TW202410100A - 間接加熱式陰極離子源及在多個模式中運行其的方法 - Google Patents

間接加熱式陰極離子源及在多個模式中運行其的方法 Download PDF

Info

Publication number
TW202410100A
TW202410100A TW112116527A TW112116527A TW202410100A TW 202410100 A TW202410100 A TW 202410100A TW 112116527 A TW112116527 A TW 112116527A TW 112116527 A TW112116527 A TW 112116527A TW 202410100 A TW202410100 A TW 202410100A
Authority
TW
Taiwan
Prior art keywords
ion source
indirectly heated
arc chamber
heated cathode
target
Prior art date
Application number
TW112116527A
Other languages
English (en)
Inventor
格拉漢 萊特
沙杜 S 佩特爾
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202410100A publication Critical patent/TW202410100A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/342Hollow targets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/20Ion sources; Ion guns using particle beam bombardment, e.g. ionisers
    • H01J27/205Ion sources; Ion guns using particle beam bombardment, e.g. ionisers with electrons, e.g. electron impact ionisation, electron attachment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge
    • H01J37/32064Circuits specially adapted for controlling the arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

公開一種能夠進行不同運行模式的離子源。所述離子源包括可插式靶托,所述可插式靶托包括其中設置有固體摻雜劑材料的中空內部。靶托可在第一端處具有多孔表面,來自固體摻雜劑材料的蒸氣可穿過多孔表面進入電弧室。多孔表面阻止液體或熔融的摻雜劑材料傳遞到電弧室中。靶托還被構造成使得當中空內部內的摻雜劑材料已被消耗時可被重新填充摻雜劑材料。固體靶也設置於電弧室中。當使用可插式靶托時,形成多電荷離子。當可插式靶托被縮回時,通過僅對固體的包含摻雜劑的化合物進行蝕刻來形成單電荷離子。

Description

使用固態靶與靶架產生鋁離子之混成離子源
本公開實施例涉及一種離子源,且更具體來說涉及一種具有多種模式以產生物種的具有不同電荷的離子的離子源。 本申請主張在2022年5月10日提出申請的序列號為17/740,861的美國專利申請的優先權,所述美國專利申請的公開內容全文併入本文供參考。
可使用各種類型的離子源來形成在半導體處理設備中使用的離子。舉例來說,間接加熱式陰極(indirectly heated cathode,IHC)離子源通過向設置於陰極後方的細絲供應電流來運行。細絲發射熱離子電子,所述熱離子電子朝向陰極加速且對所述陰極進行加熱,繼而使得陰極將電子發射到離子源的電弧室(arc chamber)中。陰極設置於電弧室的一端處。推斥極可設置於電弧室的與所述陰極相對的一端處。可對陰極及推斥極加偏壓以對電子進行推斥,從而朝向電弧室的中心往回引導所述電子。在一些實施例中,使用磁場來進一步將電子約束在電弧室內。使用多個側來連接電弧室的所述兩端。
沿著這些側中的一者靠近電弧室的中心設置提取孔口,可通過所述提取孔口來提取在電弧室中形成的離子。
在某些實施例中,可能期望形成具有單電荷的離子。然而,在其他實施例中,可能期望形成多電荷的離子。遺憾的是,對於某些材料(例如,鋁及其他金屬)來說,用於形成單電荷離子的機制可能無法有效地形成多電荷離子。因此,可視所提取離子的期望電荷而利用不同的離子源。
由於此解決方案會利用幾個離子源,因此代價高昂。此外,由於從一個離子源切換到不同的離子源需要時間,因此此解決方案耗時。
因此,能夠在不同模式中運行以產生具有不同電荷的離子的單個離子源將是有益的。另外,使電弧室能夠快速地從一個模式改變到另一模式將是有利的。
公開一種能夠進行不同運行模式的離子源。所述離子源包括可插式靶托,所述可插式靶托包括其中設置有固體摻雜劑材料的中空內部。靶托可在第一端處具有多孔表面,來自固體摻雜劑材料的蒸氣可穿過多孔表面進入電弧室。多孔表面阻止液體或熔融的摻雜劑材料傳遞到電弧室中。靶托還被構造成使得當中空內部內的摻雜劑材料已被消耗時可被重新填充摻雜劑材料。包括包含所關注摻雜劑的化合物的固體靶也設置於電弧室中。當使用可插式靶托時,形成多電荷離子。當可插式靶托被縮回時,通過僅對固體的包含摻雜劑的化合物進行蝕刻來形成單電荷離子。
如上所述,某些摻雜劑(例如,鋁及其他金屬)利用不同的機制來形成單電荷離子及多電荷離子。
圖1示出具有可插式靶托的IHC離子源10,所述IHC離子源10能克服這些問題。IHC離子源10包括電弧室100,電弧室100包括相對的兩端及連接到這兩端的壁101。電弧室100的壁101可由導電材料構造而成且可彼此電連通。在一些實施例中,靠近壁101中的一者或多者可設置有襯層。在電弧室100中在電弧室100的第一端104處設置有陰極110。在陰極110後方設置有細絲160。細絲160與細絲電源165連通。細絲電源165被配置成使電流穿過細絲160,以使得細絲160發射熱離子電子。陰極偏壓電源115相對於陰極110而對細絲160施加負偏壓,以使這些熱離子電子從細絲160朝向陰極110加速,且在這些熱離子撞擊陰極110的後表面時對陰極110進行加熱。陰極偏壓電源115可對細絲160施加偏壓,使得細絲160具有例如比陰極110的電壓負200 V到1500 V之間的電壓。然後,陰極110在其前表面上將熱離子電子發射到電弧室100中。
因此,細絲電源165向細絲160供應電流。陰極偏壓電源115對細絲160施加偏壓,使得細絲160具有比陰極110負的值,進而使得從細絲160朝向陰極110吸引電子。在某些實施例中,可例如由偏壓電源111相對於電弧室100對陰極110施加偏壓。在其他實施例中,陰極110可電連接到電弧室100,以與電弧室100的壁101處於相同的電壓下。在這些實施例中,可不採用偏壓電源111且陰極110可電連接到電弧室100的壁101。在某些實施例中,電弧室100連接到電接地。
在與第一端104相對的第二端105上可設置有推斥極120。可通過推斥極偏壓電源123相對於電弧室100對推斥極120施加偏壓。在其他實施例中,推斥極120可電連接到電弧室100,以與電弧室100的壁101處於相同的電壓下。在這些實施例中,可不採用推斥極偏壓電源123,且推斥極120可電連接到電弧室100的壁101。在另外的其他實施例中,不採用推斥極120。
陰極110及推斥極120各自由導電材料(例如,金屬或石墨)製成。
在某些實施例中,在電弧室100中產生磁場。此磁場旨在沿著一個方向約束電子。所述磁場通常平行於從第一端104到第二端105的壁101。舉例來說,電子可被約束於與從陰極110到推斥極120的方向(即Y方向)平行的柱中。因此,電子不會經受任何電磁力而在Y方向上移動。然而,電子在其他方向上的移動可能會經受電磁力。
電弧室100的一側(被稱為提取板103)上可設置有提取孔口140。在圖1中,提取孔口140設置於與Y-Z平面(垂直於頁面)平行的一側上。
此外,IHC離子源10可與氣體源連通。氣體源170可包含可為包含鹵素的物種的氣體。在一些實施例中,所述氣體可為含氟物種,例如PF 3或NF 3。可利用閥171對氣體從氣體源170到離子源10的流動進行控制。閥171可為質量流量控制器(mass flow controller,MFC),使得可對流動速率進行控制。
固體靶175可設置於電弧室100內。在圖1中,固體靶被示出為抵靠與提取板103相對的壁設置。然而,其他實施例也是可能的。舉例來說,固體靶175可設置於與提取板103相鄰的壁上。此外,在圖9中所示的另一實施例中,固體靶175可設置於第二端105上。在此實施例中,固體靶175可設置於推斥極120上。作為另外一種選擇,固體靶175可代替推斥極120。固體靶175是包含所關注摻雜劑的化合物。舉例來說,固體靶175可為包含金屬的陶瓷材料。舉例來說,在一個實施例中,金屬可為鋁,而固體靶175可為氧化鋁(Al 2O 3)或氮化鋁(AlN)。
IHC離子源10還包括靶托190,靶托190可插入到電弧室100中及從電弧室100縮回。在圖1所示實施例中,靶托190處於靶托190位於電弧室100內的延伸位置中。在此圖中,靶托190沿著電弧室100的壁101中的一者進入電弧室。在某些實施例中,靶托190可在第一端104與第二端105之間的中平面處進入電弧室100。在另一實施例中,靶托190可在不同於中平面的定位處進入電弧室100。在圖1中所示的實施例中,靶托190通過與提取孔口140相對的側進入電弧室100。然而,在其他實施例中,靶托190可通過與提取板103相鄰的側進入。在又一實施例中,靶托可通過第二端105進入。
靶托190可包括其中可設置有摻雜劑材料195的中空內部191。中空內部191可被界定為中空圓柱形坩堝的內部。
作為金屬(例如,銦、鋁、銻或鎵)的摻雜劑材料195可設置於靶托190的中空內部191內。在某些實施例中,摻雜劑材料195可為純金屬,其中“純”指示純度為至少99%的金屬。摻雜劑材料195在被放置於中空內部191中時可呈固體形式。摻雜劑材料195可呈材料塊、銼屑、刨花、球的形式或其他形狀。在某些實施例中,摻雜劑材料195可熔融且變為液體。用於摻雜劑材料195的金屬與用於固體靶175的陶瓷材料中的金屬相同。舉例來說,摻雜劑材料195可為鋁,而固體靶可為氧化鋁或氮化鋁。
靶托190與致動器200的一端連通。致動器200的相對端可與支撐件210連通。在某些實施例中,此支撐件210可為IHC離子源10的殼體。在某些實施例中,致動器200可能夠改變其總位移。舉例來說,致動器200可為伸縮設計。
圖2示出其中致動器200位於縮回位置中的IHC離子源10。在此位置中,中空內部191完全位於電弧室100外。在某些實施例中,當靶托190位於電弧室100外時,摻雜劑材料195冷卻。通過這種方式,當致動器200位於縮回位置中時,摻雜劑材料195不會進入電弧室。
雖然圖1示出中空內部191完全位於電弧室100內而圖2示出中空內部191完全位於電弧室100外部,但可存在其他位置。通過控制靶托190插入到電弧室100中的距離,可控制靶托190的溫度及摻雜劑材料195的溫度。
控制器180可與電源中的一者或多者連通,使得可更改由這些電源所供應的電壓或電流。控制器180也可與致動器200及閥171連通。控制器180可包括處理單元,例如微控制器、個人計算機、專用控制器或另一適合的處理單元。控制器180還可包括非暫時性存儲元件,例如半導體存儲器、磁性存儲器或另一適合的存儲器。此非暫時性存儲元件可包含使得控制器180能夠實行本文中所述的功能的指令及其他數據。
控制器180被配置成使得離子源10能夠在多個不同的模式中運行。這些模式包括單電荷運行模式;及多電荷運行模式。將更詳細地對這些模式中的每一者進行闡述。
在單電荷模式中,細絲電源165使電流穿過細絲160,此使細絲160發射熱離子電子。這些電子撞擊可具有比細絲160正的值的陰極110的後表面,從而使得陰極110受熱,此繼而使得陰極110將電子發射到電弧室100中。這些電子與通過和閥171連通的氣體入口而被饋送到電弧室100中的氣體的分子碰撞。
控制器180開啟閥171,以使氣體進行向電弧室100中的流動。控制器180還對致動器200進行控制使得將致動器200從電弧室100移除,如圖2中所示。
通過這種方式,氣體通過閥171而被引入到電弧室100中。所述氣體是包含鹵素的氣體,之所以可使用所述氣體,是由於所述氣體可高效地對固體靶175進行蝕刻且還提供鹵素(例如氟)以從電弧室100的壁回收鋁。來自陰極110的電子、氣體與正電勢的組合形成等離子體。此等離子體用於對固體靶175進行蝕刻或濺射。此等離子體中的離子可主要是單電荷離子,例如Al +。在某些實施例中,電子及正離子可能在某種程度上受到磁場的約束。在某些實施例中,等離子體被約束成鄰近電弧室100的中心、靠近提取孔口140。
因此,當期望形成單電荷離子(例如Al +)時,操作者可將此偏好傳輸到控制器180。作為另外一種選擇,控制器180可基於期望的電荷狀態及射束電流來確定期望的模式。作為響應,控制器180可實行上述操作序列。
在多電荷模式中,控制器180開啟閥171,以使第一氣體進行向電弧室100中的流動。控制器180還對致動器200進行控制,使得致動器200插入到電弧室100中,如圖1中所示。
氣體被引入到電弧室100中。如上所述,所述氣體可為包含鹵素的氣體,例如PF 3或NF 3。之所以可使用這些氣體,是由於這些氣體高效地對來自摻雜劑材料195的蒸汽進行電離且還提供鹵素以從電弧室100的壁回收鋁。來自陰極110的電子、氣體及正電勢的組合形成等離子體。在某些實施例中,電子及正離子可稍微受磁場約束。在某些實施例中,等離子體被約束成鄰近電弧室100的中心、靠近提取孔口140。化學蝕刻、升高的溫度或通過等離子體進行的濺鍍將摻雜劑材料195轉變成氣相且實現離子化。等離子體中形成的許多離子可為多電荷離子,例如Al ++或Al +++。然後,可通過提取孔口140提取經離子化的原料材料並用於製備離子射束。
由於等離子體被維持於比靶托190正的電壓下,因此朝向等離子體吸引從摻雜劑材料195濺鍍或以其他方式釋放的蒸氣、負離子及中性原子。
另外,由於固體靶175保持設置於電弧室100中,因此固體靶175被氣體蝕刻並向等離子體貢獻離子。
在某些實施例中,由於所述等離子體形成的熱量,摻雜劑材料195被加熱且氣化。然而,在其他實施例中,也可通過額外方式對摻雜劑材料195進行加熱。舉例來說,可在靶托190內設置加熱元件以進一步對摻雜劑材料195進行加熱。加熱元件可為電阻加熱元件或一些其他類型的加熱器。
在某些實施例中,靶托190可由導電材料製成且可接地。在不同的實施例中,靶托190可由導電材料製成且可電浮置。在不同的實施例中,靶托190可由導電材料製成且可維持於與壁101或致動器200相同的電壓下。在其他實施例中,靶托190可由絕緣材料製成。
在又一實施例中,可相對於電弧室100對靶托190施加電偏壓。舉例來說,靶托190可由導電材料製成且可被獨立電源(未示出)施加偏壓以處於與壁101不同的電壓下。此電壓可具有比施加到壁101的電壓正的值或負的值。通過這種方式,可使用電偏壓來對摻雜劑材料195進行濺鍍或作為對摻雜劑材料進行加熱的額外方式。
因此,當期望形成多電荷離子時,操作者可將此偏好傳輸到控制器180。作為另外一種選擇,控制器180可基於期望的電荷狀態及射束電流來確定期望的模式。作為響應,控制器180可實行上述操作序列。
圖3更詳細地示出靶托190的一個實施例。在此實施例中,靶托190包括坩堝300。坩堝300可為在第一端301上具有敞開的面且在第二端302上具有孔303的中空圓柱體。第一端301處的敞開的面可具有凸緣304,凸緣304朝向圓柱體的中心軸線305延伸。因此,第一端301上的開口306可由於凸緣304而小於中空圓柱體的內徑。開口306的直徑也可小於第二端302上的孔303的直徑。坩堝300可由石墨、耐火材料、氧化鋁、碳化物或另一適合的材料構造而成。
可呈圓盤形狀的多孔插入件310穿過第二端302上的孔303插入到坩堝300的內部中。多孔插入件310的外徑可與坩堝300的內徑近似相同,且大於開口306的直徑。在某些實施例中,坩堝300的內徑可略小於多孔插入件310的外徑以形成干涉配合。在一些實施例中,多孔插入件310的外徑可比開口306的直徑大0.1英寸。因此,一旦多孔插入件310插入,則通過凸緣304將多孔插入件310容放於適當地方,使得多孔插入件310無法通過開口306移除或掉落。多孔插入件310可為石墨泡沫、石墨或耐火網格、碳化矽、氧化鋁泡沫或另一適合的材料。可選擇孔隙大小及孔隙率以在阻擋液體流過多孔插入件310的同時使得蒸氣能夠通過。已發現,例如液體鋁等液體金屬具有極高的表面張力。因此,雖然來自熔融的鋁的蒸氣能夠穿過多孔插入件310,但液體材料由於表面張力而無法穿過多孔插入件310。
坩堝300的第二端302上安裝有端塞320。在某些實施例中,孔303可為螺絲孔且端塞320可帶螺紋,使得端塞320旋擰到坩堝300的第二端302中。端塞320可由石墨或另一適合的材料構造而成。端塞320用於防止液體材料通過孔303離開且使得能夠重新填充坩堝300。
靶托190還可包括靶基座330。靶基座330可附接到致動器200。靶基座330借助固持緊固件340附裝到坩堝。舉例來說,在一個實施例中,端塞320的部分具有比坩堝300的外徑大的直徑。通過這種方式,當將端塞320旋擰到坩堝的第二端302中時,端塞320的部分從中心軸線向外延伸得比坩堝300遠,從而形成突起321。
在另一實施例中,坩堝300具有沿著坩堝300的外徑而靠近第二端302的突起。
可使用固持緊固件340將坩堝300固定到靶基座330。固持緊固件340可為環形狀且在其內表面上帶螺紋。此外,固持緊固件340具有凸緣341,凸緣341具有比突起321小的直徑。因此,然後可將固持緊固件340安裝到坩堝300的第一端301之上。可將固持緊固件340旋擰到靶基座330上,靶基座330可在其外表面上帶螺紋。繼續旋轉固持緊固件340,直到凸緣341與突起321接觸為止。此壓力將坩堝300附接到靶基座330。
在此實施例中,可如下將摻雜劑材料195插入到靶托190中。首先,將多孔插入件310插入到坩堝300的第二端302中的孔303中。多孔插入件310穿過坩堝300的內部移動,使得多孔插入件310壓靠於凸緣304上。接下來,可通過第二端302中的孔303將摻雜劑材料195設置於坩堝300中。多孔插入件310的存在能夠將摻雜劑材料195容放於坩堝中且防止摻雜劑材料195穿過開口306。一旦已添加摻雜劑材料195,則可通過將端塞320旋擰到第二端302中來封閉坩堝300。然後,將包括坩堝300、端塞320及多孔插入件310的坩堝總成定位成抵靠靶基座330。在坩堝300的第一端301之上滑動固持緊固件340且使固持緊固件340朝向第二端302移動,如此將固持緊固件340旋擰到靶基座330上。現在靶托190準備就緒。
因此,在此實施例中,坩堝300的第一端301包括敞開的面,其中多孔插入件310靠近所述敞開的面設置。此多孔插入件310用作可使蒸氣從中空內部傳遞到電弧室的多孔表面。第二端302包括孔303,使得端塞320可以可移除地附裝到坩堝300。舉例來說,端塞320可旋擰到第二端302處的螺絲孔中。通過這種方式,在靶托190內的材料已被消耗之後,可重新裝滿摻雜劑材料195。換句話說,可通過擰下固持緊固件340以將坩堝總成從靶基座330移除來將坩堝300重新裝滿。一旦此舉完成,則可從坩堝300擰下端塞320。然後,可將額外的摻雜劑材料195沉積於坩堝300中。
圖4示出根據另一實施例的靶托190。在此實施例中,坩堝的第二端302是封閉的,使得僅第一端301是敞開的。坩堝300具有靠近第二端302的突起309。此突起309由固持緊固件340使用來將坩堝300附接到靶基座330。如上文所述,固持緊固件340可旋擰到靶基座330上。
在此實施例中,靠近坩堝300的第一端301設置有固持蓋帽350。固持蓋帽350是具有敞開的面的環形狀,固持蓋帽350在其前邊緣上具有朝向所述環的中心突起的凸緣351。固持蓋帽350的內表面可帶螺紋。此外,在此實施例中,坩堝300的外表面在鄰近第一端301處也可帶螺紋。通過這種方式,固持蓋帽350可旋擰到坩堝300的第一端301上。
多孔插入件310穿過第一端301中的開口插入。舉例來說,多孔插入件310的直徑可具有與坩堝300的內徑大致相同的大小,但可大於固持蓋帽350的敞開的面在鄰近凸緣351處的內徑。在某些實施例中,坩堝300的內徑可略小於多孔插入件310的外徑以形成干涉配合。在一些實施例中,多孔插入件310的外徑可比敞開的面的內徑大0.1英寸。
因此,在此實施例中,第一端301既是多孔插入件310所位於的位點也是將固體摻雜劑材料添加到坩堝300的位點。具體來說,在此實施例中,可如下將摻雜劑材料195插入到靶托190中。首先,可通過第一端301將摻雜劑材料195沉積於坩堝300中。一旦已添加摻雜劑材料195,則可通過將多孔插入件310定位成鄰近第一端301上的開口來封閉坩堝。然後,將固持蓋帽350旋擰到坩堝300的第一端上,從而將多孔插入件310容放於適當地方。然後,將包括坩堝300、固持蓋帽350及多孔插入件310的坩堝總成定位成抵靠靶基座330。在坩堝300的第一端301之上插入固持緊固件340並使固持緊固件340朝向第二端302滑動,如此將固持緊固件340旋擰到靶基座330上。現在靶托190準備就緒。
通過使用固持蓋帽350,可觸達坩堝的內部以在靶托190內的材料已被消耗之後重新裝滿摻雜劑材料195。換句話說,可通過視需要擰下固持緊固件340以將坩堝總成從靶基座330移除來將坩堝300重新裝滿。一旦此舉完成,則可從坩堝300擰下固持蓋帽350。然後,可將額外的摻雜劑材料195沉積於坩堝300中。
此外,如圖4中所示,坩堝300的內部表面可傾斜或可呈斜坡狀,使得坩堝300在鄰近第一端301處的內徑大於在鄰近第二端302處的內徑。此使得摻雜劑材料能夠朝向坩堝的第一端301流動。此可用於提高摻雜劑材料的溫度以在鄰近多孔插入件310處增強蒸氣的形成。
圖3及圖4所示實施例利用使蒸氣通過但不會使液體通過的多孔插入件310。換句話說,多孔插入件310用作設置於坩堝的第一端上的多孔表面且將坩堝300的中空內部與電弧室100分隔開。可使用其他方式來形成此多孔表面。
舉例來說,圖5示出其中不使用多孔插入件310的圖3所示靶托190的變化形式。確切來說,以穿孔坩堝400取代圖3所示坩堝300。穿孔坩堝400可為在第一端401上具有封閉的面405且在第二端402上具有孔403的中空圓柱體。封閉的面405可包括延伸穿過封閉的面405的多個開口410,從而使得穿孔坩堝400的內部能夠與穿孔坩堝400的外界連通。換句話說,穿孔坩堝400的封閉的面用作多孔表面。可選擇開口410的大小使得液體摻雜劑的表面張力阻止液體穿過開口410但使得蒸氣能夠通過。穿孔坩堝400可由石墨、耐火材料、氧化鋁、碳化物或另一適合的材料構造而成。
端塞320、靶基座330及固持緊固件340與上文關於圖3所述的內容相同。
在此實施例中,可如下將摻雜劑材料195插入到靶托190中。首先,可通過第二端402中的孔403將摻雜劑材料195設置於穿孔坩堝400中。第一端401處存在的封閉的面將摻雜劑材料195容放於穿孔坩堝400中。一旦已添加摻雜劑材料195,則可通過將端塞320旋擰到第二端402中來封閉穿孔坩堝400。然後,將包括穿孔坩堝400及端塞320的坩堝總成定位成抵靠靶基座330。在穿孔坩堝400的第一端401之上滑動固持緊固件340並使固持緊固件340朝向第二端402移動,如此將固持緊固件340旋擰到靶基座330上。現在靶托190準備就緒。
圖6示出其中不使用多孔插入件310的圖4所示靶托190的變化形式。確切來說,以穿孔固持蓋帽450取代圖4所示固持蓋帽350。
在此實施例中,穿孔固持蓋帽450靠近坩堝300的第一端301設置。穿孔固持蓋帽450是具有封閉的面的圓柱體。所述封閉的面包括多個開口410。穿孔固持蓋帽450的圓柱形部分的內表面可帶螺紋。此外,在此實施例中,坩堝300的外表面在鄰近第一端301處也可帶螺紋。通過這種方式,穿孔固持蓋帽450可旋擰到坩堝300的第一端301上。
因此,在此實施例中,第一端301既是多孔表面所位於的位點也是將固體摻雜劑材料添加到坩堝300的位點。具體來說,在此實施例中,可如下將摻雜劑材料195插入到靶托190中。首先,可通過第一端301將摻雜劑材料195沉積於坩堝300中。一旦已添加摻雜劑材料195,則可通過將穿孔固持蓋帽450旋擰到坩堝300的第一端上來封閉坩堝。然後,將包括坩堝300及穿孔固持蓋帽450的坩堝總成定位成抵靠靶基座330。在坩堝300的第一端301之上插入固持緊固件340並使固持緊固件340朝向第二端302滑動,如此將固持緊固件340旋擰到靶基座330上。現在靶托190準備就緒。
通過使用穿孔固持蓋帽450,可觸達坩堝的內部以在靶托190內的材料已被消耗之後重新裝滿摻雜劑材料195。換句話說,可通過視需要擰下固持緊固件340以將坩堝總成從靶基座330移除來將坩堝300重新裝滿。一旦此舉完成,則可從坩堝300擰下穿孔固持蓋帽450。然後,可將額外的摻雜劑材料195沉積於坩堝300中。
此外,如圖6中所示,坩堝300的內部表面可為傾斜的或可呈斜坡狀,使得坩堝300在鄰近第一端301處的內徑大於在鄰近第二端302處的內徑。此使得摻雜劑材料能夠朝向坩堝的第一端301流動。此可用於提高摻雜劑材料的溫度以在鄰近穿孔固持蓋帽450處增強蒸氣的形成。
穿孔固持蓋帽450中的開口及穿孔坩堝400中的開口可排列成多個配置。
圖7示出靶托190的另一實施例。芯棒(wicking rod)520設置於空腔512內。在某些實施例中,芯棒520可附接到坩堝500的與包含坩堝孔口511的前壁516相對的後壁513。芯棒520也可不附接到坩堝500中且通過重力容放於適當地方。芯棒520可由石墨、鎢或鉭製成。也可使用其他的材料,例如碳化物及氮化物。在圖7中所示的實施例中,芯棒520是直的實心圓柱形結構。然而,在其他實施例中,芯棒520可具有不同的形狀。芯棒520的長度可長於空腔512的深度,使得芯棒520的末端521可延伸超過坩堝500並進入IHC離子源10中。可基於液體金屬的應用以及液體金屬的期望流動速率對芯棒520的直徑進行調節。在某些實施例中,直徑越大可使流動速率越大。芯棒520可被設置使得芯棒520的第一端安置於空腔512的底面上,且芯棒520向上傾斜。末端521可被升高到第一端上方且延伸到坩堝孔口511或超出坩堝孔口511。
摻雜劑材料195(例如,金屬)設置於空腔512中。在一個實施例中,摻雜劑材料195是固體金屬,例如鋁、鎵、鑭或銦。在某些實施例中,摻雜劑材料195可為純金屬,其中“純”表示純度為至少99%的金屬。此固體材料可以線的形式擠出並纏繞於芯棒520上。在其他實施例中,固體材料可為圍繞芯棒520裝配的珠或中空圓柱體的形式。
多孔材料540可包含於空腔512中,以包含摻雜劑材料195。此多孔材料540的尺寸可被設定成使得多孔材料540具有與空腔512的內部尺寸相同的外部尺寸。此外,多孔材料540可具有穿過多孔材料540的孔541。多孔材料540可被定位成使得多孔材料540設置於摻雜劑材料195與坩堝孔口511之間。芯棒520可穿過多孔材料540中的孔541。通過這種方式,多孔材料540將摻雜劑材料195保留於空腔512內,同時使得熔融的材料能夠沿著芯棒520朝向末端521流動。在另一實施例中,坩堝500在更靠近坩堝500的底部的位置處對芯棒520進行支撐。
因此,本申請闡述兩種不同的運行模式,所述運行模式可用於產生期望摻雜劑的不同電荷狀態。此外,通過將靶托190及固體靶175併入離子源10中,離子源10可容易地從一個模式切換到另一模式,而無需操作者干預。圖8示出控制器180對離子源10的模式進行控制的操作。如方格800中所示,可依賴於正在使用的配方來選擇期望的運行模式。此模式可由操作員或用戶來選擇。作為另外一種選擇,控制器180可基於期望的射束電流及電荷狀態而自動地選擇最適當的模式。基於此選擇,控制器180對致動器200及閥171進行操縱以實現期望的運行模式。
如方格810中所示,可選擇其中大多數的金屬離子具有多電荷的多電荷模式。作為響應,控制器180使致動器200移動到延伸位置,使得靶托190設置於電弧室100內。控制器180開啟閥171以使氣體(其為包含鹵素的氣體,例如氟化氣體)進行向電弧室100中的流動。在此模式中,等離子體使摻雜劑材料195熔融且然後氣化。此被氣化的摻雜劑材料在形成多電荷離子方面有效。另外,通過氣體對固體靶175進行蝕刻並產生額外的離子。
作為另外一種選擇,如方格820中所示,可選擇其中大多數的金屬離子具有單電荷的單電荷模式。作為響應,控制器180使致動器200移動到縮回位置,使得靶托190設置於電弧室100外。此有助於保存靶托190中所包含的有限量的摻雜劑材料195,以延長總體的源壽命。控制器180開啟閥171以使氣體(其為包含鹵素的氣體)進行向電弧室100中的流動。在此模式中,等離子體使氣體對固體靶175進行電離及蝕刻,其中所形成的大部分離子是單電荷離子。
因此,為在多電荷模式中運行,控制器180將離子源10配置成使得等離子體對純金屬進行電離,而為在單電荷模式中運行,控制器180將離子源10配置成使得等離子體對固體材料(其為包含金屬的化合物)進行蝕刻及電離,所述固體材料可為陶瓷材料。
儘管以上公開內容闡述了使用包含鋁的陶瓷材料作為固體靶175及使用鋁作為摻雜劑材料195,然而也可使用其他的金屬。舉例來說,所述金屬可為鎵。在此實施例中,固體靶175可為氧化鎵。在另一實施例中,所述金屬可為銦。在此實施例中,固體靶175可為氧化銦。在另一實施例中,所述金屬可為鑭。在此實施例中,固體靶175可為氟化鑭、氧化鑭或六硼化鑭。
以上在本申請中闡述的實施例可具有許多優點。首先,由於可使用同一離子源來形成單電荷離子及多電荷離子,因此形成可在多個模式中運行的離子源是有利的。另外,坩堝與固體靶的組合具有額外的益處。
首先,坩堝產生大量的多電荷離子,使得能夠實現多電荷離子的高射束電流。此外,通過在坩堝中利用純金屬(例如,鋁),可將等離子體中的雜質最小化。另外,通過在多電荷模式中利用包含鹵素的氣體,也使用來自第一氣體的鹵素(例如,氟)從電弧室100的壁回收鋁。然而,能夠容放於靶托190中的鋁的量有限,因此最好僅在必要時插入靶托190。
第二,固體靶175的壽命長,使得不需要常常更換。另外,當固體靶175被蝕刻時,主要形成單電荷離子。
因此,此離子源能夠產生選定物種的單電荷離子或多電荷離子,其中所述物種是金屬,例如鋁、鎵、銦或鑭。另外,所述離子源會優化對可容放於靶托190中的有限材料的使用。
本公開的範圍不受本文中所述的具體實施例限制。實際上,根據前述說明及附圖,對所屬領域的技術人員而言,除本文中所述的實施例及潤飾之外,本公開的其他各種實施例及對本公開的各種潤飾也將顯而易見。因此,這些其他實施例及潤飾皆旨在落於本公開的範圍內。此外,儘管本文中已出於特定目的在特定的環境中在特定實施方案的上下文中闡述了本公開,但所屬領域的技術人員應認識到,其有效性並不僅限於此且本公開可出於任何數目個目的在任何數目的環境中有益地實施。因此,所記載的發明申請專利範圍應根據本文所述的本發明的全部範疇及精神來加以解釋。
10:IHC離子源/離子源 100:電弧室 101:壁 103:提取板 104、301、401:第一端 105、302、402:第二端 110:陰極 111:偏壓電源 115:陰極偏壓電源 120:推斥極 123:推斥極偏壓電源 140:提取孔口 160:細絲 165:細絲電源 170:氣體源 171:閥 175:固體靶 180:控制器 190:靶托 191:中空內部 195:摻雜劑材料 200:致動器 210:支撐件 300、500:坩堝 303、403、541:孔 304、341、351:凸緣 305:中心軸線 306、410:開口 309、321:突起 310:多孔插入件 320:端塞 330:靶基座 340:固持緊固件 350:固持蓋帽 400:穿孔坩堝 405:封閉的面 450:穿孔固持蓋帽 511:坩堝孔口 512:空腔 513:後壁 516:前壁 520:芯棒 521:末端 540:多孔材料 800、810、820:方格 X、Y、Z:方向
為更好地理解本公開,參照附圖,所述附圖併入本文供參考且在附圖中: 圖1是根據一個實施例的具有幾個運行模式的間接加熱式陰極(IHC)離子源。 圖2是可插式靶托已縮回的圖1所示IHC離子源。 圖3示出根據一個實施例的靶托。 圖4示出根據另一實施例的靶托。 圖5示出根據第三實施例的靶托。 圖6示出根據第四實施例的靶托。 圖7示出根據第五實施例的靶托。 圖8示出控制器的操作。 圖9是根據另一實施例的具有幾個運行模式的間接加熱式陰極(IHC)離子源。
10:IHC離子源/離子源
100:電弧室
101:壁
103:提取板
104:第一端
105:第二端
110:陰極
111:偏壓電源
115:陰極偏壓電源
120:推斥極
123:推斥極偏壓電源
140:提取孔口
160:細絲
165:細絲電源
170:氣體源
171:閥
175:固體靶
180:控制器
190:靶托
191:中空內部
195:摻雜劑材料
200:致動器
210:支撐件
X、Y、Z:方向

Claims (19)

  1. 一種間接加熱式陰極離子源,包括: 電弧室,包括多個壁且適合於容納固體靶,其中所述固體靶是包含所關注摻雜劑的化合物; 間接加熱式陰極,設置於所述電弧室中; 可插式靶托,用於容放所述所關注摻雜劑; 致動器,用於將所述靶托從所述電弧室內的延伸位置移動到所述電弧室外的縮回位置; 閥,與所述電弧室連通且適合於連接到氣體源;以及 控制器,與所述致動器及所述閥連通,以使所述間接加熱式陰極離子源在多個模式中的一個模式中運行。
  2. 如請求項1所述的間接加熱式陰極離子源,其中所述多個模式包括單電荷模式及多電荷模式,所述單電荷模式用於形成物種的具有單電荷的離子,所述多電荷模式用於形成所述物種的具有兩個或更多個電荷的離子。
  3. 如請求項2所述的間接加熱式陰極離子源,其中所述物種包括金屬。
  4. 如請求項2所述的間接加熱式陰極離子源,其中在所述單電荷模式中,所述控制器將所述靶托移動到所述縮回位置並開啟所述閥。
  5. 如請求項2所述的間接加熱式陰極離子源,其中在所述多電荷模式中,所述控制器將所述靶托移動到所述延伸位置並開啟所述閥。
  6. 如請求項1所述的間接加熱式陰極離子源,還包括所述固體靶。
  7. 如請求項6所述的間接加熱式陰極離子源,其中所述固體靶安裝於所述多個壁中的一個壁上。
  8. 如請求項6所述的間接加熱式陰極離子源,其中所述固體靶安裝於所述電弧室的與所述間接加熱式陰極相對的端上。
  9. 如請求項6所述的間接加熱式陰極離子源,其中所述可插式靶托容放為純金屬的金屬且所述固體靶包括包含所述金屬的陶瓷材料。
  10. 如請求項9所述的間接加熱式陰極離子源,其中所述金屬是鋁且所述陶瓷材料是氧化鋁或氮化鋁。
  11. 如請求項1所述的間接加熱式陰極離子源,其中所述氣體源包含含有鹵素的物種。
  12. 一種在多個模式中運行間接加熱式陰極離子源的方法,其中所述間接加熱式陰極離子源包括控制器、電弧室及可插式靶托,所述可插式靶托容放所關注摻雜劑,且其中固體靶設置於所述電弧室中,所述固體靶是包含所述所關注摻雜劑的化合物,所述方法包括: 選擇期望的模式;以及 使用所述控制器將所述間接加熱式陰極離子源配置成在所述期望的模式中運行, 其中為在多電荷模式中運行,其中所述多電荷模式用於形成物種的具有兩個或更多個電荷的離子,所述控制器將所述靶托延伸到所述電弧室中且使氣體進行向所述電弧室中的流動,以對設置於所述靶托中的所述所關注摻雜劑進行氣化及電離;且 其中為在單電荷模式中運行,其中所述單電荷模式是形成所述物種的具有單電荷的離子,所述控制器將所述靶托從所述電弧室縮回且使所述氣體進行向所述電弧室中的所述流動,使得所述氣體對所述固體靶進行蝕刻。
  13. 如請求項12所述的方法,其中所述物種包括金屬。
  14. 如請求項12所述的方法,其中所述氣體包括包含鹵素的物種。
  15. 如請求項12所述的方法,其中所述可插式靶托容放為純金屬的金屬且所述固體靶包括包含所述金屬的陶瓷材料。
  16. 如請求項15所述的方法,其中所述金屬是鋁且所述陶瓷材料是氧化鋁或氮化鋁。
  17. 一種間接加熱式陰極離子源,包括: 電弧室,包括多個壁且適合於容納固體靶; 間接加熱式陰極,設置於所述電弧室中,其中所述間接加熱式陰極用於在所述電弧室中產生等離子體;以及 控制器,被配置成使所述間接加熱式陰極離子源在多個模式中的一個模式中運行,其中在多電荷模式中,所述控制器將所述間接加熱式陰極離子源配置成使得所述等離子體對為純金屬的金屬進行電離,且在單電荷模式中,所述控制器將所述間接加熱式陰極離子源配置成使得所述等離子體對所述固體靶進行蝕刻及電離,其中所述固體靶是包含所述金屬的陶瓷材料。
  18. 如請求項17所述的間接加熱式陰極離子源,其中所述金屬是鋁,且所述固體靶包括氧化鋁或氮化鋁。
  19. 如請求項17所述的間接加熱式陰極離子源,其中所述控制器控制致動器將所述純金屬插入所述電弧室以及從所述電弧室移除所述純金屬。
TW112116527A 2022-05-10 2023-05-04 間接加熱式陰極離子源及在多個模式中運行其的方法 TW202410100A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/740,861 2022-05-10
US17/740,861 US20230369008A1 (en) 2022-05-10 2022-05-10 Hybrid ion source for aluminum ion generation using a target holder and a solid target

Publications (1)

Publication Number Publication Date
TW202410100A true TW202410100A (zh) 2024-03-01

Family

ID=88699380

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112116527A TW202410100A (zh) 2022-05-10 2023-05-04 間接加熱式陰極離子源及在多個模式中運行其的方法

Country Status (3)

Country Link
US (1) US20230369008A1 (zh)
TW (1) TW202410100A (zh)
WO (1) WO2023219750A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733590B1 (en) * 1999-05-03 2004-05-11 Seagate Technology Llc. Method and apparatus for multilayer deposition utilizing a common beam source
US8013312B2 (en) * 2006-11-22 2011-09-06 Semequip, Inc. Vapor delivery system useful with ion sources and vaporizer for use in such system
WO2015143322A1 (en) * 2014-03-20 2015-09-24 Lockheed Martin Corporation Multiple ionization sources for a mass spectrometer
US11404254B2 (en) * 2018-09-19 2022-08-02 Varian Semiconductor Equipment Associates, Inc. Insertable target holder for solid dopant materials
US11232925B2 (en) * 2019-09-03 2022-01-25 Applied Materials, Inc. System and method for improved beam current from an ion source
US11170973B2 (en) * 2019-10-09 2021-11-09 Applied Materials, Inc. Temperature control for insertable target holder for solid dopant materials
US11854760B2 (en) * 2021-06-21 2023-12-26 Applied Materials, Inc. Crucible design for liquid metal in an ion source

Also Published As

Publication number Publication date
US20230369008A1 (en) 2023-11-16
WO2023219750A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
TWI723506B (zh) 間接加熱式陰極離子源及將不同的摻雜物離子化的方法
TWI720372B (zh) 離子源及間熱式陰極離子源
US8702920B2 (en) Repeller structure and ion source
TWI777281B (zh) 間接加熱式陰極離子源及靶支持器
JP2002117780A5 (zh)
KR20240021976A (ko) 이온 공급원 내의 액체 금속을 위한 도가니 설계
US11542594B2 (en) Advanced sputter targets for ion generation
TW202410100A (zh) 間接加熱式陰極離子源及在多個模式中運行其的方法
US20230369006A1 (en) Hybrid ion source for aluminum ion generation using a target holder and organoaluminium compounds
TWI844864B (zh) 用於產生包括金屬的離子束的離子源
JP2024523908A (ja) イオン源中の液体金属のためのるつぼの設計
US20230369007A1 (en) Hybrid ion source for aluminum ion generation using organoaluminium compounds and a solid target
TW202027119A (zh) 具有圓柱狀電弧室的間接加熱式陰極離子源
US20230395357A1 (en) Ion source having different modes of operation
TW202418341A (zh) 間接加熱式陰極離子源以及在多個模式中運行其的方法