TW202348937A - Method and computing device of controlling a cohort of ozone gas generating devices - Google Patents

Method and computing device of controlling a cohort of ozone gas generating devices Download PDF

Info

Publication number
TW202348937A
TW202348937A TW112110051A TW112110051A TW202348937A TW 202348937 A TW202348937 A TW 202348937A TW 112110051 A TW112110051 A TW 112110051A TW 112110051 A TW112110051 A TW 112110051A TW 202348937 A TW202348937 A TW 202348937A
Authority
TW
Taiwan
Prior art keywords
ozone gas
ozone
computing device
mode
group
Prior art date
Application number
TW112110051A
Other languages
Chinese (zh)
Inventor
靖國 白
彼得 伯奇
Original Assignee
加拿大商13482073加拿大股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/718,404 external-priority patent/US20230293753A1/en
Application filed by 加拿大商13482073加拿大股份有限公司 filed Critical 加拿大商13482073加拿大股份有限公司
Publication of TW202348937A publication Critical patent/TW202348937A/en

Links

Images

Abstract

A method and a computing device of controlling a cohort of ozone gas generating devices. The method comprises identifying, at a computing device, a plurality of ozone gas generating devices that constitute the cohort, detecting, via at least one remote ozone gas sensor device located in a spatial area associated with the cohort in conjunction with one or more processors of the computing device, a concentration of ozone gas constituent of ambient air within the spatial area, and instructing, responsive to detecting the concentration of the ozone gas constituent as being one of above and below a predetermined threshold concentration, at least one ozone gas generating device of the cohort to perform one of increasing and decreasing a rate of ozone gas generation associated therewith.

Description

控制一組臭氧氣體產生裝置的方法和運算裝置Method and computing device for controlling a group of ozone gas generating devices

本申請是 2022 年 3 月 21 日提交的美國專利申請第 17/699,488 號的部分繼續申請,並主張其優先權;所述美國專利申請號 17/699,488 的全部內容通過引用併入本文。本公開涉及控制臭氧氣體產生裝置,包括基於雲端的控制。This application is a continuation-in-part of, and claims priority to, U.S. Patent Application No. 17/699,488, filed March 21, 2022, the entire contents of which are incorporated herein by reference. The present disclosure relates to controlling ozone gas generating devices, including cloud-based control.

臭氧是地球大氣中的一種微量氣體,其由 3 個氧原子 (O3) 組成的分子所形成,且其具有的一種強大的氧化劑已被證明對殺死細菌、真菌和黴菌以及滅活病毒非常有效。臭氧可用於治療潛在污染的表面、水和環境空氣因為其對廣譜微生物具有強大的殺菌作用。由各種臭氧產生器產生的臭氧可以遍佈單間或更大空間的環境中的每一個角落,而不留下任何不想要的殘留物。臭氧在處理微生物,尤其是細菌和病毒方面的有效性,與多種因素有關,例如臭氧濃度、環境溫度、環境濕度和接觸時間。Ozone is a trace gas in the Earth's atmosphere. It is formed from a molecule composed of 3 oxygen atoms (O3) and is a powerful oxidant that has been proven to be very effective in killing bacteria, fungi and mold, and inactivating viruses. . Ozone can be used to treat potentially contaminated surfaces, water, and ambient air because of its powerful bactericidal effect on a broad spectrum of microorganisms. The ozone produced by various ozone generators can spread throughout every corner of the environment in a single room or larger space without leaving any unwanted residue. The effectiveness of ozone in treating microorganisms, especially bacteria and viruses, is related to a variety of factors, such as ozone concentration, ambient temperature, ambient humidity and contact time.

因此,本發明之目的,即在提供一種控制一組臭氧氣體產生裝置的方法和運算裝置。Therefore, an object of the present invention is to provide a method and a computing device for controlling a group of ozone gas generating devices.

於是,本發明一種控制一組臭氧氣體產生裝置的方法,包括:在一運算裝置處識別構成群組的多個臭氧氣體產生裝置;經由位於與群組相關的一空間區域中的至少一個遠端臭氧氣體感測器設備連同運算裝置的一個或多個處理器,偵測該空間區域內環境空氣的臭氧氣體成分的一濃度;及響應於偵測到臭氧氣體成分的該濃度高於和低於一預定閾值濃度之一,使用一個或多個處理器指示該群組中的至少一個臭氧氣體產生裝置執行增加和降低與之相關的臭氧氣體產生的一速率其中之一。Therefore, the present invention is a method of controlling a group of ozone gas generating devices, including: identifying at a computing device a plurality of ozone gas generating devices forming a group; The ozone gas sensor device together with one or more processors of the computing device detects a concentration of the ozone gas component of the ambient air in the spatial area; and in response to detecting that the concentration of the ozone gas component is higher and lower than One of a predetermined threshold concentration, using one or more processors, instructs at least one ozone gas generating device in the group to perform one of increasing and decreasing a rate of ozone gas generation associated therewith.

再者,本發明一種運算裝置,包括一處理器及一包括指令的非暫態記憶體,該等指令在被該處理器執行時使該處理器執行包括以下操作的操作:在一運算裝置處識別構成一群組的多個臭氧氣體產生裝置;經由位於與該群組相關的一空間區域中的至少一個遠端臭氧氣體感測器裝置連同該運算裝置的一個或多個處理器,偵測在該空間區域內環境空氣的臭氧氣體成分的一濃度;及響應於偵測到臭氧氣體成分的該濃度高於和低於一預定閾值濃度其中之一,使用一個或多個處理器指示該群組中的至少一個臭氧氣體產生裝置執行增加和降低與之相關的臭氧氣體產生的一速率其中之一。Furthermore, the present invention provides a computing device that includes a processor and a non-transitory memory including instructions that, when executed by the processor, cause the processor to perform operations including the following operations: Identifying a plurality of ozone gas generating devices forming a group; detecting, via at least one remote ozone gas sensor device located in a spatial region associated with the group together with one or more processors of the computing device, a concentration of an ozone gas component of the ambient air in the spatial region; and in response to detecting that the concentration of the ozone gas component is above one of a predetermined threshold concentration and below a predetermined threshold concentration, using one or more processors to instruct the group At least one ozone gas generating device in the group performs one of increasing and decreasing a rate of ozone gas generation associated therewith.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are designated with the same numbering.

本文的實施例認知到需要在至少部分封閉的生活空間環境中有利地利用臭氧氣體的抗病毒和抗微生物屬性,同時將臭氧氣體濃度控制在可接受的水平內以避免對人類和其他生物的不利影響。本文的實施例還認知到需要臭氧氣體產生器在給定的生活空間中可操作地增加並迅速達到期望的臭氧氣體濃度,而不會危及佔據該生活空間的任何生物的安全。特別地,本文的實施例提供臭氧氣體產生裝置,其能夠以常規操作模式和更高階操作模式操作,其特徵在於增加臭氧氣體產生的速率,有點類似於“渦輪增壓”模式的操作,但只有在確定或感覺到這樣做是安全的,從而避免可能對目前居住在至少部分封閉的房間或類似的生活空間中的生物產生不利影響的過高和不安全的高濃度準位。The embodiments herein recognize the need to advantageously utilize the antiviral and antimicrobial properties of ozone gas in at least partially enclosed living space environments while controlling ozone gas concentrations within acceptable levels to avoid adverse effects on humans and other organisms. influence. Embodiments herein also recognize the need for an ozone gas generator operable to increase and quickly achieve a desired ozone gas concentration in a given living space without compromising the safety of any organisms occupying that living space. In particular, embodiments herein provide an ozone gas generating device capable of operating in both a regular operating mode and a higher order operating mode characterized by an increased rate of ozone gas production, somewhat similar to a "turbo" mode of operation, but only When it is determined or felt that it is safe to do so to avoid excessive and unsafe high concentration levels that could adversely affect organisms currently residing in at least partially enclosed rooms or similar living spaces.

提供一種產生臭氧氣體的方法。該方法包括接收包含氣態氧的環境氣流,根據將根據波長 185奈米(nm)提供的紫外線(UV)照射施加到該環境氣流的氣態氧的至少一部分來產生臭氧氣體,紫外線(UV)輻射經由被一直流(DC)電池源供電的一光學燈模組提供,根據改變的氣流的產生和排出產生改變的氣流,根據與環境氣流中構成的微量臭氧氣體相比,改變的氣流具有產生更高濃度的臭氧氣體。在具有一高度安全協定的一個實施例中,在切換至具有增加的臭氧氣體產生或產生速率的第二種操作模式之前,一遠程運動感測器裝置可用於偵測周圍環境中,例如臭氧氣體產生裝置所在的一封閉房間中沒有人或生物活動。以這種更高階或“渦輪增壓”操作模式產生的一第二改變的氣流可以包括比第一改變的氣流更高濃度的臭氧氣體,並且可選地以與第一改變的氣流相比更高的排氣流率產生。以這種方式,可以在給定的時間段內產生更高速率的臭氧氣體,以安全地散發到周圍環境中,同時避免對空間中的居住者產生潛在的不利影響。A method of generating ozone gas is provided. The method includes receiving an ambient air stream containing gaseous oxygen, generating ozone gas based on applying ultraviolet (UV) radiation provided at a wavelength of 185 nanometers (nm) to at least a portion of the gaseous oxygen in the ambient air stream, the ultraviolet (UV) radiation passing through An optical light module powered by a direct current (DC) battery source provides a modified airflow based on the generation and discharge of modified airflow, with the modified airflow having the ability to generate higher levels of ozone gas compared to the trace amounts of ozone gas formed in the ambient airflow. concentration of ozone gas. In one embodiment with a high safety protocol, a remote motion sensor device may be used to detect ozone gas in the surrounding environment before switching to a second mode of operation with increased ozone gas production or production rates. There is no human or biological activity in a closed room in which the generating device is located. A second altered airflow produced in this higher order or "turbocharged" mode of operation may include a higher concentration of ozone gas than the first altered airflow, and optionally at a higher concentration than the first altered airflow. High exhaust flow rates are produced. In this way, higher rates of ozone gas can be produced over a given period of time to be safely dissipated into the surrounding environment while avoiding potential adverse effects on the occupants of the space.

還提供一種臭氧氣體產生系統,其包括一處理器和包含指令的一非暫態記憶體。當處理器執行該等指令時,指令使處理器執行操作,包括接收包含氣態氧的環境氣流,根據施加波長為185 奈米(nm)的紫外線(UV)照射給構成環境氣流中的一部分氣態氧而產生臭氧氣體。透過由一直流 (DC)電池源供電的一光學燈模組提供UV照射。產生臭氧氣體產生由富含臭氧的空氣構成的改變的氣流,與環境氣流中構成的微量臭氧氣體相比,該空氣具有更高濃度的臭氧氣體,並通過排氣口 110排放到環境中。An ozone gas generation system is also provided that includes a processor and a non-transitory memory containing instructions. When the processor executes the instructions, the instructions cause the processor to perform operations including receiving an ambient airflow containing gaseous oxygen and applying ultraviolet (UV) irradiation with a wavelength of 185 nanometers (nm) to a portion of the gaseous oxygen constituting the ambient airflow. And produce ozone gas. UV irradiation is provided through an optical lamp module powered by a direct current (DC) battery source. The generation of ozone gas creates a modified airflow composed of ozone-rich air having a higher concentration of ozone gas than the trace amounts of ozone gas that make up the ambient airflow and is discharged to the environment through the exhaust port 110 .

本文的實施例進一步認知到,當多個臭氧氣體產生裝置是便攜式的並且在一給定空間區域內單獨部署操作時,為了人類安全需要確保就空間區域內的臭氧氣體濃度而言的整體附帶效果被優化,同時有利地利用抗病毒和抗微生物特性。本文的實施例進一步提供了用於優化臭氧氣體產生裝置群組的控制的方法和系統,其至少部分地透過無線耦接與一計算裝置通信,藉由將在任何給定時間出現的裝置群組視為裝置的一自組織臭氧氣體產生網路。以這種方式,便攜式臭氧氣體產生裝置中的個體可以在它們的物理位置過渡到或離開一給定空間區域時自由地加入或離開自組織網絡。在實施例中,一旦該模型被適當地訓練,這種臭氧氣體產生裝置的網路就可以使用一人工智能或機器學習神經網路模型進行控制。在一些實施例中,控制方案可以透過基於雲端的伺服器運算裝置來實施,其中各別的臭氧氣體產生裝置被視為一給定的自組織網絡內的各個物聯網(IoT)節點。Embodiments herein further recognize that when multiple ozone gas generating devices are portable and deployed individually for operation within a given space area, there is a need for human safety to ensure overall collateral effects with respect to ozone gas concentration within the space area. Optimized to advantageously utilize antiviral and antimicrobial properties simultaneously. Embodiments herein further provide methods and systems for optimizing control of a group of ozone gas generating devices that communicate at least in part through a wireless coupling with a computing device by integrating the group of devices present at any given time. Considered a self-organized ozone gas generating network of the device. In this manner, individuals in the portable ozone gas generating device can freely join or leave the self-organizing network as their physical location transitions into or out of a given spatial region. In embodiments, once the model is properly trained, the network of ozone gas generating devices can be controlled using an artificial intelligence or machine learning neural network model. In some embodiments, the control scheme may be implemented via a cloud-based server computing device, where individual ozone gas generating devices are treated as individual Internet of Things (IoT) nodes within a given ad hoc network.

還提供了一種控制一群臭氧氣體產生裝置的方法。該方法包括在一運算裝置中識別構成一群組的多個臭氧氣體產生裝置,經由位於與該群組關聯的一空間區域中的至少一個臭氧氣體感測器裝置連同該運算裝置的一個或多個處理器來偵測該空間區域內的環境空氣的臭氧氣體成分的濃度,並且使用一個或多個處理器響應於偵測到臭氧氣體成分的濃度高於和低於一預定閾值濃度之一而指示,至少該群組中的一個臭氧氣體產生裝置執行增加和減少與之相關的臭氧氣體產生速率其中之一。在其中多個臭氧氣體感測器裝置位於與群組相關聯的空間區域內的實施例中,該方法還包括至少部分地使用一經過訓練的機器學習模型結合多個臭氧氣體感測器裝置來偵測環境空氣中臭氧氣體成分的濃度。A method of controlling a population of ozone gas generating devices is also provided. The method includes identifying in a computing device a plurality of ozone gas generating devices forming a group via at least one ozone gas sensor device located in a spatial region associated with the group in conjunction with one or more of the computing device a processor to detect the concentration of the ozone gas component of the ambient air in the spatial area, and using one or more processors in response to detecting that the concentration of the ozone gas component is above and below one of a predetermined threshold concentration. Indicates that at least one ozone gas generating device in the group performs one of increasing and decreasing ozone gas generating rates associated therewith. In embodiments in which the plurality of ozone gas sensor devices are located within a spatial region associated with the group, the method further includes using, at least in part, a trained machine learning model in conjunction with the plurality of ozone gas sensor devices. Detect the concentration of ozone gas components in ambient air.

還提供了一種運算裝置,其在一個實施例中可以是一伺服器運算裝置。該運算裝置包括一處理器和包含指令的一非暫時性記憶體。當由該處理器執行時,該等指令使該處理器執行操作,包括在一運算裝置中識別構成一群組的多個臭氧氣體產生裝置,經由位於與該群組關聯的一空間區域中的至少一個臭氧氣體感測器裝置連同該運算裝置的一個或多個處理器來偵測該空間區域內的環境空氣的臭氧氣體成分的濃度,並使用響應於偵測臭氧氣體成分濃度的一個或多個處理器指示在高於和低於一預定閾值濃度的情況下,該群組中的至少一個臭氧氣體產生裝置執行增加和降低與之相關的臭氧氣體產生速率其中之一。在其中多個臭氧氣體感測器裝置位於與該群組相關的該空間區域內的實施例中,該等指令可進一步執行以至少部分地使用經訓練的機器學習模型結合多個臭氧氣體感測器裝置來偵測環境空氣中臭氧氣體成分的濃度。A computing device is also provided, which in one embodiment may be a server computing device. The computing device includes a processor and a non-transitory memory containing instructions. When executed by the processor, the instructions cause the processor to perform operations including identifying, in a computing device, a plurality of ozone gas generating devices that constitute a group, via an ozone gas generating device located in a spatial region associated with the group. At least one ozone gas sensor device together with one or more processors of the computing device detects the concentration of the ozone gas component of the ambient air in the spatial area, and uses one or more parameters responsive to the detected concentration of the ozone gas component. The processor instructs at least one ozone gas generating device in the group to perform one of increasing and decreasing an ozone gas generating rate associated therewith above and below a predetermined threshold concentration. In embodiments where a plurality of ozone gas sensor devices are located within the spatial region associated with the group, the instructions may further execute to combine the plurality of ozone gas sensing devices using, at least in part, a trained machine learning model device to detect the concentration of ozone gas components in the ambient air.

透過使用可由一個或多個處理器執行的指令,可以使用程式化模組來實現本文描述的實施例。一程式化模組可以包括一程式、一子程序、一程式的一部分或者能夠執行一個或多個規定的任務或功能的一軟體組件或一硬體組件。如本文所使用,一程式化模組可以獨立於其他模組或組件存在於一硬體組件上,或者可以是其他模組、程式或機器的一共享元件。Programmed modules may be used to implement the embodiments described herein through the use of instructions executable by one or more processors. A programmed module may include a program, a subroutine, a portion of a program, or a software component or a hardware component capable of performing one or more specified tasks or functions. As used herein, a programmed module may exist on a hardware component independently of other modules or components, or may be a shared component of other modules, programs, or machines.

本文所述的一個或多個實施例提供了在一臭氧產生裝置和系統中執行的方法、技術和動作被程式化地執行,或作為一電腦執行的方法。如本文所使用,程式化地是指透過使用代碼或電腦可執行的指令。這些指令可以儲存在臭氧氣體產生裝置之可存取的一個或多個記憶體資源中。One or more embodiments described herein provide methods, techniques, and actions performed in an ozone generating device and system that are performed programmatically, or as a computer-implemented method. As used herein, programmatically refers to through the use of code or computer-executable instructions. These instructions may be stored in one or more memory resources accessible to the ozone gas generating device.

圖1以不一定按比例描繪的圖示說明臭氧氣體產生裝置101(本文也可變化地稱為“臭氧產生裝置101”)的一實施例。在一個實施例中,臭氧產生裝置101包括外殼109,其具有針對環境氣流 107的入口部106和用於排出富含臭氧的氣流111的排氣部110。控制器模組103可以呈現在一印刷電路板中,該印刷電路板與一個或多個提供波長為185奈米(nm)的紫外線輻射的光學輻射燈102電連接,並具有直流(DC)電池104以提供一電源並且至少部分地封閉在保護性圓柱形外殼112內。在實施例中,臭氧產生裝置101在由DC電池104提供之基本上恆定的電壓下運作。區域的臭氧氣體濃度感測器108可以與控制器模組103電連接。一個或多個氣流壓力差壓-感應風扇或類似裝置105 可以部署在入口部106附近並且能夠以可變的氣流壓力速率運作,該可變的氣流壓力速率將環境空氣的較高或較低的氣流透過入口部106引入臭氧產生裝置101,並且至少部分地以相應地較高和較低的流量影響排出的氣流111。FIG. 1 illustrates, in a diagram not necessarily drawn to scale, an embodiment of an ozone gas generating device 101 (also variously referred to herein as "ozone generating device 101"). In one embodiment, ozone generating device 101 includes a housing 109 having an inlet 106 for ambient air flow 107 and an exhaust 110 for exhausting ozone-enriched air flow 111. The controller module 103 may be present in a printed circuit board electrically connected to one or more optical radiation lamps 102 providing ultraviolet radiation at a wavelength of 185 nanometers (nm) and having a direct current (DC) battery 104 to provide a power source and is at least partially enclosed within a protective cylindrical housing 112 . In an embodiment, ozone generating device 101 operates at a substantially constant voltage provided by DC battery 104 . The regional ozone gas concentration sensor 108 may be electrically connected to the controller module 103 . One or more airflow pressure differential pressure-sensing fans or similar devices 105 may be deployed near the inlet 106 and capable of operating at a variable airflow pressure rate that separates higher or lower ambient air. The air flow is introduced into the ozone generating device 101 through the inlet portion 106 and affects the exiting air flow 111 at least partially at correspondingly higher and lower flow rates.

圖2在一個示例性實施例中示出包括臭氧產生裝置101的臭氧產生系統200。在相關實施例中,預期一群或一組臭氧氣體產生裝置101a…n(未示出)可以部署在一給定的空間區域,其中“n”是大於1的整數,表示任意數量的附加的臭氧氣體產生裝置。臭氧產生裝置101與行動裝置202可通信地耦接,行動裝置202可以是例如行動電話或平板運算裝置。在如圖所示的一基於雲端的系統中,臭氧產生裝置101還可以透過通信網路204與伺服器運算裝置203通信地耦接,在一些實施例中,通信網路204可以是互聯網或類似的廣域或基於電信的連接。在實施例中,行動裝置202可以透過包括但不限於藍牙、Wi-Fi、LoRa或RFID的無線通信協定通信鏈接到臭氧產生裝置101。在一些實施例中,行動電話設備 102 可以包括一軟體應用程式,該軟體應用程式能夠直接透過無線通信或透過基於雲端的系統 200透過通信網路204與臭氧氣體產生裝置101進行通信,以便設置或應用所需的閾值或臭氧氣體濃度的可接受範圍,例如由本地臭氧氣體濃度感測器裝置108感測到的。在相關實施例中,進一步預期所部署的一群臭氧氣體產生裝置101a…n可以通信地耦合到相對應的行動裝置 202a…n(未顯示)。Figure 2 illustrates an ozone generation system 200 including an ozone generation device 101 in an exemplary embodiment. In related embodiments, it is contemplated that a group or group of ozone gas generating devices 101a...n (not shown) may be deployed in a given spatial region, where "n" is an integer greater than 1, representing any number of additional ozone Gas generating device. The ozone generating device 101 is communicably coupled to a mobile device 202, which may be, for example, a mobile phone or a tablet computing device. In a cloud-based system as shown in the figure, the ozone generating device 101 can also be communicatively coupled to the server computing device 203 through a communication network 204. In some embodiments, the communication network 204 can be the Internet or the like. wide area or telecommunications-based connections. In an embodiment, the mobile device 202 may be linked to the ozone generating device 101 through wireless communication protocols including but not limited to Bluetooth, Wi-Fi, LoRa, or RFID. In some embodiments, the mobile phone device 102 may include a software application capable of communicating with the ozone gas generating device 101 directly via wireless communication or via the cloud-based system 200 over the communication network 204 to set up or The application requires a threshold or acceptable range of ozone gas concentration, such as that sensed by the local ozone gas concentration sensor device 108 . In related embodiments, it is further contemplated that a deployed group of ozone gas generating devices 101a...n may be communicatively coupled to corresponding mobile devices 202a...n (not shown).

在一些實施例中,系統200內的伺服器203的使用指標和報告模組206可以在一使用會話期間或之後從臭氧產生裝置101的控制器模組103獲取數據。例如,來自臭氧產生裝置101的控制器模組103的數據傳輸可以包括諸如但不限於例如用戶或裝置帳戶資訊、地理位置資訊、時間戳資訊、部署期間最近和累積的歷史臭氧氣體產生指標其中的一項或多項。在實施例中,伺服器203可以維護在透過通信網路204進行通信交流的一遠端定位的提供者服務或監控機構處。可以設想,在一些變化態樣中,至少部分使用度量和報告功能歸因於使用度量和如本文所述的伺務器運算裝置203的報告模組206可以透過儲存在行動運算裝置202的一記憶體中以在其上執行的軟體應用程式來部署。在一些實施例中,行動運算裝置202可以透過通信網路204通信地存取伺服器203。In some embodiments, the usage metrics and reporting module 206 of the server 203 within the system 200 may obtain data from the controller module 103 of the ozone generating device 101 during or after a usage session. For example, data transmission from the controller module 103 of the ozone generating device 101 may include information such as, but not limited to, user or device account information, geolocation information, timestamp information, recent and accumulated historical ozone gas production metrics during deployment, among others. One or more items. In embodiments, server 203 may be maintained at a remotely located provider service or monitoring organization that communicates over communication network 204 . It is contemplated that, in some variations, at least part of the usage metrics and reporting functionality due to usage metrics and the reporting module 206 of the server computing device 203 as described herein may be stored in a memory on the mobile computing device 202 Deployed in the body with software applications running on it. In some embodiments, the mobile computing device 202 can communicatively access the server 203 through the communication network 204 .

圖3示出了在一個實施例中部署在臭氧產生系統200內的臭氧產生裝置101的控制器模組103的示例架構300。在實施例中,控制器模組103可以包括處理器301、記憶體302並且與UV輻射燈102、電源DC電池304電連接,電源DC電池304可以是例如一低功率DC電池或在1.2V和20V之間的一範圍內運作的類似電源,以及通信介面307,其與通信網路204通信地耦接。在一些實施例中,處理器301可以被實現在一特定應用積體電路(ASIC)裝置或現場可程式化邏輯閘陣列(FPGA)裝置中。記憶體302可以是例如但不限於一隨機存取記憶體。控制器模組103還可以與臭氧氣體濃度感測器裝置耦接,包括定位在外殼109內的本地臭氧氣體濃度感測器裝置305和定位在遠端及外殼109外部,例如在臭氧產生裝置101位於和部署的一房間內的遠端臭氧氣體濃度感測器裝置306。在實施例中,控制器模組103還可以與遠端運動感測器裝置308耦接以偵測人類在臭氧產生裝置101周圍區域的存在,例如從運動或沒有運動推斷。配置在具有臭氧氣體產生裝置101a…n和伺服器運算裝置203的遠端運動感測器裝置308、本地臭氧氣體濃度感測器裝置305的一雲端連接網路中,遠端臭氧氣體濃度感測器裝置306和遠端運動感測器裝置308可以透過使用Wi-Fi或本文所述的類似無線通信協定的無線通信與控制器模組103 通信耦接。在一些實施例中,雲端連接方案可以透過基於雲端的伺服器運算裝置 203 實現,其中各別的臭氧氣體產生裝置101a…n 被視為在一給定的自組織網路中以一網狀或一星形網路配置排列的物聯網 (IoT) 節點。3 illustrates an example architecture 300 of a controller module 103 of an ozone generating device 101 deployed within an ozone generating system 200 in one embodiment. In an embodiment, the controller module 103 may include a processor 301, a memory 302 and be electrically connected to the UV radiation lamp 102 and a power supply DC battery 304. The power supply DC battery 304 may be, for example, a low power DC battery or a battery operating at 1.2V and A similar power supply operating in a range between 20V, and a communication interface 307 communicatively coupled to the communication network 204 . In some embodiments, processor 301 may be implemented in an application specific integrated circuit (ASIC) device or a field programmable gate array (FPGA) device. The memory 302 may be, for example but not limited to, a random access memory. The controller module 103 may also be coupled to ozone gas concentration sensor devices, including a local ozone gas concentration sensor device 305 positioned within the housing 109 and a remote ozone gas concentration sensor device 305 positioned external to the housing 109 , such as at the ozone generating device 101 A remote ozone gas concentration sensor device 306 is located and deployed within a room. In embodiments, the controller module 103 may also be coupled with a remote motion sensor device 308 to detect the presence of humans in the area surrounding the ozone generating device 101, such as inferred from motion or the absence of motion. Disposed in a cloud connection network including the remote motion sensor device 308 and the local ozone gas concentration sensor device 305 of the ozone gas generating device 101a...n and the server computing device 203, remote ozone gas concentration sensing The controller device 306 and the remote motion sensor device 308 may be communicatively coupled to the controller module 103 through wireless communication using Wi-Fi or similar wireless communication protocols as described herein. In some embodiments, the cloud connectivity solution can be implemented through a cloud-based server computing device 203, where the respective ozone gas generating devices 101a...n are considered to be in a given ad hoc network as a mesh or Internet of Things (IoT) nodes arranged in a star network configuration.

控制器模組103還可以包括以通信方式存取無線通信信號的能力,包括但不限於藍牙、Wi-Fi、LoRa、RFID和全球定位系統(GPS)信號中的任何一個,並且包含通信介面307以通信地耦接到通信網路104,例如透過發送和接收數據傳輸。在一些實施例中,控制器模組103還可以結合基於 GPS接收器和發射器電路的GPS定位功能,用於存取和啟用與臭氧產生裝置101的部署相關的操作指標的傳輸,例如但不限於與臭氧產生裝置101相關的帳戶資訊、位置資訊、時間戳資訊和與臭氧產生裝置101相關的臭氧氣體運作數據。控制器模組103可以與風扇/氣流裝置309通信連接,風扇/氣流裝置309在實施例中可以是一氣流壓力差壓-感應風扇或裝置105,如圖1所述。The controller module 103 may also include the ability to communicatively access wireless communication signals, including but not limited to any of Bluetooth, Wi-Fi, LoRa, RFID, and Global Positioning System (GPS) signals, and include a communication interface 307 communicatively coupled to the communications network 104, such as by sending and receiving data transmissions. In some embodiments, the controller module 103 may also incorporate GPS positioning functionality based on GPS receiver and transmitter circuitry for accessing and enabling the transmission of operational indicators related to the deployment of the ozone generating device 101, such as, but not It is limited to account information, location information, time stamp information related to the ozone generating device 101 and ozone gas operation data related to the ozone generating device 101 . The controller module 103 can be communicatively connected with the fan/airflow device 309. In the embodiment, the fan/airflow device 309 can be an airflow pressure differential pressure-sensing fan or device 105, as shown in FIG. 1 .

在實施例中,控制器模組103的臭氧產生器邏輯模組310可由儲存在記憶體302中的電腦處理器可執行代碼構成,這些代碼可在處理器301中執行,以實現如本文所述的與臭氧氣體產生裝置101的使用或部署相關的臭氧氣體產生功能。在一個實施例中,構成臭氧產生器邏輯模組310的軟體指令或程式,包括其任何更新,可以透過經由通信網路204從遠端伺服器運算裝置,包括從伺服器203或透過在此描述的無線通信協定從行動運算裝置 202存取和下載而被下載到記憶體202。In embodiments, the ozone generator logic module 310 of the controller module 103 may be comprised of computer processor executable code stored in the memory 302 that may be executed in the processor 301 to implement as described herein The ozone gas generating functions associated with the use or deployment of the ozone gas generating device 101. In one embodiment, the software instructions or routines that make up the ozone generator logic module 310, including any updates thereto, may be processed from a remote server computing device via the communications network 204, including from the server 203 or by using the software described herein. The wireless communication protocol is accessed and downloaded from the mobile computing device 202 and downloaded to the memory 202 .

在實施例中,控制器模組103的臭氧產生器邏輯模組310使臭氧氣體產生器101能夠部署在臭氧氣體產生系統200內,並且在非暫時性記憶體302中包括可在處理器301中執行的邏輯指令。該等指令被處理器301執行時將使處理器301執行操作,包括接收包含氣態氧的環境氣流、根據將波長為185奈米(nm)的紫外線(UV)照射施加到環境氣流中構成的氣態氧氣的至少一部分以產生臭氧氣體,經由由直流(DC)電池源供電的一光學燈模組提供的紫外線照射,根據改變的氣流的產生和排出產生一改變的氣流,與通過入口部 106進入的環境氣流中構成的臭氧氣體的一微量濃度相比,經過改變的氣流具有更高濃度的臭氧氣體。In an embodiment, the ozone generator logic module 310 of the controller module 103 enables the ozone gas generator 101 to be deployed within the ozone gas generation system 200 and is included in the non-transitory memory 302 in the processor 301 Logic instructions to execute. The instructions, when executed by the processor 301, will cause the processor 301 to perform operations including receiving an ambient airflow containing gaseous oxygen, forming a gaseous state based on applying ultraviolet (UV) radiation with a wavelength of 185 nanometers (nm) to the ambient airflow. At least a portion of the oxygen to produce ozone gas is generated and exhausted via ultraviolet irradiation provided by an optical lamp module powered by a direct current (DC) battery source to produce a modified airflow in response to the modified airflow entering through the inlet 106 The altered air flow has a higher concentration of ozone gas than a trace concentration of ozone gas formed in the ambient air flow.

在一些實施例中,控制器模組103的臭氧產生器邏輯模組310還在非暫時性記憶體302中包含可在處理器301中執行的邏輯指令,其根據本地臭氧氣體濃度感測器裝置305和遠端臭氧氣體濃度感測器裝置306以及還根據遠端運動感測器裝置308調整產生臭氧氣體的速度。在實施例中,多個遠端運動感測器裝置308或佔用的感測器可以部署在空間區域內,並且通信地耦接到伺服器運算裝置203和臭氧氣體產生感測器101a…n。在根據一增強安全協定的一個實施例中,在切換到具有增加的臭氧氣體產生或產生速度的第二操作模式之前,遠端運動感測器裝置308可用於偵測沒有人或生物活動並且在周圍環境,例如臭氧氣體產生裝置位於其中的一封閉房間中。在實施例中,遠端運動感測器裝置308可以是一基於接近度的感測器或可以包括類似的感測器,其被部署以偵測或推斷空間區域或周圍環境中是否存在生物。例如,除了運動感測器之外,還可以部署偵測可能與生物的存在相關的聲波的移動或變化的超聲波感測器,以推斷在臭氧氣體產生裝置101周圍的一給定空間內是否存在生物。還可以部署偵測生物產生的熱的紅外輻射感測器,以推斷臭氧氣體產生裝置101周圍的一給定空間內是否存在生物。在一些實施例中,可以部署照相機成像以偵測或推斷生物存在與否。以這種更高階或“渦輪增壓”操作模式產生的第二或替代的改變的氣流可包含比第一改變的氣流更高濃度的臭氧氣體,並且可選地以與第一改變的氣流相比更高的排氣流速產生改變的氣流。以這種方式,在一給定的生活空間內的臭氧氣體濃度水平低於一所需閾值水平並且沒有生物活動或占據該空間的條件下,可以在一給定的時間區間內部署更高速率的臭氧氣體產生以安全傳播到周圍環境,同時避免對空間內的生物產生潛在的不利影響。在實施例中,由本地臭氧氣體感測器裝置305或遠端臭氧氣體感測器裝置306感測到的提供有效抗病毒和抗菌功能的臭氧氣體濃度的一安全和期望閾值水平可以在十億分之五十 (ppb) 和 100 ppb 之間的範圍內,儘管其他的範圍或值預期可以被實現。In some embodiments, the ozone generator logic module 310 of the controller module 103 also contains logic instructions in the non-transitory memory 302 that are executable in the processor 301 according to the local ozone gas concentration sensor device. 305 and the remote ozone gas concentration sensor device 306 and also adjust the speed of generating ozone gas based on the remote motion sensor device 308 . In embodiments, multiple remote motion sensor devices 308 or occupancy sensors may be deployed within an area of space and communicatively coupled to the server computing device 203 and ozone gas generating sensors 101a...n. In one embodiment in accordance with an enhanced safety protocol, the remote motion sensor device 308 may be used to detect the absence of human or biological activity before switching to a second mode of operation with increased ozone gas production or rates of production. The surrounding environment, for example, is a closed room in which the ozone gas generating device is located. In embodiments, remote motion sensor device 308 may be a proximity-based sensor or may include similar sensors that are deployed to detect or infer the presence of organisms in an area of space or the surrounding environment. For example, in addition to motion sensors, ultrasonic sensors that detect movement or changes in sound waves that may be associated with the presence of living things may be deployed to infer the presence or absence of a living being within a given space around the ozone gas generating device 101 biology. Infrared radiation sensors that detect heat generated by organisms can also be deployed to infer the presence of organisms in a given space around the ozone gas generating device 101 . In some embodiments, camera imaging may be deployed to detect or infer the presence or absence of organisms. The second or alternative altered air flow produced in this higher order or "turbocharged" mode of operation may contain a higher concentration of ozone gas than the first altered air flow, and optionally in the same manner as the first altered air flow. Higher exhaust flow rates produce altered airflow. In this manner, higher rates can be deployed for a given time interval when ozone gas concentration levels within a given living space are below a required threshold level and there is no biological activity or occupation of the space. ozone gas is produced to safely disseminate to the surrounding environment while avoiding potential adverse effects on organisms within the space. In embodiments, a safe and desired threshold level of ozone gas concentration that provides effective antiviral and antimicrobial functionality as sensed by the local ozone gas sensor device 305 or the remote ozone gas sensor device 306 may be in the range of one billion range between fifty parts per billion (ppb) and 100 ppb, although other ranges or values are expected to be achieved.

在一些實施例中,當部署更高階或“渦輪增壓”模式時,一個或多個臭氧氣體產生裝置101a…n或伺服器運算裝置203可啟動一警告或警報,表明進入該空間區域對一個體來說是不安全的。例如,在空間區域是旅館房間的一實施例中,閃爍的LED警示燈可以警告試圖進入房間的一進入者進入房間是不安全的。在一些變化態樣中,警告可以進一步提前以透過現有的門鎖啟動旅館房間的一鎖定狀態,使得進入者將不能進入房間或類似的封閉區域,同時一個或多個臭氧氣體產生裝置101a…… n 以“渦輪增壓”模式運作。與警告或警報有關的,在一個實施例中,警告或警報可以是向試圖進入房間的進入者顯示的一“正在進行清潔-請勿進入”訊息。在相關實施例中,警告或警報還可以包括已經部署在旅館房間內的一煙霧警報器或基於壓電的蜂鳴器,其透過現有的無線通信,包括透過WiFi連接。在另外的實施例中,如果偵測到高於一閾值臭氧氣體濃度的一不安全的臭氧條件,則可以由伺服器運算裝置203觸發基於雲端的警報系統,包括但不限於一煙霧或火災警報。In some embodiments, when a higher level or "turbo boost" mode is deployed, one or more ozone gas generating devices 101a...n or server computing device 203 may activate a warning or alarm indicating that entry into this area of space is hazardous to a Individually it is unsafe. For example, in one embodiment where the spatial area is a hotel room, a flashing LED warning light may warn an intruder trying to enter that the room is unsafe. In some variations, the warning may be further advanced to initiate a locked state of the hotel room through the existing door lock, so that the visitor will not be able to enter the room or similar enclosed area while one or more ozone gas generating devices 101a... n Operates in "Turbo" mode. Related to warnings or alerts, in one embodiment, the warning or alert may be a "Cleaning in Progress - Do Not Enter" message displayed to entrants attempting to enter the room. In related embodiments, the warning or alarm may also include a smoke alarm or piezoelectric-based buzzer that has been deployed in the hotel room through existing wireless communications, including through a WiFi connection. In other embodiments, if an unsafe ozone condition above a threshold ozone gas concentration is detected, a cloud-based alarm system, including but not limited to a smoke or fire alarm, may be triggered by the server computing device 203 .

圖4在一示例性實施例中示出臭氧產生裝置101的操作方法400。本文描述的方法步驟的示例與如本文描述的臭氧產生裝置101的部署和使用相關。根據一個實施例,該技術在處理器301中執行,處理器301執行構成控制器模組103的臭氧產生器邏輯模組310的一個或多個軟體邏輯指令程序。在實施例中,構成臭氧產生器邏輯模組310的指令可以從機器可讀取媒體,例如記憶體儲存裝置讀入記憶體302。執行儲存在記憶體302中的臭氧產生器邏輯模組310的指令使得處理器301執行本文描述的處理步驟。在可替代的實施中,至少一些硬體連線電路可用以代替軟體邏輯指令或與軟體邏輯指令結合使用以實現本文描述的示例。因此,本文描述的示例不限於硬體電路和軟體指令的任何特定組合。FIG. 4 illustrates a method 400 of operation of the ozone generating device 101 in an exemplary embodiment. Examples of method steps described herein are related to the deployment and use of ozone generating device 101 as described herein. According to one embodiment, the technology is executed in a processor 301 that executes one or more software logic instruction programs that constitute the ozone generator logic module 310 of the controller module 103 . In an embodiment, instructions constituting the ozone generator logic module 310 may be read into the memory 302 from a machine-readable medium, such as a memory storage device. Execution of the instructions of the ozone generator logic module 310 stored in the memory 302 causes the processor 301 to perform the process steps described herein. In alternative implementations, at least some hardwired circuitry may be used in place of or in combination with software logic instructions to implement the examples described herein. Accordingly, the examples described herein are not limited to any specific combination of hardware circuitry and software instructions.

在步驟410,透過臭氧產生裝置的一外殼內的一入口部接收包含氣態氧的一環境氣流。At step 410, an ambient airflow containing gaseous oxygen is received through an inlet in a housing of the ozone generating device.

在步驟420,根據向環境氣流的至少一部分氣態氧施加波長為185奈米(nm)的紫外線(UV)照射產生臭氧氣體,該UV照射透過由一直流 (DC)電池源供電的一光學燈模組提供。較短的185奈米波長的紫外線輻射藉由與環境氣流中的氧氣發生反應將其分解為原子氧而產生臭氧,從而提供一高度不穩定的氧原子,然後與環境氣流中的氧氣結合形成臭氧。At step 420, ozone gas is generated by applying ultraviolet (UV) irradiation with a wavelength of 185 nanometers (nm) to at least a portion of the gaseous oxygen of the ambient air flow through an optical lamp module powered by a direct current (DC) battery source. group provided. The shorter 185 nanometer wavelength ultraviolet radiation produces ozone by reacting with oxygen in the ambient air stream and breaking it down into atomic oxygen, thereby providing a highly unstable oxygen atom that then combines with oxygen in the ambient air stream to form ozone. .

在步驟430,根據生成產生一改變的氣流。在一些實施例中,本地臭氧氣體感測器裝置305或遠端臭氧氣體感測器裝置306中的任一個可以感測臭氧產生器裝置101產生的臭氧濃度,並且如果感測到的臭氧氣體濃度水平高於一預定閾值水平,處理器301可以使用一間歇的、基於佔空比的、開/關供電模式操作光學燈模組102,該模式將臭氧氣體產生調節到一更可接受的範圍內,然後將其維持在該範圍內。在一些示例實施例中,50 -500 ppb 之間可以預先確定為這樣的一個可接受範圍,儘管可以採用其他ppb值。在實施例中,認為可接受的閾值水平可以被設置,或者透過行動電話裝置202從一個或多個預先存在的值改變。At step 430, a modified airflow is generated based on the generation. In some embodiments, either the local ozone gas sensor device 305 or the remote ozone gas sensor device 306 may sense the ozone concentration produced by the ozone generator device 101 and if the sensed ozone gas concentration levels above a predetermined threshold level, the processor 301 may operate the optical lamp module 102 using an intermittent, duty cycle-based, on/off power mode that regulates ozone gas production to a more acceptable range. , and then maintain it within this range. In some example embodiments, between 50 and 500 ppb may be predetermined as such an acceptable range, although other ppb values may be used. In embodiments, the threshold level considered acceptable may be set or changed by the mobile phone device 202 from one or more pre-existing values.

在步驟440,透過外殼的一排氣部排出改變的氣流,與環境氣流中構成的一微量濃度臭氧氣體相比,改變的氣流具有一更高濃度的臭氧氣體。In step 440, the modified airflow is discharged through an exhaust portion of the housing, the modified airflow having a higher concentration of ozone gas compared to a trace concentration of ozone gas formed in the ambient airflow.

在又一個變化態樣中,該方法可以包括向諸如一遠端伺服器運算裝置的一運算裝置傳輸與臭氧產生器裝置101相關的帳戶資訊、位置資訊和時間戳資訊中的一個或多個及其在臭氧氣體產生系統200中的操作細節。In yet another variation, the method may include transmitting one or more of account information, location information, and timestamp information associated with ozone generator device 101 to a computing device, such as a remote server computing device. Details of its operation in ozone gas generation system 200.

圖5示出在又一示例性實施例中臭氧產生裝置101的另一種操作方法500。在根據一增強安全協定的一個實施例中,在切換到具有增加的臭氧氣體產生或產生速率的第二操作模式之前,遠端運動感測器裝置308可用於偵測沒有人或生物在環境中活動,諸如在臭氧氣體產生裝置所在的一封閉房間之類的環境中活動。以這種更高階或“渦輪增壓”操作模式產生的第二或替代的改變的氣流可包含比第一改變的氣流更高濃度的一臭氧氣體,並且可選地以與第一改變的氣流相比更高的排氣流速產生改變的氣流。以這種方式,在一給定生活空間內的臭氧氣體濃度水平低於一所需閾值水平並且沒有生物活動或根據遠端運動感測器裝置308確定沒有生物佔據該空間的情況下,可以在一給定的時間段內部署臭氧氣體的一更高的生產率,以安全地散發到周圍環境中,同時避免對空間內的居住者產生潛在的不利影響。在實施例中,由本地臭氧氣體感測器裝置305或遠端臭氧氣體感測器裝置306其中之一感測到的提供有效抗病毒和抗菌功能的臭氧氣體濃度的一安全和期望閾值水平可以在十億分之五十 (ppb) 和 100 ppb 之間的範圍內。然而,預期可以採用其他範圍或值;例如,在 50 ppb 到 500 ppb 的臭氧氣體濃度範圍內。Figure 5 illustrates another method of operation 500 of the ozone generating device 101 in yet another exemplary embodiment. In one embodiment in accordance with an enhanced safety protocol, the remote motion sensor device 308 may be used to detect the absence of persons or organisms in the environment before switching to a second mode of operation with increased ozone gas production or production rates. Activities, such as activities in an environment such as a closed room where an ozone gas generating device is located. The second or alternative altered air flow produced in this higher order or "turbocharged" mode of operation may contain a higher concentration of ozone gas than the first altered air flow, and optionally in the same manner as the first altered air flow. Higher exhaust flow rates produce altered airflow. In this manner, if the ozone gas concentration level within a given living space is below a required threshold level and there is no biological activity or no living organisms occupying the space as determined by the remote motion sensor device 308, the A higher production rate of deploying ozone gas over a given period of time to safely dissipate into the surrounding environment while avoiding potential adverse effects on the occupants of the space. In embodiments, a safe and desired threshold level of ozone gas concentration that provides effective antiviral and antimicrobial functionality as sensed by one of the local ozone gas sensor device 305 or the remote ozone gas sensor device 306 may In the range between 50 parts per billion (ppb) and 100 ppb. However, it is contemplated that other ranges or values may be employed; for example, within an ozone gas concentration range of 50 ppb to 500 ppb.

在步驟510,經由一個或多個遠端臭氧氣體濃度感測器裝置306感測外殼外部的狀況。在一個實施例中,可以使用一個或多個遠端運動感測器裝置308將外殼外部的狀況確定為在外殼周圍的一預定區域內沒有人。At step 510, conditions outside the enclosure are sensed via one or more remote ozone gas concentration sensor devices 306. In one embodiment, one or more remote motion sensor devices 308 may be used to determine the condition outside the enclosure as there are no people within a predetermined area around the enclosure.

在進一步的變化態樣中,使用一個或多個遠端臭氧氣體濃度感測器裝置306,外殼外部的條件可被確定為臭氧氣體濃度低於一預定閾值濃度,例如在臭氧氣體產生裝置101的外殼周圍的一預定區域內,臭氧氣體濃度在50至500ppb的範圍內。In a further variation, using one or more remote ozone gas concentration sensor devices 306 , conditions outside the enclosure may be determined to have an ozone gas concentration below a predetermined threshold concentration, such as at the ozone gas generating device 101 In a predetermined area around the enclosure, the ozone gas concentration is in the range of 50 to 500 ppb.

在步驟520,響應於偵測,切換到產生一第二改變的氣流的第二操作模式,第二改變的氣流包括以下中的至少一個:(i)比第一改變的氣流更高濃度的臭氧氣體,和(ii)與第一改變的氣流相比更高的排氣流速。以這種方式,在給一定的時間段內可以產生一更高的臭氧氣體產生率並隨後散佈到周圍環境中。在具有一增強的安全協定的一個實施例中,在切換到臭氧氣體產生或產生率增加的第二種操作模式之前,遠端運動感測器裝置308可用於偵測沒有人活動或沒有人佔據周圍環境,例如臭氧氣體產生裝置101所在的一封閉房間。At step 520, in response to the detection, switching to a second operating mode that produces a second altered air flow, the second altered air flow including at least one of the following: (i) a higher concentration of ozone than the first altered air flow gas, and (ii) a higher exhaust flow rate compared to the first altered gas flow. In this way, a higher rate of ozone gas production can be generated within a given period of time and subsequently dispersed into the surrounding environment. In one embodiment with an enhanced safety protocol, the remote motion sensor device 308 may be used to detect the absence of human activity or occupancy before switching to a second mode of operation in which ozone gas production or production rates are increased. The surrounding environment, such as a closed room where the ozone gas generating device 101 is located.

在一個實施例中,光學燈模組包括一個或多個光學燈,並且第二操作模式包括啟動光學燈模組的至少一個額外的光學燈In one embodiment, the optical lamp module includes one or more optical lamps, and the second mode of operation includes activating at least one additional optical lamp of the optical lamp module.

在另一變化態樣中,第二改變的氣流的較高流速根據改變至少部分設置在外殼內的一個或多個壓差感應裝置的一操作狀態來實現。這種運作狀態的變化可以根據更高階,或“渦輪增壓”模式,如本文所述,透過啟用額外的風扇、加速部署的風扇或其任何組合來實現,因此額外的風扇和/或以更高速度運作的風扇實現更高的臭氧生成速率,以及更快的時間達到一給定的臭氧氣體濃度。In another variation, the second modified higher flow rate of the air flow is achieved based on changing an operating state of one or more differential pressure sensing devices at least partially disposed within the housing. This change in operating status may be accomplished in accordance with a higher order, or "turbo boost" mode, as described herein, by enabling additional fans, accelerated deployment of fans, or any combination thereof, whereby additional fans and/or Fans operating at high speeds achieve higher ozone production rates and a faster time to reach a given ozone gas concentration.

在又一個實施例中,該方法包括至少終止第二操作模式,以響應於偵測到臭氧氣體的濃度在外殼周圍的區域中超過以ppb為單位的一預定閾值濃度。In yet another embodiment, the method includes terminating at least the second mode of operation in response to detecting that a concentration of ozone gas exceeds a predetermined threshold concentration in ppb in a region surrounding the enclosure.

圖6在一個示例性實施例中示出一結合基於人工智能機器學習的系統的運算裝置架構600,其用於控制一組臭氧氣體產生裝置101a…n。如本文所指,組一詞是指在一給定空間區域內部署的一群臭氧氣體產生裝置,其用於為了共同的或單獨的目的在該空間區域的環境空氣中產生臭氧氣體。該空間區域可以是一個房間、一個大廳、一個封閉或部分封閉的區域,並且可以根據位置坐標來定義,可以是本地坐標或全球 (x,y) 坐標,這些坐標定義了該空間區域的邊界或周邊。Figure 6 illustrates, in one exemplary embodiment, a computing device architecture 600 incorporating an artificial intelligence machine learning based system for controlling a set of ozone gas generating devices 101a...n. As used herein, the term group refers to a group of ozone gas generating devices deployed within a given spatial area for the common or separate purpose of producing ozone gas in the ambient air of that spatial area. The spatial area can be a room, a hall, an enclosed or partially enclosed area, and can be defined in terms of location coordinates, either local or global (x,y) coordinates that define the boundaries of the spatial area or Periphery.

在基於雲端的實施例中,伺服器運算裝置203包括處理器601、記憶體602、顯示螢幕605、輸入裝置604(例如一鍵盤或軟體實現的觸控螢幕輸入功能)以及用於透過通信網路204進行通信的通信介面607。遠端臭氧感測器裝置606a...n在物理上位於與臭氧氣體產生裝置101a...n群相關的空間區域中,但是使用通信網路204和通信介面607經由無線通信與伺服器運算裝置203的處理器601通信地交流。記憶體602可以包括任何類型的非暫時性系統記憶體,儲存可在處理器601中執行的指令,包括例如一靜態隨機存取記憶體(SRAM)、動態隨機存取記憶體(DRAM)、同步DRAM(SDRAM),唯讀記憶體(ROM),或其任何組合。In a cloud-based embodiment, the server computing device 203 includes a processor 601, a memory 602, a display screen 605, an input device 604 (such as a keyboard or a touch screen input function implemented by software) and a device for communicating through a communication network. 204 communicates with the communication interface 607. Remote ozone sensor devices 606a...n are physically located in the spatial area associated with the group of ozone gas generating devices 101a...n, but communicate with server computing via wireless communication network 204 and communication interface 607 The processor 601 of the device 203 communicates communicatively. Memory 602 may include any type of non-transitory system memory that stores instructions executable in processor 601, including, for example, a static random access memory (SRAM), dynamic random access memory (DRAM), synchronous DRAM (SDRAM), read-only memory (ROM), or any combination thereof.

在一基於雲端的實施例中,臭氧產生控制邏輯模組610包括儲存在伺服器運算裝置203的記憶體602中的處理器可執行指令,該等指令可在處理器601中執行。臭氧產生控制邏輯模組610可以包括部分或子模組,其包含群組裝置識別模組611、人工智能(AI)神經網路模組612和群組裝置指示模組613。In a cloud-based embodiment, the ozone generation control logic module 610 includes processor-executable instructions stored in the memory 602 of the server computing device 203 , and the instructions are executable in the processor 601 . The ozone generation control logic module 610 may include portions or sub-modules including a group device identification module 611 , an artificial intelligence (AI) neural network module 612 and a group device indication module 613 .

在一個實施例中,處理器201使用儲存在群組裝置識別模組611中的可執行指令來在伺服器運算裝置203處識別構成群組的多個臭氧氣體產生裝置101a…n。在一給定空間區域內運作的臭氧氣體產生裝置101a…n中的一些可以基於由伺服器運算裝置203感測到的它們的物理位置被分類或指定為屬於一群組。該空間區域可以被指定為根據預先確定的坐標 (x,y)位置或周界,例如一房間、一大廳或類似區域。各個臭氧氣體產生裝置101a…n的物理位置可以使用全球定位系統結合臭氧產生裝置101a…n中的一GPS接收器來確定或估計,或者也被估計為與移動電話202a…n中與其進行無線通信的相對應的一個移動電話對應的一位置。在一些實施例中,臭氧氣體產生裝置101a…n可以根據接收到的無線信號強度估計空間區域內的坐標 (x,y) 位置,而與空間區域內的一固定無線通信存取點裝置無線通信,例如但不限於藍牙協定。In one embodiment, processor 201 uses executable instructions stored in group device identification module 611 to identify, at server computing device 203, a plurality of ozone gas generating devices 101a...n that form a group. Some of the ozone gas generating devices 101a...n operating within a given spatial area may be classified or assigned to belong to a group based on their physical location sensed by the server computing device 203. The spatial area may be designated as a location or perimeter based on predetermined coordinates (x, y), such as a room, a hall, or the like. The physical location of each ozone gas generating device 101a...n may be determined or estimated using a global positioning system in conjunction with a GPS receiver in the ozone generating device 101a...n, or may be estimated by wireless communication with a mobile phone 202a...n corresponds to a location corresponding to a mobile phone. In some embodiments, the ozone gas generating devices 101a...n can wirelessly communicate with a fixed wireless communication access point device in the spatial area by estimating the coordinate (x, y) position in the spatial area based on the received wireless signal strength. , such as but not limited to Bluetooth protocol.

處理器201使用儲存在AI或機器學習神經網路模組612中的可執行指令,透過位於與群組相關的在一空間區域中的臭氧氣體感測器裝置606a…n中的至少一個結合運算裝置203的一個或多個處理器來偵測該空間區域內環境空氣的一臭氧氣體成分的濃度。在實施例中,可至少部分基於結合多個臭氧氣體感測器裝置606a…n之使用一經過訓練的機器學習模型來偵測環境空氣中臭氧氣體成分的濃度。The processor 201 uses executable instructions stored in the AI or machine learning neural network module 612 to combine operations through at least one of the ozone gas sensor devices 606a...n located in a spatial region associated with the group. One or more processors of the device 203 detect the concentration of an ozone gas component of the ambient air in the spatial area. In embodiments, detecting the concentration of ozone gas components in ambient air may be based at least in part on using a trained machine learning model in conjunction with a plurality of ozone gas sensor devices 606a...n.

在一個實施例中,神經網路配置有一組輸入層、一輸出層以及連接輸入層和輸出層的一個或多個中間層。在實施例中,該等輸入層與涉及數位廣告數據,例如但不限於透過行動運算裝置103獲取、創建或存取的數位廣告數據的輸入特徵或輸入屬性相關。輸出屬性產生模組212可以在包括顯示螢幕203或其他顯示介面裝置的使用者界面上呈現結果輸出屬性,這些顯示介面裝置能夠選擇被產生的輸出屬性中的特定屬性。In one embodiment, a neural network is configured with a set of input layers, an output layer, and one or more intermediate layers connecting the input and output layers. In embodiments, the input layers are associated with input features or input attributes related to digital advertising data, such as, but not limited to, digital advertising data acquired, created or accessed via the mobile computing device 103 . The output attribute generation module 212 may present the resulting output attributes on a user interface including a display screen 203 or other display interface device capable of selecting specific attributes among the output attributes to be generated.

經訓練的神經網路可以根據一組輸入層中的相應輸入層至少部分基於在輸出層生成至少一個數位廣告輸出屬性時調整初始權重矩陣來部署。在一些實施例中,輸出屬性與一好處或一結果有關,該好處或結果將是來自在該空間區域內的臭氧氣體產生裝置101a…n群的一期望結果。在實施例中,調整包括在生成該等輸出屬性時透過反向傳播遞歸地調整初始權重矩陣。根據在神經網路的輸出層計算的一誤差矩陣的減少,基於遞歸調整,生成該輸出屬性。在實施例中,反向傳播包括根據在輸出層計算的一誤差矩陣的誤差的反向傳播,該等誤差在整個神經網路中間層的權重中反向分佈。The trained neural network may be deployed based at least in part on adjusting an initial weight matrix when the output layer generates at least one digital advertising output attribute based on a corresponding one of the set of input layers. In some embodiments, the output attribute relates to a benefit or a result that would be a desired result from the group of ozone gas generating devices 101a...n within the spatial region. In an embodiment, adjusting includes recursively adjusting the initial weight matrix via backpropagation when generating the output attributes. The output attributes are generated based on recursive adjustments based on the reduction of an error matrix calculated at the output layer of the neural network. In an embodiment, backpropagation includes backpropagation of errors based on an error matrix computed at the output layer, with the errors being inversely distributed throughout the weights of intermediate layers of the neural network.

在一卷積神經網路模型的特定實施例中,卷積運算通常包含兩部分輸入:(i)輸入特徵圖數據,和(ii)一權重,也稱為輸出過濾器或內核。給定具有 W(寛度) x H(高度) x IC數據立方體和RxSxIC 過濾器的輸入通道數據,直接卷積的輸出可以表示為: 其中: X=輸入數據/輸入特徵/輸入特徵圖 w =輸入或輸出數據的寬度 h =輸入或輸出數據的高度 R=權重尺寸(寬度) S=權重尺寸(高度) C=輸入通道數 Y=輸出數據/輸出特徵/輸出特徵圖 W = 過濾器/內核/權重 In a specific embodiment of a convolutional neural network model, the convolution operation typically contains two parts of input: (i) input feature map data, and (ii) a weight, also called an output filter or kernel. Given input channel data with W(width) x H(height) x IC data cube and RxSxIC filter, the output of direct convolution can be expressed as: Among them: Output data/output features/output feature map W = filter/kernel/weight

機器學習推理和訓練網路通常配置為包含許多卷積層。通常,一個卷積層的輸出成為下一個卷積層的輸入。對於每個輸入通道,過濾器或權重與數據進行卷積並產生輸出數據。將所有輸入通道的相同位置的數據相加並產生通道輸出數據。基於數位參數的一輸入數據流,權重被用來偵測一特定的缺陷特徵或類型。Machine learning inference and training networks are often configured to contain many convolutional layers. Typically, the output of one convolutional layer becomes the input of the next convolutional layer. For each input channel, a filter or weight is convolved with the data and produces output data. Sums the data at the same location for all input channels and produces the channel output data. Based on an input data stream of digital parameters, weights are used to detect a specific defect characteristic or type.

卷積模型的每個輸出通道都由一個用於偵測輸入特徵數據流的一個特定特徵或模式的輸出過濾器或權重表示。卷積網路可以由對應於輸入屬性數據流中的各個特徵或模式的卷積模型的每一層的許多輸出過濾器或權重構成。Each output channel of a convolutional model is represented by an output filter or weight that is used to detect a specific feature or pattern in the input feature data stream. A convolutional network can be composed of many output filters or weights for each layer of the convolutional model that correspond to individual features or patterns in the input attribute data stream.

儘管本文的示例實施例與一卷積神經網路有關,但預期可應用其他的神經網路模型,包括一遞歸神經網路模型,包括結合所述神經網路模型的各方面的混合模型。Although the example embodiments herein relate to a convolutional neural network, it is contemplated that other neural network models may be applied, including a recurrent neural network model, including hybrid models that combine aspects of the neural network models.

處理器201使用儲存在組群裝置指示模組613中的可執行指令,響應於偵測到臭氧氣體成分的濃度高於和低於一預定閾值濃度之一,使用處理器601指示臭氧氣體產生裝置 101a…n組群中的至少一個臭氧氣體產生裝置增加或減少其臭氧氣體產生率。在實施例中,該指令可透過處理器601向一個或多個臭氧氣體產生裝置101a…n傳輸一個或多個編碼命令來實現,例如經由通信介面607並透過通信網路204傳輸。The processor 201 uses executable instructions stored in the group device instruction module 613 to instruct the ozone gas generating device in response to detecting that the concentration of the ozone gas component is above or below one of a predetermined threshold concentration. At least one ozone gas generating device in the group 101a...n increases or decreases its ozone gas generation rate. In an embodiment, the instructions may be implemented by processor 601 transmitting one or more encoded commands to one or more ozone gas generating devices 101a...n, such as via communication interface 607 and over communication network 204.

圖7在一個示例性實施例中示出控制一群臭氧氣體產生裝置101a…n的方法700,其結合了一基於人工智能機器學習神經網路的系統。Figure 7 illustrates, in an exemplary embodiment, a method 700 of controlling a population of ozone gas generating devices 101a...n, which incorporates a system based on artificial intelligence machine learning neural networks.

在步驟710,在運算裝置203處識別構成一群組的多個臭氧氣體產生裝置101a…n。At step 710, a plurality of ozone gas generating devices 101a...n forming a group are identified at the computing device 203.

在步驟720,經由位於與群組相關的一空間區域中的至少一個遠端臭氧氣體感測器裝置606a…n結合運算裝置203的一個或多個處理器601偵測該空間區域中的環境空氣的臭氧氣體成分的一濃度。At step 720, ambient air in a spatial region associated with the group is detected via at least one remote ozone gas sensor device 606a...n located in the spatial region in conjunction with one or more processors 601 of the computing device 203. A concentration of the ozone gas component.

在步驟730,響應於偵測到臭氧氣體成分的濃度高於和低於一預定閾值濃度之一,使用一個或多個處理器601指示一群臭氧氣體產生裝置101a…n的至少一個臭氧氣體產生裝置執行增加和減少與之相關的一臭氧氣體產生速率其中之一。At step 730, in response to detecting that the concentration of the ozone gas component is above and below one of a predetermined threshold concentration, one or more processors 601 are used to instruct at least one ozone gas generating device of the group of ozone gas generating devices 101a...n Performs an increase and decrease associated with one of the ozone gas production rates.

在實施例中,至少一個遠端臭氧氣體感測器裝置包括多個遠端臭氧氣體感測器裝置606a…n,其位於與群組相關的空間區域內,但不一定包含在臭氧氣體產生裝置101a…n內,這與本地的臭氧氣體濃度感測器108不同,並且該方法進一步包括至少部分地使用一經訓練的機器學習模型結合多個臭氧氣體感測器裝置606a…n來偵測環境空氣中臭氧氣體成分的濃度。一方面,該經訓練的機器學習模型包括一經訓練的卷積神經網路和一經訓練的遞歸神經網路其中之一。In an embodiment, the at least one remote ozone gas sensor device includes a plurality of remote ozone gas sensor devices 606a...n located within a spatial region associated with the group, but not necessarily within the ozone gas generating device 101a...n, which is distinct from the local ozone gas concentration sensor 108, and the method further includes detecting ambient air using, at least in part, a trained machine learning model in conjunction with a plurality of ozone gas sensor devices 606a...n The concentration of the ozone gas component in the In one aspect, the trained machine learning model includes one of a trained convolutional neural network and a trained recurrent neural network.

在一個變化態樣中,響應於該指令,一群臭氧氣體產生裝置101a…n中的至少一個臭氧氣體產生裝置根據從臭氧氣體產生的第一模式到第二模式的切換來增加與其相關的臭氧氣體產生的速率,與第一種模式相比,第二種臭氧氣體產生模式具有一更高的臭氧氣體產生速率。In one variation, in response to the instruction, at least one ozone gas generating device of the group of ozone gas generating devices 101a...n increases its associated ozone gas in response to switching from a first mode to a second mode of ozone gas generation. The second ozone gas generation mode has a higher ozone gas generation rate compared to the first mode.

一方面,至少一個臭氧產生裝置包括由多個光學燈102組成的一光學燈模組,並且臭氧氣體產生的第二模式包括啟動多個光學燈102中的至少一個額外的光學燈。In one aspect, at least one ozone generating device includes an optical lamp module composed of a plurality of optical lamps 102 , and the second mode of ozone gas generation includes activating at least one additional optical lamp of the plurality of optical lamps 102 .

在又一方面,響應於該指令,一群臭氧氣體產生裝置101a…n中的至少一個臭氧氣體產生裝置根據下列兩點至少其中之一降低與之相關的臭氧氣體產生速率,(i)從第二模式切換到臭氧氣體產生的第一模式,以及(ii)從一運作狀態切換到一非運作狀態,其中運作狀態是指主動產生臭氧氣體的一狀態,非運作狀態可以是一斷電或不產生臭氧氣體的非活動狀態。In yet another aspect, in response to the instruction, at least one ozone gas generating device in the group of ozone gas generating devices 101a...n reduces its associated ozone gas generation rate according to at least one of the following two points, (i) from a second mode switching to a first mode of ozone gas generation, and (ii) switching from an operating state to a non-operating state, where the operating state refers to a state of actively generating ozone gas, and the non-operating state may be a power outage or no generation Inactive state of ozone gas.

在又一實施例中,至少一個臭氧產生裝置包括由多個光學燈102組成的一光學燈模組,並且臭氧氣體產生的第一模式包括停用多個光學燈102中的至少一個光學燈。In yet another embodiment, at least one ozone generating device includes an optical lamp module composed of a plurality of optical lamps 102, and the first mode of ozone gas generation includes deactivating at least one of the plurality of optical lamps 102.

圖8在一示例性實施例800中示出一基於人工智能機器學習的系統的輸入數據集801和輸出屬性802,該系統包括用於控制一組臭氧氣體產生裝置101a…n的神經網路模組612。一方面,輸入數據集801包括以下一項或多項:常規操作模式下的臭氧氣體產生能力、高階操作模式下的臭氧氣體產生能力、定義一給定空間區域的外部邊界或周邊的位置坐標、在空間區域內的臭氧氣體產生裝置的坐標位置、臭氧氣體產生裝置的模型識別、裝置運作可靠性指標、裝置無線通信可靠性指標和裝置歷史的、累計的臭氧氣體產生指標。在實施例中,輸出屬性802包括在空間區域的環境氣流中構成的臭氧氣體的一期望濃度。Figure 8 illustrates, in an exemplary embodiment 800, input data sets 801 and output attributes 802 of an artificial intelligence machine learning based system including a neural network model for controlling a set of ozone gas generating devices 101a...n Group 612. In one aspect, the input data set 801 includes one or more of the following: an ozone gas generating capability in a normal operating mode, an ozone gas generating capability in an advanced operating mode, position coordinates defining the outer boundary or perimeter of a given spatial region, in The coordinate position of the ozone gas generating device in the spatial area, the model identification of the ozone gas generating device, the device operation reliability index, the device wireless communication reliability index and the historical and accumulated ozone gas generation index of the device. In an embodiment, the output attribute 802 includes a desired concentration of ozone gas formed in the ambient airflow of the spatial region.

圖9示出在一個實施例中訓練一基於人工智能機器學習的系統控制一組臭氧氣體產生裝置101a…n的方法900。預期的是,在實施例中,訓練可以實現監督學習技術、非監督學習技術或其某些組合。Figure 9 illustrates a method 900 of training an artificial intelligence machine learning based system to control a set of ozone gas generating devices 101a...n in one embodiment. It is contemplated that, in embodiments, training may implement supervised learning techniques, unsupervised learning techniques, or some combination thereof.

在步驟910,在一神經網路的多個輸入層中的相對應的輸入層接收多個輸入數據集,該神經網路在一個或多個處理器中被實例化並且具有經由一中間層集合連接到多個輸入層的一輸出層,多個輸入數據集的每一個包括與多個臭氧氣體產生裝置中的一些相關的一輸入屬性,該中間層集合中的一些是根據一初始權重矩陣配置的。At step 910, a corresponding one of a plurality of input layers of a neural network that is instantiated in one or more processors and has a set of input data via an intermediate layer receives a plurality of input data sets. An output layer connected to a plurality of input layers, each of the plurality of input data sets including an input attribute associated with some of the plurality of ozone gas generating devices, some of the intermediate set of layers configured according to an initial weight matrix of.

在步驟920,訓練神經網路,根據多個輸入層中的相應輸入層至少部分基於透過反向傳播遞歸地調整該初始權重矩陣,根據在神經網路的輸出層計算的一誤差矩陣的減少,在輸出層生成一輸出屬性。在部署經訓練的神經網路時,在一個實施例中,輸出屬性可以是在與訓練相關的給定空間區域的環境中構成的一期望目標臭氧氣體濃度水平。以這種方式,機器學習網路被訓練以預測給定空間區域的環境空氣中臭氧氣體濃度的結果,該空間區域具有一群運作中的臭氧氣體產生裝置101a…n,使用反向傳播來更新神經網路的參數,以便它可以更準確地執行預測。在特定實施例中,對應於神經網路的輸出屬性802的期望目標臭氧氣體濃度可以被預先確定為100ppb,儘管預期在50ppb和500ppb之間的一範圍內的其他臭氧氣體濃度水平是可以被實施的。At step 920, training the neural network based at least in part on recursively adjusting the initial weight matrix through backpropagation based on corresponding ones of the plurality of input layers based on the reduction of an error matrix calculated at the output layer of the neural network, Generate an output attribute in the output layer. When deploying a trained neural network, in one embodiment, the output attribute may be a desired target ozone gas concentration level constituted in the environment of a given spatial region relevant to training. In this way, a machine learning network is trained to predict the outcome of ozone gas concentration in ambient air for a given spatial region with a population of operating ozone gas generating devices 101a...n, using backpropagation to update the neural parameters of the network so that it can perform predictions more accurately. In a particular embodiment, the desired target ozone gas concentration corresponding to the output attribute 802 of the neural network may be predetermined to be 100 ppb, although it is contemplated that other ozone gas concentration levels within a range between 50 ppb and 500 ppb may be implemented. of.

本文所用的監督學習是指基於標記的輸入數據集流訓練一機器學習(ML)演算法,同時根據應用於提供反饋的臭氧氣體產生裝置特性的專家知識來引導ML演算法模型學習的方法,由此ML 演算法學習從輸入特徵到所需的輸出屬性的映射函數。透過訓練應用的輸入數據集標籤可以與臭氧氣體產生裝置相關的特徵相關,例如但不限於常規操作模式下的臭氧氣體產生能力、高階操作模式下的臭氧氣體產生能力、定義一給定空間區域的外部邊界或周邊的位置坐標、臭氧氣體產生裝置在空間區域內的坐標位置、臭氧氣體產生裝置的模型識別、裝置運作可靠性指標、裝置無線通信可靠性指標和裝置歷史的、累積的臭氧氣體產生指標。Supervised learning as used in this article refers to a method of training a machine learning (ML) algorithm based on a labeled input data set, while guiding the ML algorithm model learning based on expert knowledge of the characteristics of the ozone gas generation device used to provide feedback. This ML algorithm learns a mapping function from input features to desired output attributes. The input data set labels through the training application can be related to characteristics related to the ozone gas generating device, such as, but not limited to, ozone gas generating capabilities in normal operating modes, ozone gas generating capabilities in high-order operating modes, and defining a given spatial area. The position coordinates of the external boundary or periphery, the coordinate position of the ozone gas generating device in the spatial area, the model identification of the ozone gas generating device, the device operation reliability index, the device wireless communication reliability index and the historical and accumulated ozone gas production of the device indicators.

在無監督學習實施例中,可以應用分群技術或演算法來尋找臭氧氣體產生裝置特徵中的自然群組或群聚,解釋輸入數據。在一個實施例中,無監督學習技術採用一分群演算法,該演算法識別臭氧氣體產生裝置屬性中的一個或多個群聚,並將相應的數據集標籤應用於輸入數據集特徵。In unsupervised learning embodiments, clustering techniques or algorithms may be applied to find natural groups or clusters in ozone gas generating device characteristics to interpret the input data. In one embodiment, the unsupervised learning technique employs a clustering algorithm that identifies one or more clusters in ozone gas generating device attributes and applies corresponding dataset labels to the input dataset features.

在實施例中,當在生產或正常使用環境中部署經過訓練的神經網路時,神經網路可以像最初訓練的那樣經受並經歷連續的學習和精確度改進,並因此受益於在部署中的常規使用期間獲取的額外的後續輸入數據集。In embodiments, when a trained neural network is deployed in a production or normal use environment, the neural network can undergo and undergo continuous learning and accuracy improvements as originally trained, and thus benefit from Additional subsequent input data sets acquired during regular use.

儘管本文參照附圖詳細描述了實施例,但是可以預期本文的公開不僅限於這樣的文字實施例。因此,包括方法步驟順序的變化連同在此公開的使用者界面特徵的變化組合的許多修改對於本領域的技術人員來說將是顯而易見的。因此,本發明的範圍旨在由所附的請求項及其均等物定義。此外,預期單獨或作為實施例的一部分描述的一特定特徵可與其他單獨描述的特徵或其他實施例的部分組合。因此,沒有描述此類組合並不排除發明人請求對此類組合的權利。Although embodiments are described in detail herein with reference to the accompanying drawings, it is contemplated that the disclosure herein is not limited to such literal embodiments. Accordingly, many modifications including variations in the order of method steps in combination with variations in the user interface features disclosed herein will be apparent to those skilled in the art. Accordingly, the scope of the invention is intended to be defined by the appended claims and their equivalents. Furthermore, it is contemplated that a particular feature described alone or as part of an embodiment may be combined with other individually described features or parts of other embodiments. Accordingly, the failure to describe such combinations does not preclude the inventor from claiming rights to such combinations.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above are only examples of the present invention, and should not be used to limit the scope of the present invention. All simple equivalent changes and modifications made based on the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. Within the scope covered by the patent of this invention.

101:臭氧(氣體)產生裝置 102:光學(輻射)燈/UV輻射燈 103:控制器模組 104:直流(DC)電池 105:氣流壓力差壓-感應風扇或類似裝置 106:入口部 107:環境氣流 108:臭氧氣體濃度感測器 109:外殼 110:排氣部 111:氣流 200:臭氧產生系統 202:行動裝置 203:伺服器運算裝置 204:通信網路 206:使用指標和報告模組 300:示例架構 301:處理器 302:記憶體 304:電源DC電池 305:本地臭氧氣體濃度感測器裝置 306:遠端臭氧氣體濃度感測器裝置 307:通信介面 308:遠端運動感測器裝置 309:風扇/氣流裝置 310:臭氧產生器邏輯模組 400、500、700、900:方法 410、420、430、440、510、520、710、720、730、910、920:步驟 600:運算裝置架構 601:處理器 602:記憶體 604:輸入裝置 605:顯示螢幕 606:遠端臭氧感測器裝置 607:通信介面 610:臭氧產生控制邏輯模組 611:群組裝置識別模組 612:(人工智能(AI))神經網路模組 613:群組裝置指示模組 800:示例性實施例 801:輸入數據集 802:輸出屬性 101: Ozone (gas) generating device 102: Optical (radiation) lamp/UV radiation lamp 103:Controller module 104: Direct current (DC) battery 105: Air flow pressure differential - induction fan or similar device 106: Entrance Department 107:Ambient airflow 108: Ozone gas concentration sensor 109: Shell 110:Exhaust part 111:Airflow 200:Ozone generation system 202:Mobile device 203:Server computing device 204:Communication network 206: Using Metrics and Reporting Modules 300: Sample architecture 301: Processor 302:Memory 304:Power supply DC battery 305: Local ozone gas concentration sensor device 306: Remote ozone gas concentration sensor device 307: Communication interface 308: Remote motion sensor device 309:Fan/airflow device 310: Ozone generator logic module 400, 500, 700, 900: Method 410, 420, 430, 440, 510, 520, 710, 720, 730, 910, 920: steps 600:Computing device architecture 601: Processor 602:Memory 604:Input device 605:Display screen 606: Remote ozone sensor device 607: Communication interface 610: Ozone generation control logic module 611: Group device identification module 612: (Artificial Intelligence (AI)) Neural Network Module 613:Group device indication module 800: Exemplary embodiment 801:Input data set 802: Output attributes

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地顯示,其中: 圖1在一示例性實施例中示出一臭氧氣體產生裝置。 圖2在一示例性實施例中示出一包括一臭氧氣體產生裝置的臭氧氣體產生系統。 圖3在一示例性實施例中示出部署在一臭氧產生系統中的一臭氧氣體產生裝置的一示例架構。 圖4在一示例性實施例中示出一臭氧產生裝置的一操作方法。 圖5在又一示例性實施例中示出根據一更高階操作方法的一臭氧產生裝置的一操作方法。 圖6在一示例性實施例中示出一種運算裝置架構,該架構結合了用於控制一組臭氧氣體產生裝置的一基於人工智能機器學習的系統。 圖7在一示例性實施例中示出一種控制結合了基於人工智能機器學習的一系統的一組臭氧氣體產生裝置的方法。 圖8在一示例性實施例中示出用於控制一組臭氧氣體產生裝置的基於人工智能機器學習的一系統的輸入數據集和輸出屬性。 圖9在一實施例中示出訓練基於人工智能機器學習的一系統控制一組臭氧氣體產生裝置的方法。 Other features and effects of the present invention will be clearly shown in the embodiments with reference to the drawings, in which: Figure 1 shows an ozone gas generating device in an exemplary embodiment. Figure 2 illustrates an ozone gas generation system including an ozone gas generation device in an exemplary embodiment. Figure 3 illustrates an example architecture of an ozone gas generating device deployed in an ozone generating system in an exemplary embodiment. Figure 4 illustrates a method of operating an ozone generating device in an exemplary embodiment. Figure 5 illustrates, in yet another exemplary embodiment, a method of operation of an ozone generating device according to a higher order method of operation. 6 illustrates, in an exemplary embodiment, a computing device architecture incorporating an artificial intelligence machine learning based system for controlling a group of ozone gas generating devices. Figure 7 illustrates, in an exemplary embodiment, a method of controlling a set of ozone gas generating devices incorporating a system based on artificial intelligence machine learning. 8 illustrates, in an exemplary embodiment, input data sets and output attributes of an artificial intelligence machine learning based system for controlling a set of ozone gas generating devices. Figure 9 illustrates, in one embodiment, a method of training a system based on artificial intelligence machine learning to control a set of ozone gas generating devices.

700:方法 700:Method

710~730:步驟 710~730: steps

Claims (20)

一種控制一組臭氧氣體產生裝置的方法,該方法包括: 在一運算裝置處識別構成群組的多個臭氧氣體產生裝置; 經由位於與群組相關的一空間區域中的至少一個遠端臭氧氣體感測器設備連同運算裝置的一個或多個處理器,偵測該空間區域內環境空氣的臭氧氣體成分的一濃度;及 響應於偵測到臭氧氣體成分的該濃度高於和低於一預定閾值濃度之一,使用一個或多個處理器指示該群組中的至少一個臭氧氣體產生裝置執行增加和降低與之相關的臭氧氣體產生的一速率其中之一。 A method of controlling a group of ozone gas generating devices, the method comprising: Identifying at a computing device a plurality of ozone gas generating devices forming a group; detecting a concentration of an ozone gas component of the ambient air in a spatial area associated with the group via at least one remote ozone gas sensor device located in the spatial area associated with the group together with one or more processors of the computing device; and In response to detecting that the concentration of the ozone gas component is above and below one of a predetermined threshold concentration, one or more processors are used to instruct at least one ozone gas generating device in the group to perform an increase and decrease associated therewith. One of the rates at which ozone gas is produced. 如請求項1所述的方法,其中,所述的至少一個遠端臭氧氣體感測器裝置包括位於與所述的該群組相關的該空間區域內的多個遠端臭氧氣體感測器裝置,並且還包括至少部分地使用一經過訓練的機器學習模型結合多個遠端臭氧氣體感測器裝置偵測環境空氣中臭氧氣體成分的該濃度。The method of claim 1, wherein the at least one remote ozone gas sensor device includes a plurality of remote ozone gas sensor devices located within the spatial area associated with the group. , and also includes detecting the concentration of the ozone gas component in the ambient air using, at least in part, a trained machine learning model in combination with a plurality of remote ozone gas sensor devices. 如請求項2所述的方法,還包括經由一訓練過程產生的經過訓練的機器學習模型,該訓練過程包括: 在一神經網路的多個輸入層中的相應輸入層接收多個輸入數據集,該神經網路在一個或多個處理器中被實現並且具有經由一中間層集合連接到多個輸入層的一輸出層,多個輸入數據集的每一個包括與多個臭氧氣體產生裝置中的一些相關的一輸入屬性,該中間層集合中的一些根據一初始權重矩陣配置;及 訓練神經網路,根據多個輸入層中的相應輸入層至少部分基於透過反向傳播遞歸地調整該初始權重矩陣,根據在神經網路的輸出層計算的一誤差矩陣的減少,在輸出層生成一輸出屬性。 The method of claim 2 further includes a trained machine learning model generated through a training process, the training process including: A plurality of input data sets are received by respective ones of a plurality of input layers of a neural network implemented in one or more processors and having connections to the plurality of input layers via a set of intermediate layers. an output layer, each of the plurality of input data sets including an input attribute associated with some of the plurality of ozone gas generating devices, some of the intermediate set of layers configured according to an initial weight matrix; and Training the neural network based at least in part on recursively adjusting the initial weight matrix through backpropagation based on corresponding ones of the plurality of input layers, generating at the output layer based on the reduction of an error matrix calculated at the output layer of the neural network An output attribute. 如請求項3所述的方法,其中,所述的多個輸入數據集包括以下一項或多項:常規操作模式下的臭氧氣體產生能力、高階操作模式下的臭氧氣體產生能力、定義一給定空間區域的外部邊界或周邊的位置坐標、臭氧氣體產生裝置在該空間區域內的坐標位置,臭氧氣體產生裝置的模型識別、裝置運作可靠性指標、裝置無線通信可靠性指標和裝置歷史的、累積的臭氧氣體產生指標。The method according to claim 3, wherein the plurality of input data sets include one or more of the following: ozone gas production capacity in normal operation mode, ozone gas production capacity in high-order operation mode, definition-given The position coordinates of the outer boundary or periphery of the space area, the coordinate position of the ozone gas generation device in the space area, the model identification of the ozone gas generation device, device operation reliability indicators, device wireless communication reliability indicators and device history, accumulation of ozone gas production indicators. 如請求項3所述的方法,其中,該輸出屬性包括在該空間區域的環境空氣中構成的臭氧氣體的一期望濃度。The method of claim 3, wherein the output attribute includes a desired concentration of ozone gas formed in the ambient air of the spatial region. 如請求項2所述的方法,其中,該經過訓練的機器學習模型包括一經訓練的卷積神經網路和一經訓練的遞歸神經網路其中之一。The method of claim 2, wherein the trained machine learning model includes one of a trained convolutional neural network and a trained recurrent neural network. 如請求項1所述的方法,其中,響應於所述的指示,該群組的至少一個臭氧氣體產生裝置根據從臭氧氣體產生的一第一模式切換到一第二模式來增加與其相關的臭氧氣體產生速率,與第一種模式相比,臭氧氣體產生的第二模式具有更高的臭氧氣體產生速率。The method of claim 1, wherein, in response to the indication, at least one ozone gas generating device of the group increases its associated ozone according to switching from a first mode of ozone gas generation to a second mode. Gas production rate, the second mode of ozone gas production has a higher ozone gas production rate compared to the first mode. 如請求項7所述的方法,其中,該至少一個臭氧產生裝置包括由多個光學燈組成的一光學燈模組,且所述臭氧氣體產生的第二模式包括啟用所述多個光學燈中的至少一個附加的光學燈。The method of claim 7, wherein the at least one ozone generating device includes an optical lamp module composed of a plurality of optical lamps, and the second mode of ozone gas generation includes activating one of the plurality of optical lamps. of at least one additional optical light. 如請求項7所述的方法,其中,響應於所述指示,該群組的至少一個臭氧氣體產生裝置根據以下之一降低與其相關的臭氧氣體產生速率:(i)從臭氧氣體產生的第二模式切換到第一模式,以及 (ii)從一運作狀態切換到一非運作狀態。The method of claim 7, wherein, in response to the indication, at least one ozone gas generating device of the group reduces its associated ozone gas generation rate according to one of the following: (i) from a second ozone gas generated mode switching to the first mode, and (ii) switching from an operating state to a non-operating state. 如請求項9所述的方法,其中,該至少一個臭氧產生裝置包括由多個光學燈組成的一光學燈模組,且臭氧氣體產生的第一模式包括停用所述多個光學燈中的至少一個光學燈。The method of claim 9, wherein the at least one ozone generating device includes an optical lamp module composed of a plurality of optical lamps, and the first mode of ozone gas generation includes deactivating one of the plurality of optical lamps. At least one optical light. 一種運算裝置,包括: 一處理器;及 一包括指令的非暫態記憶體,該等指令在被該處理器執行時使該處理器執行包括以下操作的操作: 在一運算裝置處識別構成一群組的多個臭氧氣體產生裝置; 經由位於與該群組相關的一空間區域中的至少一個遠端臭氧氣體感測器裝置連同該運算裝置的一個或多個處理器,偵測在該空間區域內環境空氣的臭氧氣體成分的一濃度;及 響應於偵測到臭氧氣體成分的該濃度高於和低於一預定閾值濃度其中之一,使用一個或多個處理器指示該群組中的至少一個臭氧氣體產生裝置執行增加和降低與之相關的臭氧氣體產生的一速率其中之一。 A computing device including: a processor; and A non-transitory memory containing instructions that, when executed by the processor, cause the processor to perform operations including: Identifying at a computing device a plurality of ozone gas generating devices forming a group; Detecting an ozone gas component of ambient air in a spatial area associated with the group via at least one remote ozone gas sensor device located in the spatial area associated with the group in conjunction with one or more processors of the computing device concentration; and In response to detecting that the concentration of the ozone gas component is one of above and below a predetermined threshold concentration, using one or more processors to instruct at least one ozone gas generating device in the group to perform increases and decreases associated therewith One of the rates at which ozone gas is produced. 如請求項11所述的運算裝置,其中,該至少一個遠端臭氧氣體感測器裝置包括位於與該群組相關的該空間區域內的多個遠端臭氧氣體感測器裝置,並且還包括至少部分地使用一經過訓練的機器學習模型結合多個遠端臭氧氣體感測器裝置偵測環境空氣中臭氧氣體成分的該濃度。The computing device of claim 11, wherein the at least one remote ozone gas sensor device includes a plurality of remote ozone gas sensor devices located within the spatial area associated with the group, and further comprising The concentration of the ozone gas component in the ambient air is detected at least in part using a trained machine learning model in conjunction with a plurality of remote ozone gas sensor devices. 如請求項12所述的運算裝置,還包括可在該處理器中執行的指令,以透過一訓練過程產生一經過訓練的機器學習模型,該訓練過程包括: 在一神經網路的多個輸入層中的相應輸入層接收多個輸入數據集,該神經網路在一個或多個處理器中被實現並且具有經由一中間層集合連接到多個輸入層的一輸出層,多個輸入數據集的每一個包括與多個臭氧氣體產生裝置中的一些相關的一輸入屬性,該中間層集合中的一些根據一初始權重矩陣配置;及 訓練神經網路,根據多個輸入層中的相應輸入層至少部分基於透過反向傳播遞歸地調整該初始權重矩陣,根據在神經網路的輸出層計算的一誤差矩陣的減少,在輸出層生成一輸出屬性。 The computing device of claim 12 further includes instructions executable in the processor to generate a trained machine learning model through a training process, the training process including: A plurality of input data sets are received by respective ones of a plurality of input layers of a neural network implemented in one or more processors and having connections to the plurality of input layers via a set of intermediate layers. an output layer, each of the plurality of input data sets including an input attribute associated with some of the plurality of ozone gas generating devices, some of the intermediate set of layers configured according to an initial weight matrix; and Training the neural network based at least in part on recursively adjusting the initial weight matrix through backpropagation based on corresponding ones of the plurality of input layers, generating at the output layer based on the reduction of an error matrix calculated at the output layer of the neural network An output attribute. 如請求項13所述的運算裝置,其中,所述的多個輸入數據集包括以下一項或多項:常規操作模式下的臭氧氣體產生能力、高階操作模式下的臭氧氣體產生能力、定義一給定空間區域的外部邊界或周邊的位置坐標、臭氧氣體產生裝置在該空間區域內的坐標位置,臭氧氣體產生裝置的模型識別、裝置運作可靠性指標、裝置無線通信可靠性指標和裝置歷史的、累積的臭氧氣體產生指標。The computing device according to claim 13, wherein the plurality of input data sets include one or more of the following: ozone gas production capacity in normal operation mode, ozone gas production capacity in high-order operation mode, definition-given The position coordinates of the outer boundary or periphery of a certain space area, the coordinate position of the ozone gas generation device in the space area, the model identification of the ozone gas generation device, the device operation reliability index, the device wireless communication reliability index and the device history, Cumulative ozone gas production indicator. 如請求項13所述的運算裝置,其中,該輸出屬性包括在該空間區域的環境空氣中構成的臭氧氣體的一期望濃度。The computing device of claim 13, wherein the output attribute includes a desired concentration of ozone gas formed in the ambient air of the spatial area. 如請求項12所述的運算裝置,其中,該經過訓練的機器學習模型包括一經訓練的卷積神經網路和一經訓練的遞歸神經網路其中之一。The computing device of claim 12, wherein the trained machine learning model includes one of a trained convolutional neural network and a trained recurrent neural network. 如請求項11所述的運算裝置,其中,響應於所述的指示,該群組的至少一個臭氧氣體產生裝置根據從臭氧氣體產生的一第一模式切換到一第二模式來增加與其相關的臭氧氣體產生速率,與第一種模式相比,臭氧氣體產生的第二模式具有更高的臭氧氣體產生速率。The computing device of claim 11, wherein, in response to the instruction, at least one ozone gas generating device of the group increases its associated data according to switching from a first mode of ozone gas generation to a second mode. Ozone gas production rate, the second mode of ozone gas production has a higher ozone gas production rate compared to the first mode. 如請求項17所述的運算裝置,其中,該至少一個臭氧產生裝置包括由多個光學燈組成的一光學燈模組,且所述臭氧氣體產生的第二模式包括啟用所述多個光學燈中的至少一個附加的光學燈。The computing device of claim 17, wherein the at least one ozone generating device includes an optical lamp module composed of a plurality of optical lamps, and the second mode of ozone gas generation includes activating the plurality of optical lamps. at least one additional optical light. 如請求項17所述的運算裝置,其中,響應於所述指示,該群組的至少一個臭氧氣體產生裝置根據以下之一降低與其相關的臭氧氣體產生速率:(i)從臭氧氣體產生的第二模式切換到第一模式,以及(ii)從一運作狀態切換到一非運作狀態。The computing device of claim 17, wherein, in response to the indication, at least one ozone gas generation device of the group reduces its associated ozone gas generation rate according to one of the following: (i) a first ozone gas generation device generated from ozone gas; switching from the second mode to the first mode, and (ii) switching from an operating state to a non-operating state. 如請求項19所述的運算裝置,其中,該至少一個臭氧產生裝置包括由多個光學燈組成的一光學燈模組,且臭氧氣體產生的第一模式包括停用所述多個光學燈中的至少一個光學燈。The computing device of claim 19, wherein the at least one ozone generating device includes an optical lamp module composed of a plurality of optical lamps, and the first mode of ozone gas generation includes deactivating one of the plurality of optical lamps. of at least one optical light.
TW112110051A 2022-04-12 2023-03-17 Method and computing device of controlling a cohort of ozone gas generating devices TW202348937A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/718,404 2022-04-12
US17/718,404 US20230293753A1 (en) 2022-03-21 2022-04-12 Method and system of controlling a cohort of ozone gas generating devices

Publications (1)

Publication Number Publication Date
TW202348937A true TW202348937A (en) 2023-12-16

Family

ID=90039102

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112110051A TW202348937A (en) 2022-04-12 2023-03-17 Method and computing device of controlling a cohort of ozone gas generating devices

Country Status (1)

Country Link
TW (1) TW202348937A (en)

Similar Documents

Publication Publication Date Title
US11050577B2 (en) Automatically learning and controlling connected devices
US10411827B2 (en) Systems and methods for detecting wireless communication jamming in a network
US10395494B2 (en) Systems and methods of home-specific sound event detection
US10026297B2 (en) Remote alarm hushing with acoustic presence verification
KR102040505B1 (en) Air cleaning apparatus based on artificial intelligence and air cleaning system including the same
KR102618721B1 (en) Air purifier and operating method of the same
US10958512B2 (en) Fine grained network management to edge device features
JP2020503715A (en) Controlling connected devices using relational graphs
KR20190101924A (en) Thermo-hygrometer and method of controlling temperature and humidity for adjusting indoor environment
US20180293869A1 (en) Monitoring of vectors for epidemic control
CN113535761A (en) System and method for notifying specific device based on estimated distance
Sevin et al. Design and implementation of a man-overboard emergency discovery system based on wireless sensor networks
TW202348937A (en) Method and computing device of controlling a cohort of ozone gas generating devices
KR102496685B1 (en) Method and apparatus for analyzing a condition of a baby based on 3d modeling information using neural network
US20230293753A1 (en) Method and system of controlling a cohort of ozone gas generating devices
US20220270464A1 (en) Healthy indoor environment and air quality monitoring system and method for accessing and sharing information, publicly
EP4000242B1 (en) Network filtering with private resolvable addresses
US20240157014A1 (en) Method and system of controlling a non-homogeneous cohort of ozone gas generating devices
US20230293756A1 (en) Method and system for confirmation of viral safety status
Bahshm et al. Designing a Smart Home Automation System Using Internet of Things and Mobile Application
CN218895470U (en) HVAC device and main control device for operating HVAC device
US20230310688A1 (en) Sensor systems and methods
KR20210002632A (en) Improved frame pending
KR102464768B1 (en) Method and system for servicing an intelligent care of infant
US20240053034A1 (en) Ultraviolet Air Purifying System and Method