TW202349736A - 單光子崩潰二極體 - Google Patents

單光子崩潰二極體 Download PDF

Info

Publication number
TW202349736A
TW202349736A TW112115351A TW112115351A TW202349736A TW 202349736 A TW202349736 A TW 202349736A TW 112115351 A TW112115351 A TW 112115351A TW 112115351 A TW112115351 A TW 112115351A TW 202349736 A TW202349736 A TW 202349736A
Authority
TW
Taiwan
Prior art keywords
well
region
zone
well region
collapse
Prior art date
Application number
TW112115351A
Other languages
English (en)
Inventor
喬治 羅勒
Original Assignee
奧地利商Ams歐斯朗股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奧地利商Ams歐斯朗股份公司 filed Critical 奧地利商Ams歐斯朗股份公司
Publication of TW202349736A publication Critical patent/TW202349736A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

揭露一種單光子崩潰二極體(SPAD)(400、500、600、700、800、900a-d)。該SPAD包括:一第一井區(405、505、605、705、900a-d),其形成在一基板(460、560、660、760、960a)中;一第二井區(410、510、610、710、910a-d),其形成在該基板上且至少部分地於該第一井區周圍延伸;至少一個接點(415、515、615、715、915a),其形成在該第二井區上方;以及一深井區(420、520、620、720、920a-d),其在該第一井區與該第二井區之間不均勻地延伸,其中該第一井區形成在界定一崩潰區(435、535、635、735)的一交接處,並且其中該第二井區及該深井區構造成在該崩潰區與該至少一個接點之間提供導電路徑(425、450、525、550、625、650、725)。

Description

單光子崩潰二極體
本發明係有關於單光子崩潰二極體(SPADs)的領域,具體地係關於適合使用對於與讀出式電子裝置相關的操作電壓之高超額偏壓的單光子崩潰二極體。
單光子崩潰二極體(SPAD)係一種以半導體p-n接面為基礎的固態光偵測器。
傳統的光電二極體可以以相對低的反向偏壓來操作,其中由於內部光電效應,洩漏電流可能隨著射入光子的吸收而成線性變化。相較之下,SPAD可以構造成以高於其崩潰電壓來施加偏壓。反向偏壓可能足夠高,使得射入在SPAD上的光子可能引起碰撞游離,從而觸發崩潰電流的產生。
也就是說,由於相對高的反向偏壓,產生光子的載子可被SPAD中的電場加速,其中產生光子的載子可因碰撞游離機制而觸發崩潰電流。因此,SPAD能夠偵測個別光子的射入。使SPAD以遠高於其反向偏壓崩潰電壓施加偏壓,在本技藝中可以稱為在「蓋格模式(Geiger-mode)」區域內操作。
通常,在SPAD被觸發達足夠長的時間之後,可以藉由將偏壓降低至崩潰電壓或更低來「抑制」崩潰電流。用於抑制崩潰電流的電路可以是被動的(例如,就像與SPAD串聯單個電阻一樣簡單)或者主動的(例如,包括諸如用於主動地控制偏壓的一個或多個電晶體的附加電路)。
在抑制之後,SPAD可以被「重置」,以便重新啟用對射入光子的偵測。也就是說,在停止崩潰之後,SPAD 可以重新充電至其相對高的反向偏壓,例如顯著高於SPAD的崩潰電壓。
在使用中,SPAD或SPADs陣列可以耦合至讀出電路,以確定一個或多個SPADs是否以及何時被觸發及/或對觸發事件計數。
然而,具有整合的讀出式電子裝置之SPAD的最大可用超額偏壓可能受到用於實施讀出式電路的低壓電晶體所支持的最大電壓之限制。同樣地,SPAD 的最大可用超額偏壓可能受到用於實施抑制的電晶體或電路所支持的最大電壓限制。
如果SPAD超額偏壓太高,則整合的讀出式電子裝置及/或抑制電路可能容易損壞。
然而,高超額偏壓可以改善SPAD的性能。例如,高超額偏壓可以提高光子偵測效率(PDE)並減少抖動(jitter),從而導致使用SPAD的裝置之整體性能得到改善。
因此,期望提供一種SPAD,其提供SPAD的有益特性係超額偏壓以可超出在讀出及/或抑制電路中實施的相對低壓電晶體的電壓規格來操作。
因此,本發明的至少一個態樣之至少一個實施例的目的是消除或至少減輕上面所發現之習知技藝的缺點中之至少一者。
本發明係有關於SPADs領域,並且具體地係有關於適合使用對於與讀出式電子裝置有關的操作電壓之高超額偏壓的SPADs。
依據本發明的第一態樣,提供一種單光子崩潰二極體(SPAD),包括:一第一井區,其形成在一基板中;一第二井區,其形成在該基板上且至少部分地於該第一井區周圍延伸;至少一個接點,其形成在該第二井區上方;以及一深井區,其在該第一井區與該第二井區之間不均勻地延伸,其中該第一井區形成在界定一崩潰區的一交接處,並且其中該第二井區及該深井區構造成在該崩潰區與該至少一個接點之間提供導電路徑。
有利地,藉由使該深井區在該第一井區與該第二井區之間不均勻地延伸,相對於該深井區在該第一井區與該第二井區之間均勻延伸的習知技藝SPAD,可以增加該第一井區與該至少一個接點之間的導電路徑之阻抗。
因此,該SPAD本身用一內部抑制電阻器來有效地實施,例如,該導電路徑提供足夠的阻抗來充當一抑制電阻器。
在一些實例中,一附加外部抑制電阻器或電晶體亦可以用於該SPAD。有利地,由於該導電路徑有效的內部抑制阻抗,可以降低用於抑制之電晶體所需的電壓。
再者,根據由該有效的內部抑制電阻器及任何外部抑制電阻器或電晶體形成的電阻式分壓器,亦可以減少對任何讀出式電子裝置的要求。
也就是說,該內部抑制電阻器可以使該SPAD能夠在超額偏壓超過可用於實施該讀出式電子裝置之低壓電晶體的最大操作電壓下操作。有利地,這使該SPAD能夠在更高的超額偏壓下操作,從而改善光子偵測效率及時序抖動(timing jitter)以及整體產品性能。
再者,在一SPADs陣列中,停用一個或以上的SPADs 有時可能是有利的。造成這種情況的示例原因可能是一些SPADs 可能表現出非常高的暗計數率,或者在特定應用模式下並非該陣列中的所有SPADs都是必需的。對於習知技藝SPAD,這可以藉由以一開關停用SPAD的陽極連接至VDD及藉由該抑制電晶體的路徑中之一附加開關避免從VDD至VSS之間永久的電流流動來實施。
如果對依據本發明的SPAD給予同樣的情況,並且超額偏壓超過VDD,則該SPAD可以不完全被停用,而是可以在由VDD降低的超額偏壓下操作。因為對於小的超額偏壓,該內部抑制電阻器足以適當地抑制,故抑制沒有問題。又因為緩衝器的輸入連接至VDD,故不會偵測到信號。
可以理解到,不均勻地延伸可以包括以摻雜密度不均勻方式延伸及/或以分佈不均勻方式延伸,例如,如下面所更詳細描述,沒有完全圍繞該第一井連續地橫向延伸。相較之下,可以實施習知技藝的SPADs,其中一深井區可以均勻地延伸,例如,在該第一井區與該第二井區之間具有均勻的摻雜密度,並且完全圍繞該第一井連續地延伸。
界定該崩潰區的該接面可以是一pn接面。如參考下面的實施例更詳細地描述,在一些實例中,該pn接面可以形成在該第一井區與形成在該第一井區上的一植入區之間。在一些實例中,該pn接面可以形成在該第一井區與該深井區之間。在一些實例中,該pn接面可以形成在該第一井區與形成在該深井區中的另一井區或植入區之間。
當在垂直於該基板的一表面之方向上觀看時,該深井區可以僅部分地於該第一井區周圍延伸。
有利的是,相對於該深井區可以在該第一井區與該第二井區之間均勻地延伸之習知技藝SPAD,藉由僅部分地於該第一井區周圍延伸,可以增加該第一井區與該至少一個接點之間的導電路徑之阻抗。再者,在特定實施例中,該深井區可以僅朝該第二井區的一個或以上之部分延伸,而沒有在該第二井區中形成的一接點下方延伸。因此,該導電路徑的路徑長度可以相對較長,從而增加該導電路徑的總阻抗。
在該第一井區與該第二井區之間的該深井區之摻雜濃度可以是不均勻的。
例如,在該第一井區與該第二井區之間的該深井區之摻雜濃度可以低於在該第一井區及/或該第二井區正下方之該深井區的摻雜濃度。有利地,藉由具有相對較低摻雜密度的區域,可以增加該第一井區與該第二井區之間的該導電路徑之總阻抗。
在該第一井區與該第二井區之間的該深井區之區域具有比在該第一井區及該第二井區正下方的該深井區之區域還低的摻雜濃度。
例如,形成該深井區可以包括形成由一間隙隔開的該深井區的第一部分及該深井區的第二部分,其中該深井區的橫向擴展及/或熱擴散導致該導電路徑延伸穿過該間隙,但是在該間隙內的摻雜濃度較低。
有利地,可以選擇該間隙的大小來決定該導電路徑的阻抗。
該導電路徑可以是一間接導電路徑。
亦即,該導電路徑在該第一井區與該至少一個接點之間可以不是直線。
該深井區可以不在該至少一個接點下方延伸。
有利地,可以延長該路徑的長度,因為該路徑可能必須在例如實質上平行於該基板的表面之橫向方向上延伸至該至少一個接點。
該第二井區及該深井區可以不用構造成在該崩潰區與該至少一個接點之間提供直接導電路徑。
亦即,該導電路徑在該第一井區與該至少一個接點之間可以不是直線。
該導電路徑可以不是該崩潰區與該至少一個接點之間的最短路徑。有利地,這可以在該第一井區與該至少一個接點之間產生較長路徑,從而增加該路徑的總阻抗。
當朝延伸穿過該SPAD的中心且穿過該至少一個接點的剖面觀看時,該SPAD可以是不對稱的。
例如,當朝該剖面觀看時,該深井可以僅在朝向該第二井區的第一方向上延伸。
該SPAD包括複數條導電路徑,每條路徑在不同方向上至少部分地於該第一井區周圍延伸。
例如,如果該導電路徑從該第一井區的第一側延伸至該第二井區,並且該至少一個接點設置於該第一井區的另一側或相對側,則該導電路徑可以在兩個方向(例如,順時針及逆時針)上於該第一井區周圍延伸。
該SPAD可以包括一植入區,其形成在該第一井區上,以界定該SPAD的該崩潰區。至少一個另外的接點可以形成在該植入區上方。
在一些實例中,該至少一個接點可以提供陰極且該第二井區的導電類型可以是n型,而該至少一個另外的接點可以提供陽極且該植入區的導電類型可以是p型。
在一些實例中,該至少一個接點可以提供陽極且該第二井區的導電類型可以是p型,而該至少一個另外的接點可以提供陰極且該植入區的導電類型可以是n型。
該SPAD包括一保護環,其由在該第一井區與該第二井區之間延伸的一淡摻雜外側區域提供。該保護環可以完全圍繞該第一井區延伸。
當在垂直於該基板的表面之方向上觀看時,該第一井區可以設置在該至少一個接點與該深井區延伸至該第二井區的一位置之間。
依據本發明的第二態樣,提供一種單光子崩潰二極體陣列,包括:複數個第一井區,其形成在一基板中;一第二井區,其形成在該基板上且於該複數個第一井區之間及/或在該複數個第一井區周圍至少部分地延伸;至少一個接點,其形成於該第二井區上方;以及一深井區,其在每個第一井區與該第二井區之間不均勻地延伸,其中每個第一井區形成在界定各自崩潰區的一交接處,並且其中該第二井區及該深井區構造成在每個崩潰區與該至少一個接點之間提供導電路徑。
依據本發明的第三態樣,提供一種單光子崩潰二極體像素讀出式電路,包括:依據第一態樣的單光子崩潰二極體;以及一輸出緩衝器,其耦合至該單光子崩潰二極體的一陽極;其中該單光子崩潰二極體構造成使得在使用中,該單光子崩潰二極體的一崩潰區兩端的一超額偏壓準位超過在該陽極處的一電壓準位及該輸出緩衝器之一電源供應(VDD)的一電壓準位。
依據本發明的第四態樣,提供一種製造單光子崩潰二極體之方法,該方法包括:在一基板中形成一深井區;在該深井區中形成一第一井區,並且形成至少部分地於該第一井區周圍延伸的一第二井區;以及在該第二井區上方形成至少一個接點,其中該深井區形成在該第一井區與該第二井區之間不均勻地延伸,其中該第一井區形成在界定一崩潰區的一交接處,並且其中該第二井區及該深井區形成為在該崩潰區與該至少一個接點之間提供導電路徑。
有利地,藉由使該深井區在該第一井區與該第二井區之間不均勻地延伸,相對於該深井區在該第一井區與該第二井區之間均勻延伸的習知技藝SPAD,可以增加該第一井區與該至少一個接點之間的導電路徑之阻抗。
形成該深井區包括形成由一間隙隔開之該深井區的第一部分與該深井區的第二部分,其中該深井區的橫向擴展及/或熱擴散導致該導電路徑延伸穿過該間隙。
當從垂直於該基板的表面之方向觀看時,該深井區的第一部分在該第一井區下方延伸,而該深井區的第二部分在該第二井區下方延伸。
該深井區能以如下形成,當在垂直於該基板的一表面之方向上觀看時,該深井區僅部分地於該第一井區周圍延伸,以致於該深井區不在該至少一個接點下方延伸。
上面的總結僅是示例性的而非限制性的。本發明以單獨或各種組合包括一個或多個相應的態樣、實施例或特徵,而無論是否以組合或單獨形式來具體指定(包括請求)。應該理解到,以上依據本發明的任何態樣或以下與本發明的任何具體實施例相關的特徵可以單獨使用或與任何其它態樣或實施側中的任何其它定義特徵一起使用,以形成本發明的另一個態樣或實施例。
圖1描繪習知技藝SPAD像素讀出式電路100的示意圖。電路100包括SPAD 105,其中SPAD 105的陰極耦合至高電壓參考VHV,而SPAD 105的陽極耦合至緩衝器110。緩衝器110代表讀出式電路,例如,一種構造成讀出SPAD的狀態之電路。
在一個實例中,電路100可以是積體裝置,其中緩衝器110可以使用低壓CMOS電晶體組成。緩衝器110耦合至供應電壓VDD。供電軌VDD的電壓低於高電壓參考VHV的電壓。僅為了示例的目的,緩衝器110作為反相器實施。亦即,緩衝器110的輸出表示節點C的反相,例如,如果節點C處的電壓為高位,則反相器的輸出為低位。節點C相當於SPAD 105的陽極。
亦描繪電流鏡115,其構造成將抑制電流IQ鏡射至SPAD 105。也就是說,電流鏡115實施構造成提供恆定抑制電流IQ的被動抑制電路。可以理解到,這僅僅是抑制電路的一個實例,並且其它抑制電路在本技藝中係已知的。
僅作為示例,亦描繪來自電路100的輸出120之表示。緩衝器110可以用緩衝器110的輸出電壓之下降來指出崩潰觸發事件(例如,光子撞擊)的發生。
在使用中,如果SPAD 105兩端的超額偏壓大大地超過供應電壓VDD,則節點「C」處的電壓將超過VDD。因此,電流鏡電路115的電晶體及緩衝器110的電晶體可能發生過度電性應力(electrical overstress)。
亦即,SPAD 105的最大可用超額偏壓可能受到用於實施讀出式電路及抑制電路(例如,緩衝器110及電流鏡115)的低壓電晶體所支持的最大電壓之限制。如果SPAD 105的超額偏壓太高,則電流鏡電路115及/或緩衝器110可能易於損壞。
這可能會限制這種習知技藝電路100的性能,因為可能需要高超額偏壓來提高SPAD 105的性能,例如,提高SPAD 105的光子偵測效率(PDE)。
圖2描繪習知技藝SPAD 200的平面圖。圖2亦描繪SPAD 200沿著線A-A的剖面圖。
SPAD 200可以被實施為圖1的SPAD像素讀出式電路100中的SPAD 105。
實例SPAD 200形成在P型基板260上。
實例SPAD包括形成在基板260中的第一井區205。在下面實例中,第一井區205被表示為「N-增強區」,例如,以n型雜質作濃摻雜的井區。
亦描繪形成在P型基板260中的第二井區210。第二井區210係例如藉由將n型雜質擴散至P型基板260中而形成的N型井區。
在第二井區210上方形成複數個接點215。複數個接點215包括N+擴散部分,以便提供與複數個陰極265的歐姆接觸,其中陰極265可以採用金屬層。
描繪深井區220。深井區220形成在p型基板260中的第一井區205與第二井區210的下方,並且在第一井區205與第二井區210之間均勻地延伸。
在一些實施例中,深井區220可以延伸至基板的表面。在這樣的實施例中,第二井區210實際上由深井區(例如,深井區的一部分)形成。
SPAD 200亦包括形成在第一井區205上的P+植入區230,以界定SPAD 200的崩潰區235。
亦即,第二井區210及深井區220構造成在崩潰區235與複數個接點215之間提供導電路徑225。
在植入區230上方形成另一個接點240,以界定SPAD 200的陽極。
為了完整起見,亦描繪與p型基板260連接之另外的接點270。P型井形成在p型基板260中,並且另外的接點270由P+擴散部分280形成,以便提供與複數個金屬接點285的歐姆接觸。
在圖2中亦顯示SPAD 200的平面圖。在平面圖中可以看出,第二井區210完全圍繞第一井區205延伸。
再者,深井區220在第一井區205與第二井區210之間均勻地延伸。亦即,深井區220在第一井區205與第二井區210之間以均勻的摻雜密度延伸,並且深井區220在第一井區205與第二井區210之間朝所有方向橫向地延伸。
因此,第二井區及深井區構造成在崩潰區235(例如,第一井區205)與複數個接點215之間提供非常低阻抗的導電路徑225。
圖3描繪依據本發明的一個實施例之SPAD像素讀出式電路300。SPAD像素讀出式電路300包括SPAD 305。為了說明的目的,描繪SPAD 305的等效電路,其中SPAD 305包括有效地耦合在SPAD 305之感光組件的陰極與高電壓參考VHV之間的內部電阻器395。SPAD 305的陽極耦合至緩衝器310。緩衝器310代表讀出式電路,例如,構造成讀出SPAD的狀態之電路。
SPAD像素讀出式電路300係積體裝置,因此緩衝器310可以使用低壓CMOS電晶體組成。緩衝器310耦合至電源電壓VDD。供電軌VDD的電壓低於高電壓參考VHV的電壓。僅為了示例的目的,緩衝器310作為反相器實施。亦即,緩衝器310的輸出表示節點C的反相,例如,如果節點C處的電壓為高位,則反相器的輸出為低位。節點C相當於SPAD 305的陽極。
亦描繪電流鏡315,其構造成將抑制電流IQ鏡像至SPAD 305。也就是說,電流鏡315實施構造成提供恆定抑制電流IQ的被動抑制電路。可以理解到,這僅僅是抑制電路的一個實例,並且其它抑制電路在本技藝中係已知的。
僅為了示例,亦描繪來自SPAD像素讀出式電路300的輸出320之表示。緩衝器310可以用緩衝器310的輸出電壓之下降來指出崩潰觸發事件(例如,光子撞擊)的發生。
內部電阻器395有效地用作內部抑制電阻器。
在此實例中,例如在電流鏡315中抑制電晶體與SPAD 305一起使用。有利地,由於導電路徑的有效的內部抑制阻抗,可以降低任何外部抑制阻抗的電壓要求。
在所描述的實例中,依據由有效的內部抑制電阻器及電流鏡315的有效的外部抑制阻抗形成的電阻式分壓器,相對於圖1的習知技藝SPAD像素讀出式電路100亦可以降低對任何讀出式電子裝置的要求。
亦即,內部抑制電阻器395使SPAD 305能夠在超額偏壓超過可用以實施緩衝器310及電流鏡315之低壓電晶體的最大操作電壓下操作。有利地,這使SPAD 305能夠以較高的超額偏壓操作,從而改善光子偵測效率及時序抖動以及整體產品性能。
圖4描繪SPAD 400的平面圖。圖4亦描繪SPAD 400沿著線B-B的剖面圖。SPAD 400可以被實施為圖3的SPAD像素讀出式電路300中之SPAD 305。
雖然SPAD 400在平面圖中被描繪為大致方形,但是可以理解到,這僅是為了示例的目的,因此落在本發明的範圍內之SPAD 400可以被實施為其它形狀,例如,多邊形或單邊形(例如圓形、橢圓形等)。
SPAD 400形成在P型基板460上。實例SPAD包括形成在基板460中的第一井區405。在以下實例中,第一井區405被表示為「N增強區」,例如,以n型雜質作濃摻雜的井。
亦描繪形成在P型基板460中的第二井區410。第二井區410係例如藉由將n型雜質擴散至P型基板460中而形成的N型井。
在第二井區410的一部分上方形成複數個接點415。複數個接點415包括N+擴散部分,以便提供與複數個陰極465的歐姆接觸,其中陰極465可以採用金屬層。
保護環445由在第一井區405與第二井區410之間延伸的淡摻雜外側區域提供,並完全圍繞第一井區405延伸。
描繪深井區420。深井區420在p型基板460中第一井區405及第二井區410僅一部分下方形成。也就是說,相較於圖2的SPAD 200,深井區420在第一井區405與第二井區410之間不均勻地延伸,例如,如下文更詳細描述,不是完全圍繞第一井區405連續地延伸。
SPAD 400亦包括形成在第一井區405上的P+植入區430,以界定SPAD 400的崩潰區435。
第二井區410及深井區420構造成在崩潰區435與複數個接點415之間提供導電路徑425、450。
在植入區430上方形成另一個接點440,以界定SPAD 400的陽極。
為了完整起見,亦描繪與p型基板460連接之另外的接點470。P型井形成在p型基板460中,並且另外的接點470由P+擴散部分480形成,以便提供與複數個金屬接點485的歐姆接觸。
在SPAD 400的剖面圖中可以看到,深井區420沒有延伸至複數個接點415下方。因此,崩潰區435與複數個接點415之間的導電路徑425、450係間接導電路徑425、450。第二井區410及深井區420沒有構造成在第一井區405與複數個接點415之間提供最短路徑。
這可以在SPAD 400的平面圖中例如在垂直於基板460的表面之方向上看到,其中可以看到深井區420僅部分地於第一井區405周圍延伸,並且沒有延伸至複數個接點415下方。因此,SPAD 400實際上包括以一個方向圍繞第一井區405延伸的第一導電路徑425及以相反方向圍繞第一井區405延伸的第二導電路徑450。
有利地,與圖2之SPAD 200的第一井區405與第二井區410之間的阻抗相較,在第一井區405與第二井區410之間不均勻地延伸的深井區420可以增加導電路徑425、450的總阻抗。這樣的阻抗增加可以有效地實施上述內部抑制電阻器395,從而使SPAD 400能夠在超額偏壓超過可用以實施讀出式電路或抑制電路(例如,緩衝器310及電流鏡315)之低壓電晶體的最大操作電壓下操作。
圖5描繪SPAD 500的平面圖。圖5亦描繪SPAD 500沿著線C-C的剖面圖。SPAD 500可以被實施為圖3的SPAD像素讀出式電路300中之SPAD 305。儘管SPAD 500在平面圖中被描繪為大致方形,但是可以理解到,這僅是為了示例的目的,因此落在本發明的範圍內之SPAD 500可以被實施為其它形狀,例如,多邊形或單邊形。
SPAD 500形成在P型基板560上。實例SPAD包括形成在基板560中的第一井區505。在以下實例中,第一井區505被表示為「N增強區」,例如,以n型雜質作濃摻雜的井。
亦描繪形成在P型基板560中的第二井區510。第二井區510係例如藉由將n型雜質擴散至P型基板560中而形成的N型井。
在第二井區510的一部分上方形成單個接點515。單個接點515包括N+擴散部分,以便提供與陰極565的歐姆接觸,其中陰極565可以採用金屬層。
保護環545由在第一井區505與第二井區510之間延伸的淡摻雜外側區域提供,並完全圍繞第一井區505延伸。
描繪深井區520。深井區520在p型基板560中之第一井區505及第二井區510僅一部分下方形成。也就是說,相較於圖2的SPAD 200,深井區520在第一井區505與第二井區510之間不均勻地延伸,例如,如下文更詳細描述,不是完全圍繞第一井區505連續地延伸。
SPAD 500亦包括形成在第一井區505上的P+植入區530,以界定SPAD 500的崩潰區535。
第二井區510及深井區520構造成在崩潰區535與單個接點515之間提供導電路徑525、550。
藉由減少接點的數量(例如,與複數個接點215相較,單個接點515),可以相對地增加在崩潰區535與單個接點515之間的導電路徑525、550之阻抗。
在植入區530上方形成另一個接點540,以界定SPAD 400的陽極。
為了完整起見,亦描繪與p型基板560連接之另外的接點570。P型井形成在p型基板560中,並且另外的接點570由P+擴散部分580形成,以便提供與複數個金屬接點585的歐姆接觸。
在SPAD 500的剖面圖中可以看到,深井區520沒有延伸至單個接點515下方。相對於圖5的實施例,只有深井區520的相對較窄部分從第一井區505延伸至第二井區510。藉由減小深井區420在第一井區505與第二井區510之間的橫向寬度,可以在不增加SPAD 500的總體尺寸之情況下增加導電路徑的有效阻抗。再者,如在平面圖中所看到,深井區520在第二井區510的第一角下方延伸,並且單個接點515設置在第二井區510 的相對角上,例如,在離第一角最遠的位置處,從而最大化導電路徑525及550的長度。藉由最大化導電路徑525及550的長度,導電路徑525及550的阻抗亦可以被最大化。
因此,崩潰區535與單接點515之間的導電路徑525、550係間接導電路徑525、550。亦即,第二井區510及深井區520沒有構造成在第一井區505與複數個接點515之間提供最短路徑,以及另外,導電路徑525、550的至少一個深井部分係相對較窄以增加其阻抗。
圖6描繪SPAD 600的平面圖。圖6亦描繪SPAD 600沿著線D-D的剖視圖。SPAD 600可以被實施為圖3的SPAD像素讀出式電路300中之SPAD 305。雖然SPAD 600在平面圖中被描繪為大致方形,但是可以理解到,這僅是為了示例的目的,因此落在本發明的範圍內之SPAD 600可以被實施為其它形狀,例如,多邊形或單邊形。
SPAD 600的大部分特徵大致上與SPAD 500的特徵相對應,因此為了簡潔起見不再詳細描述。與用於圖5的SPAD 500之特徵的元件符號相較,用於圖6的SPAD 600之特徵的元件符號增加100。SPAD 600包括:P型基板660;第一井區605,其形成在基板660中;第二井區610,其形成在P型基板660中;單個接點615,其形成在第二井區610的一部分上方,其中單個接點615包括N+擴散部分,以便提供與陰極665的歐姆接觸;保護環645,其由在第一井區605與第二井區610之間延伸的淡摻雜外側區域提供;深井區620,其中第二井區610及深井區620構造成在崩潰區635與單個接點615之間提供導電路徑625、650;P+植入區630,其形成在第一井區605上,以界定崩潰區635;以及另一個接點640,其形成在植入區630上方,以界定陽極。
深井區620在第一井區605與第二井區610之間不均勻地延伸。亦即,深井區620以不均勻的摻雜分佈延伸。
深井區620由被間隙655隔開之深井區的第一部分及深井區的第二部分形成,其中深井區620的橫向擴展及/或熱擴散導致導電路徑625、650延伸穿過間隙。
有利地,藉由橫向擴展及/或熱擴散手段實際地橋接間隙655,使得導電路徑625、650呈現出比圖5之實例SPAD 500的導電路徑525、550還高的有效阻抗。
有利地,可以選擇間隙655的大小,以選擇導電路徑的阻抗。
圖7描繪SPAD 700的平面圖。圖7亦描繪SPAD 700沿著線E-E的剖視圖。SPAD 700可以被實施為圖3的SPAD像素讀出式電路300中之SPAD 305。雖然SPAD 700在平面圖中被描繪為大致方形,但是可以理解到,這僅是為了示例的目的,因此落在本發明的範圍內之SPAD 700可以被實施為其它形狀,例如,多邊形或單邊形。
SPAD 700的大部分特徵大致上與SPAD 200的特徵相對應,因此為了簡潔起見不再詳細描述。與用於圖2的SPAD 200之特徵的元件符號相較,用於圖7的SPAD 700之特徵的元件符號增加500。SPAD 700包括:P型基板760;第一井區705,其形成在基板760中;第二井區710,其形成在P型基板760中;複數個接點715,其形成在第二井區710上方,其中複數個接點715包括N+擴散部分,以便提供與複數個陰極765的歐姆接觸;保護環745,其由在第一井區705與第二井區710之間延伸的淡摻雜外側區域提供;深井區720,其中第二井區710及深井區720構造成在崩潰區735與複數個接點715之間提供導電路徑;複數個接點715;P+植入區730,其形成在第一井區705上,以界定崩潰區735;以及另一個接點740,其形成在植入區730上方,以界定陽極。
在圖7的實例中,深井區620在第一井區705與第二井區710之間不均勻地延伸。亦即,深井區720以不均勻的摻雜分佈延伸。
深井區720由被間隙755a、755b、755c、755d隔開之深井區的第一部分及深井區的第二部分形成,其中深井區720的橫向擴展及/或熱擴散導致導電路徑延伸穿過間隙。
深井區720的第二部分完全圍繞深井區720的第一部分延伸。因此,間隙755a、755b、755c、755d完全圍繞深井區720的第一部分延伸。
有利地,藉由橫向擴展及/或熱擴散手段實際地橋接間隙755a、755b、755c、755d,使得導電路徑呈現出比圖2之實例SPAD 200的導電路徑還高的有效阻抗。有利地,可以選擇間隙755a、755b、755c、755d的大小,以選擇導電路徑的阻抗。
在一些實施例中,間隙755a、755b、755c、755d可以圍繞深井區720的第一部分不均勻地延伸。亦即,例如,圖7中以755a、755b、755c、755d表示之間隙的一個或多個部分可以大於或小於圖7中以755a、755b、755c、755d表示之間隙的至少一個其它部分。作為一個非限制性實例,以755a表示之間隙可以大於以755b表示之間隙。在這樣的實施例中,從崩潰區735延伸並穿過以755a表示之相對大間隙的導電路徑之阻抗可以高於延伸穿過以755a表示之相對小間隙的導電路徑之阻抗。在這樣的實施例中,其中間隙755a、755b、755c、755d圍繞深井區720的第一部分不均勻地延伸,接點715(例如,陰極)或用於提供歐姆接觸之至少N+擴散部分可以不完全圍繞第一井區延伸。反而是,接點715可以如圖4中所示來實施,其中N+擴散部分僅部分地於第一井區705周圍延伸。在這樣的實施例中,接點715可以僅形成在較大間隙755a附近,例如,相鄰於較大間隙755a,使得從崩潰區735延伸之任何導電路徑主要延伸穿過較小間隙755b,從而增加這樣的導電路徑之總阻抗。同樣地,在具有圍繞深井區720的第一部分不均勻地延伸之間隙755a、755b、755c、755d的一些實施例中,例如圖5及6所示的那樣,少如單個接點715可以在較大間隙755a附近(例如,相鄰於較大間隙755a)設置。
在具有圍繞深井區720的第一部分不均勻地延伸之間隙755a、755b、755c、755d的一些實施例中,少如單個接點715可以在最大間隙附近設置,並且在最小間隙附近沒有設置接點。
在一些實施例中,圖7中以755a、755b、755c、755d表示之間隙的一個或多個部分可以大於或小於圖7中以755a、755b、755c、755d表示之間隙的至少一個其它部分,並且深井區720亦延伸至基板760的表面。在這樣的實施例中,第二井區710實際上由深井區(例如,深井區720的一部分)形成。在這樣的實施例中,從崩潰區735延伸至實際上的第二井區(例如,在表面處之深井區的一部分)的任何導電路徑可以主要延伸穿過較小的間隙,從而增加這樣的導電路徑之總阻抗。在顯示SPAD陣列800、860的圖8a及8b中描繪本發明的其它實施例。僅為了示例的目的,SPAD陣列800、860各自僅包括四個SPAD,但是可以體會到,在其它實例中,可以在每個陣列中實施少於或多於四個SPAD。
圖8a描繪SPAD陣列800 的平面圖。
SPADs陣列包括形成在基板中之複數個第一井區805a、805b、805c、805d。第二井區810亦形成在基板上且在複數個第一井區805a、805b、805c、805d中之每一者周圍及之間延伸。在圖8a的實例中,第二井區810實際上形成網格狀結構。接點815形成在第二井區810的中心部分上方,例如,與每個第一井區805a、805b、805c、805d等距。接點815包括n+型區880a,以便提供與陰極865a的歐姆接觸。
深井區820在每個第一井區805a、805b、805c、805d與第二井區810之間不均勻地延伸,其中第二井區及深井區820構造成在由與每個第一井區805a、805b、805c、805d的接面界定之崩潰區與接點815之間提供導電路徑825、850。為了簡單說明,僅針對這些第一井區中之一805d圖示兩個導電路徑825、850。
如關於圖4至7的實施例所述,在每個第一井區805a、805b、805c、805d上形成P+植入區830a、830b、830c、830d,以界定四個SPADs的崩潰區。
相似於圖6的實施例,深井區820由在每個第一井區805a、805b、805c、805d下方之深井區的第一部分及在第二井區810的角落下方延伸之深井區的第二部分形成,並且由間隙855a、855b、855c、855d隔開,其中深井區820的橫向擴展及/或熱擴散導致導電路徑延伸穿過每個間隙855a、855b、855c、855d。
深井區820在所有第一井區805a、805b、805c、805d下方延伸。有利地,藉由橫向擴展及/或熱擴散手段實際上橋接間隙855,使得導電路徑825、850呈現出比例如圖5之實例SPAD 500的導電路徑525、550還高的有效阻抗。有利地,可以選擇每個間隙855a、855b、855c、855d的大小,以選擇個別導電路徑的阻抗。
也就是說,在實例SPAD陣列800的四個SPADs之間共用第二井區810。再者,亦在實例SPAD陣列800的四個SPADs之間共用接點815。有利地,這可以使深井區820與每個SPAD相比能夠相對較大且在設計規則的約束內更易於管理設置。
在圖8a的示例實施例中,大部分壓降可以是在間隙區域(例如,間隙855a、855b、855c、855d)中。因此,即使四個SPADs中的兩個SPADs在相似的時間被觸發,其餘兩個SPADs實際上仍然可以具有充分的超額偏壓。
注意,為了示例的目的,從圖8a及8b省略基板接點,因為每個示例實施例可以是更大陣列中的一小部分。
圖8b描繪圖8a的一個替代實施例。圖8b的特徵大致上對應於圖8a的特徵,因此為了簡潔的目的不再進一步詳細描述。
然而,與圖8a的實施例相比,在圖8b的實例中,n+型區域880b在相鄰第一井區之間延伸。亦即,在圖8b的實例中,n+型區域880b實際上形成十字形結構。在此實例中,每個SPAD可有充分的超額偏壓,即使其它三個SPAD被觸發。n+型區880b提供與單個陰極865b的歐姆接觸。
還有在另外的實施例中,代替在中心的單個陰極865b(例如,金屬接點),可以用複數個這樣的金屬接點來填充n+型區880b。
雖然本發明的所有上述實施例係以SPAD設計為基礎,其中第一井區係N型井區,而深井區係唯一使第一井區連接至第二井區的井區。可以體會到,SPADs的其它實施方式落在本發明的範圍內。
例如,圖9描繪SPAD的其它配置之部分剖面圖,其可與圖4至圖8中揭露之概念組合,以實施本發明之其它實施例。
例如,第一SPAD配置900a相當於圖4至圖8的SPADs,其中以「SPADNW」表示之第一井區905a係形成在P型基板960a中的N型井;以「NW」表示之第二井區910a形成在基板960a上成為至少部分地於第一井區905周圍延伸的N型井。至少一個接點915a形成在第二井區910上方,以及深井區920a在第一井區905a與第二井區910a之間不均勻地延伸。第二井區910a及深井區920a構造成在崩潰區與至少一個接點915a之間提供導電路徑,其中崩潰區由第一井區905a與形成在第一井區905上方的植入區930a之間的接面來界定。如上面實施例所述,由於摻雜分佈及/或一條或多條間接導電路徑的實施之不均勻性,深井區920a可以在第一井區905a與第二井區910a之間不均勻地延伸。
第二SPAD配置900b的實例大體上相當於第一SPAD配置900a,其在第一井區905b與第二井區910b之間額外地形成P型井保護環945b。
在第三SPAD配置900c的實例中,第一井區905c被設置為P型井區,使得提供SPAD的崩潰區之PN接面可以形成在深井區920c與第一井區905c之間。在此實例中,P+植入區930c完全形成在第一井區905a內。
第四SPAD配置900d的實例大體上相當於第三SPAD配置900c,其在深N型井內且在第一井區下方額外地形成SPAD N型井975,即在SPAD N型井975與第一井區905d之間形成用於形成崩潰區的PN接面。
在第一至第四SPAD配置900a、900b、900c、900d的每一者中,並且如上面實施例所描述,深井區920a、920b、920c、920d可以在第一井區905a、905b、905c、905d與第二井區910a、910b、910c、910d之間不均勻地延伸,其中摻雜分佈及/或在個別崩潰區與個別第二井區910a、910b、910c、910d之間形成的一條或多條間接導電路徑的橫向方向係不均勻的。
雖然本發明已根據上述較佳實施例進行描述,但是應該理解這些實施例僅是說明性的且權利請求不限於那些實施例。有鑑於本揭露內容,熟悉該項技藝者將能夠做出修改及替換,這些修改及替換被認為落入所附權利請求的範圍內。在本說明書中揭露或說明的每個特徵可以併入任何實施例中,無論是單獨的還是與本文揭露或說明之任何其它特徵的任何適當組合。
100:SPAD像素讀出式電路 105:SPAD 110:緩衝器 115:電流鏡 120:輸出 200:SPAD 205:第一井區 210:第二井區 215:接點 220:深井區 225:導電路徑 230:植入區 235:崩潰區 240:另一個接點 260:基板 265:陰極 270:另外的接點 280:擴散部分 285:金屬接點 300:SPAD像素讀出式電路 305:SPAD 310:緩衝器 315:電流鏡 320:輸出 395:內部電阻器 400:SPAD 405:第一井區 410:第二井區 415:接點 420:深井區 425:導電路徑 430:植入區 435:崩潰區 440:另一個接點 445:保護環 450:導電路徑 460:基板 480:擴散部分 485:金屬接點 500:SPAD 505:第一井區 510:第二井區 515:接點 520:深井區 525:導電路徑 530:植入區 535:崩潰區 540:另一個接點 545:保護環 550:導電路徑 560:基板 580:擴散部分 585:金屬接點 600:SPAD 605:第一井區 610:第二井區 615:接點 620:深井區 625:導電路徑 630:植入區 635:崩潰區 640:另一個接點 645:保護環 650:導電路徑 655:間隙 660:基板 665:陰極 700:SPAD 705:第一井區 710:第二井區 715:接點 720:深井區 725:導電路徑 730:植入區 735:崩潰區 740:另一個接點 745:保護環 750:導電路徑 755a:間隙 755b:間隙 755c:間隙 755d:間隙 760:基板 800:SPADs陣列 805a:第一井區 805b:第一井區 805c:第一井區 805d:第一井區 810:第二井區 815:接點 820:深井區 825:導電路徑 830a:植入區 830b:植入區 830c:植入區 830d:植入區 850:導電路徑 855a:間隙 855b:間隙 855c:間隙 855d:間隙 860:SPADs陣列 865a:陰極 865b:陰極 880a:n+型區 880b:n+型區 900a:第一SPAD配置 900b:第二SPAD配置 900c:第三SPAD配置 900d:第四SPAD配置 905a:第一井區 905b:第一井區 905c:第一井區 905d:第一井區 910a:第二井區 910b:第二井區 910c:第二井區 910d:第二井區 915a:接點 920a:深井區 920b:深井區 920c:深井區 920d:深井區 930a:植入區 945b:保護環 960a:基板 970:第四SPAD配置 975:SPAD N型井
現在將參考附圖僅透過實例的方式來描述本發明的這些及其它態樣,其中: 圖1描繪習知技藝SPAD像素讀出式電路的示意圖; 圖2描繪可在圖1的圖素中實施之習知技藝SPAD的剖面圖及平面圖; 圖3描繪依據本發明的一個實施例之基於SPAD的圖素; 圖4係依據本發明的一個實施例之SPAD的剖面圖及平面圖; 圖5係依據本發明的另一個實施例之SPAD的剖面圖及平面圖; 圖6係依據本發明的另一個實施例之SPAD的剖面圖及平面圖; 圖7係依據本發明的另一個實施例之SPAD的剖面圖及平面圖; 圖8a係依據本發明的一個實施例之SPAD陣列的平面圖; 圖8b係依據本發明的另一個實施例之SPAD陣列的平面圖;以及 圖9描繪SPAD的其它結構之部分剖面圖,其可以與圖4至圖8中揭露的概念組合,以實施本發明的其它實施例。
300:SPAD像素讀出式電路
305:SPAD
310:緩衝器
315:電流鏡
320:輸出
C:節點
IQ:抑制電流
SPAD:單光子崩潰二極體
VDD:電源供應
VHV:高電壓參考
Output:輸出

Claims (16)

  1. 一種單光子崩潰二極體(SPAD)(400、500、600、700、900a-d),包括: 一第一井區(405、505、605、705、905a-d),其形成在一基板(460、560、660、760、960a)中; 一第二井區(410、510、610、710、910a-d),其形成在該基板上且至少部分地於該第一井區周圍延伸; 至少一個接點(415、515、615、715、915a),其形成在該第二井區上方;以及 一深井區(420、520、620、720、920a-d),其在該第一井區與該第二井區之間不均勻地延伸,其中該第一井區形成在界定一崩潰區(435、535、635、735)的一交接處,並且其中該第二井區及該深井區構造成在該崩潰區(435、535、635、735)與該至少一個接點之間提供導電路徑(425、450、525、550、625、650、725)。
  2. 如請求項1之單光子崩潰二極體(400、500、600、700、90a-d),其中當在垂直於該基板(460、560、660、760、960)的表面之方向上觀看時,該深井區(420、520、620、720、920a-d)僅部分地於該第一井區(405、505、605、705、905a-d)周圍延伸。
  3. 如請求項1或2之單光子崩潰二極體(400、500、600、700、900a-d),其中該第一井區(405、505、605、705、905)與該第二井區(410、510、610、710、910a-d)之間的該深井區(420、520、620、720、920a-d)之摻雜密度係不均勻的。
  4. 如請求項3之單光子崩潰二極體(400、500、600、700、900a-d),其中該第一井區(405、505、605、705、905a-d)與該第二井區(410、510、610、710、910a-d)之間的該深井區(420、520、620、720)之區域具有比該第一井區及該第二井區正下方之該深井區的區域還低之摻雜濃度。
  5. 如請求項1至4中任一項之單光子崩潰二極體(400、500、600、700、900a-d),其中下列中至少一者: 該導電路徑(425、450、525、550、625、650)係間接導電路徑; 該深井區(420、520、620、720、920a-d)不在該至少一個接點(415、515、615、715、915a)下方延伸;及/或 該第二井區(410、510、610、710、910a-d)及該深井區沒有構造成在該崩潰區(405、505、605、705、905a-d)與該至少一個接點之間提供直接導電路徑;及/或 該導電路徑不是該崩潰區與該至少一個接點之間的最短路徑; 當朝延伸穿過該單光子崩潰二極體的中心且穿過該至少一個接點的剖面觀看時,該單光子崩潰二極體係不對稱的。
  6. 如請求項1至5中任一項之單光子崩潰二極體(400、500、600、700、900a-d),包括複數條導電路徑(425、450、525、550、625、650、725),每條路徑在不同方向上至少部分地於該第一井區(405、505、605、705、905a-d)周圍延伸。
  7. 如請求項1至6中任一項之單光子崩潰二極體(400、500、600、700、900a-d),包括一植入區(430),其形成在該第一井區(405、505、605、705、905a-d)上,以界定該單光子崩潰二極體的該崩潰區(435);以及至少一個另外的接點(440、540、640、740),其形成在該植入區上方。
  8. 如請求項7之單光子崩潰二極體(400、500、600、700、900a-d),其中: 該至少一個接點(415、515、615、715、915a)提供陰極且該第二井區(410、510、610、710、910a-d)的導電類型係n型,而該至少一個另外的接點(440、540、640、740)提供陽極且該植入區的導電類型係p型;或 該至少一個接點提供陽極且該第二井區的導電類型係p型,而該至少一個另外的接點提供陰極且該植入區的導電類型係n型。
  9. 如請求項1至8中任一項之單光子崩潰二極體(400、500、600、700、900a-d),包括一保護環(445),其由在該第一井區(405、505、605、705、905a-d)與該第二井區(410、510、610、710、910a-d)之間延伸的淡摻雜外側區域提供且完全圍繞該第一井區(405、505、605、705、905a-d)延伸。
  10. 如請求項1至9中任一項之單光子崩潰二極體(400、500、600、700、900a-d),其中當在垂直於該基板的表面之方向上觀看時,該第一井區(405、505、605、705、905a-d)設置在該至少一個接點(415、515、615、715)與該深井區(420、520、620、720、920a-d)延伸至該第二井區(410、510、610、710、910a-d)的位置之間。
  11. 一種單光子崩潰二極體陣列(800、860),包括: 複數個第一井區(805a、805b、805c、805d),其形成在一基板中; 一第二井區(810),其形成在該基板上且於該複數個第一井區之間及/或在該複數個第一井區周圍至少部分地延伸; 至少一個接點(815),其形成於該第二井區上方;以及 一深井區(820),其在每個第一井區與該第二井區之間不均勻地延伸,其中每個第一井區形成在界定各自崩潰區的一交接處,並且其中該第二井區及該深井區構造成在每個崩潰區與該至少一個接點之間提供導電路徑(825、850)。
  12. 一種單光子崩潰二極體像素讀出式電路(300),包括: 如請求項1至10中任一項之單光子崩潰二極體(400、500、600、700、900a-d);以及 一輸出緩衝器(365),其耦合至該單光子崩潰二極體的一陽極; 其中該單光子崩潰二極體構造成使得在使用中該單光子崩潰二極體的一崩潰區兩端的一超額偏壓準位超過在該陽極處的一電壓準位及該輸出緩衝器之一電源供應(VDD)的一電壓準位。
  13. 一種製造單光子崩潰二極體之方法,該方法包括: -     在一基板中形成一深井區(420、520、620、720); -     在該深井區中形成一第一井區(405、505、605、705),並且形成至少部分地於該第一井區周圍延伸的一第二井區(410、510、610、710);以及 -     在該第二井區上方形成至少一個接點(415、515、615、715), -     其中該深井區形成在該第一井區與該第二井區之間不均勻地延伸,其中該第一井區形成在界定一崩潰區的一交接處,並且其中該第二井區及該深井區形成以在該崩潰區與該至少一個接點之間提供導電路徑(425、450、525、550、625、650、725)。
  14. 如請求項13之方法,其中形成該深井區包括形成由一間隙(655、755a-d)隔開之該深井區(420、520、620、720)的第一部分與該深井區的第二部分,其中該深井區的橫向擴展及/或熱擴散導致該導電路徑(425、450、525、550、625、650、725)延伸穿過該間隙。
  15. 如請求項14之方法,其中當從垂直於該基板的表面之方向觀看時,該深井區(420、520、620、720)的該第一部分在該第一井區(405、505、605、705)下方延伸,而該深井區的該第二部分在該第二井區(410、510、610、710)下方延伸。
  16. 如請求項13至15中任一項之方法,其中該深井區(420、520、620、720)的形成使得當在垂直於該基板的表面之方向上觀看時,該深井區僅部分地於該第一井區(405、505、605、705)周圍延伸,以致於該深井區不在該至少一個接點下方延伸。
TW112115351A 2022-05-06 2023-04-25 單光子崩潰二極體 TW202349736A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB202206670 2022-05-06
GBGB2206670.8 2022-05-06

Publications (1)

Publication Number Publication Date
TW202349736A true TW202349736A (zh) 2023-12-16

Family

ID=86424929

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112115351A TW202349736A (zh) 2022-05-06 2023-04-25 單光子崩潰二極體

Country Status (2)

Country Link
TW (1) TW202349736A (zh)
WO (1) WO2023213872A1 (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3164683B1 (en) * 2014-07-02 2023-02-22 The John Hopkins University Photodetection circuit
US10141458B2 (en) * 2016-07-21 2018-11-27 Omnivision Technologies, Inc. Vertical gate guard ring for single photon avalanche diode pitch minimization

Also Published As

Publication number Publication date
WO2023213872A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
US10217889B2 (en) Clamped avalanche photodiode
US10199482B2 (en) Apparatus for electrostatic discharge protection
US10163891B2 (en) High voltage ESD protection apparatus
US20180108799A1 (en) Avalanche diode and method for manufacturing the same field
TWI810194B (zh) 超額偏壓監測之單光子雪崩二極體裝置
US9786651B2 (en) Electrostatic discharge device
CN111684610B (zh) 单光子雪崩二极管和用于操作单光子雪崩二极管的方法
US10446537B2 (en) Electrostatic discharge devices
US8963288B2 (en) ESD protection circuit
US9461032B1 (en) Bipolar ESD protection device with integrated negative strike diode
WO2018088047A1 (ja) アバランシェフォトダイオード
US10312391B2 (en) Apparatus and method for single-photon avalanche-photodiode detectors with reduced dark count rate
US8164869B2 (en) Diode chain with a guard-band
JP2022025594A (ja) 光電変換装置
KR100679943B1 (ko) 낮은 촉발전압에서 동작이 가능한 실리콘제어정류기구조의 정전기방전 보호 회로
US8841740B2 (en) Single-photon avalanche diode assembly
TW202349736A (zh) 單光子崩潰二極體
US20130285114A1 (en) Twin-well lateral silicon controlled rectifier
US8537514B2 (en) Diode chain with guard-band
TWI538154B (zh) 晶片與靜電放電保護元件及其製造方法
JP2012174783A (ja) フォトダイオードおよびフォトダイオードアレイ
US20220406823A1 (en) Image sensor with photosensitivity enhancement region
US11239265B2 (en) Single-photon avalanche diode detector array
KR101707896B1 (ko) 실리콘 광 증배 소자
US20220020788A1 (en) Image sensing device including protection device