TW202407668A - Pixel unit - Google Patents

Pixel unit Download PDF

Info

Publication number
TW202407668A
TW202407668A TW111129347A TW111129347A TW202407668A TW 202407668 A TW202407668 A TW 202407668A TW 111129347 A TW111129347 A TW 111129347A TW 111129347 A TW111129347 A TW 111129347A TW 202407668 A TW202407668 A TW 202407668A
Authority
TW
Taiwan
Prior art keywords
setting
transistor
voltage
period
width
Prior art date
Application number
TW111129347A
Other languages
Chinese (zh)
Other versions
TWI814520B (en
Inventor
吳佳恩
李明賢
張書瀚
戴俊翔
余婉薇
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW111129347A priority Critical patent/TWI814520B/en
Application granted granted Critical
Publication of TWI814520B publication Critical patent/TWI814520B/en
Publication of TW202407668A publication Critical patent/TW202407668A/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

A pixel unit is provided. The pixel unit includes an amplitude setting circuit, a width setting circuit, an intermediate circuit, and a light source circuit. The amplitude setting circuit generates an amplitude setting signal in response to an amplitude scan signal. The width setting circuit generates an intermediate width setting signal in response to a width scan signal. The intermediate circuit is electrically connected to the width setting circuit, and the intermediate circuit generates a driving transistor enablement signal in response to the intermediate width setting signal. The light source circuit includes a driving transistor and a lighting circuit. The driving transistor is electrically connected to the amplitude setting circuit and the intermediate circuit. The driving transistor selectively generates a driving current according to the driving transistor enablement signal. The driving current is changed with the amplitude setting signal. The lightning circuit is electrically connected to the driving transistor. The driving current flows through the lightning circuit, and brightness of the lightning circuit is changed with the driving current.

Description

像素單元pixel unit

本發明是有關於一種像素單元,且特別是有關於一種針對流經發光二極體之驅動電流改變其幅度和寬度,進而調整發光亮度的像素單元。The present invention relates to a pixel unit, and in particular to a pixel unit that changes the amplitude and width of the driving current flowing through the light-emitting diode, thereby adjusting the luminous brightness.

請參見第1A圖,其係習用技術之像素單元PXL(m, n)以幅度設定電路pamCKT(m, n)和寬度設定電路pwmCKT(m, n)調整發光二極體的亮度之示意圖。像素單元PXL(m, n)包含:發光二極體LED、幅度設定電路pamCKT(m, n)、幅度設定電晶體Tamp、寬度設定電路pwmCKT(m, n),以及驅動電晶體Tdrv。在第1A圖中,幅度設定電路pamCKT(m, n)電連接於幅度設定電晶體Tamp的閘極,且寬度設定電路pwmCKT(m, n)電連接於驅動電晶體Tdrv的閘極。幅度設定電晶體Tamp的源極和汲極分別電連接於供應電壓Vdd與驅動電晶體Tdrv的源極。發光二極體LED的陽極電連接於驅動電晶體Tdrv的汲極、陰極電連接於接地電壓Vss。此架構的目的是,利用幅度設定電路pamCKT(m, n)將發光二極體LED的驅動電流Idrv的脈波幅度固定在最佳效率點,並搭配寬度設定電路pwmCKT(m, n)對驅動電流Idrv的脈波寬度的控制,據以對發光二極體LED的亮度(灰階)進行調控。Please refer to Figure 1A, which is a schematic diagram of a conventional pixel unit PXL(m, n) using an amplitude setting circuit pamCKT(m, n) and a width setting circuit pwmCKT(m, n) to adjust the brightness of a light emitting diode. The pixel unit PXL(m, n) includes: a light-emitting diode LED, an amplitude setting circuit pamCKT(m, n), an amplitude setting transistor Tamp, a width setting circuit pwmCKT(m, n), and a driving transistor Tdrv. In Figure 1A, the amplitude setting circuit pamCKT(m, n) is electrically connected to the gate of the amplitude setting transistor Tamp, and the width setting circuit pwmCKT(m, n) is electrically connected to the gate of the driving transistor Tdrv. The source and drain of the amplitude setting transistor Tamp are electrically connected to the supply voltage Vdd and the source of the driving transistor Tdrv respectively. The anode of the light-emitting diode LED is electrically connected to the drain of the driving transistor Tdrv, and the cathode is electrically connected to the ground voltage Vss. The purpose of this architecture is to use the amplitude setting circuit pamCKT(m, n) to fix the pulse amplitude of the driving current Idrv of the light-emitting diode LED at the optimal efficiency point, and to use the width setting circuit pwmCKT(m, n) to control the driving The pulse width of the current Idrv is controlled to regulate the brightness (gray scale) of the light-emitting diode LED.

請參見第1B圖,其係流經像素單元PXL(m, n)的驅動電流Idrv之脈波的示意圖。在第1B圖中,縱軸為驅動電流Idrv、橫軸為時間。驅動電流Idrv具脈波波形,此處將驅動電流Idrv的脈波大小定義為脈波幅度(pulse amplitude)cAMP;以及,將驅動電流Idrv的脈波期間定義為脈波寬度(pulse width)cPW。其中,驅動電晶體Tdrv的亮度隨著驅動電流Idrv的脈波幅度cAMP與脈波寬度cPW而改變。Please refer to Figure 1B, which is a schematic diagram of the pulse wave of the driving current Idrv flowing through the pixel unit PXL(m, n). In Figure 1B, the vertical axis represents the drive current Idrv and the horizontal axis represents time. The driving current Idrv has a pulse waveform. Here, the pulse size of the driving current Idrv is defined as pulse amplitude (pulse amplitude) cAMP; and the pulse period of the driving current Idrv is defined as pulse width (pulse width) cPW. Among them, the brightness of the driving transistor Tdrv changes with the pulse amplitude cAMP and pulse width cPW of the driving current Idrv.

請同時參見第1A、1B圖。幅度設定電晶體Tamp的導通與否由幅度設定電路pamCKT(m, n)控制,且驅動電流Idrv的脈波幅度cAMP隨著幅度設定電晶體Tamp的導通程度而變化。另一方面,驅動電晶體Tdrv的導通與否由寬度設定電路pwmCKT(m, n)控制,驅動電流Idrv的脈波寬度cPW隨著驅動電晶體Tdrv的導通狀態而改變。Please also see Figures 1A and 1B. Whether the amplitude setting transistor Tamp is turned on or not is controlled by the amplitude setting circuit pamCKT(m, n), and the pulse amplitude cAMP of the driving current Idrv changes with the degree of conduction of the amplitude setting transistor Tamp. On the other hand, whether the drive transistor Tdrv is turned on or not is controlled by the width setting circuit pwmCKT(m, n), and the pulse width cPW of the drive current Idrv changes according to the conduction state of the drive transistor Tdrv.

理想狀況下,幅度設定電路pamCKT(m, n)在控制驅動電流Idrv的脈波幅度cAMP,以及寬度設定電路pwmCKT(m, n)在控制驅動電流Idrv的脈波寬度cPW時,應彼此獨立。惟,根據習用技術的做法,隨著幅度設定電路pamCKT(m, n)改變驅動電流Idrv的脈波寬度cPW的同時,驅動電流Idrv的脈波幅度cAMP亦連帶受影響。Ideally, the amplitude setting circuit pamCKT(m, n) controls the pulse amplitude cAMP of the driving current Idrv, and the width setting circuit pwmCKT(m, n) controls the pulse width cPW of the driving current Idrv, should be independent of each other. However, according to conventional technology, as the amplitude setting circuit pamCKT(m, n) changes the pulse width cPW of the driving current Idrv, the pulse amplitude cAMP of the driving current Idrv is also affected.

請參見第2圖,其係採用習用技術的像素單元PXL(m, n)利用寬度設定電路pwdCKT(m, n)調整脈波寬度cPW的同時,驅動電流Idrv的脈波幅度亦連帶受影響之示意圖。請同時參見第1A、2圖。Please refer to Figure 2. The pixel unit PXL(m, n) using conventional technology uses the width setting circuit pwdCKT(m, n) to adjust the pulse width cPW. At the same time, the pulse amplitude of the driving current Idrv is also affected. Schematic diagram. Please also see Figures 1A and 2.

在第2圖中,縱軸為驅動電流Idrv、橫軸為時間,且波形WF1a、WF1b、WF1c分別對應於寬度設定電路pwmCKT(m, n)將驅動電流Idrv的脈波寬度cPW設為cPW_1a、cPW_1b、cPW_1c的情況。在理想的情況下,無論將驅動電流Idrv的脈波寬度cPW設定為任何值,驅動電流Idrv的脈波幅度cAMP均應維持不變。In Figure 2, the vertical axis is the drive current Idrv, the horizontal axis is time, and the waveforms WF1a, WF1b, and WF1c respectively correspond to the width setting circuit pwmCKT(m, n). The pulse width cPW of the drive current Idrv is set to cPW_1a, The situation of cPW_1b and cPW_1c. In an ideal situation, no matter the pulse width cPW of the driving current Idrv is set to any value, the pulse amplitude cAMP of the driving current Idrv should remain unchanged.

惟,由第2圖可以看出,將驅動電流Idrv設為最寬的脈波寬度cPW_1a時,驅動電流Idrv的脈波幅度cAMP_1a最高;將驅動電流Idrv設為次寬的脈波寬度cPW_1b時,驅動電流的脈波幅度cAMP_1b略低;且,將驅動電流Idrv設為最窄的脈波寬度cPW_1c時,驅動電流的脈波幅度cAMP_1c最低。也就是說,當驅動電流Idrv的脈波寬度cPW逐漸變小時,驅動電流Idrv的脈波幅度cAMP也逐漸變小。However, it can be seen from Figure 2 that when the drive current Idrv is set to the widest pulse width cPW_1a, the pulse amplitude cAMP_1a of the drive current Idrv is the highest; when the drive current Idrv is set to the second-widest pulse width cPW_1b, The pulse amplitude cAMP_1b of the driving current is slightly lower; and when the driving current Idrv is set to the narrowest pulse width cPW_1c, the pulse amplitude cAMP_1c of the driving current is the lowest. That is to say, when the pulse width cPW of the driving current Idrv gradually becomes smaller, the pulse amplitude cAMP of the driving current Idrv also gradually becomes smaller.

因此,習用技術無法精準地控制驅動電流Idrv的脈波幅度cAMP與脈波寬度cPW。連帶地,發光二極體LED在發光時將呈現波長偏移(wavelength shift)的現象。也因此,使用者觀看顯示畫面時的視覺感受,將因畫面呈現色偏的現象而受影響。Therefore, the conventional technology cannot accurately control the pulse amplitude cAMP and pulse width cPW of the driving current Idrv. In conjunction, the light-emitting diode LED will exhibit a wavelength shift phenomenon when emitting light. Therefore, the user's visual experience when viewing the display screen will be affected by the phenomenon of color cast in the screen.

本發明係有關於一種像素單元,且特別是有關於一種針對流經發光二極體之驅動電流改變幅度和寬度,進而調整發光亮度的像素單元。The present invention relates to a pixel unit, and in particular to a pixel unit that changes the amplitude and width of the driving current flowing through the light-emitting diode, thereby adjusting the luminance.

根據本發明之一方面,提出一種像素單元。包含:幅度設定電路、寬度設定電路、中繼電路與光源電路。幅度設定電路因應幅度設定列掃描信號而產生幅度設定信號。寬度設定電路因應寬度設定列掃描信號而產生中繼寬度設定信號。中繼電路電連接於寬度設定電路,其係因應中繼寬度設定信號而產生驅動致能信號。光源電路包含:驅動電晶體與發光電路。驅動電晶體電連接於幅度設定電路與中繼電路。驅動電晶體根據驅動致能信號而選擇性產生驅動電流。驅動電流隨著幅度設定信號而改變。發光電路電連接於驅動電晶體。驅動電流流經發光電路,且發光電路的亮度隨著驅動電流而改變。According to one aspect of the present invention, a pixel unit is provided. Includes: amplitude setting circuit, width setting circuit, relay circuit and light source circuit. The amplitude setting circuit generates an amplitude setting signal in response to the amplitude setting column scanning signal. The width setting circuit generates a relay width setting signal in response to the width setting column scan signal. The relay circuit is electrically connected to the width setting circuit, which generates a drive enable signal in response to the relay width setting signal. The light source circuit includes: driving transistor and light-emitting circuit. The driving transistor is electrically connected to the amplitude setting circuit and the relay circuit. The driving transistor selectively generates a driving current according to the driving enable signal. The drive current changes with the amplitude setting signal. The light-emitting circuit is electrically connected to the driving transistor. The driving current flows through the light-emitting circuit, and the brightness of the light-emitting circuit changes with the driving current.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:In order to have a better understanding of the above and other aspects of the present invention, examples are given below and are described in detail with reference to the accompanying drawings:

如前所述,習用技術對於驅動電流Idrv的控制並不精準,導致發光二極體的發光亮度受影響。為此,本揭露針對像素單元PXL(m, n)的內部結構加以改良,設計脈波幅度cAMP不受驅動電流Idrv的脈波寬度cPW所影響的像素單元PXL(m, n)。在以下的實施例中,假設像素單元PXL(m, n)採用PMOS電晶體。但在實際應用中,無須限定實現像素單元PXL(m, n)的電晶體的類型。As mentioned above, the conventional technology does not accurately control the driving current Idrv, which affects the brightness of the light-emitting diode. To this end, this disclosure improves the internal structure of the pixel unit PXL(m, n) and designs the pixel unit PXL(m, n) in which the pulse amplitude cAMP is not affected by the pulse width cPW of the driving current Idrv. In the following embodiments, it is assumed that the pixel unit PXL(m, n) uses a PMOS transistor. However, in practical applications, there is no need to limit the type of transistor used to implement the pixel unit PXL(m, n).

請參見第3圖,其係採用本揭露之顯示裝置的方塊圖。根據本揭露構想之顯示裝置30包含:時序控制器31、源極驅動電路(source driving circuit)33、閘極控制電路(gate control circuit)35與顯示面板37。時序控制器31透過多條源極控制線Sctl_src而電連接於源極驅動電路33,以及透過多條閘極控制線Sctl_gc而電連接於閘極控制電路35。為便於說明,此處以相同的符號代表信號線與在該信號線上所傳送的信號。例如,以Sctl_srcw同時代表源極控制線與源極控制信號。時序控制器31利用源極控制信號Sctl_src控制源極驅動電路33產生行方向的控制信號至顯示面板37,以及利用閘極控制信號Sctl_gc控制閘極控制電路35產生列方向的控制信號至顯示面板37。Please refer to Figure 3, which is a block diagram of a display device using the present disclosure. The display device 30 according to the concept of the present disclosure includes: a timing controller 31, a source driving circuit 33, a gate control circuit 35 and a display panel 37. The timing controller 31 is electrically connected to the source driving circuit 33 through a plurality of source control lines Sctl_src, and is electrically connected to the gate control circuit 35 through a plurality of gate control lines Sctl_gc. For ease of explanation, the same symbols are used here to represent signal lines and signals transmitted on the signal lines. For example, Sctl_srcw represents both the source control line and the source control signal. The timing controller 31 uses the source control signal Sctl_src to control the source driving circuit 33 to generate a row-direction control signal to the display panel 37 , and uses the gate control signal Sctl_gc to control the gate control circuit 35 to generate a column-direction control signal to the display panel 37 .

顯示面板37包含排列為M行與N列的像素單元PXL(1, 1)~PXL(M, N)。在本文中,以座標格式代表像素單元PXL在陣列的位置。例如,以PXL(m, n)表示位於第m行與第n列的像素單元。其中,m、n、M、N為正整數,且m≦M、n≦N。為便於說明,本文的舉例均以像素單元PXL(m, n)作為舉例,顯示面板37上的其他像素單元PXL(1~(m-1), 1~(n-1))、PXL((m+1)~M, (n+1)~N)的結構均與像素單元PXL(m, n)類似。The display panel 37 includes pixel units PXL(1, 1)˜PXL(M, N) arranged in M rows and N columns. In this article, the position of the pixel unit PXL in the array is represented in coordinate format. For example, PXL(m, n) represents the pixel unit located in the m-th row and n-th column. Among them, m, n, M, and N are positive integers, and m≦M and n≦N. For the convenience of explanation, the examples in this article take the pixel unit PXL(m, n) as an example. The other pixel units PXL(1~(m-1), 1~(n-1)), PXL((( The structures of m+1)~M, (n+1)~N) are similar to the pixel unit PXL(m, n).

為便於理解,在第3圖中,標示與像素單元PXL(m, n)相關的信號,包含:外部補償信號SSL[m]、幅度資料電壓aDAT[m]、寬度資料電壓wDAT[m]、幅度設定列掃描信號ampSCAN[n]、寬度設定列掃描信號wdSCAN[n]、發光控制信號EM[n]、掃略信號Sweep[n]。為簡化圖式,第3圖並未繪式具有固定電壓值的信號(即,幅度供應電壓Vdd_a、寬度供應電壓Vdd_w、設定電壓Vset、接地電壓Vss、閘極導通電壓V GH)。關於各個信號的用途與功能,將於第4A、4B圖說明。 For ease of understanding, in Figure 3, the signals related to the pixel unit PXL(m, n) are marked, including: external compensation signal SSL[m], amplitude data voltage aDAT[m], width data voltage wDAT[m], Amplitude setting column scanning signal ampSCAN[n], width setting column scanning signal wdSCAN[n], light emission control signal EM[n], and sweep signal Sweep[n]. To simplify the diagram, Figure 3 does not depict signals with fixed voltage values (ie, amplitude supply voltage Vdd_a, width supply voltage Vdd_w, set voltage Vset, ground voltage Vss, gate conduction voltage VGH ). The purpose and function of each signal will be explained in Figures 4A and 4B.

接著,本文將就第3圖所示的顯示面板37的架構,搭配像素單元的內部電路加以說明。下文將搭配像素單元PXL(m, n)的內部結構,說明像素單元PXL(m, n)如何搭配與幅度、寬度之設定相關的控制信號而運作。Next, this article will explain the structure of the display panel 37 shown in Figure 3 and the internal circuit of the pixel unit. The following will describe how the pixel unit PXL(m, n) operates with the control signals related to the setting of the amplitude and width with reference to the internal structure of the pixel unit PXL(m, n).

請參見第4A圖,其係本揭露之像素單元PXL(m, n)的一種實施例之示意圖。像素單元PXL(m, n)包含:特性補償電晶體Tacmp、Twcmp、光源電路LT(m, n)、幅度設定電路amCKT(m, n)與寬度設定模組pwmMDL(m, n)。特性補償電晶體Tacmp、幅度設定電路amCKT(m, n)與光源電路LT(m, n)均電連接於端點Ncmp。寬度設定模組pwmMDL(m, n)電連接於光源電路LT(m, n)。特性補償電晶體Twcmp電連接於寬度設定模組pwmMDL(m, n)。其中,幅度設定電路amCKT(m, n)用於設定光源電路LT(m, n)的驅動電流Idrv的大小(幅度);寬度設定模組pwmMDL(m, n)用於設定光源電路LT(m, n)的驅動電流Idrv的期間(寬度)。接著將分別說明幅度設定電路amCKT(m, n)、寬度設定模組pwmMDL(m, n) 與光源電路LT(m, n)的內部元件與連接關係。Please refer to Figure 4A, which is a schematic diagram of an embodiment of the pixel unit PXL(m, n) of the present disclosure. The pixel unit PXL(m, n) includes: characteristic compensation transistors Tacmp, Twcmp, light source circuit LT(m, n), amplitude setting circuit amCKT(m, n) and width setting module pwmMDL(m, n). The characteristic compensation transistor Tacmp, the amplitude setting circuit amCKT(m, n) and the light source circuit LT(m, n) are all electrically connected to the end point Ncmp. The width setting module pwmMDL(m, n) is electrically connected to the light source circuit LT(m, n). The characteristic compensation transistor Twcmp is electrically connected to the width setting module pwmMDL(m, n). Among them, the amplitude setting circuit amCKT(m, n) is used to set the size (amplitude) of the driving current Idrv of the light source circuit LT(m, n); the width setting module pwmMDL(m, n) is used to set the light source circuit LT(m , n) period (width) of the drive current Idrv. Next, the internal components and connection relationships of the amplitude setting circuit amCKT(m, n), the width setting module pwmMDL(m, n) and the light source circuit LT(m, n) will be described respectively.

幅度設定電路amCKT(m, n)包含:幅度設定電晶體Ta1、Ta2、Ta3、Tamp與偏壓電容Ca。幅度設定電晶體Ta1的源極接收幅度資料電壓aDAT[m]、閘極接收幅度設定列掃描信號ampSCAN[n],且汲極電連接於端點Na2。幅度設定電晶體Ta2的源極接收寬度供應電壓Vdd_w、閘極接收幅度設定列掃描信號ampSCAN[n],且汲極電連接於端點Na1。幅度設定電晶體Ta3的源極接收幅度供應電壓Vdd_a、閘極接收發光控制信號EM[n],且汲極電連接於端點Na1。幅度設定電晶體Tamp的源極電連接於端點Na1、閘極電連接於端點Na2,且汲極電連接於端點Ncmp。偏壓電容Ca的兩端分別電連接於端點Na1、Na2。The amplitude setting circuit amCKT(m, n) includes: amplitude setting transistors Ta1, Ta2, Ta3, Tamp and bias capacitor Ca. The source of the amplitude setting transistor Ta1 receives the amplitude data voltage aDAT[m], the gate receives the amplitude setting column scan signal ampSCAN[n], and the drain is electrically connected to the terminal Na2. The source of the amplitude setting transistor Ta2 receives the width supply voltage Vdd_w, the gate receives the amplitude setting column scan signal ampSCAN[n], and the drain is electrically connected to the terminal Na1. The source of the amplitude setting transistor Ta3 receives the amplitude supply voltage Vdd_a, the gate receives the light emission control signal EM[n], and the drain is electrically connected to the terminal Na1. The source of the amplitude setting transistor Tamp is electrically connected to the terminal Na1, the gate is electrically connected to the terminal Na2, and the drain is electrically connected to the terminal Ncmp. Both ends of the bias capacitor Ca are electrically connected to terminals Na1 and Na2 respectively.

幅度設定電路amCKT(m, n)的操作可簡述如下。偏壓電容Ca的兩端隨著幅度設定電晶體Ta1、Ta2、Ta3之導通狀態而形成幅度設定壓差ΔVca。其中,幅度設定壓差ΔVca相當於幅度供應電壓Vdd_a與幅度資料電壓aDAT[m]之間的差值(ΔVca=Vdd_a-aDAT[m])。此外,幅度設定壓差ΔVca決定幅度設定電晶體Tamp是否導通。當幅度設定壓差ΔVca大於幅度設定電晶體Tamp的臨界電壓時,幅度設定電晶體Tamp將導通。且,流經幅度設定電晶體Tamp的電流大小,隨著幅度設定壓差ΔVca而改變。The operation of the amplitude setting circuit amCKT(m, n) can be briefly described as follows. The two ends of the bias capacitor Ca form an amplitude setting voltage difference ΔVca as the amplitude setting transistors Ta1, Ta2, and Ta3 are turned on. Among them, the amplitude setting voltage difference ΔVca is equivalent to the difference between the amplitude supply voltage Vdd_a and the amplitude data voltage aDAT[m] (ΔVca=Vdd_a-aDAT[m]). In addition, the amplitude setting voltage difference ΔVca determines whether the amplitude setting transistor Tamp is turned on. When the amplitude setting voltage difference ΔVca is greater than the critical voltage of the amplitude setting transistor Tamp, the amplitude setting transistor Tamp will be turned on. Moreover, the magnitude of the current flowing through the amplitude setting transistor Tamp changes with the amplitude setting voltage difference ΔVca.

寬度設定模組pwmMDL(m, n)包含:寬度設定電路pwmCKT(m, n)與中繼電路imdCKT(m, n)。寬度設定電路pwmCKT(m, n)包含:寬度設定電晶體Tw1、Tw2、Tw3、Twd與偏壓電容Cw。中繼電路imdCKT(m, n)包含:偏壓電容Cm與中繼電晶體Tm1、Tm2、Tm3、Tm4。The width setting module pwmMDL(m, n) includes: width setting circuit pwmCKT(m, n) and relay circuit imdCKT(m, n). The width setting circuit pwmCKT(m, n) includes: width setting transistors Tw1, Tw2, Tw3, Twd and bias capacitor Cw. The relay circuit imdCKT(m, n) includes: bias capacitor Cm and relay transistors Tm1, Tm2, Tm3, and Tm4.

首先說明寬度設定電路pwmCKT(m, n)中的元件連接關係。 寬度設定電晶體Tw1的兩端分別電連接於端點Nw1與閘極導通電壓V GH。其中,端點Nw1接收掃略信號Sweep[n]。寬度設定電晶體Tw2的兩端分別電連接於端點Nw2與寬度資料電壓wDAT[m]。寬度設定電晶體Tw3的兩端分別電連接於端點Nm1與設定電壓Vset。寬度設定電晶體Tw1、Tw2、Tw3的閘極均由寬度設定列掃描信號wdSCAN[n]控制。寬度設定電晶體Twd的兩端分別電連接於寬度供應電壓Vdd_w與端點Nm1,且寬度設定電晶體Twd的閘極電連接於端點Nw2。偏壓電容Cw的兩端分別電連接於端點Nw1、Nw2。 First, the connection relationship of components in the width setting circuit pwmCKT(m, n) will be explained. Both ends of the width setting transistor Tw1 are electrically connected to the end point Nw1 and the gate conduction voltage V GH respectively. Among them, the endpoint Nw1 receives the sweep signal Sweep[n]. Both ends of the width setting transistor Tw2 are electrically connected to the terminal point Nw2 and the width data voltage wDAT[m] respectively. Both ends of the width setting transistor Tw3 are electrically connected to the end point Nm1 and the setting voltage Vset respectively. The gates of the width setting transistors Tw1, Tw2, and Tw3 are all controlled by the width setting column scan signal wdSCAN[n]. Both ends of the width setting transistor Twd are electrically connected to the width supply voltage Vdd_w and the terminal Nm1 respectively, and the gate of the width setting transistor Twd is electrically connected to the terminal Nw2. Both ends of the bias capacitor Cw are electrically connected to the terminals Nw1 and Nw2 respectively.

當寬度設定電晶體Tw1導通時,端點Nw1為閘極導通電壓V GH。當寬度設定電晶體Tw2導通時,端點Nw2為寬度資料電壓wDAT[m]。寬度設定電晶體Twd的導通與否,取決於寬度供應電壓Vdd_w與端點Nw2的壓差。其中,端點Nw2的電壓與掃略信號Sweep[n]和偏壓電容Cw的壓差ΔVcw相關。當寬度設定電晶體Twd導通時,端點Nm1的電壓為寬度供應電壓Vdd_w。 When the width setting transistor Tw1 is turned on, the end point Nw1 is the gate turn-on voltage V GH . When the width setting transistor Tw2 is turned on, the endpoint Nw2 is the width data voltage wDAT[m]. Whether the width setting transistor Twd is turned on or not depends on the voltage difference between the width supply voltage Vdd_w and the end point Nw2. Among them, the voltage of the terminal Nw2 is related to the voltage difference ΔVcw between the sweep signal Sweep[n] and the bias capacitor Cw. When the width setting transistor Twd is turned on, the voltage of the terminal Nm1 is the width supply voltage Vdd_w.

接著說明中繼電路imdCKT(m, n)中的元件連接關係。偏壓電容Cm的兩端分別電連接於寬度供應電壓Vdd_w與端點Nm1。中繼電晶體Tm1、Tm3的源極均電連接於寬度供應電壓Vdd_w、閘極均電連接於端點Nm1。中繼電晶體Tm1的汲極電連接於端點Nm2、中繼電晶體Tm3的汲極電連接於端點Nm3。中繼電晶體Tm2的源極電連接於端點Nm2、閘極接收發光控制信號EM[n]、源極電連接於設定電壓Vset。中繼電晶體Tm4的源極電連接於端點Nm3、閘極電連接於Nm2源極電連接於設定電壓Vset。Next, the connection relationship of the components in the relay circuit imdCKT(m, n) will be explained. Both ends of the bias capacitor Cm are electrically connected to the width supply voltage Vdd_w and the end point Nm1 respectively. The sources of the relay transistors Tm1 and Tm3 are both electrically connected to the width supply voltage Vdd_w, and the gates are both electrically connected to the end point Nm1. The drain electrode of the relay transistor Tm1 is electrically connected to the terminal point Nm2, and the drain electrode of the relay transistor Tm3 is electrically connected to the terminal point Nm3. The source of the relay transistor Tm2 is electrically connected to the end point Nm2, the gate receives the light emission control signal EM[n], and the source is electrically connected to the set voltage Vset. The source of the relay transistor Tm4 is electrically connected to the terminal Nm3, the gate is electrically connected to Nm2, and the source is electrically connected to the set voltage Vset.

偏壓電容Cm的兩端壓差ΔVcm相當於寬度供應電壓Vdd_w與端點Nm1之間的壓差(即,ΔVcm=Vdd_w-Nm1)。且,偏壓電容Cm的兩端電連接於中繼電晶體Tm1、Tm3的源極和閘極的緣故,中繼電晶體Tm1、Tm3的導通狀態受偏壓電容Cm的兩端壓差ΔVcm影響。由於寬度供應電壓Vdd_w為定值的緣故,偏壓電容Cm的壓差ΔVcm取決於端點Nm1的電壓。因此,本文將端點Nm1的信號定義為中繼寬度設定信號(intermediate width setting signal)。The voltage difference ΔVcm across the bias capacitor Cm is equivalent to the voltage difference between the width supply voltage Vdd_w and the end point Nm1 (ie, ΔVcm=Vdd_w-Nm1). Moreover, since both ends of the bias capacitor Cm are electrically connected to the sources and gates of the relay transistors Tm1 and Tm3, the conductive state of the relay transistors Tm1 and Tm3 is affected by the voltage difference between the two ends of the bias capacitor Cm. ΔVcm influence. Since the width supply voltage Vdd_w is a constant value, the voltage difference ΔVcm of the bias capacitor Cm depends on the voltage of the terminal Nm1. Therefore, this article defines the signal of the endpoint Nm1 as the intermediate width setting signal (intermediate width setting signal).

因中繼電晶體Tm2的閘極接收發光控制信號EM[n]的緣故,中繼電晶體Tm2僅於發光期間dT_EM導通,其餘時段則維持斷開。一旦中繼電晶體Tm2導通,則端點Nm2將下降至設定電壓Vset。連帶的,中繼電晶體Tm4因閘極降低至設定電壓Vset的緣故也連帶導通。更進一步的,端點Nm3隨著中繼電晶體Tm4的導通亦降低至設定電壓Vset,使驅動致能信號Son等於設定電壓Vset(Son=Vset);且,驅動電晶體Tdrv亦跟著導通。Because the gate of the relay transistor Tm2 receives the light-emitting control signal EM[n], the relay transistor Tm2 is only turned on during the light-emitting period dT_EM, and remains off during the remaining periods. Once the relay transistor Tm2 is turned on, the terminal Nm2 will drop to the set voltage Vset. At the same time, the relay transistor Tm4 is also turned on because the gate is lowered to the set voltage Vset. Furthermore, the terminal Nm3 also decreases to the set voltage Vset as the relay transistor Tm4 is turned on, so that the drive enable signal Son is equal to the set voltage Vset (Son=Vset); and the drive transistor Tdrv is also turned on.

光源電路LT(m, n)包含:驅動電晶體Tdrv與發光電路。其中,發光電路可為利用電流控制亮度的各類型發光二極體LED。例如,有機發光二極體(Organic Light-Emitting Diode,簡稱為OLED)、次毫米發光二極體(Mini Light Emitting Diode,簡稱為mini LED),或微發光二極體(Micro Light Emitting Diode,簡稱為μLED)等。The light source circuit LT(m, n) includes: a driving transistor Tdrv and a light-emitting circuit. The light-emitting circuit may be various types of light-emitting diode LEDs that use current to control brightness. For example, organic light-emitting diode (OLED for short), sub-millimeter light-emitting diode (Mini Light Emitting Diode for short), or micro light-emitting diode (Micro Light Emitting Diode for short) for μLED) etc.

驅動電晶體Tdrv的源極電連接於端點Ncmp、閘極電連接於端點Nm3,且汲極電連接於發光二極體LED的陽極。發光二極體LED的陰極電連接於接地電壓Vss。當驅動電晶體Tdrv導通時,產生流經發光二極體LED的驅動電流Idrv。發光二極體LED的亮度隨著驅動電流Idrv的幅度與寬度而改變。驅動電晶體Tdrv的導通與否,取決於驅動致能信號Son,且驅動電流Idrv的大小,取決於幅度設定電晶體Tamp的源極和閘極之間的壓差(V SG)。 The source of the driving transistor Tdrv is electrically connected to the terminal Ncmp, the gate is electrically connected to the terminal Nm3, and the drain is electrically connected to the anode of the light-emitting diode LED. The cathode of the light emitting diode LED is electrically connected to the ground voltage Vss. When the driving transistor Tdrv is turned on, a driving current Idrv flowing through the light-emitting diode LED is generated. The brightness of the light-emitting diode LED changes with the amplitude and width of the driving current Idrv. Whether the driving transistor Tdrv is turned on or not depends on the driving enable signal Son, and the size of the driving current Idrv depends on the voltage difference (V SG ) between the source and gate of the amplitude setting transistor Tamp.

根據信號屬性的不同,在本文中,可將與像素單元PXL(m, n)相關的信號分為數類,如表1所示。According to the different signal attributes, in this article, the signals related to the pixel unit PXL(m, n) can be divided into several categories, as shown in Table 1.

表1 信號屬性 信號舉例 提供像素單元PXL(1, 1)~PXL(M, N),且具有固定電壓值的信號 幅度供應電壓Vdd_a(例如,10V)、寬度供應電壓Vdd_w(例如,10V)、設定電壓Vset(接近Vss的電壓值)、接地電壓Vss、閘極導通電壓V GH 隨著像素單元PXL(m, n)所在的行數(m)不同而改變 外部補償信號SSL[m]、幅度資料電壓aDAT[m](例如,0~5V)、寬度資料電壓wDAT[m](例如,0~5V) 隨著像素單元PXL(m, n)所在的列數(n)不同而改變 幅度補償致能信號aCMP_en[n]、寬度補償致能信號wCMP_en[n]、幅度設定列掃描信號ampSCAN[n]、寬度設定列掃描信號wdSCAN[n]、發光控制信號EM[n]、掃略信號Sweep[n] Table 1 Signal properties Signal example Provide pixel units PXL(1, 1)~PXL(M, N) and have signals with fixed voltage values Amplitude supply voltage Vdd_a (for example, 10V), width supply voltage Vdd_w (for example, 10V), set voltage Vset (voltage value close to Vss), ground voltage Vss, gate conduction voltage VGH Changes with the number of rows (m) where the pixel unit PXL(m, n) is located. External compensation signal SSL[m], amplitude data voltage aDAT[m] (for example, 0~5V), width data voltage wDAT[m] (for example, 0~5V) Changes with the number of columns (n) where the pixel unit PXL(m, n) is located. Amplitude compensation enable signal aCMP_en[n], width compensation enable signal wCMP_en[n], amplitude setting column scanning signal ampSCAN[n], width setting column scanning signal wdSCAN[n], luminescence control signal EM[n], scan SignalSweep[n]

特性補償電晶體Tacmp的閘極接收幅度補償致能信號aCMP_en[n]、特性補償電晶體Twcmp的閘極接收寬度補償致能信號wCMP_en[n]。且,特性補償電晶體Tacmp、Twcmp的一端均接收外部補償信號SSL[m]。特性補償電晶體Tacmp、Twcmp僅於特性補償期間dT_cmp導通。待特性補償期間dT_cmp結束後,特性補償電晶體Tacmp、Twcmp均維持為斷開。因此,特性補償電晶體Tacmp、Twcmp不影響驅動電流Idrv的產生。也因此,後續將不再重複繪式在第4A圖中以網底標式的特性補償電晶體Tacmp、Twcmp。The gate of the characteristic compensation transistor Tacmp receives the amplitude compensation enable signal aCMP_en[n], and the gate of the characteristic compensation transistor Twcmp receives the width compensation enable signal wCMP_en[n]. Moreover, one end of the characteristic compensation transistors Tacmp and Twcmp receives the external compensation signal SSL[m]. The characteristic compensation transistors Tacmp and Twcmp are turned on only during the characteristic compensation period dT_cmp. After the characteristic compensation period dT_cmp ends, the characteristic compensation transistors Tacmp and Twcmp remain off. Therefore, the characteristic compensation transistors Tacmp and Twcmp do not affect the generation of the drive current Idrv. Therefore, the compensation transistors Tacmp and Twcmp will not be repeatedly drawn in Figure 4A with the characteristics of the bottom-line type in Figure 4A.

簡言之,時序控制器31在特性補償期間dT_cmp利用特性補償電晶體Tacmp感測在像素單元PXL(1, 1)~PXL(M, N)中的幅度設定電晶體Tamp的特性,以及利用特性補償電晶體Twcmp感測在像素單元PXL(1, 1)~ PXL(M, N)中的寬度設定電晶體Twd的特性。其後,時序控制器31再根據特性補償期間dT_cmp的感測結果而調整對像素單元PXL(1, 1)~PXL(M, N)的控制方式。In short, the timing controller 31 uses the characteristic compensation transistor Tacmp to sense the characteristics of the amplitude setting transistor Tamp in the pixel units PXL(1, 1)~PXL(M, N) during the characteristic compensation period dT_cmp, and utilizes the characteristics The compensation transistor Twcmp senses the characteristics of the width setting transistor Twd in the pixel units PXL(1, 1)~PXL(M, N). Thereafter, the timing controller 31 adjusts the control method of the pixel units PXL(1, 1)~PXL(M, N) according to the sensing result of the characteristic compensation period dT_cmp.

例如,假設像素單元PXL(1, 1)、PXL(2, 1)均對應於相同的顯示亮度。則,基於所需補償的電壓幅度不同的緣故,時序控制器31後續提供至這兩個像素單元的幅度資料電壓aDAT[1]、aDAT[2]與寬度資料電壓wDAT[1]、wDAT[2]的電壓值可能隨著特性補償期間dT_cmp的感測結果而異。For example, assume that the pixel units PXL(1, 1) and PXL(2, 1) both correspond to the same display brightness. Then, based on the different voltage amplitudes required for compensation, the timing controller 31 subsequently provides the amplitude data voltages aDAT[1], aDAT[2] and the width data voltages wDAT[1], wDAT[2] to the two pixel units. The voltage value of ] may vary depending on the sensing result of dT_cmp during characteristic compensation.

請參見第4B圖,其係閘極控制電路所產生之,用於控制本揭露之第n列與第(n+1)列的像素單元PXL(1~M, n)、PXL(1~M, n+1)在列方向上的控制信號之波形圖。在此圖式中,由上而下的波形依序為:與像素單元PXL(1~M, n)對應的幅度設定列掃描信號ampSCAN[n]、寬度設定列掃描信號wdSCAN[n]、發光控制信號EM[n]、掃略信號Sweep[n],以及,與像素單元PXL(1~M, n+1)對應的幅度設定列掃描信號ampSCAN[n+1]、寬度設定列掃描信號wdSCAN[n+1]、發光控制信號EM[n+1]、掃略信號Sweep[n+1];橫軸為時間。Please refer to Figure 4B, which is generated by the gate control circuit and is used to control the pixel units PXL(1~M, n), PXL(1~M) in the nth column and (n+1)th column of the present disclosure. , n+1) waveform diagram of the control signal in the column direction. In this diagram, the waveforms from top to bottom are: the amplitude setting column scanning signal ampSCAN[n] corresponding to the pixel unit PXL(1~M, n), the width setting column scanning signal wdSCAN[n], and the luminescence Control signal EM[n], sweep signal Sweep[n], as well as amplitude setting column scanning signal ampSCAN[n+1] and width setting column scanning signal wdSCAN corresponding to the pixel unit PXL(1~M, n+1) [n+1], luminescence control signal EM[n+1], sweep signal Sweep[n+1]; the horizontal axis is time.

根據本揭露的構想,閘極控制電路35所產生之列方向的相關控制信號係同步傳送至位於同一列的像素單元。另一方面,源極驅動電路33再依據像素單元PXL(1~M, n)所在的行數(m,其中m=1~M)不同,提供相對應的幅度資料電壓aDAT[1]~aDAT[M]與寬度資料電壓wDAT[1]~wDAT[M]至位於同一列但不同行的像素單元PXL(1~M, n)。According to the concept of the present disclosure, the column-direction related control signals generated by the gate control circuit 35 are synchronously transmitted to the pixel units located in the same column. On the other hand, the source driving circuit 33 provides corresponding amplitude data voltages aDAT[1]~aDAT according to the number of rows (m, where m=1~M) of the pixel unit PXL(1~M, n). [M] and the width data voltage wDAT[1]~wDAT[M] to the pixel units PXL(1~M, n) located in the same column but different rows.

第4B圖將與位於第n列的M個像素單元PXL(1~M, n)之亮度控制相關的期間定義為像素設定與顯示期間dT_pxl[n](時點t1~t10)。且,將與位於第(n+1)列的M個像素單元PXL(1~M, n+1)之亮度控制相關的期間定義為像素設定與顯示期間dT_pxl[n+1](時點t3~t11)。Figure 4B defines the period related to the brightness control of the M pixel units PXL(1~M, n) located in the nth column as the pixel setting and display period dT_pxl[n] (time points t1~t10). Moreover, the period related to the brightness control of the M pixel units PXL(1~M, n+1) located in the (n+1)th column is defined as the pixel setting and display period dT_pxl[n+1] (time point t3~ t11).

與第n列的像素單元PXL(1~M, n)對應的像素設定與顯示期間dT_pxl[n]包含:幅度設定期間dT_amp(時點t1~t2)、寬度設定期間dT_wd(時點t2~t3)、發光期間dT_EM(時點t4~t8)、關閉期間dT_OFF(時點t8~t10)。與第(n+1)列的像素單元PXL(1~M, n+1)對應的像素設定與顯示期間dT_pxl[n+1]包含:幅度設定期間dT_amp(時點t3~t5)、寬度設定期間dT_wd(時點t5~t6)、發光期間dT_EM(時點t7~t9)、關閉期間dT_OFF(時點t9~t11)。The pixel setting and display period dT_pxl[n] corresponding to the pixel unit PXL(1~M, n) in the nth column includes: the amplitude setting period dT_amp (time points t1~t2), the width setting period dT_wd (time points t2~t3), The lighting period is dT_EM (time point t4~t8), and the off period is dT_OFF (time point t8~t10). The pixel setting and display period dT_pxl[n+1] corresponding to the pixel unit PXL(1~M, n+1) in the (n+1)th column includes: the amplitude setting period dT_amp (time points t3~t5), the width setting period dT_wd (time point t5~t6), light-emitting period dT_EM (time point t7~t9), off period dT_OFF (time point t9~t11).

閘極控制電路35逐列產生與各列對應的控制信號,因此,像素設定與顯示期間dT_pxl[n]的各段期間,與像素設定與顯示期間dT_pxl[n+1]的各段期間均維持固定的列選取時間差ΔTr。在第4B圖中,於寬度設定期間dT_wd與發光期間dT_EM繪式一個緩衝期間Δt。緩衝期間Δt的設置與否與設置的數量與位置,均不需要被限定。The gate control circuit 35 generates control signals corresponding to each column column by column. Therefore, each section of the pixel setting and display period dT_pxl[n] and each section of the pixel setting and display period dT_pxl[n+1] are maintained. Fixed column selection time difference ΔTr. In Figure 4B, a buffer period Δt is drawn between the width setting period dT_wd and the light-emitting period dT_EM. Whether or not Δt is set during the buffering period, as well as the number and location of the settings, do not need to be limited.

更進一步說來,與像素單元PXL(1~M, n)、PXL(1~M, n+1)分別對應的幅度設定列掃描信號ampSCAN [n]、ampSCAN [n+1]彼此間相差一段列選取時間差ΔTr;與像素單元PXL(1~M, n)、PXL(1~M, n+1)分別對應的寬度設定列掃描信號wdSCAN[n]、wdSCAN[n+1]彼此間相差一段列選取時間差ΔTr;與像素單元PXL(1~M, n)、PXL(1~M, n+1)分別對應的發光控制信號EM[n]、EM[n+1]彼此間相差一段列選取時間差ΔTr;且,與像素單元PXL(1~M, n)、PXL(1~M, n+1)分別對應的掃略信號Sweep[n]、Sweep[n+1]彼此間相差一段列選取時間差ΔTr。列選取時間差ΔTr相當於幅度設定期間dT_amp與寬度設定期間dT_wd的總和。實際應用時,可假設幅度設定期間dT_amp與寬度設定期間dT_wd的長度均等於一個水平同步脈波(horizontal synchronization pulse)的期間Th。據此,列選取時間差ΔTr相當於兩倍的水平同步脈波的期間Th。即,ΔTr=2*Th。To put it further, the amplitude setting column scanning signals ampSCAN [n] and ampSCAN [n+1] respectively corresponding to the pixel units PXL(1~M, n) and PXL(1~M, n+1) are different from each other. The column selection time difference ΔTr; the width setting column scanning signals wdSCAN[n] and wdSCAN[n+1] corresponding to the pixel units PXL(1~M, n) and PXL(1~M, n+1) respectively differ by one period from each other. Column selection time difference ΔTr; the light-emitting control signals EM[n] and EM[n+1] corresponding to the pixel units PXL(1~M, n) and PXL(1~M, n+1) respectively differ from each other by a column selection period The time difference ΔTr; and, the sweep signals Sweep[n] and Sweep[n+1] corresponding to the pixel units PXL(1~M, n) and PXL(1~M, n+1) respectively are different from each other by one column selection. Time difference ΔTr. The column selection time difference ΔTr is equivalent to the sum of the amplitude setting period dT_amp and the width setting period dT_wd. In practical applications, it can be assumed that the lengths of the amplitude setting period dT_amp and the width setting period dT_wd are equal to the period Th of a horizontal synchronization pulse. Accordingly, the column selection time difference ΔTr is equivalent to twice the period Th of the horizontal synchronization pulse wave. That is, ΔTr=2*Th.

由於閘極控制電路35所產生之,與各列對應的控制信號的差異僅為時間先後不同,以下僅說明與位於第n列的像素單元PXL(1~M, n)相關的控制信號。在幅度設定期間dT_amp(時點t1~t2),源極驅動電路33同時將幅度資料電壓aDAT[1]~aDAT[M]分別傳送至同樣位於第n列的M個像素單元PXL(1~M, n)。且,在寬度設定期間dT_wd(時點t2~t3),源極驅動電路33同時將寬度資料電壓wDAT[1]~wDAT[M]分別傳送至同樣位於第n列的M個像素單元PXL(1~M, n)。關於幅度設定列掃描信號ampSCAN[n]、寬度設定列掃描信號wdSCAN[n]、發光控制信號EM[n]、掃略信號Sweep[n]在幅度設定期間dT_amp、寬度設定期間dT_wd、發光期間dT_EM、關閉期間dT_OFF的變化,可參見表2的整理。Since the control signals generated by the gate control circuit 35 and corresponding to each column differ only in time order, only the control signals related to the pixel unit PXL(1~M, n) located in the nth column will be described below. During the amplitude setting period dT_amp (time point t1~t2), the source driving circuit 33 simultaneously transmits the amplitude data voltages aDAT[1]~aDAT[M] to the M pixel units PXL (1~M, also located in the nth column) respectively. n). Moreover, during the width setting period dT_wd (time point t2~t3), the source driving circuit 33 simultaneously transmits the width data voltages wDAT[1]~wDAT[M] to the M pixel units PXL (1~ M, n). Regarding the amplitude setting column scanning signal ampSCAN[n], the width setting column scanning signal wdSCAN[n], the emission control signal EM[n], and the sweep signal Sweep[n], the amplitude setting period dT_amp, the width setting period dT_wd, and the emission period dT_EM , the changes in dT_OFF during the shutdown period can be found in Table 2.

表2   幅度設定期間dT_amp 寬度設定期間dT_wd 發光期間dT_EM 關閉期間dT_OFF 圖式 第5圖 第6圖 第7A、7B圖 第8圖 ampSCAN [n] V GL V GH V GH V GH wdSCAN[n] V GH V GL V GH V GH EM[n] V GH V GH V GL V GH Sweep[n] V GH V GH V GHàV GL V GH Table 2 Amplitude setting period dT_amp Width setting period dT_wd Luminescence period dT_EM dT_OFF during shutdown Schema Picture 5 Picture 6 Figure 7A, 7B Picture 8 ampSCAN[n] V GL V GH V GH V GH wdSCAN[n] V GH V GL V GH V GH EM[n] V GH V GH V GL V GH Sweep[n] V GH V GH VGHàVGL V GH

請參見第5圖,其係本揭露之像素單元PXL(m, n)的內部元件,在幅度設定期間dT_amp因應在列方向上的控制信號而運作的示意圖。請同時參見第4B、5圖與表2。以下分別說明幅度設定電路pamCKT(m, n)、寬度設定電路pwdCKT(m, n)、中繼電路imdCKT(m, n)在幅度設定期間dT_amp的運作。Please refer to Figure 5, which is a schematic diagram of the internal components of the pixel unit PXL(m, n) disclosed in the present disclosure, and dT_amp operates in response to the control signal in the column direction during the amplitude setting period. Please also see Figures 4B and 5 and Table 2. The following describes the operations of the amplitude setting circuit pamCKT(m, n), the width setting circuit pwdCKT(m, n), and the relay circuit imdCKT(m, n) during the amplitude setting period dT_amp.

在幅度設定電路pamCKT(m, n)中,幅度設定電晶體Ta1、Ta2因閘極所接收的幅度設定列掃描信號ampSCAN[n]為閘極關閉電壓V GL(ampSCAN[n]=V GL)的緣故而導通;幅度設定電晶體Ta3因閘極所接收的發光控制信號EM[n]為閘極導通電壓V GH(EM[n]=V GH)的緣故而斷開。隨著幅度設定電晶體Ta1、Ta2的導通,端點Na1的電壓為幅度供應電壓Vdd_a,且端點Na2的電壓為幅度資料電壓aDAT[m]。由於電容Ca的兩端分別電連接至端點Na1、Na2,電容Ca將根據幅度供應電壓Vdd_a與幅度資料電壓aDAT[m]之間的壓差(幅度設定壓差ΔVca)而蓄積電荷。再者,因幅度設定電晶體Tamp的源極和閘極分別電連接至端點Na1、Na2,幅度設定電晶體Tamp因幅度供應電壓Vdd_a與幅度資料電壓aDAT[m]之間的壓差而導通。惟,因幅度設定電晶體Ta3在幅度設定期間dT_amp為斷開的緣故,並無電流流經幅度設定電晶體Tamp。 In the amplitude setting circuit pamCKT(m, n), the amplitude setting column scan signal ampSCAN[n] received by the amplitude setting transistors Ta1 and Ta2 due to the gate is the gate closing voltage V GL (ampSCAN[n]=V GL ) The amplitude setting transistor Ta3 is turned on because the light-emitting control signal EM[n] received by the gate is the gate conduction voltage V GH (EM[n]=V GH ). As the amplitude setting transistors Ta1 and Ta2 are turned on, the voltage of the terminal Na1 is the amplitude supply voltage Vdd_a, and the voltage of the terminal Na2 is the amplitude data voltage aDAT[m]. Since both ends of the capacitor Ca are electrically connected to the terminals Na1 and Na2 respectively, the capacitor Ca will accumulate charges according to the voltage difference between the amplitude supply voltage Vdd_a and the amplitude data voltage aDAT[m] (amplitude setting voltage difference ΔVca). Furthermore, since the source and gate of the amplitude setting transistor Tamp are electrically connected to the terminals Na1 and Na2 respectively, the amplitude setting transistor Tamp is turned on due to the voltage difference between the amplitude supply voltage Vdd_a and the amplitude data voltage aDAT[m]. . However, since the amplitude setting transistor Ta3 is turned off during the amplitude setting period dT_amp, no current flows through the amplitude setting transistor Tamp.

在寬度設定電路pwdCKT(m, n)中,寬度設定電晶體Tw1、Tw2、Tw3因閘極所接收的寬度設定列掃描信號wdSCAN[n]為閘極導通電壓V GH(wdSCAN[n]=V GH)而斷開。此外,寬度設定電晶體Twd也因為寬度設定電晶體Tw2斷開而斷開。因此,寬度設定電路pwdCKT(m, n)在幅度設定期間dT_amp並不動作。 In the width setting circuit pwdCKT(m, n), the width setting transistors Tw1, Tw2, and Tw3 receive the width setting column scan signal wdSCAN[n] due to the gate conduction voltage V GH (wdSCAN[n]=V GH ) and disconnect. In addition, the width setting transistor Twd is also turned off because the width setting transistor Tw2 is turned off. Therefore, the width setting circuit pwdCKT(m, n) does not operate during the amplitude setting period dT_amp.

在中繼電路imdCKT(m, n)中,中繼電晶體Tm1、Tm3均因寬度設定電晶體Twd的斷開而斷開。中繼電晶體Tm2因閘極接收到的發光控制信號EM[n]為閘極導通電壓(EM[n]=V GH)而斷開,且中繼電晶體Tm4隨著中繼電晶體Tm2而斷開。因此,中繼電路imdCKT(m, n)在幅度設定期間dT_amp並不動作。據此,驅動電晶體Tdrv的閘極在幅度設定期間dT_amp為浮接狀態而未導通,且發光二極體LED在幅度設定期間dT_amp並未發光。 In the relay circuit imdCKT(m, n), both the relay transistors Tm1 and Tm3 are turned off due to the turn-off of the width setting transistor Twd. The relay transistor Tm2 is turned off because the light-emitting control signal EM[n] received by the gate is the gate conduction voltage (EM[n]=V GH ), and the relay transistor Tm4 is turned off as the relay transistor Tm2 Disconnect. Therefore, the relay circuit imdCKT(m, n) does not operate during the amplitude setting period dT_amp. Accordingly, the gate of the driving transistor Tdrv is in a floating state during the amplitude setting period dT_amp and is not turned on, and the light-emitting diode LED does not emit light during the amplitude setting period dT_amp.

請參見第6圖,其係本揭露之像素單元PXL(m, n)的內部元件,在寬度設定期間dT_wd因應在列方向上的控制信號而運作的示意圖。請同時參見第4B、6圖與表2。以下分別說明幅度設定電路pamCKT(m, n)、寬度設定電路pwdCKT(m, n)、中繼電路imdCKT(m, n)在寬度設定期間dT_wd的運作。Please refer to Figure 6, which is a schematic diagram of the internal components of the pixel unit PXL(m, n) of the present disclosure operating in response to the control signal in the column direction during the width setting period dT_wd. Please also see Figures 4B, 6 and Table 2. The following describes the operations of the amplitude setting circuit pamCKT(m, n), the width setting circuit pwdCKT(m, n), and the relay circuit imdCKT(m, n) during the width setting period dT_wd.

在幅度設定電路pamCKT(m, n)中,幅度設定電晶體Ta1、Ta2因閘極接收的幅度設定列掃描信號ampSCAN[n]為閘極導通電壓V GH(ampSCAN[n]=V GH)而斷開;幅度設定電晶體Ta3因閘極接收的發光控制信號EM[n]為閘極導通電壓V GH(EM[n]=V GH)而斷開。幅度設定電晶體Tamp因偏壓電容Ca兩端的壓差而導通。惟,因幅度設定電晶體Ta3斷開的緣故,在寬度設定期間dT_wd仍無電流流經幅度設定電晶體Tamp。 In the amplitude setting circuit pamCKT(m, n), the amplitude setting transistors Ta1 and Ta2 are switched because the amplitude setting column scanning signal ampSCAN[n] received by the gate is the gate conduction voltage V GH (ampSCAN[n]=V GH ). Turn off; the amplitude setting transistor Ta3 turns off because the light-emitting control signal EM[n] received by the gate is the gate conduction voltage V GH (EM[n]=V GH ). The amplitude setting transistor Tamp is turned on due to the voltage difference across the bias capacitor Ca. However, because the amplitude setting transistor Ta3 is turned off, there is still no current flowing through the amplitude setting transistor Tamp during the width setting period dT_wd.

在寬度設定電路pwdCKT(m, n)中,寬度設定電晶體Tw1、Tw2、Tw3因寬度設定列掃描信號wdSCAN[n]為閘極關閉電壓V GL(wdSCAN [n]=V GL)而導通。端點Nw1的電壓因寬度設定電晶體Tw1導通而為閘極導通電壓V GH;端點Nw2的電壓因寬度設定電晶體Tw2導通而為寬度資料電壓wDAT[m]。連帶的,偏壓電容Cw的兩端壓差取決於閘極導通電壓V GH和寬度資料電壓wDAT[m]。中繼寬度設定信號Nm1因寬度設定電晶體Tw3導通而為設定電壓Vset。在此同時,寬度設定電晶體Twd因端點Nw2的電壓為寬度資料電壓wDAT[m]的緣故而斷開。 In the width setting circuit pwdCKT(m, n), the width setting transistors Tw1, Tw2, and Tw3 are turned on because the width setting column scanning signal wdSCAN[n] is the gate closing voltage V GL (wdSCAN [n]=V GL ). The voltage at the endpoint Nw1 is the gate conduction voltage V GH because the width setting transistor Tw1 is turned on; the voltage at the endpoint Nw2 is the width data voltage wDAT[m] because the width setting transistor Tw2 is turned on. Associatedly, the voltage difference between the two ends of the bias capacitor Cw depends on the gate conduction voltage V GH and the width data voltage wDAT [m]. The relay width setting signal Nm1 becomes the set voltage Vset because the width setting transistor Tw3 is turned on. At the same time, the width setting transistor Twd is turned off because the voltage of the terminal Nw2 is the width data voltage wDAT[m].

在中繼電路imdCKT(m, n)中,中繼電晶體Tm1、Tm3的閘極均為設定電壓Vset。另,中繼電晶體Tm2則因閘極所接收的發光控制信號EM[n]為閘極導通電壓V GH(EM[n]=V GH)的緣故而斷開。因設定電壓Vset的電壓值相當接近接地電壓Vss(Vset≈Vss),故中繼電晶體Tm1、Tm3將導通。隨著中繼電晶體Tm1的導通,端點Nm2將被設為寬度供應電壓Vdd_w(Nm2=Vdd_w)。且,中繼電晶體Tm4因閘極與端點Nm2相連而接收寬度供應電壓Vdd_w,故中繼電晶體Tm4斷開。因此,驅動致能信號Son因中繼電晶體Tm3導通而為寬度供應電壓Vdd_w(Son=Vdd_w)。據此,因為閘極在幅度設定期間dT_amp為寬度供應電壓Vdd_w的緣故,驅動電晶體Tdrv在幅度設定期間dT_amp斷開,故發光二極體LED在幅度設定期間dT_amp並未發光。 In the relay circuit imdCKT(m, n), the gates of relay transistors Tm1 and Tm3 are both at the set voltage Vset. In addition, the relay transistor Tm2 is turned off because the light-emitting control signal EM[n] received by the gate is the gate conduction voltage V GH (EM[n]=V GH ). Since the voltage value of the set voltage Vset is quite close to the ground voltage Vss (Vset≈Vss), the relay transistors Tm1 and Tm3 will be turned on. As the relay transistor Tm1 is turned on, the terminal Nm2 will be set to the width supply voltage Vdd_w (Nm2=Vdd_w). Moreover, the relay transistor Tm4 receives the width supply voltage Vdd_w because its gate is connected to the terminal Nm2, so the relay transistor Tm4 is turned off. Therefore, the drive enable signal Son is the width supply voltage Vdd_w (Son=Vdd_w) because the relay transistor Tm3 is turned on. Accordingly, because the gate is at the width supply voltage Vdd_w during the amplitude setting period dT_amp, the driving transistor Tdrv is turned off during the amplitude setting period dT_amp, so the light-emitting diode LED does not emit light during the amplitude setting period dT_amp.

寬度設定期間dT_Wd結束後,顯示面板37進入發光期間dT_EM。在發光期間dT_EM,幅度設定列掃描信號ampSCAN[n]、寬度設定列掃描信號wdSCAN[n]與發光控制信號EM[n]均被設為閘極關閉電壓V GL,且掃略信號Sweep[n]自閘極導通電壓V GH逐漸下降至閘極關閉電壓V GL。請同時參見第4A、4B、7A、7B圖。 After the width setting period dT_Wd ends, the display panel 37 enters the light-emitting period dT_EM. During the emission period dT_EM, the amplitude setting column scan signal ampSCAN[n], the width setting column scan signal wdSCAN[n] and the emission control signal EM[n] are all set to the gate closing voltage V GL , and the sweep signal Sweep[n ] Gradually decreases from the gate turn-on voltage V GH to the gate turn-off voltage V GL . Please also see Figures 4A, 4B, 7A, and 7B.

在幅度設定電路pamCKT(m, n)中,幅度設定電晶體Ta1、Ta2因閘極接收的幅度設定列掃描信號ampSCAN[n]為閘極導通電壓V GH(ampSCAN[n]=V GH)而斷開;幅度設定電晶體Ta3因閘極接收的發光控制信號EM為閘極關閉電壓V GL(EM[n]=V GL)而導通。故端點Na1的電壓為幅度供應電壓Vdd_a(Na1=Vdd_a)。另一方面,幅度設定壓差ΔVca即為端點Na1、Na2的電壓差(ΔVca=Vdd_a-aDAT[m])。 In the amplitude setting circuit pamCKT(m, n), the amplitude setting transistors Ta1 and Ta2 are switched because the amplitude setting column scanning signal ampSCAN[n] received by the gate is the gate conduction voltage V GH (ampSCAN[n]=V GH ). Off; the amplitude setting transistor Ta3 is turned on because the light-emitting control signal EM received by the gate is the gate closing voltage V GL (EM[n]=V GL ). Therefore, the voltage of terminal Na1 is the amplitude supply voltage Vdd_a (Na1=Vdd_a). On the other hand, the amplitude setting voltage difference ΔVca is the voltage difference between the end points Na1 and Na2 (ΔVca=Vdd_a-aDAT[m]).

基於幅度設定壓差ΔVca、幅度供應電壓Vdd_a與幅度資料電壓aDAT[m]之間的關係式(ΔVca=Vdd_a-aDAT[m]),以及幅度供應電壓Vdd_a為定值的緣故,可以推知幅度設定壓差ΔVca隨著幅度資料電壓aDAT[m]的變化而改變。即,當幅度資料電壓aDAT[m]越大時,幅度設定壓差ΔVca越小;當幅度資料電壓aDAT[m]越小時,幅度設定壓差ΔVca越大。由於幅度設定電晶體Tamp的源極和閘極跨接在偏壓電容Ca的兩端,幅度設定壓差ΔVca將決定幅度設定電晶體Tamp是否導通,以及導通幅度設定電晶體Tamp時的電流大小。Based on the relationship between the amplitude setting voltage ΔVca, the amplitude supply voltage Vdd_a and the amplitude data voltage aDAT[m] (ΔVca=Vdd_a-aDAT[m]), and the fact that the amplitude supply voltage Vdd_a is a constant value, the amplitude setting can be inferred The voltage difference ΔVca changes with the change of the amplitude data voltage aDAT[m]. That is, when the amplitude data voltage aDAT[m] is larger, the amplitude setting voltage difference ΔVca is smaller; when the amplitude data voltage aDAT[m] is smaller, the amplitude setting voltage difference ΔVca is larger. Since the source and gate of the amplitude setting transistor Tamp are connected across the two ends of the bias capacitor Ca, the amplitude setting voltage difference ΔVca will determine whether the amplitude setting transistor Tamp is turned on, and the amount of current when the amplitude setting transistor Tamp is turned on. .

承上所述,幅度設定壓差ΔVca受幅度資料電壓aDAT[m]的影響,且幅度設定壓差ΔVca進一步影響流經幅度設定電晶體Tamp的電流大小。連帶的,流經幅度設定電晶體Tamp的電流大小將取決於端點Na2所接收的幅度資料電壓aDAT[m]。再者,當幅度設定電晶體Tamp與驅動電晶體Tdrv均導通時,則流經幅度設定電晶體Tamp的電流亦將流經驅動電晶體Tdrv。換言之,驅動電流Idrv的電流值(大小)隨著端點Na2所接收的幅度資料電壓aDAT[m]而改變。因此,此處將端點Na2的信號定義為幅度設定信號。Following the above, the amplitude setting voltage difference ΔVca is affected by the amplitude data voltage aDAT[m], and the amplitude setting voltage difference ΔVca further affects the current flowing through the amplitude setting transistor Tamp. Associatedly, the current flowing through the amplitude setting transistor Tamp will depend on the amplitude data voltage aDAT[m] received by the terminal Na2. Furthermore, when both the amplitude setting transistor Tamp and the driving transistor Tdrv are turned on, the current flowing through the amplitude setting transistor Tamp will also flow through the driving transistor Tdrv. In other words, the current value (magnitude) of the driving current Idrv changes with the amplitude data voltage aDAT[m] received by the terminal Na2. Therefore, the signal at the endpoint Na2 is defined as the amplitude setting signal here.

接著說明寬度設定電路pwdCKT(m, n)在發光期間dT_EM的操作。由第7A、7B圖可以看出,寬度設定電路pwdCKT(m, n)中的端點Nw1接收掃略信號Sweep[n]。因此,掃略信號Sweep[n]影響寬度設定電路pwdCKT(m, n)的運作。隨著掃略信號Sweep[n]的電壓逐漸下降,端點Nw2的電壓也逐漸下降。連帶的,寬度設定電晶體Twd將從斷開狀態轉換為導通狀態。因此,可根據寬度設定電晶體Twd的導通與否,將發光期間dT_EM進一步分為兩個發光階段STG1、STG2。在發光階段STG1中,寬度設定電晶體Twd處於斷開狀態(如第7A圖所示);且,在發光階段STG2中,寬度設定電晶體Twd處於導通狀態(如第7B圖所示)。以下分別說明寬度設定電路pwdCKT(m, n)在發光階段STG1、STG2的差異。Next, the operation of the width setting circuit pwdCKT(m, n) during the light emission period dT_EM will be described. As can be seen from Figures 7A and 7B, the endpoint Nw1 in the width setting circuit pwdCKT(m, n) receives the sweep signal Sweep[n]. Therefore, the sweep signal Sweep[n] affects the operation of the width setting circuit pwdCKT(m, n). As the voltage of the sweep signal Sweep[n] gradually decreases, the voltage of the terminal Nw2 also gradually decreases. Associatedly, the width setting transistor Twd will switch from the off state to the on state. Therefore, the light-emitting period dT_EM can be further divided into two light-emitting phases STG1 and STG2 according to whether the width setting transistor Twd is turned on or not. In the light-emitting stage STG1, the width setting transistor Twd is in an off state (as shown in Figure 7A); and in the light-emitting stage STG2, the width setting transistor Twd is in an on state (as shown in Figure 7B). The following describes the differences between the width setting circuit pwdCKT(m, n) in the light-emitting phase STG1 and STG2 respectively.

請參見第7A圖,其係本揭露之像素單元PXL(m, n)的內部元件,在發光階段STG1因應在列方向上的控制信號而運作的示意圖。在寬度設定電路pwdCKT(m, n)中,寬度設定列掃描信號wdSCAN[n]為閘極導通電壓V GH(wdSCAN[n]=V GH),使寬度設定電晶體Tw1、Tw2、Tw3斷開。因偏壓電容Cw與Nw1相連的一端接收到遞減的掃略信號Sweep[n]的緣故,與偏壓電容Cw的另一端相連的端點Nw2的電壓也跟著下降。在發光階段STG1,寬度設定電晶體Twd的閘極電壓尚不夠低,故寬度設定電晶體Twd仍維持斷開。因此,寬度設定電路pwdCKT(m, n)中的全部的電晶體,在發光階段STG1均為斷開。 Please refer to Figure 7A, which is a schematic diagram of the internal components of the pixel unit PXL(m, n) disclosed in the present disclosure, and STG1 operates in response to the control signal in the column direction during the light emitting phase. In the width setting circuit pwdCKT(m, n), the width setting column scanning signal wdSCAN[n] is the gate conduction voltage V GH (wdSCAN[n]=V GH ), causing the width setting transistors Tw1, Tw2, and Tw3 to turn off . Because one end of the bias capacitor Cw connected to Nw1 receives the decreasing sweep signal Sweep[n], the voltage of the end point Nw2 connected to the other end of the bias capacitor Cw also decreases. In the light-emitting stage STG1, the gate voltage of the width setting transistor Twd is not low enough, so the width setting transistor Twd remains off. Therefore, all transistors in the width setting circuit pwdCKT(m, n) are turned off during the light-emitting phase STG1.

在中繼電路imdCKT(m, n)中,中繼電晶體Tm1、Tm3因偏壓電容Cm的兩端偏壓的緣故而導通。且,中繼電晶體Tm2因為閘極為發光控制信號EM[n]=閘極關閉電壓V GL而導通。端點Nm2因中繼電晶體Tm1、Tm2均導通的緣故而介於設定電壓Vset和寬度供應電壓Vdd_w之間的中間值。因此,端點Nm2的電壓尚不足以使中繼電晶體Tm4導通。在發光階段STG1,端點Nm3的電壓由導通的中繼電晶體Tm3決定,即,寬度供應電壓Vdd_w。因此,驅動電晶體Tdrv因閘極接收寬度供應電壓Vdd_w的緣故而斷開。是故,發光二極體LED在發光階段STG1仍不會發光。 In the relay circuit imdCKT(m, n), the relay transistors Tm1 and Tm3 are turned on due to the bias voltage at both ends of the bias capacitor Cm. Moreover, the relay transistor Tm2 is turned on because the gate is turned on because the light emission control signal EM[n]=gate closing voltage VGL . The end point Nm2 is located at an intermediate value between the set voltage Vset and the width supply voltage Vdd_w because the relay transistors Tm1 and Tm2 are both turned on. Therefore, the voltage at the terminal Nm2 is not enough to turn on the relay transistor Tm4. In the light-emitting phase STG1, the voltage of the terminal Nm3 is determined by the turned-on relay transistor Tm3, that is, the width supply voltage Vdd_w. Therefore, the driving transistor Tdrv is turned off due to the gate receiving width supply voltage Vdd_w. Therefore, the light-emitting diode LED still does not emit light during the light-emitting stage STG1.

請參見第7B圖,其係本揭露之像素單元PXL(m, n)的內部元件,在發光階段STG2因應在列方向上的控制信號而運作的示意圖。在寬度設定電路pwdCKT(m, n)中,寬度設定電晶體Tw1、Tw2、Tw3因閘極所接收的寬度設定列掃描信號wdSCAN[n]為閘極導通電壓(wdSCAN[n]=V GH)而斷開。因偏壓電容Cw與端點Nw1相連的一端接收到遞減的掃略信號Sweep[n]的緣故,與偏壓電容Cw的另一端相連的端點Nw2的電壓也跟著下降。在發光階段STG2,寬度設定電晶體Twd的閘極電壓已經降低至足以使寬度設定電晶體Twd導通的程度。因此,寬度設定電晶體Tw1、Tw2、Tw3在發光階段STG2為斷開,但寬度設定電晶體Twd為導通。 Please refer to Figure 7B, which is a schematic diagram of the internal components of the pixel unit PXL(m, n) of the present disclosure, and STG2 operates in response to the control signal in the column direction during the light emitting phase. In the width setting circuit pwdCKT(m, n), the width setting transistors Tw1, Tw2, and Tw3 receive the width setting column scan signal wdSCAN[n] due to the gate conduction voltage (wdSCAN[n]=V GH ). And disconnect. Because one end of the bias capacitor Cw connected to the terminal Nw1 receives the decreasing sweep signal Sweep[n], the voltage of the terminal Nw2 connected to the other end of the bias capacitor Cw also decreases. In the light-emitting stage STG2, the gate voltage of the width setting transistor Twd has been reduced to a level sufficient to turn on the width setting transistor Twd. Therefore, the width setting transistors Tw1, Tw2, and Tw3 are turned off in the light-emitting phase STG2, but the width setting transistor Twd is turned on.

在中繼電路imdCKT(m, n)中,中繼寬度設定信號Nm1因寬度設定電晶體Twd導通而為寬度供應電壓Vdd_w(Nm1=Vdd_w)。連帶的,中繼電晶體Tm1、Tm3的源極和閘極之間的壓差均為0V。因此,中繼電晶體Tm1、Tm3為斷開。另,中繼電晶體Tm2因為閘極所接收的發光控制信號EM[n]為閘極關閉電壓V GL(EM[n]=V GL)的緣故而導通。端點Nm2因中繼電晶體Tm2導通的緣故而為設定電壓Vset(Nm2=Vset)。因此,端點Nm2的電壓足以使中繼電晶體Tm4導通。當中繼電晶體Tm4導通時,端點Nm3的電壓也逐漸降低至設定電壓Vset(Nm3=Son=Vset)。因此,驅動電晶體Tdrv因驅動致能信號Son等於設定電壓Vset(Son=Vset)的緣故而導通。因此,驅動電晶體Tdrv將在發光階段STG2導通,使發光二極體LED在發光階段STG2開始發光。 In the relay circuit imdCKT(m, n), the relay width setting signal Nm1 is turned on because the width setting transistor Twd is turned on, thereby supplying the width with voltage Vdd_w (Nm1=Vdd_w). Relatedly, the voltage difference between the source and gate of relay transistors Tm1 and Tm3 is both 0V. Therefore, relay transistors Tm1 and Tm3 are turned off. In addition, the relay transistor Tm2 is turned on because the light-emitting control signal EM[n] received by the gate is the gate closing voltage V GL (EM[n]=V GL ). The end point Nm2 is the set voltage Vset (Nm2=Vset) because the relay transistor Tm2 is turned on. Therefore, the voltage at the terminal Nm2 is sufficient to turn on the relay transistor Tm4. When the relay transistor Tm4 is turned on, the voltage of the terminal Nm3 gradually decreases to the set voltage Vset (Nm3=Son=Vset). Therefore, the driving transistor Tdrv is turned on because the driving enable signal Son is equal to the set voltage Vset (Son=Vset). Therefore, the driving transistor Tdrv will be turned on during the light-emitting phase STG2, so that the light-emitting diode LED starts to emit light during the light-emitting phase STG2.

第7A、7B圖已說明像素單元PXL(m, n)在發光階段STG1、STG2中的運作方式。接著,以表3彙整並比較第7A、7B圖的內容。Figures 7A and 7B have illustrated the operation mode of the pixel unit PXL(m, n) in the light-emitting phases STG1 and STG2. Next, Table 3 is used to summarize and compare the contents of Figures 7A and 7B.

表3 期間 發光期間dT_EM 階段 發光階段STG1 發光階段STG2 圖式 第7A圖 第7B圖 幅度設定電路pamCKT(m, n) 幅度設定電晶體Ta1、Ta2為斷開,且幅度設定電晶體Ta3、Tamp為導通 寬度設定電路pwdCKT(m, n) 寬度設定電晶體Tw1、Tw2、Tw3、Twd均斷開 寬度設定電晶體Tw1、Tw2、Tw3為斷開,且寬度設定電晶體Twd為導通 中繼電路imdCKT(m, n) 中繼電晶體Tm4為斷開,且中繼電晶體Tm1、Tm2、Tm3為導通。導通的中繼電晶體Tm3使驅動致能信號Son等於寬度供應電壓Vdd_w(Son=Vdd_w)。 中繼電晶體Tm1、Tm3為斷開,且中繼電晶體Tm2、Tm4為導通。導通的中繼電晶體Tm4使驅動致能信號Son等於設定電壓Vset(Son=Vset)。 光源電路LT(m, n) 驅動電晶體Tdrv因Son=Vdd_w而斷開,未產生驅動電流Idrv 驅動電晶體Tdrv因Son=Vset而導通,產生驅動電流Idrv table 3 period Luminescence period dT_EM stage Glow stage STG1 Glow stage STG2 Schema Figure 7A Figure 7B Amplitude setting circuit pamCKT(m, n) The amplitude setting transistors Ta1 and Ta2 are off, and the amplitude setting transistors Ta3 and Tamp are on. Width setting circuit pwdCKT(m, n) The width setting transistors Tw1, Tw2, Tw3, and Twd are all turned off. The width setting transistors Tw1, Tw2, and Tw3 are off, and the width setting transistor Twd is on. Relay circuit imdCKT(m, n) The relay transistor Tm4 is turned off, and the relay transistors Tm1, Tm2, and Tm3 are turned on. The turned-on relay transistor Tm3 makes the drive enable signal Son equal to the width supply voltage Vdd_w (Son=Vdd_w). The relay transistors Tm1 and Tm3 are turned off, and the relay transistors Tm2 and Tm4 are turned on. The turned-on relay transistor Tm4 makes the drive enable signal Son equal to the set voltage Vset (Son=Vset). Light source circuit LT(m, n) The driving transistor Tdrv is disconnected because Son=Vdd_w, and no driving current Idrv is generated. The drive transistor Tdrv is turned on because Son=Vset, generating a drive current Idrv

更進一步觀察第7A、7B圖可以看出,端點Nw2的電壓下降速度影響寬度設定電晶體Twd的導通速度,以及影響中繼寬度設定信號Nm1的改變速度。再者,如第6圖所示,端點Nw2的電壓是由幅度設定期間dT_amp中,寬度設定電晶體Tw2將寬度資料電壓wDAT[m]導通至端點Nw2而決定。由於中繼電晶體Tm1、Tm3的閘極由中繼寬度設定信號Nm1控制,因此,中繼電晶體Tm1、Tm3由導通狀態切換至斷開狀態的時點,亦隨著中繼寬度設定信號Nm1改變速度而異。再者,中繼電晶體Tm1、Tm3自導通狀態切換至斷開狀態的時候,將使端點Nm3的電壓產生變化。其中,端點Nm3的電壓變化相當於驅動致能信號Son的電壓變化。因此,驅動電晶體Tdrv開始導通的時點也跟著改變。Further observation of Figures 7A and 7B shows that the voltage drop speed of the end point Nw2 affects the conduction speed of the width setting transistor Twd and the change speed of the relay width setting signal Nm1. Furthermore, as shown in Figure 6, the voltage of the endpoint Nw2 is determined by the width setting transistor Tw2 conducting the width data voltage wDAT[m] to the endpoint Nw2 during the amplitude setting period dT_amp. Since the gates of the relay transistors Tm1 and Tm3 are controlled by the relay width setting signal Nm1, the time when the relay transistors Tm1 and Tm3 switch from the on state to the off state also changes with the relay width setting signal Nm1. Varies with speed. Furthermore, when the relay transistors Tm1 and Tm3 switch from the on state to the off state, the voltage of the terminal Nm3 will change. Among them, the voltage change of the terminal Nm3 is equivalent to the voltage change of the driving enable signal Son. Therefore, the time point at which the driving transistor Tdrv starts to turn on also changes accordingly.

請參見第8圖,其係本揭露之像素單元PXL(m, n)的內部元件,在關閉期間dT_OFF因應在列方向上的控制信號而運作的示意圖。請同時參見第4B、8圖與表2。以下分別說明幅度設定電路pamCKT(m, n)、寬度設定電路pwdCKT(m, n)、中繼電路imdCKT(m, n)在關閉期間dT_OFF如何運作。Please refer to Figure 8, which is a schematic diagram of the internal components of the pixel unit PXL(m, n) of the present disclosure operating in response to the control signal in the column direction during the off period dT_OFF. Please also see Figures 4B, 8 and Table 2. The following describes how the amplitude setting circuit pamCKT(m, n), width setting circuit pwdCKT(m, n), and relay circuit imdCKT(m, n) operate during the off period dT_OFF.

在幅度設定電路pamCKT(m, n)中,幅度設定電晶體Ta1、Ta2因閘極接收的幅度設定列掃描信號ampSCAN[n]為閘極導通電壓V GH(ampSCAN[n]=V GH)而斷開;幅度設定電晶體Ta3因閘極接收的發光控制信號EM[n]為閘極導通電壓V GH(EM[n]=V GH)而斷開。此時,幅度設定電晶體Tamp雖因偏壓電容Ca兩端的壓差而導通,但因幅度設定電晶體Ta3斷開的緣故,在關閉期間dT_OFF仍無電流流經幅度設定電晶體Tamp。 In the amplitude setting circuit pamCKT(m, n), the amplitude setting transistors Ta1 and Ta2 are switched because the amplitude setting column scanning signal ampSCAN[n] received by the gate is the gate conduction voltage V GH (ampSCAN[n]=V GH ). Turn off; the amplitude setting transistor Ta3 turns off because the light-emitting control signal EM[n] received by the gate is the gate conduction voltage V GH (EM[n]=V GH ). At this time, although the amplitude setting transistor Tamp is turned on due to the voltage difference across the bias capacitor Ca, due to the disconnection of the amplitude setting transistor Ta3, there is still no current flowing through the amplitude setting transistor Tamp during the off period dT_OFF.

在寬度設定電路pwdCKT(m, n)中,寬度設定電晶體Tw1、Tw2、Tw3因寬度設定列掃描信號wdSCAN[n]為閘極導通電壓V GH(wdSCAN[n]=V GH)而斷開。此外,寬度設定電晶體Twd也因為寬度設定電晶體Tw2斷開而斷開。因此,寬度設定電路pwdCKT(m, n)在關閉期間dT_OFF停止動作。 In the width setting circuit pwdCKT(m, n), the width setting transistors Tw1, Tw2, and Tw3 are turned off because the width setting column scanning signal wdSCAN[n] is the gate conduction voltage V GH (wdSCAN[n]=V GH ). . In addition, the width setting transistor Twd is also turned off because the width setting transistor Tw2 is turned off. Therefore, the width setting circuit pwdCKT(m, n) stops operating during the off period dT_OFF.

在中繼電路imdCKT(m, n)中,中繼電晶體Tm1、Tm3均因寬度設定電晶體Twd的斷開而斷開。中繼電晶體Tm2因閘極接收到的發光控制信號EM[n]為閘極導通電壓(EM[n]=V GH)而斷開,且中繼電晶體Tm4的閘極為浮接狀態。據此,驅動電晶體Tdrv的閘極在關閉期間dT_OFF亦為浮接狀態,且發光二極體LED在關閉期間dT_OFF並未發光。 In the relay circuit imdCKT(m, n), both the relay transistors Tm1 and Tm3 are turned off due to the turn-off of the width setting transistor Twd. The relay transistor Tm2 is turned off because the light-emitting control signal EM[n] received by the gate is the gate conduction voltage (EM[n]=V GH ), and the gate of the relay transistor Tm4 is in a floating state. Accordingly, the gate of the driving transistor Tdrv is also in a floating state during the off period dT_OFF, and the light emitting diode LED does not emit light during the off period dT_OFF.

請參見第9圖,其係根據本揭露構想之像素單元PXL(m, n)單元,驅動電流Idrv的脈波幅度cAMP較不易受寬度設定電路pwdCKT(m, n) 設定脈波寬度影響之示意圖。在第9圖中,縱軸為驅動電流Idrv、橫軸為時間,且波形WF2a、WF2b、WF2c分別對應於寬度設定電路pwmCKT(m, n)將驅動電流Idrv的脈波寬度cPW設為cPW_2a、cPW_2b、cPW_2c的情況。從第9圖可以看出,與最寬的脈波寬度cPW_2a對應的脈波幅度cAMP_2a、與次寬的脈波寬度cPW_2b對應的脈波幅度cAMP_2b,以及與最窄的脈波寬度cPW_2c對應的脈波幅度cAMP_2c均相當接近。亦即,即便將驅動電流Idrv的脈波寬度cPW自較寬的脈波幅度cAMP_2a調整成較窄的脈波幅度cAMP_2c,驅動電流Idrv的脈波幅度cAMP仍大致維持不變。Please refer to Figure 9, which is a schematic diagram of the pixel unit PXL(m, n) unit according to the concept of the present disclosure. The pulse amplitude cAMP of the driving current Idrv is less susceptible to the pulse width setting circuit pwdCKT(m, n). . In Figure 9, the vertical axis is the drive current Idrv, the horizontal axis is time, and the waveforms WF2a, WF2b, and WF2c respectively correspond to the width setting circuit pwmCKT(m, n). The pulse width cPW of the drive current Idrv is set to cPW_2a, The situation of cPW_2b and cPW_2c. As can be seen from Figure 9, the pulse amplitude cAMP_2a corresponding to the widest pulse width cPW_2a, the pulse amplitude cAMP_2b corresponding to the next widest pulse width cPW_2b, and the pulse amplitude cAMP_2b corresponding to the narrowest pulse width cPW_2c The wave amplitudes cAMP_2c are quite close. That is, even if the pulse width cPW of the driving current Idrv is adjusted from the wider pulse amplitude cAMP_2a to the narrower pulse amplitude cAMP_2c, the pulse amplitude cAMP of the driving current Idrv remains substantially unchanged.

與第2圖相較可明顯看出,第9圖的波形佐證採用本揭露構想的像素單元時,驅動電流Idrv的脈波幅度cAMP不至於隨著脈波寬度cPW的變化而劇烈變化。換言之,驅動電流Idrv的脈波幅度cAMP與脈波寬度cPW可被獨立地調整。Compared with Figure 2, it can be clearly seen that the waveform in Figure 9 proves that when the pixel unit of the present disclosure is used, the pulse amplitude cAMP of the driving current Idrv will not change drastically with the change of the pulse width cPW. In other words, the pulse amplitude cAMP and pulse width cPW of the driving current Idrv can be adjusted independently.

請參見第10圖,其係本揭露之像素單元PXL(m, n)的另一種實施例之示意圖。第10圖所示之像素單元PXL(m, n)’的結構與第4圖的像素單元PXL(m, n)相似,兩者的主要差異為中繼電路imdCKT、imdCKT’所包含的中繼電晶體的數量不同。Please refer to Figure 10, which is a schematic diagram of another embodiment of the pixel unit PXL(m, n) of the present disclosure. The structure of the pixel unit PXL(m, n)' shown in Figure 10 is similar to that of the pixel unit PXL(m, n) in Figure 4. The main difference between the two is that the relay circuits imdCKT and imdCKT' contain The number of relay crystals varies.

第4A圖的中繼電路imdCKT(m, n)可視為兩級源極隨耦器(source follower)的組合。其中,中繼電晶體Tm1、Tm2為第一級源極隨耦器;中繼電晶體Tm3、Tm4為第二級源極隨耦器。另,第10圖的中繼電路imdCKT(m, n)’僅包含中繼電晶體Tm1、Tm2所組成的單級源極隨耦器。The relay circuit imdCKT(m, n) in Figure 4A can be regarded as a combination of two-stage source followers. Among them, relay transistors Tm1 and Tm2 are first-stage source followers; relay transistors Tm3 and Tm4 are second-stage source followers. In addition, the relay circuit imdCKT(m, n)’ in Figure 10 only includes a single-stage source follower composed of relay transistors Tm1 and Tm2.

比較第4A、10圖可以看出,在第4A圖中,驅動電晶體Tdrv的閘極(驅動致能信號Son)相當於間接受到端點Nm2的電壓影響。即,端點Nm2改變中繼電晶體Tm4的導通狀態後,再使端點Nm3的電壓改變。此外,在第10圖中,驅動電晶體Tdrv的閘極(驅動致能信號Son)直接受到端點Nm2影響。因第10圖的像素單元的運作同樣可搭配第4B圖的波形,此處不再詳述第10圖的元件與操作細節。表4彙整第4A、10圖的差異處。 表4   第4A圖 第10圖 中繼電路 imdCKT(m, n) imdCKT(m, n)’ 源極隨耦器 兩級 單級 驅動致能信號Son 取決於中繼電晶體Tm4是否導通,且中繼電晶體Tm4受中繼電晶體Tm2影響 取決於中繼電晶體Tm2是否導通 隨端點Nm1的電壓而導通/不導通 中繼電晶體Tm1 隨發光控制信號EM[n]的改變而導通/不導通 中繼電晶體Tm2 Comparing Figures 4A and 10, it can be seen that in Figure 4A, the gate of the driving transistor Tdrv (the driving enable signal Son) is equivalent to being indirectly affected by the voltage of the terminal Nm2. That is, after the terminal Nm2 changes the conductive state of the relay transistor Tm4, the voltage of the terminal Nm3 is changed. In addition, in Figure 10, the gate of the driving transistor Tdrv (the driving enable signal Son) is directly affected by the terminal Nm2. Since the operation of the pixel unit in Figure 10 can also be matched with the waveform in Figure 4B, the components and operation details of Figure 10 will not be described in detail here. Table 4 summarizes the differences between Figures 4A and 10. Table 4 Figure 4A Picture 10 relay circuit imdCKT(m, n) imdCKT(m, n)' source follower two levels single stage Drive enable signal Son Depends on whether the relay transistor Tm4 is turned on, and the relay transistor Tm4 is affected by the relay transistor Tm2 Depends on whether the relay transistor Tm2 is turned on Turn on/off depending on the voltage at terminal Nm1 Relay transistor Tm1 Turn on/off with the change of the light emission control signal EM[n] Relay transistor Tm2

綜上,本揭露在寬度設定電路pwmCKT(m, n)與驅動電晶體Tdrv的閘極間設置中繼電路imdCKT、imdCKT’。中繼電路imdCKT、imdCKT’的設置可以放大中繼寬度設定信號Nm1的轉態電壓,進而使驅動電晶體Tdrv的導通狀態加速。換言之,中繼電路imdCKT、imdCKT’的設置可以使驅動電晶體Tdrv更快速地因應寬度資料電壓wDAT[m]而改變。另請留意,中繼電路的設計與實現方式並不限於本文的實施例。In summary, this disclosure provides relay circuits imdCKT and imdCKT’ between the width setting circuit pwmCKT(m, n) and the gate of the driving transistor Tdrv. The settings of the relay circuits imdCKT and imdCKT’ can amplify the transition voltage of the relay width setting signal Nm1, thereby accelerating the conduction state of the driving transistor Tdrv. In other words, the settings of the relay circuits imdCKT and imdCKT’ can make the driving transistor Tdrv change more quickly in response to the width data voltage wDAT[m]. Please also note that the design and implementation of the relay circuit are not limited to the embodiments of this article.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In summary, although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make various modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the appended patent application scope.

PXL(m,n),PXL(1,1),PXL(M,1),PXL(1,N),PXL(M,N),PXL(m,n)’:像素單元 pamCKT(m,n):幅度設定電路 pwmCKT(m,n):寬度設定電路 Tamp,Ta1,Ta2,Ta3:幅度設定電晶體 Tdrv:驅動電晶體 Idrv:驅動電流 LED:發光二極體 cPW,cPW_1c,cPW_1b,cPW_1a,cPW_2a,cPW_2b,cPW_2c:脈波寬度 cAMP,cAMP_1a,cAMP_1b,cAMP_1c,cAMP_2a,cAMP_2b,cAMP_2c:脈波幅度 WF1a,WF1b,WF1c,WF2a,WF2b,WF2c:波形 30:顯示裝置 31:時序控制器 Sctl_gc:閘極控制信號(線) Sctl_src:源極控制信號(線) 33:源極驅動電路 35:閘極控制電路 SSL[m]:外部補償信號 aDAT[m]:幅度資料電壓 wDAT[m]:寬度資料電壓 ampSCAN[n],ampSCAN[n+1]:幅度設定列掃描信號 wdSCAN[n],wdSCAN[n+1]:寬度設定列掃描信號 EM[n],EM[n+1]:發光控制信號 Sweep[n],Sweep[n+1]:掃略信號 37:顯示面板 Vdd_w:寬度供應電壓 Vdd_a:幅度供應電壓 Na1,Na2,Ncmp,Nm1,Nm2,Nm3,Nw1,Nw2:端點 Ca,Cm,Cw:偏壓電容 Tacmp,Twcmp:特性補償電晶體 LT(m,n):光源電路 Vss:接地電壓 Son:驅動致能信號 imdCKT(m,n):中繼電路 Tm1,Tm2,Tm3,Tm4:中繼電晶體 Tw1,Tw2,Tw3,Twd:寬度設定電晶體 V GH:閘極導通電壓 Vset:設定電壓 pwmMDL(m,n):寬度設定模組 aCMP_en[n]:幅度補償致能信號 wCMP_en[n]:寬度補償致能信號 t1~t11:時點 dT_amp:幅度設定期間 dt_wd:寬度設定期間 dt_EM:發光期間 dT_OFF:關閉期間 dT_pxl[n],dt_pxl[n+1]:像素設定與顯示期間 ΔTr:列選取時間差 Δt:緩衝期間 V GL:閘極關閉電壓 PXL(m,n),PXL(1,1),PXL(M,1),PXL(1,N),PXL(M,N),PXL(m,n)': pixel unit pamCKT(m,n ): Amplitude setting circuit pwmCKT(m,n): Width setting circuit Tamp, Ta1, Ta2, Ta3: Amplitude setting transistor Tdrv: Driving transistor Idrv: Driving current LED: Light emitting diode cPW, cPW_1c, cPW_1b, cPW_1a, cPW_2a, cPW_2b, cPW_2c: pulse width cAMP, cAMP_1a, cAMP_1b, cAMP_1c, cAMP_2a, cAMP_2b, cAMP_2c: pulse amplitude WF1a, WF1b, WF1c, WF2a, WF2b, WF2c: waveform 30: display device 31: timing controller Sctl_gc: Gate control signal (line) Sctl_src: Source control signal (line) 33: Source drive circuit 35: Gate control circuit SSL[m]: External compensation signal aDAT[m]: Amplitude data voltage wDAT[m]: Width Data voltage ampSCAN[n], ampSCAN[n+1]: Amplitude setting column scanning signal wdSCAN[n], wdSCAN[n+1]: Width setting column scanning signal EM[n], EM[n+1]: Lighting control Signal Sweep[n], Sweep[n+1]: Sweep signal 37: Display panel Vdd_w: Width supply voltage Vdd_a: Amplitude supply voltage Na1, Na2, Ncmp, Nm1, Nm2, Nm3, Nw1, Nw2: Endpoint Ca, Cm, Cw: bias capacitance Tacmp, Twcmp: characteristic compensation transistor LT (m, n): light source circuit Vss: ground voltage Son: drive enable signal imdCKT (m, n): relay circuit Tm1, Tm2, Tm3, Tm4: relay transistor Tw1, Tw2, Tw3, Twd: width setting transistor V GH : gate conduction voltage Vset: setting voltage pwmMDL (m, n): width setting module aCMP_en[n]: amplitude compensation Enable signal wCMP_en[n]: width compensation enable signal t1~t11: time point dT_amp: amplitude setting period dt_wd: width setting period dt_EM: light-emitting period dT_OFF: off period dT_pxl[n], dt_pxl[n+1]: pixel setting and Display period ΔTr: Column selection time difference Δt: Buffering period V GL : Gate closing voltage

第1A圖,其係習用技術之像素單元PXL(m, n)以幅度設定電路pamCKT(m, n)和寬度設定電路pwmCKT(m, n)調整發光二極體的亮度之示意圖; 第1B圖,其係流經像素單元PXL(m, n)的驅動電流Idrv之脈波的示意圖; 第2圖,其係採用習用技術的像素單元PXL(m, n)利用寬度設定電路pwdCKT(m, n)調整脈波寬度cPW的同時,驅動電流Idrv的脈波幅度亦連帶受影響之示意圖; 第3圖,其係採用本揭露之顯示裝置的方塊圖; 第4A圖,其係本揭露之像素單元PXL(m, n)的一種實施例之示意圖; 第4B圖,其係閘極控制電路所產生之,用於控制本揭露之第n列與第(n+1)列的像素單元PXL(1~M, n)、PXL(1~M, n+1)在列方向上的控制信號之波形圖; 第5圖,其係本揭露之像素單元PXL(m, n)的內部元件,在幅度設定期間dT_amp因應在列方向上的控制信號而運作的示意圖; 第6圖,其係本揭露之像素單元PXL(m, n)的內部元件,在寬度設定期間dT_wd因應在列方向上的控制信號而運作的示意圖; 第7A圖,其係本揭露之像素單元PXL(m, n)的內部元件,在發光階段STG1因應在列方向上的控制信號而運作的示意圖; 第7B圖,其係本揭露之像素單元PXL(m, n)的內部元件,在發光階段STG2因應在列方向上的控制信號而運作的示意圖; 第8圖,其係本揭露之像素單元PXL(m, n)的內部元件,在關閉期間dT_OFF因應在列方向上的控制信號而運作的示意圖; 第9圖,其係根據本揭露構想之像素單元PXL(m, n)單元,驅動電流Idrv的幅度較不易受寬度設定電路pwdCKT(m, n)設定脈波寬度影響之示意圖;及 第10圖,其係本揭露之像素單元PXL(m, n)的另一種實施例之示意圖。 Figure 1A is a schematic diagram of a conventional pixel unit PXL(m, n) using an amplitude setting circuit pamCKT(m, n) and a width setting circuit pwmCKT(m, n) to adjust the brightness of a light emitting diode; Figure 1B is a schematic diagram of the pulse wave of the driving current Idrv flowing through the pixel unit PXL(m, n); Figure 2 is a schematic diagram showing that the pixel unit PXL(m, n) using conventional technology uses the width setting circuit pwdCKT(m, n) to adjust the pulse width cPW, and at the same time, the pulse amplitude of the driving current Idrv is also affected; Figure 3 is a block diagram of a display device using the present disclosure; Figure 4A is a schematic diagram of an embodiment of the pixel unit PXL(m, n) of the present disclosure; Figure 4B, which is generated by the gate control circuit, is used to control the pixel units PXL(1~M, n) and PXL(1~M, n) of the nth column and (n+1)th column of the present disclosure. +1) Waveform diagram of control signal in column direction; Figure 5 is a schematic diagram of the internal components of the pixel unit PXL(m, n) disclosed in the present disclosure, and dT_amp operates in response to the control signal in the column direction during the amplitude setting period; Figure 6 is a schematic diagram of the internal components of the pixel unit PXL(m, n) disclosed in the present disclosure, and how dT_wd operates in response to the control signal in the column direction during the width setting period; Figure 7A is a schematic diagram of the internal components of the pixel unit PXL(m, n) disclosed in the present disclosure, and STG1 operates in response to the control signal in the column direction during the light emitting phase; Figure 7B is a schematic diagram of the internal components of the pixel unit PXL(m, n) disclosed in the present disclosure, and STG2 operates in response to the control signal in the column direction during the light emitting phase; Figure 8 is a schematic diagram showing the operation of the internal components of the pixel unit PXL(m, n) in the present disclosure in response to the control signal in the column direction during the off period dT_OFF; Figure 9 is a schematic diagram of the pixel unit PXL(m, n) unit based on the concept of the present disclosure. The amplitude of the driving current Idrv is less susceptible to the pulse width set by the width setting circuit pwdCKT(m, n); and Figure 10 is a schematic diagram of another embodiment of the pixel unit PXL(m, n) of the present disclosure.

PXL(m,n):像素單元 PXL(m,n): pixel unit

pamCKT(m,n):幅度設定電路 pamCKT(m,n): amplitude setting circuit

aDAT[m]:幅度資料電壓 aDAT[m]: Amplitude data voltage

Vdd_w:寬度供應電壓 Vdd_w: width supply voltage

Vdd_a:幅度供應電壓 Vdd_a: amplitude supply voltage

Ta1,Ta2,Ta3,Tamp:幅度設定電晶體 Ta1, Ta2, Ta3, Tamp: amplitude setting transistor

Na1,Na2,Ncmp,Nw1,Nw2,Nm1,Nm2,Nm3:端點 Na1,Na2,Ncmp,Nw1,Nw2,Nm1,Nm2,Nm3: endpoints

EM[n]:發光控制信號 EM[n]: Luminous control signal

ampSCAN[n]:幅度設定列掃描信號 ampSCAN[n]: Amplitude setting column scan signal

Ca,Cw,Cm:偏壓電容 Ca, Cw, Cm: bias capacitance

Tacmp,Twcmp:特性補償電晶體 Tacmp, Twcmp: characteristic compensation transistor

SSL[m]:外部補償信號 SSL[m]: external compensation signal

aCMP_en[n]:幅度補償致能信號 aCMP_en[n]: Amplitude compensation enable signal

wCMP_en[n]:寬度補償致能信號 wCMP_en[n]: Width compensation enable signal

Tdrv:驅動電晶體 Tdrv: drive transistor

LED:發光二極體 LED: light emitting diode

Vss:接地電壓 Vss: ground voltage

LT(m,n):光源電路 LT(m,n): light source circuit

Son:驅動致能信號 Son: drive enable signal

pwmMDL(m,n):寬度設定模組 pwmMDL(m,n): width setting module

Sweep[n]:掃略信號 Sweep[n]: Sweep signal

wdSCAN[n]:寬度設定列掃描信號 wdSCAN[n]: Width setting column scan signal

Tw1,Tw2,Tw3,Twd:寬度設定電晶體 Tw1, Tw2, Tw3, Twd: Width setting transistor

VGH:閘極導通電壓 V GH :gate conduction voltage

wDAT[m]:寬度資料電壓 wDAT[m]: width data voltage

pwmCKT(m,n):寬度設定電路 pwmCKT(m,n): Width setting circuit

Tm1,Tm2,Tm3,Tm4:中繼電晶體 Tm1, Tm2, Tm3, Tm4: relay transistor

imdCKT(m,n):中繼電路 imdCKT(m,n): relay circuit

Vset:設定電壓 Vset: set voltage

Claims (10)

一種像素單元,包含: 一幅度設定電路,其係因應一幅度設定列掃描信號而產生一幅度設定信號; 一寬度設定電路,其係因應一寬度設定列掃描信號而產生一中繼寬度設定信號; 一中繼電路,電連接於該寬度設定電路,其係因應該中繼寬度設定信號而產生一驅動致能信號;以及 一光源電路,包含: 一驅動電晶體,電連接於該幅度設定電路與該中繼電路,其係根據該驅動致能信號而選擇性產生一驅動電流,其中該驅動電流的大小隨著該幅度設定信號而改變;以及 一發光電路,電連接於該驅動電晶體,其亮度係隨著該驅動電流而改變。 A pixel unit containing: An amplitude setting circuit that generates an amplitude setting signal in response to an amplitude setting column scan signal; a width setting circuit that generates a relay width setting signal in response to a width setting column scan signal; A relay circuit, electrically connected to the width setting circuit, generates a drive enable signal in response to the relay width setting signal; and A light source circuit, including: A driving transistor, electrically connected to the amplitude setting circuit and the relay circuit, selectively generates a driving current according to the driving enable signal, wherein the magnitude of the driving current changes with the amplitude setting signal; as well as A light-emitting circuit is electrically connected to the driving transistor, and its brightness changes with the driving current. 如請求項1所述之像素單元,其中, 該幅度設定列掃描信號係於一第一設定期間開始時,自一第一電壓切換至一第二電壓,並於該第一設定期間結束時,自該第二電壓切換至該第一電壓;且, 該寬度設定列掃描信號係於一第二設定期間開始時自該第一電壓切換至該第二電壓,並於該第二設定期間結束時自該第二電壓切換至該第一電壓。 The pixel unit as described in claim 1, wherein, The amplitude setting column scan signal switches from a first voltage to a second voltage at the beginning of a first setting period, and switches from the second voltage to the first voltage at the end of the first setting period; and, The width setting column scan signal switches from the first voltage to the second voltage at the beginning of a second setting period, and switches from the second voltage to the first voltage at the end of the second setting period. 如請求項2所述之像素單元,其中 該幅度設定電路與該中繼電路係接收一發光控制信號,且 該寬度設定電路係接收一掃略信號。 The pixel unit as claimed in claim 2, wherein The amplitude setting circuit and the relay circuit receive a lighting control signal, and The width setting circuit receives a scan signal. 如請求項3所述之像素單元,其中, 該發光控制信號係於一發光期間開始時,自該第一電壓切換至該第二電壓,並於該發光期間結束時自該第二電壓切換至該第一電壓。 The pixel unit as described in claim 3, wherein, The light-emitting control signal switches from the first voltage to the second voltage at the beginning of a light-emitting period, and switches from the second voltage to the first voltage at the end of the light-emitting period. 請求項4所述之像素單元,其中, 該幅度設定列掃描信號、該寬度設定列掃描信號與該發光控制信號在一關閉期間均維持在該第一電壓,且該關閉期間較該發光期間晚。 The pixel unit described in claim 4, wherein, The amplitude setting column scan signal, the width setting column scan signal and the light emitting control signal are all maintained at the first voltage during an off period, and the off period is later than the light emitting period. 如請求項1所述之像素單元,其中該寬度設定電路係包含: 一第一偏壓電容,其係接收一掃略信號,其中該掃略信號係於一發光期間,自一第一電壓逐漸改變至一第二電壓;以及 一第一寬度設定電晶體,電連接於該中繼電路與該第一偏壓電容,其係隨著該掃略信號在該發光期間的變化,在該發光期間中的一第一發光階段斷開,並在該發光期間中的一第二發光階段導通,其中該中繼寬度設定信號隨著該第一寬度設定電晶體的導通狀態而改變。 The pixel unit as claimed in claim 1, wherein the width setting circuit includes: a first bias capacitor that receives a sweep signal, wherein the sweep signal gradually changes from a first voltage to a second voltage during a lighting period; and A first width setting transistor, electrically connected to the relay circuit and the first bias capacitor, is a first light-emitting device in the light-emitting period as the scanning signal changes during the light-emitting period. stage is turned off, and is turned on in a second light-emitting stage in the light-emitting period, wherein the relay width setting signal changes with the conduction state of the first width setting transistor. 如請求項6所述之像素單元,其中該寬度設定電路更包含: 一第二寬度設定電晶體,電連接於該第一偏壓電容的一端,其係接收該第一電壓; 一第三寬度設定電晶體,電連接於該第一偏壓電容的另一端,其係接收一寬度資料電壓,其中該寬度資料電壓係與該像素單元在一顯示面板的位置相關;以及 一第四寬度設定電晶體,電連接於該第一寬度設定電晶體, 其中該第二寬度設定電晶體、該第三寬度設定電晶體與該第四寬度設定電晶體係因應該寬度設定列掃描信號的控制,而於一第一設定期間斷開、於一第二設定期間導通,並於該發光期間與一關閉期間斷開。 The pixel unit as claimed in claim 6, wherein the width setting circuit further includes: a second width setting transistor, electrically connected to one end of the first bias capacitor, which receives the first voltage; a third width setting transistor, electrically connected to the other end of the first bias capacitor, which receives a width data voltage, wherein the width data voltage is related to the position of the pixel unit on a display panel; and a fourth width setting transistor electrically connected to the first width setting transistor, The second width setting transistor, the third width setting transistor and the fourth width setting transistor are turned off during a first setting period, and during a second setting period in response to the control of the width setting column scan signal. It is turned on during the lighting period and turned off during the lighting period and an off period. 如請求項7所述之像素單元,其中 該第二設定期間晚於該第一設定期間,該發光期間晚於該第二設定期間,且該關閉期間晚於該發光期間,其中, 該第二發光階段晚於該第一發光階段。 A pixel unit as claimed in claim 7, wherein The second setting period is later than the first setting period, the lighting period is later than the second setting period, and the off period is later than the lighting period, wherein, The second light-emitting stage is later than the first light-emitting stage. 如請求項7所述之像素單元,其中 該第一偏壓電容的壓差隨著在該第二設定期間導通的該第二寬度設定電晶體與該第三寬度設定電晶體而決定,且 該第四寬度設定電晶體係在該第二設定期間將該中繼寬度設定信號設為一設定電壓。 A pixel unit as claimed in claim 7, wherein The voltage difference of the first bias capacitor is determined by the second width setting transistor and the third width setting transistor that are turned on during the second setting period, and The fourth width setting transistor sets the relay width setting signal to a setting voltage during the second setting period. 如請求項1所述之像素單元,其中該中繼電路係包含: 一第二偏壓電容,電連接於該寬度設定電路; 一第一中繼電晶體,電連接於該第二偏壓電容與該寬度設定電路,其係因應該中繼寬度設定信號而選擇性導通;以及 一第二中繼電晶體,電連接於該第一中繼電晶體,其係因應該發光控制信號而選擇性導通,且該驅動致能信號隨著該第二中繼電晶體的導通狀態而改變。 The pixel unit as claimed in claim 1, wherein the relay circuit includes: a second bias capacitor electrically connected to the width setting circuit; A first relay transistor, electrically connected to the second bias capacitor and the width setting circuit, is selectively turned on in response to the relay width setting signal; and A second relay transistor, electrically connected to the first relay transistor, is selectively turned on in response to the light emitting control signal, and the driving enable signal changes with the conduction state of the second relay transistor. change.
TW111129347A 2022-08-04 2022-08-04 Pixel unit TWI814520B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111129347A TWI814520B (en) 2022-08-04 2022-08-04 Pixel unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111129347A TWI814520B (en) 2022-08-04 2022-08-04 Pixel unit

Publications (2)

Publication Number Publication Date
TWI814520B TWI814520B (en) 2023-09-01
TW202407668A true TW202407668A (en) 2024-02-16

Family

ID=88965940

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111129347A TWI814520B (en) 2022-08-04 2022-08-04 Pixel unit

Country Status (1)

Country Link
TW (1) TWI814520B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102498084B1 (en) * 2018-06-01 2023-02-10 삼성전자주식회사 Display panel
TWI761037B (en) * 2021-01-14 2022-04-11 友達光電股份有限公司 Pixel circuit
US11361701B1 (en) * 2021-03-02 2022-06-14 Au Optronics Corporation Driving circuit and driving method
US11723131B2 (en) * 2021-04-09 2023-08-08 Innolux Corporation Display device

Also Published As

Publication number Publication date
TWI814520B (en) 2023-09-01

Similar Documents

Publication Publication Date Title
US10004124B1 (en) Electroluminescent display device
US9183781B2 (en) Stage circuit and bidirectional emission control driver using the same
JP4630790B2 (en) Pixel and light-emitting display device using the pixel
JP4398413B2 (en) Pixel drive circuit with threshold voltage compensation
KR100613091B1 (en) Data Integrated Circuit and Driving Method of Light Emitting Display Using The Same
US7123220B2 (en) Self-luminous display device
KR100476368B1 (en) Data driving apparatus and method of organic electro-luminescence display panel
US11545092B2 (en) Display device
KR100639690B1 (en) Image display apparatus without 0ccurrence of nonuniform display
US10643546B2 (en) Gate driver and display device including the same
US20060132182A1 (en) Driver circuit, shift register, and liquid crystal driver circuit
US20230419883A1 (en) Driving signals and driving circuits in display device and driving method thereof
CN109427297B (en) Gate driver and display device including the same
CN111489687A (en) Pixel driving circuit, display panel, display device and driving method
CN114299866A (en) Display panel and display device
US20190090321A1 (en) Backlight unit capable of controlling brightness and display apparatus having the same
TWI814520B (en) Pixel unit
US11455953B1 (en) Pixel driving circuit, display device and operating method thereof
CN112562579A (en) Pixel driving circuit of Micro LED display device and driving method thereof
TWI834387B (en) Driving circuit for led panel and led panel thereof
US11961474B2 (en) Display device
US11984058B2 (en) Scan driver
CN112017597B (en) Pixel circuit and display device
CN113990247B (en) Pixel driving circuit and display device
US20230326388A1 (en) Scan driver