TW202348987A - 改進缺陷分類擾亂率之方法及系統 - Google Patents

改進缺陷分類擾亂率之方法及系統 Download PDF

Info

Publication number
TW202348987A
TW202348987A TW112106074A TW112106074A TW202348987A TW 202348987 A TW202348987 A TW 202348987A TW 112106074 A TW112106074 A TW 112106074A TW 112106074 A TW112106074 A TW 112106074A TW 202348987 A TW202348987 A TW 202348987A
Authority
TW
Taiwan
Prior art keywords
classification
defect
types
inspection
detection
Prior art date
Application number
TW112106074A
Other languages
English (en)
Inventor
海容 雷
董茜
楚發 鄭
浦凌凌
志榆 任
嘉文 林
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202348987A publication Critical patent/TW202348987A/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本發明提供一種自動缺陷分類方法,其可包括:自一檢測工具獲得包含候選缺陷之一集合的影像資料之一集合;開發複數個缺陷再檢測類型及複數個擾亂再檢測類型;及根據該等缺陷再檢測類型及該等擾亂再檢測類型使用一機器學習分類器分類候選缺陷之該集合。在該分類方法中使用該複數個擾亂再檢測類型會減少一擾亂率。

Description

改進缺陷分類擾亂率之方法及系統
本文提供之實施例係關於用於自動缺陷分類之系統及方法,且更特定言之係關於用於改進缺陷分類擾亂率之系統及方法。
在積體電路(IC)之製造程序中,對未完成或已完成電路組件進行檢測以確保其等係根據設計而製造且無缺陷。可採用利用光學顯微鏡或帶電粒子(例如電子)射束顯微鏡(諸如掃描電子顯微鏡(SEM))之檢測系統。隨著IC組件之實體大小繼續縮小,缺陷偵測中之準確度及良率變得愈來愈重要。
一些檢測工具可產生大量擾亂。擾亂可為並不視為所關注缺陷之偵測像差或晶圓不規則性。舉例而言,擾亂可由與製造程序之裝置良率相關的錯識別之背景影像或較小缺陷所引起。隨著缺陷再檢測變得愈來愈重要,持續需要降低檢測程序中之擾亂率。
本文中所提供之實施例揭示一種粒子射束檢測設備,且更特定言之,揭示一種使用複數個帶電粒子射束之檢測設備。
本發明之一些實施例包括一種用於改進影像檢測資料中之擾亂率之方法。方法可包含獲得包含候選缺陷之集合的影像資料;開發複數個缺陷再檢測類型及複數個擾亂再檢測類型;在一第一分類階段期間基於該複數個缺陷再檢測類型將候選缺陷之集合分類納入一或多個缺陷類型;在該第一分類階段期間基於該複數個擾亂再檢測類型將候選缺陷之集合分類納入複數個擾亂類型;及將基於機器學習之多階段分類應用於候選缺陷之經分類集合。
本發明之一些實施例包括一種用於改進影像檢測資料中之擾亂率的系統,該系統包含:一帶電粒子射束設備,其包括一偵測器;一影像獲取器,其包括用以自該偵測器接收一偵測信號並建構包括一第一特徵之一影像的電路;及一控制器,其具有至少一個處理器及一非暫時性電腦可讀媒體,該非暫時性電腦可讀媒體包含在由該至少一個處理器執行時致使該系統執行以下操作的指令:獲得包含候選缺陷之集合的影像資料;開發複數個缺陷再檢測類型及複數個擾亂再檢測類型;在一第一分類階段期間基於該複數個缺陷再檢測類型將候選缺陷之該集合分類納入一或多個缺陷類型;在該第一分類階段期間基於該複數個擾亂再檢測類型將候選缺陷之該集合分類納入複數個擾亂類型;及將一基於機器學習之多階段分類應用於候選缺陷之該經分類集合。
本發明之一些實施例包括儲存一指令集的一非暫時性電腦可讀媒體,該指令集可由系統之一或多個處理器執行以致使該系統執行包含以下操作方法:獲得包含候選缺陷之集合的影像資料;開發複數個缺陷再檢測類型及複數個擾亂再檢測類型;在一第一分類階段期間基於該複數個缺陷再檢測類型將候選缺陷之該集合分類納入一或多個缺陷類型;在該第一分類階段期間基於該複數個擾亂再檢測類型將候選缺陷之該集合分類納入複數個擾亂類型;及將一基於機器學習之多階段分類應用於候選缺陷之該經分類集合。
本發明之實施例之其他優勢將自結合附圖進行之以下描述為顯而易見,在附圖中藉助於繪示及實例闡述本發明的某些實施例。
現將詳細參考例示性實施例,其實例繪示於附圖中。以下描述參考附圖,其中除非另外表示,否則不同圖式中之相同編號表示相同或相似元件。在以下例示性實施例描述中闡述的實施方案並不表示符合本發明之所有實施方案。取而代之,其僅為符合關於如所附申請專利範圍中所敍述之主題之態樣的設備、系統及方法之實例。舉例而言,儘管一些實施例係在利用電子射束之內容背景中予以描述,但本發明不限於此。可相似地應用其他類型之帶電粒子射束。此外,可使用其他成像系統,諸如光學成像、光偵測、x射線偵測等。
電子裝置係由形成於稱為基板之半導體材料塊上的電路構成。半導體材料可包括例如矽、砷化鎵、磷化銦或矽鍺或其類似者。許多電路可一起形成於同一矽塊上且被稱為積體電路或IC。此等電路之大小已顯著地減小,使得電路中之許多電路可擬合於基板上。舉例而言,在智慧型手機中,IC晶片可為拇指甲大小且又可包括超過20億個電晶體,各電晶體之大小小於人類毛髮之1/1000。
製造具有極小結構或組件之此等IC為常常涉及數百個個別步驟之複雜、耗時且昂貴之程序。即使一個步驟之錯誤皆有可能引起成品IC之缺陷,從而使得成品IC為無用的。因此,製造程序之一個目標為避免此類缺陷以最大化程序中所製造之功能性IC的數目;亦即,改進程序之總良率。
改進良率之一個組分為監視晶片製造程序,以確保其正生產足夠數目個功能積體電路。監視程序之一種方式為在該電路結構形成之不同階段處檢測晶片電路結構。可使用掃描帶電粒子顯微鏡(SCPM)進行檢測。舉例而言,SCPM可為掃描電子顯微鏡(SEM)。SCPM可用於實際上使此等極小結構成像,從而獲取晶圓之結構之「圖像」。影像可用以判定結構是否恰當地形成於恰當位置中。若結構係有缺陷的,則可調整程序,使得缺陷不大可能再現。
隨著IC組件之實體大小繼續縮小,缺陷偵測中之準確度及良率變得愈來愈重要。諸如SEM影像之檢測影像可用於識別或分類所製造IC之缺陷。為改進缺陷偵測效能,降低缺陷偵測及分類中之擾亂率係重要的。擾亂可為並不視為檢測程序中所關注缺陷之偵測像差或晶圓不規則性。舉例而言,擾亂可由與製造程序之裝置良率相關的錯識別之背景影像或較小缺陷所引起。擾亂率可為多少擾亂在檢測及分類程序期間經錯誤地分類為所關注之實際缺陷的量測。舉例而言,若偵測及分類程序識別100個缺陷且其稍後判定彼等缺陷中之10個實際上為經錯分類擾亂,則擾亂率可為10/100=10%。在一些偵測及分類系統中,擾亂率可為不可接受的高。
習知分類方案可使用機器學習分類器以將檢測資料分類納入各種類別,諸如擾亂類別及複數個缺陷類型類別。習知系統可使用訓練資料之集合訓練分類器。習知系統可將大量擾亂資料分類納入單一擾亂類別。此可引起其最佳化方法係基於用約略相等數目將資料分類納入不同類別之假定的機器學習演算法中的問題。當真實世界資料集合偏離此假定太遠時,分類準確度可受損。此問題可稱作資料不平衡問題,且其可降級分類器準確度,從而致使分類器將擾亂無意分類為實際缺陷。
本發明之實施例可提供自動缺陷分類(ADC)系統及方法。方法包括自諸如SEM檢測工具之檢測工具獲取檢測影像資料之集合。影像資料可包括例如自SEM掃描識別的缺陷候選者之集合。ADC方法開發複數個缺陷再檢測類型及複數個擾亂再檢測類型。機器學習(ML)分類器根據缺陷再檢測類型及擾亂再檢測類型將檢測影像資料分類納入箱中。複數個擾亂類型之使用使得ML分類器能夠較佳認識擾亂並降低擾亂經錯分類為缺陷的比率。
在一些實施例中,ADC可使用多階段分類。在多階段分類中,將第一分類階段之結果與影像資料之人工再檢測進行比較。基於比較結果,自第一階段選擇的錯分類資料之集合經正確地再標記並置於經修訂訓練集區中以用於在另一階段中之另外訓練。此程序之多個反覆可經執行直至訓練結果滿足期望為止。
在一些實施例中,可基於與缺陷再檢測類型之關係或相似度建立擾亂再檢測類型。在一些實施例中,擾亂再檢測類型可經設計以識別很可能經錯分類為某一缺陷類型的資料。在一些實施例中,複數個擾亂再檢測類型可經開發以消除資料不平衡問題。此問題可藉由使用一個不成比例地大的擾亂箱而引起。
出於清楚起見,圖式中之組件之相對尺寸可經誇示。在以下圖式描述內,相同或類似參考數字係指相同或類似組件或實體,且僅描述關於個別實施例之差異。如本文中所使用,除非另外特定陳述,否則術語「或」涵蓋所有可能組合,除非不可行。舉例而言,若陳述組件可包括A或B,則除非另外特定陳述或不可行,否則組件可包括A,或B,或A及B。作為第二實例,若陳述組件可包括A、B或C,則除非另外特定具體陳述或不可行,否則組件可包括A,或B,或C,或A及B,或A及C,或B及C,或A及B及C。現在參看 1,其繪示符合本發明之實施例的例示性電子射束檢測(EBI)系統100。EBI系統100可用於成像。如 1中所展示,EBI系統100包括主腔室101、裝載/鎖定腔室102、電子射束工具104及裝備前端模組(EFEM) 106。電子射束工具104位於主腔室101內。EFEM 106包括第一裝載埠106a及第二裝載埠106b。EFEM 106可包括額外裝載埠。第一裝載埠106a及第二裝載埠106b收納含有待檢測之晶圓(例如,半導體晶圓或由其他材料製成之晶圓)或樣本的晶圓前開式單元匣(FOUP) (晶圓及樣本在本文中可統稱為「晶圓」)。一「批次」為可裝載以作為批量進行處理之複數個晶圓。
EFEM 106中之一或多個機械臂(未圖示)可將晶圓輸送至裝載/鎖定腔室102。裝載/鎖定腔室102連接至裝載/鎖定真空泵系統(未圖示),其移除裝載/鎖定腔室102中之氣體分子以達到低於大氣壓之第一壓力。在達到第一壓力之後,一或多個機械臂(未圖示)可將晶圓自裝載/鎖定腔室102輸送至主腔室101。主腔室101連接至主腔室真空泵系統(未圖示),其移除主腔室101中之氣體分子以達到低於第一壓力之第二壓力。在達到第二壓力之後,由電子射束工具104對晶圓進行檢測。電子射束工具104可為單射束系統或多射束系統。控制器109以電子方式連接至電子射束工具104。控制器109可為經組態以執行對EBI系統100之各種控制的電腦。雖然控制器109在 1中被展示為在包括主腔室101、裝載/鎖定腔室102及EFEM 106之結構之外,但應瞭解,控制器109可為該結構之部分。
2繪示符合本發明之實施例的實例多射束工具104 (在本文中亦被稱作設備104)及可經組態用於EBI系統100 ( 1)中之影像處理系統290的示意圖。
射束工具104包含帶電粒子源202、槍孔徑204、聚光透鏡206、自帶電粒子源202發射之初級帶電粒子射束210、源轉換單元212、初級帶電粒子射束210之複數個細射束214、216及218、初級投影光學系統220、機動晶圓載物台280、晶圓固持器282、多個次級帶電粒子射束236、238及240、次級光學系統242及帶電粒子偵測裝置244。初級投影光學系統220可包含射束分離器222、偏轉掃描單元226及物鏡228。帶電粒子偵測裝置244可包含偵測子區246、248及250。
帶電粒子源202、槍孔徑204、聚光透鏡206、源轉換單元212、射束分離器222、偏轉掃描單元226及物鏡228可與設備104之主光軸260對準。次級光學系統242及帶電粒子偵測裝置244可與設備104之副光軸252對準。
帶電粒子源202可發射一或多個帶電粒子,粒子諸如電子、質子、離子、牟子或任何其他粒子攜載電荷。在一些實施例中,帶電粒子源202可為電子源。舉例而言,帶電粒子源202可包括陰極、提取器或陽極,其中初級電子可自陰極發射且經提取或加速以形成具有交越(虛擬的或真實的) 208之初級帶電粒子射束210 (在此情況下,為初級電子射束)。為了易於解釋而不引起分歧,在本文之描述中之一些中將電子用作實例。然而,應注意,在本發明之任何實施例中可使用任何帶電粒子,而不限於電子。初級帶電粒子射束210可被視覺化為自交越208發射。槍孔徑204可阻擋初級帶電粒子射束210之周邊帶電粒子以減小庫侖效應。庫侖效應可引起探測光點之大小的增加。
源轉換單元212可包含影像形成元件陣列及射束限制孔徑陣列。影像形成元件陣列可包含微偏轉器或微透鏡之陣列。影像形成元件陣列可與初級帶電粒子射束210之複數個細射束214、216及218形成交越208之複數個平行影像(虛擬的或真實的)。射束限制孔徑陣列可限制複數個細射束214、216及218。雖然三個細射束214、216及218展示於 2中,但本發明之實施例不限於此。舉例而言,在一些實施例中,設備104可經組態以產生第一數目個細射束。在一些實施例中,細射束之第一數目可在1至1000之範圍內。在一些實施例中,細射束之第一數目可在200至500之範圍內。在一例示性實施例中,設備104可產生400個細射束。
聚光透鏡206可聚焦初級帶電粒子射束210。在源轉換單元212下游的細射束214、216及218之電流可藉由調整聚光透鏡206之聚焦倍率或藉由改變射束限制孔徑之陣列內的對應射束限制孔徑之徑向大小而變化。物鏡228可將細射束214、216及218聚焦於晶圓230上以用於成像,且可在晶圓230之表面上形成複數個探測光點270、272及274。
射束分離器222可為產生靜電偶極子場及磁偶極子場之韋恩濾波器類型的射束分離器。在一些實施例中,若施加靜電偶極子場及磁偶極子場,則由靜電偶極子場施加於細射束214、216及218之帶電粒子(例如電子)上的力可與由磁偶極子場施加於帶電粒子上的力在量值上相等且在方向上相反。細射束214、216及218可因此以零偏轉角直接通過射束分離器222。然而,由射束分離器222產生之細射束214、216及218之總色散亦可為非零。射束分離器222可將次級帶電粒子射束236、238及240與細射束214、216及218分離,且將次級帶電粒子射束236、238及240導向次級光學系統242。
偏轉掃描單元226可使細射束214、216及218偏轉以使探測光點270、272及274遍及晶圓230之表面區域進行掃描。回應於細射束214、216及218入射於探測光點270、272及274處,可自晶圓230發射次級帶電粒子射束236、238及240。次級帶電粒子射束236、238及240可包含具有能量分佈之帶電粒子(例如,電子)。舉例而言,次級帶電粒子射束236、238及240可為包括次級電子(能量≤50 eV)及反向散射電子(能量在50 eV與細射束214、216及218之著陸能量之間)的次級電子射束。次級光學系統242可將次級帶電粒子射束236、238及240聚焦至帶電粒子偵測裝置244之偵測子區246、248及250上。偵測子區246、248及250可經組態以偵測對應次級帶電粒子射束236、238及240並產生用於重建構在晶圓230之表面區域上方或下方的結構之SCPM影像的對應信號(例如,電壓、電流或其類似者)。
所產生信號可表示次級帶電粒子射束236、238及240之強度,且可將所產生信號提供至與帶電粒子偵測裝置244、初級投影光學系統220及機動晶圓載物台280通信之影像處理系統290。機動晶圓載物台280之移動速度可與受偏轉掃描單元226控制的射束偏轉同步及協調,使得掃描探測光點(例如,掃描探測光點270、272及274)之移動可有序覆蓋晶圓230上之所關注區。此類同步及協調之參數可經調整以適應於晶圓230之不同材料。舉例而言,晶圓230之不同材料可具有不同電阻-電容特性,其可引起對掃描探測光點之移動的不同信號敏感度。
次級帶電粒子射束236、238及240之強度可根據晶圓230之外部或內部結構而變化,且因此可指示晶圓230是否包括缺陷。此外,如上文所論述,可將細射束214、216及218投影至晶圓230之頂部表面之不同位置上或晶圓230之局部結構的不同側上,以產生可具有不同強度之次級帶電粒子射束236、238及240。因此,藉由利用晶圓230之區域映射次級帶電粒子射束236、238及240之強度,影像處理系統290可重建構反映晶圓230之內部或外部結構之特性的影像。
在一些實施例中,影像處理系統290可包括影像獲取器292、儲存器294及控制器296。影像獲取器292可包含一或多個處理器。舉例而言,影像獲取器292可包含電腦、伺服器、大型電腦主機、終端機、個人電腦、任何種類之行動計算裝置或其類似者,或其組合。影像獲取器292可經由諸如電導體、光纖纜線、攜帶型儲存媒體、IR、藍牙、網際網路、無線網路、無線電或其組合之媒體以通信方式耦接至射束工具104之帶電粒子偵測裝置244。在一些實施例中,影像獲取器292可自帶電粒子偵測裝置244接收信號,且可建構影像。影像獲取器292可因此獲取晶圓230之SCPM影像。影像獲取器292亦可執行各種後處理功能,諸如產生輪廓、疊加指示符於所獲取影像上,或其類似者。影像獲取器292可經組態以執行對所獲取影像之亮度及對比度的調整。在一些實施例中,儲存器294可為儲存媒體,諸如硬碟、快閃隨身碟、雲端儲存器、隨機存取記憶體(RAM)、其他類型之電腦可讀記憶體或其類似者。儲存器294可與影像獲取器292耦接,且可用於保存作為初始影像之經掃描原始影像資料,及經後處理影像。影像獲取器292及儲存器294可連接至控制器296。在一些實施例中,影像獲取器292、儲存器294及控制器296可一起整合為一個控制單元。原始影像資料可經處理以識別影像資料中之缺陷候選者之集合。
在一些實施例中,影像獲取器292可基於自帶電粒子偵測裝置244接收到之成像信號而獲取晶圓之一或多個SCPM影像。成像信號可對應於用於進行帶電粒子成像之掃描操作。經獲取影像可為包含複數個成像區域之單一影像。單一影像可儲存於儲存器294中。單一影像可為可劃分成複數個區之初始影像。區中之各者可包含含有晶圓230之特徵之一個成像區域。所獲取影像可包含在時間順序內經取樣多次的晶圓230之單一成像區域的多個影像。多個影像可儲存於儲存器294中。在一些實施例中,影像處理系統290可經組態以運用晶圓230之相同位置的多個影像執行影像處理步驟。
在一些實施例中,影像處理系統290可包括量測電路(例如,類比至數位轉換器)以獲得所偵測之次級帶電粒子(例如,次級電子)之分佈。在偵測時間窗期間所收集之帶電粒子分佈資料與入射於晶圓表面之細射束214、216及218之對應掃描路徑資料的組合,可用於重建構受檢測晶圓結構之影像。經重建構影像可用於顯露晶圓230之內部或外部結構的各種特徵,且藉此可用於顯露可能存在於晶圓中之任何缺陷。
在一些實施例中,帶電粒子可為電子。在初級帶電粒子射束210之電子投影至晶圓230之表面(例如,探測光點270、272及274)上時,初級帶電粒子射束210的電子可穿透晶圓230之表面一定深度,與晶圓230之粒子相互作用。初級帶電粒子射束210之一些電子可與晶圓230之材料彈性地相互作用(例如,以彈性散射或碰撞之形式),且可反射或回跳出晶圓230之表面。彈性相互作用保存相互作用之主體(例如,初級帶電粒子射束210之電子)之總動能,其中相互作用主體之動能不轉換為其他能源形式(例如,熱能、電磁能或其類似者)。自彈性相互作用產生之此類反射電子可稱為反向散射電子(BSE)。初級帶電粒子射束210中之一些電子可(例如,以非彈性散射或碰撞之形式)與晶圓230之材料非彈性地相互作用。非彈性相互作用不保存相互作用之主體的總動能,其中相互作用主體之動能中之一些或所有轉換成其他形式之能量。舉例而言,經由非彈性相互作用,初級帶電粒子射束210中之一些電子之動能可引起材料之原子的電子激勵及躍遷。此類非彈性相互作用亦可產生射出晶圓230之表面之電子,該電子可稱為次級電子(SE)。BSE及SE之良率或發射速率取決於例如受檢測材料及初級帶電粒子射束210之電子著陸在材料的表面上之著陸能量等。初級帶電粒子射束210之電子之能量可部分地由其加速電壓(例如,在 2中之帶電粒子源202之陽極與陰極之間的加速電壓)賦予。BSE及SE之數量可比初級帶電粒子射束210之注入電子更多或更少(或甚至相同)。
由SEM產生之影像可用於缺陷檢測。舉例而言,可將俘獲晶圓之測試裝置區之所產生影像與俘獲相同測試裝置區之參考影像進行比較。參考影像可經(例如,藉由模擬)預定且不包括已知缺陷。若所產生影像與參考影像之間的差異超過容許度位準,則可識別潛在缺陷。對於另一實例,SEM可掃描晶圓之多個區,各區包括經設計為相同的測試裝置區,且產生俘獲如所製造之彼等測試裝置區之多個影像。多個影像可彼此進行比較。若多個影像之間的差異超過容許度位準,則可識別潛在缺陷。
在一些實施例中,可提供電腦系統,其可識別晶圓影像中之缺陷且根據缺陷類型將缺陷分類納入若干類別。舉例而言,一旦獲取晶圓影像,就可將其傳輸至電腦系統以供處理。 3為繪示符合本發明之實施例的缺陷再檢測系統300之示意圖。
參看 3,缺陷再檢測系統300可包括晶圓檢測系統310、自動缺陷分類(ADC)伺服器320,及電耦接至ADC伺服器320之知識推薦伺服器330。晶圓檢測系統310可為關於 1所描述之EBI系統100。應瞭解,ADC伺服器320及知識推薦伺服器330可為EBI系統100之部分或遠離EBI系統100。
晶圓檢測系統310可為產生晶圓之檢測影像的任何檢測系統。晶圓可為半導體晶圓基板,或例如具有一或多個磊晶層或程序膜之半導體晶圓基板。晶圓檢測系統310可為任何當前可用或開發中之晶圓檢測系統。本發明之實施例不限制晶圓檢測系統310之特定類型。此系統可產生具有一解析度之晶圓影像以便觀測晶圓上之關鍵特徵(例如小於20 nm)。
ADC伺服器320可包括電耦接至晶圓檢測系統310以接收晶圓影像之通信介面322。ADC伺服器320亦可包括經組態以分析晶圓影像並偵測及分類出現於晶圓影像上之缺陷,且可使用缺陷知識檔案進行此分析、偵測或分類的處理器324。缺陷知識檔案可由操作者人工提供至ADC伺服器320。替代地,根據本發明之一些實施例,缺陷知識檔案可由知識推薦伺服器330自動提供至ADC伺服器320。
舉例而言,知識推薦伺服器330可電耦接至ADC伺服器320。知識推薦伺服器330可包括處理器332及儲存器334。處理器332可經組態以建置複數個缺陷知識檔案,並將該複數個缺陷知識檔案儲存於儲存器334中。該複數個缺陷知識檔案可含有與在晶圓製造程序之各種階段期間產生的各種類型之缺陷有關的資訊。晶圓製造程序之各種階段可包括但不限於:微影程序、蝕刻程序、化學機械研磨(CMP)程序及互連成形程序。
處理器332可經組態以基於複數個缺陷斑塊影像建置複數個缺陷知識檔案。複數個缺陷斑塊影像可由晶圓檢測工具產生,該晶圓檢測工具諸如 2中所繪示之電子射束工具104。缺陷斑塊影像可為含有缺陷之晶圓之一部分的小影像(例如,34×34像素)。缺陷斑塊影像可在缺陷上居中,且可包括缺陷之相鄰像素。
可經由機器學習程序訓練處理器332,以基於一特定類型之缺陷之複數個缺陷斑塊影像來建置與彼類型之缺陷有關的知識檔案。舉例而言,可訓練處理器332以基於在互連成形程序中產生之虛線缺陷之複數個缺陷斑塊影像而建置與該等虛線缺陷有關的知識檔案。
處理器332亦可經組態以回應於來自ADC伺服器320之對知識推薦之請求而搜尋匹配包括於所接收請求中的晶圓影像之知識檔案,且將知識檔案提供至ADC伺服器320。
儲存器334可儲存含有與在晶圓製造程序之各種階段期間產生的各種類型之缺陷有關的複數個缺陷知識檔案的一ADC資料中心。ADC資料中心中之複數個缺陷知識檔案可由知識推薦伺服器330之處理器332建置。替代地,儲存器334中之缺陷知識檔案之一部分可由一使用者或一外部電腦系統預設,且可經預裝載至儲存器334中。
一缺陷知識檔案可包括關於單種類型之缺陷的一般資訊。一般資訊可包括單種類型之缺陷的斑塊影像及待用於稍後分類(例如,大小、邊緣粗糙度、深度、高度等等)之特徵參數。替代地,根據本發明之一些實施例,缺陷知識檔案可包括關於存在於晶圓之同一程序層中的複數種類型之缺陷之一般資訊。單一程序層可為例如基板層、磊晶層、薄膜層、光阻層、氧化物層、金屬互連層等。
現參考 4 4為繪示具有一階段ADC訓練之習知分類樹400之示意圖。分類樹包括一影像資料集合402、一分類器404、一擾亂箱406以及缺陷箱408及410。運用諸如一SEM之一檢測工具掃描一或多個樣本可產生影像資料集合402。影像資料集合402含有大量候選缺陷影像。候選者係可由分類器404分類納入箱406、408及410的樣本表面上之可能缺陷。分類器404可使用一自動缺陷分類系統(諸如, 3中之缺陷再檢測系統300的ADC伺服器320及知識推薦伺服器330)分類資料。如上文所論述,箱406對應於擾亂,而箱408及410對應於兩個相異缺陷類型。各候選者可藉由與複數個參數之比較根據儲存於儲存器334中之缺陷類型的知識檔案而識別為一缺陷類型。參數可包括例如大小、邊緣粗糙度、深度、高度或任何可量測特徵參數。處理器324可根據知識檔案將一候選者識別為一特定缺陷類型並將其分類納入適當箱。舉例而言,處理器324可將影像資料識別為匹配對應於箱408之一缺陷類型並將候選者分類納入箱408。不充分匹配真實缺陷之參數的候選者可經分類為擾亂。缺陷及擾亂可藉由其對良率及裝置功能性之預期影響而大致區分。舉例而言,若判定不影響良率或裝置功能性,則一處理缺陷、污染或其他可量測性質可經分類為擾亂。若處理缺陷、污染或其他可量測性質造成對良率或裝置功能性之可能威脅,則其可經視為缺陷。在 4中,雖然展示僅僅兩個缺陷箱408及410,但應瞭解可使用更多缺陷箱。舉例而言,箱408之第一缺陷類型可為「孔缺漏」缺陷且箱410之第二缺陷類型可為「孔橋接」缺陷。其他缺陷類型係可能的,且類型之數目不限於二。藉由濾除擾亂及根據其類型分箱真實缺陷,可對製造程序進行適當調整以改進裝置良率及準確度。
分類器404可為機器學習分類器。無監督機器學習模型及監督機器學習模型兩者可用以預測一或多個缺陷。在不限制申請專利範圍之範疇的情況下,在下文描述監督機器學習演算法之應用。
監督學習為自經標記訓練資料推斷函數之機器學習任務。訓練資料為訓練實例之集合。在監督學習中,各實例為由輸入物件(通常為向量)及所要輸出值(亦被稱作監督信號)組成之一對。監督學習演算法分析訓練資料且產生可用於映射新實例之經推斷函數。最佳情境將允許演算法正確地判定用於未見過的例項之類別標記。此情形需要學習演算法以「合理的」方式(參見電感偏置)自訓練資料一般化至未見過的情況。
在給出形式為{(x 1,y 1),(x 2,y 2),…,(x N,y N)}之一組N個訓練實例使得x i為第i個實例之特徵向量且y i為其標記(亦即,類別)的情況下,學習演算法尋求函數g:X→Y,其中X為輸入空間且Y為輸出空間。特徵向量為表示某一物件之數值特徵之n維向量。機器學習中之許多演算法需要物件之數值表示,因為此等表示有助於處理及統計分析。在表示影像時,特徵值可對應於影像之像素,在表示文字時,可能稱為出現頻率。與此等向量相關聯之向量空間常常被稱為特徵空間。函數g為可能函數G之某一空間(通常被稱作假設空間)之要素。有時使用計分函數f:X×Y→R表示函數g係合宜的,使得函數g被定義為返回給出最高計分:g(x)=arg maxyf(x, y)之y值。假設F表示計分函數之空間。
儘管G及F可為函數之任何空間,但許多學習演算法係機率模型,其中g採取條件機率模型g(x)=P(y|x)之形式,或f採取聯合機率模型f(x,y)=P(x,y)之形式。舉例而言,樸素貝葉斯(naive Bayes)及線性判別分析為聯合機率模型,而邏輯回歸為條件機率模型。
存在用以選擇g之兩種基本途徑:經驗風險最小化及結構風險最小化。經驗風險最小化尋求最擬合訓練資料之函數。結構風險最小化包括控制偏差/變異數取捨之懲罰函數。
在兩種情況下,假定訓練集含有獨立且相同分配的對(xi,yi)之樣本。為了量測函數擬合訓練資料之良好程度,可定義損失函數L:Y×Y→R ≥ 0。對於訓練實例(xi,yi),預測值ŷ之損失係L(yi,ŷ)。
將函數g之風險R(g)定義為g之預期損失。此可自訓練資料估計為Remp(g)=1/NΣiL(yi, g(xi))。
監督式學習之例示性模型包括決策樹、集(裝袋、增強、隨機森林)、k-NN、線性回歸、貝氏機率、類神經網路、羅吉斯回歸、感知器、支援向量機(SVM)、關聯向量機(RVM)及/或深度學習。在一些實施例中,分類器為用於來自HMI公司之e-Manager® ADC系統中的分類器4 (C4)類型。C4包括藉由選擇在樹構造期間隨機地選擇的特徵之一子集建構的決策樹之集合。分類係藉由根據森林中之樹之經選擇數目及隨機選擇的變數之數目的決策樹之多數表決進行。上述機器學習實例並不意謂限制性,且其他機器學習演算法在本發明之範疇內係可能的。
為評估分類樹之結果準確度,SEM影像資料之集合可經歷分類及人工再檢測兩者。人工再檢測為更嚴格及勞力密集分析以較高可信度判定集合中之各候選者之實際性質。操作者接著可比較各候選者根據ADC之分箱與如藉由再檢測所判定之實際結果。舉例而言,參考 4,吾人可判定多少候選者在其應在擾亂箱406中分類時經分箱至一第一缺陷類型箱408。
人工再檢測之結果可與分類結果進行比較以判定諸如擾亂率NR之效能量度。擾亂率NR可為「錯誤肯定」之量測,亦即,根據ADC經標記為缺陷但根據再檢測經判定為擾亂的候選者之百分比。將錯誤肯定之數目除以總肯定之數目得到擾亂率NR。下文說明此等結果。
5A描繪具有一階段訓練之習知ADC分類樹500之一個實例情況。在 5A及後續圖之實例中給出的數值出於說明性目的而呈現,且不意謂被視為限制本發明之範疇。含有93,114個候選者之資料集合502經饋送至分類器504。舉例而言,分類器504可為C4類型分類器。分類器504將各候選者分箱納入三個類別中之一者:擾亂506;孔缺漏缺陷類型508;及孔橋接缺陷類型510。如 5A中所見,用於各缺陷類型之計數係在單階段分類500情況下以數千來計。
5B描繪 5A之分類樹的結果準確度表。結果準確度表為藉由比較ADC分類結果與相同資料集合502之人工再檢測而建立的矩陣。行表示根據ADC程序之分箱結果,而列展示根據嚴格人工再檢測之更準確結果。各程序之總結果係在標記為「總」之行/列中給出,而交叉比較係在其他矩陣單元中給出。舉例而言,豎直Hole_Missing行展示總共8013個候選者由ADC分類器504識別為Hole_Missing類型缺陷。但使用人工再檢測,展示彼等候選者之僅僅36個實際上為Hole_Missing缺陷。另外2個候選者為經錯識別為Hole_Missing之Hole_Bridge缺陷,且7975實際上為擾亂。相似地,水平Hole_Missing列展示人工再檢測將總共49個候選者識別為Hole_Missing缺陷。ADC已正確地識別彼等候選者中之36個,將另外13個錯識別為擾亂,且沒有一者經錯識別為Hole_Bridge。
5B中之兩個矩形方框突出顯示在擾亂率計算中利用的資料。上部矩形方框展示由ADC分類器504錯識別為缺陷的擾亂之數目:7975個擾亂經分類為Hole_Missing缺陷,且1177個擾亂經分類為Hole_Bridge缺陷。下部矩形方框展示經分類為缺陷的候選者之總數目:8013為Hole_Missing且1400為Hole_Bridge。根據一些計算,擾亂率NR可為經錯分類為缺陷(如在再檢測之後判定)的擾亂之數目與經分類為缺陷的候選者之總數目的比率。 5A之分類樹500得到如下擾亂率: NR = (7975+1177)/(8013+1400) = 97% 此擾亂率係不可接受的高,從而展示分類器504不能充分濾除不需要的候選者。可使用 5B中之資訊採用其他擾亂率計算。舉例而言,例示性擾亂率計算不直接俘獲由ADC分類器504錯分類為擾亂的真實缺陷之數目。
5C展示運用導致高擾亂率之單階段分類樹的一個問題。許多擾亂可不容易地區分,此係由於其可量測特性接近於真實缺陷之特性。因此,一些擾亂難以自真實缺陷辨別且常常如此分箱。 5C展示在擾亂旁邊的可被誤認為其之孔缺漏及孔橋接缺陷的實例。擾亂522可經誤認為孔缺漏缺陷521。擾亂524及525可經誤認為孔橋接缺陷523。擾亂527可經誤認為孔橋接缺陷526。此等錯分類對擾亂率NR具有負面影響,且其降低缺陷檢測程序之效能及可靠性。
為改進擾亂率,使用多階段系統。 6描繪符合本發明之一些實施例的多階段分類樹600。多階段分類樹600包括影像資料集合602、ADC分類器604、擾亂箱606、缺陷箱608及610,以及經修訂訓練集區612。分類器604可為例如C4類型分類器。分類樹600係在複數個階段中執行,其中各階段使用來源於先前階段之較佳訓練資料。在階段I中,影像資料集合602經饋送至基於ML之ADC分類器604。分類器604使用來自不同缺陷類別之多個經標記訓練樣本作為初始機器學習訓練集區來分類影像資料集合602。來自影像資料集合602之候選者經分類納入擾亂箱606及缺陷箱608及610。在第一分類階段之後,如上文關於 5B所論述人工地再檢測分類結果。人工再檢測識別來自多階段分類600之第一階段的錯分類。然而,來自人工再檢測之資訊並不簡單地用於判定階段一分類之擾亂率。實際上,基於所選擇圖案特徵及缺陷強度臨限值,來自各類型之一些經錯分類缺陷經正確地再標記並經置於經修訂訓練集區612中以用於階段II中之第二分類。階段II分類之結果可再次經歷人工再檢測,且需要時,再檢測可用以建立另一經修訂訓練集區612。以此方式可執行若干反覆,各反覆運用新校正之訓練樣本,直至分類結果滿足期望為止。舉例而言,分類可在階段中重複直至擾亂率到達預定位準為止,直至擾亂率收斂至穩定值為止。替代地,多階段分類可包括指定數目個階段。
7A展示具有多階段訓練之分類樹700的實例情況。多階段分類樹700包括影像資料集合702、ADC分類器704、擾亂箱706、孔缺漏缺陷箱708、孔橋接缺陷箱710,及經修訂訓練集區712。分類器704可為例如C4類型分類器。方框706、708及710中展示之值表示在一系列分類階段之後的最終分箱結果。如上文關於 6所論述,在其中分類器704使用經修訂訓練集區712之最新反覆分類原始資料702的複數個分類階段之後獲得此等結果。 7B描繪 7A之分類樹的結果準確度表。如上文關於 5B所論述, 7B之結果準確度表為藉由比較ADC分類結果與相同資料集合702之人工再檢測而建立的矩陣。多階段分類700提供優於單階段實例500的對擾亂率之顯著改進: NR = (4+8)/(53+258) = 3.8% 然而,IC製造中之特徵大小總是縮小且電路特徵之填集密度不斷地增加。因此,需要在最大可能的程度上進一步降低擾亂率NR。
8展示根據本發明之一些實施例的多階段多擾亂分類樹800。多階段多擾亂分類樹800包括影像資料集合802、擾亂再檢測類型之集合803、ADC分類器804、擾亂箱806及807、缺陷箱808及810,以及經修訂訓練集區812。分類器804可為例如C4類型分類器。為進一步降低擾亂率,本發明之分類器804使用複數個擾亂再檢測類型803建立複數個擾亂箱806及807。關於相異擾亂類型803之擾亂型資訊在初始分類階段開始之前經饋送至分類器804。在一些實施例中,擾亂型資訊可包含類似於如上文關於 3所論述之缺陷知識檔案的擾亂知識檔案。在一些實施例中,擾亂型資訊可包含對應於擾亂類型806及807中之一些或全部的初始訓練樣本。樣本可包括於一第一訓練集區中以供用於分類樹800中之多階段分類程序之第一階段中。當資料集合802由分類器804分類時,原本可能已經錯分類為缺陷808或810之擾亂可實際上經分類為特定擾亂類型806或807。舉例而言,原本經錯分類之資料可經分類為特定擾亂類型807,而剩餘擾亂經分類為806。應理解,本發明不限於缺陷再檢測或擾亂再檢測類型之兩個類別。
在第一分類階段之後,將結果與人工再檢測之結果進行比較。基於不同圖案特徵及強度臨限值,來自各類型之一些經錯分類缺陷及經錯分類擾亂經正確地再標記並經置於經修訂訓練集區812中以用於階段II中之第二訓練,此程序之多個反覆可經執行直至訓練結果滿足期望為止,相似於上文關於 7所論述的程序。
在一些實施例中,擾亂再檢測類型可基於其與缺陷再檢測類型之關係或相似度而建立。換言之,擾亂再檢測類型可經設計以識別具有經錯分類為某一缺陷之可能性的候選類型。返回參看 5C,缺陷再檢測類型「無孔缺漏」可經建立以識別類型之擾亂522,使得擾亂522不大可能經錯分類為孔缺漏缺陷521。類型之擾亂524、525及527可用以建立一或多個「無孔橋接」擾亂類型以便避免錯分類為孔橋接缺陷523或525。一般而言,一些實施例係關於與對應正常缺陷再檢測類型相關的擾亂再檢測類型。
在一些實施例中,擾亂再檢測類型經設計以分解分類類別中之大資料不平衡。當分類器將全部擾亂集總為一種類型時,在彼類別中之分類計數比任何其他類別中之計數高得多。返回參看 7A,箱706中之擾亂分類計數92,803使缺陷箱708及710中展示的數目顯得甚小。此不平衡可建立用於具有基於用約略相等數目將資料分類納入不同類別之假定的最佳化方法之ML演算法的問題。當真實世界資料集合偏離此假定太遠時,分類準確度可受損。當各類別中之資料計數或多或少彼此相等時許多ML分類器最佳工作。學習演算法往往會在識別屬於較小計數類別之資料時變得不大準確。當小箱中之資料具有最大關注時此尤其係有問題的。對於如上述實例中所示之SEM檢測,分類器可在搜尋相對較少實際缺陷時篩選大量資料。
為解決此問題,複數個擾亂再檢測類型可出於消除資料不平衡之目的而建立。此等擾亂再檢測類型可不基於與特定缺陷再檢測類型之任何相似度,但實際上可經設計成具有將大擾亂計數分成複數個較小計數的目標。在一些實施例中,複數個擾亂再檢測類型可導致具有約略相似計數之複數個箱。舉例而言,複數個擾亂類型之最大及最小計數可在彼此之十倍內。在一些實施例中,複數個擾亂再檢測類型可經設計成使得擾亂類型中之最大分類計數可在最小分類計數之倍數(例如,5×)內。
9A展示根據本發明之一些實施例的具有多階段多擾亂訓練分類樹900之實例情況。多階段分類樹900包括影像資料集合902、擾亂再檢測類型之集合903、ADC分類器904、擾亂箱906及907、缺陷箱908及910,以及經修訂訓練集區912。方框906、907、908及910中展示之值表示在一系列分類階段之後的最終分箱結果。如上文關於 7所論述,在其中分類器904使用經修訂訓練集區912之最新反覆分類原始資料902的複數個分類階段之後獲得此等結果。為進一步降低擾亂率,本發明之分類器904使用複數個擾亂再檢測類型建立複數個擾亂箱906及907。關於相異擾亂類型903之擾亂型資訊在初始分類階段開始之前經饋送至分類器904。在本發明實施例中,僅藉助於實例,分類器使用兩個擾亂再檢測類型以將單一擾亂類別分成兩個箱「擾亂」及「正常」。前者計數92,803現在經分成約略相等部分。 9B展示多階段分類900相較於單擾亂實例700進一步降低擾亂率: NR = (1+0)/(45+248) = 0.3%
本發明之實施例可極大地降低缺陷檢測程序中之擾亂率。藉由更有效地自偵測資料中過濾擾亂,本發明之實施例可更準確地識別並補償實際缺陷,從而引起裝置製造程序中之增加之準確度及較高良率。
10展示根據本發明之一些實施例的用於改進影像檢測資料中之擾亂率之實例方法1000。在一些實施例中,方法1000之一或多個步驟可由 1之EBI系統100、與EBI系統100相關聯之處理器(諸如處理器109)及根據 8之多階段多擾亂分類樹800執行。在 10中未繪示之一或多個步驟可按需要經添加、刪除、編輯或以不同方式排序。
在步驟1001處,諸如SEM之檢測工具獲取影像資料之集合。影像資料包括待由ML分類器分類的候選缺陷之集合。檢測工具可為例如如上文關於 1 2所論述之工具104。
步驟1002至1007繪示根據本發明之一些實施例的多階段多擾亂分類方法。方法可根據例如 8之多階段多擾亂分類800來進行。
在步驟1002處,開發複數個缺陷再檢測類型及複數個擾亂再檢測類型。在一些實施例中,缺陷再檢測類型可經設計以藉由比較用於儲存於例如 3之儲存器334中的缺陷類型之知識檔案中之複數個參數而識別特定缺陷類型。參數可包括例如大小、邊緣粗糙度、深度、高度或任何可量測特徵參數。知識檔案可使用用於缺陷再檢測類型之訓練資料之集合進行開發。在一些實施例中,擾亂再檢測類型可經設計以藉由比較用於儲存於例如 3之儲存器334中的擾亂類型之知識檔案中之複數個參數而識別特定擾亂類型。參數可包括例如大小、邊緣粗糙度、深度、高度或任何可量測特徵參數。知識檔案可使用用於擾亂再檢測類型之訓練資料之集合進行開發。在一些實施例中,擾亂再檢測類型可經設計以便將擾亂類型分解成複數個群組以降低分類程序中之資料不平衡。
在步驟1003處,機器學習ADC分類器基於複數個缺陷再檢測類型將影像資料分類納入複數個缺陷類型,並基於複數個擾亂再檢測類型將影像資料分類納入複數個擾亂類型。機器學習分類器可為例如 8之分類器804。機器學習分類器可為例如C4分類器。
在步驟1004處,比較經分類影像資料與影像資料之人工再檢測。人工再檢測為更嚴格及勞力密集分析以較高可信度判定集合中之各候選者之實際性質。操作者接著可比較各候選者根據ADC之分箱與如藉由再檢測所判定之實際結果。比較可用以評估分類步驟1003之準確度。舉例而言,比較可藉由判定如上文所描述之擾亂率NR來評估準確度。
在1005處,判定多階段多擾亂分類之最新的階段是否為最終階段。判定可基於經評估準確度(諸如擾亂率NR)是否在指定規格內。判定可基於經評估準確度(諸如擾亂率NR)是否具有在與先前分類階段中之先前值之指定接近度內的值。替代地或另外,可基於分類階段之指定數目將最新的階段判定為最終階段。若多階段多擾亂分類之最新的階段經判定為最終階段,則程序移動至步驟1006。經錯分類候選者之選擇經正確地再標記並經置於經修訂訓練集區中。經修訂訓練集區可包括新的缺陷訓練資料或新的擾亂訓練資料。經修訂訓練集區可用於在步驟1002開始之額外階段中進一步訓練。若多階段多擾亂分類之最新的階段經判定為最終階段,則多階段分類在步驟1007處結束。經分類影像資料接著可用於改進一程序,例如積體電路或其他半導體製造程序。
可提供一種非暫時性電腦可讀媒體,其儲存指令以供控制器109之處理器實施帶電粒子射束檢測、運行分類器網路、執行圖案分組,或其他功能及與符合本發明的方法,諸如方法1000。舉例而言,常見形式之非暫時性媒體包括:軟碟、可撓性磁碟、硬碟、固態硬碟、磁帶或任何其他磁性資料儲存媒體;CD-ROM;任何其他光學資料儲存媒體;具有孔圖案之任何實體媒體;RAM、PROM及EPROM、FLASH-EPROM或任何其他快閃記憶體;NVRAM;快取記憶體;暫存器;任何其他記憶體晶片或卡匣;及其網路化版本。
可使用以下條項進一步描述實施例: 1. 一種用於改進影像檢測資料中之一擾亂率之方法,該方法包含: 獲得包含候選缺陷之一集合的影像資料; 開發複數個缺陷再檢測類型及複數個擾亂再檢測類型; 在一第一分類階段期間基於該複數個缺陷再檢測類型將候選缺陷之該集合分類納入一或多個缺陷類型; 在該第一分類階段期間基於該複數個擾亂再檢測類型將候選缺陷之該集合分類納入複數個擾亂類型,及 將一基於機器學習之多階段分類應用於候選缺陷之該經分類集合。 2. 如條項1之方法,其中該基於機器學習之多階段分類進一步包含: 自該第一分類階段執行候選缺陷之該經分類集合的一再檢測; 自候選缺陷之該經分類集合選擇一經錯分類缺陷及一經錯分類擾亂中之至少一者; 根據該再檢測來再標記該經錯分類缺陷及該經錯分類擾亂中之該至少一者以建立包含候選缺陷之該集合的經再標記影像資料; 添加該經再標記影像資料至該基於機器學習之多階段分類的一訓練集區以建立一經修訂訓練集區;及 使用該經修訂訓練集區執行一第二分類階段。 3. 如條項1之方法,其中該複數個擾亂再檢測類型中之至少一者係基於一缺陷再檢測類型而開發。 4. 如條項1之方法,其中該複數個擾亂再檢測類型中之至少一者經開發以降低該經分類影像資料中之一資料不平衡。 5. 如條項4之方法,其中該複數個擾亂再檢測類型中之該至少一者包括一第一擾亂再檢測類型及一第二擾亂再檢測類型;且 該第一擾亂再檢測類型經開發以產生不超過該第二擾亂再檢測類型之分類計數之5倍的一分類計數。 6. 如條項1之方法,其中候選缺陷之該集合係來自包括一偵測器之一帶電粒子射束設備。 7. 如條項6之方法,其中包括一偵測器之該帶電粒子射束設備為一掃描電子顯微鏡(SEM)。 8. 一種用於改進影像檢測資料中之一擾亂率之系統,其包含: 一帶電粒子射束設備,其包括一偵測器; 一影像獲取器,其包括自該偵測器接收一偵測信號並建構包括一第一特徵之一影像的電路;及 一控制器,其具有至少一個處理器及包含指令之一非暫時性電腦可讀媒體,該等指令在由該至少一個處理器執行時使該系統執行以下操作: 獲得包含候選缺陷之一集合的影像資料; 開發複數個缺陷再檢測類型及複數個擾亂再檢測類型; 在一第一分類階段期間基於該複數個缺陷再檢測類型將候選缺陷之該集合分類納入一或多個缺陷類型; 在該第一分類階段期間基於該複數個擾亂再檢測類型將候選缺陷之該集合分類納入複數個擾亂類型,及 將一基於機器學習之多階段分類應用於候選缺陷之該經分類集合。 9. 如條項8之系統,其中該基於機器學習之多階段分類包括包含以下各者之操作: 自該第一分類階段執行候選缺陷之該經分類集合的一再檢測; 自候選缺陷之該經分類集合選擇一經錯分類缺陷及一經錯分類擾亂中之至少一者; 根據該再檢測來再標記該經錯分類缺陷及該經錯分類擾亂中之該至少一者以建立包含候選缺陷之該集合的經再標記影像資料; 添加該經再標記影像資料至該基於機器學習之多階段分類的一訓練集區以建立一經修訂訓練集區;及 使用該經修訂訓練集區執行一第二分類階段。 10.   如條項8之系統,其中該複數個擾亂再檢測類型中之至少一者係基於一缺陷再檢測類型而開發。 11.    如條項8之系統,其中 該複數個擾亂再檢測類型中之至少一者經開發以降低該經分類影像資料中之一資料不平衡。 12.   如條項11之系統,其中該複數個擾亂再檢測類型中之該至少一者包括一第一擾亂再檢測類型及一第二擾亂再檢測類型;且 該第一擾亂再檢測類型經開發以產生不超過該第二擾亂再檢測類型之分類計數之5倍的一分類計數。 13.   如條項8之系統,其中包括一偵測器之該帶電粒子射束設備為一掃描電子顯微鏡(SEM)。 14.   一種儲存一指令集之非暫時性電腦可讀媒體,該指令集可由一系統之一或多個處理器執行以使該系統執行一方法,該方法包含: 獲得包含候選缺陷之一集合的影像資料; 開發複數個缺陷再檢測類型及複數個擾亂再檢測類型; 在一第一分類階段期間基於該複數個缺陷再檢測類型將候選缺陷之該集合分類納入一或多個缺陷類型; 在該第一分類階段期間基於該複數個擾亂再檢測類型將候選缺陷之該集合分類納入複數個擾亂類型,及 將一基於機器學習之多階段分類應用於候選缺陷之該經分類集合。 15.   如條項14之非暫時性電腦可讀媒體,其中該基於機器學習之多階段分類進一步包含: 自該第一分類階段執行候選缺陷之該經分類集合的一再檢測; 自候選缺陷之該經分類集合選擇一經錯分類缺陷及一經錯分類擾亂中之至少一者; 根據該再檢測來再標記該經錯分類缺陷及該經錯分類擾亂中之該至少一者以建立包含候選缺陷之該集合的經再標記影像資料; 添加該經再標記影像資料至該基於機器學習之多階段分類的一訓練集區以建立一經修訂訓練集區;及 使用該經修訂訓練集區執行一第二分類階段。 16.   如條項14之非暫時性電腦可讀媒體,其中該複數個擾亂再檢測類型中之至少一者係基於一缺陷再檢測類型而開發。 17.   如條項14之非暫時性電腦可讀媒體,其中該複數個擾亂再檢測類型中之至少一者經開發以降低該經分類影像資料中之一資料不平衡。 18.   如條項17之非暫時性電腦可讀媒體,其中該複數個擾亂再檢測類型中之該至少一者包括一第一擾亂再檢測類型及一第二擾亂再檢測類型;且 該第一擾亂再檢測類型經開發以產生不超過該第二擾亂再檢測類型之分類計數之5倍的一分類計數。 19.   如條項14之非暫時性電腦可讀媒體,其中該經獲得影像資料係來自包括一偵測器之一帶電粒子射束設備。 20.   如條項19之非暫時性電腦可讀媒體,其中包括一偵測器之該帶電粒子射束設備為一掃描電子顯微鏡(SEM)。 21.   一種用於改進影像檢測資料中之一擾亂率之方法,該方法包含: 獲得包含候選缺陷之一集合的影像資料; 開發一或多個第一缺陷再檢測類型; 在一基於第一機器學習之分類階段期間基於該一或多個第一缺陷再檢測類型將候選缺陷之該集合分類納入一擾亂類型及一或多個缺陷類型; 執行候選缺陷之該經分類集合的一人工再檢測以判定該影像資料之一實際分類, 建立該基於第一機器學習之分類階段之一結果與該人工再檢測之一結果的一比較; 基於該比較建立經修訂訓練資料之一集合; 使用該經修訂訓練資料開發一或多個第二缺陷再檢測類型,該第二缺陷再檢測類型不同於該第一缺陷再檢測類型;及 在一基於第二機器學習之分類階段期間基於該一或多個第二缺陷再檢測類型將候選缺陷之該集合再分類納入該擾亂類型及一或多個缺陷類型。 22.   如條項21之方法,其中 候選缺陷之該集合納入一擾亂類型的該分類包括將候選缺陷之該集合分類納入複數個擾亂類型。 23.   如條項22之方法,其中該複數個擾亂再檢測類型中之至少一者係基於一缺陷再檢測類型而開發。 24.   如條項22之方法,其中該複數個擾亂再檢測類型中之至少一者經開發以降低該經分類影像資料中之一資料不平衡。 25.   如條項24之方法,其中 該複數個擾亂再檢測類型中之該至少一者包括一第一擾亂再檢測類型及一第二擾亂再檢測類型;且 該第一擾亂再檢測類型經開發以產生不超過該第二擾亂再檢測類型之分類計數之5倍的一分類計數。 26.   如條項21之方法,其中該經獲得影像資料係來自包括一偵測器之一帶電粒子射束設備。 27.   如條項21之方法,其中包括一偵測器之該帶電粒子射束設備為一掃描電子顯微鏡(SEM)。 28.   如條項21之方法,其進一步包含 建立該基於第二機器學習之分類階段之一結果與該人工再檢測之一結果的一比較; 基於該比較建立第二經修訂訓練資料之一集合; 使用該經修訂訓練資料開發一或多個第三缺陷再檢測類型,該第三缺陷再檢測類型不同於該第一缺陷再檢測類型及該缺陷再檢測類型;及 在一基於第三機器學習之分類階段期間基於該一或多個第三缺陷再檢測類型將候選缺陷之該集合再分類納入該擾亂類型及一或多個缺陷類型。 29.   一種用於改進影像檢測資料中之一擾亂率之方法,該方法包含: 獲得包含候選缺陷之一集合的影像資料; 開發複數個擾亂再檢測類型; 在一第一分類階段期間基於該複數個擾亂再檢測類型將候選缺陷之該集合分類納入複數個擾亂類型,及 將一基於機器學習之多階段分類應用於候選缺陷之該經分類集合。 30.   如條項29之方法,其中該基於機器學習之多階段分類進一步包含: 自該第一分類階段執行候選缺陷之該經分類集合的一再檢測; 自候選缺陷之該經分類集合選擇一經錯分類擾亂; 根據該再檢測來再標記該經錯分類擾亂以建立包含候選缺陷之該集合的經再標記影像資料; 添加該經再標記影像資料至該基於機器學習之多階段分類的一訓練集區以建立一經修訂訓練集區;及 使用該經修訂訓練集區執行一第二分類階段。 31.   如條項29之方法,其進一步包含開發一缺陷再檢測類型。 32.   如條項31之方法,其中該複數個擾亂再檢測類型中之至少一者係基於該缺陷再檢測類型而開發。 33.   如條項31之方法,其進一步包含開發複數個缺陷再檢測類型。 34.   如條項29之方法,其中該複數個擾亂再檢測類型中之至少一者經開發以降低該經分類影像資料中之一資料不平衡。 35.   如條項34之方法,其中該複數個擾亂再檢測類型中之該至少一者包括一第一擾亂再檢測類型及一第二擾亂再檢測類型;且 該第一擾亂再檢測類型經開發以產生不超過該第二擾亂再檢測類型之分類計數之5倍的一分類計數。 36.   如條項29之方法,其中候選缺陷之該集合係來自包括一偵測器之一帶電粒子射束設備。 37.   如條項36之方法,其中包括一偵測器之該帶電粒子射束設備為一掃描電子顯微鏡(SEM)。 38.   一種儲存一指令集之非暫時性電腦可讀媒體,該指令集可由一系統之一或多個處理器執行以使該系統執行一方法,該方法包含: 獲得包含候選缺陷之一集合的影像資料; 開發一或多個第一缺陷再檢測類型; 在一基於第一機器學習之分類階段期間基於該一或多個第一缺陷再檢測類型將候選缺陷之該集合分類納入一擾亂類型及一或多個缺陷類型; 執行候選缺陷之該經分類集合的一人工再檢測以判定該影像資料之一實際分類, 建立該基於第一機器學習之分類階段之一結果與該人工再檢測之一結果的一比較; 基於該比較建立經修訂訓練資料之一集合; 使用該經修訂訓練資料開發一或多個第二缺陷再檢測類型,該第二缺陷再檢測類型不同於該第一缺陷再檢測類型;及 在一基於第二機器學習之分類階段期間基於該一或多個第二缺陷再檢測類型將候選缺陷之該集合再分類納入該擾亂類型及一或多個缺陷類型。 39.   如條項38之非暫時性電腦可讀媒體,其中 候選缺陷之該集合納入一擾亂類型的該分類包括將候選缺陷之該集合分類納入複數個擾亂類型。 40.   如條項39之非暫時性電腦可讀媒體,其中該複數個擾亂再檢測類型中之至少一者係基於一缺陷再檢測類型而開發。 41.   如條項39之非暫時性電腦可讀媒體,其中該複數個擾亂再檢測類型中之至少一者經開發以降低該經分類影像資料中之一資料不平衡。 42.   如條項41之非暫時性電腦可讀媒體,其中 該複數個擾亂再檢測類型中之該至少一者包括一第一擾亂再檢測類型及一第二擾亂再檢測類型;且 該第一擾亂再檢測類型經開發以產生不超過該第二擾亂再檢測類型之分類計數之5倍的一分類計數。 43.   如條項38之非暫時性電腦可讀媒體,其中該經獲得影像資料係來自包括一偵測器之一帶電粒子射束設備。 44.   如條項38之非暫時性電腦可讀媒體,其中包括一偵測器之該帶電粒子射束設備為一掃描電子顯微鏡(SEM)。 45.   如條項38之非暫時性電腦可讀媒體,其中可由該系統之一或多個處理器執行的該指令集使得該系統進一步執行以下操作: 建立該基於第二機器學習之分類階段之一結果與該人工再檢測之一結果的一比較; 基於該比較建立第二經修訂訓練資料之一集合; 使用該經修訂訓練資料開發一或多個第三缺陷再檢測類型,該第三缺陷再檢測類型不同於該第一缺陷再檢測類型及該缺陷再檢測類型;及 在一基於第三機器學習之分類階段期間基於該一或多個第三缺陷再檢測類型將候選缺陷之該集合再分類納入該擾亂類型及一或多個缺陷類型。 46.   一種儲存一指令集之非暫時性電腦可讀媒體,該指令集可由一系統之一或多個處理器執行以使該系統執行一方法,該方法包含: 獲得包含候選缺陷之一集合的影像資料; 開發複數個擾亂再檢測類型; 在一第一分類階段期間基於該複數個擾亂再檢測類型將候選缺陷之該集合分類納入複數個擾亂類型,及 將一基於機器學習之多階段分類應用於候選缺陷之該經分類集合。 47.   如條項46之非暫時性電腦可讀媒體,其中該基於機器學習之多階段分類進一步包含: 自該第一分類階段執行候選缺陷之該經分類集合的一再檢測; 自候選缺陷之該經分類集合選擇一經錯分類擾亂; 根據該再檢測來再標記該經錯分類擾亂以建立包含候選缺陷之該集合的經再標記影像資料; 添加該經再標記影像資料至該基於機器學習之多階段分類的一訓練集區以建立一經修訂訓練集區;及 使用該經修訂訓練集區執行一第二分類階段。 48.   如條項46之非暫時性電腦可讀媒體,其中可由該系統之一或多個處理器執行的該指令集使得該系統進一步執行以下操作: 開發一缺陷再檢測類型。 49.   如條項48之非暫時性電腦可讀媒體,其中該複數個擾亂再檢測類型中之至少一者係基於一缺陷再檢測類型而開發。 50.   如條項48之非暫時性電腦可讀媒體,其中可由該系統之一或多個處理器執行的該指令集使得該系統進一步執行以下操作: 開發複數個缺陷再檢測類型。 51.   如條項46之非暫時性電腦可讀媒體,其中該複數個擾亂再檢測類型中之至少一者經開發以降低該經分類影像資料中之一資料不平衡。 52.   如條項51之非暫時性電腦可讀媒體,其中該複數個擾亂再檢測類型中之該至少一者包括一第一擾亂再檢測類型及一第二擾亂再檢測類型;且 該第一擾亂再檢測類型經開發以產生不超過該第二擾亂再檢測類型之分類計數之5倍的一分類計數。 53.   如條項46之非暫時性電腦可讀媒體,其中候選缺陷之該集合係來自包括一偵測器之一帶電粒子射束設備。 54.   如條項53之非暫時性電腦可讀媒體,其中包括一偵測器之該帶電粒子射束設備為一掃描電子顯微鏡(SEM)。 55.   一種用於改進影像檢測資料中之一擾亂率之系統,其包含: 一帶電粒子射束設備,其包括一偵測器; 一影像獲取器,其包括自該偵測器接收一偵測信號並建構包括一第一特徵之一影像的電路;及 一控制器,其具有至少一個處理器及包含指令之一非暫時性電腦可讀媒體,該等指令在由該至少一個處理器執行時使該系統執行以下操作: 獲得包含候選缺陷之一集合的影像資料; 開發複數個擾亂再檢測類型; 在一第一分類階段期間基於該複數個擾亂再檢測類型將候選缺陷之該集合分類納入複數個擾亂類型,及 將一基於機器學習之多階段分類應用於候選缺陷之該經分類集合。 56.   如條項55之系統,其中該基於機器學習之多階段分類包括包含以下各者之操作: 自該第一分類階段執行候選缺陷之該經分類集合的一再檢測; 自候選缺陷之該經分類集合選擇一經錯分類擾亂; 根據該再檢測來再標記該經錯分類擾亂以建立包含候選缺陷之該集合的經再標記影像資料; 添加該經再標記影像資料至該基於機器學習之一訓練集區。 57.   如條項55之系統,其中該控制器具有該至少一個處理器及包含指令之該非暫時性電腦可讀媒體,該等指令在由該至少一個處理器執行時致使該系統執行以下操作: 開發一缺陷再檢測類型。 58.   如條項55之系統,其中該複數個擾亂再檢測類型中之至少一者係基於該缺陷再檢測類型而開發。 59.   如條項58之系統,其中該控制器具有該至少一個處理器及包含指令之該非暫時性電腦可讀媒體,該等指令在由該至少一個處理器執行時致使該系統執行以下操作: 開發複數個缺陷再檢測類型。 60.   如條項55之系統,其中該複數個擾亂再檢測類型中之至少一者經開發以降低該經分類影像資料中之一資料不平衡。 61.   如條項55之系統,其中該複數個擾亂再檢測類型中之該至少一者包括一第一擾亂再檢測類型及一第二擾亂再檢測類型;且 該第一擾亂再檢測類型經開發以產生不超過該第二擾亂再檢測類型之分類計數之5倍的一分類計數。 62.   如條項55之系統,其中候選缺陷之該集合係來自包括一偵測器之一帶電粒子射束設備。 63.   如條項62之系統,其中包括一偵測器之該帶電粒子射束設備為一掃描電子顯微鏡(SEM)。 64.   一種用於改進影像檢測資料中之一擾亂率之系統,其包含: 一帶電粒子射束設備,其包括一偵測器; 一影像獲取器,其包括自該偵測器接收一偵測信號並建構包括一第一特徵之一影像的電路;及 一控制器,其具有至少一個處理器及包含指令之一非暫時性電腦可讀媒體,該等指令在由該至少一個處理器執行時致使該系統執行一種方法,該方法包含: 獲得包含候選缺陷之一集合的影像資料; 開發一或多個第一缺陷再檢測類型; 在一基於第一機器學習之分類階段期間基於該一或多個第一缺陷再檢測類型將候選缺陷之該集合分類納入一擾亂類型及一或多個缺陷類型; 執行候選缺陷之該經分類集合的一人工再檢測以判定該影像資料之一實際分類, 建立該基於第一機器學習之分類階段之一結果與該人工再檢測之一結果的一比較; 基於該比較建立經修訂訓練資料之一集合; 使用該經修訂訓練資料開發一或多個第二缺陷再檢測類型,該第二缺陷再檢測類型不同於該第一缺陷再檢測類型;及 在一基於第二機器學習之分類階段期間基於該一或多個第二缺陷再檢測類型將候選缺陷之該集合再分類納入該擾亂類型及一或多個缺陷類型。 65.   如條項64之系統,其中 候選缺陷之該集合納入一擾亂類型的該分類包括候選缺陷之該集合納入複數個擾亂類型的一分類。 66.   如條項65之系統,其中該複數個擾亂再檢測類型中之至少一者係基於一缺陷再檢測類型而開發。 67.   如條項65之系統,其中該複數個擾亂再檢測類型中之至少一者經開發以降低該經分類影像資料中之一資料不平衡。 68.   如條項67之系統,其中 該複數個擾亂再檢測類型中之該至少一者包括一第一擾亂再檢測類型及一第二擾亂再檢測類型;且 該第一擾亂再檢測類型經開發以產生不超過該第二擾亂再檢測類型之分類計數之5倍的一分類計數。 69.   如條項64之系統,其中該經獲得影像資料係來自包括一偵測器之一帶電粒子射束設備。 70.   如條項64之系統,其中包括一偵測器之該帶電粒子射束設備為一掃描電子顯微鏡(SEM)。 71.   如條項64之系統,其中該控制器具有該至少一個處理器及包含指令之該非暫時性電腦可讀媒體,該等指令在由該至少一個處理器執行時致使該系統執行以下操作: 建立該基於第二機器學習之分類階段之一結果與該人工再檢測之一結果的一比較; 基於該比較建立第二經修訂訓練資料之一集合; 使用該經修訂訓練資料開發一或多個第三缺陷再檢測類型,該第三缺陷再檢測類型不同於該第一缺陷再檢測類型及該缺陷再檢測類型;及 在一基於第三機器學習之分類階段期間基於該一或多個第三缺陷再檢測類型將候選缺陷之該集合再分類納入該擾亂類型及一或多個缺陷類型。
諸圖中之方塊圖繪示根據本發明之各種例示性實施例之系統、方法及電腦硬體/軟體產品之可能實施方案的架構、功能性及操作。就此而言,示意圖中之各區塊可表示可使用硬體(諸如電子電路)實施的某一算術或邏輯運算處理。區塊亦可表示包含用於實施指定邏輯功能之一或多個可執行指令的程式碼之模組、區段或部分。應理解,在一些替代實施方案中,區塊中所指示之功能可不按圖中所提及之次序出現。舉例而言,視所涉及之功能性而定,連續展示的兩個區塊可實質上同時執行或實施,或兩個區塊有時可以相反次序執行。亦可省略一些區塊。
亦應理解,方塊圖之各區塊及該等區塊之組合可由執行指定功能或動作的基於專用硬體之系統,或由專用硬體及電腦指令之組合來實施。
雖然本發明已結合各種實施例進行了描述,但藉由考慮本文中所揭示之本發明之規範及實踐,本發明之其他實施例對於熟習此項技術者將為顯而易見的。意欲本說明書及實例僅視為例示性的,其中本發明之真正範疇及精神由以下申請專利範圍指示。
100:電子射束檢測(EBI)系統 101:主腔室 102:裝載/鎖定腔室 104:電子射束工具 106:裝備前端模組(EFEM) 106a:第一裝載埠 106b:第二裝載埠 109:控制器 202:帶電粒子源 204:槍孔徑 206:聚光透鏡 208:交越 210:初級帶電粒子射束 212:源轉換單元 214:細射束 216:細射束 218:細射束 220:初級投影光學系統 222:射束分離器 226:偏轉掃描單元 228:物鏡 230:晶圓 236:次級帶電粒子射束 238:次級帶電粒子射束 240:次級帶電粒子射束 242:次級光學系統 244:帶電粒子偵測裝置 246:偵測子區 248:偵測子區 250:偵測子區 260:主光軸 270:探測光點 272:探測光點 274:探測光點 280:機動晶圓載物台 282:晶圓固持器 290:影像處理系統 292:影像獲取器 294:儲存器 296:控制器 300:缺陷再檢測系統 310:晶圓檢測系統 320:自動缺陷分類(ADC)伺服器 322:通信介面 324:處理器 330:知識推薦伺服器 332:處理器 334:儲存器 400:習知分類樹 402:影像資料集合 404:分類器 406:擾亂箱 408:缺陷箱 410:缺陷箱 500:習知ADC分類樹 502:資料集合 504:分類器 506:擾亂 508:孔缺漏缺陷類型 510:孔橋接缺陷類型 600:多階段分類樹 602:影像資料集合 604:ADC分類器 606:擾亂箱 608:缺陷箱 610:缺陷箱 612:經修訂訓練集區 700:多階段分類樹 702:影像資料集合 704:ADC分類器 706:擾亂箱 708:孔缺漏缺陷箱 710:孔橋接缺陷箱 712:經修訂訓練集區 800:多階段多擾亂分類樹 802:影像資料集合 803:擾亂再檢測類型之集合 804:ADC分類器 806:擾亂箱 807:擾亂箱 808:缺陷箱 810:缺陷箱 812:經修訂訓練集區 900:多階段多擾亂訓練分類樹 902:影像資料集合 903:擾亂再檢測類型之集合 904:ADC分類器 906:擾亂箱 907:擾亂箱 908:缺陷箱 910:缺陷箱 912:經修訂訓練集區 1000:方法 1001:步驟 1002:步驟 1003:步驟 1004:步驟 1005:步驟 1006:步驟 1007:步驟
本發明之上述及其他態樣自結合附圖進行的例示性實施例之描述將變得更顯而易見。
1係繪示符合本發明之實施例的例示性電子射束檢測(EBI)系統的示意圖。
2為繪示符合本發明之實施例的例示性電子射束工具的示意圖,該例示性電子射束工具可為 1之例示性電子射束檢測系統之一部分。
3為繪示符合本發明之實施例的例示性缺陷再檢測系統之方塊圖。
4為繪示習知單階段分類樹之示意圖。
5A為繪示 4之習知單階段分類樹的例示性情況之示意圖。
5B為比較 5A之例示性情況與人工再檢測之結果的圖表。
5C繪示幾個缺陷類型及擾亂之影像資料。
6為繪示符合本發明之實施例的具有單一擾亂箱之多階段分類樹之示意圖。
7A為繪示符合本發明之實施例的 4之多階段分類樹之例示性情況的示意圖。
7B為符合本發明之實施例的比較 7A之例示性情況與人工再檢測之結果的圖表。
8為繪示符合本發明之實施例的具有多個擾亂類型之多階段分類樹之示意圖。
9A為繪示符合本發明之實施例的具有 8之多個擾亂類型之多階段分類樹之例示性情況的示意圖。
9B為符合本發明之實施例的比較 9A之例示性情況與人工再檢測之結果的圖表。
10為符合本發明之實施例的用於改進影像檢測資料中之擾亂率之方法。
1000:方法
1001:步驟
1002:步驟
1003:步驟
1004:步驟
1005:步驟
1006:步驟
1007:步驟

Claims (15)

  1. 一種用於改進影像檢測資料中之一擾亂率之方法,該方法包含: 獲得包含候選缺陷之一集合的影像資料; 開發複數個缺陷再檢測類型及複數個擾亂再檢測類型; 在一第一分類階段期間基於該複數個缺陷再檢測類型將候選缺陷之該集合分類納入一或多個缺陷類型; 在該第一分類階段期間基於該複數個擾亂再檢測類型將候選缺陷之該集合分類納入複數個擾亂類型,及 將一基於機器學習之多階段分類應用於候選缺陷之該經分類集合。
  2. 如請求項1之方法,其中該基於機器學習之多階段分類進一步包含: 自該第一分類階段執行候選缺陷之該經分類集合的一再檢測; 自候選缺陷之該經分類集合選擇一經錯分類缺陷及一經錯分類擾亂中之至少一者; 根據該再檢測來再標記該經錯分類缺陷及該經錯分類擾亂中之該至少一者以建立包含候選缺陷之該集合的經再標記影像資料; 添加該經再標記影像資料至該基於機器學習之多階段分類的一訓練集區以建立一經修訂訓練集區;及 使用該經修訂訓練集區執行一第二分類階段。
  3. 如請求項1之方法,其中該複數個擾亂再檢測類型中之至少一者係基於一缺陷再檢測類型而開發。
  4. 如請求項1之方法,其中該複數個擾亂再檢測類型中之至少一者經開發以降低該經分類影像資料中之一資料不平衡。
  5. 如請求項4之方法,其中該複數個擾亂再檢測類型中之該至少一者包括一第一擾亂再檢測類型及一第二擾亂再檢測類型;且 該第一擾亂再檢測類型經開發以產生不超過該第二擾亂再檢測類型之分類計數之5倍的一分類計數。
  6. 如請求項1之方法,其中候選缺陷之該集合係來自包括一偵測器之一帶電粒子射束設備。
  7. 如請求項6之方法,其中包括一偵測器之該帶電粒子射束設備為一掃描電子顯微鏡(SEM)。
  8. 一種用於改進影像檢測資料中之一擾亂率之系統,其包含: 一帶電粒子射束設備,其包括一偵測器; 一影像獲取器,其包括自該偵測器接收一偵測信號並建構包括一第一特徵之一影像的電路;及 一控制器,其具有至少一個處理器及包含指令之一非暫時性電腦可讀媒體,該等指令在由該至少一個處理器執行時使該系統執行以下操作: 獲得包含候選缺陷之一集合的影像資料; 開發複數個缺陷再檢測類型及複數個擾亂再檢測類型; 在一第一分類階段期間基於該複數個缺陷再檢測類型將候選缺陷之該集合分類納入一或多個缺陷類型; 在該第一分類階段期間基於該複數個擾亂再檢測類型將候選缺陷之該集合分類納入複數個擾亂類型,及 將一基於機器學習之多階段分類應用於候選缺陷之該經分類集合。
  9. 如請求項8之系統,其中該基於機器學習之多階段分類包括包含以下各者之操作: 自該第一分類階段執行候選缺陷之該經分類集合的一再檢測; 自候選缺陷之該經分類集合選擇一經錯分類缺陷及一經錯分類擾亂中之至少一者; 根據該再檢測來再標記該經錯分類缺陷及該經錯分類擾亂中之該至少一者以建立包含候選缺陷之該集合的經再標記影像資料; 添加該經再標記影像資料至該基於機器學習之多階段分類的一訓練集區以建立一經修訂訓練集區;及 使用該經修訂訓練集區執行一第二分類階段。
  10. 如請求項8之系統,其中該複數個擾亂再檢測類型中之至少一者係基於一缺陷再檢測類型而開發。
  11. 如請求項8之系統,其中 該複數個擾亂再檢測類型中之至少一者經開發以降低該經分類影像資料中之一資料不平衡。
  12. 如請求項11之系統,其中該複數個擾亂再檢測類型中之該至少一者包括一第一擾亂再檢測類型及一第二擾亂再檢測類型;且 該第一擾亂再檢測類型經開發以產生不超過該第二擾亂再檢測類型之分類計數之5倍的一分類計數。
  13. 如請求項8之系統,其中包括一偵測器之該帶電粒子射束設備為一掃描電子顯微鏡(SEM)。
  14. 一種儲存一指令集之非暫時性電腦可讀媒體,該指令集可由一系統之一或多個處理器執行以使該系統執行一方法,該方法包含: 獲得包含候選缺陷之一集合的影像資料; 開發複數個缺陷再檢測類型及複數個擾亂再檢測類型; 在一第一分類階段期間基於該複數個缺陷再檢測類型將候選缺陷之該集合分類納入一或多個缺陷類型; 在該第一分類階段期間基於該複數個擾亂再檢測類型將候選缺陷之該集合分類納入複數個擾亂類型,及 將一基於機器學習之多階段分類應用於候選缺陷之該經分類集合。
  15. 如請求項14之非暫時性電腦可讀媒體,其中該基於機器學習之多階段分類進一步包含: 自該第一分類階段執行候選缺陷之該經分類集合的一再檢測; 自候選缺陷之該經分類集合選擇一經錯分類缺陷及一經錯分類擾亂中之至少一者; 根據該再檢測來再標記該經錯分類缺陷及該經錯分類擾亂中之該至少一者以建立包含候選缺陷之該集合的經再標記影像資料; 添加該經再標記影像資料至該基於機器學習之多階段分類的一訓練集區以建立一經修訂訓練集區;及 使用該經修訂訓練集區執行一第二分類階段。
TW112106074A 2022-02-28 2023-02-20 改進缺陷分類擾亂率之方法及系統 TW202348987A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263315054P 2022-02-28 2022-02-28
US63/315,054 2022-02-28

Publications (1)

Publication Number Publication Date
TW202348987A true TW202348987A (zh) 2023-12-16

Family

ID=85199515

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112106074A TW202348987A (zh) 2022-02-28 2023-02-20 改進缺陷分類擾亂率之方法及系統

Country Status (2)

Country Link
TW (1) TW202348987A (zh)
WO (1) WO2023160986A1 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10713534B2 (en) * 2017-09-01 2020-07-14 Kla-Tencor Corp. Training a learning based defect classifier
US10713769B2 (en) * 2018-06-05 2020-07-14 Kla-Tencor Corp. Active learning for defect classifier training
US10902579B1 (en) * 2018-11-13 2021-01-26 Kla-Tencor Corporation Creating and tuning a classifier to capture more defects of interest during inspection

Also Published As

Publication number Publication date
WO2023160986A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
CN109598698B (zh) 用于对多个项进行分类的系统、方法和非暂时性计算机可读取介质
US10970834B2 (en) Defect discovery using electron beam inspection and deep learning with real-time intelligence to reduce nuisance
US11550309B2 (en) Unsupervised defect segmentation
WO2017123888A1 (en) Improving defect sensitivity of semiconductor wafer inspectors using design data with wafer image data
TWI759628B (zh) 用於偵測快速充電裝置中時間相依缺陷的設備及方法
US11681279B2 (en) Method for enhancing the semiconductor manufacturing yield
EP4367632A1 (en) Method and system for anomaly-based defect inspection
TW202348987A (zh) 改進缺陷分類擾亂率之方法及系統
US20240069450A1 (en) Training machine learning models based on partial datasets for defect location identification
WO2023280487A1 (en) Image distortion correction in charged particle inspection
US20240062362A1 (en) Machine learning-based systems and methods for generating synthetic defect images for wafer inspection
TWI817474B (zh) 用於對自影像資料提取之複數個圖案進行分組的系統及相關的非暫時性電腦可讀媒體
WO2022207181A1 (en) Improved charged particle image inspection
US20230139085A1 (en) Processing reference data for wafer inspection
WO2024083451A1 (en) Concurrent auto focus and local alignment methodology
WO2023151919A1 (en) Active learning to improve wafer defect classification
WO2023110292A1 (en) Auto parameter tuning for charged particle inspection image alignment
KR20240056520A (ko) 하전 입자 시스템의 실패 메커니즘 분류 및 식별에 의한 검사 시스템 및 방법
TW202407741A (zh) 於檢測期間改善影像品質之系統及方法
WO2022229317A1 (en) Image enhancement in charged particle inspection
WO2024012966A1 (en) Transient defect inspection using an inspection image