TW202410048A - 記憶體系統及其操作方法 - Google Patents

記憶體系統及其操作方法 Download PDF

Info

Publication number
TW202410048A
TW202410048A TW111149994A TW111149994A TW202410048A TW 202410048 A TW202410048 A TW 202410048A TW 111149994 A TW111149994 A TW 111149994A TW 111149994 A TW111149994 A TW 111149994A TW 202410048 A TW202410048 A TW 202410048A
Authority
TW
Taiwan
Prior art keywords
memory
read
memory devices
values
sensing
Prior art date
Application number
TW111149994A
Other languages
English (en)
Inventor
葉光昶
郭路
霍仲辰
Original Assignee
大陸商長江存儲科技有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商長江存儲科技有限責任公司 filed Critical 大陸商長江存儲科技有限責任公司
Publication of TW202410048A publication Critical patent/TW202410048A/zh

Links

Abstract

本發明內容提供了一種記憶體系統,用於基於中繼資料從多個讀取重試例程中進行選擇。記憶體系統可以包括一個或多個記憶體裝置和記憶體控制器。記憶體控制器可以偵測讀取操作的失敗,對與讀取操作的效應器的集合相對應的值的集合進行分析,以及基於分析從多個讀取重試例程中選擇一個或多個讀取重試例程。多個讀取重試例程中的每一個讀取重試例程可以與效應器的集合中的不同效應器以及對應於不同效應器的讀取電壓相關聯。記憶體控制器還可以在一個或多個記憶體裝置的部分處執行選擇的一個或多個讀取重試例程,以使讀取操作的失敗失效。

Description

記憶體系統及其操作方法
本發明內容總體上涉及半導體技術領域,並且更特別地,涉及一種記憶體系統及其操作方法。
隨著記憶體裝置縮小到較小管芯大小以降低製造成本並且增加儲存密度,平面記憶體單元的縮小面臨歸因於製程技術限制和可靠性問題的挑戰。三維(3D)記憶體架構可以解決平面記憶體單元中的密度和性能限制。
在3D NAND快閃記憶體中,可以垂直堆疊多層記憶體單元,使得每單位面積的儲存密度可以大大增加。垂直堆疊的記憶體單元可以形成記憶體串,其中記憶體單元的溝道在每個記憶體串中連接。透過字元線和位元線可以定址每個記憶體單元。此外,可以同時讀取或程式設計共用同一字元線的整個記憶體頁中的記憶體單元的資料(即,邏輯狀態)。然而,由於積極主動的縮小,可靠性可能是3D NAND快閃記憶體所關心的問題。
本發明內容中描述了用於記憶體裝置中的資料保護的方法和系統的實施方式。
本發明內容描述一種記憶體系統,該記憶體系統用於基於中繼資料從多個讀取重試例程中進行選擇,以增強由記憶體系統使用的讀取操作。在一些實施方式中,記憶體系統可以包括一個或多個記憶體裝置和耦接到一個或多個記憶體裝置的記憶體控制器。一個或多個記憶體裝置可以儲存資料。記憶體控制器可以對在一個或多個記憶體裝置的一部分處執行的讀取操作的失敗進行偵測。記憶體控制器還可以對與讀取操作的效應器的集合相對應的值的集合進行分析。記憶體控制器還可以基於分析從多個讀取重試例程中選擇一個或多個讀取重試例程。多個讀取重試例程中的每一個讀取重試例程可以與效應器的集合中的不同效應器以及對應於不同效應器的讀取電壓相關聯。記憶體控制器還可以對一個或多個記憶體裝置的部分執行選擇的一個或多個讀取重試例程,以使讀取操作的失敗失效。
在一些實施方式中,記憶體控制器還可以對一個或多個記憶體裝置的部分處的值的集合進行感測。記憶體控制器還可以基於感測將值的集合儲存在記憶體系統中。引用值的集合可以包括引用所儲存的值的集合。
在一些實施方式中,記憶體控制器還可以在一個或多個記憶體裝置的指定觸發器部分處執行對值的集合的感測。
在一些實施方式中,對值的集合的感測可以包括:將時間戳記指派給一個或多個記憶體裝置的部分處的過去程式設計事件。
在一些實施方式中,對值的集合的感測可以包括:感測一個或多個記憶體裝置的部分處的溫度。
在一些實施方式中,對值的集合的感測可以包括:記錄一個或多個記憶體裝置的部分處的讀取計數。
在一些實施方式中,記憶體控制器還可以包括:非暫時性儲存介質,以儲存多個讀取重試例程。
在一些實施方式中,一個或多個記憶體裝置可以包括三維(3D)NAND記憶體裝置。
在一些實施方式中,效應器的值的集合可以包括在一個或多個記憶體裝置的部分處的過去程式設計事件的時間戳記。選擇的一個或多個讀取重試例程可以包括使用與讀取操作的基於時間的效應器相對應的讀取電壓的讀取重試例程。
在一些實施方式中,效應器的值的集合可以包括在一個或多個記憶體裝置的部分處的溫度。選擇的一個或多個讀取重試例程可以包括使用與讀取操作的基於溫度的效應器相對應的讀取電壓的讀取重試例程。
在一些實施方式中,效應器的值的集合可以包括在一個或多個記憶體裝置的部分處的讀取計數。選擇的一個或多個讀取重試例程可以包括使用與讀取操作的基於讀取計數的效應器相對應的讀取電壓的讀取重試例程。
本發明內容提供一種操作方法,該方法用於基於中繼資料從多個讀取重試例程中進行選擇,以增強記憶體系統中的讀取操作。在一些實施方式中,操作方法可以包括將資料儲存在記憶體系統的一個或多個裝置中。操作方法還可以包括對在一個或多個記憶體裝置的一部分處執行的讀取操作的失敗進行偵測。操作方法還可以包括對與讀取操作的效應器的集合相對應的值的集合進行分析。操作方法還可以包括基於分析從多個讀取重試例程中選擇一個或多個讀取重試例程。多個讀取重試例程中的每一個讀取重試例程可以與效應器的集合中的不同效應器以及對應於不同效應器的讀取電壓相關聯。操作方法還可以包括在一個或多個記憶體裝置的部分處執行選擇的一個或多個讀取重試例程,以使讀取操作的失敗失效。
在一些實施方式中,操作方法還可以包括:對一個或多個記憶體裝置的部分處的值的集合進行感測。操作方法還可以包括:基於感測將值的集合儲存在記憶體系統中。引用值的集合可以包括引用所儲存的值的集合。
在一些實施方式中,操作方法還可以包括在一個或多個記憶體裝置的指定觸發器部分處執行對值的集合的感測。
在一些實施方式中,對值的集合的感測可以包括:將時間戳記指派給一個或多個記憶體裝置的部分處的過去程式設計事件。
在一些實施方式中,對值的集合的感測可以包括:一個或多個記憶體裝置的部分處的溫度。
在一些實施方式中,對值的集合的感測可以包括:記錄一個或多個記憶體裝置的部分處的讀取計數。
在一些實施方式中,操作方法還可以包括:將用於執行多個讀取重試例程的指令儲存在記憶體控制器的非暫時性儲存介質處。
在一些實施方式中,效應器的值的集合可以包括在一個或多個記憶體裝置的部分處的過去程式設計事件的時間戳記。選擇的一個或多個讀取重試例程可以包括使用與讀取操作的基於時間的效應器相對應的讀取電壓的讀取重試例程。
在一些實施方式中,效應器的值的集合可以包括在一個或多個記憶體裝置的部分處的溫度。選擇的一個或多個讀取重試例程可以包括使用與讀取操作的基於溫度的效應器相對應的讀取電壓的讀取重試例程。
在一些實施方式中,效應器的值的集合可以包括在一個或多個記憶體裝置的部分處的讀取計數。選擇的一個或多個讀取重試例程可以包括使用與讀取操作的基於讀取計數的效應器相對應的讀取電壓的讀取重試例程。
本發明內容提供一種記憶體系統,該記憶體系統用於基於中繼資料從多個讀取重試例程中進行選擇,以增強記憶體系統中的讀取操作。記憶體系統可以包括耦接到一個或多個記憶體裝置的記憶體控制器。記憶體系統還可以包括非暫時性電腦可讀介質。非暫時性電腦可讀介質可以包括儲存在其上的指令,當由記憶體控制器執行指令時時,指令可以使一個或多個計算裝置執行上述操作方法的操作。
本領域技術人員根據本發明內容的說明書、權利要求書和圖式可以理解本發明內容的其他方面。
儘管討論了具體的配置和佈置,但是應當理解,這樣做僅僅是出於說明的目的。相關領域的技術人員將認識到,在不脫離本發明內容的精神和範圍的情況下,可以使用其他配置和佈置。對於相關領域的技術人員來說,顯然本發明內容也可以用於各種其他應用。
注意,在本說明書中對“一個實施方式”、“實施方式”、“示例實施方式”、“一些實施方式”等的引用指示所描述的實施方式可以包括特定的特徵、結構或特性,但是每個實施方式可以不必包括特定的特徵、結構或特性。此外,這樣的短語未必是指同一實施方式。此外,當結合實施方式描述特定的特徵、結構或特性時,無論是否明確描述,結合其他實施方式實現這樣的特徵、結構或特性都將在相關領域的技術人員的知識範圍之內。
通常,術語可以至少部分地從上下文中的使用來理解。例如,至少部分地取決於上下文,如本文所使用的術語“一個或多個”可以用於以單數意義描述任何特徵、結構或特性,或者可以用於以複數意義描述特徵、結構或特性的組合。類似地,諸如“一”或“所述”的術語同樣可以被理解為傳達單數用法或傳達複數用法,這至少部分地取決於上下文。另外,術語“基於”可以被理解為不一定旨在傳達排他的因素的集合,而是可以允許存在不一定明確描述的附加因素,這同樣至少部分地取決於上下文。應當容易理解,元件的“集合”的含義可以指一個或多於一個的元件。
應當容易理解,在本發明內容中的“在…上”、“在…之上”和“在…上方”的含義應該以最廣泛的方式來解釋,使得“在…上”不僅意味著直接在某物“上”,而且還包括在某物“上”並且其間具有中間特徵或層的含義。此外,“在…之上”或“在…上方”不僅意味著在某物“之上”或“上方”,而且還可以包括在某物“之上”或“上方”並且其間不具中間特徵或層(即,直接在某物上)的含義。
此外,空間相對術語,例如“在…下面”、“在…下方”、“下”、“在…之上”、“上”等在本文中為了便於描述可以用於描述一個元件或特徵與另一個(或多個)元件或特徵的如圖中所示的關係。空間相對術語旨在涵蓋除了圖中描繪的取向之外的在裝置使用或製程步驟中的不同取向。裝置可以以其他方式定向(旋轉90度或在其他取向下),並且本文所使用的空間相對描述詞也可以被相應地進行解釋。
如本文所用,術語“襯底”是指在其上添加後續材料層的材料。襯底包括“頂”表面和“底”表面。除非另有說明,襯底的頂表面通常是形成半導體裝置的位置,並且因此半導體裝置形成在襯底的頂側處。底表面與頂表面相對,並且因此襯底的底側與襯底的頂側相對。襯底本身可以被圖案化。添加在襯底的頂部上的材料可以被圖案化,也可以保持不被圖案化。此外,襯底可以包括多種半導體材料,例如矽、鍺、砷化鎵、磷化銦等。替代地,襯底可以由諸如玻璃、塑膠、或藍寶石晶圓等非導電材料製成。
如本文所用,術語“層”是指包括具有厚度的區域的材料部分。層具有頂側和底側,其中層的底側相對接近襯底,並且頂側相對遠離襯底。層可以在整個下層結構或上層結構上方延伸,或者可以擁有小於下層結構或上層結構的範圍的範圍。此外,層可以是均勻或不均勻的連續結構的區域,其厚度小於連續結構的厚度。例如,層可以位於在連續結構的頂表面與底表面之間的或在連續結構的頂表面和底表面處的任何一組水平面之間。層可以水準地、垂直地和/或沿著錐形表面延伸。襯底可以是層,可以在其中包括一個或多個層,和/或可以在其上、其之上和/或其下方具有一個或多個層。層可以包括多個層。例如,互連層可以包括一個或多個導電和觸點層(其中形成觸點、互連線、和/或垂直互連通路(VIA,vertical interconnect access))以及一個或多個電介質層。
在本發明內容中,為了便於描述,“層級(tier)”用於指沿著垂直方向具有基本相同高度的元件。例如,字元線和下層閘極電介質層可以被稱為“層級”,字元線和下層絕緣層可以一起被稱為“層級”,具有基本相同高度的字元線可以被稱為“字元線層級”或類似術語,等等。
如本文所用,術語“標稱/標稱地”是指在產品或製程的設計階段期間設置的用於部件或製程步驟的特性或參數的期望值或目標值,以及高於和/或低於期望值的值的範圍。值的範圍可能由於製造製程或公差的微小變化而產生。如本文所用,術語“大約”或“近似”指示可以基於與主題半導體裝置相關聯的特定技術節點而變化的給定量的值。基於特定的技術節點,術語“大約”或“近似”可以指示在例如值的10%到30%內變化的給定量的值(例如,值的±10%、±20%或±30%)。
在本發明內容中,術語“水準/水準地/橫向/橫向地”意味著標稱地平行於襯底的橫向表面,並且術語“垂直”或“垂直地”意味著標稱地垂直於襯底的橫向表面。
如本文所用,術語“3D記憶體”是指三維(3D)半導體裝置,其在橫向定向的襯底上具有垂直定向的記憶體單元電晶體串(本文稱為“記憶體串”,例如NAND串),使得記憶體串在相對於襯底的垂直方向上延伸。
圖1示出了根據一些實施方式的具有記憶體系統10的系統S1的框圖。在一些實施方式中,系統S1可以是行動電話、臺式電腦、膝上型電腦、平板電腦、車輛電腦、遊戲控制台、印表機、定位裝置、可穿戴電子裝置、智慧感測器、虛擬實境(VR,virtual reality)裝置、增強現實(AR,argument reality)裝置、或其中具有記憶體的任何其他合適的電子裝置。記憶體系統10(例如,NAND記憶體系統)可以包括記憶體控制器20和一個或多個半導體記憶體裝置25-1、25-2、25-3、…、25-n。每個半導體記憶體裝置25(此後僅稱為“記憶體裝置”)可以是NAND晶片(例如,“快閃記憶體”、“NAND快閃記憶體”或“NAND”)。記憶體系統10可以透過記憶體控制器20與主機電腦15通信,其中記憶體控制器20可以經由一個或多個記憶體通道30-1、30-2、30-3、…、30-n連接到一個或多個記憶體裝置25-1、25-2、25-3、…、25-n。在一些實施方式中,每個記憶體裝置25可以由記憶體控制器20經由一個或多個記憶體通道30-1、30-2、30-3、…、30-n來管理。
在一些實施方式中,主機電腦15可以包括電子裝置的處理器,例如中央處理單元(CPU,central processing unit),或者片上系統(SoC,system-on-chip),例如應用處理器(AP,application processor)。主機電腦15可以發送要儲存在記憶體系統10處的資料和/或可以從儲存在記憶體系統10中資料的取回資料。
在一些實施方式中,記憶體控制器20可以處理從主機電腦15接收的I/O請求,確保資料完整性和高效儲存,並且管理記憶體裝置25。為了執行這些任務,記憶體控制器20可以運行韌體21,韌體21可以由記憶體控制器20的一個或多個處理器22(例如,微控制器單元,CPU)執行。例如,記憶體控制器20可以運行韌體21以將邏輯位址(例如,由與主機資料相關聯的主機利用的位址)映射到記憶體裝置25中的物理位址(例如,儲存資料的實際位置)。記憶體控制器20還運行韌體21以管理記憶體裝置25中的有缺陷記憶體塊,其中韌體21可以將邏輯位址重新映射到不同物理位址,即,將資料移動到不同物理位址。記憶體控制器20還可以包括一個或多個記憶體23(例如DRAM、SRAM、EPROM等),記憶體23可以用於儲存韌體21所使用的各種中繼資料,在一些實施方式中,記憶體控制器20還可以透過改錯碼(ECC,error correction code)引擎29來執行錯誤恢復。ECC用於偵測和校正在每個記憶體裝置25內發生的原始位元錯誤。
在一些實施方式中,記憶體通道30可以經由資料匯流排提供記憶體控制器20與每個記憶體裝置25之間的資料通信和控制通信。記憶體控制器20可以根據使能訊號選擇記憶體裝置25中的一個記憶體裝置。
在一些實施方式中,圖1中的每個記憶體裝置25可以包括一個或多個記憶體管芯100,其中每個記憶體管芯可以為3D NAND記憶體。
在一些實施方式中,記憶體控制器20和一個或多個記憶體裝置25可以集成到各種類型的存放裝置中,例如,包括在相同的封裝中,例如通用快閃記憶體儲存(UFS,universal Flash storage)封裝或eMMC封裝。即,可以將記憶體系統10實施並且封裝到不同類型的終端電子產品中。在如圖2A中所示的一個示例中,記憶體控制器20和單個記憶體裝置25可以集成到記憶體卡26中。記憶體卡26可以包括PC卡(PCMCIA(personal computer memory card international association),個人電腦記憶體卡國際協會),CF卡,智慧媒體(SM,smart media)卡,記憶體棒,多媒體卡(MMC、RS-MMC、MMCmicro),SD卡(SD、miniSD、microSD、SDHC),UFS等。記憶體卡26還可以包括將記憶體卡26與主機(例如,圖1中的主機電腦15)耦接的記憶體卡連接器24。在如圖2B所示的另一示例中,記憶體控制器20和多個記憶體裝置25可以集成到固態驅動器(SSD,solid state drive)27中。SSD 27還可以包括將SSD 27與主機(例如,圖1中的主機電腦15)耦接的SSD連接器28。
圖3示出了根據一些實施方式的記憶體管芯100的俯視圖。圖3中所示的示例配置作為非限制性示例給出,並且應當理解,記憶體是可縮小的。在一些實施方式中,記憶體管芯100可以包括一個或多個記憶體面101,其中的每個記憶體面可以包括多個記憶體塊103。在每個記憶體面101處可以發生相同的和併發的操作。記憶體塊103的大小可以是百萬位元組(MB),MB是執行擦除操作的最小大小。記憶體管芯100可以包括例如四個記憶體面101。每個記憶體面101可以包括例如六個記憶體塊103。每個記憶體塊103可以包括多個記憶體單元,其中可以透過諸如位元線和字元線的互連來定址每個記憶體單元。位元線和字元線可以垂直地(例如,分別以行和列)佈設,從而形成金屬線的陣列。位元線和字元線的方向在圖3中被標記為“BL”和“WL”。在本發明內容中,記憶體塊103還被稱為“記憶體陣列”或“陣列”。記憶體陣列是記憶體裝置中的執行儲存功能的核心區域。
在一些實施方式中,記憶體管芯100還可以包括週邊電路區域105,即圍繞記憶體面101的區域。週邊電路區域105可以包括許多數位、類比和/或混合訊號電路以支援記憶體陣列的功能,例如,頁緩衝器、行解碼器和列解碼器、以及感測放大器。週邊電路使用有源半導體裝置和/或無源半導體裝置,例如電晶體、二極體、電容器、電阻器等,這對於本領域的普通技術人員來說是顯而易見的。
在另一實施方式中,記憶體管芯100中的週邊電路區域105不圍繞記憶體面101,但是可以透過將用於形成週邊電路區域105的第一晶圓和用於形成記憶體面101的第二晶圓鍵合在一起而將記憶體管芯100中的週邊電路區域105設置在記憶體面101下方。
在一些實施方式中,圖3中所示的記憶體管芯100中的記憶體面101的佈置和每個記憶體面101中的記憶體塊103的佈置僅用作示例,其不限制本發明內容的範圍。
圖4示出了根據一些實施方式的記憶體管芯100的示意圖。在一些實施方式中,記憶體管芯100可以包括一個或多個記憶體塊103(例如,103-1、103-2、103-3)。每個記憶體塊103可以包括多個記憶體串212。每個記憶體串212包括多個記憶體單元340。共用相同字元線的記憶體單元340形成記憶體頁432。記憶體串212還可以在每一端處包括至少一個場效應電晶體(例如,MOSFET),至少一個場效應電晶體分別由下部選擇閘極(“LSG”,lower select gate)332和頂部選擇閘極(“TSG”,top select gate,)334控制。下部選擇閘極(“LSG”)也可以稱為底部選擇閘極(“BSG”,bottom select gate)。頂部選擇電晶體334-T的汲極端子可以連接到位元線341,並且下部選擇電晶體332-T的源極端子可以連接到陣列公共源極(“ACS”,array common source)430。ACS 430可以由整個記憶體塊中的記憶體串212共用,並且還被稱為公共源極線。
在一些實施方式中,記憶體管芯100還可以包括週邊電路,週邊電路可以包括許多數位、類比和/或混合訊號電路以支援記憶體塊103的功能,例如,頁緩衝器/感測放大器50、行解碼器/字元線驅動器40、列解碼器/位元線驅動器52、控制電路70、電壓發生器65和輸入/輸出緩衝器55。這些電路可以包括有源半導體裝置和/或無源半導體裝置,例如電晶體、二極體、電容器、電阻器等,這對於本領域普通技術人員來說是顯而易見的。
在一些實施方式中,記憶體塊103可以經由字元線(“WL”,word line)333、下部選擇閘極(“LSG”)332和頂部選擇閘極(“TSG”)334與行解碼器/字元線驅動器40耦接。記憶體塊103可以經由位元線(“BL”,bit line)341與頁緩衝器/感測放大器50耦接。行解碼器/字元線驅動器40可以回應於由控制電路70提供的X路徑控制訊號來選擇記憶體管芯100上的記憶體塊103中的一個記憶體塊。行解碼器/字元線驅動器40可以根據X路徑控制訊號將從電壓發生器65提供的電壓傳輸到字元線。在讀取和程式設計操作期間,行解碼器/字元線驅動器40可以根據從控制電路70接收的X路徑控制訊號將讀取電壓Vread和程式設計電壓Vpgm傳輸到選擇的字元線,並且將透過電壓Vpass傳輸到非選擇的字元線。
在一些實施方式中,列解碼器/位元線驅動器52可以根據從控制電路70接收的Y路徑控制訊號將禁用電壓Vinhibit傳輸到非選擇的位元線並且將選擇的位元線連接到地。即,列解碼器/位元線驅動器52可以被配置為根據來自控制電路70的Y路徑控制訊號來選擇或不選擇一個或多個記憶體串212。頁緩衝器/感測放大器50可以被配置為根據來自控制電路70的Y路徑控制訊號從儲存塊103讀取資料和向記憶體塊103程式設計(寫入)資料。例如,頁緩衝器/感測放大器50可以儲存要程式設計到一個記憶體頁432中的一頁資料。在另一示例中,頁緩衝器/感測放大器50可以執行驗證操作以確保資料已經被正確地程式設計到每個記憶體單元340中。在又一示例中,在讀取操作期間,頁緩衝器/感測放大器50可以感測反映記憶體單元340的邏輯狀態(即,資料)的流過位元線341的電流,並且將小訊號放大到可測量的放大率。
在一些實施方式中,輸入/輸出緩衝器55可以向頁緩衝器/感測放大器50傳輸I/O資料,以及向控制電路70傳輸位址ADDR或命令CMD。在一些實施方式中,輸入/輸出緩衝器55可以用作記憶體控制器20(圖1中)與記憶體裝置25上的記憶體管芯100之間的介面。
在一些實施方式中,控制電路70可以回應於由輸入/輸出緩衝器55傳輸的命令CMD來控制頁緩衝器/感測放大器50和行解碼器/字元線驅動器40。在程式設計操作期間,控制電路70可以控制行解碼器/字元線驅動器40和頁緩衝器/感測放大器50以對選擇的記憶體單元進行程式設計。在讀取操作期間,控制電路70可以控制行解碼器/字元線驅動器40和頁緩衝器/感測放大器50以讀取選擇的記憶體單元。X路徑控制訊號和Y路徑控制訊號包括行位址X-ADDR和列位址Y-ADDR,行位址X-ADDR和列位址Y-ADDR可以用於定位記憶體塊103中的選擇的記憶體單元。行位址X-ADDR可以包括頁索引PD、塊索引BD和麵索引PL,以分別標識記憶體頁432、記憶體塊103和記憶體面101(圖3中)。列位址Y-ADDR可以標識記憶體頁432的資料中的位元組或字。
在一些實施方式中,電壓發生器65可以在控制電路70的控制下產生要供應到字元線和位元線的電壓。由電壓發生器65產生的電壓包括讀取電壓Vread、程式設計電壓Vpgm、透過電壓Vpass、禁用電壓Vinhibit等。
注意,圖1、圖2A-2B和圖3-4中的記憶體系統10和記憶體管芯100中的電子部件的佈置被作為非限制性示例示出。在一些實施方式中,記憶體系統10和記憶體管芯100可以具有其他佈設並且可以包括附加部件。圖4中所示的記憶體管芯100上的部件(例如,控制電路70、I/O緩衝器55)也可以作為記憶體系統10中的獨立電部件而被移出記憶體管芯100。圖4中所示的記憶體管芯100上的部件(例如,控制電路70、I/O緩衝器55)也可以移動到記憶體系統10中的其他部件,例如,控制電路70的一部分可以與記憶體控制器20組合,或反之亦然。
圖5示出了根據一些實施方式的3D記憶體結構500的透視圖。在一些實施方式中,記憶體管芯100可以是3D NAND記憶體,並且3D記憶體結構500可以是記憶體管芯100的一部分,例如,3D記憶體結構500在圖3中的區域108中。3D記憶體結構500可以包括階梯區域210和溝道結構區域211。溝道結構區域211可以包括多個記憶體串212,每個記憶體串包括多個堆疊的記憶體單元340。階梯區域210可以包括階梯結構。
在一些實施方式中,3D記憶體結構500可以包括襯底330、襯底330上方的絕緣膜331、絕緣膜331上方的下部選擇閘極(LSG)332的層級,以及堆疊在LSG 332的頂部上以形成交替的導電層和電介質層的膜堆疊體335的控制閘極333(也稱為“字元線(WL)”)的多個層級。為清晰起見,在圖5中未示出與控制閘極的層級相鄰的電介質層。
在一些實施方式中,每個層級的控制閘極由穿過膜堆疊體335的縫隙結構216-1和216-2分離。3D記憶體結構500還可以包括在控制閘極333的堆疊體上方的頂部選擇閘極(TSG)334的層級。TSG 334、控制閘極333和LSG 332的堆疊體也可以被稱為“閘極電極”。3D記憶體結構500還可以包括襯底330在相鄰LSG 332之間的部分中的摻雜源極線區域344。3D記憶體結構500的每個記憶體串212可以包括延伸穿過絕緣膜331和交替的導電層和電介質層的膜堆疊體335的溝道孔336。記憶體串212還可以包括溝道孔336的側壁上的記憶體膜337、記憶體膜337上方的溝道層338、以及被溝道層338圍繞的芯填充膜339。記憶體單元340(例如,340-1、340-2、340-3)可以形成在控制閘極333(例如,333-1、333-2、333-3)與記憶體串212的交叉點處。溝道層338的一部分可以回應於相應的控制閘極,並且也被稱為記憶體單元的溝道338。3D記憶體結構500還包括多條位元線(BL)341,多條BL在TSG 334上方與記憶體串212連接。3D記憶體結構500也可以包括透過多個觸點結構214與閘極電極連接的多條金屬互連線343。膜堆疊體335的邊緣被配置為階梯形狀以允許到閘極電極的每個層級的電性連接。
在圖5中,出於說明性目的,連同TSG 334的一個層級和LSG 332的一個層級一起示出了控制閘極333-1、333-2和333-3的三級層級。在此示例中,每個記憶體串212可以包括分別對應於控制閘極333-1、333-2和333-3的三個記憶體單元340-1、340-2和340-3。在一些實施方式中,控制閘極的數量和記憶體單元的數量可以大於三以增加儲存容量。3D記憶體結構500還可以包括其他結構,例如TSG切口、公共源極觸點(即,陣列公共源極)和虛設記憶體串。為了簡化,這些結構未在圖5中示出。注意,圖5所示的3D記憶體結構500僅用作示例,其並不限定本發明內容的範圍,可以可以採用任何其他適合的3D記憶體結構。
返回參考圖4,在一些實施方式中,可以基於浮閘極技術形成記憶體塊103。在一些實施方式中,可以基於電荷俘獲技術形成記憶體塊103。基於電荷俘獲的NAND快閃記憶體可以提供高儲存密度和高固有可靠性。邏輯狀態(“狀態”,例如記憶體單元340的閾值電壓Vth)形式的儲存資料取決於記憶體單元340的記憶體膜337中俘獲的電荷載流子的數量。
在一些實施方式中,在NAND快閃記憶體中,可以針對記憶體頁432執行讀取操作和寫入操作(也稱為程式設計操作),並且可以針對記憶體塊103執行擦除操作。
在一些實施方式中,在NAND記憶體中,記憶體單元340可以處於擦除狀態ER或程式設計狀態P1。最初,透過在控制閘極333與溝道338之間實施負電壓差使得可以去除記憶體單元340的記憶體膜中的俘獲電荷載流子,可以將記憶體塊103中的記憶體單元340重置到作為邏輯“1”的擦除狀態ER。例如,可以透過將記憶體單元340的控制閘極333設置為接地並且將高正電壓(擦除電壓Verase)施加到ACS 430來引起負電壓差。在擦除狀態ER(“狀態ER”)下,記憶體單元340的閾值電壓Vth可以被重置為最低值。
在一些實施方式中,在程式設計(即,寫入)期間,可以透過例如在控制閘極333上施加程式設計電壓Vpgm(例如,10V與20V之間的正電壓脈衝)並將對應的位元線341接地,來建立控制閘極333和溝道338之間的正電壓差。結果,可以將電荷載流子(例如,電子)注入到記憶體單元340的記憶體膜中,由此增加記憶體單元340的閾值電壓Vth。因此,記憶體單元340可以被程式設計到程式設計狀態P1(“狀態P1”或邏輯“0”)。
在一些實施方式中,可以透過測量或感測記憶體單元的閾值電壓Vth來確定記憶體單元的狀態(例如,狀態ER或狀態P1)。在讀取操作期間,可以將讀取電壓Vread施加在記憶體單元的控制閘極333上,並且可以在位元線341處測量流過記憶體單元的電流。可以將透過電壓Vpass施加在非選擇的字元線上以接通非選擇的記憶體單元。
在一些實施方式中,NAND快閃記憶體可以被配置為以單級單元(SLC,single-level cell)模式操作。為了增加儲存容量,NAND快閃記憶體可以被配置為以多級單元(MLC,multi-level cell)模式、三級單元(TLC,triple-level cell)模式、四級單元(QLC,quad-level cell)模式或這些模式中的任一個的組合來操作。在SLC模式中,記憶體單元儲存1位元,並且具有兩個邏輯狀態(“狀態”):邏輯{1和0},即,狀態ER和P1。在MLC模式中,記憶體單元儲存2位元,並且具有四個邏輯狀態:邏輯{11、10、01和00},即,狀態ER、P1、P2和P3。在TLC模式中,記憶體單元儲存3位元,並且具有八個邏輯狀態:邏輯{111,110,101,100,011,010,001,000},即,狀態ER和狀態P1-P7。在QLC模式中,記憶體單元儲存4位元並且具有16個邏輯狀態。記憶體系統10的記憶體控制器20(參見圖1)可以將從主機電腦15接收的資料轉換為記憶體管芯100上的記憶體單元的對應邏輯狀態,反之亦然。
圖6示出了根據一些實施方式的以三級單元(TLC)模式程式設計的NAND快閃記憶體的閾值電壓Vth分佈。在一些實施方式中,記憶體單元的每個狀態可以對應於閾值電壓Vth的特定範圍,其中每個狀態的閾值電壓Vth分佈可以由概率密度表示。在一些實施方式中,可以透過使用遞增階躍脈衝程式設計(ISPP,incremental step pulse programming)方案來程式設計八個TLC狀態,其中可以透過添加階躍脈衝Vstep來遞增地增加程式設計電壓Vpgm。因此,八個TLC狀態可以從具有較低閾值電壓的狀態P1被程式設計到具有最高閾值電壓的狀態P7。
在一些實施方式中,在程式設計之後,可以在驗證過程期間透過使用一個或多個讀取參考電壓VR1-VR7來驗證八個TLC狀態ER和P1-P7。透過將一個或多個讀取參考電壓VR1-VR7施加到目標記憶體單元的控制閘極,可以確定記憶體單元的閾值電壓Vth的範圍。例如,為了驗證記憶體單元是否處於狀態ER,可以使用讀取參考電壓VR1。如果目標記憶體單元處於狀態ER,則目標記憶體單元的閾值電壓Vth低於讀取參考電壓VR1。目標記憶體單元可以被接通並且在溝道中形成導電路徑。如果目標記憶體單元處於狀態P1-P7中的任何一個,則目標記憶體單元的閾值電壓Vth高於讀取參考電壓VR1。目標記憶體單元由此被關斷。透過經由頁緩衝器/感測放大器50測量或感測在對應位元線處透過目標記憶體單元的電流,可以驗證目標記憶體單元的閾值電壓Vth或狀態。
在一些實施方式中,如上文所描述,為了確定在SLC模式中儲存的兩個狀態ER和P1,僅依賴於讀取參考電壓VR1就足夠了。為了確定MLC模式中的四個狀態ER和P1-P3可以使用讀取參考電壓VR1、VR2和VR3。為了確定TLC模式的八個狀態ER和P1-P7,可以使用讀取參考電壓VR1-VR7。例如,在TLC模式中,狀態ER的閾值電壓低於VR1,並且狀態P7的閾值電壓高於VR7,其中狀態P1的閾值電壓在VR1與VR2之間。可以類似地確定狀態P2-P6。
在一些實施方式中,期望提供可靠並且便利的讀取操作以從(一個或多個)記憶體單元取回經程式設計資料。實際上,3D NAND記憶體中的不期望的電子行為可能導致讀取操作失敗。讀取錯誤的可能性可能隨著層的增加(例如,從SLC到MLC或TLC)而增加。再次參考圖6,3D NAND記憶體的一些條件(例如,溫度改變)可能干擾閾值電壓的分佈。例如,狀態ER的閾值電壓的分佈可以如分佈602所示被干擾。更高的狀態也可能被類似地干擾。圖6示出了與狀態P1、P2和P3的分佈對應的閾值電壓分佈604、606和608的變形的非限制性示例(較高狀態可能被類似地影響)。如果對閾值電壓分佈的影響足夠顯著,則讀取操作可能失敗(例如,讀取與記憶體單元中程式設計的值不同的不正確的值)。
在一些實施方式中,記憶體系統10(圖1)或其子部件可以經歷電力迴圈(例如,斷電、休眠模式、喚醒等)。當斷電或以有限功率操作時,3D NAND記憶體的(一個或多個)記憶體單元可能經歷溫度的相當大的改變(例如,從遠高於室溫到接近室溫)。在一個非限制性示例中,操作溫度可以是約70-100℃並且室溫可以是約20-30℃(可以取決於環境條件而改變)。當3D NAND重新通電時,溫度差可能影響閾值電壓分佈,注意,即使當記憶體單元中的程式設計資料未被破壞時,讀取失敗也可能按上述方式失敗。在這種情況下,程式設計資料不會丟失,並且可以修改和/或重試讀取操作以取回程式設計資料。
在一些實施方式中,一種解決讀取錯誤的方法可以包括執行讀取重試例程集合。示例性讀取重試例程可以僅包括重複導致讀取失敗的讀取操作。替代體,稍微更複雜的讀取重試例程可以包括定址讀取操作的不同效應器的讀取操作的修改版本。讀取操作的效應器可以包括影響讀取操作的現象。讀取操作的效應器可以包括例如:自記憶體單元的最後程式設計以來所經過的時間、自前一次讀取操作以來所經過的時間、記憶體單元的溫度、自前一次溫度檢查以來所經過的時間、先前對記憶體單元執行的讀取次數等。本領域技術人員將理解,可以設想讀取操作的其他效應器。可以針對3D NAND記憶體的不同條件優化讀取重試嘗試。優化可以基於3D NAND記憶體的各個方面的中繼資料(例如,時間戳記(time stamp)、溫度、讀取干擾等)的收集。
圖7示出根據一些實施方式的3D NAND記憶體700的頁和管芯的圖表。在一些實施方式中,3D NAND記憶體700可以是記憶體系統10(圖1)的另一表示。除非另有說明,否則先前針對圖1(以及其他相關圖式)的元件描述的結構和功能也可以應用於參考圖7描述的類似元件。
在一些實施方式中,3D NAND記憶體700可以包括多個管芯(例如,記憶體管芯100(圖1、3、4))。每個管芯被標記為管芯-n,其中n從0到N。每個管芯可以包括多個頁(例如,記憶體頁432(圖4))。每個頁被標記為頁-m,其中m從0到M。從n個管芯的每一個管芯中的m個頁的每一個頁感測和儲存中繼資料可能花費大量的時間和儲存空間。本文描述的實施方式針對改進NAND記憶體裝置的讀取速度和操作效率。因此,在一些實施方式中,可以將感測和儲存中繼資料設置為在3D NAND記憶體700的指定觸發器部分處發生。例如,可以選擇給定管芯的給定頁作為觸發點。作為觸發點的給定頁的關聯可以被程式設計在例如韌體21(圖1)中。圖7示出了作為非限制性示例的觸發點702和704。通常,3D NAND記憶體700的多個部分可以與對應觸發點相關聯。
在一些實施方式中,可以在觸發點702和/或704(例如,也稱為“NAND記憶體系統或裝置的觸發部分”或“指定觸發部分”)處執行操作。操作可以是例如讀取操作(感測儲存在頁中的資料)或程式設計操作(將資料程式設計到頁中)。由於讀取/程式設計操作遇到觸發點,因此可以感測和記錄讀取/程式設計操作的一個或多個效應器。
圖8示出了根據一些實施方式的用於感測讀取操作的效應器的值的集合的方法800。在一些實施方式中,讀取操作可以是在包括3D NAND記憶體(例如,3D NAND記憶體700(圖7))的資料儲存系統(例如,記憶體系統10(圖1))的一部分處執行的讀取操作。
在一些實施方式中,在步驟S802,方法800可以包括檢查操作是否要與觸發點(例如,圖7的觸發點702)交互。如先前所描述,當在3D NAND記憶體的與觸發點相關聯的部分處執行讀取操作或程式設計操作時,可以觸發檢查。如果是,則在步驟S804,方法800可以包括感測和記錄與觸發點相關聯的時間戳記。觸發點可以是例如3D NAND記憶體的一部分(例如,如參考圖7所限定的與(n,m)相關聯的位置)。例如,觸發點可以是給定的頁、塊、超級塊(例如,多個塊)等。時間戳記還可以與程式設計事件、溫度感測事件、讀取事件和/或其他事件相關聯。
在一些實施方式中,在步驟S806,方法800可以包括感測並且記錄與觸發點(例如,在3D NAND記憶體的給定部分處)相關聯的溫度。如果步驟S802檢查觸發點並且發現它不是觸發點,則方法800可以跳到步驟S808並且在下一位置處進行(一個或多個)操作(例如,進行到下一頁)。
在一些實施方式中,如果在觸發點處執行的操作是讀取操作,則方法800可以包括記錄讀取事件(例如,跟蹤對3D NAND記憶體的特定部分執行的讀取計數的數量)。讀取操作可能輕微地干擾記憶體單元(例如,讀取干擾)。大量的讀取計數可能積聚對記憶體單元的干擾。
在一些實施方式中,可以將讀取操作的不同效應器的感測值作為中繼資料記錄在RAM 23(圖1)中。
圖9示出了根據一些實施方式的用於從多個讀取重試例程中進行選擇的方法900。在一些實施方式中,可以基於方法800收集的中繼資料來執行從多個讀取重試例程的選擇和後續執行。在一些實施方式中,例如,當讀取操作失敗時,可以觸發方法900的步驟。方法900的步驟可以存取並比較與最接近3D NAND記憶體的讀取操作失敗的部分的觸發點(例如,圖7的觸發點702)相關聯的中繼資料。讀取操作的效應器的值的集合(作為中繼資料儲存(例如,在清單或表格中))可以包括時間戳記、溫度、讀取計數、(一個或多個)其他效應器或其組合。
在一些實施方式中,當標準讀取操作失敗時,可以使用讀取重試例程。讀取重試例程可以包括用於讀取重新嘗試的修改的讀取操作,修改的讀取操作專門用於克服標準讀取操作的不同失敗條件(例如,由於溫度引起的失敗、由於讀取干擾引起的失敗等)。
在一些實施方式中,在步驟S902,方法900可以包括檢查或確定是否已經滿足資料保持條件的集合。術語“資料保持”可以指記憶體單元保持其資料的能力。隨著時間的過去,電子可能洩漏(例如,電子隧穿)到電荷捕獲層(例如,記憶體膜337(圖4))或從電荷捕獲層洩漏。電子洩漏可能導致程式設計的分佈(例如,見圖6)變寬和/或移位。為了解決這種影響,與利用未調整的讀取電壓執行常規讀取重試相反,基於資料保持中繼資料的讀取重試可以使用調整的讀取電壓進行讀取重試。
在一些實施方式中,記憶體控制器20(圖1)可以對自在與觸發點相關聯的記憶體單元處執行的最後操作以來所經過的時間長度進行分析(例如,將當前時間與來自中繼資料的時間戳記進行比較)。如果不滿足資料保持條件的集合,則方法900可以跳過步驟S904。如果滿足資料保持條件的集合,則方法900可以進行到步驟S904,S904用於選擇與資料保持相關聯的多個讀取重試例程中的一個(例如,使用調整的讀取電壓)。步驟S904的多個讀取重試例程中的選擇的一個讀取重試例程可以包括基於與記憶體系統10(圖1)的一部分相關聯的時間戳記的讀取操作(例如,讀取電壓調整可以基於時間戳記)。記憶體系統的該部分可以是例如觸發點702(圖7)。讀取重試例程可以包括例如讀取操作,該讀取操作包括與失敗的讀取操作中使用的預脈衝持續時間不同的經調整的預脈衝持續時間。
在一些實施方式中,基於資料保持的讀取重試的(一個或多個)參數可以基於大規模實驗(例如,在工廠)來確定。例如,可以測試記憶體裝置和記憶體單元的大樣本以確定用於保持資料大約1年、2年、3年等的記憶體單元的最佳讀取電壓(經調整的讀取電壓)。測試可以進一步利用溫度資料來細化。例如,可以針對在40℃的溫度下保持資料1年、在55℃的溫度下保持資料1年、在40℃的溫度下保持資料3年、在55℃的溫度下保持資料3年等的記憶體單元確定最佳讀取電壓。所得電壓調整和觸發條件(例如,資料保持條件)可以儲存在記憶體控制器20(圖1)的非暫時性儲存介質中或NAND記憶體裝置的頁中。
在一些實施方式中,在步驟S906,方法900可以包括檢查是否已經滿足溫度條件的集合。例如,所關注的參數可以是溫度差。溫度差的示例可基於:對具有升高溫度的記憶體單元執行的程式設計操作與記憶體單元處於低於升高的溫度的溫度時對記憶體單元執行的讀取操作的比較。另一示例可以是:對具有低溫的記憶體單元執行的程式設計操作與在記憶體單元處於升高的溫度時對記憶體單元執行的讀取操作的比較。可以設想其他的溫度差情景。溫度差可能導致程式設計的分佈(例如,見圖6)變寬和/或移位。為了解決這種影響,與利用未調整的讀取電壓執行常規讀取重試相比,基於溫度條件中繼資料的讀取重試可以使用特別針對溫度條件定制的經調整的讀取電壓。
在一些實施方式中,記憶體控制器20(圖1)可以在對記憶體單元進行程式設計時記錄記憶體單元的溫度(例如,在觸發點處)。在稍後從記憶體單元讀回資料時,記憶體控制器20(圖1)可以透過將與觸發點相關聯的溫度條件的集合進行比較來分析記憶體單元的當前溫度和較早記錄的程式設計溫度。如果不滿足溫度條件的集合,則方法900可以跳過步驟S908。如果滿足溫度條件的集合,則方法900可以進行到步驟S908,S908用於選擇與溫度相關聯的多個讀取重試例程中的一個讀取重試例程。步驟S908的多個讀取重試例程中的選擇的一個讀取重試例程可以包括基於與記憶體系統10(圖1)的一部分(例如,觸發點702(圖7))相關聯的記錄的溫度的讀取操作。
在一些實施方式中,基於溫度條件的讀取重試的(一個或多個)參數可以基於大規模實驗(例如,在工廠)來確定。例如,可以測試記憶體裝置和記憶體單元的大樣本以確定用於具有與程式設計操作和讀取操作相關聯的溫度差範圍的記憶體單元的最佳讀取電壓(經調整的讀取電壓)。所得電壓調整和觸發條件(例如,溫度條件)可以儲存在記憶體控制器20(圖1)的非暫時性儲存介質中或NAND記憶體裝置的頁中。
在一些實施方式中,在步驟S910,方法900可以包括檢查是否已經滿足讀取干擾條件的集合。例如,對同一物理塊上的NAND頁的讀取可以執行多次。這可能導致程式設計的分佈(例如,見圖6)移位。為了解決這種影響,與利用未調整的讀取電壓執行常規讀取重試相反,基於讀取干擾中繼資料的讀取重試可以使用特別針對不同量值的讀取干擾定制的經調整的讀取電壓。
在一些實施方式中,記憶體控制器20(圖1)可以記錄對記憶體單元執行讀取操作時(例如,在觸發點處)的計數。在稍後從記憶體單元讀回資料時,記憶體控制器20(圖1)可以對與觸發點相關聯的記錄的讀取計數進行分析。也可以使用擦除計數。如果不滿足讀取干擾條件的集合,則方法900可以跳過步驟S912。如果滿足讀取干擾條件的集合,則方法900可以進行到步驟S912,S912用於選擇與讀取干擾相關聯的多個讀取重試例程中的一個讀取重試例程。在此情形下,多個讀取重試例程中的選擇的一個讀取重試例程可以包括基於與記憶體系統10(圖1)的一部分(例如觸發點702(圖7))相關聯的記錄的讀取計數的讀取操作。
在一些實施方式中,基於讀取干擾的讀取重試的(一個或多個)參數可以基於大規模實驗(例如,在工廠)來確定。例如,可以測試記憶體裝置和記憶體單元的大樣本以確定用於具有3000的讀取計數、10000的讀取計數等的記憶體單元的最佳讀取電壓(經調整的讀取電壓)。也可以使用擦除計數。所得電壓調整和觸發條件(例如,讀取干擾條件)可以儲存在記憶體控制器20(圖1)的非暫時性儲存介質中或NAND記憶體裝置的頁中。
在一些實施方式中,在步驟S914,方法900可以包括檢查是否已經滿足給定的其他類別條件的集合。例如,常式可以對與觸發點相關聯的記錄的時間戳記和溫度進行分析。如果不滿足給定的其他類別條件的集合,則方法900可以跳過步驟S916。如果滿足了給定的其他類別條件的集合,則方法900可以進行到步驟S916,S916用於選擇與其他類別相關聯的多個讀取重試例程中的一個讀取重試例程。在此情形下,多個讀取重試例程中的選擇的一個讀取重試例程可以包括基於與記憶體系統10(圖1)的一部分(例如,觸發點702(圖7))處的另一類別相關聯的中繼資料的讀取操作。步驟S916中的讀取操作可以具有不同於步驟S904、S908和/或S912中的(一個或多個)讀取操作的一個或多個參數。
在一些實施方式中,透過使用方法900來選擇讀取重試例程,可以顯著地提高資料儲存系統(例如,企業級固態驅動器)的性能。相比之下,在不使用與中繼資料相關的方法的資料儲存系統中,可能需要使用所有讀取重試例程,或者甚至需要從讀取重試例程中進行隨機選擇,這可能嚴重影響讀回速度並增加讀取等待時間。
在本文中公開的實施方式中的方法步驟可以以任何可想到的循序執行,並且不要求執行所有步驟。
總之,本發明內容描述一種記憶體系統,該記憶體系統用於基於中繼資料從多個讀取重試例程中進行選擇,以增強由記憶體系統使用的讀取操作。在一些實施方式中,記憶體系統可以包括一個或多個記憶體裝置和耦接到一個或多個記憶體裝置的記憶體控制器。一個或多個記憶體裝置可以儲存資料。記憶體控制器可以對在一個或多個記憶體裝置的一部分處的讀取操作的失敗進行偵測。記憶體控制器還可以對與讀取操作的效應器的集合相對應的值的集合進行分析。記憶體控制器還可以基於分析從多個讀取重試例程中選擇一個或多個讀取重試例程。多個讀取重試例程中的每一個讀取重試例程可以與效應器的集合中的不同效應器以及對應於不同效應器的讀取電壓相關聯。記憶體控制器還可以對一個或多個記憶體裝置的部分執行選擇的一個或多個讀取重試例程,以使讀取操作的失敗失效。
本發明內容還提供一種操作方法,該方法用於基於中繼資料從多個讀取重試例程中進行選擇,以增強記憶體系統中的讀取操作。在一些實施方式中,操作方法可以包括將資料儲存在記憶體系統的一個或多個裝置中。操作方法還可以包括對在一個或多個記憶體裝置的一部分處執行的讀取操作的失敗進行偵測。操作方法還可以包括對與讀取操作的效應器的集合相對應的值的集合進行分析。操作方法還可以包括基於分析從多個讀取重試例程中選擇一個或多個讀取重試例程,多個讀取重試例程中的每一個讀取重試例程與效應器的集合中的不同效應器以及對應於不同效應器的讀取電壓相關聯。操作方法還可以包括在一個或多個記憶體裝置的部分處執行選擇的一個或多個讀取重試例程,以使讀取操作的失敗失效。
本發明內容還提供一種記憶體系統,該記憶體系統用於基於中繼資料從多個讀取重試例程中進行選擇,以增強記憶體系統中的讀取操作。記憶體系統可以包括耦接到一個或多個記憶體裝置的記憶體控制器。記憶體系統還可以包括非暫時性電腦可讀介質。非暫時性電腦可讀介質可以包括儲存在其上的指令,當由記憶體控制器執行時,指令可以使一個或多個計算裝置執行上述操作方法的操作。
具體實施方式的前述描述將如此充分地揭示本發明內容的一般性質,使得其他人可以透過應用本領域的技術內的知識而在不進行過度實驗的情況下、並且在不脫離本發明內容的一般概念的情況下容易地修改和/或調整此些具體實施方式以用於各種應用。因此,基於本文所呈現的公開內容和指導,此類調整和修改旨在處於所公開的實施方式的等同物的含義和範圍內。應當理解,本文的措辭或術語是為了描述而非限制的目的,使得本說明書的術語或措辭由技術人員根據本發明內容和指導來解釋。
以上已經借助於示出了指定功能及其關係的實施方式的功能構建塊描述了本發明內容的實施方式。為了便於描述,本文已經任意地限定了這些功能性構建塊的邊界。只要適當地執行指定的功能及其關係,就可以限定替代的邊界。
發明內容和摘要部分可以闡述(一個或多個)發明人所設想的本發明內容的一個或多個但不是所有示例性實施方式,並且因此,不旨在以任何方式限制本發明內容和所附權利要求。
本發明內容的廣度和範圍不應由上述示例性實施方式中的任何一個限制,而應僅根據所附權利要求及其等同物來限定。
S1:具有記憶體系統的系統 10:記憶體系統 15:主機電腦 20:記憶體控制器 21:韌體 22:處理器 23:記憶體 24:記憶體卡連接器 25-1,25-2,25-3,25-n,25:記憶體裝置 26:記憶體卡 27:固態驅動器 28:固態驅動器連接器 29:改錯碼引擎 30-1,30-2,30-3,30-n,30:記憶體通道 40:行解碼器/字元線驅動器 50:頁緩衝器/感測放大器 52:列解碼器/位元線驅動器 55:輸入/輸出緩衝器 65:電壓發生器 70:控制電路 100:記憶體管芯 101:記憶體面 103:記憶體塊 105:週邊電路區域 108:區域 210:階梯區域 211:溝道結構區域 212:記憶體串 214:觸點結構 216-1,216-2:縫隙結構 330:襯底 331:絕緣膜 332:下部選擇閘極 333:字元線,控制閘極 333-1,333-2,333-3:控制閘極 334:頂部選擇閘極 335:膜堆疊體 336:溝道孔 337:記憶體膜 338:溝道層,溝道 339:芯填充膜 340,340-1,340-2,340-3:記憶體單元 341:位元線 343:金屬互連線 344:摻雜源極線區域 430:陣列公共源極 432:記憶體頁 500:3D記憶體結構 602,604,606,608:閾值電壓分佈 700:3D NAND記憶體 702,704:觸發點 800:方法 900:方法 X-ADDR:行位址 Y-ADDR:列位址 VR1-VR7:參考電壓
併入本文並且形成說明書的一部分的圖式示出了本發明內容的實施方式,並且圖式與說明書一起進一步用於解釋本發明內容的原理並且使得相關領域技術人員能夠製成和使用本發明內容。 圖1和圖2A-2B示出了根據一些實施方式的具有一個或多個記憶體裝置的儲存系統。 圖3示出了根據一些實施方式的記憶體管芯的示意圖。 圖4示出了根據一些實施方式的三維(3D)記憶體管芯的示意圖。 圖5示出了根據一些實施方式的3D記憶體結構的一部分的透視圖。 圖6示出了根據一些實施方式的NAND快閃記憶體的閾值電壓V th分佈。 圖7示出了根據一些實施方式的3D NAND記憶體的頁和管芯的圖表。 圖8示出了根據一些實施方式的用於感測讀取操作的效應器的值的集合的方法。 圖9示出了根據一些實施方式的用於從多個讀取重試例程中進行選擇的方法。 當結合圖式時,根據下面闡述的具體實施方式,本發明的特徵和優點將變得更加明顯,在圖式中,相同的圖式標記始終標識對應的元件。在圖式中,相同的圖式標記通常表示相同的、功能上類似的和/或結構上類似的元件。元件首次出現的圖式由對應圖式標記中最左側的(一個或多個)數字表示。 將參考圖式描述本發明內容的實施方式。
10:記憶體系統
15:主機電腦
20:記憶體控制器
21:韌體
22:處理器
23:記憶體
25-1,25-2,25-3,25-n:記憶體裝置
29:改錯碼引擎
30-1,30-2,30-3,30-n:記憶體通道
100:記憶體管芯

Claims (22)

  1. 一種記憶體系統,包括: 一個或多個記憶體裝置,被配置為一儲存資料;以及 一記憶體控制器,耦接到所述一個或多個記憶體裝置,並且被配置為: 對在所述一個或多個記憶體裝置的一部分處執行的一讀取操作的失敗進行偵測; 對與所述讀取操作的一效應器的集合相對應的一值的集合進行分析; 基於所述分析從多個讀取重試例程中選擇一個或多個讀取重試例程,其中,所述多個讀取重試例程中的每一個讀取重試例程與以下相關聯:來自所述效應器的集合中的不同效應器、以及對應於所述不同效應器的讀取電壓;以及 在所述一個或多個記憶體裝置的所述部分處執行所選擇的所述一個或多個讀取重試例程,以使所述讀取操作的所述失敗失效。
  2. 如請求項1所述之記憶體系統,其中,所述記憶體控制器還被配置為: 對所述一個或多個記憶體裝置的所述部分處的所述值的集合進行一感測;以及 基於所述感測將所述值的集合儲存在所述記憶體系統中。
  3. 如請求項2所述之記憶體系統,其中,所述記憶體控制器還被配置為:在所述一個或多個記憶體裝置的指定觸發器部分處執行對所述值的集合的所述感測。
  4. 如請求項2所述之記憶體系統,其中,對所述值的集合的所述感測包括:將時間戳記指派給所述一個或多個記憶體裝置的所述部分處的過去程式設計事件。
  5. 如請求項2所述之記憶體系統,其中,對所述值的集合的所述感測包括:感測所述一個或多個記憶體裝置的所述部分處的溫度。
  6. 如請求項2所述之記憶體系統,其中,對所述值的集合的所述感測包括:記錄所述一個或多個記憶體裝置的所述部分處的讀取計數。
  7. 如請求項1所述之記憶體系統,其中,所述記憶體控制器包括被配置為儲存所述多個讀取重試例程的非暫時性儲存介質。
  8. 如請求項1所述之記憶體系統,其中,所述一個或多個記憶體裝置包括三維(3D)NAND記憶體裝置。
  9. 如請求項1所述之記憶體系統,其中: 所述效應器的集合相對應的所述值的集合包括在所述一個或多個記憶體裝置的所述部分處的過去程式設計事件的時間戳記;並且 選擇的所述一個或多個讀取重試例程包括使用與所述讀取操作的基於時間的效應器相對應的讀取電壓的讀取重試例程。
  10. 如請求項1所述之記憶體系統,其中: 所述效應器的集合相對應的所述值的集合包括在所述一個或多個記憶體裝置的所述部分處的溫度;並且 選擇的所述一個或多個讀取重試例程包括使用與所述讀取操作的基於溫度的效應器相對應的讀取電壓的讀取重試例程。
  11. 如請求項1所述之記憶體系統,其中: 所述效應器的集合相對應的所述值的集合包括在所述一個或多個記憶體裝置的所述部分處的讀取計數;並且 選擇的所述一個或多個讀取重試例程包括使用與所述讀取操作的基於讀取計數的效應器相對應的讀取電壓的讀取重試例程。
  12. 一種用於記憶體系統的操作方法,包括: 將資料儲存在所述記憶體系統的一個或多個記憶體裝置中; 對在所述一個或多個記憶體裝置的一部分處執行的讀取操作的失敗進行偵測; 對與所述讀取操作的一效應器的集合相對應的一值的集合進行分析; 基於所述分析從多個讀取重試例程中選擇一個或多個讀取重試例程,其中,所述多個讀取重試例程中的每一個讀取重試例程與以下相關聯:來自所述效應器的集合中的不同效應器、以及對應於所述不同效應器的讀取電壓;以及 對所述一個或多個記憶體裝置的所述部分執行所選擇的所述一個或多個讀取重試例程,以使所述讀取操作的所述失敗失效。
  13. 如請求項12所述之操作方法,還包括: 對所述一個或多個記憶體裝置的所述部分處的所述值的集合進行一感測;以及 基於所述感測將所述值的集合儲存在所述記憶體系統中,其中,引用所述值的集合包括引用所儲存的所述值的集合。
  14. 如請求項13所述之操作方法,還包括:在所述一個或多個記憶體裝置的指定觸發器部分處執行對所述值的集合的所述感測。
  15. 如請求項13所述之操作方法,其中,對所述值的集合的所述感測包括:將時間戳記指派給所述一個或多個記憶體裝置的所述部分處的過去程式設計事件。
  16. 如請求項13所述之操作方法,其中,對所述值的集合的所述感測包括:感測所述一個或多個記憶體裝置的所述部分處的溫度。
  17. 如請求項13所述之操作方法,其中,對所述值的集合的所述感測包括:記錄所述一個或多個記憶體裝置的所述部分處的讀取計數。
  18. 如請求項12所述之操作方法,還包括:將用於執行所述多個讀取重試例程的指令儲存在記憶體控制器的非暫時性儲存介質處。
  19. 如請求項12所述之操作方法,其中: 所述效應器的集合相對應的所述值的集合包括在所述一個或多個記憶體裝置的所述部分處的過去程式設計事件的時間戳記;並且 選擇的所述一個或多個讀取重試例程包括使用與所述讀取操作的基於時間的效應器相對應的讀取電壓的讀取重試例程。
  20. 如請求項12所述之操作方法,其中: 所述效應器的集合相對應的所述值的集合包括在所述一個或多個記憶體裝置的所述部分處的溫度;並且 選擇的所述一個或多個讀取重試例程包括使用與所述讀取操作的基於溫度的效應器相對應的讀取電壓的讀取重試例程。
  21. 如請求項12所述之操作方法,其中: 所述效應器集合相對應的的所述值的集合包括在所述一個或多個記憶體裝置的所述部分處的讀取計數;並且 選擇的所述一個或多個讀取重試例程包括使用與所述讀取操作的基於讀取計數的效應器相對應的讀取電壓的讀取重試例程。
  22. 一種記憶體系統,包括: 記憶體控制器,耦接到所述記憶體系統的一個或多個記憶體裝置;以及 非暫時性電腦可讀介質,具有儲存在其上的指令,當由所述記憶體控制器執行所述指令時,所述指令使所述記憶體控制器執行如請求項12至21中任一項所述之操作方法。
TW111149994A 2022-08-16 2022-12-26 記憶體系統及其操作方法 TW202410048A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/889,212 2022-08-16

Publications (1)

Publication Number Publication Date
TW202410048A true TW202410048A (zh) 2024-03-01

Family

ID=

Similar Documents

Publication Publication Date Title
CN107492391B (zh) 基于单元电流的位线电压
US9213598B2 (en) Nonvolatile memory device and method of operating the same
US9847122B2 (en) Multi-bit memory device and on-chip buffered program method thereof
KR20150015578A (ko) 불휘발성 메모리 장치 및 그것의 프로그램 검증 방법
US20160284403A1 (en) Updating Resistive Memory
US20160005480A1 (en) Nonvolatile memory device and method for operating the same
US20230004297A1 (en) Data protection for three-dimensional nand memory
US11894092B2 (en) Memory system including a nonvolatile memory device, and an erasing method thereof
US9448876B2 (en) Fault detection and prediction in storage devices
WO2022247775A1 (zh) 存储器及其擦除验证方法、操作方法、存储器系统
US11935619B2 (en) Page buffer circuits of three-dimensional memory device
WO2023272471A1 (en) Page buffer circuits in three-dimensional memory devices
US20220238170A1 (en) Memory system and operating method thereof
TW202331728A (zh) 用於nand快閃記憶體設備的編程方法、nand快閃記憶體設備及記憶體系统
US20220028466A1 (en) Memory device and a memory system including the same
TW202410048A (zh) 記憶體系統及其操作方法
US20240061606A1 (en) Read retry method for enhancing read performance and stability of 3d nand memory
US20240160356A1 (en) Method of reducing vpass disturb in 3d nand systems
US20240087654A1 (en) 3d nand memory device and control method thereof
US11984193B2 (en) Page buffer circuits in three-dimensional memory devices
US20230039489A1 (en) Semiconductor device performing block program and operating method thereof
TWI808420B (zh) 記憶體元件及其操作方法
US20240161789A1 (en) Page buffer circuits in three-dimensional memory devices
US20230154551A1 (en) Semiconductor device for improving retention performance and operating method thereof
US20240153547A1 (en) Control method and system in 3d nand systems