TW202407876A - Semiconductor structure and method for forming the same - Google Patents

Semiconductor structure and method for forming the same Download PDF

Info

Publication number
TW202407876A
TW202407876A TW111128936A TW111128936A TW202407876A TW 202407876 A TW202407876 A TW 202407876A TW 111128936 A TW111128936 A TW 111128936A TW 111128936 A TW111128936 A TW 111128936A TW 202407876 A TW202407876 A TW 202407876A
Authority
TW
Taiwan
Prior art keywords
barrier layer
layer
opening
substrate
semiconductor structure
Prior art date
Application number
TW111128936A
Other languages
Chinese (zh)
Other versions
TWI822222B (en
Inventor
余秉隆
邵柏竣
謝竺君
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW111128936A priority Critical patent/TWI822222B/en
Application granted granted Critical
Publication of TWI822222B publication Critical patent/TWI822222B/en
Publication of TW202407876A publication Critical patent/TW202407876A/en

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A method for forming a semiconductor structure, including providing a substrate having an opening in or on the substrate. The method further includes conformally forming a barrier layer in the opening and on the substrate and performing an implantation process to implant a dopant into the barrier layer. A cap layer is conformally formed on the barrier layer and performing an annealing process to diffuse the dopant into the grain boundaries of the barrier layer. The cap layer is removed and the opening is filled with a conductive material.

Description

半導體結構及其形成方法Semiconductor structures and methods of forming them

本發明實施例是關於半導體製程技術,特別是關於導電部件的形成方法。Embodiments of the present invention relate to semiconductor process technology, and in particular to methods of forming conductive components.

半導體裝置的關鍵尺寸隨著發展逐漸縮小,進而使得諸如內埋字元線、接觸件、或導孔等導電部件的電阻逐漸增加。因此,業界仍需要改善相關導電部件的電阻,來達到降低關鍵尺寸並同時維持半導體裝置的性能的目標。在現有的技術方法中,透過減少阻障層的厚度或者縮減導電材料的成核循環次數來減少相關導電部件的電阻。然而,這可能會導致諸如阻障層∕導電材料剝離(peeling)或者提高裝置的臨界電壓(Vth)的風險。As the critical dimensions of semiconductor devices gradually shrink with development, the resistance of conductive components such as embedded word lines, contacts, or vias gradually increases. Therefore, the industry still needs to improve the resistance of related conductive components to achieve the goal of reducing critical dimensions while maintaining the performance of semiconductor devices. In existing technical methods, the resistance of related conductive components is reduced by reducing the thickness of the barrier layer or reducing the number of nucleation cycles of the conductive material. However, this may lead to risks such as peeling of the barrier layer/conductive material or increasing the threshold voltage (Vth) of the device.

本發明實施例提供了一種半導體結構的形成方法,包含提供基板,基板中或基板上具有開口;順應地形成阻障層於開口中及基板上;執行佈植製程以將摻質佈植入阻障層中;順應地形成蓋層於阻障層上;執行退火製程,使得摻質擴散至阻障層的晶界中;移除蓋層;以及於開口中填充導電材料。Embodiments of the present invention provide a method for forming a semiconductor structure, which includes providing a substrate with an opening in or on the substrate; compliantly forming a barrier layer in the opening and on the substrate; and performing a implantation process to implant the dopant cloth into the resistor. in the barrier layer; conformably form a capping layer on the barrier layer; perform an annealing process to diffuse dopants into the grain boundaries of the barrier layer; remove the capping layer; and fill the openings with conductive material.

本發明實施例提供了一種半導體結構的形成方法,包含提供基板,基板中或基板上具有開口;順應地形成阻障層於開口中及基板上;形成蓋層於阻障層上,蓋層在開口的底表面上方的厚度小於蓋層在基板的頂表面上方的厚度;執行佈植製程以將摻質穿過蓋層並佈植入阻障層中;執行退火製程,使得摻質擴散至阻障層的晶界中;移除蓋層;以及於開口中填充導電材料。Embodiments of the present invention provide a method for forming a semiconductor structure, which includes providing a substrate with an opening in or on the substrate; conformably forming a barrier layer in the opening and on the substrate; forming a cover layer on the barrier layer, and the cover layer is The thickness above the bottom surface of the opening is less than the thickness of the cap layer above the top surface of the substrate; a implantation process is performed to implant the dopants through the cap layer and into the barrier layer; an annealing process is performed to diffuse the dopants into the barrier layer in the grain boundaries of the barrier layer; remove the capping layer; and fill the opening with conductive material.

本發明實施例提供了一種半導體結構,包含基板,基板中或基板上具有開口;阻障層,內襯於開口,其中阻障層的晶界捕陷摻質;以及導電材料,填充於開口中。Embodiments of the present invention provide a semiconductor structure, including a substrate with an opening in or on the substrate; a barrier layer lining the opening, in which the grain boundary trapping dopant of the barrier layer; and a conductive material filled in the opening .

在現有的半導體技術中,通常會使用鎢作為諸如內埋字元線、接觸插塞、導孔等導電部件的材料,且通常是利用填充能力較佳的沉積製程來形成,諸如化學氣相沉積製程。隨著線寬的降低,相關的導電部件面臨了導電材料的電阻會隨之上升的問題。本發明實施例提供了一種能夠形成具有較大的晶粒(grain)的導電材料的方法,晶粒的大小會影響晶界(grain boundary)的數量(亦即,晶粒越小晶界則越多,晶粒越大晶界則越少),電子穿過具有較大晶粒的導電材料時會受到較少的晶界阻礙,因此形成具有較大的晶粒的導電材料可降低相關部件的電阻,從而得到具有高導電率的半導體結構。In existing semiconductor technology, tungsten is usually used as a material for conductive components such as embedded word lines, contact plugs, via holes, etc., and is usually formed using a deposition process with better filling capabilities, such as chemical vapor deposition. process. As the line width decreases, the related conductive components face the problem that the resistance of the conductive material will increase. Embodiments of the present invention provide a method for forming a conductive material with larger grains. The size of the grains will affect the number of grain boundaries (that is, the smaller the grains, the smaller the grain boundaries. (the larger the grains, the fewer the grain boundaries). When electrons pass through a conductive material with larger grains, they will be hindered by less grain boundaries. Therefore, forming a conductive material with larger grains can reduce the damage of related components. resistance, resulting in a semiconductor structure with high conductivity.

第1圖是根據本揭露形成接觸插塞或導孔的第一實施例,繪示出半導體結構10的剖面示意圖。根據本揭露實施例,提供了基板100,基板100上具有開口120。基板100上依序形成導線層105及介電層110,而開口120為設置於介電層110中的接觸開口,並露出一部份的導線層105的頂表面。在一些實施例中,基板100可為元素半導體基板、化合物半導體基板或合金半導體基板。在其他實施例中,基板100可為絕緣體上覆半導體基板。FIG. 1 is a schematic cross-sectional view of a semiconductor structure 10 according to a first embodiment of forming contact plugs or via holes according to the present disclosure. According to an embodiment of the present disclosure, a substrate 100 is provided, and the substrate 100 has an opening 120 thereon. The conductor layer 105 and the dielectric layer 110 are sequentially formed on the substrate 100, and the opening 120 is a contact opening provided in the dielectric layer 110, and exposes a portion of the top surface of the conductor layer 105. In some embodiments, the substrate 100 may be an elemental semiconductor substrate, a compound semiconductor substrate, or an alloy semiconductor substrate. In other embodiments, the substrate 100 may be an insulator-on-semiconductor substrate.

繼續參見第1圖,順應地形成阻障層130於開口120中及基板100上。阻障層130能確保後續形成的導電材料不會擴散至基板100或介電層110之中。在形成阻障層130之前,可先順應地形成黏著層124於開口120中及基板100上,而阻障層130則順應地形成於黏著層124上,以避免阻障層130與基板100產生剝離。在一些實施例中,阻障層130包含柱狀晶結構,具有柱狀的晶界132(參見下方第4圖)。在一些實施例中,阻障層130的材料可為TiN、TaN、WN、TaSiN、TiSiN。在第一實施例中,黏著層124的材料可為Ti、Ta。Continuing to refer to FIG. 1 , a barrier layer 130 is formed in the opening 120 and on the substrate 100 . The barrier layer 130 can ensure that the subsequently formed conductive material will not diffuse into the substrate 100 or the dielectric layer 110 . Before forming the barrier layer 130, the adhesive layer 124 can be compliantly formed in the opening 120 and on the substrate 100, and the barrier layer 130 is compliantly formed on the adhesive layer 124 to avoid interference between the barrier layer 130 and the substrate 100. Strip. In some embodiments, barrier layer 130 includes a columnar crystal structure with columnar grain boundaries 132 (see Figure 4 below). In some embodiments, the material of the barrier layer 130 may be TiN, TaN, WN, TaSiN, or TiSiN. In the first embodiment, the material of the adhesive layer 124 may be Ti or Ta.

第2圖是根據第一實施例,繪示出半導體結構10執行佈植製程140的剖面示意圖。根據本揭露實施例,執行佈植製程140以將摻質135佈植入阻障層130中。在一些實施例中,佈植製程140的能量範圍為100 eV至10 MeV,佈植製程140的摻質135的劑量範圍為1E10 atoms/cm 2至1E18 atoms/cm 2。在一些實施例中,摻質135為硼(B)。 FIG. 2 is a schematic cross-sectional view of the semiconductor structure 10 performing the implantation process 140 according to the first embodiment. According to the embodiment of the present disclosure, an implantation process 140 is performed to implant the dopant 135 into the barrier layer 130 . In some embodiments, the energy range of the implantation process 140 is 100 eV to 10 MeV, and the dose range of the dopant 135 of the implantation process 140 is 1E10 atoms/cm 2 to 1E18 atoms/cm 2 . In some embodiments, dopant 135 is boron (B).

第3圖是根據第一實施例,繪示出半導體結構10形成蓋層150後的剖面示意圖。在執行佈植製程140之後,順應地形成蓋層150於阻障層130上。蓋層150可以在後續的退火製程期間,避免摻質135逸散出阻障層130。在第一實施例及第二實施例中,蓋層150可具有均勻的厚度。在一些實施例中,第一實施例及第二實施例具有均勻厚度的蓋層150可使用原子層沉積(atomic layer deposition;ALD)或其他順應的化學氣相沉積(conformal CVD)來形成,包含以低沉積速率、低氣體流量、較長的平均自由路徑(mean free path;MFP)、低壓、以及低溫的條件來形成具有均勻厚度的蓋層150。在一些實施例中,蓋層150的材料可為SiN、SiO2、SiCN、SiC、SiON。FIG. 3 is a schematic cross-sectional view of the semiconductor structure 10 after the capping layer 150 is formed according to the first embodiment. After the implantation process 140 is performed, the capping layer 150 is compliantly formed on the barrier layer 130 . The capping layer 150 can prevent the dopants 135 from escaping out of the barrier layer 130 during the subsequent annealing process. In the first embodiment and the second embodiment, the cover layer 150 may have a uniform thickness. In some embodiments, the capping layer 150 having a uniform thickness in the first and second embodiments may be formed using atomic layer deposition (ALD) or other conformal chemical vapor deposition (conformal CVD), including The capping layer 150 with a uniform thickness is formed under conditions of low deposition rate, low gas flow, long mean free path (MFP), low pressure, and low temperature. In some embodiments, the material of the capping layer 150 may be SiN, SiO2, SiCN, SiC, or SiON.

第4圖繪示出第3圖的半導體結構10在方框A的局部放大剖面示意圖。在形成蓋層150之後,被佈植的摻質135仍隨機散佈於整個阻障層130的晶粒中。而第5圖繪示出第3圖的半導體結構10執行退火製程155後在方框A的局部放大剖面示意圖。在形成蓋層150之後,執行退火製程155,使得摻質135因溫度提升而自阻障層130的晶粒中擴散至阻障層130的晶界132,且蓋層150避免了摻質135逸散出阻障層130。在一些實施例中,摻質135會擴散至阻障層130的柱狀的晶界132。在執行退火製程之後,可接著使用諸如乾式蝕刻製程或濕式蝕刻製程自阻障層130的頂表面上移除蓋層150。在一些實施例中,退火製程155的溫度範圍為200℃至400℃,退火製程155的持續時間為10分至360分。FIG. 4 illustrates a partially enlarged cross-sectional view of the semiconductor structure 10 in FIG. 3 at block A. As shown in FIG. After the capping layer 150 is formed, the implanted dopants 135 are still randomly distributed throughout the grains of the barrier layer 130 . FIG. 5 shows a partially enlarged cross-sectional view of the semiconductor structure 10 in FIG. 3 after performing the annealing process 155 in block A. As shown in FIG. After the capping layer 150 is formed, an annealing process 155 is performed, so that the dopants 135 diffuse from the grains of the barrier layer 130 to the grain boundaries 132 of the barrier layer 130 due to the temperature increase, and the capping layer 150 prevents the dopants 135 from escaping. Diffusion barrier layer 130 . In some embodiments, the dopant 135 may diffuse into the columnar grain boundaries 132 of the barrier layer 130 . After performing the annealing process, the capping layer 150 may then be removed from the top surface of the barrier layer 130 using a process such as a dry etching process or a wet etching process. In some embodiments, the temperature of the annealing process 155 ranges from 200°C to 400°C, and the duration of the annealing process 155 ranges from 10 minutes to 360 minutes.

第6圖是根據本揭露的第一實施例,繪示出半導體結構10中形成導電材料層160後的剖面示意圖。第7圖繪示出第6圖的半導體結構10在方框A的局部放大剖面示意圖。在移除蓋層150之後,形成導電材料層160於阻障層130上。在一些實施例中,因為導電材料層160是在高溫下形成,因此至少部分的摻質135會由阻障層130的晶界132擴散至阻障層130與導電材料層160接觸的表面。在一些實施例中,形成導電材料層160的溫度大於或等於退火製程155的溫度。在一些實施例中,形成導電材料層160的溫度範圍為300℃至400℃。在一些實施例中,導電材料層160為鎢(W)。FIG. 6 is a schematic cross-sectional view after forming the conductive material layer 160 in the semiconductor structure 10 according to the first embodiment of the present disclosure. FIG. 7 illustrates a partially enlarged cross-sectional view of the semiconductor structure 10 in FIG. 6 at block A. As shown in FIG. After removing the cap layer 150 , a conductive material layer 160 is formed on the barrier layer 130 . In some embodiments, because the conductive material layer 160 is formed at a high temperature, at least part of the dopant 135 will diffuse from the grain boundaries 132 of the barrier layer 130 to the surface of the barrier layer 130 that contacts the conductive material layer 160 . In some embodiments, the temperature at which the conductive material layer 160 is formed is greater than or equal to the temperature of the annealing process 155 . In some embodiments, the temperature at which conductive material layer 160 is formed ranges from 300°C to 400°C. In some embodiments, conductive material layer 160 is tungsten (W).

繼續參見第7圖,導電材料層160的形成會包含成核的步驟。在導電材料層160的形成期間,由阻障層130的晶界132擴散至阻障層130的表面的摻質135會使得導電材料層160在阻障層130的表面成核成長時能形成更高濃度的吸附原子,這將使導電材料層160在成核之後能形成為較大的晶粒,並改善最終形成的半導體結構10的電阻。值得注意的是,在形成導電材料層160之後,部分的摻質135仍被捕陷(trapped)於阻障層130的晶界132中。此外,由於部分的摻質135仍被捕陷於阻障層130的晶界132中,因此半導體結構10可以藉由元素分布分析來測得阻障層130中的摻質135含量。Continuing to refer to FIG. 7 , the formation of the conductive material layer 160 may include a nucleation step. During the formation of the conductive material layer 160, the dopants 135 diffused from the grain boundaries 132 of the barrier layer 130 to the surface of the barrier layer 130 will enable the conductive material layer 160 to form more solid particles when nucleating and growing on the surface of the barrier layer 130. The high concentration of adatoms will enable the conductive material layer 160 to form larger grains after nucleation and improve the resistance of the final semiconductor structure 10 . It is worth noting that after the conductive material layer 160 is formed, part of the dopant 135 is still trapped in the grain boundaries 132 of the barrier layer 130 . In addition, since part of the dopant 135 is still trapped in the grain boundary 132 of the barrier layer 130, the semiconductor structure 10 can measure the content of the dopant 135 in the barrier layer 130 through element distribution analysis.

第8圖是根據本揭露的第一實施例,繪示出半導體結構10執行平坦化處理後的剖面示意圖。在形成導電材料層160之後,執行平坦化處理以露出介電層110的頂表面,從而形成導電材料165。導電材料165具有晶界162,其可用於量測晶粒的尺寸大小。在一些實施例中,在形成導電材料165之後,其晶粒尺寸之範圍為約10奈米至約300奈米。FIG. 8 is a schematic cross-sectional view of the semiconductor structure 10 after a planarization process according to the first embodiment of the present disclosure. After the conductive material layer 160 is formed, a planarization process is performed to expose the top surface of the dielectric layer 110 , thereby forming the conductive material 165 . Conductive material 165 has grain boundaries 162, which can be used to measure the size of the grains. In some embodiments, after the conductive material 165 is formed, its grain size ranges from about 10 nanometers to about 300 nanometers.

第一實施例提供利用摻質135來形成具有較大晶粒的導電材料165的形成方法。在執行平坦化處理之後,半導體結構10可繼續進行進一步的製程,例如形成金屬互連結構來連接基板100內的各種元件,而導電材料165可作為半導體裝置的接觸插塞或導孔,此處不再贅述。The first embodiment provides a method of forming conductive material 165 with larger grains using dopants 135 . After the planarization process is performed, the semiconductor structure 10 can continue to undergo further processes, such as forming metal interconnect structures to connect various components within the substrate 100 , and the conductive material 165 can serve as contact plugs or vias for the semiconductor device, where No more details.

以下配合第9-10圖說明本揭露之第二實施例。第二實施例近似於第一實施例,差別在於第一實施例是用來形成後段製程(back end of line;BEOL)中的接觸插塞或導孔,而第二實施例是用來形成內埋字元線。第9圖是根據本揭露形成內埋字元線的第二實施例,繪示出半導體結構20的剖面示意圖。開口120為設置於基板100中的字元線溝槽,可先形成氧化層126於開口120中及基板100上,以避免隨後形成的阻障層130產生剝離。在第二實施例中,氧化層126的材料可為SiO 2、SiN、SiON。在形成阻障層130之後,第二實施例可繼續進行諸如上方第2圖至第8圖所描述過的製程,此處不再重複描述。第10圖是根據本揭露的第二實施例,繪示出半導體結構20執行平坦化處理後的剖面示意圖。在形成導電材料層160之後,執行平坦化處理以露出基板100的頂表面,從而形成導電材料165。 The following describes the second embodiment of the present disclosure with reference to Figures 9-10. The second embodiment is similar to the first embodiment. The difference is that the first embodiment is used to form contact plugs or via holes in the back end of line (BEOL) process, while the second embodiment is used to form internal Buried character lines. FIG. 9 is a second embodiment of forming buried word lines according to the present disclosure, illustrating a schematic cross-sectional view of the semiconductor structure 20 . The opening 120 is a word line trench provided in the substrate 100. The oxide layer 126 can be formed first in the opening 120 and on the substrate 100 to prevent the subsequently formed barrier layer 130 from peeling off. In the second embodiment, the material of the oxide layer 126 may be SiO 2 , SiN, or SiON. After the barrier layer 130 is formed, the second embodiment may continue to perform processes such as those described in FIGS. 2 to 8 above, which will not be repeated here. FIG. 10 is a schematic cross-sectional view of the semiconductor structure 20 after a planarization process according to the second embodiment of the present disclosure. After the conductive material layer 160 is formed, a planarization process is performed to expose the top surface of the substrate 100, thereby forming the conductive material 165.

如同上方所描述,第二實施例提供利用摻質135來形成具有較大晶粒的導電材料165的形成方法。在第二實施例中,在執行平坦化處理之後,半導體結構20可繼續進行進一步的製程,例如形成電晶體以及金屬互連結構,而導電材料165可作為記憶體裝置的內埋字元線,此處不再贅述。As described above, the second embodiment provides a formation method using the dopant 135 to form the conductive material 165 with larger grains. In the second embodiment, after performing the planarization process, the semiconductor structure 20 can continue to undergo further processes, such as forming transistors and metal interconnect structures, and the conductive material 165 can serve as embedded word lines of the memory device. No further details will be given here.

以下配合第11-14B圖說明本揭露之第三實施例。第11圖是根據本揭露形成接觸插塞或導孔的第三實施例,繪示出半導體結構30的剖面示意圖。第三實施例近似於第一實施例,但差別在於第一實施例是先執行佈植製程140後才形成蓋層150,而第三實施例是先形成具有不均勻厚度的蓋層150’後,再執行佈植製程140。首先,在基板100上依序形成導線層105及介電層110。接著,順應地形成黏著層124及阻障層130於開口120中及基板100上,並形成具有不均勻厚度的蓋層150’於阻障層130上,蓋層150’在開口120的底表面上方的厚度T1會小於蓋層150’在介電層110的頂表面上方的厚度T2。在一些實施例中,第三實施例具有不均勻厚度的蓋層150’可使用物理氣相沉積(PVD)、化學氣相沉積(CVD)、或其他可形成低階梯覆蓋率的膜層的製程來形成,包含以高沉積速率、高氣體流量、較短的平均自由路徑(MFP)、高壓、以及高溫的條件來形成具有不均勻厚度的蓋層150’。在一些實施例中,蓋層150’的材料可為SiN、SiO 2、SiCN、SiC、SiON。 The third embodiment of the present disclosure will be described below with reference to Figures 11-14B. FIG. 11 is a schematic cross-sectional view of a semiconductor structure 30 according to a third embodiment of forming contact plugs or via holes according to the present disclosure. The third embodiment is similar to the first embodiment, but the difference is that the first embodiment performs the implantation process 140 first and then forms the cap layer 150 , while the third embodiment first forms the cap layer 150 ′ with uneven thickness. , and then perform the implantation process 140. First, the conductor layer 105 and the dielectric layer 110 are sequentially formed on the substrate 100 . Next, the adhesive layer 124 and the barrier layer 130 are conformably formed in the opening 120 and on the substrate 100 , and a cover layer 150 ′ with uneven thickness is formed on the barrier layer 130 , and the cover layer 150 ′ is formed on the bottom surface of the opening 120 The upper thickness T1 will be less than the thickness T2 of the capping layer 150' above the top surface of the dielectric layer 110. In some embodiments, the capping layer 150' with uneven thickness of the third embodiment may use physical vapor deposition (PVD), chemical vapor deposition (CVD), or other processes that can form a film layer with low step coverage. The formation includes forming the capping layer 150' with a non-uniform thickness under conditions of high deposition rate, high gas flow, short mean free path (MFP), high pressure, and high temperature. In some embodiments, the material of the capping layer 150' may be SiN, SiO 2 , SiCN, SiC, or SiON.

第12圖是根據本揭露的第三實施例,繪示出半導體結構30執行佈植製程140的剖面示意圖。在形成蓋層150’之後,執行佈植製程140以將摻質135穿過蓋層150’並佈植入阻障層130中。由於蓋層150’的厚度差異,摻質135在佈植期間會穿過不同厚度的蓋層150’才到達阻障層130,使得摻質135在阻障層130中能具有不同的濃度。換句話說,在相同的佈植能量下,若摻質135僅需穿過較小的厚度(例如,第11圖中的厚度T1)就能到達阻障層130(亦即,能量消耗小),則會有較多的摻質135被佈植入此部分的阻障層130中,若摻質135需穿過較大的厚度(例如,第11圖中的厚度T2)才能到達阻障層130(亦即,能量消耗大),則會有較少的摻質135被佈植入此部分的阻障層130中。在第三實施例中,阻障層130在開口120的底表面具有第一濃度的摻質135,阻障層130在介電層110的頂表面具有第二濃度的摻質135,且第一濃度大於第二濃度。FIG. 12 is a schematic cross-sectional view of the semiconductor structure 30 performing the implantation process 140 according to the third embodiment of the present disclosure. After forming the capping layer 150', a implantation process 140 is performed to implant the dopant 135 through the capping layer 150' and into the barrier layer 130. Due to the difference in thickness of the capping layer 150', the dopant 135 will pass through the capping layer 150' of different thicknesses before reaching the barrier layer 130 during implantation, so that the dopant 135 can have different concentrations in the barrier layer 130. In other words, under the same implantation energy, if the dopant 135 only needs to pass through a smaller thickness (for example, the thickness T1 in Figure 11) to reach the barrier layer 130 (that is, the energy consumption is small) , then more dopants 135 will be implanted in this part of the barrier layer 130. If the dopants 135 need to pass through a larger thickness (for example, thickness T2 in Figure 11) to reach the barrier layer 130 (that is, the energy consumption is large), then less dopant 135 will be implanted in this part of the barrier layer 130 . In the third embodiment, the barrier layer 130 has a first concentration of dopants 135 on the bottom surface of the opening 120 , the barrier layer 130 has a second concentration of dopants 135 on the top surface of the dielectric layer 110 , and the first The concentration is greater than the second concentration.

第13A圖以及第13B圖分別繪示出第12圖的半導體結構30執行佈植製程140後在方框A以及方框B的局部放大剖面示意圖。在第13A圖中,摻質135僅需穿過厚度較薄的蓋層150’,因此位於厚度較薄的蓋層150’下方的阻障層130具有較多的摻質135,而在第13B圖中,摻質135需穿過厚度較厚的蓋層150’,因此位於厚度較厚的蓋層150’下方的阻障層130僅具有少量的摻質135。執行佈植製程140之後,被佈植的摻質135會隨機散佈於整個阻障層130的晶粒中。FIGS. 13A and 13B respectively illustrate partial enlarged cross-sectional views of blocks A and B of the semiconductor structure 30 of FIG. 12 after performing the implantation process 140 . In Figure 13A, the dopant 135 only needs to pass through the thinner cap layer 150', so the barrier layer 130 below the thinner cap layer 150' has more dopants 135, while in Figure 13B In the figure, the dopant 135 needs to pass through the thicker capping layer 150', so the barrier layer 130 located under the thicker capping layer 150' has only a small amount of dopant 135. After the implantation process 140 is performed, the implanted dopants 135 will be randomly distributed throughout the grains of the barrier layer 130 .

第14A圖以及第14B圖分別繪示出第12圖的半導體結構30執行退火製程155後在方框A以及方框B的局部放大剖面示意圖。在執行佈植製程140之後,執行退火製程155,使摻質135自阻障層130的晶粒中擴散至阻障層130的晶界132中。第14A圖中的阻障層130的晶界具有較多的摻質135,而第14B圖中的阻障層130的晶界具有較少的摻質135。因此阻障層130中的摻質135的濃度差異將導致後續形成導電材料層160時,摻質濃度高的部分能具有較大的形成速率,而摻質濃度低的部分則具有較小的形成速率。FIGS. 14A and 14B respectively illustrate partial enlarged cross-sectional views of blocks A and B of the semiconductor structure 30 of FIG. 12 after performing the annealing process 155 . After the implantation process 140 is performed, an annealing process 155 is performed to allow the dopants 135 to diffuse from the grains of the barrier layer 130 into the grain boundaries 132 of the barrier layer 130 . The grain boundaries of the barrier layer 130 in Figure 14A have more dopants 135, while the grain boundaries of the barrier layer 130 in Figure 14B have less dopants 135. Therefore, the concentration difference of the dopant 135 in the barrier layer 130 will result in that when the conductive material layer 160 is subsequently formed, the portion with a high dopant concentration can have a greater formation rate, while the portion with a low dopant concentration has a smaller formation rate. rate.

在執行退火製程155之後,可繼續進行諸如上方第6圖至第8圖所描述過的製程。根據本揭露實施例,隨後移除蓋層150’,並形成導電材料層160於阻障層130上,以於開口120中填充導電材料165。在第三實施例中,近似於第一實施例,至少部分的摻質135會由阻障層130的晶界132擴散至阻障層130與導電材料層160接觸的表面。然而,在第三實施例中,由於阻障層130中具有摻質135的濃度差異,這將使得在阻障層130的表面上也會具有不同的摻質濃度差異,並進而改變導電材料層160的形成速率。因為開口120的底表面相較其側壁以及介電層110的頂表面擴散出更多的摻質135,允許開口120的底表面能形成更高濃度的吸附原子,使得導電材料165在開口120的底表面的形成速率會大於導電材料165在開口120的側壁以及在介電層110的頂表面的形成速率。換句話說,導電材料165填充開口120的底部的速率會大於導電材料165封住開口120的頂部的速率,這有效改善了導電材料165的填充效率,並避免了接縫(seam)的形成。第三實施例提供了如何形成具有較大晶粒的導電材料,同時避免形成接縫於開口120中的形成方法。After performing the annealing process 155, processes such as those described above in Figures 6 to 8 can continue. According to the embodiment of the present disclosure, the capping layer 150′ is then removed, and a conductive material layer 160 is formed on the barrier layer 130 to fill the opening 120 with the conductive material 165. In the third embodiment, similar to the first embodiment, at least part of the dopant 135 will diffuse from the grain boundary 132 of the barrier layer 130 to the surface where the barrier layer 130 contacts the conductive material layer 160 . However, in the third embodiment, due to the concentration difference of the dopant 135 in the barrier layer 130, there will be a different dopant concentration difference on the surface of the barrier layer 130, and thus change the conductive material layer. 160 formation rate. Because more dopants 135 are diffused from the bottom surface of the opening 120 than its sidewalls and the top surface of the dielectric layer 110 , a higher concentration of adatoms is allowed to form on the bottom surface of the opening 120 , so that the conductive material 165 is formed on the opening 120 The formation rate of the bottom surface may be greater than the formation rate of the conductive material 165 on the sidewalls of the opening 120 and on the top surface of the dielectric layer 110 . In other words, the rate at which the conductive material 165 fills the bottom of the opening 120 is greater than the rate at which the conductive material 165 seals the top of the opening 120 , which effectively improves the filling efficiency of the conductive material 165 and avoids the formation of a seam. The third embodiment provides a method of forming a conductive material with larger grains while avoiding the formation of seams in the openings 120 .

以下配合第15-16圖說明本揭露之第四實施例。第四實施例近似於第三實施例,差別在於第三實施例是用來形成後段製程中的接觸插塞或導孔,而第四實施例是用來形成內埋字元線。第15圖是根據本揭露形成內埋字元線的第四實施例,繪示出半導體裝置40的剖面示意圖。開口120為設置於基板100中的字元線溝槽。如同上方第11圖的描述,先形成具有不均勻厚度的蓋層150’後,再接著執行佈植製程140。蓋層150’在開口120的底表面上方的厚度T1會小於蓋層150’在介電層110的頂表面上方的厚度T2。The fourth embodiment of the present disclosure will be described below with reference to Figures 15-16. The fourth embodiment is similar to the third embodiment. The difference is that the third embodiment is used to form contact plugs or via holes in the back-end process, while the fourth embodiment is used to form embedded word lines. FIG. 15 is a schematic cross-sectional view of a semiconductor device 40 according to a fourth embodiment of forming buried word lines according to the present disclosure. The opening 120 is a word line trench provided in the substrate 100 . As described in Figure 11 above, after the capping layer 150' with uneven thickness is first formed, the implantation process 140 is then performed. The thickness T1 of the cap layer 150' above the bottom surface of the opening 120 will be smaller than the thickness T2 of the cap layer 150' above the top surface of the dielectric layer 110.

第16圖是根據本揭露的第四實施例,繪示出半導體結構40執行佈植製程140的剖面示意圖。在形成蓋層150’之後,執行佈植製程140以將摻質135穿過蓋層150’並佈植入阻障層130中。如同上方第12圖的描述,由於蓋層150’的厚度差異,摻質135在佈植期間會穿過不同厚度的蓋層150’才到達阻障層130,使得摻質135在阻障層130中能具有不同的濃度。在形成蓋層150’之後,可繼續執行諸如第13A圖至第14B圖、以及第6圖至第8圖所描述的製程,此處不再重複描述。FIG. 16 is a schematic cross-sectional view of the semiconductor structure 40 performing the implantation process 140 according to the fourth embodiment of the present disclosure. After forming the capping layer 150', a implantation process 140 is performed to implant the dopant 135 through the capping layer 150' and into the barrier layer 130. As described in FIG. 12 above, due to the difference in thickness of the capping layer 150', the dopant 135 will pass through the capping layer 150' of different thicknesses before reaching the barrier layer 130 during implantation, so that the dopant 135 is in the barrier layer 130. Medium energy has different concentrations. After the capping layer 150' is formed, processes such as those described in Figures 13A to 14B and Figures 6 to 8 can be continued, and the description will not be repeated here.

綜上所述,本發明實施例提供了形成具有較大晶粒的導電材料,以及藉由佈植製程來控制導電材料在阻障層上的形成速率的方法。電子穿過具有較大晶粒的導電材料時會受到較少的晶界阻礙,因此形成具有較大的晶粒的導電材料可降低相關部件的電阻,從而得到具有高導電率的半導體結構。而控制導電材料在阻障層上的形成速率能有效避免開口中接縫的形成。In summary, embodiments of the present invention provide a method for forming a conductive material with larger crystal grains and controlling the formation rate of the conductive material on the barrier layer through a implantation process. When electrons pass through a conductive material with larger grains, they are less hindered by grain boundaries. Therefore, forming a conductive material with larger grains can reduce the resistance of related components, resulting in a semiconductor structure with high conductivity. Controlling the formation rate of conductive material on the barrier layer can effectively avoid the formation of seams in the openings.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許之更動與潤飾。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention is disclosed in the foregoing embodiments, they are not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the appended patent application scope.

10:半導體結構 20:半導體結構 30:半導體結構 40:半導體結構 100:基板 105:導線層 110:介電層 120:開口 124:黏著層 126:氧化層 130:阻障層 132:晶界 135:摻質 140:佈植製程 150:蓋層 150’:蓋層 155:退火製程 160:導電材料層 162:晶界 165:導電材料 A:方框 B:方框 T1:厚度 T2:厚度 10: Semiconductor structure 20: Semiconductor structure 30: Semiconductor structure 40: Semiconductor structure 100:Substrate 105: Wire layer 110: Dielectric layer 120:Open your mouth 124:Adhesive layer 126:Oxide layer 130:Barrier layer 132:Grain Boundary 135:Dopant 140: Implantation process 150: cover 150’: cover 155: Annealing process 160: conductive material layer 162:Grain Boundary 165: Conductive materials A:Box B:Box T1:Thickness T2:Thickness

讓本發明之特徵和優點能更明顯易懂,下文特舉不同實施例,並配合所附圖式作詳細說明如下: 第1圖至第8圖是根據本揭露的第一實施例,繪示出半導體結構在不同階段的剖面示意圖。 第9圖以及第10圖是根據本揭露的第二實施例,繪示出半導體結構在不同階段的剖面示意圖。 第11、12、13A、13B、14A圖以及第14B圖是根據本揭露的第三實施例,繪示出半導體結構在不同階段的剖面示意圖。 第15圖以及第16圖是根據本揭露的第四實施例,繪示出半導體結構在不同階段的剖面示意圖。 To make the features and advantages of the present invention more obvious and understandable, different embodiments are given below and are described in detail with reference to the accompanying drawings: 1 to 8 are schematic cross-sectional views of a semiconductor structure at different stages according to the first embodiment of the present disclosure. Figures 9 and 10 are schematic cross-sectional views of the semiconductor structure at different stages according to the second embodiment of the present disclosure. Figures 11, 12, 13A, 13B, 14A and Figure 14B are schematic cross-sectional views of a semiconductor structure at different stages according to the third embodiment of the present disclosure. Figures 15 and 16 are schematic cross-sectional views of a semiconductor structure at different stages according to a fourth embodiment of the present disclosure.

10:半導體結構 10: Semiconductor structure

100:基板 100:Substrate

105:導線層 105: Wire layer

110:介電層 110: Dielectric layer

124:黏著層 124:Adhesive layer

130:阻障層 130:Barrier layer

162:晶界 162:Grain Boundary

165:導電材料 165: Conductive materials

Claims (14)

一種半導體結構的形成方法,包括: 提供一基板,該基板中或該基板上具有一開口; 順應地形成一阻障層於該開口中及該基板上; 執行一佈植製程以將一摻質佈植入該阻障層中; 順應地形成一蓋層於該阻障層上; 執行一退火製程,使得該摻質擴散至該阻障層的晶界中; 移除該蓋層;以及 於該開口中填充一導電材料。 A method for forming a semiconductor structure, including: Provide a substrate with an opening in or on the substrate; Compliantly forming a barrier layer in the opening and on the substrate; performing an implantation process to implant a doped cloth into the barrier layer; Compliantly forming a capping layer on the barrier layer; performing an annealing process to diffuse the dopant into the grain boundaries of the barrier layer; remove the covering; and Fill the opening with a conductive material. 如請求項1之半導體結構的形成方法,其中在填充該導電材料的步驟後,部分的該摻質仍被捕陷於該阻障層的晶界中。The method of forming a semiconductor structure as claimed in claim 1, wherein after the step of filling the conductive material, part of the dopant is still trapped in the grain boundary of the barrier layer. 如請求項1之半導體結構的形成方法,其中該基板上更設有一介電層,該開口為設置於該介電層中的一接觸開口。The method of forming a semiconductor structure according to claim 1, wherein a dielectric layer is further provided on the substrate, and the opening is a contact opening provided in the dielectric layer. 如請求項1之半導體結構的形成方法,其中該開口為設置於該基板中的一字元線溝槽。The method of forming a semiconductor structure as claimed in claim 1, wherein the opening is a word line trench provided in the substrate. 如請求項1之半導體結構的形成方法,其中該摻質為硼,且該導電材料為鎢。The method of forming a semiconductor structure as claimed in claim 1, wherein the dopant is boron and the conductive material is tungsten. 如請求項1之半導體結構的形成方法,其中填充該導電材料的步驟包括: 形成一導電材料層於該阻障層上;以及 執行一平坦化處理以露出該基板的頂表面,其中形成該導電材料層的溫度大於或等於該退火製程的溫度。 The method of forming a semiconductor structure as claimed in claim 1, wherein the step of filling the conductive material includes: forming a conductive material layer on the barrier layer; and A planarization process is performed to expose the top surface of the substrate, wherein the temperature at which the conductive material layer is formed is greater than or equal to the temperature of the annealing process. 如請求項1之半導體結構的形成方法,其中在填充該導電材料的步驟中,至少部分的該摻質由該阻障層的晶界擴散至該阻障層與該導電材料接觸的表面。The method of forming a semiconductor structure as claimed in claim 1, wherein in the step of filling the conductive material, at least part of the dopant is diffused from the grain boundary of the barrier layer to a surface of the barrier layer in contact with the conductive material. 一種半導體結構的形成方法,包括: 提供一基板,該基板中或該基板上具有一開口; 順應地形成一阻障層於該開口中及該基板上; 形成一蓋層於該阻障層上,該蓋層在該開口的底表面上方的厚度小於該蓋層在該基板的頂表面上方的厚度; 執行一佈植製程以將一摻質穿過該蓋層並佈植入該阻障層中; 執行一退火製程,使得該摻質擴散至該阻障層的晶界中; 移除該蓋層;以及 於該開口中填充一導電材料。 A method for forming a semiconductor structure, including: Provide a substrate with an opening in or on the substrate; Compliantly forming a barrier layer in the opening and on the substrate; Forming a capping layer on the barrier layer, the thickness of the capping layer above the bottom surface of the opening is less than the thickness of the capping layer above the top surface of the substrate; performing a implantation process to implant a dopant through the capping layer and into the barrier layer; performing an annealing process to diffuse the dopant into the grain boundaries of the barrier layer; remove the covering; and Fill the opening with a conductive material. 如請求項8之半導體結構的形成方法,其中該阻障層在該開口的底表面具有一第一濃度的該摻質,該阻障層在該基板的頂表面具有一第二濃度的該摻質,且該第一濃度大於該第二濃度。The method of forming a semiconductor structure as claimed in claim 8, wherein the barrier layer has a first concentration of the dopant on the bottom surface of the opening, and the barrier layer has a second concentration of the dopant on the top surface of the substrate. quality, and the first concentration is greater than the second concentration. 一種半導體結構,包括: 一基板,該基板中或該基板上具有一開口; 一阻障層,內襯於該開口,其中該阻障層的晶界捕陷一摻質;以及 一導電材料,填充於該開口中。 A semiconductor structure including: a substrate having an opening in or on the substrate; a barrier layer lining the opening, wherein the grain boundaries of the barrier layer trap a dopant; and A conductive material is filled in the opening. 如請求項10之半導體結構,其中該基板上更設有一介電層,該開口為設置於該介電層中的一接觸開口。The semiconductor structure of claim 10, wherein a dielectric layer is further provided on the substrate, and the opening is a contact opening provided in the dielectric layer. 如請求項10之半導體結構,其中該開口為設置於該基板中的一字元線溝槽。The semiconductor structure of claim 10, wherein the opening is a word line trench disposed in the substrate. 如請求項10之半導體結構,其中該導電材料的晶粒尺寸之範圍為約10奈米至約300奈米。The semiconductor structure of claim 10, wherein the conductive material has a grain size ranging from about 10 nanometers to about 300 nanometers. 如請求項10之半導體結構,其中該阻障層包含一柱狀晶結構。The semiconductor structure of claim 10, wherein the barrier layer includes a columnar crystal structure.
TW111128936A 2022-08-02 2022-08-02 Semiconductor structure and method for forming the same TWI822222B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111128936A TWI822222B (en) 2022-08-02 2022-08-02 Semiconductor structure and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111128936A TWI822222B (en) 2022-08-02 2022-08-02 Semiconductor structure and method for forming the same

Publications (2)

Publication Number Publication Date
TWI822222B TWI822222B (en) 2023-11-11
TW202407876A true TW202407876A (en) 2024-02-16

Family

ID=89722435

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111128936A TWI822222B (en) 2022-08-02 2022-08-02 Semiconductor structure and method for forming the same

Country Status (1)

Country Link
TW (1) TWI822222B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10510851B2 (en) * 2016-11-29 2019-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Low resistance contact method and structure
CN115088079A (en) * 2020-02-11 2022-09-20 克罗米斯有限公司 Method and system for diffusing magnesium in gallium nitride materials using a sputtered magnesium source

Also Published As

Publication number Publication date
TWI822222B (en) 2023-11-11

Similar Documents

Publication Publication Date Title
US10665782B2 (en) Methods of forming semiconductor structures including multi-portion liners
US7196346B2 (en) Semiconductor memory device and method for fabricating the same
KR20080036679A (en) Method of forming a non-volatile memory device
US10847367B2 (en) Methods of forming tungsten structures
US8710624B2 (en) Semiconductor device
TWI641081B (en) Contact fill in an integrated circuit
JP3947990B2 (en) Contact formation method of semiconductor element
US8338951B2 (en) Metal line of semiconductor device having a diffusion barrier with an amorphous TaBN layer and method for forming the same
TW200931621A (en) Semiconductor structure comprising an electrically conductive feature and method of forming a semiconductor structure
US8810033B2 (en) Barrier layer for integrated circuit contacts
TW201901760A (en) Method of fabricating a semiconductor structure
TWI822222B (en) Semiconductor structure and method for forming the same
US20090017615A1 (en) Method of removing an insulation layer and method of forming a metal wire
US11257911B2 (en) Sacrificial layer for semiconductor process
US20240222191A1 (en) Semiconductor structure and method of forming the same
JP2006179950A (en) Manufacturing method of semiconductor integrated circuit device
TW202133233A (en) Electronic devices comprising silicon carbide materials and related methods and systems
KR100645839B1 (en) Semiconductor device and method for fabrication of the same
TWI323497B (en) Method of fabricating a dual-damascene copper structure
JP2004179297A (en) Semiconductor integrated circuit device
CN117637600A (en) Semiconductor structure and forming method thereof
KR100946036B1 (en) Method of manufacturing a semiconductor device
JP2007250624A (en) Method of manufacturing semiconductor device
US20080067685A1 (en) Semiconductor Device Manufacturing Method
KR20090036980A (en) Method for forming contact in semiconductor device