TW202408138A - Power conversion circuit and controlling method thereof - Google Patents
Power conversion circuit and controlling method thereof Download PDFInfo
- Publication number
- TW202408138A TW202408138A TW111129516A TW111129516A TW202408138A TW 202408138 A TW202408138 A TW 202408138A TW 111129516 A TW111129516 A TW 111129516A TW 111129516 A TW111129516 A TW 111129516A TW 202408138 A TW202408138 A TW 202408138A
- Authority
- TW
- Taiwan
- Prior art keywords
- control signal
- power conversion
- switching element
- conversion circuit
- period
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000000630 rising effect Effects 0.000 claims abstract description 27
- 230000003071 parasitic effect Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 239000003990 capacitor Substances 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/38—Means for preventing simultaneous conduction of switches
- H02M1/385—Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Power Conversion In General (AREA)
- Inverter Devices (AREA)
Abstract
Description
本發明是有關於一種電源轉換電路,特別是關於一種功率轉換電路及其控制方法。The present invention relates to a power conversion circuit, and in particular to a power conversion circuit and a control method thereof.
在目前的應用中,切換式功率轉換電路使用例如是金氧半場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)或橫向擴散金屬氧化物半導體電晶體(Laterally Diffused Metal Oxide Semiconductor)作為開關元件進行電源轉換。這些開關元件具有場板(Field plane,FP)電極且耦接其閘極電位或源極電位,用以降低開關元件的寄生電容或寄生電阻。In current applications, switching power conversion circuits use, for example, Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) or Laterally Diffused Metal Oxide Semiconductor as the Switching elements perform power conversion. These switching elements have field plate (FP) electrodes and are coupled to their gate potential or source potential to reduce parasitic capacitance or parasitic resistance of the switching elements.
具體來說,若將場板電極耦接閘極電位,雖然可改善元件操作時的寄生電容,然而當開關元件被關斷時,場板電極上的電壓的下降緣與閘極上的電壓的下降緣同時發生,半導體元件的源極與汲極之間以及場板電極與汲極之間瞬時產生的電壓差會產生振鈴(Ringing)現象,此振鈴現象可能導致元件崩潰(Breakdown)。另一方面,若將場板電極耦接源極電位,可改善元件的寄生電阻,但會導致元件的寄生電容增加。Specifically, if the field plate electrode is coupled to the gate potential, although the parasitic capacitance during device operation can be improved, when the switching element is turned off, the falling edge of the voltage on the field plate electrode is consistent with the drop of the voltage on the gate. The instantaneous voltage difference between the source and drain of the semiconductor device and between the field plate electrode and the drain will produce a ringing phenomenon. This ringing phenomenon may cause the device to break down. On the other hand, if the field plate electrode is coupled to the source potential, the parasitic resistance of the device can be improved, but the parasitic capacitance of the device will increase.
在另一方面,若將前述的開關元件應用於半橋整流器的下橋開關,且將場板電極耦接下橋開關的閘極電位。在此應用中,當下橋開關被關斷時所造成的振鈴現象會導致半導體元件的閘極與源極(或汲極)之間的電壓差過大而發生崩潰,會造成半橋整流器發生射穿(shoot through)現象導致半橋整流器損毀。On the other hand, if the aforementioned switching element is applied to the lower bridge switch of the half-bridge rectifier, and the field plate electrode is coupled to the gate potential of the lower bridge switch. In this application, the ringing phenomenon caused when the low-side switch is turned off will cause the voltage difference between the gate and source (or drain) of the semiconductor device to be too large and collapse, causing shoot-through of the half-bridge rectifier. (shoot through) phenomenon causes damage to the half-bridge rectifier.
本發明實施例提供一種功率轉換電路及其控制方法,能夠在功率轉換電路中的開關元件運作時,降低其寄生電容及寄生電阻,同時提高功率轉換電路對於發生射穿現象的容忍度(Tolerance)。Embodiments of the present invention provide a power conversion circuit and a control method thereof, which can reduce the parasitic capacitance and parasitic resistance of switching elements in the power conversion circuit when they are operating, and at the same time improve the tolerance of the power conversion circuit to the occurrence of shoot-through phenomena. .
本發明實施例的功率轉換電路包括第一開關元件。第一開關元件具有第一閘極與第一場板電極。第一閘極接收第一控制信號,並且第一場板電極接收第二控制信號。於功率轉換電路的重載期間,第二控制信號的高電位期間的上升緣早於第一控制信號的高電位期間的上升緣,且第二控制信號的高電位期間比第一控制信號的高電位期間長。The power conversion circuit of the embodiment of the present invention includes a first switching element. The first switching element has a first gate electrode and a first field plate electrode. The first gate receives a first control signal, and the first field plate electrode receives a second control signal. During the reload period of the power conversion circuit, the rising edge of the high-potential period of the second control signal is earlier than the rising edge of the high-potential period of the first control signal, and the high-potential period of the second control signal is higher than that of the first control signal. The potential period is long.
於一實施例中,於功率轉換電路的重載期間,第二控制信號的高電位期間的下降緣晚於第一控制信號的高電位期間的下降緣。In one embodiment, during the overload period of the power conversion circuit, the falling edge of the high-potential period of the second control signal is later than the falling edge of the high-potential period of the first control signal.
於一實施例中,功率轉換電路還包括第二開關元件,串聯連接於輸入電壓與第一開關元件之間。第二開關元件具有第二閘極用以接收第三控制信號。於功率轉換電路的重載期間,第二控制信號為第三控制信號的反相信號。第一控制信號的高電位期間與第三控制信號的高電位期間之間有死區時間。In one embodiment, the power conversion circuit further includes a second switching element connected in series between the input voltage and the first switching element. The second switching element has a second gate for receiving the third control signal. During the reloading period of the power conversion circuit, the second control signal is an inverse signal of the third control signal. There is a dead time between the high potential period of the first control signal and the high potential period of the third control signal.
於一實施例中,第二開關元件還具有第二場板電極。第二場板電極用以接收與第三控制信號不同的第四控制信號。In one embodiment, the second switching element further has a second field plate electrode. The second field plate electrode is used to receive a fourth control signal different from the third control signal.
於一實施例中,第四控制信號為直流電壓信號或為第三控制信號的同步信號。In one embodiment, the fourth control signal is a DC voltage signal or a synchronization signal of the third control signal.
於一實施例中,第一開關元件、第二開關元件及驅動電路形成於同一晶片中。In one embodiment, the first switching element, the second switching element and the driving circuit are formed on the same chip.
於一實施例中,功率轉換電路還包括感測電路及邏輯電路。感測電路感測流經第一開關元件的電流或第一開關元件的溫度至少其中之一,並產生感測信號。邏輯電路耦接於感測電路與第一場板電極之間,根據感測信號提供第二控制信號。當感測信號響應於功率轉換電路的輕載期間而低於預設值時,邏輯電路將第二控制信號維持在固定的工作電壓。In one embodiment, the power conversion circuit further includes a sensing circuit and a logic circuit. The sensing circuit senses at least one of the current flowing through the first switching element or the temperature of the first switching element, and generates a sensing signal. The logic circuit is coupled between the sensing circuit and the first field plate electrode, and provides a second control signal according to the sensing signal. When the sensing signal is lower than the preset value in response to the light load period of the power conversion circuit, the logic circuit maintains the second control signal at a fixed operating voltage.
本發明實施例另提供一種功率轉換電路的控制方法。功率轉換電路包括第一開關元件,並且具有第一閘極接收第一控制信號與第一場板電極接收第二控制信號。控制方法包括以下的步驟。判斷功率轉換電路的負載狀況。於功率轉換電路的重載期間,使第二控制信號的高電位期間的上升緣早於第一控制信號的高電位期間的上升緣,且第二控制信號的高電位期間比第一控制信號的高電位期間長。An embodiment of the present invention further provides a control method for a power conversion circuit. The power conversion circuit includes a first switching element and has a first gate electrode to receive a first control signal and a first field plate electrode to receive a second control signal. The control method includes the following steps. Determine the load condition of the power conversion circuit. During the reload period of the power conversion circuit, the rising edge of the high-potential period of the second control signal is earlier than the rising edge of the high-potential period of the first control signal, and the high-potential period of the second control signal is earlier than the rising edge of the first control signal. The high potential period is long.
於另一實施例中,於功率轉換電路的重載期間,第二控制信號的高電位期間的下降緣晚於第一控制信號的高電位期間的下降緣。In another embodiment, during the overload period of the power conversion circuit, the falling edge of the high-potential period of the second control signal is later than the falling edge of the high-potential period of the first control signal.
於另一實施例中,控制方法還包括當與流經第一開關元件的電流或第一開關元件的溫度其中之一相關的感測信號響應於功率轉換電路的輕載期間而低於預設值時,第二控制信號維持在固定的工作電壓。In another embodiment, the control method further includes when a sensing signal related to one of the current flowing through the first switching element or the temperature of the first switching element is lower than a preset value in response to a light load period of the power conversion circuit. value, the second control signal is maintained at a fixed operating voltage.
基於上述,本發明實施例的功率轉換電路及其控制方法能夠透過控制閘極所接收的第一控制信號與場板電極所接收的第二控制信號,使第一開關元件導通時可透過第二控制信號來降低功率的寄生電阻,並使第一開關元件被導通時可透過場板電極上電壓維持於高電壓而避免發生振鈴現象以提高發生射穿現象的容忍度。如此一來,功率轉換電路及其控制方法能夠降低導通損耗(Conduction Loss)、切換損耗(Switch Loss)以及避免第一開關元件發生射穿現象。Based on the above, the power conversion circuit and its control method according to the embodiment of the present invention can control the first control signal received by the gate electrode and the second control signal received by the field plate electrode, so that when the first switching element is turned on, it can pass through the second control signal. The control signal is used to reduce the parasitic resistance of the power, so that when the first switching element is turned on, the voltage on the field plate electrode can be maintained at a high voltage to avoid ringing and improve the tolerance of the shoot-through phenomenon. In this way, the power conversion circuit and its control method can reduce conduction loss (Conduction Loss), switching loss (Switch Loss) and prevent the first switching element from being shot through.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, embodiments are given below and described in detail with reference to the accompanying drawings.
本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的範例。Some embodiments of the present invention will be described in detail with reference to the accompanying drawings. The component symbols cited in the following description will be regarded as the same or similar components when the same component symbols appear in different drawings. These embodiments are only part of the present invention and do not disclose all possible implementations of the present invention. Rather, these embodiments are only examples within the scope of the patent application of the invention.
圖1是依據本發明一實施例所繪示的功率轉換裝置的電路圖。請參考圖1,功率轉換裝置10包括功率轉換電路100以及控制器200。功率轉換電路100耦接控制器200。功率轉換電路100可接收控制器200所輸出的控制信號PWM,並可至少依據控制信號PWM來控制功率轉換電路100中的第一開關元件110及第二開關元件120,以使第一開關元件110及第二開關元件120轉換輸入電壓Vin以在輸出端N1產生(並輸出)輸出電壓Vsw。FIG. 1 is a circuit diagram of a power conversion device according to an embodiment of the present invention. Please refer to FIG. 1 , the power conversion device 10 includes a
在本實施例中,功率轉換裝置10還包括接靴帶電容器(Cboost)C1以及二極體D1。二極體D1的第一端耦接(或接收)電源電壓VDD。二極體D1的第二端在耦接端N2處耦接靴帶電容器C1的第一端。靴帶電容器C1的第二端耦接功率轉換電路100的輸出端N1。在本實施例中,靴帶電容器C1以及二極體D1可依據電源電壓VDD而在耦接端N2處產生靴帶電壓(Boost strap)VBOOST,以使功率轉換電路100可接收靴帶電壓VBOOST作為第二開關元件120的驅動電壓。In this embodiment, the power conversion device 10 further includes a strap capacitor (Cboost) C1 and a diode D1. The first terminal of the diode D1 is coupled to (or receives) the power supply voltage VDD. The second terminal of the diode D1 is coupled to the first terminal of the shoe capacitor C1 at the coupling terminal N2. The second terminal of the shoe capacitor C1 is coupled to the output terminal N1 of the
在本實施例中,功率轉換裝置10還包括濾波電容器C2以及濾波電感器L1。濾波電感器L1的第一端耦接靴帶電容器C1的第二端以及功率轉換電路100的輸出端N1。濾波電感器L1的第二端耦接濾波電容器C2的第一端。濾波電容器C2的第二端耦接功率轉換裝置10的輸出端VOUT以及控制器200。在本實施例中,濾波電容器C2以及濾波電感器L1可作為濾波器,以對功率轉換電路100的輸出信號(即,輸出端N1上的輸出電壓Vsw)進行濾波操作,以將經濾波的輸出電壓Vsw提供給輸出端VOUT上所耦接的負載裝置(未繪示)。In this embodiment, the power conversion device 10 further includes a filter capacitor C2 and a filter inductor L1. The first terminal of the filter inductor L1 is coupled to the second terminal of the shoe capacitor C1 and the output terminal N1 of the
圖2是依據本發明一實施例所繪示的功率轉換電路的電路圖。請參考圖2,功率轉換電路100包括第一開關元件110。第一開關元件110可例如是具有場板電極的N型金氧半場效電晶體(NMOSFET)。當第一開關元件110被導通時,第一開關元件110的源極以及汲極之間(即,閘極以及場板電極之間)形成通道(Channel)並具有飄移層電阻RD1。飄移層電阻RD1可示例性地繪示於第一開關元件110的第一場板電極上。FIG. 2 is a circuit diagram of a power conversion circuit according to an embodiment of the present invention. Referring to FIG. 2 , the
在一些實施例中,第一開關元件110可例如是以具有場板電極的P型金氧半場效電晶體(p-type Metal-Oxide-Semiconductor Field-Effect Transistor,PMOSFET)來被實現。在一些實施例中的信號反向於本實施例中對應的信號。In some embodiments, the
第一開關元件110的閘極接收第一控制信號LS_G,以控制第一開關元件110來被導通或被關斷。在本實施例中,第一開關元件110的第一場板電極接收第二控制信號LS_FP,以控制漂移層的電荷來降低飄移層電阻RD1,因而進一步降低功率轉換電路100中的寄生電阻以及傳導損耗。在本實施例中,第一開關元件110的源極耦接接地端電壓GND。第一開關元件110的汲極耦接輸出端N1。The gate of the
於功率轉換電路100的重載期間,第一控制信號LS_G以及第二控制信號LS_FP為方波信號,並且第二控制信號LS_FP的高電位期間比第一控制信號LS_G的高電位期間先發生且涵蓋第一控制信號LS_G的高電位期間。也就是說,於功率轉換電路100的重載期間,第二控制信號LS_FP的高電位期間的上升緣早於第一控制信號LS_G的高電位期間的上升緣。第二控制信號LS_FP的高電位期間比第一控制信號LS_G的高電位期間長。第二控制信號LS_FP的高電位期間的下降緣晚於第一控制信號LS_G的高電位期間的下降緣。如此可確保在第一開關元件110的導通期間具有低寄生電阻,且在導通/關斷的瞬態期間對源-汲電壓的振鈴現象具有較佳的容忍度。同時亦可使第一開關元件110在關斷期間具有高飄移層電阻RD1,防止電流洩漏。During the reload period of the
功率轉換電路100還可包括第二開關元件120。第二開關元件120耦接第一開關元件110。具體來說,第二開關元件120串聯連接輸入電壓Vin與第一開關元件110之間。第二開關元件120的源極接收(或耦接)輸入電壓Vin。第二開關元件120的汲極耦接第一開關元件110的汲極耦以及輸出端N1。在本實施例中,第一開關元件110以及第二開關元件120構成半橋整流器架構,第一開關元件110可作為低側(Low-side)電晶體,並且第二開關元件120可作為高側(High-side)電晶體。The
在本實施例中,第二開關元件120可例如是以具有場板電極的N型金氧半場效電晶體來被實現。當第二開關元件120被導通時,第二開關元件120的源極以及汲極之間(即,閘極以及場板電極之間)形成通道(Channel)並具有飄移層電阻RD2。飄移層電阻RD2可示例性地繪示於第二開關元件120的場板電極上。In this embodiment, the
在一些實施例中,第二開關元件120可例如是以具有場板電極的P型金氧半場效電晶體(p-type Metal-Oxide-Semiconductor Field-Effect Transistor,PMOSFET)來被實現。在一些實施例中的信號反向於本實施例中對應的信號。In some embodiments, the
在本實施例中,第二開關元件120受控於第三控制信號HS_G。具體來說,第二開關元件120具有第二閘極用以接收第三控制信號HS_G,以控制第二開關元件120的導通或關斷。在本實施例中,第二開關元件120具有第二場板電極,用以接收與第三控制信號HS_G不同的第四控制信號HS_FP1,來降低飄移層電阻RD2,進一步進低功率轉換電路100中的寄生電阻以及傳導損耗。In this embodiment, the
在本實施例中,於功率轉換電路100的重載期間,第三控制信號HS_G與第二控制信號LS_FP互為反相信號。具體來說,第二控制信號LS_FP為第三控制信號HS_G的反相信號,且第一控制信號LS_G的高電位期間與第三控制信號HS_G的高電位期間之間有死區時間(dead time)而相互錯開。In this embodiment, during the reloading period of the
在本實施例中,功率轉換電路100可基於低側控制信號LS及/或高側控制信號HS來產生第三控制信號HS_G以及第四控制信號HS_FP1,以進一步產生輸出電壓Vsw。在一些實施例中,控制電路可輸出第四控制信號HS_FP1至第二開關元件120。In this embodiment, the
在本實施例中,第四控制信號HS_FP1可例如是直流電壓信號(可例如是電源電壓VDD),可使第二開關元件120於工作期間保持低的導通阻抗。在一些實施例中,第四控制信號HS_FP1可例如是第三控制信號HS_G的同步信號(可例如是靴帶(Boost strap)電壓VBOOST),可使第二開關元件120於關斷期間保持高的導通電阻。In this embodiment, the fourth control signal HS_FP1 can be, for example, a DC voltage signal (which can be, for example, the power supply voltage VDD), so that the
在圖2的實施例中,功率轉換電路100還包括驅動電路DRC。驅動電路DRC的輸入端耦接(或接收)驅動電壓PWM。驅動電路DRC的多個輸出端分別耦接第一開關元件110以及第二開關元件120,以分別輸出第一控制信號LS_G以及第三控制信號HS_G至第一開關元件110以及第二開關元件120。In the embodiment of FIG. 2, the
具體來說,功率轉換電路100還包括準位位移器(Level shifter)140以及反相器150。準位位移器140以及反相器150可整合於驅動電路DRC中。準位位移器140的輸入端接收高側控制信號HS(即,驅動電壓PWM)。準位位移器140的輸出端耦接第二開關元件120的閘極。準位位移器140可調整(例如是提高或調降)高側控制信號HS的電壓值(或電壓準位)以產生第三控制信號HS_G。反相器150的輸入端接收高側控制信號HS(即,驅動電壓PWM)。反相器150的輸出端耦接第一開關元件110的閘極。反相器150可對高側控制信號HS進行反相處理以產生低側控制信號LS。驅動電路DRC可接收靴帶電壓VBOOST或電源電壓VDD其中之一做為第四控制信號HS_FP1。Specifically, the
在圖2的實施例中,功率轉換電路100還包括邏輯電路130以及感測電路(未繪示於圖2)。邏輯電路130以及感測電路可整合於驅動電路DRC中。邏輯電路130耦接於感測電路與第一開關元件110的第一場板電極之間。具體來說,邏輯電路130的多個輸入端可分別接收高側控制信號HS、工作電壓VFON、預設值Vth以及由感測電路所提供的感測信號Vsense。邏輯電路130的輸出端耦接第一開關元件110的第一場板電極。邏輯電路130可根據高側控制信號HS、工作電壓VFON、預設值Vth以及感測信號Vsense中至少一者來提供第二控制信號LS_FP至第一開關元件110的第一場板電極。In the embodiment of FIG. 2 , the
在本實施例中,邏輯電路130包括切換電路132以及比較器133。在本實施例中,邏輯電路130還可包括反相器131。反相器131的輸入端接收一高側控制信號HS。反相器131的輸出端耦接第一開關元件110的第一場板電極。反相器131可對高側控制信號HS進行反相處理以產生第二控制信號LS_FP,以輸出高側控制信號HS的反相信號作為第二控制信號LS_FP。In this embodiment, the
在本實施例中,切換電路132具有第一輸入端、第二輸入端及輸出端。切換電路132的第一輸入端接收第二控制信號LS_FP。切換電路132的第二輸入端接收(或耦接)工作電壓VFON。切換電路132的第三輸入端(或控制端)耦接比較器133的輸出端以接收比較結果VS。切換電路132的輸出端耦接第一開關元件110的第一場板電極。在本實施例中,切換電路132受控於比較器133而在切換電路132的第一輸入端(即,反相器131的輸出端)以及第二輸入端(即,工作電壓VFON)之間進行切換操作,以輸出反相器131所輸出的高側控制信號HS的反相信號,或者輸出工作電壓VFON。在本實施例中,切換電路132可例如是開關。In this embodiment, the
在本實施例中,比較器133耦接感測電路(未繪示於圖2)與切換電路132。具體來說,比較器133的多個輸入端接收來自感測電路的感測信號Vsense以及預設值Vth。比較器133的輸出端耦接切換電路132的控制端。在本實施例中,比較器133可根據感測信號Vsense以及預設值Vth來進行比較以產生比較結果VS並輸出至切換電路132。也就是說,比較器133可比較感測信號Vsense及預設值Vth,並提供比較結果VS至切換電路132,以使切換電路132切換輸出第二控制信號LS_FP(即,高側控制信號HS的反相信號)或工作電壓VFON。In this embodiment, the
在本實施例中,感測信號Vsense可例如是關聯於功率轉換電路的負載狀況的參數。舉例來說,感測信號Vsense可例如是流過第一開關元件110的電流感測值、第一開關元件110的溫度感測值兩者至少其中之一。In this embodiment, the sensing signal Vsense may be, for example, a parameter associated with the load condition of the power conversion circuit. For example, the sensing signal Vsense may be at least one of a current sensing value flowing through the
在本實施例中,當感測信號Vsense的電壓值高於預設值Vth時,表示負載狀況為重載(即,功率轉換電路100操作於重載期間)。切換電路132根據比較結果VS切換輸出高側控制信號HS的反相信號作為第二控制信號LS_FP。具體來說,在本實施例中,當第一開關元件100有電流流過時,當此電流的感測信號Vsense高於預設值Vth時,切換電路132根據比較結果VS來切換輸出高側控制信號HS的反相信號作為第二控制信號LS_FP,以使第二控制信號LS_FP在相對高電壓值與相對低電壓值之間切換(即,方波信號)。In this embodiment, when the voltage value of the sensing signal Vsense is higher than the preset value Vth, it indicates that the load condition is a heavy load (ie, the
在另一方面,在本實施例中,當感測信號Vsense的電壓值低於預設值Vth時,表示負載狀況為輕載(即,功率轉換電路100操作於輕載期間)。具體來說,在本實施例中,當感測信號Vsense響應於功率轉換電路100的輕載期間而低於預設值Vth時,切換電路132根據比較結果VS來切換輸出工作電壓VFON作為第二控制信號LS_FP,以將第二控制信號LS_FP維持在固定的工作電壓(即,具有固定相對高電壓值的高電位狀態)。On the other hand, in this embodiment, when the voltage value of the sensing signal Vsense is lower than the preset value Vth, it indicates that the load condition is light load (ie, the
在本實施例中,由於切換電路132可根據比較結果VS在高側控制信號HS的反相信號以及工作電壓VFON之間切換,因此切換電路132可輸出直流電壓信號(即,高側控制信號HS的反相信號)或方波信號(即,工作電壓VFON),以使第二控制信號LS_FP可以依負載的輕/重載狀況切換直流電壓信號或方波信號。In this embodiment, since the
換句話說,邏輯電路130可透過感測信號Vsense來判斷輸出端N1的抽載狀況輸出對應的信號作為第二控制信號LS_FP,而能夠改善功率轉換電路100分別在輕載或重載時的切換效率。In other words, the
值得一提的是,圖2的電路較佳可應用於驅動開關(Driving MOS,DrMOS)或智慧功率級(Smart Power Stage,SPS)積體電路封裝結構。即第一開關元件110、第二開關元件120與驅動電路DRC在同一積體電路封裝體中。It is worth mentioning that the circuit in Figure 2 can preferably be applied to a driving switch (Driving MOS, DrMOS) or smart power stage (Smart Power Stage, SPS) integrated circuit packaging structure. That is, the
舉例來說,第一開關元件110、第二開關元件120與驅動電路DRC可為形成於同一晶片中的單晶片(monolithic)結構。或第一開關元件110、第二開關元件120與驅動電路DRC至少兩個元件在同一晶片中的多晶片封裝結構。如此一來,積體電路的封裝接腳即可相容於市售產品規格。For example, the
圖3是依據本發明一實施例所繪示的功率轉換電路的控制方法的流程圖。請參考圖2以及圖3,控制電路可以執行如以下步驟S210~S220來執行控制方法,以控制功率轉換電路100。在本實施例中,步驟S210~S220可以應用於以下示例性的情況。FIG. 3 is a flow chart of a control method of a power conversion circuit according to an embodiment of the present invention. Referring to FIG. 2 and FIG. 3 , the control circuit may perform the following steps S210 to S220 to execute the control method to control the
在步驟S210,透過控制電路判斷功率轉換電路100的負載狀況。在本實施例中,當感測信號Vsense響應於功率轉換電路100的重載期間而高於預設值Vth時,透過控制電路配置第一控制信號LS_G以及第二控制信號LS_FP為方波信號。也就是說,第一控制信號LS_G在第一電壓值與第二電壓值之間切換。第二控制信號LS_FP在第一電壓值(或第三電壓值)與第二電壓值(或第四電壓值)之間切換。In step S210, the load condition of the
在步驟S220,於功率轉換電路100的重載期間,透過控制電路使第二控制信號LS_FP的高電位期間的上升緣早於第一控制信號LS_G的高電位期間的上升緣,且第二控制信號LS_FP的高電位期間比第一控制信號LS_G的高電位期間長。In step S220, during the reload period of the
具體來說,在本實施例中,當第一開關元件110將被導通時,第二控制信號LS_FP的上升緣發生在第一控制信號LS_G的對應的上升緣之前。當第一開關元件110被導通時,第二控制信號LS_FP以及第一控制信號LS_G分別維持在相對高電壓值(例如是第一電壓值及/或第三電壓值)。當第一開關元件110將被關斷時,第二控制信號LS_FP的下降緣發生在第一控制信號LS_G的對應的下降緣之後。Specifically, in this embodiment, when the
在此值得一提的是,由於第二控制信號LS_FP的下降緣發生在第一控制信號LS_G的下降緣之後,第二控制信號LS_FP的高電位期間可涵蓋第一開關元件110被關斷的瞬態時間點(即,第一控制信號LS_G的下降緣的發生時點)。在本實施例中,第一開關元件110的閘極上的電壓(即,第一控制信號LS_G)的下降緣與第一開關元件110的第一場板電極上的電壓(即,第二控制信號LS_FP)的下降緣錯開,能夠避免第一開關元件110被關斷時所造成的振鈴現象。也就是說,透過第二控制信號LS_FP的配置能夠提高第一開關元件110的電場分佈的均勻性,以降低第一場板電極與汲極之間的電壓差。如此一來,第一開關元件110能夠提高對於振鈴現象的容忍度,以提高第一開關元件110被關斷時的擊穿電壓(Breakdown voltage)的電壓值。It is worth mentioning here that since the falling edge of the second control signal LS_FP occurs after the falling edge of the first control signal LS_G, the high potential period of the second control signal LS_FP can cover the instant when the
圖4A是依據本發明圖2實施例所繪示的感測電路的電路方塊圖。第一開關元件110、輸出端N1、第一控制信號LS_G以及感測信號Vsense可以參照功率轉換電路100的相關說明並且加以類推,故在此不另重述。在另一方面,為了方便說明本案內容,在圖4A所示功率轉換電路100的部分元件及元件標號被省略。FIG. 4A is a circuit block diagram of a sensing circuit according to the embodiment of FIG. 2 of the present invention. The
請參考圖4A以及圖2,功率轉換電路100的感測電路360的輸入端耦接第一開關元件110的源極,以感測流經第一開關元件110的電流(即,輸出端N1上的電流)。感測電路360的輸出端耦接邏輯電路130中的比較器133,以基於前述的電流來輸出感測信號Vsense至比較器133。也就是說,感測電路360可感測流經第一開關元件110的電流,並產生感測信號Vsense。Referring to FIG. 4A and FIG. 2 , the input terminal of the
圖4B是依據本發明圖2實施例所繪示的感測電路的電路方塊圖。FIG. 4B is a circuit block diagram of the sensing circuit according to the embodiment of FIG. 2 of the present invention.
請參考圖4B以及圖2,功率轉換電路100的感測電路360包括電流源361以及熱敏電阻Rth。電流源361耦接熱敏電阻Rth。熱敏電阻Rth設置鄰近於第一開關元件110,以感測第一開關元件110的溫度。感測電路360的輸出端耦接邏輯電路130中的比較器133,以基於前述的溫度來輸出感測信號Vsense至比較器133。也就是說,感測電路360可感測流經第一開關元件110的電流所產生的溫度,並產生感測信號Vsense。Referring to FIG. 4B and FIG. 2 , the
在一些實施例中,感測電路360可同時以圖4A以及圖4B所示實施例來被實現。也就是說,感測電路360可感測流經第一開關元件110的電流以及第一開關元件110的溫度至少其中之一,並產生感測信號Vsense。In some embodiments, the
圖5是依據本發明圖2實施例所繪示的功率轉換電路的動作示意圖。在圖5中,橫軸為功率轉換電路100的操作時間,縱軸為電壓值。關於功率轉換電路100的操作細節,請參考圖2及圖5。在本實施例中,功率轉換電路100可根據感測信號Vsense判斷輸出端N1所耦接的負載裝置的狀況來操作。FIG. 5 is a schematic diagram of the operation of the power conversion circuit according to the embodiment of FIG. 2 of the present invention. In FIG. 5 , the horizontal axis represents the operation time of the
舉例來說,在時間t3以前(以下實施例稱為第一操作期間),當負載裝置的抽載裝態為輕載時,流經開關元件的電流低使得開關元件的溫度低,相應的感測信號Vsense的電壓值低於預設值Vth。此時,邏輯電路130輸出一個固定電壓作為第二控制信號LS_FP1。此固定電壓可以為工作電壓VFON、第二控制信號LS_FP1的高位準電壓或依電路設計需求為其他的電壓值。例如可為介於輸出電壓Vsw與接地電壓GND之間的電壓值。For example, before time t3 (referred to as the first operation period in the following embodiment), when the loading state of the load device is light load, the current flowing through the switching element is low, causing the temperature of the switching element to be low, and the corresponding inductance The voltage value of the test signal Vsense is lower than the preset value Vth. At this time, the
在第一操作期間內,第四控制信號HS_FP1為具有相對高電壓值(可例如是電源電壓VDD)的直流電壓信號,可保持第二開關元件120在導通電阻狀態。第三控制信號HS_G為方波信號,且在相對高電壓值與相對低電壓值之間切換。在一些實施例中,第四控制信號HS_FP1可被替換成第四控制信號HS_FP2。第四控制信號HS_FP2可例如是第三控制信號HS_G的同步信號(可例如是靴帶(Boost strap)電壓)。During the first operation period, the fourth control signal HS_FP1 is a DC voltage signal with a relatively high voltage value (for example, the power supply voltage VDD), which can keep the
在第一操作期間內,第二控制信號LS_FP為具有相對高電壓值的直流電壓信號。第一控制信號LS_G為方波信號,且在相對高電壓值與相對低電壓值之間切換。在本實施例中,第三控制信號HS_G的高電位期間與第一控制信號LS_G的高電位期間之間有例如為時間t1_1至時間t1_2或時間t1_2至時間t1_4的死區時間(dead time),使第一控制信號LS_G的高電位期間T_G與第三控制信號HS_G的高電位期間相互錯開而不會重疊。During the first operation period, the second control signal LS_FP is a DC voltage signal with a relatively high voltage value. The first control signal LS_G is a square wave signal and switches between a relatively high voltage value and a relatively low voltage value. In this embodiment, there is a dead time between the high potential period of the third control signal HS_G and the high potential period of the first control signal LS_G, for example, from time t1_1 to time t1_2 or from time t1_2 to time t1_4. The high-potential period T_G of the first control signal LS_G and the high-potential period of the third control signal HS_G are staggered from each other without overlapping.
在另一方面,在時間t3以後(以下實施例稱為第二操作期間),當負載裝置的抽載狀態為重載,使感測信號Vsense的電壓值高於預設值Vth的電壓值。此時,邏輯電路130輸出方波信號作為第二控制信號LS_FP。On the other hand, after time t3 (referred to as the second operation period in the following embodiment), when the load pumping state of the load device is overloaded, the voltage value of the sensing signal Vsense is higher than the voltage value of the preset value Vth. At this time, the
在第二操作期間內,第四控制信號HS_FP1為具有第一電壓值的直流電壓信號。第三控制信號HS_G、第二控制信號LS_FP及第一控制信號LS_G為方波信號,且具有高電位期間與低電位期間。在一些實施例中,第四控制信號HS_FP1可被替換成第四控制信號HS_FP2。第四控制信號HS_FP2可例如是第三控制信號HS_G的同步信號(可例如是靴帶(Boost strap)電壓)。During the second operation period, the fourth control signal HS_FP1 is a DC voltage signal with a first voltage value. The third control signal HS_G, the second control signal LS_FP and the first control signal LS_G are square wave signals and have a high potential period and a low potential period. In some embodiments, the fourth control signal HS_FP1 may be replaced by the fourth control signal HS_FP2. The fourth control signal HS_FP2 may be, for example, a synchronization signal of the third control signal HS_G (which may be, for example, a boost strap voltage).
在第二操作期間內,第二控制信號LS_FP為第三控制信號HS_G的反相信號,且第一控制信號LS_G的高電位期間與第三控制信號HS_G的高電位期間之間有死區時間。During the second operation period, the second control signal LS_FP is an inverse signal of the third control signal HS_G, and there is a dead time between the high potential period of the first control signal LS_G and the high potential period of the third control signal HS_G.
具體來說,在第二操作期間內,第二控制信號LS_FP的上升緣發生在時間t4_3,相對應的第一控制信號LS_G的上升緣發生在時間t4_4。即第二控制信號LS_FP的上升緣發生在相對應的第一控制信號LS_G的上升緣之前。至少部分的第二控制信號LS_FP的高電位期間T_FP與至少部分的第一控制信號LS_G的高電位期間T_G重疊。Specifically, during the second operation period, the rising edge of the second control signal LS_FP occurs at time t4_3, and the corresponding rising edge of the first control signal LS_G occurs at time t4_4. That is, the rising edge of the second control signal LS_FP occurs before the corresponding rising edge of the first control signal LS_G. At least part of the high-potential period T_FP of the second control signal LS_FP overlaps with at least part of the high-potential period T_G of the first control signal LS_G.
應注意的是,在時間t4_3至時間t4_4內,透過第二控制信號LS_FP的高電位期間T_FP涵蓋第一控制信號LS_G的上升緣,使第二控制信號LS_FP不會與第一控制信號LS_G同時進行電壓值的切換(即,瞬變)。如此一來,第一開關元件110能夠避免第一場板電極上的寄生電容與閘極上的寄生電容同時被充電而造成整體的寄生電容值變大,因此能夠縮短第一開關元件110在被導通與被關斷之間切換的時間,以降低切換損耗。It should be noted that from time t4_3 to time t4_4, the high potential period T_FP of the second control signal LS_FP covers the rising edge of the first control signal LS_G, so that the second control signal LS_FP does not occur simultaneously with the first control signal LS_G. Switching of voltage values (i.e., transients). In this way, the
在第二操作期間內,在時間t5_1時,第一控制信號LS_G由相對高電壓值切換至相對低電壓值,以產生第一控制信號LS_G的下降緣。接著,在時間t5_2時,第二控制信號LS_FP由相對高電壓值切換至相對低電壓值,以產生第二控制信號LS_FP的下降緣。也就是說,第二控制信號LS_FP的下降緣發生在第一控制信號LS_G的對應的下降緣之後。第二控制信號LS_FP的高電壓期間T_FP涵蓋第一控制信號LS_G的高電壓期間T_G。During the second operation period, at time t5_1, the first control signal LS_G switches from a relatively high voltage value to a relatively low voltage value to generate a falling edge of the first control signal LS_G. Then, at time t5_2, the second control signal LS_FP switches from a relatively high voltage value to a relatively low voltage value to generate a falling edge of the second control signal LS_FP. That is, the falling edge of the second control signal LS_FP occurs after the corresponding falling edge of the first control signal LS_G. The high voltage period T_FP of the second control signal LS_FP covers the high voltage period T_G of the first control signal LS_G.
應注意的是,在時間t5_1至時間t5_2內,透過第二控制信號LS_FP具有相對高電壓值,能夠降低第一開關元件110的場板電極與汲極之間的電壓差,因此能夠提高第一開關元件110的電場分佈的均勻性,以避免第一開關元件110發生崩潰而誤被導通或關斷。It should be noted that from time t5_1 to time t5_2, through the second control signal LS_FP having a relatively high voltage value, the voltage difference between the field plate electrode and the drain electrode of the
在另一實施例中,第二開關元件120的場板電極可以接收與第三控制信號HS_G同步的方波信號做為第四控制信號HS_FP2 (例如可為功率轉換電路100的靴帶電壓信號),可確保HSMOS關斷期間具有大電阻。In another embodiment, the field plate electrode of the
圖6是依據本發明圖2實施例所繪示的功率轉換電路的動作示意圖。在圖6中,橫軸為功率轉換電路100的操作時間,縱軸為電壓值。關於功率轉換電路100的操作細節,請參考圖2及圖6。FIG. 6 is a schematic diagram of the operation of the power conversion circuit according to the embodiment of FIG. 2 of the present invention. In FIG. 6 , the horizontal axis represents the operation time of the
在時間t6_1以前,第二控制信號LS_FP以及第一控制信號LS_G維持在相對低電壓值。此時,飄移層電阻RD1具有相對高電阻值。在本實施例中,透過具有相對低電壓值的第二控制信號LS_FP能夠確保第一開關元件110在被關斷時具有高阻抗值,以提高在第一開關元件110被關斷時的電流阻斷能力。Before time t6_1, the second control signal LS_FP and the first control signal LS_G maintain a relatively low voltage value. At this time, the drift layer resistor RD1 has a relatively high resistance value. In this embodiment, the second control signal LS_FP having a relatively low voltage value can ensure that the
在時間t6_1時,第二控制信號LS_FP由相對低電壓值切換至相對高電壓值,以產生第二控制信號LS_FP的上升緣。此時,第一開關元件110的第一場板電極接收第二控制信號LS_FP,使飄移層電阻RD1由相對高電阻值下降至相對低電阻值。在本實施例中,透過施加於第一場板電極的第二控制信號LS_FP能夠降低飄移層電阻RD1,以降低第一開關元件110的寄生電阻以及傳導損耗,並且提高第一開關元件110的能量傳導效率。At time t6_1, the second control signal LS_FP switches from a relatively low voltage value to a relatively high voltage value to generate a rising edge of the second control signal LS_FP. At this time, the first field plate electrode of the
在時間t6_2時,第一控制信號LS_G由相對低電壓值切換至相對高電壓值,以產生第一控制信號LS_G的上升緣。此時,第二控制信號LS_FP具有相對高電壓值。在時間t6_1至時間t6_2內關於功率轉換電路100的操作可以參照圖5實施例的相關說明並且加以類推,故在此不另重述。At time t6_2, the first control signal LS_G switches from a relatively low voltage value to a relatively high voltage value to generate a rising edge of the first control signal LS_G. At this time, the second control signal LS_FP has a relatively high voltage value. Regarding the operation of the
在本實施例中,時間t6_1以及時間t6_2之間的時間差為死區時間(deadtime)。死區時間可例如是在2微秒至4微秒之間的範圍內,以使第二控制信號LS_FP的上升緣足以與第一控制信號LS_G的上升緣錯開。In this embodiment, the time difference between time t6_1 and time t6_2 is dead time. The dead time may be, for example, in a range between 2 microseconds and 4 microseconds, so that the rising edge of the second control signal LS_FP is sufficiently offset from the rising edge of the first control signal LS_G.
在時間t7_1時,第一控制信號LS_G由相對高電壓值切換至相對低電壓值,以產生第一控制信號LS_G的下降緣。此時,第二控制信號LS_FP具有相對高電壓值。At time t7_1, the first control signal LS_G switches from a relatively high voltage value to a relatively low voltage value to generate a falling edge of the first control signal LS_G. At this time, the second control signal LS_FP has a relatively high voltage value.
在時間t7_2時,第二控制信號LS_FP由相對高電壓值切換至相對低電壓值,以產生第二控制信號LS_FP的下降緣。此時,第一開關元件110的第一場板電極停止接收第二控制信號LS_FP,使飄移層電阻RD1由相對低電阻值提高至相對高電阻值。在時間t7_1至時間t7_2內關於功率轉換電路100的操作可以參照圖5實施例的相關說明並且加以類推,故在此不另重述。At time t7_2, the second control signal LS_FP switches from a relatively high voltage value to a relatively low voltage value to generate a falling edge of the second control signal LS_FP. At this time, the first field plate electrode of the
應注意的是,在時間t7_1至時間t7_2內,透過第二控制信號LS_FP的下降緣晚於第一控制信號LS_G的下降緣,能夠防止第一開關元件110的源極以及汲極之間的電壓差過大而產生振鈴現象,以避免因振鈴現象誤將第一開關元件110導通而造成的射穿現象。It should be noted that from time t7_1 to time t7_2, by the falling edge of the second control signal LS_FP being later than the falling edge of the first control signal LS_G, the voltage between the source and the drain of the
在本實施例中,在時間t6_1至時間t7_2內(即,第二控制信號LS_FP的高電位期間T_FP),透過飄移層電阻RD1的電阻值維持在相對低電阻值,能降低第一開關元件110的傳導損耗。In this embodiment, from time t6_1 to time t7_2 (ie, the high potential period T_FP of the second control signal LS_FP), the resistance value of the drift layer resistor RD1 is maintained at a relatively low resistance value, which can reduce the voltage of the
在時間t7_2以後,透過飄移層電阻RD1的電阻值維持在相對高電阻值,能夠提高在第一開關元件110被關斷時的電流阻斷能力。After time t7_2, the resistance value of the drift layer resistor RD1 is maintained at a relatively high resistance value, which can improve the current blocking capability when the
綜上所述,本發明實施例的功率轉換電路及其控制方法透過第二控制信號的下降緣與第一控制信號的下降緣錯開,能夠避免第一開關元件被關斷時所造成的振鈴現象,以提高對於振鈴現象的容忍度以及擊穿電壓的電壓值。在部分實施例中,在功率轉換電路操作於不同的工作模式時,透過第二控制信號的配置能夠縮短第一開關元件在被導通與被關斷之間切換的時間以降低切換損耗,並且能夠避免因振鈴現象而造成的射穿現象。To sum up, the power conversion circuit and its control method according to the embodiment of the present invention can avoid the ringing phenomenon caused when the first switching element is turned off by staggering the falling edge of the second control signal and the falling edge of the first control signal. , to improve the tolerance to ringing phenomena and the voltage value of breakdown voltage. In some embodiments, when the power conversion circuit operates in different operating modes, the configuration of the second control signal can shorten the time for the first switching element to switch between being turned on and turned off to reduce switching losses, and can Avoid shot-through phenomenon caused by ringing phenomenon.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field may make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.
10:功率轉換裝置 100:功率轉換電路 110:第一開關元件 120:第二開關元件 130:邏輯電路 131:反相器 132:切換電路 133:比較器 140:準位位移器 150:反相器 200:控制器 360:感測電路 361:電流源 BOOT:端點 C1~C2:電容器 D1:二極體 DRC:驅動電路 GND:接地端電壓 HS:高側控制信號 HS_FP1、HS_FP2:第四控制信號 HS_G:第三控制信號 L1:電感器 LS:低側控制信號 LS_FP:第二控制信號 LS_G:第一控制信號 N1:輸出端 N2:耦接端 PWM:驅動電壓 RD1~RD2:飄移層電阻 Rth:熱敏電阻 S210~S220:步驟 T_FP、T_G:高電位期間 t1_1~t7_2:時間 VBOOST:靴帶電壓 VDD:電源電壓 VFON:工作電壓 Vin:輸入電壓 VOUT:輸出端 VS:比較結果 Vsense:感測信號 Vsw:輸出電壓 Vth:預設值 10:Power conversion device 100:Power conversion circuit 110: First switching element 120: Second switching element 130:Logic circuit 131:Inverter 132:Switching circuit 133: Comparator 140: Level shifter 150:Inverter 200:Controller 360: Sensing circuit 361:Current source BOOT:endpoint C1~C2: capacitor D1: Diode DRC: drive circuit GND: ground terminal voltage HS: high side control signal HS_FP1, HS_FP2: fourth control signal HS_G: Third control signal L1:Inductor LS: low side control signal LS_FP: Second control signal LS_G: first control signal N1: output terminal N2: coupling end PWM: drive voltage RD1~RD2: Drift layer resistance Rth: thermistor S210~S220: steps T_FP, T_G: High potential period t1_1~t7_2: time VBOOST: bootstrap voltage VDD: power supply voltage VFON: working voltage Vin: input voltage VOUT: output terminal VS: comparison results Vsense: sensing signal Vsw: output voltage Vth: default value
圖1是應用本發明一實施例的功率轉換裝置的示意圖。 圖2是依據本發明一實施例所繪示的功率轉換電路的電路圖。 圖3是依據本發明一實施例所繪示的功率轉換電路的控制方法的流程圖。 圖4A是依據本發明圖2實施例所繪示的感測電路的電路方塊圖。 圖4B是依據本發明圖2實施例所繪示的感測電路的電路方塊圖。 圖5是依據本發明圖2實施例所繪示的功率轉換電路的控制信號及波形圖。 圖6是依據本發明圖2實施例所繪示的功率轉換電路的動作示意圖。 FIG. 1 is a schematic diagram of a power conversion device applying an embodiment of the present invention. FIG. 2 is a circuit diagram of a power conversion circuit according to an embodiment of the present invention. FIG. 3 is a flow chart of a control method of a power conversion circuit according to an embodiment of the present invention. FIG. 4A is a circuit block diagram of a sensing circuit according to the embodiment of FIG. 2 of the present invention. FIG. 4B is a circuit block diagram of the sensing circuit according to the embodiment of FIG. 2 of the present invention. FIG. 5 is a control signal and waveform diagram of the power conversion circuit according to the embodiment of FIG. 2 of the present invention. FIG. 6 is a schematic diagram of the operation of the power conversion circuit according to the embodiment of FIG. 2 of the present invention.
100:功率轉換電路 100:Power conversion circuit
110:第一開關元件 110: First switching element
120:第二開關元件 120: Second switching element
130:邏輯電路 130:Logic circuit
131:反相器 131:Inverter
132:切換電路 132:Switching circuit
133:比較器 133: Comparator
140:準位位移器 140: Level shifter
150:反相器 150:Inverter
DRC:驅動電路 DRC: drive circuit
GND:接地端電壓 GND: ground terminal voltage
HS:高側控制信號 HS: high side control signal
HS_FP1:第四控制信號 HS_FP1: Fourth control signal
HS_G:第三控制信號 HS_G: Third control signal
LS:低側控制信號 LS: low side control signal
LS_FP:第二控制信號 LS_FP: Second control signal
LS_G:第一控制信號 LS_G: first control signal
N1:輸出端 N1: output terminal
PWM:驅動電壓 PWM: drive voltage
RD1~RD2:飄移層電阻 RD1~RD2: Drift layer resistance
VBOOST:靴帶電壓 VBOOST: bootstrap voltage
VDD:電源電壓 VDD: power supply voltage
VFON:工作電壓 VFON: working voltage
Vin:輸入電壓 Vin: input voltage
VS:比較結果 VS: comparison results
Vsense:感測信號 Vsense: sensing signal
Vsw:輸出電壓 Vsw: output voltage
Vth:預設值 Vth: default value
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111129516A TW202408138A (en) | 2022-08-05 | 2022-08-05 | Power conversion circuit and controlling method thereof |
CN202210999520.2A CN117559776A (en) | 2022-08-05 | 2022-08-19 | Power conversion circuit and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111129516A TW202408138A (en) | 2022-08-05 | 2022-08-05 | Power conversion circuit and controlling method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202408138A true TW202408138A (en) | 2024-02-16 |
Family
ID=89822129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111129516A TW202408138A (en) | 2022-08-05 | 2022-08-05 | Power conversion circuit and controlling method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117559776A (en) |
TW (1) | TW202408138A (en) |
-
2022
- 2022-08-05 TW TW111129516A patent/TW202408138A/en unknown
- 2022-08-19 CN CN202210999520.2A patent/CN117559776A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN117559776A (en) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101385065B1 (en) | Charge pump circuit and method therefor | |
US11539294B2 (en) | Multi-level power converter with light load flying capacitor voltage regulation | |
CN110165872B (en) | Switch control circuit and control method thereof | |
US9577530B1 (en) | Boost converter with zero voltage switching | |
TW202318766A (en) | Resonant circuit and method of operating a resonant circuit | |
US7564292B2 (en) | Device and method for limiting Di/Dt caused by a switching FET of an inductive switching circuit | |
JP2016092907A (en) | Semiconductor device | |
JP2013078111A (en) | Drive circuit | |
Ma | Driving GaN power transistors | |
TWI824590B (en) | Transistor turn-off circuit for a power converter, method of turning off a power transistor, and power converter circuit | |
US10855192B1 (en) | Voltage slew rate limiters for transformer-based switching power converters | |
US8513930B2 (en) | Active power switch topology for switching regulators | |
CN103825432A (en) | Driver circuit, system and method for driving semiconductor device | |
US9160239B2 (en) | Flyback switching power supply circuit and backlight driving device using the same | |
CN116937978A (en) | COT control circuit | |
JP2016539617A (en) | Flyback type switching power supply circuit and backlight driving device using the same | |
TW202408138A (en) | Power conversion circuit and controlling method thereof | |
CN109428492B (en) | Switching converter, method of operating switching converter, and clamp circuit | |
TW201429128A (en) | Bootstrap circuit and method for controlling the same | |
TWI810702B (en) | Power module | |
US11201620B2 (en) | Power supply circuit and apparatus | |
JP7177714B2 (en) | power supply | |
CN107302309B (en) | Method and apparatus for adaptive timing of zero voltage transition power converters | |
JP2019097225A (en) | Power supply circuit | |
US12126263B2 (en) | Power conversion circuit, power module, converter, and inverter |