TW202407876A - Semiconductor structure and method for forming the same - Google Patents
Semiconductor structure and method for forming the same Download PDFInfo
- Publication number
- TW202407876A TW202407876A TW111128936A TW111128936A TW202407876A TW 202407876 A TW202407876 A TW 202407876A TW 111128936 A TW111128936 A TW 111128936A TW 111128936 A TW111128936 A TW 111128936A TW 202407876 A TW202407876 A TW 202407876A
- Authority
- TW
- Taiwan
- Prior art keywords
- barrier layer
- layer
- opening
- substrate
- semiconductor structure
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 80
- 239000004065 semiconductor Substances 0.000 title claims abstract description 59
- 230000004888 barrier function Effects 0.000 claims abstract description 92
- 239000004020 conductor Substances 0.000 claims abstract description 66
- 239000002019 doping agent Substances 0.000 claims abstract description 59
- 230000008569 process Effects 0.000 claims abstract description 59
- 239000000758 substrate Substances 0.000 claims abstract description 49
- 238000002513 implantation Methods 0.000 claims abstract description 25
- 238000000137 annealing Methods 0.000 claims abstract description 17
- 239000007943 implant Substances 0.000 claims abstract description 8
- 239000013078 crystal Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 239000004744 fabric Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 155
- 230000015572 biosynthetic process Effects 0.000 description 14
- 239000012790 adhesive layer Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- -1 SiCN Chemical compound 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229910004541 SiN Inorganic materials 0.000 description 1
- 229910004200 TaSiN Inorganic materials 0.000 description 1
- 229910008482 TiSiN Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
本發明實施例是關於半導體製程技術,特別是關於導電部件的形成方法。Embodiments of the present invention relate to semiconductor process technology, and in particular to methods of forming conductive components.
半導體裝置的關鍵尺寸隨著發展逐漸縮小,進而使得諸如內埋字元線、接觸件、或導孔等導電部件的電阻逐漸增加。因此,業界仍需要改善相關導電部件的電阻,來達到降低關鍵尺寸並同時維持半導體裝置的性能的目標。在現有的技術方法中,透過減少阻障層的厚度或者縮減導電材料的成核循環次數來減少相關導電部件的電阻。然而,這可能會導致諸如阻障層∕導電材料剝離(peeling)或者提高裝置的臨界電壓(Vth)的風險。As the critical dimensions of semiconductor devices gradually shrink with development, the resistance of conductive components such as embedded word lines, contacts, or vias gradually increases. Therefore, the industry still needs to improve the resistance of related conductive components to achieve the goal of reducing critical dimensions while maintaining the performance of semiconductor devices. In existing technical methods, the resistance of related conductive components is reduced by reducing the thickness of the barrier layer or reducing the number of nucleation cycles of the conductive material. However, this may lead to risks such as peeling of the barrier layer/conductive material or increasing the threshold voltage (Vth) of the device.
本發明實施例提供了一種半導體結構的形成方法,包含提供基板,基板中或基板上具有開口;順應地形成阻障層於開口中及基板上;執行佈植製程以將摻質佈植入阻障層中;順應地形成蓋層於阻障層上;執行退火製程,使得摻質擴散至阻障層的晶界中;移除蓋層;以及於開口中填充導電材料。Embodiments of the present invention provide a method for forming a semiconductor structure, which includes providing a substrate with an opening in or on the substrate; compliantly forming a barrier layer in the opening and on the substrate; and performing a implantation process to implant the dopant cloth into the resistor. in the barrier layer; conformably form a capping layer on the barrier layer; perform an annealing process to diffuse dopants into the grain boundaries of the barrier layer; remove the capping layer; and fill the openings with conductive material.
本發明實施例提供了一種半導體結構的形成方法,包含提供基板,基板中或基板上具有開口;順應地形成阻障層於開口中及基板上;形成蓋層於阻障層上,蓋層在開口的底表面上方的厚度小於蓋層在基板的頂表面上方的厚度;執行佈植製程以將摻質穿過蓋層並佈植入阻障層中;執行退火製程,使得摻質擴散至阻障層的晶界中;移除蓋層;以及於開口中填充導電材料。Embodiments of the present invention provide a method for forming a semiconductor structure, which includes providing a substrate with an opening in or on the substrate; conformably forming a barrier layer in the opening and on the substrate; forming a cover layer on the barrier layer, and the cover layer is The thickness above the bottom surface of the opening is less than the thickness of the cap layer above the top surface of the substrate; a implantation process is performed to implant the dopants through the cap layer and into the barrier layer; an annealing process is performed to diffuse the dopants into the barrier layer in the grain boundaries of the barrier layer; remove the capping layer; and fill the opening with conductive material.
本發明實施例提供了一種半導體結構,包含基板,基板中或基板上具有開口;阻障層,內襯於開口,其中阻障層的晶界捕陷摻質;以及導電材料,填充於開口中。Embodiments of the present invention provide a semiconductor structure, including a substrate with an opening in or on the substrate; a barrier layer lining the opening, in which the grain boundary trapping dopant of the barrier layer; and a conductive material filled in the opening .
在現有的半導體技術中,通常會使用鎢作為諸如內埋字元線、接觸插塞、導孔等導電部件的材料,且通常是利用填充能力較佳的沉積製程來形成,諸如化學氣相沉積製程。隨著線寬的降低,相關的導電部件面臨了導電材料的電阻會隨之上升的問題。本發明實施例提供了一種能夠形成具有較大的晶粒(grain)的導電材料的方法,晶粒的大小會影響晶界(grain boundary)的數量(亦即,晶粒越小晶界則越多,晶粒越大晶界則越少),電子穿過具有較大晶粒的導電材料時會受到較少的晶界阻礙,因此形成具有較大的晶粒的導電材料可降低相關部件的電阻,從而得到具有高導電率的半導體結構。In existing semiconductor technology, tungsten is usually used as a material for conductive components such as embedded word lines, contact plugs, via holes, etc., and is usually formed using a deposition process with better filling capabilities, such as chemical vapor deposition. process. As the line width decreases, the related conductive components face the problem that the resistance of the conductive material will increase. Embodiments of the present invention provide a method for forming a conductive material with larger grains. The size of the grains will affect the number of grain boundaries (that is, the smaller the grains, the smaller the grain boundaries. (the larger the grains, the fewer the grain boundaries). When electrons pass through a conductive material with larger grains, they will be hindered by less grain boundaries. Therefore, forming a conductive material with larger grains can reduce the damage of related components. resistance, resulting in a semiconductor structure with high conductivity.
第1圖是根據本揭露形成接觸插塞或導孔的第一實施例,繪示出半導體結構10的剖面示意圖。根據本揭露實施例,提供了基板100,基板100上具有開口120。基板100上依序形成導線層105及介電層110,而開口120為設置於介電層110中的接觸開口,並露出一部份的導線層105的頂表面。在一些實施例中,基板100可為元素半導體基板、化合物半導體基板或合金半導體基板。在其他實施例中,基板100可為絕緣體上覆半導體基板。FIG. 1 is a schematic cross-sectional view of a
繼續參見第1圖,順應地形成阻障層130於開口120中及基板100上。阻障層130能確保後續形成的導電材料不會擴散至基板100或介電層110之中。在形成阻障層130之前,可先順應地形成黏著層124於開口120中及基板100上,而阻障層130則順應地形成於黏著層124上,以避免阻障層130與基板100產生剝離。在一些實施例中,阻障層130包含柱狀晶結構,具有柱狀的晶界132(參見下方第4圖)。在一些實施例中,阻障層130的材料可為TiN、TaN、WN、TaSiN、TiSiN。在第一實施例中,黏著層124的材料可為Ti、Ta。Continuing to refer to FIG. 1 , a
第2圖是根據第一實施例,繪示出半導體結構10執行佈植製程140的剖面示意圖。根據本揭露實施例,執行佈植製程140以將摻質135佈植入阻障層130中。在一些實施例中,佈植製程140的能量範圍為100 eV至10 MeV,佈植製程140的摻質135的劑量範圍為1E10 atoms/cm
2至1E18 atoms/cm
2。在一些實施例中,摻質135為硼(B)。
FIG. 2 is a schematic cross-sectional view of the
第3圖是根據第一實施例,繪示出半導體結構10形成蓋層150後的剖面示意圖。在執行佈植製程140之後,順應地形成蓋層150於阻障層130上。蓋層150可以在後續的退火製程期間,避免摻質135逸散出阻障層130。在第一實施例及第二實施例中,蓋層150可具有均勻的厚度。在一些實施例中,第一實施例及第二實施例具有均勻厚度的蓋層150可使用原子層沉積(atomic layer deposition;ALD)或其他順應的化學氣相沉積(conformal CVD)來形成,包含以低沉積速率、低氣體流量、較長的平均自由路徑(mean free path;MFP)、低壓、以及低溫的條件來形成具有均勻厚度的蓋層150。在一些實施例中,蓋層150的材料可為SiN、SiO2、SiCN、SiC、SiON。FIG. 3 is a schematic cross-sectional view of the
第4圖繪示出第3圖的半導體結構10在方框A的局部放大剖面示意圖。在形成蓋層150之後,被佈植的摻質135仍隨機散佈於整個阻障層130的晶粒中。而第5圖繪示出第3圖的半導體結構10執行退火製程155後在方框A的局部放大剖面示意圖。在形成蓋層150之後,執行退火製程155,使得摻質135因溫度提升而自阻障層130的晶粒中擴散至阻障層130的晶界132,且蓋層150避免了摻質135逸散出阻障層130。在一些實施例中,摻質135會擴散至阻障層130的柱狀的晶界132。在執行退火製程之後,可接著使用諸如乾式蝕刻製程或濕式蝕刻製程自阻障層130的頂表面上移除蓋層150。在一些實施例中,退火製程155的溫度範圍為200℃至400℃,退火製程155的持續時間為10分至360分。FIG. 4 illustrates a partially enlarged cross-sectional view of the
第6圖是根據本揭露的第一實施例,繪示出半導體結構10中形成導電材料層160後的剖面示意圖。第7圖繪示出第6圖的半導體結構10在方框A的局部放大剖面示意圖。在移除蓋層150之後,形成導電材料層160於阻障層130上。在一些實施例中,因為導電材料層160是在高溫下形成,因此至少部分的摻質135會由阻障層130的晶界132擴散至阻障層130與導電材料層160接觸的表面。在一些實施例中,形成導電材料層160的溫度大於或等於退火製程155的溫度。在一些實施例中,形成導電材料層160的溫度範圍為300℃至400℃。在一些實施例中,導電材料層160為鎢(W)。FIG. 6 is a schematic cross-sectional view after forming the
繼續參見第7圖,導電材料層160的形成會包含成核的步驟。在導電材料層160的形成期間,由阻障層130的晶界132擴散至阻障層130的表面的摻質135會使得導電材料層160在阻障層130的表面成核成長時能形成更高濃度的吸附原子,這將使導電材料層160在成核之後能形成為較大的晶粒,並改善最終形成的半導體結構10的電阻。值得注意的是,在形成導電材料層160之後,部分的摻質135仍被捕陷(trapped)於阻障層130的晶界132中。此外,由於部分的摻質135仍被捕陷於阻障層130的晶界132中,因此半導體結構10可以藉由元素分布分析來測得阻障層130中的摻質135含量。Continuing to refer to FIG. 7 , the formation of the
第8圖是根據本揭露的第一實施例,繪示出半導體結構10執行平坦化處理後的剖面示意圖。在形成導電材料層160之後,執行平坦化處理以露出介電層110的頂表面,從而形成導電材料165。導電材料165具有晶界162,其可用於量測晶粒的尺寸大小。在一些實施例中,在形成導電材料165之後,其晶粒尺寸之範圍為約10奈米至約300奈米。FIG. 8 is a schematic cross-sectional view of the
第一實施例提供利用摻質135來形成具有較大晶粒的導電材料165的形成方法。在執行平坦化處理之後,半導體結構10可繼續進行進一步的製程,例如形成金屬互連結構來連接基板100內的各種元件,而導電材料165可作為半導體裝置的接觸插塞或導孔,此處不再贅述。The first embodiment provides a method of forming
以下配合第9-10圖說明本揭露之第二實施例。第二實施例近似於第一實施例,差別在於第一實施例是用來形成後段製程(back end of line;BEOL)中的接觸插塞或導孔,而第二實施例是用來形成內埋字元線。第9圖是根據本揭露形成內埋字元線的第二實施例,繪示出半導體結構20的剖面示意圖。開口120為設置於基板100中的字元線溝槽,可先形成氧化層126於開口120中及基板100上,以避免隨後形成的阻障層130產生剝離。在第二實施例中,氧化層126的材料可為SiO
2、SiN、SiON。在形成阻障層130之後,第二實施例可繼續進行諸如上方第2圖至第8圖所描述過的製程,此處不再重複描述。第10圖是根據本揭露的第二實施例,繪示出半導體結構20執行平坦化處理後的剖面示意圖。在形成導電材料層160之後,執行平坦化處理以露出基板100的頂表面,從而形成導電材料165。
The following describes the second embodiment of the present disclosure with reference to Figures 9-10. The second embodiment is similar to the first embodiment. The difference is that the first embodiment is used to form contact plugs or via holes in the back end of line (BEOL) process, while the second embodiment is used to form internal Buried character lines. FIG. 9 is a second embodiment of forming buried word lines according to the present disclosure, illustrating a schematic cross-sectional view of the
如同上方所描述,第二實施例提供利用摻質135來形成具有較大晶粒的導電材料165的形成方法。在第二實施例中,在執行平坦化處理之後,半導體結構20可繼續進行進一步的製程,例如形成電晶體以及金屬互連結構,而導電材料165可作為記憶體裝置的內埋字元線,此處不再贅述。As described above, the second embodiment provides a formation method using the
以下配合第11-14B圖說明本揭露之第三實施例。第11圖是根據本揭露形成接觸插塞或導孔的第三實施例,繪示出半導體結構30的剖面示意圖。第三實施例近似於第一實施例,但差別在於第一實施例是先執行佈植製程140後才形成蓋層150,而第三實施例是先形成具有不均勻厚度的蓋層150’後,再執行佈植製程140。首先,在基板100上依序形成導線層105及介電層110。接著,順應地形成黏著層124及阻障層130於開口120中及基板100上,並形成具有不均勻厚度的蓋層150’於阻障層130上,蓋層150’在開口120的底表面上方的厚度T1會小於蓋層150’在介電層110的頂表面上方的厚度T2。在一些實施例中,第三實施例具有不均勻厚度的蓋層150’可使用物理氣相沉積(PVD)、化學氣相沉積(CVD)、或其他可形成低階梯覆蓋率的膜層的製程來形成,包含以高沉積速率、高氣體流量、較短的平均自由路徑(MFP)、高壓、以及高溫的條件來形成具有不均勻厚度的蓋層150’。在一些實施例中,蓋層150’的材料可為SiN、SiO
2、SiCN、SiC、SiON。
The third embodiment of the present disclosure will be described below with reference to Figures 11-14B. FIG. 11 is a schematic cross-sectional view of a
第12圖是根據本揭露的第三實施例,繪示出半導體結構30執行佈植製程140的剖面示意圖。在形成蓋層150’之後,執行佈植製程140以將摻質135穿過蓋層150’並佈植入阻障層130中。由於蓋層150’的厚度差異,摻質135在佈植期間會穿過不同厚度的蓋層150’才到達阻障層130,使得摻質135在阻障層130中能具有不同的濃度。換句話說,在相同的佈植能量下,若摻質135僅需穿過較小的厚度(例如,第11圖中的厚度T1)就能到達阻障層130(亦即,能量消耗小),則會有較多的摻質135被佈植入此部分的阻障層130中,若摻質135需穿過較大的厚度(例如,第11圖中的厚度T2)才能到達阻障層130(亦即,能量消耗大),則會有較少的摻質135被佈植入此部分的阻障層130中。在第三實施例中,阻障層130在開口120的底表面具有第一濃度的摻質135,阻障層130在介電層110的頂表面具有第二濃度的摻質135,且第一濃度大於第二濃度。FIG. 12 is a schematic cross-sectional view of the
第13A圖以及第13B圖分別繪示出第12圖的半導體結構30執行佈植製程140後在方框A以及方框B的局部放大剖面示意圖。在第13A圖中,摻質135僅需穿過厚度較薄的蓋層150’,因此位於厚度較薄的蓋層150’下方的阻障層130具有較多的摻質135,而在第13B圖中,摻質135需穿過厚度較厚的蓋層150’,因此位於厚度較厚的蓋層150’下方的阻障層130僅具有少量的摻質135。執行佈植製程140之後,被佈植的摻質135會隨機散佈於整個阻障層130的晶粒中。FIGS. 13A and 13B respectively illustrate partial enlarged cross-sectional views of blocks A and B of the
第14A圖以及第14B圖分別繪示出第12圖的半導體結構30執行退火製程155後在方框A以及方框B的局部放大剖面示意圖。在執行佈植製程140之後,執行退火製程155,使摻質135自阻障層130的晶粒中擴散至阻障層130的晶界132中。第14A圖中的阻障層130的晶界具有較多的摻質135,而第14B圖中的阻障層130的晶界具有較少的摻質135。因此阻障層130中的摻質135的濃度差異將導致後續形成導電材料層160時,摻質濃度高的部分能具有較大的形成速率,而摻質濃度低的部分則具有較小的形成速率。FIGS. 14A and 14B respectively illustrate partial enlarged cross-sectional views of blocks A and B of the
在執行退火製程155之後,可繼續進行諸如上方第6圖至第8圖所描述過的製程。根據本揭露實施例,隨後移除蓋層150’,並形成導電材料層160於阻障層130上,以於開口120中填充導電材料165。在第三實施例中,近似於第一實施例,至少部分的摻質135會由阻障層130的晶界132擴散至阻障層130與導電材料層160接觸的表面。然而,在第三實施例中,由於阻障層130中具有摻質135的濃度差異,這將使得在阻障層130的表面上也會具有不同的摻質濃度差異,並進而改變導電材料層160的形成速率。因為開口120的底表面相較其側壁以及介電層110的頂表面擴散出更多的摻質135,允許開口120的底表面能形成更高濃度的吸附原子,使得導電材料165在開口120的底表面的形成速率會大於導電材料165在開口120的側壁以及在介電層110的頂表面的形成速率。換句話說,導電材料165填充開口120的底部的速率會大於導電材料165封住開口120的頂部的速率,這有效改善了導電材料165的填充效率,並避免了接縫(seam)的形成。第三實施例提供了如何形成具有較大晶粒的導電材料,同時避免形成接縫於開口120中的形成方法。After performing the
以下配合第15-16圖說明本揭露之第四實施例。第四實施例近似於第三實施例,差別在於第三實施例是用來形成後段製程中的接觸插塞或導孔,而第四實施例是用來形成內埋字元線。第15圖是根據本揭露形成內埋字元線的第四實施例,繪示出半導體裝置40的剖面示意圖。開口120為設置於基板100中的字元線溝槽。如同上方第11圖的描述,先形成具有不均勻厚度的蓋層150’後,再接著執行佈植製程140。蓋層150’在開口120的底表面上方的厚度T1會小於蓋層150’在介電層110的頂表面上方的厚度T2。The fourth embodiment of the present disclosure will be described below with reference to Figures 15-16. The fourth embodiment is similar to the third embodiment. The difference is that the third embodiment is used to form contact plugs or via holes in the back-end process, while the fourth embodiment is used to form embedded word lines. FIG. 15 is a schematic cross-sectional view of a
第16圖是根據本揭露的第四實施例,繪示出半導體結構40執行佈植製程140的剖面示意圖。在形成蓋層150’之後,執行佈植製程140以將摻質135穿過蓋層150’並佈植入阻障層130中。如同上方第12圖的描述,由於蓋層150’的厚度差異,摻質135在佈植期間會穿過不同厚度的蓋層150’才到達阻障層130,使得摻質135在阻障層130中能具有不同的濃度。在形成蓋層150’之後,可繼續執行諸如第13A圖至第14B圖、以及第6圖至第8圖所描述的製程,此處不再重複描述。FIG. 16 is a schematic cross-sectional view of the
綜上所述,本發明實施例提供了形成具有較大晶粒的導電材料,以及藉由佈植製程來控制導電材料在阻障層上的形成速率的方法。電子穿過具有較大晶粒的導電材料時會受到較少的晶界阻礙,因此形成具有較大的晶粒的導電材料可降低相關部件的電阻,從而得到具有高導電率的半導體結構。而控制導電材料在阻障層上的形成速率能有效避免開口中接縫的形成。In summary, embodiments of the present invention provide a method for forming a conductive material with larger crystal grains and controlling the formation rate of the conductive material on the barrier layer through a implantation process. When electrons pass through a conductive material with larger grains, they are less hindered by grain boundaries. Therefore, forming a conductive material with larger grains can reduce the resistance of related components, resulting in a semiconductor structure with high conductivity. Controlling the formation rate of conductive material on the barrier layer can effectively avoid the formation of seams in the openings.
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許之更動與潤飾。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention is disclosed in the foregoing embodiments, they are not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the appended patent application scope.
10:半導體結構 20:半導體結構 30:半導體結構 40:半導體結構 100:基板 105:導線層 110:介電層 120:開口 124:黏著層 126:氧化層 130:阻障層 132:晶界 135:摻質 140:佈植製程 150:蓋層 150’:蓋層 155:退火製程 160:導電材料層 162:晶界 165:導電材料 A:方框 B:方框 T1:厚度 T2:厚度 10: Semiconductor structure 20: Semiconductor structure 30: Semiconductor structure 40: Semiconductor structure 100:Substrate 105: Wire layer 110: Dielectric layer 120:Open your mouth 124:Adhesive layer 126:Oxide layer 130:Barrier layer 132:Grain Boundary 135:Dopant 140: Implantation process 150: cover 150’: cover 155: Annealing process 160: conductive material layer 162:Grain Boundary 165: Conductive materials A:Box B:Box T1:Thickness T2:Thickness
讓本發明之特徵和優點能更明顯易懂,下文特舉不同實施例,並配合所附圖式作詳細說明如下: 第1圖至第8圖是根據本揭露的第一實施例,繪示出半導體結構在不同階段的剖面示意圖。 第9圖以及第10圖是根據本揭露的第二實施例,繪示出半導體結構在不同階段的剖面示意圖。 第11、12、13A、13B、14A圖以及第14B圖是根據本揭露的第三實施例,繪示出半導體結構在不同階段的剖面示意圖。 第15圖以及第16圖是根據本揭露的第四實施例,繪示出半導體結構在不同階段的剖面示意圖。 To make the features and advantages of the present invention more obvious and understandable, different embodiments are given below and are described in detail with reference to the accompanying drawings: 1 to 8 are schematic cross-sectional views of a semiconductor structure at different stages according to the first embodiment of the present disclosure. Figures 9 and 10 are schematic cross-sectional views of the semiconductor structure at different stages according to the second embodiment of the present disclosure. Figures 11, 12, 13A, 13B, 14A and Figure 14B are schematic cross-sectional views of a semiconductor structure at different stages according to the third embodiment of the present disclosure. Figures 15 and 16 are schematic cross-sectional views of a semiconductor structure at different stages according to a fourth embodiment of the present disclosure.
10:半導體結構 10: Semiconductor structure
100:基板 100:Substrate
105:導線層 105: Wire layer
110:介電層 110: Dielectric layer
124:黏著層 124:Adhesive layer
130:阻障層 130:Barrier layer
162:晶界 162:Grain Boundary
165:導電材料 165: Conductive materials
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111128936A TWI822222B (en) | 2022-08-02 | 2022-08-02 | Semiconductor structure and method for forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111128936A TWI822222B (en) | 2022-08-02 | 2022-08-02 | Semiconductor structure and method for forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI822222B TWI822222B (en) | 2023-11-11 |
TW202407876A true TW202407876A (en) | 2024-02-16 |
Family
ID=89722435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111128936A TWI822222B (en) | 2022-08-02 | 2022-08-02 | Semiconductor structure and method for forming the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI822222B (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10510851B2 (en) * | 2016-11-29 | 2019-12-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Low resistance contact method and structure |
CN115088079A (en) * | 2020-02-11 | 2022-09-20 | 克罗米斯有限公司 | Method and system for diffusing magnesium in gallium nitride materials using a sputtered magnesium source |
-
2022
- 2022-08-02 TW TW111128936A patent/TWI822222B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI822222B (en) | 2023-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10665782B2 (en) | Methods of forming semiconductor structures including multi-portion liners | |
US7196346B2 (en) | Semiconductor memory device and method for fabricating the same | |
KR20080036679A (en) | Method of forming a non-volatile memory device | |
US10847367B2 (en) | Methods of forming tungsten structures | |
US8710624B2 (en) | Semiconductor device | |
TWI641081B (en) | Contact fill in an integrated circuit | |
JP3947990B2 (en) | Contact formation method of semiconductor element | |
US8338951B2 (en) | Metal line of semiconductor device having a diffusion barrier with an amorphous TaBN layer and method for forming the same | |
TW200931621A (en) | Semiconductor structure comprising an electrically conductive feature and method of forming a semiconductor structure | |
US8810033B2 (en) | Barrier layer for integrated circuit contacts | |
TW201901760A (en) | Method of fabricating a semiconductor structure | |
TWI822222B (en) | Semiconductor structure and method for forming the same | |
US20090017615A1 (en) | Method of removing an insulation layer and method of forming a metal wire | |
US11257911B2 (en) | Sacrificial layer for semiconductor process | |
US20240222191A1 (en) | Semiconductor structure and method of forming the same | |
JP2006179950A (en) | Manufacturing method of semiconductor integrated circuit device | |
TW202133233A (en) | Electronic devices comprising silicon carbide materials and related methods and systems | |
KR100645839B1 (en) | Semiconductor device and method for fabrication of the same | |
TWI323497B (en) | Method of fabricating a dual-damascene copper structure | |
JP2004179297A (en) | Semiconductor integrated circuit device | |
CN117637600A (en) | Semiconductor structure and forming method thereof | |
KR100946036B1 (en) | Method of manufacturing a semiconductor device | |
JP2007250624A (en) | Method of manufacturing semiconductor device | |
US20080067685A1 (en) | Semiconductor Device Manufacturing Method | |
KR20090036980A (en) | Method for forming contact in semiconductor device |