14:第二導光層 14a:第二導光材料層 14T:第二微結構 16:第三導光層 16T:第三微結構 3:顯示裝置 32,32a:顯示面板 32S1,32aS1:顯示面 32S2,32aS2:背面 34,34a:光源模組 36,36a:多層導光膜 36S,36aS:側面 38,38a:光源 AP:最大孔徑 HD:水平方向 L1,L2:光線 ND:法線方向 S1,S2,S3,S4,S5,S6:側壁 S12,S14,S16,S18:步驟 UR:使用者 1,2: multi-layer light-guiding film 12: first light-guiding layer 12a: first light-guiding material layer 12S,14S,16S: surface 12T: first microstructure 14: second light-guiding layer 14a: second light-guiding material layer 14T: second microstructure 16: third light-guiding layer 16T: third microstructure 3: display device 32,32a: display panel 32S1,32aS1: display surface 32S2,32aS2: back surface 34,34a: light source module 36,36a: multi-layer light-guiding film 36S,36aS: side surface 38,38a: light source AP: maximum aperture HD: horizontal direction L1,L2: light ND: normal direction S1,S2,S3,S4,S5,S6: Sidewall S12,S14,S16,S18: Steps UR: User

圖1所示為本發明一實施例的多層導光膜的製作方法流程圖, 圖2到圖7所示為本發明一實施例在製作多層導光膜的不同步驟中的結構示意圖, 圖8所示為本發明另一實施例的多層導光膜的剖視示意圖, 圖9所示為本發明一實施例的顯示裝置的剖視示意圖,以及 圖10所示為本發明另一實施例的顯示裝置的剖視示意圖。 FIG. 1 is a flow chart of a method for manufacturing a multi-layer light-guiding film according to an embodiment of the present invention, FIG. 2 to FIG. 7 are schematic diagrams of the structure of an embodiment of the present invention in different steps of manufacturing a multi-layer light-guiding film, FIG. 8 is a schematic cross-sectional view of a multi-layer light-guiding film according to another embodiment of the present invention, FIG. 9 is a schematic cross-sectional view of a display device according to an embodiment of the present invention, and FIG. 10 is a schematic cross-sectional view of a display device according to another embodiment of the present invention.

1:多層導光膜 1: Multi-layer light-guiding film

12:第一導光層 12: First light guide layer

12S,14S:表面 12S,14S: Surface

12T:第一微結構 12T: First microstructure

14:第二導光層 14: Second light guide layer

14T:第二微結構 14T: Second microstructure

HD:水平方向 HD: horizontal direction

ND:法線方向 ND: Normal direction

S1,S2,S3,S4:側壁 S1,S2,S3,S4: Side walls

Claims (10)

一種多層導光膜,包括: 一第一導光層,其中所述第一導光層的表面具有複數個第一微結構;以及 一第二導光層,設置於所述第一導光層的所述表面上,並與所述第一導光層的所述表面直接接觸,其中所述第二導光層的表面具有複數個第二微結構。 A multi-layer light-guiding film comprises: a first light-guiding layer, wherein the surface of the first light-guiding layer has a plurality of first microstructures; and a second light-guiding layer, disposed on the surface of the first light-guiding layer and in direct contact with the surface of the first light-guiding layer, wherein the surface of the second light-guiding layer has a plurality of second microstructures. 如請求項1所述的多層導光膜,其中所述第一導光層與所述第二導光層包括光阻材料。The multi-layer light-guiding film as described in claim 1, wherein the first light-guiding layer and the second light-guiding layer comprise photoresistive materials. 如請求項1所述的多層導光膜,其中所述複數個第一微結構的其中一個包括孔洞。A multi-layer light-guiding film as described in claim 1, wherein one of the plurality of first microstructures comprises a hole. 一種顯示裝置,包括: 一顯示面板;以及 一光源模組,設置於所述顯示面板的一側,其中所述光源模組包括如請求項1所述的多層導光膜。 A display device, comprising: a display panel; and a light source module, disposed on one side of the display panel, wherein the light source module comprises a multi-layer light-guiding film as described in claim 1. 如請求項4所述的顯示裝置,其中所述光源模組設置於所述顯示面板的顯示面上或是設置於所述顯示面板的背對所述顯示面的表面上。A display device as described in claim 4, wherein the light source module is disposed on a display surface of the display panel or on a surface of the display panel opposite to the display surface. 一種多層導光膜的製作方法,包括: 提供一第一導光材料層; 對所述第一導光材料層的表面進行一第一圖案化製程以形成一第一導光層,其中所述第一導光層的表面具有複數個第一微結構; 於所述第一導光層的所述表面上直接設置一第二導光材料層;以及 對所述第二導光材料層的表面進行一第二圖案化製程以形成一第二導光層,其中所述第二導光層的表面具有複數個第二微結構。 A method for manufacturing a multi-layer light-guiding film, comprising: providing a first light-guiding material layer; performing a first patterning process on the surface of the first light-guiding material layer to form a first light-guiding layer, wherein the surface of the first light-guiding layer has a plurality of first microstructures; directly disposing a second light-guiding material layer on the surface of the first light-guiding layer; and performing a second patterning process on the surface of the second light-guiding material layer to form a second light-guiding layer, wherein the surface of the second light-guiding layer has a plurality of second microstructures. 如請求項6所述的多層導光膜的製作方法,其中所述第一導光材料層與所述第二導光材料層包括光阻材料。The method for manufacturing a multi-layer light-guiding film as described in claim 6, wherein the first light-guiding material layer and the second light-guiding material layer include photoresist materials. 如請求項7所述的多層導光膜的製作方法,其中所述第一圖案化製程與所述第二圖案化製程包括曝光製程與顯影製程。The method for manufacturing a multi-layer light-guiding film as described in claim 7, wherein the first patterning process and the second patterning process include an exposure process and a development process. 如請求項8所述的多層導光膜的製作方法,其中所述曝光製程包括灰階成像曝光製程。A method for manufacturing a multi-layer light-guiding film as described in claim 8, wherein the exposure process includes a grayscale imaging exposure process. 如請求項7所述的多層導光膜的製作方法,其中所述第二導光材料層的材料包括乾膜光阻材料。The method for manufacturing a multi-layer light-guiding film as described in claim 7, wherein the material of the second light-guiding material layer includes a dry film photoresist material.
TW112116943A 2022-09-07 2023-05-08 Multilayer light guide film, manufacturing method thereof and display device TW202411703A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2022110998343 2022-09-07
CN202211099834.3A CN117706674A (en) 2022-09-07 2022-09-07 Multilayer light guide film, manufacturing method thereof and display device

Publications (1)

Publication Number Publication Date
TW202411703A true TW202411703A (en) 2024-03-16

Family

ID=90143009

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112116943A TW202411703A (en) 2022-09-07 2023-05-08 Multilayer light guide film, manufacturing method thereof and display device

Country Status (2)

Country Link
CN (1) CN117706674A (en)
TW (1) TW202411703A (en)

Also Published As

Publication number Publication date
CN117706674A (en) 2024-03-15

Similar Documents

Publication Publication Date Title
TWI521246B (en) Light guide plate, film layer, light guide device and methods of making thereof
KR100635446B1 (en) Optical-interference type reflective panel and method for making the same
KR101309446B1 (en) Method for preparing surface concaves and convexes
CN104536258B (en) mask plate, exposure device, method for manufacturing photosensitive resin pattern and substrate
JP2006201782A (en) Wire grid polarization film, method for manufacturing the same, liquid crystal display using the same, and method for manufacturing mold for forming grid of the same
US20100055401A1 (en) Manufacturing method of film having micro-pattern thereon and film manufactured thereby
KR100295505B1 (en) Light guide panel of flat panel display and method for fabricating the same
CN110262183B (en) Mask plate, exposure method and device, display substrate, manufacturing method and device
WO2018176783A1 (en) Mask plate and manufacturing method thereof, and display device
KR20090069134A (en) Inclined exposure lithography system
US8802356B2 (en) Photosensitive film pattern and method for manufacturing a photosensitive film pattern
WO2017035909A1 (en) Photomask for optical alignment and optical alignment method
TW202411703A (en) Multilayer light guide film, manufacturing method thereof and display device
JP2013104960A (en) Photomask and exposure method
KR100971719B1 (en) Method of manufacturing a large scale nano pattern of LGP using photoresist process
CN107436533B (en) Mask plate, composition method thereof and display panel
KR101234852B1 (en) Light guide plate, optical apparatus and method for forming the light guide plate
KR102236511B1 (en) Back light unit and liquid crystal display device comprising the same, and method for manufacturing of light guide plate
US7323123B2 (en) Method of fabricating light-guide plate
KR20070072949A (en) Nano structure and diffuser sheet having the nano structure, backlight uint
JP5937409B2 (en) Photomask substrate, photomask, photomask manufacturing method, and pattern transfer method
JP2008197322A (en) Manufacturing method of optical sheet
TWI434133B (en) Half tone mask and manufacturing method of the same
KR20110062881A (en) Exposure method of substrate, exposure device for performing the method and manufacturing method of display substrate using the method
KR101040028B1 (en) Light guide panel of flat panel display manufactoring system and manufactoring method therefor