TW202349708A - Shield gate mosfet - Google Patents

Shield gate mosfet Download PDF

Info

Publication number
TW202349708A
TW202349708A TW111121230A TW111121230A TW202349708A TW 202349708 A TW202349708 A TW 202349708A TW 111121230 A TW111121230 A TW 111121230A TW 111121230 A TW111121230 A TW 111121230A TW 202349708 A TW202349708 A TW 202349708A
Authority
TW
Taiwan
Prior art keywords
epitaxial layer
layer
epitaxial
gate
shielded gate
Prior art date
Application number
TW111121230A
Other languages
Chinese (zh)
Other versions
TWI838763B (en
Inventor
蕭純穎
何昌瑾
蔣永康
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW111121230A priority Critical patent/TWI838763B/en
Priority claimed from TW111121230A external-priority patent/TWI838763B/en
Publication of TW202349708A publication Critical patent/TW202349708A/en
Application granted granted Critical
Publication of TWI838763B publication Critical patent/TWI838763B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

A shield gate MOSFET includes a substrate, a multilayer epitaxial structure, a shield gate, a control gate, an insulating layer between the shield gate and the multilayer epitaxial structure, a gate oxide layer between the control gate and the multilayer epitaxial structure, and an inter-gate oxide layer between the shield gate and the control gate. The shield gate and the control gate are formed in a trench of the multilayer epitaxial structure. In the multilayer epitaxial structure, a first epitaxial layer is disposed at the surface of the multilayer epitaxial structure, a third epitaxial layer is disposed between the bottom of the trench to the substrate, and a second epitaxial layer is sandwiched by the first and the third epitaxial layers. The resistance of the first epitaxial layer is less than that of the third epitaxial layer, and the resistance of the second epitaxial layer is less than that of the first epitaxial layer.

Description

遮蔽閘金氧半場效電晶體SHIELD GATE MOSFET

本發明是有關於一種功率半導體裝置,且特別是有關於一種遮蔽閘金氧半場效電晶體。The present invention relates to a power semiconductor device, and in particular to a shielded gate metal oxide semi-field effect transistor.

遮蔽閘金氧半場效電晶體是一種溝渠式閘極金氧半導體結構的改良型結構。相較於傳統的金氧半導體結構,遮蔽閘金氧半場效電晶體可有效降低閘極至汲極的電容(C gd),進而改善切換損耗。 The shielded gate metal oxide semi-field effect transistor is an improved structure of the trench gate metal oxide semiconductor structure. Compared with the traditional metal oxide semiconductor structure, the shielded gate metal oxide semi-field effect transistor can effectively reduce the gate-to-drain capacitance (C gd ), thereby improving switching losses.

隨著半導體產品的日新月益,對於遮蔽閘金氧半場效電晶體的應用電壓已大幅增進至150V以上。然而,為了符合高電壓需求,遮蔽閘金氧半場效電晶體需要使用較厚的磊晶層,反而導致導通電阻(Rdson)變大,而增加切換損耗。With the advancement of semiconductor products, the application voltage of shielded gate metal oxide semi-field effect transistors has increased significantly to more than 150V. However, in order to meet high voltage requirements, shielded gate MOSFETs need to use thicker epitaxial layers, which in turn causes the on-resistance (Rdson) to become larger and increases switching losses.

本發明提供一種遮蔽閘金氧半場效電晶體,能同時降低導通電阻並改善崩潰電壓(BVDSS)。The invention provides a shielded gate metal oxygen semi-field effect transistor, which can simultaneously reduce on-resistance and improve breakdown voltage (BVDSS).

本發明的遮蔽閘金氧半場效電晶體,包括基板、多層磊晶結構、遮蔽閘極、控制閘極、絕緣層、閘極氧化層以及閘間氧化層。多層磊晶結構形成於所述基板的表面上,且所述多層磊晶結構具有數個溝渠。遮蔽閘極配置於所述溝渠內,控制閘極則配置於遮蔽閘極上的溝渠內。所述絕緣層配置於遮蔽閘極與多層磊晶結構之間,所述閘極氧化層配置於控制閘極與多層磊晶結構之間,所述閘間氧化層則是配置於遮蔽閘極與控制閘極之間。所述多層磊晶結構包括連續的第一磊晶層、第二磊晶層以及第三磊晶層,其中所述第一磊晶層配置在多層磊晶結構的表面,所述第三磊晶層配置於溝渠底部至基板之間,所述第二磊晶層配置於第一磊晶層與第三磊晶層之間,且第一磊晶層的阻值小於第三磊晶層的阻值,第二磊晶層的阻值小於第一磊晶層的阻值。The shielded gate MOSFET of the present invention includes a substrate, a multilayer epitaxial structure, a shielded gate, a control gate, an insulating layer, a gate oxide layer and an inter-gate oxide layer. A multi-layer epitaxial structure is formed on the surface of the substrate, and the multi-layer epitaxial structure has a plurality of trenches. The shielding gate is arranged in the trench, and the control gate is arranged in the trench on the shielding gate. The insulating layer is disposed between the shielding gate and the multi-layer epitaxial structure, the gate oxide layer is disposed between the control gate and the multi-layer epitaxial structure, and the inter-gate oxide layer is disposed between the shielding gate and the multi-layer epitaxial structure. between control gates. The multi-layer epitaxial structure includes a continuous first epitaxial layer, a second epitaxial layer and a third epitaxial layer, wherein the first epitaxial layer is arranged on the surface of the multi-layer epitaxial structure, and the third epitaxial layer The second epitaxial layer is disposed between the bottom of the trench and the substrate, the second epitaxial layer is disposed between the first epitaxial layer and the third epitaxial layer, and the resistance of the first epitaxial layer is smaller than the resistance of the third epitaxial layer. value, the resistance value of the second epitaxial layer is smaller than the resistance value of the first epitaxial layer.

在本發明的一實施例中,上述第二磊晶層的阻值與上述第一磊晶層的阻值的差異越大,上述遮蔽閘金氧半場效電晶體的崩潰電壓越大。In an embodiment of the present invention, the greater the difference between the resistance of the second epitaxial layer and the resistance of the first epitaxial layer, the greater the breakdown voltage of the shielded gate MOSFET.

在本發明的一實施例中,上述第三磊晶層的阻值越小,上述遮蔽閘金氧半場效電晶體的導通電阻越小。In an embodiment of the present invention, the smaller the resistance of the third epitaxial layer, the smaller the on-resistance of the shielded gate MOSFET.

在本發明的一實施例中,上述第三磊晶層的厚度越小,上述遮蔽閘金氧半場效電晶體的導通電阻越小。In an embodiment of the present invention, the smaller the thickness of the third epitaxial layer, the smaller the on-resistance of the shielded gate MOSFET.

在本發明的一實施例中,上述第一磊晶層圍繞控制閘極的周圍。In an embodiment of the present invention, the first epitaxial layer surrounds the control gate.

在本發明的一實施例中,上述第二磊晶層圍繞遮蔽閘極的周圍。In an embodiment of the invention, the second epitaxial layer surrounds the shielding gate.

在本發明的一實施例中,上述第一磊晶層與上述第二磊晶層之間的界面在閘間氧化層到每個溝渠的深度一半的範圍內。In an embodiment of the present invention, the interface between the first epitaxial layer and the second epitaxial layer is within a range from the inter-gate oxide layer to half the depth of each trench.

在本發明的一實施例中,上述第一磊晶層的厚度與上述第二磊晶層的厚度之比在1:4~1:1之間。In an embodiment of the present invention, the ratio of the thickness of the first epitaxial layer to the thickness of the second epitaxial layer is between 1:4 and 1:1.

在本發明的一實施例中,上述遮蔽閘金氧半場效電晶體還可包括源極區,形成於第一磊晶層內,其中源極區與第一磊晶層具有相同的導電類型。In an embodiment of the present invention, the shielded gate MOSFET may further include a source region formed in the first epitaxial layer, wherein the source region and the first epitaxial layer have the same conductivity type.

在本發明的一實施例中,上述遮蔽閘金氧半場效電晶體還可包括汲極層,設置於基板的背面,所述背面相對於基板的所述表面。In an embodiment of the present invention, the above-mentioned shielded gate MOSFET may further include a drain layer disposed on the back side of the substrate, and the back side is opposite to the surface of the substrate.

基於上述,根據本發明的遮蔽閘金氧半場效電晶體,利用三層阻值不同的磊晶層來同時改善崩潰電壓(BVDSS)與降低導通電阻(Rdson),其中利用低阻值的第二磊晶層增強電場,以提升BVDSS,並且搭配厚度較薄以及/或是阻值比傳統磊晶層低的第三磊晶層來降低Rdson。Based on the above, according to the shielded gate MOSFET of the present invention, three epitaxial layers with different resistance values are used to simultaneously improve the breakdown voltage (BVDSS) and reduce the on-resistance (Rdson). Among them, the second layer with low resistance value is used. The epitaxial layer enhances the electric field to increase BVDSS, and is paired with a third epitaxial layer that is thinner and/or has a lower resistance than the traditional epitaxial layer to reduce Rdson.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, embodiments are given below and described in detail with reference to the accompanying drawings.

下文列舉實施例並配合所附圖式來進行詳細地說明,但所提供的實施例並非用以限制本發明所涵蓋的範圍。為了方便理解,在下述說明中相同的構件將以相同的符號標示來說明。此外,圖式僅以說明為目的,並未依照原尺寸作圖。事實上,為論述清晰起見,可任意增大或減小各種特徵的尺寸。Examples are listed below and described in detail with reference to the accompanying drawings. However, the examples provided are not intended to limit the scope of the present invention. To facilitate understanding, the same components will be identified with the same symbols in the following description. In addition, the drawings are for illustrative purposes only and are not drawn to original size. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.

關於文中所使用「包含」、「包括」、「具有」等等用語,均為開放性的用語,也就是指「包括但不限於」。The terms "include", "include", "have", etc. used in the article are all open terms, which means "including but not limited to".

圖1是依照本發明的一實施例的一種遮蔽閘金氧半場效電晶體的剖面示意圖。FIG. 1 is a schematic cross-sectional view of a shielded gate MOSFET according to an embodiment of the present invention.

請參照圖1,本實施例的遮蔽閘金氧半場效電晶體包括基板100、多層磊晶結構102、遮蔽閘極SG、控制閘極CG、絕緣層106、閘極氧化層108以及閘間氧化層110。基板100與多層磊晶結構102可為矽或其他半導體材料。多層磊晶結構102形成於基板100表面100a上,且所述多層磊晶結構102具有數個溝渠104,每個溝渠104是從多層磊晶結構102的表面102a往基板100延伸,且從上視圖來看,溝渠104之間彼此平行,但本發明並不於此;在另一實施例中,溝渠104之間不是平行的。至於遮蔽閘極SG是配置於溝渠104內,控制閘極CG則配置於遮蔽閘極SG上的溝渠104內。遮蔽閘極SG與控制閘極CG的材料例如但不限於多晶矽。所述絕緣層106配置於遮蔽閘極SG與多層磊晶結構102之間,且絕緣層106的厚度足以降低閘極-汲極重疊電容,從而降低閘極電荷。所述閘極氧化層108配置於控制閘極CG與多層磊晶結構102之間,所述閘間氧化層110則是配置於遮蔽閘極SG與控制閘極CG之間,其中閘間氧化層110的位置亦於絕緣層106與閘極氧化層108之間,但本發明並不限於此;在另一實施例中,由於製造順序的關係,閘間氧化層110可形成在遮蔽閘極SG與控制閘極CG之間,而絕緣層106與閘極氧化層108會直接接觸。Please refer to Figure 1. The shielded gate MOSFET of this embodiment includes a substrate 100, a multi-layer epitaxial structure 102, a shielded gate SG, a control gate CG, an insulating layer 106, a gate oxide layer 108 and an inter-gate oxidation layer. Layer 110. The substrate 100 and the multi-layer epitaxial structure 102 may be silicon or other semiconductor materials. The multilayer epitaxial structure 102 is formed on the surface 100a of the substrate 100, and the multilayer epitaxial structure 102 has a plurality of trenches 104. Each trench 104 extends from the surface 102a of the multilayer epitaxial structure 102 to the substrate 100, and from the top view It appears that the trenches 104 are parallel to each other, but the present invention is not limited to this; in another embodiment, the trenches 104 are not parallel to each other. The shielding gate SG is arranged in the trench 104, and the control gate CG is arranged in the trench 104 on the shielding gate SG. The shielding gate SG and the control gate CG are made of materials such as but not limited to polysilicon. The insulating layer 106 is disposed between the shielded gate SG and the multi-layer epitaxial structure 102, and the thickness of the insulating layer 106 is sufficient to reduce the gate-drain overlap capacitance, thereby reducing the gate charge. The gate oxide layer 108 is disposed between the control gate CG and the multi-layer epitaxial structure 102, and the inter-gate oxide layer 110 is disposed between the shielding gate SG and the control gate CG, wherein the inter-gate oxide layer The position of 110 is also between the insulating layer 106 and the gate oxide layer 108, but the invention is not limited thereto; in another embodiment, due to the manufacturing sequence, the inter-gate oxide layer 110 can be formed on the shielded gate SG. and the control gate CG, and the insulating layer 106 and the gate oxide layer 108 are in direct contact.

請繼續參照圖1,多層磊晶結構102包含連續的第一磊晶層EPI1、第二磊晶層EPI2與第三磊晶層EPI3,其中第一磊晶層EPI1配置在多層磊晶結構102的表面102a,所述第三磊晶層EPI3配置於溝渠104底部至基板100之間,所述第二磊晶層EPI2則配置於第一磊晶層EPI1與第三磊晶層EPI3之間,且第一磊晶層EPI1的阻值小於第三磊晶層EPI3的阻值,第二磊晶層EPI2的阻值小於第一磊晶層EPI1的阻值。也就是說,多層磊晶結構102中具有三個磊晶層,且這三個磊晶層的阻值從多層磊晶結構102的表面102a往基板100的變化是中阻值、低阻值到高阻值。Please continue to refer to FIG. 1 . The multi-layer epitaxial structure 102 includes a continuous first epitaxial layer EPI1 , a second epitaxial layer EPI2 and a third epitaxial layer EPI3 . The first epitaxial layer EPI1 is disposed at the end of the multi-layer epitaxial structure 102 . On the surface 102a, the third epitaxial layer EPI3 is disposed between the bottom of the trench 104 and the substrate 100, and the second epitaxial layer EPI2 is disposed between the first epitaxial layer EPI1 and the third epitaxial layer EPI3, and The resistance value of the first epitaxial layer EPI1 is less than the resistance value of the third epitaxial layer EPI3, and the resistance value of the second epitaxial layer EPI2 is less than the resistance value of the first epitaxial layer EPI1. That is to say, there are three epitaxial layers in the multi-layer epitaxial structure 102, and the resistance values of these three epitaxial layers change from the surface 102a of the multi-layer epitaxial structure 102 to the substrate 100, ranging from medium resistance value, low resistance value to High resistance value.

相較於傳統整個高阻值的磊晶層,本實施例的三個阻值不同的磊晶層的設計,能利用低阻值的第二磊晶層EPI2增強該處的電場,以改善崩潰電壓(BVDSS),並且搭配厚度較薄以及/或是阻值相對於傳統高阻值略低的第三磊晶層EPI3,來降低導通電阻(Rdson)。因此,第二磊晶層EPI2的阻值與第一磊晶層EPI1的阻值的差異越大,遮蔽閘金氧半場效電晶體的崩潰電壓會越大。一方面,第三磊晶層EPI2的阻值越小,遮蔽閘金氧半場效電晶體的導通電阻越小;另一方面,第三磊晶層EPI3的厚度越小,遮蔽閘金氧半場效電晶體的導通電阻也越小。Compared with the traditional high-resistance epitaxial layer, the design of three epitaxial layers with different resistances in this embodiment can use the low-resistance second epitaxial layer EPI2 to enhance the electric field there to improve the collapse. voltage (BVDSS), and is paired with a third epitaxial layer EPI3 that is thinner and/or has a slightly lower resistance than the traditional high resistance to reduce the on-resistance (Rdson). Therefore, the greater the difference between the resistance of the second epitaxial layer EPI2 and the resistance of the first epitaxial layer EPI1, the greater the breakdown voltage of the shielded gate MOSFET. On the one hand, the smaller the resistance of the third epitaxial layer EPI2, the smaller the on-resistance of the shielded gate metal oxide semi-field effect transistor; on the other hand, the smaller the thickness of the third epitaxial layer EPI3, the smaller the shielded gate metal oxide semi-field effect transistor. The on-resistance of the transistor is also smaller.

在圖1中,第一磊晶層EPI1圍繞控制閘極CG的周圍,第二磊晶層EPI2圍繞遮蔽閘極SG的周圍,因此第一磊晶層EPI1與第二磊晶層EPI2的界面接近閘間氧化層110的位置。然而,本發明並不限於此;在另一實施例的圖2中,第一磊晶層EPI1與第二磊晶層EPI2的界面接近溝渠104的深度的一半。也就是說,第一磊晶層EPI1與第二磊晶層EPI2的界面可在閘間氧化層110到每個溝渠104的深度一半的範圍內。若是以磊晶層厚度的角度來看,第一磊晶層EPI1的厚度t1與第二磊晶層EPI2的厚度t2之比可在1:4~1:1之間。In Figure 1, the first epitaxial layer EPI1 surrounds the control gate CG, and the second epitaxial layer EPI2 surrounds the shielding gate SG. Therefore, the interface between the first epitaxial layer EPI1 and the second epitaxial layer EPI2 is close to The location of the inter-gate oxide layer 110. However, the present invention is not limited thereto; in FIG. 2 of another embodiment, the interface between the first epitaxial layer EPI1 and the second epitaxial layer EPI2 is close to half the depth of the trench 104 . That is to say, the interface between the first epitaxial layer EPI1 and the second epitaxial layer EPI2 may be within a range from the inter-gate oxide layer 110 to half the depth of each trench 104 . From the perspective of the thickness of the epitaxial layer, the ratio of the thickness t1 of the first epitaxial layer EPI1 to the thickness t2 of the second epitaxial layer EPI2 can be between 1:4 and 1:1.

前述結構特徵主要是因為在單一高阻值磊晶層的遮蔽閘金氧半場效電晶體的模擬實驗中,發明人等發現在遮蔽閘極SG的周圍的磊晶層有電場低的問題,導致BVDSS降低而需要使用更厚的磊晶層,但是如此一來會使Rdson變大,因此本發明通過多層磊晶層的方式,將遮蔽閘極SG的周圍的第二磊晶層EPI2阻值降低,使該處電場增強,再利用減少第三磊晶層EPI3的厚度以及/或是稍微降低第三磊晶層EPI3的阻值的方式來降低Rdson。由於第三磊晶層EPI3佔整體多層磊晶結構102有40%以上,所以一旦縮減第三磊晶層EPI3的厚度或者降低第三磊晶層EPI3的阻值,都能明顯降低Rdson。The aforementioned structural features are mainly due to the fact that in the simulation experiments of the shielded gate MOSFET with a single high-resistance epitaxial layer, the inventors found that the epitaxial layer around the shielded gate SG has a problem of low electric field, resulting in BVDSS decreases and a thicker epitaxial layer needs to be used, but this will increase Rdson. Therefore, the present invention uses multiple epitaxial layers to reduce the resistance of the second epitaxial layer EPI2 surrounding the shielding gate SG. , to enhance the electric field there, and then reduce Rdson by reducing the thickness of the third epitaxial layer EPI3 and/or slightly reducing the resistance of the third epitaxial layer EPI3. Since the third epitaxial layer EPI3 accounts for more than 40% of the entire multi-layer epitaxial structure 102, once the thickness of the third epitaxial layer EPI3 is reduced or the resistance of the third epitaxial layer EPI3 is reduced, Rdson can be significantly reduced.

舉例來說,以高壓150V的遮蔽閘金氧半場效電晶體進行模擬,其中除了磊晶層外的各個構件都相同的情況下,模擬結果顯示在下表1。For example, when a high-voltage 150V shielded gate MOSFET is used for simulation, and all components except the epitaxial layer are the same, the simulation results are shown in Table 1 below.

表1    模擬實驗 比較例 1 2 3 第一磊晶層EPI1 阻值: 0.35ohm 阻值: 1.50ohm 厚度: 13.0µm 厚度: 3.5µm 第二磊晶層EPI2 阻值: 0.30ohm 阻值: 0.20ohm 阻值: 0.18ohm 厚度: 3.5µm 第三磊晶層EPI3 阻值: 1.20ohm 厚度: 6.0µm BVDSS (V) 180 194 183 172 Table 1 Simulation experiment Comparative example 1 2 3 The first epitaxial layer EPI1 Resistance: 0.35ohm Resistance: 1.50ohm Thickness: 13.0µm Thickness: 3.5µm The second epitaxial layer EPI2 Resistance: 0.30ohm Resistance: 0.20ohm Resistance: 0.18ohm Thickness: 3.5µm The third epitaxial layer EPI3 Resistance: 1.20ohm Thickness: 6.0µm BVDSS(V) 180 194 183 172

從表1可得到,採用三層磊晶層且第二磊晶層EPI2的阻值設定為最低的情況下,能提升遮蔽閘金氧半場效電晶體的BVDSS。It can be seen from Table 1 that when three epitaxial layers are used and the resistance of the second epitaxial layer EPI2 is set to the lowest, the BVDSS of the shielded gate MOSFET can be improved.

另外,經模擬發現,若是將第二磊晶層EPI2的厚度設為0.2µm並以阻值為變數(其餘條件均與模擬實驗相同),則第二磊晶層EPI2的阻值在0.20ohm~0.25ohm之間的BVDSS都有190V以上。因此,根據本發明的概念,可依據不同的高壓應用來調整第二磊晶層的阻值以及/或是厚度,以改善遮蔽閘金氧半場效電晶體的BVDSS。In addition, it was found through simulation that if the thickness of the second epitaxial layer EPI2 is set to 0.2µm and the resistance value is used as a variable (other conditions are the same as the simulation experiment), then the resistance value of the second epitaxial layer EPI2 is between 0.20ohm~ BVDSS between 0.25ohm is above 190V. Therefore, according to the concept of the present invention, the resistance and/or thickness of the second epitaxial layer can be adjusted according to different high-voltage applications to improve the BVDSS of the shielded gate MOSFET.

然後,同樣以高壓150V的遮蔽閘金氧半場效電晶體進行模擬,其中模擬實驗4採用模擬實驗2的條件並將第三磊晶層EPI3的阻值降至0.90ohm,模擬結果顯示在下表2。Then, a high-voltage 150V shielded gate metal oxide semi-field effect transistor was also used for simulation. Simulation Experiment 4 adopted the conditions of Simulation Experiment 2 and reduced the resistance of the third epitaxial layer EPI3 to 0.90ohm. The simulation results are shown in Table 2 below. .

表2    模擬實驗4 比較例 第一磊晶層EPI1 阻值: 0.35ohm 阻值: 1.50ohm 厚度: 13.0µm 厚度: 3.5µm 第二磊晶層EPI2 阻值: 0.20ohm 厚度: 3.5µm 第三磊晶層EPI3 阻值: 0.90ohm 厚度: 6.0µm BVDSS (V) 189 172 Rsp (mohm-mm 2) 83 108 Table 2 Simulation experiment 4 Comparative example The first epitaxial layer EPI1 Resistance: 0.35ohm Resistance: 1.50ohm Thickness: 13.0µm Thickness: 3.5µm The second epitaxial layer EPI2 Resistance: 0.20ohm Thickness: 3.5µm The third epitaxial layer EPI3 Resistance: 0.90ohm Thickness: 6.0µm BVDSS(V) 189 172 Rsp (mohm-mm 2 ) 83 108

從表1可得到,模擬實驗4的片電阻(Rsp)相較於比較利大約降低24%左右,所以本發明的第三磊晶層EPI3的厚度變小能進一步降低導通電阻Rdson,且不影響BVDSS。It can be seen from Table 1 that the sheet resistance (Rsp) of simulation experiment 4 is about 24% lower than that of Comparator. Therefore, the smaller thickness of the third epitaxial layer EPI3 of the present invention can further reduce the on-resistance Rdson without affecting BVDSS.

在圖1~2中,遮蔽閘金氧半場效電晶體還可包括源極區112,形成於第一磊晶層EPI1內,其中源極區112與第一磊晶層EPI1具有相同的導電類型。舉例來說,源極區112與第一磊晶層EPI1同樣為N型,且源極區112的摻雜濃度大於第一磊晶層EPI1的摻雜濃度。在另一實施例中,源極區112與第一磊晶層EPI1為P型。第一磊晶層EPI1、第二磊晶層EPI2與第三磊晶層EPI3通常是相同的導電類型。此外,遮蔽閘金氧半場效電晶體還可包括汲極層114,設置於基板100的背面100b,其中所述背面100b相對於基板100的表面100a。而為了電路的連結,在多層磊晶結構102上方還有介電層116與形成於其中並穿過源極區112連至第一磊晶層EPI1的接觸窗118,且為了改善電性連接,在接觸窗118底部還可設置一個與第一磊晶層EPI1不同導電類型的重摻雜區(未繪示)。In FIGS. 1 to 2 , the shielded gate MOSFET may also include a source region 112 formed in the first epitaxial layer EPI1 , where the source region 112 and the first epitaxial layer EPI1 have the same conductivity type. . For example, the source region 112 and the first epitaxial layer EPI1 are also N-type, and the doping concentration of the source region 112 is greater than the doping concentration of the first epitaxial layer EPI1. In another embodiment, the source region 112 and the first epitaxial layer EPI1 are P-type. The first epitaxial layer EPI1, the second epitaxial layer EPI2 and the third epitaxial layer EPI3 are usually of the same conductivity type. In addition, the shielded gate MOSFET may further include a drain layer 114 disposed on the backside 100b of the substrate 100, where the backside 100b is opposite to the surface 100a of the substrate 100. For circuit connection, there is a dielectric layer 116 above the multi-layer epitaxial structure 102 and a contact window 118 formed therein and connected to the first epitaxial layer EPI1 through the source region 112, and in order to improve the electrical connection, A heavily doped region (not shown) with a different conductivity type from the first epitaxial layer EPI1 may also be provided at the bottom of the contact window 118 .

至於圖1和圖2的遮蔽閘金氧半場效電晶體可利用以下步驟製作,但本發明並不限於此,本發明的遮蔽閘金氧半場效電晶體也可採用其他方式製作。As for the shielded gate MOSFET in FIGS. 1 and 2 , the following steps can be used to manufacture the shielded gate MOSFET, but the present invention is not limited thereto. The shielded gate MOSFET of the present invention can also be manufactured in other ways.

步驟1. 在基板100的表面100a依序磊晶成長第一磊晶層EPI1、第二磊晶層EPI2與第三磊晶層EPI3,得到多層磊晶結構102。Step 1. Sequentially epitaxially grow the first epitaxial layer EPI1, the second epitaxial layer EPI2, and the third epitaxial layer EPI3 on the surface 100a of the substrate 100 to obtain a multi-layer epitaxial structure 102.

步驟2. 利用微影蝕刻製程,從多層磊晶結構102的表面102a往基板100方向進行蝕刻,以形成多個溝渠104。雖然圖1~2中的溝渠104是位在第三磊晶層EPI3上方,但本發明並不限於此;在另一實施例中,溝渠104可形成在部分第三磊晶層EPI3內,使溝渠104底部略低於第三磊晶層EPI3與第二磊晶層EPI2之間的界面。Step 2. Use a photolithography etching process to etch from the surface 102a of the multi-layer epitaxial structure 102 toward the substrate 100 to form a plurality of trenches 104. Although the trench 104 in FIGS. 1 and 2 is located above the third epitaxial layer EPI3, the invention is not limited thereto; in another embodiment, the trench 104 can be formed in part of the third epitaxial layer EPI3, so that The bottom of the trench 104 is slightly lower than the interface between the third epitaxial layer EPI3 and the second epitaxial layer EPI2.

步驟3. 在溝渠104內面形成絕緣層106,例如使用熱氧化法或化學氣相沉積(CVD)形成氧化矽層作為絕緣層106。Step 3. Form an insulating layer 106 on the inner surface of the trench 104. For example, a thermal oxidation method or chemical vapor deposition (CVD) is used to form a silicon oxide layer as the insulating layer 106.

步驟4. 在溝渠104內形成遮蔽閘極SG,例如先沉積多晶矽填滿溝渠104,再利用化學機械平坦化與回蝕刻等方法,去除多餘的多晶矽,並保留溝渠104內的遮蔽閘極SG,然後可以利用遮蔽閘極SG作為罩幕,蝕刻去除遮蔽閘極SG以上的絕緣層106。Step 4. Form the shielding gate SG in the trench 104. For example, first deposit polysilicon to fill the trench 104, and then use methods such as chemical mechanical planarization and etching back to remove excess polysilicon and retain the shielding gate SG in the trench 104. Then, the shielding gate SG can be used as a mask, and the insulating layer 106 above the shielding gate SG can be removed by etching.

步驟5. 在遮蔽閘極SG上形成閘間氧化層110,例如使用CVD形成氧化矽層作為閘間氧化層110。Step 5. Form an inter-gate oxide layer 110 on the shielded gate SG. For example, use CVD to form a silicon oxide layer as the inter-gate oxide layer 110.

步驟6. 在閘間氧化層110上方的溝渠104內面形成閘極氧化層108,例如使用熱氧化法或化學氣相沉積(CVD)形成氧化矽層作為閘極氧化層108。Step 6. Form a gate oxide layer 108 on the inner surface of the trench 104 above the inter-gate oxide layer 110. For example, use thermal oxidation or chemical vapor deposition (CVD) to form a silicon oxide layer as the gate oxide layer 108.

步驟7. 在遮蔽閘極SG上的溝渠104內形成控制閘極CG。Step 7. Form the control gate CG in the trench 104 on the shield gate SG.

步驟8. 在第一磊晶層EPI1表面摻雜形成源極區112,再形成接觸窗118。Step 8. Dope the surface of the first epitaxial layer EPI1 to form a source region 112, and then form a contact window 118.

步驟9. 在基板100的背面100b形成汲極層114,其中汲極層114例如金屬層。Step 9. Form a drain layer 114 on the back side 100b of the substrate 100, where the drain layer 114 is, for example, a metal layer.

綜上所述,本發明將原本一整層的磊晶曾改為三層阻值不同的磊晶層,因此能在降低遮蔽閘金氧半場效電晶體的導通電阻的同時,維持高崩潰電壓,甚至提高BVDSS。To sum up, the present invention changes the original one-layer epitaxial layer into three epitaxial layers with different resistance values, so it can reduce the on-resistance of the shielded gate metal oxide semi-field effect transistor while maintaining a high breakdown voltage. , or even improve BVDSS.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.

100:基板 100a、102a:表面 100b:背面 102:多層磊晶結構 104:溝渠 106:絕緣層 108:閘極氧化層 110:閘間氧化層 112:源極區 114:汲極層 116:介電層 118:接觸窗 CG:控制閘極 EPI1:第一磊晶層 EPI2:第二磊晶層 EPI3:第三磊晶層 SG:遮蔽閘極 t1、t2:厚度 100:Substrate 100a, 102a: surface 100b: back 102:Multilayer epitaxial structure 104:Ditch 106:Insulation layer 108: Gate oxide layer 110: Oxide layer between gates 112: Source region 114: Drain layer 116:Dielectric layer 118:Contact window CG: control gate EPI1: The first epitaxial layer EPI2: The second epitaxial layer EPI3: The third epitaxial layer SG: shielded gate t1, t2: thickness

圖1是依照本發明的一實施例的一種遮蔽閘金氧半場效電晶體的剖面示意圖。 圖2是依照本發明的另一實施例的一種遮蔽閘金氧半場效電晶體的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a shielded gate MOSFET according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a shielded gate MOSFET according to another embodiment of the present invention.

100:基板 100:Substrate

100a、102a:表面 100a, 102a: surface

100b:背面 100b: back

102:多層磊晶結構 102:Multilayer epitaxial structure

104:溝渠 104:Ditch

106:絕緣層 106:Insulation layer

108:閘極氧化層 108: Gate oxide layer

110:閘間氧化層 110: Oxide layer between gates

112:源極區 112: Source region

114:汲極層 114: Drain layer

116:介電層 116:Dielectric layer

118:接觸窗 118:Contact window

CG:控制閘極 CG: control gate

EPI1:第一磊晶層 EPI1: The first epitaxial layer

EPI2:第二磊晶層 EPI2: The second epitaxial layer

EPI3:第三磊晶層 EPI3: The third epitaxial layer

SG:遮蔽閘極 SG: shielded gate

t1、t2:厚度 t1, t2: thickness

Claims (10)

一種遮蔽閘金氧半場效電晶體,包括: 基板; 多層磊晶結構,形成於所述基板的表面上,且所述多層磊晶結構具有多數個溝渠; 遮蔽閘極,配置於所述多數個溝渠內; 控制閘極,配置於所述遮蔽閘極上的所述多數個溝渠內; 絕緣層,配置於所述遮蔽閘極與所述多層磊晶結構之間; 閘極氧化層,配置於所述控制閘極與所述多層磊晶結構之間;以及 閘間氧化層,配置於所述遮蔽閘極與所述控制閘極之間,其中 所述多層磊晶結構包括連續的第一磊晶層、第二磊晶層以及第三磊晶層,其中所述第一磊晶層配置在所述多層磊晶結構的表面,所述第三磊晶層配置於所述溝渠底部至所述基板之間,所述第二磊晶層配置於所述第一磊晶層與所述第三磊晶層之間,且所述第一磊晶層的阻值小於所述第三磊晶層的阻值,所述第二磊晶層的阻值小於所述第一磊晶層的阻值。 A shielded gate metal oxygen semi-field effect transistor, including: substrate; A multilayer epitaxial structure is formed on the surface of the substrate, and the multilayer epitaxial structure has a plurality of trenches; Shielding gates are arranged in the plurality of trenches; A control gate configured in the plurality of trenches on the shielding gate; An insulating layer is arranged between the shielding gate and the multi-layer epitaxial structure; a gate oxide layer disposed between the control gate and the multi-layer epitaxial structure; and An intergate oxide layer is disposed between the shielding gate and the control gate, wherein The multi-layer epitaxial structure includes a continuous first epitaxial layer, a second epitaxial layer and a third epitaxial layer, wherein the first epitaxial layer is disposed on the surface of the multi-layer epitaxial structure, and the third epitaxial layer The epitaxial layer is disposed between the bottom of the trench and the substrate, the second epitaxial layer is disposed between the first epitaxial layer and the third epitaxial layer, and the first epitaxial layer The resistance value of the second epitaxial layer is less than the resistance value of the third epitaxial layer, and the resistance value of the second epitaxial layer is less than the resistance value of the first epitaxial layer. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,其中所述第二磊晶層的所述阻值與所述第一磊晶層的所述阻值的差異越大,所述遮蔽閘金氧半場效電晶體的崩潰電壓越大。 As for the shielded gate MOSFET described in item 1 of the patent application, the greater the difference between the resistance value of the second epitaxial layer and the resistance value of the first epitaxial layer, the greater the difference. The greater the breakdown voltage of the shielded gate MOSFET. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,其中所述第三磊晶層的所述阻值越小,所述遮蔽閘金氧半場效電晶體的導通電阻越小。As for the shielded gate metal oxide semi-field effect transistor described in item 1 of the patent application, the smaller the resistance value of the third epitaxial layer, the smaller the on-resistance of the shielded gate metal oxide semi-field effect transistor. . 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,其中所述第三磊晶層的厚度越小,所述遮蔽閘金氧半場效電晶體的導通電阻越小。For the shielded gate metal oxide semi-field effect transistor described in claim 1, the smaller the thickness of the third epitaxial layer, the smaller the on-resistance of the shielded gate metal oxide semi-field effect transistor. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,其中所述第一磊晶層圍繞所述控制閘極的周圍。In the shielded gate MOSFET described in claim 1 of the patent application, the first epitaxial layer surrounds the control gate. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,其中所述第二磊晶層圍繞所述遮蔽閘極的周圍。In the shielded gate MOSFET described in claim 1, the second epitaxial layer surrounds the shielded gate. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,其中所述第一磊晶層與所述第二磊晶層之間的界面在所述閘間氧化層到每個所述溝渠的深度一半的範圍內。The shielded gate MOSFET as described in item 1 of the patent application, wherein the interface between the first epitaxial layer and the second epitaxial layer is from the inter-gate oxide layer to each of the within half the depth of the trench. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,其中所述第一磊晶層的厚度與所述第二磊晶層的厚度之比在1:4~1:1之間。As for the shielded gate MOSFET as described in item 1 of the patent application, the ratio of the thickness of the first epitaxial layer to the thickness of the second epitaxial layer is between 1:4 and 1:1. between. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,更包括源極區,形成於所述第一磊晶層內,其中所述源極區與所述第一磊晶層具有相同的導電類型。The shielded gate MOSFET as described in item 1 of the patent application further includes a source region formed in the first epitaxial layer, wherein the source region and the first epitaxial layer have the same conductivity type. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,更包括汲極層,設置於所述基板的背面,所述背面相對於所述基板的所述表面。The shielded gate metal oxide semiconductor field effect transistor described in claim 1 of the patent application further includes a drain layer disposed on the back side of the substrate, and the back side is opposite to the surface of the substrate.
TW111121230A 2022-06-08 Shield gate mosfet TWI838763B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111121230A TWI838763B (en) 2022-06-08 Shield gate mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111121230A TWI838763B (en) 2022-06-08 Shield gate mosfet

Publications (2)

Publication Number Publication Date
TW202349708A true TW202349708A (en) 2023-12-16
TWI838763B TWI838763B (en) 2024-04-11

Family

ID=

Similar Documents

Publication Publication Date Title
TWI407564B (en) Power semiconductor with trench bottom poly and fabrication method thereof
US8154078B2 (en) Semiconductor structure and fabrication method thereof
US9299788B2 (en) Multi-gate VDMOS transistor
US8252652B2 (en) Semiconductor structure and fabrication method thereof
US20070262398A1 (en) High voltage semiconductor device with lateral series capacitive structure
US9000516B2 (en) Super-junction device and method of forming the same
TW202027269A (en) Trench-type power transistor and manufacturing method thereof including a semiconductor substrate having at least one active portion provided with a trench gate structure
TWI696288B (en) Shield gate mosfet and method for fabricating the same
CN107978635A (en) A kind of semiconductor devices and its manufacture method and electronic device
TW201822295A (en) Shelding gate trench semiconductor device and fabricating method thereof
US20230107611A1 (en) Charge-balance power device, and process for manufacturing the charge-balance power device
US7649222B2 (en) Semiconductor device
CN110299413A (en) A kind of LDMOS device and its manufacturing method
CN113838906B (en) LDMOS transistor and preparation method thereof
CN111128706B (en) Manufacturing method of field oxide with gradually-changed thickness in groove and manufacturing method of SGT (super-stable Gate Bipolar transistor) device
TWI838763B (en) Shield gate mosfet
TW202349708A (en) Shield gate mosfet
KR20160088074A (en) Semiconductor device and manufacturing method of the same
CN112864248A (en) SGTMOSFET device and manufacturing method
US10008594B2 (en) High voltage semiconductor device
US11682726B2 (en) High voltage semiconductor device and manufacturing method thereof
TWI770782B (en) Shielded gate trench metal oxide semiconductor field effect transistor
CN104638005A (en) Transverse double-diffusion metal-oxide semiconductor device and manufacturing method thereof
TWI817719B (en) Semiconductor structure and the method for forming the same
TWI812318B (en) Transistor structure